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Thin films and quasi-two-dimensional systems show a wide range of ordering effects and related
pattern-formation phenomena. The origins of these phenomena can often be traced to competition
between the atomic (or molecular) interactions in the system and the resulting inherent frustration of
the system. In magnetic thin films, a wide range of magnetic structures are possible as a result of the
competition between the long-ranged dipolar interactions and localized interactions. This article
reviews recent experimental and theoretical work which has developed our understanding of ordering
and pattern formation in these films and in related structures.
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INTRODUCTION

Thin films and quasi-two-dimensional materials have
many technological applications, including uses in elec-
tronics, data storage, and catalysis in the case of metal-
on-metal films, and in biotechnology and pharmacology
in the case of molecular films. Recent advances in film
growth techniques such as atomic (or molecular) beam
epitaxy and in characterization methods such as the sur-
face magneto-optical Kerr effect provide not only an op-
portunity for further technological application but also
allow one to consider thin films as an important testing
ground of our understanding of atomic interactions. The
development of materials with characteristics tailored to
a specific application requires a detailed understanding
of their microscopic interactions, how these interactions
are affected by factors such as composition and prepa-
ration, and how they determine the material properties.
For example, the use of ultrathin magnetic films for data
storage requires that the magnetization of the film be set
and read with a high degree of accuracy and spatial reso-
lution. Variations in the composition of the film can be
used to manipulate desired properties such as sensitivity
to an external field (Weber et al., 1995). The operating
parameters for such devices are often predetermined or
constrained, and hence the ability to ‘‘design’’ a material
to meet these constraints and optimize performance can
be of significant technological benefit.

Our purpose in this article is to show how, by bringing
together existing experimental and theoretical results,
one can understand the formation of ordered states in
quasi-two-dimensional systems, including the pattern
formation of structures consisting of domains with meso-
scopic dimensions, in terms of a simple model of the
magnetic interactions. Two systems are examined in
some detail; these are ultrathin (i.e., a few atomic layers)
metal films on metal substrates, and the rare-earth layers
that occur in the perovskite structures of
REBa2Cu3O72d , where RE represents a rare earth from
the lanthanide series. The choice of these particular sys-
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tems is motivated in part by the large number of experi-
mental studies that have been performed on them in
recent years. These studies have in turn been motivated
both by the technological importance of these systems
and by the insight that they provide into the fundamen-
tal role of interactions at the atomic level in determining
macroscopic magnetic properties. Both experimental
and theoretical studies have revealed several unusual
magnetic properties of these systems. These include an
initial increase in the static magnetization with increas-
ing temperature in the presence of an external magnetic
field (see Sec. V.E) and the presence of a frequency-
dependent peak and exponential decay with increasing
temperature of the real part of the ac susceptibility (see
Sec. V.B.3).

A realistic theoretical description of these systems
must include the exchange interaction, the dipolar inter-
action, and the on-site magnetocrystalline anisotropy,
since the appearance of long-range magnetic order in
quasi-two-dimensional systems requires the breaking of
the symmetry by the magnetic anisotropy. The detailed
nature of the magnetic anisotropy is determined by a
subtle combination of the magnetocrystalline interac-
tions, due to the structure of the crystal or presence of a
surface, and the dipolar interaction, which is inherently
anisotropic.

The dipolar interaction, which is often ignored in the-
oretical studies of magnetic systems, plays an essential
role in stabilizing long-range magnetic order in two-
dimensional systems, as well as in determining the na-
ture and morphology of the ordered state. In addition to
the inherent anisotropy of the dipolar interaction, its
long-range character is also important in determining
the magnetic properties of these materials. As discussed
in the later parts of the article, it is the interplay be-
tween the on-site, short-range, and long-range interac-
tions that results in the rich variety of magnetic proper-
ties of these systems. This is true of both the relatively
simple single, ordered phases exhibited by the layered
rare-earth systems and of the more complex multiple,
ordered phases and pattern formation exhibited by the
ultrathin metal films.

The formation of ordered states, which are dependent
on the long-range character of the dipolar interaction,
including states with mesoscopic domain patterns, is a
much wider phenomenon than the particular systems we
have chosen to focus on in this review. Indeed, this be-
havior is characteristic of a variety of quasi-two-
dimensional systems (Seul and Andelman, 1995). In this
sense, the studies discussed in this article provide insight
into a much wider class of physical systems than just our
two particular examples.

The outline of this review article is as follows: After
the introduction we present a summary of some of the
key experimental results for both magnetic thin films
and the REBa2Cu3O72d compounds in Sec. II. These
experiments form the basis of much of the remainder of
the article, which is primarily concerned with examining
the extent to which theoretical and numerical studies
can provide a reasonable account of the observed prop-
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erties in terms of the magnetic interactions at the atomic
level. We also seek to determine how systems belonging
to the same general structural family, but containing dif-
ferent components, can be treated systematically.

The long-range character of the dipolar interaction re-
quires some adaption of certain theoretical techniques.
In Sec. III, we provide a brief overview of a method for
performing the necessary lattice sums for ground-state
energy calculations, and show how this summation tech-
nique is incorporated into finite-temperature Monte
Carlo simulations to ensure a consistent treatment of
finite-size effects.

The role of anisotropy, arising from both the magne-
tocrystalline interactions and the dipolar interaction, in
ordering quasi-two-dimensional systems is most clearly
revealed within the context of spin-wave theory, as dis-
cussed in Sec. IV. A notable result is that, even in the
absence of magnetocrystalline anisotropy, the dipolar in-
teraction stabilizes long-range order in two-dimensional
planar systems with both ferromagnetic and antiferro-
magnetic ground states. This contrasts with systems that
have exchange interactions only, which cannot exhibit
long-range order in two dimensions.

Section V summarizes results obtained from theoreti-
cal models of the rare-earth layered systems and ultra-
thin magnetic films. These are compared with experi-
mental results and the success of models using the three
interactions described in detail below is assessed.

An intriguing property of ultrathin magnetic films is
their ability to exhibit a reorientation transition. At this
transition the magnetic moments of the film realign from
an out-of-plane orientation to a (predominately) in-
plane orientation as the temperature or film thickness is
varied. Understanding this phenomenon is of great in-
terest for fundamental studies of magnetic systems; how-
ever, it is also of considerable significance for applica-
tions such as data storage, where stability of the
magnetic configuration is required. Section VI extends
the comparison of theoretical and experimental studies
to consider the reorientation transition.

Finally, in Sec. VII we discuss some open questions
and areas for future study.

I. COMPETING INTERACTIONS IN FILMS

A. Exchange interactions

The simplest model of a two-dimensional magnetic
system consists of a term corresponding to a short-
ranged exchange interaction between nearest-neighbor
pairs ^i ,j& of spins and an external magnetic field cou-
pling to the spins only:

2Hex5(̂
i ,j&

JsW i•sW j1HW •(
i

sW i , (1)

where s i is an n-component classical spin vector. (In this
review we deal mainly with classical spin models; quan-
tum effects are discussed in the context of spin-wave
theory in Sec. IV). The possible ordered states for such a
model are correspondingly simple.
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We begin with the uniaxial (Ising) case in which the
spins are represented by scalars having positive and
negative values (s i561); if the exchange constant J is
positive, the only ordered state that occurs at low tem-
peratures is a simple ferromagnet such that in the (fully)
ordered state the spins are all aligned in parallel. If the
exchange constant is negative, the only ground state for
open lattices, such as the square lattice, is the simple
antiferromagnet, in which all nearest-neighbor pairs of
spins are antiparallel; an ordered state corresponding to
this ground state forms at low temperatures.

Other lattice structures may complicate this picture in
the case of a negative exchange interaction. For ex-
ample, on a triangular lattice it is not possible to find an
arrangement of spins that simultaneously minimizes the
energy of all spin-spin interaction terms in the Hamil-
tonian. As a result of this frustration, the system is un-
able to order at any finite temperature.

For spins with rotational symmetry, spontaneous long-
range order does not occur at any finite temperature if
only the exchange interaction is present (Mermin and
Wagner, 1996). In the case of the two-component spin
(planar) system, a transition associated with vortex pair-
ing does, however, occur at the Kosterlitz-Thouless tran-
sition temperature (Kosterlitz and Thouless, 1973).

B. Dipolar interactions

In all real systems there is, in addition to any short-
ranged exchange interaction, a long-ranged dipole-
dipole interaction always present between the magnetic
moments. The contribution of this interaction to the sys-
tem Hamiltonian is

Hdd5
g

2 (
iÞj

S sW i•sW j

r ij
3 23

~sW i•rW ij!~sW j•rW ij!

rij
5 D , (2)

where the sum is over all possible pairs of sites on the
lattice and rW ij is the vector connecting site i to site j . In
many theoretical studies of magnetic systems this dipo-
lar interaction is neglected, the rationale for this being
the small magnitude of the dipolar interaction relative to
the magnitude of the exchange interaction. In quasi-two-
dimensional systems, the dipolar interaction can play an
essential role in determining the magnetic properties. In
the case of systems with rotational symmetry, the dipo-
lar interaction can stabilize long-range order at a finite
temperature (Male’ev, 1976). Moreover, the dipolar in-
teraction between any two spins on the lattice not only
decays slowly with distance but also depends on both the
relative orientation of the two spins and their orienta-
tion relative to the vector joining the two sites. Conse-
quently the ground state of a system determined by the
dipolar interaction alone differs from the ground state of
a system determined by the exchange interaction alone.
When both interactions are present the system is inher-
ently frustrated.

As we shall show below, many interesting properties
of systems with dipolar interactions result from this in-
herent frustration of the system. In particular, the subtle
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interplay between the localized exchange interaction
and the relatively weak but long-range dipolar interac-
tion can give rise to magnetic structures on a mesoscopic
length scale. This interplay between long-range and
short-range interactions manifests itself in pattern for-
mation in a wide range of physical systems (Seul and
Andelman, 1995). The structure factor (see Sec. V.C)
characterizes the morphology and symmetry of the pat-
tern structure. It provides a useful way of identifying
analogies between systems that form patterned struc-
tures.

Another important property of the dipolar interaction
for two-dimensional films is that it breaks the symmetry
between the out-of-plane orientation of the spins and
the in-plane orientation of the spins in the ordered state.
For a system with dipolar interactions only, the ground
state for spins arranged on a square lattice has all of the
spins oriented in the plane of the film (see Sec. III.B).

C. Magnetocrystalline anisotropy

In addition to exchange and dipolar spin-spin interac-
tions, and coupling to an external applied magnetic field,
spins in a magnetic system may experience a localized
(on-site) anisotropy due to interaction with the crystal
environment. Therefore, in general, a thin magnetic film
is described by a Hamiltonian,

H5Hex1Hdd1Han . (3)

For many systems of interest, the magnetocrystalline an-
isotropy may be represented by a term in the Hamil-
tonian:

Han5(
i

(
ab

Aabs i
as i

b , (4)

where i labels the lattice site and a and b denote Carte-
sian components.

The simplest example of such an anisotropy is the
crystalline-electric-field (CEF)-induced anisotropy in
the heavy rare earths. In the lowest-order representation
the anisotropy fields can be written in terms of Steven’s
operators (Hutchings, 1964). This representation is ad-
equate for the description of magnetocrystalline anisot-
ropy in many rare-earth systems, including the quasi-
two-dimensional layered rare-earth compounds
discussed in the following sections (De’Bell and White-
head, 1994). However, for transition metals such as
those typically used in the thin metal films discussed in
this review, ab initio or band-theory calculations may be
required to calculate the nature of the anisotropy in a
material (see, for example, Lorenz and Hafner, 1995,
and references therein).

In bulk systems, deviations from cubic symmetry (e.g.,
by tetragonal or orthorhombic lattice structures) may
result in a reduced symmetry for the magnetocrystalline
anisotropy and hence in ordering parallel to a particular
axis or in a particular plane; thus justifying the treatment
of the system by a uniaxial or planar model. Néel (1954)
recognized that this effect would be particularly signifi-
cant at a surface, as the presence of the surface breaks
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the symmetry in the bulk and distinguishes the direction
perpendicular to the plane from directions in the plane
of the surface. There has been a considerable effort to
calculate the magnitude of the resulting surface anisot-
ropy both by band-theory/spin-orbit calculations1 and by
ab initio calculations.2 In Table I we quote the order-of-
magnitude estimates obtained by Bruno (1989) for an
isolated monolayer to give a sense of the size of this
effect.

An extremely detailed experimental study and com-
parison with theory of the relative strengths of the dipo-
lar and magnetocrystalline anisotropies in Co on Ag
(001) has been performed by Bland et al. (1995). In this
system, the magnetocrystalline anisotropy is dominant in
determining the in-plane orientation of the magnetic
moments and in introducing a gap in the spin-wave spec-
trum.

For a review of experimental studies of anistotropies
in ultrathin films, the reader is referred to the article by
Heinrich and Cochran (1994). This article also gives a
detailed discussion of models of exchange interactions
and on-site anisotropies.

In Sec. VI we shall return to the role that competition
between this surface anisotropy term and the inherent
anisotropy of the dipolar interaction plays in driving the
reorientation transition that is observed in metal-on-
metal films.

II. EXPERIMENTAL STUDIES

A. Magnetic thin films

The remarkable improvement in the ability to grow
and characterize metal films of a few atomic thicknesses
on metal substrates that has occurred in the past decade
(Jones and Venus, 1994; Prutton, 1994) has led to a se-
ries of exciting observations regarding the character of
the magnetic domains in such films. In a key early study
in this series, Pappas et al. (1990) studied a number of
films of iron (Fe), each approximately three atomic lay-
ers thick, deposited on copper [Cu(100)]. Using spin-

1See, for example, Bruno, 1989; Pick and Dreyssé, 1992; Pick
et al., 1994; Lessard et al., 1997.

2See, for example, Gay and Richter, 1986, 1987; Daalderop
et al., 1990, 1991; Li et al., 1990; Daalderop et al., 1992; Victo-
ria and MacLaren, 1993; Wang et al., 1993a, 1993b; Szunyogh
et al., 1995.

TABLE I. Anisotropy energy K2 (see Sec. VI) of fcc(001) and
fcc(111) monolayers. Energies are expressed in meV/atom
(Bruno, 1989). Numbers in brackets are the number of 3d
14s electrons for the elements shown.

Nv (001) (111)

Fe(8) 0.00 20.61
Co(9) 21.98 22.47
Ni(10) 20.86 20.43
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polarized electron spectroscopy they found that the
magnetic moments of the Fe atoms were aligned per-
pendicular to the plane of the film in the low-
temperature regime. On heating, the sample was ob-
served to pass through a region in which the net
magnetization was lost but reappeared at still higher
temperatures with a significant component in the plane
of the film. Immediately above the onset of a net mag-
netization in this region, a smaller component in the per-
pendicular direction was also observed (Fig. 1). These
changes in the magnetization occurred in a temperature
range of T<350 K in which the film was structurally
stable. All of the changes in this region were reversible.
At temperatures above 350 K there was an irreversible
loss of magnetization that appeared to be associated
with a structural transition at approximately 300 K.

Pappas et al. (1990) interpreted their observations in
the structurally stable region as a switching transition
from a uniaxial state perpendicular to the plane of the
film, due to interfacial anisotropy at low temperatures,
to a canted magnetic state above the transition. They
noted two possible explanations for the region of de-
magnetization between the perpendicular and canted
phases. The first possibility was that the region was truly
paramagnetic as a result of the demagnetizing fields ex-
actly canceling the interfacial anisotropy and thereby re-
storing rotational symmetry. The second possibility was
that the magnetic structure in this region was one of
static domains with zero net magnetization. Pappas et al.

FIG. 1. Schematic representation of the out-of-plane and in-
plane magnetization curves observed by Pappas et al. (1990):
solid curve, the out-of-plane magnetization; dotted and dashed
curves, the two in-plane magnetizations.
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(1990) also noted that the temperature at which the
switching transition occurred decreased as the film thick-
ness increased.

The nature of the switching transition and the nature
of the magnetic state in the vicinity of the transition was
clarified by exacting experiments using scanning elec-
tron microscopy with polarization analysis. This tech-
nique allows imaging of magnetic structures on mi-
crometer scales.

In a scanning-electron-microscopy study of cobalt
(Co) on gold [Au(111)], Allenspach et al. (1990) demon-
strated the dependence of magnetic structure on film
thickness at a constant temperature of 300 K. At three
atomic layers thickness the magnetic moments were
aligned perpendicular to the plane; however, the mo-
ments were arranged in irregularly shaped domains. As
the film thickness increased, the moments of the do-
mains rotated continuously until at five atomic layers the
magnetic moments were almost entirely parallel to the
plane of the film.

Allenspach and Bischof (1992) also used scanning
electron microscopy to study the variation of domain
structure with temperature in fixed-thickness films of Fe/
Cu(100). Below a characteristic temperature, the mo-
ments form a single magnetic domain oriented perpen-
dicular to the plane of the film. As the temperature is
increased above this characteristic temperature, the mo-
ments remain predominately perpendicular to the plane
but domains of reversed moment form. These domains
are elongated, and the elongation is aligned along a crys-
tallographic direction. As the temperature continues to
increase, the magnetic moments reorient from the per-
pendicular direction to a direction parallel to the plane
of the film.

Berger and Hopster (1996a, 1996b) have studied the
remnant magnetization in Fe films of approximately four
monolayers (4ML) on a silver [Ag(100)] substrate. Their
observations of the (near) zero-field, perpendicular, and
parallel-to-plane magnetizations are consistent with
those of the earlier studies. The magnetization is per-
pendicular to the plane at low temperatures, with an
intermediate region in which the perpendicular compo-
nent of the magnetization rapidly decreases but the
component of magnetization parallel to the plane re-
mains zero until a higher temperature TR is reached. At
temperature TR a net magnetic moment parallel to the
plane of the film appears; this rapidly saturates with in-
creasing temperature. For a 3.8ML film with TR5370
610 K, Berger and Hopster (1996a) found that the zero-
field remnant magnetization was essentially zero in a
temperature range 316 K <T<363 K. However, small
applied magnetic fields H5O(10 Oe) were sufficient to
restore the perpendicular magnetization to its saturation
value. The critical field at which saturation occurs de-
creases with decreasing temperature. Moreover, Berger
and Hopster observed that the shape of the dM/dH
curve depends on temperature. At T5316 K the curve
has two clearly defined sharp peaks. As the temperature
is increased, the peaks are suppressed and at tempera-
tures close to TR the dM/dH curve exhibits a single flat
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
step. Although no hysteresis was observed in this tem-
perature range (T.316 K), at temperatures T,316 K
noticeable hysteresis effects were present.

Berger and Hopster’s studies of the effect of magnetic
fields on the remnant magnetization provide some in-
sight into the stability of the domain phases. Evidence of
metastability at low temperatures was obtained by ap-
plying a 90-Oe field to a 4ML film to saturate the mag-
netization in the perpendicular direction (Berger and
Hopster, 1996b). The applied field was switched off and
the time dependence of the perpendicular magnetization
observed at various temperatures below TR'210 K.
When the sample had previously been warmed from low
temperatures in zero field it exhibited a loss of perpen-
dicular magnetization at T* '120 K. However, when ini-
tially saturated by the 90-Oe field and then allowed to
relax at fixed temperature, it exhibited relaxation to a
nonzero remnant magnetization in a temperature range
102 K>T>170 K with a finite relaxation time given by

t'exp~E/kBT ! (5)

with E'3.4 eV.
A recurring problem in experimental studies of the

magnetic properties of thin films is structural instability
with respect to changes of temperature or changes of
film thickness (see Li et al., 1994; Baudelet et al., 1995,
and references therein). The importance of the physical
structure of the film in determining the magnetic domain
structures has been demonstrated by Speckmann et al.
(1995) in studies of as-grown and annealed Co on
Au(111) samples. Some progress has been made in at-
tempting to isolate the effects of parameters such as
temperature and film thickness on the magnetic proper-
ties by a careful choice of substrate. For example, Ar-
nold et al. (1997) have grown fcc iron films on a sub-
strate obtained by depositing two monolayers of nickel
on the tungsten (110) surface. The underlying bcc tung-
sten (110) surface had some effect in that the resulting
strain produced a twofold symmetry for in plane orien-
tations of the iron moments; however, the film structure
was stable in a range of 1–3 ML for temperatures below
400 K. Using susceptibility measurements based on the
magneto-optical Kerr effect Arnold et al. (1997) found
that, for films with less than approximately 2ML of iron,
no reorientation transition was observed, but the transi-
tion from out-of-plane domains to a disordered state oc-
curred directly as the temperature was increased. At
higher coverage, the films exhibited a reorientation tran-
sition to an in-plane ferromagnetic phase before disor-
dering. By extrapolation of their data lines for the order
disorder transition and the reorientation transition, Ar-
nold et al. (1997) identified a multicritical region. A
schematic representation of the phase diagram obtained
by Arnold et al. (1997) is shown in Fig. 2.

The experimental studies described above identify the
key features of magnetic thin films that theoretical mod-
els must contain. Anisotropy is necessary to produce an
ordered state in two-dimensional systems; however, the
anisotropy in these films does not determine a single
easy axis or plane at all temperatures. Typically, the
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magnetization is perpendicular to the plane of the film at
low temperatures, but at a finite temperature a reorien-
tation occurs and the magnetization realigns in the plane
of the film. [An exception to this is the Ni on Cu (001)
system, which has in-plane ordering for thin films at low
temperatures and which reorients out of plane above a
critical temperature or film thickness (Schulz and Bab-
erschke, 1994)]. In an intermediate range of tempera-
tures below the reorientation transition temperature,
both the perpendicular and in-plane components of the
magnetization essentially disappear. The reorientation
transition temperature is dependent on the thickness of
the film. Finally, the work of Berger and Hopster indi-
cates the existence of states that are close in energy to
the domain ground states and that are metastable at low
temperatures. The signature of these metastable states
in the relaxation of the magnetization vanishes as the
reorientation transition temperature is approached. We
defer further comparison of these and other experimen-
tal magnetic thin-film studies with theory until the ap-
propriate parts of Secs. V and VI.

B. Layered rare-earth systems

A considerable number of experimental studies have
been performed on the magnetic properties of the rare
earths in the family of compounds with general formula
REBa2Cu3O72d . These compounds are derived from
the parent compound YBa2Cu3O72d by substituting the
yttrium (Y) with one of the rare earths, typically from
the lanthanide series, which we have denoted by RE.
The interest in these compounds arises because the

FIG. 2. Schematic representation of the phase diagram ob-
tained by Arnold et al. (1997).
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YBa2Cu3O72d belongs to the class of high-Tc supercon-
ductors. YBa2Cu3O72d has a perovskite crystal struc-
ture; the ab planes of yttrium ions each lie between two
double copper oxide layers. For small values of the oxy-
gen deficiency d, the yttrium lattice is orthorhombic and
the compound is superconducting, with a superconduct-
ing transition temperature Tc'90 K. At sufficiently high
values of the oxygen deficiency (d'1) the yttrium lat-
tice is tetragonal and the compound does not exhibit
superconductivity but is instead an insulator. In both the
orthorhombic and tetragonal crystal structures the sepa-
ration of nearest-neighbor yttrium ions in the ab plane
is approximately 4 Å, while the separation of the
yttrium-ion planes in the c direction is approximately 12
Å.

Replacement of yttrium (Y) by the rare earths cerium
(Ce), praseodymium (Pr), promethium (Pm), or terbium
(Tb) destroys the superconducting nature of the sample
for sufficiently high concentrations of the substituting
rare earth (Maple et al., 1987). However, complete sub-
stitution for the yttrium of the Kramers ions neodymium
(Nd31), samarium (Sm31), gadolinium (Gd31), dyspro-
sium (Dy31), or erbium (Er31) has little effect on the
superconducting transition temperature, indicating that
the magnetic moments are interacting only weakly with
the superconducting electrons. These rare-earth com-
pounds are also interesting because they order magneti-
cally at low temperatures, typically <2 K.

The fact that superconductivity coexists with the mag-
netic moments of the heavier rare earths is quite re-
markable, but not unusual, as there exist a number of
other magnetic superconductors, such as the RERh4B4
and REHo6S8 series of compounds, which have been ex-
tensively studied both theoretically and experimentally
(Matsubara and Kotani, 1984). The fact that the lighter
rare earths destroy the superconductivity is generally at-
tributed to the mixed-valence nature of these ions.

These rare-earth compounds represent a fascinating
class of magnetic compounds. The layered character of
the perovskite crystal structure suggests that these are
quasi-two-dimensional magnetic systems. The fact that
substituting the heavier rare-earth ions for the Y ions
has little effect on the superconducting transition tem-
perature or the lattice spacing suggests that the rare-
earth sublattice does not couple strongly to the oxide
planes and may, to a first-order approximation, admit a
systematic interpretation in terms of the Hamiltonian
given by Eq. (3). Moreover, the low ordering tempera-
tures of these compounds suggest that the dipolar inter-
action plays an important, if not dominant, role. Finally,
there is the possibility that a detailed understanding of
the magnetic properties of these compounds may be
useful in revealing important aspects of superconductiv-
ity.

Early neutron-scattering experiments on composite
samples of superconducting ErBa2Cu3O7 confirmed that
the system ordered antiferromagnetically at approxi-
mately 0.5 K with the moments aligned in the ab plane
along the b axis. The moments are ordered ferromag-
netically in the b direction and antiferromagnetically in
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the a direction. (We refer to this as AF ordering.) How-
ever, these early experiments were unable to determine
conclusively if the ordering was two- or three-
dimensional. Further neutron-scattering experiments,
just above the transition temperature, on high-quality
single-crystal samples showed that the critical fluctua-
tions consisted of rods, indicating no significant correla-
tion in the c direction. This confirmed that the nature of
the ordering was, in fact, quasi two dimensional (Lynn
et al., 1989). As the temperature is lowered below TN ,
the magnetic ions would be expected to order along the
c axis; however, the exact nature of the order along the
c axis appears to be sample dependent and its precise
determination is further complicated by the controversy
that has surrounded the interpretation of these results
(Malletta et al., 1990; Clinton and Lynn, 1991b).

The neutron-scattering results on orthorhombic
ErBa2Cu3O7 are consistent with low-temperature
specific-heat measurements, which showed that the spe-
cific heat was well fitted by the Onsager solution for the
two-dimensional Ising model (Brown et al., 1987; Naka-
zawa et al., 1987; Simizu et al., 1987; Lee et al., 1988) and
find that the critical exponent obtained for the order
parameter was close to the expected value for a two-
dimensional Ising model, b51/8, but inconsistent with a
value of b'1/3 expected for a three-dimensional Ising
or Heisenberg system. This observation of two-
dimensional ordering may appear to be inconsistent with
the long-ranged nature of the dipolar interaction; how-
ever, De’Bell and Whitehead (1991) showed that the
coupling between moments in different planes, due to
the dipolar interaction, is almost negligible.

In the case of the Er compound, the sharp Ising-like
peak in the specific heat occurs only in samples with
orthorhombic symmetry. If the oxygen deficiency is suf-
ficiently reduced so that the rare-earth lattice is tetrago-
nal, the sharp peak is replaced by a broad maximum
(Nakazawa et al., 1987; Simizu et al., 1987; 1989). It is
also found that the Er ions do not appear to order, even
down to the lowest temperatures (Clinton et al., 1995).

Experiments on DyBa2Cu3O7 also show clear evi-
dence of antiferromagnetic ordering with a Néel tem-
perature of 0.95 K. However, unlike the Er compound,
the spins are aligned along the c axis with the moments
ordered antiferromagnetically in both the a and b direc-
tions (we refer to this as the AA phase). The critical
scattering just above TN is strongly 2D in character
showing little correlation between the ab planes along
the c axis (Clinton and Lynn, 1991a). The order param-
eter obtained from neutron scattering (Clinton and
Lynn, 1991a) is relatively flat at low temperature and
drops rapidly to zero close to TN , in a manner qualita-
tively similar to that of the two-dimensional Ising model.
This is consistent with specific-heat measurements which
show a sharp Ising-like peak (Dirken and de Jongh,
1987; Allenspach et al., 1995).

As the temperature is further reduced below TN ,
three-dimensional order is observed; however, the pre-
cise nature of the ordering appears to depend strongly
on the oxygen content and sample preparation, and, as
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with the measurements on the magnetic properties of
ErBa2Cu3O7, considerable controversy surrounded the
interpretation of some of the early neutron-scattering
data for DyBa2Cu3O7. Recent experiments appear to
have resolved the situation somewhat (Clinton et al.,
1995). In the case of a fully oxygenated compound, the
spins appear to order antiferromagnetically along the c
axis. On the other hand, for d'0.46 the material is still
in the superconducting phase, and the spins are aligned
ferromagnetically along the c axis, with a transition tem-
perature slightly lower than that of the fully oxygenated
case, TN50.87 K (TN50.91 K).

The magnetic properties of the insulating phase
DyBa2Cu3O6 also show the effect of the degree of oxy-
genation on the nature of the magnetic ordering along
the c axis. Neutron-scattering data indicate the existence
of long-range antiferromagnetic order in the ab planes
for T,TN with TN50.55 K. However, the magnetic or-
der along the c axis appears to be short ranged and the
magnetization does not appear to develop full three-
dimensional order down to the lowest temperatures ob-
served (Clinton et al., 1995). Calorimetric studies are
consistent with these observations in the sense that the
heat-capacity measurements show sharp peaks for
samples with large (d'1) and small (d!1) degrees of
oxygenation, but the peaks are rounded for intermediate
degrees of oxygenation.

Neutron-scattering experiments on GdBa2Cu3O7
show that the Gd ions order antiferromagnetically at
TN52.2 K. Like the DyBa2Cu3O7, the magnetic mo-
ment of the Gd ions is aligned along the c axis and or-
dered antiferromagnetically along both the a and b axes.
Specific-heat measurements on GdBa2Cu3O7 show a
peak at TN (Brown et al., 1987; Reeves et al., 1987; Dun-
lap et al., 1988) which can be described reasonably well
by the 2D Ising model (van der Berg, 1987). However, it
should be noted that the specific-heat curve exhibits a
shoulder just below TN (Brown et al., 1987; Dunlap
et al., 1988). What is particularly notable in these results
is that both specific-heat (Reeves et al., 1987; Dunlap
et al., 1988) and neutron-scattering measurements indi-
cate that the magnetic properties are virtually indepen-
dent of the crystallographic structure (orthorhombic
versus tetragonal).

While much of the work on the magnetic properties of
the rare-earth compounds has focused on Dy, Gd, and
Er, a number of interesting studies have been published
on neodymium (Nd) and samarium (Sm). Early
neutron-scattering work on the superconducting, ortho-
rhombic phase of neodymium (Fischer et al., 1989; Yang
et al., 1989), showed that the neodymium ions ordered
antiferromagnetically with their moments aligned per-
pendicular to the plane. Heat-capacity measurements on
both neodymium and samarium exhibited a sharp peak
(Yang et al., 1989) associated with magnetic ordering,
and it was shown that the specific-heat curve was well
fitted by the Onsager solution for the anisotropic 2D
Ising model. While it is to be expected that the magnetic
coupling along the a and b axes would differ, the cou-
pling constants obtained from the ‘‘best fit’’ to the data
differ by more than an order of magnitude in both cases
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(Yang et al., 1989; Allenspach et al., 1995). It is difficult
to account for such a large difference.

Also very interesting in the neodymium and samarium
compounds is the fact that the sharp peak in the heat
capacity is observed only in the orthorhombic phase. In
the oxygen-deficient tetragonal phase the heat capacity
has a much more ‘‘rounded’’ peak at a somewhat higher
temperature than in the orthorhombic case (Yang et al.,
1989). More extensive results on the specific-heat mea-
surements on NdBa2Cu3O72d reveal a more complex re-
lationship between the degree of oxygenation and the
magnetic order (Allenspach et al., 1995). As with the
earlier results of Yang et al. (1989), for the fully oxygen-
ated compound (d'0.07), the heat capacity shows an
Ising-like peak at the Néel temperature, and as d is in-
creased the peak shifts upward in temperature and ini-
tially becomes more rounded. However, Allenspach
et al. (1995) also show that as d is increased beyond 0.36
the peak begins to sharpen again. Allenspach et al.
(1994) have had some success in fitting the specific-heat
data to a simple cluster model for high oxygen content
(0,d,0.26). However, for lower oxygen concentra-
tions they claim the most appropriate model is ‘‘inbe-
tween a molecular field and a 3D Ising model.’’

These results suggests that the degree of oxygenation
has a significant effect on the magnetic properties of the
rare-earth sublattice in NdBa2Cu3O72d . This is con-
firmed by neutron-scattering studies on NdBa2Cu3O72d
which show an interesting and unusual dependence on
the degree of oxygenation. For d50.22 the material is
still superconducting; however, it does not appear to de-
velop long-range magnetic order in the ab planes, but
instead exhibits short-range 2D antiferromagnetic order
with a correlation length that reaches a maximum value
of around 22 Å (Clinton et al., 1995). A further reduc-
tion in the degree of oxygenation to d'0.55 destroys the
superconductivity and appears to enhance the correla-
tions along the c axis; however, long-range magnetic or-
der does not develop down to the lowest temperatures.
As suggested by the specific-heat measurements of Yang
et al. (1989), long-range moloculer order is reestablished
by a further reduction in the degree of oxygenation. At
d50.7 and d50.87 the spins are ordered antiferromag-
netically with transition temperatures TN51.5 K (d
50.7) and 1.75 K (d50.87) but are tilted at 45° to the c
axis.

There have also been extensive experimental and the-
oretical studies related to crystalline electric-field split-
ting in the REBa2Cu3O7 compounds and their role in
determining the magnetic properties of these com-
pounds. These provide quantitative estimates of the
magnetic-crystalline anisotropy, the ground-state mag-
netic moment, and the spin degeneracy at low tempera-
tures. For a review and discussion of these properties
the reader is referred to MacIsaac et al. (1992), White-
head, De’Bell, and MacIsaac (1993), and De’Bell and
Whitehead (1994).

III. THE DIPOLAR INTERACTION

In this section we briefly examine some important re-
sults in the calculation of the dipolar energy. In particu-
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
lar, the long-range nature and the anisotropic character
of the dipolar interaction require considerable care in
the evaluation of the dipolar contribution to the mag-
netic energy. We begin by examining a generalized form
of the Ewald summation technique that provides a pow-
erful means of dealing with the slowly convergent nature
of dipolar sums. We then present the dipolar energy for
a number of important spin configurations. Finally we
present a widely used method for including the dipolar
interaction in a Monte Carlo simulation.

A. Ewald summation technique

To include the dipolar interaction in any calculation,
one needs a method of efficiently calculating the dipolar
energy for particular spin configurations. The problem is
complicated by the slowly convergent nature of the di-
polar sums. Such summations are best treated using one
of the variants of the Ewald summation technique de-
scribed in the literature (Bonsall and Maradudin, 1977;
Fujiki, De’Bell, and Geldart, 1987).

The basis of the summation technique is the separa-
tion of the interaction into a localized part and a long-
range part. In the paper of Fujiki et al. (1987) this is
accomplished by rewriting the dipolar energy given by
Eq. (2) as
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where h is an arbitrary parameter typically of order
unity. Substituting Eq. (7) into the expression for the
dipolar sum given by Eq. (6) yields two terms, which we
denote by H1 and H2 , representing the contributions
from integration over the intervals h,r,` and 0,r
,h , respectively.

The second term in Eq. (7) may be evaluated explic-
itly as
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and hence H1 may be written as
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This term may be readily evaluated numerically for dif-
ferent spin configurations since the complimentary error
function erfc(x) damps exponentially for large x :
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lim
x→`
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x
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The term H1 therefore represents the contribution of
the ‘‘short-range’’ part of the dipolar interaction to the
energy of a particular spin configuration.

The remaining contribution to the dipolar contribu-
tion can be made rapidly convergent by transforming
the expression for the dipolar energy to momentum (qW )
space. The resultant expression may be written as
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where sa(qW ) denotes the Fourier transform of the spin
configuration,
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where $KW % denotes the reciprocal-lattice vectors of the
rectangular lattice and za denotes the a component of
the unit vector perpendicular to the surface. While the
presence of the complimentary error function in the
summation ensures a rapid convergence for large values
of q , particular care has to be taken with the long-
wavelength limit, since the first term in the series con-
tains a nonanalytic contribution that goes as qaqb/q .
This contribution arises as a consequence of the long-
range character of the dipolar interaction and often has
to be treated separately. The nonanalytic character of
this term can manifest itself in a number of interesting
and subtle ways.

The summation technique described above, or some
variant of it, provides a systematic way of rendering the
dipolar sum rapidly convergent and a means of explicitly
extracting the effect of the long-range character of the
dipolar interaction. Generalizations of the above tech-
nique for simple antiferromagnetic structures were given
by De’Bell and Whitehead (1991) and for striped phases
by MacIsaac et al. (1995).

Finally, we note the almost trivial fact that the choice
of h in the evaluation of H1 and H2 is quite arbitrary.
However, the particular choice of h can affect the com-
putational efficiency. Moreover, the fact that the indi-
vidual values of H1 and H2 depend on the specific choice
of h, while the sum is independent, provides a very im-
portant test of any algorithms used in the calculation of
the dipolar energy.
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B. Ground-state spin configurations

One important application of the Ewald summation
technique is the determination of the dipolar contribu-
tion to the ground-state spin configuration. It can often
happen that the contribution of the dipolar interaction
will give rise to a finite energy difference between oth-
erwise degenerate or nearly degenerate spin configura-
tions. Therefore, despite its relatively small magnitude,
the dipolar interaction can play an important role in de-
termining the ground-state spin configuration.

In Table II we give the dipolar contribution to several
important spin configurations. While this table by no
means exhausts all of the possible spin configurations, it
does include many of the experimentally important
ones.

C. Dipole interaction and Monte Carlo simulations

Monte Carlo simulations are an important technique
in the study of the finite-temperature properties of mag-
netic spin systems. We do not intend to cover the basis
of the Monte Carlo procedure; instead we refer the
reader to one of the many excellent texts on this subject
(Binder and Heermann, 1993). In this section we wish to
review some of the subtleties that can arise when the
dipolar interaction is included in the simulation.

There are two ways in which the dipolar interaction
affects the Monte Carlo procedure. The most obvious
complication arises as a consequence of the fact that the
dipolar interaction is not a simple nearest-neighbor in-
teraction. Indeed, flipping a spin affects every other spin
in the system. This means that many of the procedures
that have been developed to improve the efficiency of
the algorithm used in the Monte Carlo simulation, that
either implicitly or explicitly exploit the finite range of
the interaction, either have to be modified or are no
longer applicable. It also means that the time required
to perform a Monte Carlo step for an L3L site system
increases as L4, rather than L2 for a localized interac-
tion. This makes the problem extremely computation in-
tensive and limits the size of the system that can be in-
vestigated in practice.

The other difficulty associated with including the di-
polar interaction in a Monte Carlo simulation is how
best to mitigate finite-size effects. Again, the long-range
character of the dipolar interaction considerably compli-
cates matters, as edge effects can give rise to an effective
current loop around the boundary of the system if finite-
size effects are not treated carefully.

A widely used method of modeling an infinite system
by a finite number of degrees of freedom exploits the
Ewald summation technique discussed in the previous
section. The technique restricts the sum over states to
those which are periodic. In the case of a square lattice,
the only spin configurations included in the summation
are those that satisfy the requirement

sa~x ,y !5sa~x1n3L ,y1m3L !, (15)
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TABLE II. The dipolar energy calculated for a number of important spin configurations on a square
lattice. The subscripts x and y refer to the square lattice axes; z is the perpendicular direction.
Energies are expressed in units of 2a3KBT/meff . The function fh(i) is defined to be fh(i)[„i
2mod(i ,h)…/h .

System Spin configuration Energy

Planar ferromagnet
sx51
sy50
sz50

E524.5168g

Planar antiferromagnet
(AA) phase

sx5(21) i1j

sy50
sz50

E51.3229g

Planar antiferromagnet
(AF) phase

sx5(21) i

sy50
sz50

E525.0989g

Uniaxial ferromagnet
sx50
sy50
sz51

E59.0336g

Uniaxial antiferromagnet
(AA) phase

sx50
sy50

sz5(21) i1j
E522.6459g

Uniaxial antiferromagnet
(AF) phase

sx50
sy50

sz5(21) i
E520.9355g

Uniaxial striped
phase

sx50
sy50

sz521 fh(i)

lim
h→`

Eh59.0336g2
1
h
„Ag1Bgln(h)…

A59.105, B58

Uniaxial checkerboard
phase

sx50
sy50

sz521 fh(i)1fh(j)

lim
h→`

Eh59.0336g2
1
h
„Ag1Bgln(h)…

A52.819, B516
where n and m are integers and where the x and y axes
are within the square lattice and the z axis is perpen-
dicular to it.

Such configurations may be completely specified in
terms of L2 spins in an L3L unit cell. Denoting by $RW n%
the L2 sites in the L3L unit cell and defining the lattice
translation vector TW as

TW 5L~nx̂1mŷ !, (16)

where n and m are integers, one may write the dipolar
energy as
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where we have defined Gab(RW ij) as

Gab~RW ij!5(
TW

gab~RW ij1TW !. (18)

Thus the calculation of the dipolar energy can be written
as a sum over the L2 spins that make up the L3L unit
cell, which interact through an effective interaction
Gab(RW ij).
., Vol. 72, No. 1, January 2000
The evaluation of Gab(RW ) is a straightforward but
tricky business, particularly for large lattices. The Ewald
summation techniques described in the previous section
for performing dipolar sums are essential if reliable re-
sults are to be obtained.

We close this section by noting two points with regard
to finite-size systems. The first point is that, while larger
values of L generally lead to more reliable results, care
has to be taken to ensure that the ground state is in-
cluded in the subset of allowed spin configurations used
in the analysis or, equivalently, that the ground state is
commensurate with the imposed periodicity L . The sec-
ond point is that the effective interaction can be used to
calculate the dipolar energy of any spin configuration
with a commensurate periodicity.

IV. SPIN WAVES

For a system whose spin dynamics are invariant under
a continuous global rotation of the spins, the existence
of long-range magnetic order implies the existence of a
gapless branch in the spin-wave excitation spectrum. In
the case of a localized interaction in two dimensions,
such excitations lead to a divergence in the spin-wave
(rms) amplitude at finite temperature which destroys the
long-range magnetic order. For this reason, the ex-
change interaction is not sufficient to establish long-
range magnetic order at finite temperature in two di-
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mensions, a fact first realized by Bloch (1928) and later
proved rigorously by Mermin and Wagner (1996).

The existence of long-range magnetic order in two-
dimensional magnetic systems arises as a consequence of
the magnetic surface anisotropy and the dipolar interac-
tion. These interactions break the rotational invariance
of the exchange interaction and, in the case of the dipo-
lar interaction, introduce long-range interactions into
the dynamics. This modifies the spin-wave spectra, ren-
dering the fluctuations finite and stabilizing the long-
range magnetic order.

To leading order the effect of fluctuations can be in-
cluded by means of linearized spin-wave theory. Al-
though linearized spin-wave theory is generally valid
only at low temperatures, it can often provide important
theoretical evidence for the existence of long-range
magnetic order, together with a description of the low-
temperature properties of the magnetically ordered
state. In addition, spin-wave theory can be generalized
to include higher-order corrections using modern tech-
niques of many-body theory, which can be employed
with some justification in the calculation of the critical
temperature and the analysis of critical properties of
these systems.

Spin-wave calculations come in one of two flavors,
classical and quantum. In the classical case the spins are
typically treated as vectors of fixed magnitude, which,
following the usual convention, we denote by S . In the
quantum-mechanical case the noncommutative algebra
of the spin operators is taken into account. The analysis
of classical spin systems can provide a qualitative de-
scription of many important features of a complicated
magnetic system. Typically, the analysis of a classical
spin system is far simpler than its quantum counterpart
and, particularly in combination with the use of Monte
Carlo methods, is used extensively in examining com-
plex many-body effects. That said, however, a quantita-
tive description of a magnetic system, particularly at low
temperature, must include the quantum-mechanical na-
ture of the spins. Spin-wave theory provides a useful
bridge between the two approaches.

In this section we consider first a set of classical spins
on a square lattice with a ferromagnetic exchange inter-
action and show how this case can be treated in the
linearized spin-wave approximation. In particular we
shall show how the long-range character of the dipolar
interaction can play an essential role in determining the
long-wavelength limit of the spin-wave spectra. We
show how this can be generalized to a quantum me-
chanical spin-wave theory and present some results re-
ported in the recent literature. We then extend the
analysis to consider antiferromagnetic systems in the lin-
earized spin-wave approximation. We close by discuss-
ing some work that goes beyond the linearized spin-
wave theory.

In analyzing the properties of two-dimensional spin
systems, one cannot neglect the dipolar interaction. In-
cluding the dipolar interaction considerably complicates
the analysis of the spin-wave spectra.
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A. Ferromagnetic case

In the absence of any magnetocrystalline anisotropy
the energy may be written as

H5Hex1Hdd
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where (abgab(RW ij)s i
as j

b denotes the dipolar interaction
energy given by Eq. (2). If the exchange interaction is
ferromagnetic in character and sufficiently strong to
overcome the antiferromagnetic dipolar interaction, the
ground state for the classical spin system will be ferro-
magnetic. From Table II we see that the dipolar interac-
tion will favor the planar ferromagnetic ground state
over the uniaxial ferromagnetic state.

To investigate the fluctuations about the ground-state
spin configuration, we describe the components of the
spin vector at the ith lattice site in terms of the angles u i
and f i defined with respect to the magnetization axis,
which we take as the z axis. We write

s i
15S sin~2u i!cos~f i!5

1
2

~ai1ai* !A2S2ai* ai, (20)

s i
25S sin~2u i!sin~f i!5

1
2i

~ai2ai* !A2S2ai* ai, (21)

and

s i
35S cos~2u i!5S2ai* ai , (22)

where the complex amplitudes ai are defined as

ai5A2S sin~u i!eif i. (23)

The amplitudes ai and their complex conjugates ai* are
the classical analogs of the quantum-mechanical cre-
ation and annihilation operators in the Holstein-
Primakoff representation of quantum spins (Holstein
and Primakoff, 1940).

Assuming the fluctuations are small, one can expand
the Hamiltonian given by Eq. (19) to second order in the
spin-wave amplitudes to give
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where the matrix elements V(qW ) and D(qW ) are defined
as
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and

D~qW !5
S

2
„g11~qW !2g22~qW !…. (28)

To evaluate the spin-wave contribution to the free en-
ergy and the magnetization, the Hamiltonian is diago-
nalized using a technique described by White, Sparks,
and Ortenburger (1965). This requires that we obtain
the transformation matrix S(qW ) that diagonalized the
Hamiltonian, to give

S†~qW !S~qW !S~qW !5L~qW ! (29)

where L(qW ) denotes the diagonal eigenvalue matrix.
The eigenvalue problem defined by Eq. (29) is com-

plicated by the fact that the transformation matrix S(qW )
is not unitary but instead satisfies the condition

S~qW !gS†~qW !5g , (30)

with

g5S 1 0

0 21 D . (31)

This condition ensures that the phase-space integral is
left invariant under the transformation defined by the
matrix S .

In the case of a ferromagnetic order parameter, we
readily obtain

L~qW !5S «~qW ! 0

0 «~qW !
D (32)

with

«~qW !5AV~qW !22D~qW !2, (33)

while the transformation matrix S(qW ) is given by

S~qW !5S u~qW ! v~qW !

v~qW ! u~qW !
D , (34)

with

u~qW !5AV~qW !1«~qW !

2«~qW !
(35)

and

v~qW !5AV~qW !2«~qW !

«~qW !
. (36)

It is straightforward to show that this transformation re-
duces to the familiar Bogoliubov transformation, al-
though the technique described by White et al. (1965)
can be readily generalized to treat more complicated
situations such as the antiferromagnetic case.

The interaction gab(qW ) may be calculated using the
techniques described in Sec. III.A to give, in the limit
q→0,

g11~qW !5g'
0 2g2pq1O~q2!, (37)

g22~qW !5g i
01g2p

q2
2

q
1O~q2!, (38)
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where a may be calculated for the square lattice to give
a51.078. Substituting these values into the expression
for the V(qW ) and D(qW ), we obtain in the long-
wavelength limit
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where we have assumed a nearest-neighbor exchange
interaction. This yields the following expression for the
spin-wave energy in the long-wavelength limit:

lim
q→0

«~qW !52pgSusin uqW uA2aq1 ¯ . (44)

Thus, while the spin-wave spectra remain gapless, we
see that the energy varies as Aq in the long-wavelength
limit, a result first obtained by Male’ev (1976). This re-
sult shows how the long-range nature of the dipolar in-
teraction manifests itself in the low-energy excitations of
the system.

The free energy in the linearized spin-wave approxi-
mation may be easily evaluated to give
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together with the magnetization, which is given by
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5S2kBT
2S

N (
qW

V~qW !

«~qW !2 . (46)

It is readily seen that the summand in Eq. (46) diverges
as 1/q in the long-wavelength limit and hence the sum-
mation will be well defined in the limit N→` . This is
quite different from the case of a pure ferromagnetic
exchange model in which the spin-wave contribution to
the magnetic order parameter diverges as ln N in the
limit that N→` . The fact that the summation in Eq.
(46) is finite in the limit N→` implies that, unlike the
isotropic exchange interaction case, the long-range mo-
lecular order persists to finite temperature. This result,
first obtained by Male’ev (1976), demonstrates the im-
portance of the modification to the spectra that arises
from a subtle combination of anisotropic and long-range
characteristics in the dipolar interaction.

The classical spin-wave theory described above can be
readily generalized to the case of a quantum spin system
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in which the spin variables are operators which satisfy
the angular momentum algebra

@ŝ i
a ,ŝ j

b#5eabgŝ i
gd ij (47)

with

(
a

ŝ i
aŝ i

a5S~S11 !. (48)

The expression for the spin operators given by Eqs.
(20), (21), and (22) is still valid, provided the complex
coefficients are replaced by the operators â i and â i

† ,
which satisfy the familiar Bose-Einstein commutation
relations, and the proper ordering is used.

The free energy is given in the quantum-mechanical
case as

F5Ẽ02kBT(
qW

ln~e«(qW )/kBT21 !, (49)
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while the magnetization may be calculated in the linear-
ized spin-wave approximation as

m5m̃02
2S

N
(

qW

V~qW !

«~qW !

1

e«(qW )/kBT21
. (50)

The zero-temperature order parameter m̃0 is reduced
from the classical value of S due to the noncommutative
nature of the spin-wave operators, which represent the
reduction in the magnetic moment owing to quantum-
mechanical fluctuations of the spins in the ground state.

Male’ev (1976) calculated the temperature depen-
dence of the magnetization in the case of the quantum-
mechanical spins for low and high temperatures. He ob-
tained the following result:
12
m~T !

m0
55

GS 3
4 D jS 3

2 D
GS 5

4 D S a2

2pS D S kBT

4pagS D 3/2S Ja

gp D 1/4

kBT!4pagSA gp

2Ja

1
4pS S kBT

JS D lnS kBT

pSg
A J

gpa D kBT@4pagSA gp

2Ja
.

(51)
Yafet, Kwo, and Gyorgy (1986) arrived at a result
similar to Male’ev’s (1976); however, they evaluated the
integral given by Eq. (50) in the limit N→` by separat-
ing the low-energy part, which they treated classically,
and the high-energy part, which they evaluated by ne-
glecting the anisotropy induced by the dipolar interac-
tion. As a consequence of their approximation their re-
sults differ from Male’ev’s (1976) at low temperature,
showing a linear dependence of the magnetization on
temperature in the limit T→0. Yafet et al. (1986) did
extend their results to consider multilayer domains and
examine the transition to bulk behavior with increasing
layer thickness.

In the absence of the dipolar interaction, it has been
shown by a number of authors (e.g., Herring and Kittel,
1951; Döring, 1961a, 1961b; Corciovei, 1963) that the
presence of a uniaxial anisotropy can introduce a gap in
the spin-wave spectrum at q50 and hence render the
fluctuations finite. This results in finite long-range mo-
lecular ordering at finite temperature.

The combined effect of a finite anisotropy and a dipo-
lar interaction in a ferromagnetic thin film has been
studied in the spin-wave approximation by a number of
author (Bruno, 1991; Erickson and Mills, 1992). In the
analysis by Bruno (1991) the following form for the sur-
face anisotropy is used:
Hk52k(̂
ij&

„sW i•sW j23~sW i•uW ij!~sW j•uW ij!…, (52)

where the sum ^ij& is over nearest-neighbor pairs and uW ij
denotes the unit vector connecting the pair ^ij&. This
form of the anisotropy has the advantage that it auto-
matically matches the symmetry of the underlying lat-
tice.

Bruno (1991) takes the difference between the dipolar
energy for perpendicular magnetization and that for par-
allel magnetization and combines this with the surface
anisotropy term to define an effective anisotropy coeffi-
cient keff given by

keff5k2g
2pa

3
. (53)

For keff.0, the easy axis of magnetization is perpen-
dicular to the plane of the film. In this case, the linear
spin-wave theory yields an expression for the energy of
the form given by Eq. (24) for a planar ferromagnet;
however, the coefficients V(qW ) and D(qW ) are given in
the long-wavelength limit by

V~qW !56Skeff1gSpq1JSq2 (54)

D~qW !5gSpq , (55)

which yields the following expression for the spin-wave
spectra in the limit q→0 (Bruno, 1991):
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e~qW !56Skeff1JSq2. (56)

Note that the effect of the anisotropy is to induce a gap
in the spin-wave spectra and that the effect of the dipo-
lar interaction is included in keff . The temperature de-
pendence of the magnetization can be calculated using
Eq. (50) to give

12
m~T !

m0

52
1

4pS S kBT

JS D ln~12e26keffS/kBT! (57)

5H 1
4pS S kBT

JS D e26keffS/kBT kBT!6Skeff

1
4pS S kBT

JS D lnS kBT

6Skeff
D kBT@6Skeff .

(58)

The presence of the gap induced by the surface anisot-
ropy renders the rms spin-wave amplitude finite and
hence leads to finite long-range molecular ordering at
finite temperature.

One obvious difficulty with the above analysis is that
the ground state for a dipolar system with a ferromagnet
exchange interaction, in which the easy axis is perpen-
dicular to the plane, is not the homogeneous ferromag-
netic phase assumed in the above analysis but is instead
the striped phase (Garel and Doniach, 1982; Yafet and
Gyorgy, 1988; Kaplan and Gehring, 1993; Taylor and
Gyorffy, 1993; MacIsaac et al., 1995).

Because of the particular form chosen for the surface
anisotropy, the analysis for the easy-plane easy axis
(keff,0) is then identical to that presented previously
for the ferromagnetic dipolar state except that the ex-
pressions for V(qW ) and D(qW ), given by Eqs. (42) and
(43), are modified to yield in the long-wavelength limit

V~qW !53Sukeffu2g
pS

q
~q22qy

2!1JSq2 (59)

and

D~qW !53Sukeffu2g
pS

q
~q21qy

2!. (60)

In his analysis, Bruno (1991) shows that for 0,ukeffu
,kc (kc5p2g2/6J) the stability criterion for the spin-
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wave eigenvalue spectrum, V(qW ).uD(qW )u, is not satis-
fied for all values of qW . Specifically, Bruno (1991) shows
that for this range of k the above spectrum exhibits a
soft mode at q5qc (qc5pg/J) with

«~qW c!50 (61)

and that the above spectrum is negative in the vicinity of
q5qc . This implies that the homogeneous planar phase
is unstable against the formation of a spatially modu-
lated phase with a wavelength of the order of q'qc .
While the existence of such a phase would be of obvious
interest from an experimental viewpoint, Bruno (1991)
suggests that the narrow range of k required for the ex-
istence of an oscillatory phase makes it unlikely that it
would be observed. A similar instability is discussed in
the later work of Erickson and Mills (1992) for the case
of an applied external field H oriented parallel to the
plane. In the case of a uniaxial anisotropy (keff.0) it is
shown that if H is sufficiently large to overcome the
effect of the anisotropy, such that the spins are forced to
lie in the plane, then there exists a range Hc

2,H
,Hc

1 , with

2mBHc
65SS 6keff6

p2g2

J D , (62)

in which the ferromagnetic state is unstable against the
formation of a spatially inhomogeneous phase. Erickson
and Mills (1992) suggest that the domain structure in
this phase is similar to that discussed by Yafet and Gy-
orgy (1988) and others, although the nature of the rela-
tionship is not made explicit. This result has some inter-
esting implications when generalized to include finite-
temperature corrections to the anisotropy and exchange
constant.

If the anisotropy is such that keff,2kc , then the en-
ergy spectrum is real and the spin-wave spectrum can be
obtained from a straightforward modification of Eq. (44)
to yield the following expression for the spin-wave en-
ergy:

«~qW !52SA3pgukeffuqusin uqW u1JSq21¯ (63)

in the long-wavelength limit. Averaging out the angular
dependence of e(qW ), Bruno (1991) obtains the following
expressions for the magnetization in the low-
temperature and high-temperature limits:
12
m~T !

m0
55

z~3 !

4S
~kBT !3

~pSg !26ukeffuS
kBT!6Skeff

S kBT

4pJS2D lnS 2kBT

pSg
A J

6ukeffu
D kBT@6Skeff .

(64)
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It should be noted that the low-temperature result given
above differs somewhat from that given by Male’ev
(1976) in Eq. (51). This difference may be attributed to
the approximate treatment of the planar anisotropy of
the spin-wave energy by Bruno (1991).

The high-temperature limit is also interesting in that it
is of exactly the same form as the corresponding result
for the perpendicular easy axis, even although the spin-
wave spectrum is gapless. This equivalence can be made
quantitative by introducing a pseudogap,

epg5
pSg

2
A6ukeffu

J
. (65)

B. Antiferromagnetic interaction (J,0)

The role of the dipolar interaction in stabilizing long-
range molecular order also extends to the case of anti-
ferromagnetic exchange, although the mechanism is
somewhat different. In the absence of a dipolar interac-
tion, the two-dimensional Heisenberg model with an an-
tiferromagnetic exchange constant (J,0) is invariant
under a global rotation of the spins and hence will not
exhibit any long-range molecular ordering. The antifer-
romagnetic nature of the Goldstone modes means that
the long-range character of the dipolar interaction will
not qualitatively modify the excitation spectrum at long
wavelengths. However, the dipolar interaction will
break spin rotational invariance and remove the degen-
eracy between the magnetic ground states, thus intro-
ducing a gap in the spin-wave spectrum. This will render
the magnetic fluctuations finite and stabilize long-range
molecular order at finite temperature.

If the exchange interaction is antiferromagnetic in
character then it is reasonable to suppose that, if the
magnitude of the interaction were sufficiently large, the
ground-state spin configuration would switch from the
dipolar ground state to an antiferromagnetic configura-
tion in which each spin would be aligned antiparallel to
each of its nearest neighbors. From the results presented
in Table II it is clear that (in the absence of other
anisotropies) the dipolar interaction would favor the
planar antiferromagnetic (AF) phase over the uniaxial,
perpendicular antiferromagnetic (AA) phase. If we as-
sume a nearest neighbor exchange interaction, then the
stability of the perpendicular antiferromagnetic (AA)
phase requires that the exchange constant satisfy the
condition uJu.(5.098922.6459)g/251.2265g .

To analyze the antiferromagnetic dipolar system, one
splits the lattice into a and b sublattices in which the
nearest neighbors of each site on the a sublattice belong
to the b sublattice and vice versa. Denoting the spins on
the a and b sublattices by s i

a and s i
b , respectively, one

can write the spin vectors in terms of the complex am-
plitudes ai and bi as

s i
1a5

1
2

~ai1ai* !A2S2ai* ai (66)

s i
2a5

1
2i

~ai2ai* !A2S2ai* ai (67)
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s i
3a5S2ai* ai (68)

and

s i
1b5

1
2

~bi1bi* !A2S2bi* bi (69)

s i
2b52

1
2i

~bi2bi* !A2S2bi* bi (70)

s i
3b52S1bi* bi . (71)

The presence of the dipolar interaction considerably
complicates the spin-wave Hamiltonian for the antifer-
romagnetic ground state; not only do we have quadratic
terms of the form a(qW )a(2qW ) and b(qW )b(2qW ), but
there are also terms coupling the amplitudes associated
with the fluctuations on each of the two sublattices.
Therefore, while the spin-wave Hamiltonian is of the
same form as Eq. (24), the matrix S(qW ) is a 434 matrix,
coupling together the various amplitudes for the a and b
sublattices.

Despite the increased complexity, the spin-wave
Hamiltonian can be diagonalized using the method of
White et al. (1965) described earlier for the ferromag-
netic case, and the spin-wave spectrum may be deter-
mined from the solution of an eigenvalue equation
analogous to that given in Eq. (29) for the ferromagnetic
case.

In contrast to the simple nearest-neighbor exchange
model, the excitation spectrum is no longer degenerate
but instead splits into two branches. Pich and Schwabl
(1993) have analyzed the antiferromagnetic dipolar spin
system on a square lattice in considerable detail for the
case uJu@g . They show that, for realistic ratios g/uJu
'1023, the splitting between the two branches is negli-
gible. Therefore, for sufficiently large values of uJu, the
two branches are essentially degenerate and the spec-
trum is given in the long-wavelength limit by

lim
q→0

«6~qW !54SA«0
212J2q2 (72)

with «0 given by

«05AuJu„~g'
a 2g i

a!2~g'
b 2g i

b!… (73)

where

g'
a 5(

RW a

g33~RW a!, (74)

g i
a5(

RW a

g11~RW a!5(
RW a

g22~RW a!, (75)

g'
b 5(

RW b

g33~RW b!, (76)

g i
b5(

RW b

g11~RW b!5(
RW b

g22~RW b!. (77)

The dipolar interaction therefore induces a gap in the
spin-wave spectrum in the limit q→0, which is propor-
tional to the geometric mean of the exchange and dipo-
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lar interactions. This arises as a consequence of the dif-
ference between the dipolar energy for the in-plane and
out-of-plane states and serves to stabilize the magnetic
order at finite temperature.

Pich and Schwabl (1993) also obtain a simplified ex-
pression for the magnetization in the limit g/uJu!1 and,
using the long-wavelength limit for the excitation spec-
trum given by Eq. (72), they obtain the following esti-
mate for the Néel temperature TN :

TN'
8SuJu

lnS 2uJu
«0

D . (78)

This yields an estimated value of TN5112 K for the
quasi-two-dimensional antiferromagnet K2MnF4, as
compared to the measured value of 42 K. However, as
we shall discuss in the next section, this discrepancy may
be largely attributed to the simplified form of the spec-
trum used to obtain the above estimate of TN .

While Pich and Schwabl (1993) considered the case
uJu@g , Corruccini and White (1993) analyzed the pure
dipolar spin system (J50) on both a simple cubic lattice
and a square lattice using linearized spin-wave theory. In
the absence of the exchange interaction and magneto-
crystalline anisotropy, in the ground state of the square
lattice the spins lie in the plane and are aligned antifer-
romagnetically as shown in Fig. 3. The analysis is similar
to that presented above and the spin-wave spectrum ex-
hibits two nondegenerate branches, with a gapless mode
that varies linearly with wave number q in the long-
wavelength limit (Corruccini and White, 1993). From
their spin-wave analysis, Corruccini and White conclude
that the two-dimensional square dipolar lattice does not
exhibit long-range magnetic order at finite temperature.

This conclusion of Corruccini and White (1993) re-
garding a square dipolar lattice appears to be contra-
dicted by Monte Carlo simulations on a classical dipolar
lattice (De’Bell et al., 1997). While it is certainly prob-
lematic to demonstrate the existence of long-range mag-
netic order in two-dimensional spin systems by simula-
tions on finite-size systems, some subtleties in the
interpretation of linearized spin-wave theory are re-
vealed by a study of a planar spin system (De’Bell et al.,
1997). In this analysis it is shown that, even though the
dipolar interaction is not invariant under a global rota-
tion of the spins, the ground-state energy is nevertheless
degenerate. The ground-state spin configurations define
a continuous manifold of states and the zero-energy
mode corresponds to an infinitesimal displacement
within this manifold. A similar result was shown for an
analogous nearest-neighbor interaction (Henley, 1989;
Prakash and Henley, 1990).

What distinguishes this situation from the case of a
degeneracy arising from continuous symmetry is the fact
that in the dipolar interaction the degeneracy is de-
stroyed by coupling between modes with finite wave
vector. The existence of a gapless mode is therefore an
artifact of the linear spin-wave approximation, which ne-
glects mode coupling. The effect of the coupling would
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
be to induce a gap in the spin-wave mode at finite tem-
perature and, in the case of quantum spins, in the
ground state. Such effects can be incorporated, at least
to leading order, by means of a renormalized spin-wave
theory (Whitehead, 1996).

C. Corrections to linearized spin-wave theory

The previous discussion emphasizes the potential sig-
nificance of higher-order terms in the expansion of the
Hamiltonian, even at low temperature. Even when the
linearized theory provides an adequate description of
the low-temperature regime, incorporating higher-order
corrections can extend the range of spin-wave theory to
higher temperatures. Unfortunately, incorporating
higher-order corrections in a systematic way that in-
cludes the important effects induced by the dipolar in-
teraction in two-dimensional systems is difficult. There

FIG. 3. Two degenerate antiferromagnetic ground states of a
pure dipolar system. These two states belong to a continuum
of ground states for this system (De’Bell et al., 1997).
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are nevertheless a number of results that generalize as-
pects of the work described in the previous sections.

In the case of the ferromagnetic systems, De’Bell and
Geldart (1989) have studied the critical exponents of
two-dimensional dipolar magnetic systems by means of
an e expansion. Generalizing to d dimensions, the
Hamiltonian for a system given by Male’ev (1976),
De’Bell and Geldart (1989) find that the critical expo-
nents of the phase transition will be determined by the
same forms as the usual e expansion, with e52 in the
case of two dimensions. However, they show that if the
Hamiltonian is modified to consider uniaxial, rather
than isotropic, ordering, then a new e8 expansion is re-

quired about an upper critical dimension dc53 1
2 . The

authors suggest that the effects of the dipolar interaction
may account for features observed close to the transition
in Gd on W films (Baberschke, Farle, and Zomach,
1987; Farle and Baberschke, 1987).

Erickson and Mills (1992) have generalized their re-
sults (discussed above) to include higher-order effects,
by means of a diagrammatic technique similar to that
used in the analysis of superfluidity of a dilute Bose gas.
In particular, they show that the spin-wave spectrum is
of the same functional form as the linearized theory ex-
cept that the effective anisotropy and the exchange are
replaced by temperature-dependent parameters. In the
case keff.0 and H50, their results may be expressed as

12
keff~T !

keff
'

kBT

16puJuS2 lnS kBT

6keffS
D , (79)

12
J~T !

J
'

1
32pS S kBT

4JS D z~2 !. (80)

These results are qualitatively similar to the classical re-
sults obtained earlier by Pescia and Pokrovsky (1990);
however, as Erickson and Mills (1992) point out, the
classical treatment of Pescia and Pokrovsky (1990) sub-
stantially overestimates renormalization effects in these
systems. [See also the comment by Levanyuk and Garcia
(1993) and reply by Pescia and Pokrovsky (1993), and
the comments by Chui (1995a).] These results provide
an interesting interpretation of the reorientation transi-
tion observed by Pappas et al. (1990).

In the case of an antiferromagnetic system, Pich and
Schwabl (1994) have generalized their linearized spin-
wave theory to include higher-order effects using the
method of Callen (1963). Within this approximation
scheme, the spin-wave spectrum is of the same func-
tional form as that obtained in the linearized theory ex-
cept that the factor S is replaced by m(T). This implies
that the spin waves soften with increasing temperature.
Generalizing their earlier analysis, Pich and Schwabl
(1994) show that the approximate expression for the
Néel temperature, given by Eq. (78) is modified to give

TN'
8SuJu

lnS 2uJu
«̃0

D , (81)
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where «̃05(m̃0 /S)«0 and m̃0 denotes the zero-
temperature magnetization, including the effect of quan-
tum fluctuations. Pich and Schwabl (1994) also present
numerical estimates of the Néel temperature calculated
using full dispersion over the Brillioun zone and com-
pare their theoretical results with the values obtained
experimentally for several of the quasi-two-dimensional
tetragonal antiferromagnetic halides, K2MnF4,
Rb2MnF4, and (CH3NH3)2MnCl4. Given the assump-
tions used in the analysis, the agreement is very good.

V. ORDERED STATES AND PATTERN FORMATION

As described in Sec. II, ultrathin metal-on-metal mag-
netic films exhibit complex domain structures on meso-
scopic scales and a number of transitions between mag-
netic states with different morphologies. By contrast, the
layered rare-earth systems exhibit relatively simple anti-
ferromagnetic structures, which can be defined in terms
of unit cells on an interatomic length scale. In this sec-
tion we summarize a number of theoretical results for
both types of system and compare these with experi-
ment.

A. Rare-earth systems

In Sec. II.B we discussed the observed magnetic prop-
erties of the rare-earth ions in the compounds
REBa2Cu3O72d . In particular, it was shown that for the
heavier compounds—RE5Nd, Sm, Er, Dy, and Gd—
the presence of a magnetic sublattice had little effect on
the superconducting properties. The observed nature of
these compounds suggests that the magnetic properties
of the rare-earth sublattice may be described in terms of
a simple model that incorporates the short-ranged ex-
change interaction, the dipolar interaction, and an on-
site crystalline electric field (CEF) anisotropy. Of these
interactions, the dipolar interaction and the CEF can be
specified with a considerable degree of precision, while
the exchange interaction may be given in terms of a
single parameter.

Early work by De’Bell and Whitehead (1991) showed
that, despite the long-range character of the dipolar in-
teraction, coupling between rare-earth ions on adjacent
layers was negligibly small. This is consistent with the
observation that the critical fluctuations in many of the
compounds appear to be two dimensional in nature and
that the ordering along the c axis is sensitive to the de-
gree of oxygenation and the manner in which the sample
is prepared. In the first instance, we may therefore re-
gard these compounds as quasi two dimensional and
consider coupling between adjacent layers separately.

Of the REBa2Cu3O72d compounds the most exten-
sively studied are the Dy, Gd, and Er compounds. Of
these, it is most useful to consider first DyBa2Cu3O72d .
Crystalline electric-field calculations by De’Bell and
Whitehead (1994) show that the ground state of the
Dy31 is a Kramers doublet, with a highly anisotropic
magnetic moment aligned along the c axis. This implies
that DyBa2Cu3O72d may be realistically modeled by a
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uniaxial spin system (s51/2) on a square lattice in which
the spins interact through the dipolar interaction and an
antiferromagnetic exchange interaction. The appropri-
ate Hamiltonian can be written, using the notation of
MacIsaac et al. (1992), as

H5
meff

2

2a3 S (
iÞj

s is j

Rij
3 2J(̂

ij&
sisjD , (82)

where si561.
It may be readily shown that the pure dipolar interac-

tion (J50) yields the observed ground-state spin con-
figuration. Monte Carlo simulations by MacIsaac et al.
(1992) show that the Néel temperature for the pure di-
polar case is given by

2a3kBTn

meff
2 52.3960.5. (83)

Using a value of meff57.25mB (Goldman et al., 1987),
however, yields a value TN50.67 K, significantly less
than the measured value of 0.95 K, implying that the
exchange interaction cannot be neglected and is of com-
parable strength to the dipolar interaction (Whitehead
et al., 1993). Extending their simulations to include the
effects of the exchange interaction, MacIsaac et al.
(1992) obtain the following relationship between the
Néel temperature and the exchange constant J :

2a3kBTn

meff
2 52.424212.3523uJu. (84)

Fitting the observed transition temperature to the inter-
polation formula of Eq. (84), MacIsaac et al. (1992) ob-
tain a value for the exchange constant J50.509.

These simulations also show that, despite the long-
range character of the dipolar interaction, the critical
exponents of the uniaxial dipolar model are consistent
with those of the two-dimensional Ising model.

In the case of ErBa2Cu3O72d , CEF calculations show
that the ground state of the Er31 ion is a Kramers dou-
blet. For the orthorhombic phase, the calculation of the
effective magnetic moment gives the b axis as the easy
axis, although it should be noted that the effective mag-
netic moment has a significant component along both
the a and c axes. Simulations on a uniaxial dipolar spin
system (J50) on a square lattice in which the spins are
aligned along the x axis yields a Néel temperature

2a3kBTn

meff
2 53.960.1. (85)

Estimating meff54.8mB (Chattopadhyay et al., 1989;
Clinton et al., 1995) yields a value of TN50.47 K, close
to, though somewhat below, the observed value of TN
50.62 K. To estimate the effect of the exchange inter-
action on the Néel temperature, we make the rather na-
ive assumption that the exchange interaction is constant
across the rare-earth series and hence

J}S meff

Seff
D 2

}S gJ21
gJ

D 2

, (86)
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where gJ denotes the Landé g factor. Using the value
for J obtained from the Dy data we obtain

J~Er!5
4
9

J~Dy!'0.23. (87)

Extending the above simulations to include the effect of
the exchange interaction with J50.23 gives TN
50.57 K, which lies within 10% of the measured value.

Given the significant anisotropy arising from the crys-
talline electric field in DyBa2Cu3O72d , comparing it
with the results from the uniaxial model is quite appro-
priate. However, in the Er compounds, while it may be
argued that such a model might be appropriate for the
orthorhombic case, it is difficult to justify for the tetrag-
onal case, in which the a and b axes are equivalent.
Simulations for a pure dipolar spin system, in which the
spins are confined to lie in the plane of the lattice, indi-
cate that the spins do in fact order antiferromagnetically
at finite temperature with a Néel temperature
2a3kBTn /meff

2 52.7860.10 K (De’Bell et al., 1997). As
discussed in Sec. IV.B, this ordering arises from the an-
isotropic nature of the dipolar interaction, although the
effect is complicated by the degeneracy of the ground
state. From a theoretical perspective this suggests that
both models can provide an adequate qualitative de-
scription of ErBa2Cu3O72d and represent limiting cases
of a more realistic description that includes finite anisot-
ropy between the x and y axes. However, it is immedi-
ately apparent that such a description is at odds with the
neutron-scattering results of Clinton et al. (1995), which
do not show any long-range magnetic order down to the
lowest temperatures in the tetragonal phase. This im-
plies that the simple model does not provide an ad-
equate description of these systems and that removing
the oxygen does more than simply change the symmetry
of the CEF anisotropy. Similarly, such a simple model is
unable to account for the magnetic properties of
NdBa2Cu3O72d , in particular, the fact that long-range
molecular ordering is not observed for certain values of
d, suggesting that oxygen plays a more subtle role than
one might naively suppose.

Despite the failure of this simple model in the case of
erbium and neodymium, it can nevertheless be applied
with some success to GdBa2Cu3O72d . As the ground
state of Gd31 is an s state, the crystalline electric fields
are not expected to play a significant role. This is sup-
ported by heat-capacity measurements which show that
the ground state of Gd31 retains the full eightfold de-
generacy of the free ion. Applying the scaling argument
given by Eq. (86) yields the following value for g :

J~Gd!54J~Dy!'2.04. (88)

Such a large value of the exchange-constant result im-
plies that the ground state will be determined so as to
minimize the exchange energy and will be similar to that
observed experimentally (see Sec. II.B) in which the
spins are aligned perpendicular to the xy plane and are
ordered antiferromagnetically along both the x and y
axes.
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From the interpolation formula of Eq. (84), we obtain
a value

2a3kBTn

meff
2 57.22. (89)

Using a value of meff57.49mB (Brown et al., 1987; Paul
et al., 1988), this gives TN52.34 K, which is very close to
the observed value of 2.24 K.

We conclude, therefore, that while many of the prop-
erties of the REBa2Cu3O72d may be successfully ac-
counted for in terms of a simple model which consists of
the dipolar interaction, CEF fields, and a simple nearest-
neighbor exchange, the model nevertheless fails in cer-
tain critical ways. Most notably, it cannot account for the
absence of long-range magnetic ordering in either
ErBa2Cu3O6 or NdBa2Cu3O72d , with 0.22,d,0.55.
The mixed success of this model suggests that the rare-
earth sublattice cannot simply be considered in isolation
as one might naively suppose. It would be useful, there-
fore, to extend previous analyses to include the coupling
between the rare-earth sublattice and the CuO2 planes.
In particular, an examination of the role of hole doping
in the CuO2 planes and the effect of the superexchange,
as suggested by Allenspach et al. (1995), would be of
considerable interest.

B. Uniaxial ultrathin films

1. Stripe domains

As noted in Sec. II.A, for sufficiently thin films the
magnetic moments in many systems are found to orient
perpendicular to the plane of the film, indicating that the
surface anisotropy is sufficient to overcome the anisot-
ropy of the dipolar interaction, which favors in-plane
ordering. Experimental studies such as those by Allens-
pach et al. (1990) and Allenspach and Bischof (1992)
show that a characteristic of such out-of-plane ordering
is the formation of domain patterns, in which the do-
mains consist of ferromagnetically ordered groups of
spins. Ground-state energy calculations (Garel and
Doniach, 1982; Kaplan and Gehring, 1993; MacIsaac
et al., 1995), renormalization-group-based arguments
(Kashuba and Pokrovsky, 1993b) and Monte Carlo
simulations (Hurley and Singer, 1992a; MacIsaac, 1992;
Booth et al., 1995) all predict the existence of a striped
phase at low temperatures for systems with dipolar in-
teractions and exchange interactions that favor ferro-
magnetic ordering. Qualitatively, we can understand the
stability of the stripe domains as a compromise between
the increase in exchange energy due to the formation of
domain walls and the decrease in the dipolar energy due
to the interaction between magnetization currents gen-
erated at the domain walls. The equilibrium width of the
domains is obtained by minimizing the total energy
(exchange1dipolar) with respect to the stripe width.
From the expression given in Table II for the dipolar
energy of stripes of width l and the corresponding ex-
pression for the exchange energy „22(121/l)…, we ob-
tain an equilibrium width given by
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
l* 5l0eJ/4g, (90)

where l0 is a constant of order one (Whitehead and
De’Bell, 1994).

The stability of the striped phase has been considered
by a number of authors. Earlier work cited by Abanov
et al. (1995) appeared to indicate that striped crystals
might be unstable with respect to small fluctuations;
however, mean-field calculations show that the domain
walls in the striped phase are stable (Abanov et al., 1995;
Castro, 1996). In addition to the mean-field properties,
Chui has considered the effect of the pinning potential,
due to the underlying lattice, on the finite-temperature
properties of an array of domain walls (Chui, 1995b) and
suggests that the renormalization of the potential can
give rise to a roughening transition at some finite tem-
perature.

For systems with exchange interactions sufficient to
produce bulk Curie temperatures of several hundred
Kelvin, the ground-state stripe width is predicted to be
much larger than any practical laboratory sample size
(Kashuba and Pokrovsky 1993a; Whitehead and
De’Bell, 1994). This is consistent with experimental
studies that observe a net ferromagnetic moment in the
out-of-plane orientation at low temperatures (see Sec.
II.A). Renormalization-group arguments (Kashuba and
Pokrovsky, 1993b) indicate that as the temperature is
increased the stripe width will decrease exponentially.
Consequently there will exist a temperature at which the
domain size becomes comparable with the size of the
system and the net magnetization of the sample goes to
zero due to the formation of stripe domains with alter-
nating orientations.

2. Monte Carlo simulations

Although inherently limited to systems much smaller
than experimental systems, Monte Carlo simulations can
provide useful information on how domain structures
are affected by parameters such as temperature.

Monte Carlo simulations of uniaxial ultrathin films on
a square lattice exhibit a number of stages in the evolu-
tion of the system as the temperature is increased
(Booth et al., 1995). Typical spin configurations for this
system at various temperatures are shown in Fig. 4. At
low temperatures, the domain walls are essentially rigid
until the thermal energy becomes of the order of the
energy of an elementary excitation of the domain wall.
As the temperature of the system is increased above this
threshold temperature, the internal energy of the system
rapidly increases and the fluidity of the walls also in-
creases rapidly. However, the symmetry between the
vertical (y) and horizontal (x) directions remains bro-
ken.

The breaking of this symmetry can be quantified by
use of an order parameter Ohv , as introduced by Booth
et al. (1995), and defined by

Ohv5
nh2nv

n
, (91)
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where nh and nv are the number of bonds between spins
with opposite orientation which are parallel to the hori-
zontal or vertical direction, respectively. Here, n is the
total number of bonds between spins of opposite orien-
tation. This order parameter is saturated at a value of 1
(or 21) in the striped ground state, but decays with
temperature and decreases to zero continuously at a
critical temperature Tc .

The vanishing of this order parameter signifies a res-
toration of the symmetry between the vertical and hori-
zontal directions. Inspection of the spin configurations
just above the critical temperature Tc reveals that the
typical configurations consist of a patchwork of domains
of spins of a given orientation (Fig. 4; Booth et al., 1995).
The interiors of the domains (patches) are highly stable
and, typically, contain no spins of the opposite orienta-
tion at temperatures just above the critical temperature.

At still higher temperatures, this tetragonal phase de-
cays into a fully disordered (‘‘paramagnetic’’) phase.
However, no sharp phase transition between the tetrag-
onal and paramagnetic phases is observed in Monte
Carlo simulations for a square-lattice system. This con-
trasts with the prediction made by Abanov et al. (1995),
based on a continuum model, of a clearly defined phase
line between the two phases.

FIG. 4. Typical spin configurations for a uniaxial model on a
square lattice with J/g58.9. The configurations were gener-
ated in Monte Carlo simulations at temperatures kT/g5(a)
3.0; (b) 4.8; (c) 5.2; (d) 6.4; (e) 10.0; and (f) 13.0. (c) shows the
tetragonal phase which occurs just above the phase transition.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
3. Temperature dependence of the domain structure

Combining the results summarized in the previous
two subsections, we would expect the domain structures
in experimental studies of magnetic films with strong
uniaxial anisotropy to evolve through a number of
stages. The first is a single-domain phase in which the
system has a net magnetic moment. At a characteristic
temperature, the film loses its magnetic moment due to
the onset of multiple domains in the striped phase. In
the striped phase the domains are oriented along a com-
mon crystallographic axis. As the temperature is further
increased, the number of domains increases exponen-
tially. In addition, as the thermal energy approaches a
value comparable to the excitation energy of a spin at a
domain wall, the ‘‘fluidity’’ of the walls increases dra-
matically. Finally, the striped phase is replaced by a
phase in which the magnetic domains are no longer ori-
ented along a common axis but instead manifest the
symmetry of the underlying lattice. In the case of the
square lattice, we refer to this as the tetragonal phase.
As the temperature is further increased, the tetragonal
phase decays into a true paramagnetic phase. The pre-
cise sequence of steps by which the system moves from
the ordered striped phase to the tetragonal phase may
depend critically on the underlying lattice. For example,
a nematic phase is not observed in Monte Carlo simula-
tions on a square lattice (Booth et al., 1995) but is ap-
parent in Monte Carlo simulations on a triangular lattice
(Hurley and Singer, 1992a)

Experimental studies of systems that remain uniaxial
(or are well below the reorientation transition tempera-
ture) are generally consistent with this picture. In par-
ticular, the direct images obtained by Allenspach et al.
(1990) and Allenspach and Bischof (1992) show both
striped phases and a phase with a strong qualitative simi-
larity to the tetragonal phase found in simulations by
Booth et al. (1995). Experimental studies that use mag-
netic measurements, rather than direct imaging, are
somewhat more difficult to interpret but, again, are gen-
erally consistent with the picture described above (Pap-
pas et al., 1990; Berger and Hopster, 1996a, 1996b; Ar-
nold and Venus, 1998).

Arnold and Venus (1998) have studied the real and
imaginary parts of the ac susceptibility of iron films of
less than 2.2ML on a Ni/W(110) substrate. (At less than
2.2ML the net moment in this system remains uniaxial
out of plane until the disordered phase is reached.) In a
range of temperatures below 250 K the nonzero imagi-
nary part indicates the existence of remanence associ-
ated with domains with stiff walls. At a conventional
ferromagnetic-to-paramagnetic transition, the disap-
pearance of the imaginary susceptibility is accompanied
by a peak in the real part. However, in the measure-
ments of Arnold and Venus (1998) the peak in the real
part of the susceptibility occurs approximately 20 K be-
low the loss of remanence. Moreover, above the tem-
perature at which the loss of remanence occurs, the real
part of the susceptibility decays exponentially (apart
from a small shift) with temperature. This is consistent
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with the theory of Kashuba and Pokrovsky (1993a,
1993b), which relates the domain density, and hence the
inverse susceptibility, to the exponential of temperature

x}n~T !21}e2aT. (92)

Arnold and Venus (1998) find that the value of a
50.037(1/K) obtained experimentally for iron is of the
same order of magnitude as that which they calculate
based on the results of Kashuba and Pokrovsky „1993a,
1993b; a50.07(1/K)….

An exponential increase in the number of domains,
and corresponding decrease in susceptibility, with tem-
perature was obtained by Kashuba and Pokrovsky
(1993a, 1993b) for a continuum model. In this model the
softening of the domain walls is due to the weakening of
the effective anisotropy as the reorientation transition is
approached. As noted by Whitehead and De’Bell
(1994), real systems are likely to be intermediate be-
tween the limiting cases of a continuum system in which
the ultraviolet cutoff results from the finite width of the
domain wall (as in the case studied by Kashuba and
Pokrovsky, 1993a, 1993b) and that of a truly uniaxial
system on a lattice in which the underlying lattice pro-
vides the cutoff. The close correspondence between the
functional forms for the dipolar energy found in these
two limiting cases (Yafet and Gyorgy, 1988; Kashuba
and Pokrovsky, 1993a, 1993b; MacIsaac et al., 1995;
MacIsaac, 1997b) implies that the general case may be
described in terms of crossover functions involving the
lattice spacing and the domain wall width.

In particular, the exponential decay of the susceptibil-
ity at high temperatures but below the temperature at
which the stripes disorder may also be obtained if the
results of MacIsaac et al. (1995) for a uniaxial system on
a square lattice are generalized to finite temperature us-
ing arguments analogous to those used by Kashuba and
Pokrovsky (1993b). Treating the walls as flat at low tem-
peratures, we can obtain the energy/spin of a spin con-
figuration with majority stripes of width l1d and minor-
ity stripes of width l2d in the limit of small external
fields. We find

E5EF2
„Ag22J1Bg ln~ l !…

l
2

2dh

l
, (93)

where EF is the energy of the system if ordered ferro-
magnetically, J is the strength of the exchange interac-
tion, A and B are constants (see Table II), and h is the
external field strength. (We have ignored higher-order
terms in 1/l .) Strictly speaking, the first two terms on the
right-hand side of the equation above were derived only
for the zero-field (equal-width-stripes) case by MacIsaac
et al. (1995); however, as we consider here only the case
of h→0 (d→0), we shall need here only the derivatives
of E evaluated at the value of l that minimizes the en-
ergy in the zero-field case. The straightforward generali-
zation of the results of MacIsaac et al. (1995) given
above is therefore sufficient.

Denoting the stripe width that minimizes the zero-
field energy by l* , where (MacIsaac et al., 1995; White-
head and De’Bell, 1994)
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l* 5l0 exp~2J/Bg ! (94)

and

l05exp~12A/B !, (95)

and expanding the change in energy due to a finite field
to second order in d, we obtain

DE~h !5
d2Bg

2l* 3 2
hd

l*
. (96)

Minimizing the change in energy with respect to d, we
obtain

d/l* 5hl* /Bg . (97)

As d/l* is the magnetization/spin in units of the satura-
tion magnetization, we find that the initial susceptibility
is

x5
]M

]h
}l* }exp~2J/Bg !. (98)

The value of J/Bg is large for most transition metals
studied in metal-on-metal systems and the value of l*
found is much larger than any realistic laboratory speci-
men. The system at low temperatures is therefore a
single domain and the contribution to the susceptibility
from domain walls is zero.

To generalize the above results to finite temperature,
we note that fluctuations of the domain walls may be
scaled out by renormalization-group arguments, which
we shall assume result in a renormalized value for the
ratio of the exchange and dipolar interaction strengths.
For simplicity, we envisage a real-space renormalization-
group rescaling in which lengths are rescaled by a factor
equal to the linear dimension of a typical fluctuation of
the domain wall. In the renormalized system the walls
will then be flat. For large stripes, we may assume that
the wall fluctuations, at temperatures well below the
critical temperature, are essentially those of the corre-
sponding exchange-only Ising model and occur over dis-
tances characterized by the correlation length of this
Ising model. Further, for definiteness, we assume that
for low temperatures the exponent of the correlation
length can be approximated by its mean-field value (an
assumption consistent with the simplifications made in
the analysis above). Simple power-counting arguments
for the invariance of the Hamiltonian under the rescal-
ing then lead to the conclusion that the effective ratio of
J/g is

J

g
~T !5bJ~Tc2T !3/2/g , (99)

where b is a proportionality constant. Expanding this
expression to leading order in T for T!Tc , we obtain
the temperature dependence of the renormalized ratio
to be used in the equation for x :

J

Bg
~T !}~12T/Tc!3/2'123T/2Tc . (100)

Consequently we obtain
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x5x0e2aT. (101)

Despite the simplifying assumptions used to obtain this
result here, the form of the result is quite general and
independent of the specific assumptions introduced in
the preceding analysis.

Here we have used the simplest possible arguments in
order to make the source of the exponential dependence
of x transparent. Use of the full renormalization-group
machinery would only change the precise value of pa-
rameters such as a in the above calculation; nonetheless
the application of the full renormalization group to a
generalized model which allows both Bloch domain
walls and a uniaxial anisotropy would be of some inter-
est. In particular, this might be used to calculate the
forms of the crossover functions discussed by Whitehead
and De’Bell (1994). To the best of our knowledge, such
a calculation has not been published.

Although the functional forms for the zero-external-
field equilibrium susceptibility are the same in the lattice
and continuum models, the existence of a lattice can af-
fect the dynamics of the domain walls and give rise to
observable effects in low-temperature ac susceptibility
measurements such as those performed by Arnold and
Venus (1998). Such effects would be absent in a con-
tinuum model. In order to achieve the equilibrium value
of d, in response to an applied external field, the domain
walls must move over the underlying lattice in finite
steps through a series of excitations. In order to make
these finite steps, the corresponding energy barrier must
be overcome. If the thermal energy is large compared
with the height of the typical barrier, the domain walls
move freely and the simple exponential form obtained
above is observed for all frequencies of the applied field.
However, at lower temperatures the finite response time
t of the walls will result in an observable remanence
(imaginary part of x) for frequencies v<1/t and a de-
crease in the in-phase response (real part of x). Arnold
and Venus (1998) found that the form

xobs5
~11ivt!xequ

11~vt!2 , (102)

where xequ denotes the static equilibrium susceptibility,
reproduces the qualitative form of their data. Conse-
quently, the position of the peak in the real part of the
ac susceptibility on the temperature scale will depend on
the frequency of the applied field.

C. Temperature dependence of the structure factor

To analyze the changes in symmetry as the magnetic
ordering changes, it is useful to calculate the structure
factor S(KW ):

S~KW !5K U(
rW

s~rW !exp~ iKW •rW !U2L . (103)

The variation in the structure factor S(rW) with tempera-
ture may be observed during Monte Carlo simulations.
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In Fig. 5 we show this variation for a uniaxial system on
a square lattice (MacIsaac et al., 1995).

At low temperatures, the structure factor exhibits two
primary peaks at 6qW on one of the principal axes of the
Brillouin zone. (Subsidiary peaks are also observed due
to the finite size of the basic replica cell in the simula-
tion.) This is simply a reflection of the twofold symmetry
of the striped phases. As the temperature passes through
Tc into the tetragonal phase, the structure-factor pattern
changes from two peaks on one of the axes to four peaks
symmetrically placed on the two principal axes of the

FIG. 5. Monte Carlo results for the variation of the structure
factor with temperature for a uniaxial system on a square lat-
tice (MacIsaac et al., 1995), where J/g55.5. Structure factors
are shown (a) well above the (smectic-to-tetragonal) transition
temperature; (b) just above the transition temperature; and (c)
below the transition temperature.
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Brillouin zone (Fig. 5). At temperatures just above Tc ,
the four structure-factor peaks remain sharp, indicating
that the tetragonal domains have the symmetry of the
underlying lattice and are quasiordered in the sense that
this symmetry is maintained throughout the system and
that the typical variation in the (linear) size of the do-
mains is small compared with the average size of the
domains.

As the temperature is further increased, the peaks be-
come smeared into a circle giving the appearance of a
four-peaked crown (Fig. 5). This feature in turn broad-
ens, and at high temperatures it becomes indistinguish-
able from the background. This represents the loss of
the fourfold symmetry of the tetragonal phase and its
gradual replacement by the rotational symmetry of the
paramagnetic phase. The tetragonal and paramagnetic
phases are not separated by a sharp phase boundary;
however, the change from one phase to the other may
be accompanied by identifiable features in the thermo-
dynamic properties.

This gradual change from the tetragonal to the para-
magnetic phase symmetry in the structure factor is con-
sistent with the specific-heat data obtained from Monte
Carlo simulations. These measurements exhibit a broad
peak well above the temperature at which the smectic-
to-tetragonal transition occurs but below the critical
temperature of the corresponding exchange-only Ising
model (Booth et al., 1995). That thermodynamic fea-
tures, such as the rounded peak in the specific heat, cor-
respond to the onset of pattern formation and the con-
sequent change in symmetry, indicated by the structure
factor, can be understood by considering how domains
grow as the system is cooled from a high temperature.
At sufficiently high temperatures, the system is truly
paramagnetic with no stable domain cores; rather,
groups of aligned spins have a linear dimension corre-
sponding to the length scale on which correlated fluctua-
tions occur and are therefore inherently unstable. In
terms of the structure factor, a circular ridge indicates
the characteristic size of the aligned groups, but the half-
width of the ridge is as large as the radius of the ridge.
As the temperature is lowered, the fluctuations and re-
gions of aligned spins grow. Initially this mimics the
growth of fluctuations in an exchange-only model, but
the effective critical temperature of the model is low-
ered due to the competition between the dipolar inter-
action and the exchange interaction. Thus at high tem-
peratures the specific-heat curve follows that for the
exchange-only Ising model but is shifted to a lower tem-
perature. As the temperature is further lowered, the di-
polar interaction stabilizes adjacent regions of aligned
spins, the domain cores form, and the fluctuations are
restricted to the boundaries of the domains. Further
lowering the temperature results in a decrease in the
correlation length of the fluctuations as the domain
cores stabilize and restrict fluctuations. As the specific
heat corresponds to the fluctuations in the energy, we
expect it to be maximal when the correlation length is
maximal, i.e., at the onset of the stable tetragonal phase
domains with linear dimensions greater than the fluctua-
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tion length. In the structure factor, this is mirrored by
the onset of sharp peaks with fourfold symmetry.

D. Topological defects and the classification of phases

Up until now, the phases have been characterized pri-
marily in thermodynamic terms, i.e., in terms of macro-
scopic averages such as the order parameter Ohv and the
structure factor. This approach may be applied to a wide
variety of physical systems both to analyze particular
patterns and to draw analogies between pattern forma-
tion in different systems (Seul and Andelman, 1995).
However, a complementary approach, which character-
izes the phases in terms of topological defects, also pro-
vides considerable insight into pattern formation in a
wide variety of systems. This approach has been applied
to patterns obtained in experimental studies of various
systems, such as thick ('10 mm) garnet films, by Seul
et al. (1991) and Seul and Wolfe (1992).

The phases, of interest in the case of the magnetic thin
films, may be characterized in terms of orientational or-
der and the presence of two types of topological
defects—dislocations and disinclinations (Abanov et al.,
1995). As these phases are analogous to those found in
liquid crystals, the corresponding terminology is often
used. At low temperatures, the stripes determine an ori-
entational order, and there is also a spatial order which
decays algebraically with distance. This smectic phase
may contain bound pairs of dislocations, where a dislo-
cation consists of the termination of a stripe and a cor-
responding distortion of the stripes around it, as shown
schematically in Fig. 6.

By analogy with liquid crystals we might expect a
transition from the smectic phase to a nematic phase at
higher temperatures. In this phase, the orientational or-
der is maintained but the spatial order decays exponen-
tially. The transition from the smectic phase to the nem-
atic phase is characterized by the unbinding of the
dislocations. In addition, we might expect a tetragonal
(square-lattice) or hexatic (triangular-lattice) phase to
occur at still higher temperatures. In this phase, orienta-
tional order is lost and the pattern of magnetic moments
has the symmetry of the underlying lattice. The disloca-
tions that occur in the smectic and nematic phases may
be considered to consist of a bound pair of disinclina-
tions. A disinclination is the point at which two bound-
aries separating regions in which the stripes are oriented
in different directions meet and terminate as shown in
Fig. 6. The transition to the tetragonal (hexatic) phase is
characterized by the unbinding of these disinclinations.

Abanov et al. (1995) have considered a continuum
model of a thin magnetic film and predicted the possible
phases. They conclude that the sequence of phases ob-
served may be either smectic-nematic-tetragonal or
smectic-tetragonal, depending on the parameters of the
model. In the Monte Carlo simulations for a square lat-
tice described above, only the smectic and tetragonal
phases were observed by Booth et al. (1995). The Monte
Carlo results appear to differ from the predictions of
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Abanov et al. (1995) in that no discontinuity in the order
parameter or hysteresis was observed at the smectic-to-
tetragonal phase transition.

E. Finite external-field effects

In an applied external magnetic field, the results dis-
cussed in the previous subsections are modified by the
competition between the antiferromagnetic order which

FIG. 6. Schematic representation of the (a) type of dislocation
and (b),(c) types of disinclination that can occur in the striped
phase.
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occurs in the zero-external-field case and the ferromag-
netic state favored by the external field. At low tempera-
tures and small magnetic fields, the system compensates
for this increased competition by modifying the domain
structure so that a majority phase and minority phase
exist. In the smectic phase the stripes of the majority
phase, favored by the applied field, are wider than the
stripes of the minority phase; while in the tetragonal
phase isolated domains of the minority phase are em-
bedded in the majority-phase background (Arlett et al.,
1996).

A novel effect of the applied magnetic field is that
when the temperature of the film is raised from zero
temperature, its magnetization initially increases (Fig.
7). This can easily be understood as an analog of the
Zeeman effect. Application of the field lowers the acti-
vation energy required for those fluctuations which in-
crease the number of spins in the majority phase and

FIG. 7. Variation of the magnetization with temperature for a
uniaxial system on a square lattice at several values of the
external field h : (a) J/g56.0 and a 32332 periodicity; (b)
J/g58.9 and a 64364 periodicity (Arlett et al., 1996).
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increases the activation energy required for those fluc-
tuations which increase the number of spins in the mi-
nority phase. This breaking of degeneracy between the
two activation energies results in the observed increase
in magnetization with temperature.

This continues until the thermal disordering of the
majority phase overtakes the effect of the asymmetry
and the magnetization begins to decrease. A related ef-
fect is the lowering of the critical temperature at which
the smectic-to-tetragonal transition occurs, as the ap-
plied field reduces the width of the minority stripes and
encourages the formation of ‘‘bridges’’ across the minor-
ity stripes by the majority phase. In simulations on small
systems with stripe widths of 4 or 8 lattice spacings (in
the zero-field case), the transition was found to occur at
or below the temperature at which maximum magneti-
zation occurred (Arlett et al., 1996).

The phase diagram determined from Monte Carlo
simulations on a square lattice is shown in Fig. 8. At low
temperatures the transition from the smectic to the te-
tragonal phase shows hysteresis effects, indicating that
the transition on this section of the phase boundary is
first order. The transition appears to be second order at
higher temperatures. However, due to the limited size of
the system simulated, the possibility cannot be ruled out
that the transition may be first order on the whole phase
boundary, perhaps with a discontinuity in the order pa-
rameter which shrinks to zero in the limit of zero exter-
nal field.

F. Constant order-parameter simulations

Hurley and Singer (1992a) have performed simula-
tions in the alternate ensemble of fixed magnetization
(or density, in the language of fluids). These simulations
were performed using a modified sampling procedure in
which spins near the domain walls were sampled much
more frequently than those in the domain centers. The
interpretation of such methods must be treated with

FIG. 8. Finite-external-field phase diagram obtained from
Monte Carlo simulation of a uniaxial system on a square lattice
(Arlett et al., 1996).
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some caution, as they may incorrectly treat disordering
effects which are significant at higher temperatures.
Nonetheless, the results are probably accurate at low
temperatures, and this technique allowed Hurley and
Singer to probe a low-temperature region in which the
slow dynamics of conventional Metropolis-Boltzmann
sampling would have made the simulation impractical.
The results on the triangular lattice are particularly in-
teresting as, in addition to a low-temperature bubble
phase and smectic phase (Hurley and Singer, 1992b,
1992c), a nematic phase is apparent in finite-
temperature simulations (Hurley and Singer, 1992a).
This nematic phase is not observed in the simulations
described above for the square lattice. In a continuum-
theory approach, Abanov et al. (1995) found that the
occurrence or nonoccurrence of this nematic phase be-
tween the smectic and tetragonal phases depended on a
parameter of the model. This points again to the impor-
tance of the underlying lattice in determining the phase
behavior of the system.

VI. REORIENTATION TRANSITION

As noted in Sec. II, the magnetic properties of several
thin metal-on-metal films are remarkable in that they
exhibit two distinct regions with a nonzero magnetiza-
tion. Typically, a saturation magnetization in the direc-
tion perpendicular to the plane of the film occurs at low
temperatures for sufficiently thin films. This decays as
temperature is increased until a region of essentially
zero magnetization is reached. If the temperature of the
film is further increased, an onset of magnetization in a
basal-plane direction is observed, and this saturates be-
fore decaying to a paramagnetic state at higher tempera-
tures. Experimental results indicate that the region be-
tween the two regions with nonzero magnetization still
has individual moments oriented (mainly) perpendicular
to the plane of the film. However, the moments are ar-
ranged in domains such that the net magnetization of
the system is essentially zero.

Increasing the thickness of the film at fixed tempera-
ture has a similar effect to increasing its temperature in
that the orientation of the net magnetic moment is typi-
cally out of plane for very thin films but reorients to be
(primarily) in plane once the film thickness exceeds a
critical value. Although this sequence from out of plane
to in plane with increasing film thickness is typical of
most systems, the opposite sequence has also been ob-
served. Schulz and Baberschke (1994) found that Ni on
Cu(001) has an in-plane magnetic moment for films of
less than 7 monolayers of Ni. Above a critical thickness
of approximately 7 monolayers, the moment is perpen-
dicular to the plane. This result is particularly interesting
for potential applications to data storage, as thicker films
are more reliably manufactured and less fragile but
perpendicular-to-plane orientation is desirable for digi-
tal storage of data.

While the studies of uniaxial and planar systems de-
scribed in the previous sections provide some under-
standing of the magnetic properties of these films in ap-
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TABLE III. Typical calculated layer-resolved anisotropy energies DE5E i2E' (see Sec. VI.A) for
N-layer multilayers of Fe on Au (001) (Szunyogh et al., 1995). Energies are expressed in meV/atom.

N Fe(1) Fe(2) Fe(3) Fe(4) Fe(5) Fe(6) Au(1) Au(2)

1 0.454 0.160 20.002
2 0.034 0.522 0.027 0.015
3 0.168 20.117 0.585 0.078 0.025
6 0.178 20.031 20.014 20.033 20.088 0.543 0.085 0.021
propriate ranges of temperature and film thickness, a
complete description requires a detailed treatment of
the surface anisotropy. The reorientation transition (also
referred to as a switching transition in earlier work) is
said to occur from the phase in which moments are
aligned perpendicular to the plane to a phase in which
the moments are predominately parallel to the plane.
Experimentally the reorientation transition temperature
is identified as the temperature at which the onset of the
in-plane magnetization occurs.

Two features of these systems combine to produce the
reorientation. The first is the breaking of the symmetry
between in-plane and out-of-plane moment directions.
This results from both the magnetocrystalline anisotropy
and the inherent anisotropy of the dipolar interactions.
It can be represented as a single-site effective-anisotropy
term which stands for the difference in energy for spins
aligned parallel to the plane from those aligned perpen-
dicular to the plane,

Keff5Kan1Kdd , (104)

where Keff is the total effective, on-site anisotropy. Kdd
is the difference in the thermally averaged energies due
to the dipolar interactions between perpendicular-to-
plane and in-plane orientations. Kan is the difference in
energy due to magnetocrystalline effects.

The second feature determining the reorientation
transition is the effect of cooperative phenomena. Such
effects cannot always be incorporated into a single-site
anisotropy but instead require a detailed analysis.

A. The effective anisotropy

Traditionally the effective anisotropy has been di-
vided into two terms,

Keff5KV1Ks /d . (105)
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The first term is independent of the film thickness d ;
however, both the volume term coefficient KV and the
surface term coefficient Ks may depend on temperature.

In early work, KV was thought to depend only on the
bulk values; however, surface effects such as strains in-
duced by the substrate may effect KV . Schulz and Bab-
erschke (1994) found that for Ni/Cu(001) the surface
value of KV was two orders of magnitude larger than the
corresponding bulk value. Also for fcc (111), (110), and
(001) monolayer films, the change in energy with angle
to the normal (u) is found to vary as

dE5K01K2 sin2~u! (106)

to lowest order (Bruno, 1989). @K2 depends on the azi-
muthal angle in the case of (110) monolayers. For a
more general expression see, for example, Bland et al.
(1995).] For ferromagnetically ordered systems, the di-
polar energy also varies as sin2(u) (Szunyogh et al.,
1995).

Although calculations for isolated monolayers may
give some sense of the magnitude of the magnetocrys-
talline surface anisotropy, in metal-on-metal films the
presence of the substrate is likely to significantly modify
the anisotropy in the over-layers. Szunyogh et al. (1995)
have used the Korringa-Kohn-Rostoker method to cal-
culate the magnetocrystalline anisotropy in multilayers
of Fe on a Au(001) substrate for numbers of layers from
1 to 6. We summarize some of the results in Tables III
and IV.

The results of Szunyogh et al. (1995) show several in-
teresting features. The energy difference between in-
plane and out-of-plane ordering is positive (i.e., favors
out-of-plane ordering) only for the outermost Fe layer
and for the layer immediately adjacent to the gold sub-
strate. For intermediate layers, the single-atom energy
difference would favor in-plane ordering. In all cases,
the energy difference is significantly larger for the layer
adjacent to the gold than for the other Fe layers. Simi-
TABLE IV. Typical calculated layer-resolved changes in orbital magnetic moments Dmorb5morb
i

2morb
' (see Sec. VI.A) for N-layer multilayers of Fe on Au (001) (Szunyogh et al., 1995). Changes are

expressed in 1023mB .

N Fe(1) Fe(2) Fe(3) Fe(4) Fe(5) Fe(6) Au(1) Au(2)

1 229.1 2.9 1.3
2 5.1 237.3 6.3 1.2
3 8.3 27.9 230.2 2.9 0.9
6 3.6 0.5 22.2 3.7 20.3 226.3 2.4 0.7
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larly, the calculated difference in the out-of-plane and
in-plane orbital magnetic moments is far larger for the
layer adjacent to the substrate than for the other Fe
layers. Szunyogh et al. (1995) find that there is no
straightforward relationship between the anisotropy in
the orbital magnetic moments and the corresponding an-
isotropy energies. They conclude that the relationship
between the orbital magnetic moments and the magnetic
anisotropy energies is much more complicated for
multilayer systems than that found for a single mono-
layer by Bruno (1989).

Szunyogh et al. (1995) also find that the magnetocrys-
talline anisotropy Kan remains almost constant as the
number of layers increases; however, the magnitude of
the dipolar anisotropy increases rapidly with film thick-
ness. Consequently Keff changes sign at d'3.3ML and
for films thicker than this favors orientation of the mo-
ments in the plane. This can be compared with the criti-
cal thickness for reorientation of d'2.8ML found ex-
perimentally (Liu and Bader, 1990).

Lessard et al. (1997) calculated the magnetocrystalline
anisotropy energy for films of Fe on Cu(001) and for Ni
on Cu(001). In each case the energies were calculated
for films with up to 14 layers. In these calculations, the
role of the substrate was modeled by adjusting the spac-
ing in the film to match that expected for epitaxial
growth on Cu(001). In the case of Fe, Lessard et al.
(1997) found the magnetic anisotropy favored out-of-
plane orientation for thin films with a switch to in-plane
ordering being favored at 4ML. This is in good agree-
ment with observations of a reorientation transition be-
tween 4 and 5 ML. This result implies that the reorien-
tation transition is not driven by the restructuring of the
film, which is also observed at approximately 5ML.
However, the structural phase changes appear to be
closely correlated with the changes in magnetic phase
(Li et al., 1994; Müller et al., 1995; Zharnikov et al.,
1996) and the link between them is still not fully under-
stood. For the Ni films, Lessard et al. (1997) find that the
anisotropy favors in-plane ordering for thin films. This is
consistent with the observations of Schulz and Baber-
schke (1994) for this system. However, Lessard et al.
(1997) do not find a reorientation to out-of-plane order-
ing at 7ML as observed by Schulz and Baberschke
(1994).

The extension of the ab initio and band-theory calcu-
lations to finite temperature is difficult to achieve in a
reliable manner. Experimentally, the temperature de-
pendence of the magnetocrystalline anisotropy may be
determined from UHV-ferromagnetic-resonance (FMR)
measurements (Baberschke, 1996). The resulting data
may be decomposed into volume and surface terms, as
discussed above. Two systems for which such measure-
ments are available and which typify the possible se-
quences of phases at the reorientation transition are
Gd(0001) on W(110) and Ni on Cu(001) (Baberschke,
1996; Farle, Platow, et al., 1997).

The Gd(0001)-on-W(110) system is typical of almost
all ultrathin films which exhibit the reorientation transi-
tion, having an out-of-plane moment orientation at low
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
temperatures and an in-plane moment above the reori-
entation transition temperature. Experimental observa-
tions find for the Gd film that the contribution to Ks
from the magnetocrystalline anisotropy favors out-of-
plane orientation of the moments. Ks appears to be a
linear function of temperature and can be extrapolated
to Ks(T50 K)52.8 meV/atom. KV favors in-plane ori-
entations at low temperatures but is smaller than Ks (in
the temperature region where measurements are avail-
able). KV is observed to change sign at approximately
0.65 of the Curie temperature.

The Ni-on-Cu (001) system is atypical, exhibiting an
in-plane orientation at low temperatures and an out-of-
plane orientation above the reorientation transition
temperature. Baberschke (1996) noted that the reorien-
tation transition occurs only in a narrow range of film
thicknesses of d'7ML. In this Ni film, the magnetocrys-
talline contribution to Ks favors orientation in the plane.
Since this is also the orientation favored by the dipole
energy, it might be expected that no reorientation tran-
sition would take place. However, in this system KV is
anomalously large (compared with the bulk value;
Schulz and Baberschke, 1994) and favors out-of-plane
ordering at all temperatures below the Curie tempera-
ture (Farle, Platow, et al., 1997). The anomalous (con-
tinuous) appearance of an out-of-plane orientation of
the moments above the critical thickness and above the
reorientation transition temperature can therefore be
understood in terms of the unusual role played by the
volume anisotropy term. FMR measurements of KV and
Ks for Ni on W(110) show that they behave in a quali-
tatively similar way to their counterparts in Ni/Cu(001)
but that KV is significantly smaller than that found in
Ni/Cu(001). Values of Ks are very close for the two sys-
tems. [For a detailed discussion of the angular depen-
dence of the magnetic moment on film thickness in Ni/
Cu(001), see also Farle, Mirwald-Schulz, et al. (1997)].

Farle, Platow, et al. (1997) have emphasized the im-
portance of magnetoelastic effects in producing the dif-
ferences in behavior of these systems. They noted that
Ni on Cu(001) grows pseudomorphically up to 10 ML
with a lattice expansion of 2.5% compared to bulk Ni.
Consequently, even for the thicker films in this range,
there is no strain relaxation by the incorporation of a
dislocation network. This contrasts with the behavior of
Gd and Ni on W(110), where the lattice mismatch is
much larger. Farle, Platow, et al. (1997) observe that the
magnitude and temperature dependence of KV for Ni/
Cu(001) can be explained by the 2.5% strain in a mag-
netoelastic model and by the temperature dependence
of the magnetostrictive and elastic constants. Unfortu-
nately, it is not clear how to extrapolate the measure-
ments of Farle, Platow, et al. (1997) to zero temperature
for Ni/Cu(001). Consequently it is not possible to make
a direct comparison of the values of KV and Ks obtained
experimentally with those calculated by Lessard et al.
(1997). Lessard et al. (1997) correctly predicted the in-
plane orientation at low temperatures in thin films,
based on a model in which the substrate was represented
through a change in the lattice spacing in the film. This
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model appears to be consistent with the magnetoelastic
approach taken by Farle, Platow, et al. (1997). It is thus
surprising that Lessard et al. (1997) did not see a change
in the preferred out-of-plane anisotropy for thicker
films. Lessard et al. (1997) speculated that this was due
to subtle many-body effects, which are ignored by the
commonly used ‘‘force theorem’’ (Weinert, Watson, and
Davenport, 1985; Bylander and Kleinman, 1995).

B. Cooperative effects

As before, it is convenient to divide the theoretical
studies into essentially two groups: those in which the
exchange interaction is large compared with the dipolar
interaction (Chui, 1994; Hucht, Moschel, and Usadel,
1995) and those studies in which the exchange interac-
tion is negligible or comparable with the dipolar interac-
tion (MacIsaac et al., 1996; MacIsaac, 1997a; MacIsaac,
De’Bell, and Whitehead, 1998). In practice these two
ranges may be differentiated by noting that for systems
with magnetic moments oriented perpendicular to the
plane and reasonably large values of the exchange inter-
action the zero temperature stripe domains will be much
larger than the size of the system (Kashuba and Pok-
rovsky, 1993b, Whitehead and De’Bell, 1994). This is
consistent with experimental observations which see a
single, out-of-plane domain at very low temperatures
(Allenspach and Bischof, 1992). However, for values of
the exchange interaction strength that are smaller than
or comparable with the dipolar interaction strength, the
stripe width will be smaller than the system size even at
zero temperature, and the domain structure will be ob-
servable at the lowest temperatures probed.

The essential elements of the reorientation transition
were discussed by Pescia and Pokrovsky (1990), who ar-
gued that although the on-site anisotropy favoring the
perpendicular-to-plane orientation may be dominant at
low temperatures, the magnitude of the dipolar anisot-
ropy, favoring in-plane orientation, decreases more
slowly than the on-site anisotropy with temperature.
Jensen and Bennemann (1990, 1992) have argued that
the increased entropy in the planar orientation also
plays a key role in the reorientation transition and that,
even if the magnitude of this term is small in the free
energy, it makes possible a second-order transition
rather than the first-order transition predicted by Pescia
and Pokrovsky (1990).

We may then define a temperature TR (for given K)
such that, if T is varied, TR is the temperature at which
the difference in free energy between the in-plane and
perpendicular phases changes sign. If TR is less than the
Curie temperature, then a reorientation transition is
observed.3 Subsequently, Chui (1994), and Hucht and

3Note that, though the qualitative arguments given by Pescia
and Pokrovsky (1990) establish the physical basis for the reori-
entation transition, the quantitative results in their paper are
not correct. See the comment by Levanyuk and Garcia (1993)
and the reply by Pescia and Pokrovsky (1993).
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Usadel (1996) used Monte Carlo calculations to locate
the reorientation transition for various values of the on-
site anisotropy in this limit of large exchange interac-
tions.

In the opposite extreme of zero exchange interaction,
MacIsaac et al. (1996) used Monte Carlo calculations to
show that a reorientation transition also occurs. In the
absence of an exchange interaction, the system starts
from an antiferromagnetic ground state if the effective
anisotropy favors an in-plane configuration. If the effec-
tive anisotropy favors out-of-plane orientations, then the
ground state is a simple antiferromagnetic arrangement.
The ratio of the on-site anisotropy parameter to the di-
polar interaction parameter at which the system switches
from its in-plane state to the out-of-plane state is calcu-
lated (exactly) to be K/g52.44. As the temperature is
increased, the value of the ratio K/g at which the reori-
entation occurs decreases. This is the opposite to what
happens in the large-exchange-interaction limit. Ma-
cIsaac (1997a) and MacIsaac et al. (1998) have consid-
ered the effect of adding an exchange interaction com-
parable with the dipole parameter strength J/g56. This
changes the ground state to a striped phase for large Keff
and to an in-plane ferromagnet for small Keff . For this
value of J/g , despite the change in the ground states, the
value of K(T) at which reorientation occurs is still a
decreasing function of temperature, as in the J/g50
case. However, it should be noted that the nonuniform
sampling technique used by MacIsaac et al. in these
studies resulted in an additional temperature dependent
effective anisotropy (MacIsaac et al., 2000).

C. Phase diagrams

Phase diagrams based on studies of systems with large
(Hucht et al., 1995), small (MacIsaac et al., 1998), and
zero exchange interactions (MacIsaac et al., 1996) are
shown in Figs. 9, 10, and 11, respectively. All three show
a reorientation transition that is first order in nature for
a single-monolayer system. [The study by Chui is the
only simulation study that predicts a continuous transi-
tion (Chui, 1994)]. Usadel and co-workers have investi-
gated how the first-order or second-order nature of the
transition is determined by the distribution of anisotro-
pies through the thickness of the film (Moschel and Us-
adel, 1995; Hucht and Usadel, 1996).

In addition to the zero-external-magnetic-field studies
reviewed above, Berger and Erickson (1997) have re-
cently introduced a five-parameter mean-field model
which incorporates the effects of both the stripe do-
mains and an external magnetic field in a system close to
the reorientation transition. The results obtained for a
4ML system give very good qualitative agreement with
those obtained experimentally for a 3.8ML Fe on
Ag(100) film.

The qualitative agreement between the phase dia-
grams obtained by simulations and the sequences of
phases observed experimentally is quite satisfactory, in
the sense that horizontal lines corresponding to tem-
perature scans can be drawn which reproduce the se-
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quences of phases obtained experimentally when tem-
perature is varied at constant thickness (Pappas et al.,
1990; Allenspach and Bischof, 1992; Berger and Hop-
ster, 1996a). Similarly, a vertical line drawn on the phase
diagram represents varying magnetocrystalline anisot-
ropy at constant temperature; this can be achieved in
experimental studies by varying the thickness of the film
at constant temperature. A vertical line can be drawn on
the phase diagram that reproduces the sequence of
phases observed experimentally (Allenspach et al.,
1990). Two caveats must be given. First, the use of hori-
zontal and vertical lines on the phase diagrams to repre-

FIG. 9. Schematic phase diagram for a film with J/g@1 based
on Hucht et al. (1995): solid curves, continuous transitions;
dashed curves, first-order transitions. The labeled phases are I,
out-of-plane ferromagnetic; II, in-plane ferromagnetic; and III,
disordered.

FIG. 10. Schematic phase diagram for a film with J/g50 after
MacIsaac et al. (1996): solid curves, continuous transitions;
dashed curves, first-order transitions. Phases are I, out-of-
plane antiferromagnetic; II, in-plane antiferromagnetic; and
III, disordered.
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sent experimental temperature scans at fixed thickness
and thickness scans at fixed temperature is a consider-
able oversimplification. The magnetocrystalline anisot-
ropy depends in a nontrivial way on temperature, as
demonstrated by ferromagnetic resonance measure-
ments (Farle, Platow, et al., 1997). Moreover, the effec-
tive strength of the local dipolar field (which determines
the effective temperature scale in the simulations) de-
pends on the thickness of the film. [Hucht and Usadel
(1997) have recently calculated the temperature varia-
tion for Ni on Cu(001) within a mean-field approach].
Second, in studies that do not use direct imaging of the
domains, it has generally been assumed that the domain
phase with zero net magnetization is the striped domain
phase only (Berger and Hopster, 1996a). In fact, studies
that image domains directly do appear to show the pres-
ence of tetragonal domains (Allenspach et al., 1990).

In the following section we shall comment on experi-
ments that probe domain dynamics and that, possibly,
distinguish between equilibrium domain phases. These
are obviously of great interest, since static magnetic
measurements do not appear to distinguish between do-
main phases such as the smectic and tetragonal phases.

Despite these caveats, the qualitative agreement be-
tween the experimental and theoretical studies reviewed
above confirms that models which contain exchange,
magnetocrystalline, and dipolar interactions are neces-
sary but not necessarily sufficient to explain the mesos-
copic ordered structures and phase behavior obtained in
ultrathin magnetic films as well as the long ranged or-
dered structures in quasi-two-dimensional systems such
as the layered rare-earth compounds.

VII. DISCUSSION

We have summarized some key experimental results
for an important class of layered rare-earth compounds,

FIG. 11. Schematic phase diagram for a film with J/g;1 after
MacIsaac et al. (1998): solid curves, continuous transitions;
dashed curves, first-order transitions. Phases are I, out-of-
plane smectic; II, in-plane ferromagnetic; and III, tetragonal/
disordered.



254 De’Bell, MacIsaac, and Whitehead: Dipolar effects in magnetic thin films
REBa2Cu3O72d , and ultrathin metal-on-metal magnetic
films. The ordered states in the rare-earth compounds
consist of relatively simple antiferromagnetic ground
states with a unit cell on the atomic length scale. In the
case of the metal-on-metal magnetic films, much of the
experimental work has focused on ferromagnetic com-
pounds. Such systems exhibit a rich variety of phases. In
the case of uniaxial systems, in which the spins are
aligned perpendicular to the plane, domain structures on
mesoscopic length scales have been observed and, in a
number of important cases, a switching or reorientation
transition from a uniaxial phase to a planar phase has
been observed, in which the orientation of the spins
changes from perpendicular to parallel to the plane.
Such a transition can be induced by changing the tem-
perature, applied external fields, or film thickness.

The simplest model that might describe the magnetic
properties of each of these two groups of systems con-
sists of a short-range exchange interaction and a dipolar
interaction as well as a single-site term representing the
magnetocrystalline anisotropy. We have reviewed re-
sults obtained from a number of theoretical and numeri-
cal studies of such a model system and have shown that,
despite the simplicity of such a model, it manifests a
wide variety of behaviors and can provide a consistent
picture of many aspects of these systems.

Pattern formation, as occurs in the case of the mag-
netic domain states in thin metal-on-metal films, result-
ing from competition between a local interaction and
the long-ranged exchange interaction, is common to a
wide range of systems. Other systems that exhibit pat-
tern formation of this type include ferroliquids,
micrometer-thick magnetic garnet films, and Langmuir
films (Seul and Andelman, 1995). For other materials,
including shape-memory alloys, pattern formation may
also result from competition between long-ranged and
local interactions; however, the long-ranged interaction
may be even more persistent than the dipolar interac-
tion (Löw et al., 1994; Saxena et al., 1997). Despite the
common occurrence of pattern formation as a result of
competition between long-ranged and short-ranged in-
teractions, it is difficult to identify a typical system. Even
within the metal-on-metal films, features such as the ex-
istence of an underlying lattice and the structure of that
lattice may determine which domain phases are ob-
served in these inherently frustrated systems. Conse-
quently, although analogies between continuum and lat-
tice systems and between, say, metal-on-metal-film
magnetic phases and liquid-crystal phases are useful,
they must be treated with some caution (for a more
complete discussion, see Sec. V).

The underlying lattice may also play a critical role in
determining the dynamics of metal-on-metal films. We
might expect two types of dynamical processes to occur
in these systems. In one, individual (but correlated) spin
flips will be the primary mechanism for the dynamics; in
the other, it is the motion and relaxation of domains.
This latter type of dynamics is likely to be much slower
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
than the former type and poses interesting questions
about metastability of domain phases and aging pro-
cesses in these systems.

Some experimental studies already indicate the im-
portance of domain dynamics in these systems (Berger
and Hopster, 1996b; Arnold, Dunlavy, et al., 1998; Ar-
nold and Venus, 1998). Indeed, by studying the variation
of the dynamical relaxation time with temperature, Ar-
nold et al. (1998) inferred the temperature of the
smectic-to-tetragonal transition from a change in the ac-
tivation energy. Inspection of Fig. 2 of Berger and Hop-
ster (1996b) shows a similar change in activation energy
(slope of the Arrhenius plot). Although the experiment
is different from that of Arnold et al. (1998), the change
in activation energy may also be associated with a
smectic-to-tetragonal transition.

Sampaio, Alburquerque, and de Menezes (1996) have
performed Monte Carlo simulations of uniaxial out-of-
plane systems on a square lattice relaxing from the satu-
rated ferromagnetic state. Although there are difficulties
in relating the Monte Carlo time (as measured by Monte
Carlo steps) to actual times, such studies provide some
insight into the dynamical behavior. In particular, Sam-
paio et al. (1996) conclude that the relaxation process
separates into two distinct regimes, depending on the
ratio of the exchange to the dipolar interaction. If the
dipolar interaction dominates, then a single spin flip be-
comes energetically favorable and the magnetization de-
cays as t2g. In the other regime, the exchange interac-
tion dominates and a single spin flip is no longer
energetically favorable; then the relaxation process is
dominated by domain formation and growth, and the
magnetization decays exponentially. More recent studies
by Rappoport et al. (1998) have examined in more detail
the effect of a magnetic field aligned opposite to the
initial magnetization, on the relaxation process. Based
on their numerical studies, Rappoport et al. (1998) con-
clude that, for sufficiently small magnetic fields, the
zero-field picture remains valid, while, in the case of
high fields, the magnetization exhibits only an exponen-
tial decay. Moreover, their results also indicate that the
fractal dimension of the domain walls increases with in-
creasing field. Toloza, Tamarit, and Cannas (1998) have
studied the same model but in the case where the system
is quenched from a high-temperature configuration to a
subcritical temperature. Of particular interest is the con-
clusion of Toloza et al. (1998) that, for systems with
comparable exchange and dipolar interaction strengths,
there exists a region of slow relaxation dynamics possi-
bly similar to those in other frustrated systems. Similar
studies were previously performed by Desai and co-
workers using Langevin dynamics for a model with a
continuous uniaxial ‘‘spin’’ variable, that included a
long-range interaction that could be varied between the
dipolar and Coulombic forms depending on a parameter
in the model (Roland and Desai 1990; Sagui and Desai,
1994).

It should be noted that the numerical studies on the
kinematics of the uniaxial dipolar Ising model discussed
above were perfomed largely using open rather than pe-



255De’Bell, MacIsaac, and Whitehead: Dipolar effects in magnetic thin films
riodic boundary conditions for the dipolar interaction.
Sampaio et al. (1996) state that a comparison between
the semiopen boundary conditions (open for the dipolar
interaction and periodic for the exchange interaction)
and the periodic boundary conditions for a 32332 lattice
shows little observable difference. However, it is never-
theless the case that the treatment of the boundaries
may affect the nucleation process significantly and, in
the case of large stripe widths (i.e., J@g), the relaxation
process at long times.

Despite the tremendous progress that has occurred in
the last decade in both theoretical and experimental un-
derstanding of two-dimensional and quasi-two-
dimensional magnetic systems, there nevertheless re-
main several intriguing and important questions. For
example, in the domain phases, the role of the trans-
verse component of the spin in the process of domain
nucleation and growth is poorly understood, yet it will
certainly play an important role in determining the non-
equilibrium properties of these systems. Moreover,
there is much that can be learned from the analogy be-
tween phases that occur in magnetic systems and those
that occur in other frustrated or metastable systems such
as supercooled liquids (Kivelson et al., 1995). The rapid
development in the fabrication and characterization of
ultrathin films over the last decade, combined with ad-
vances in our understanding of the factors that deter-
mine magnetic properties of surface atoms, opens the
way for a number of exciting technological applications.
While much effort to date has focused on the magnetic
properties of individual surface atoms and their interac-
tions, the collective behavior of surface atoms is an es-
sential factor in determining the basic properties of
these systems. An example of this is the role of domain
nucleation, growth, and dynamics in determining the
magnetic response to an applied field. Despite the many
recent advances described in this review, cooperative
behavior in magnetic ultrathin films is nevertheless
poorly understood, and the challenge is to develop tech-
niques and approaches that will allow us to better de-
scribe the collective processes involved. This poses ques-
tions of a very basic nature regarding the equilibrium
and nonequilibrium behavior of two-dimensional mag-
netic systems and the often subtle interplay between dif-
ferent interactions. Any significant progress will require
a synthesis of theoretical analysis, numerical simulation,
and detailed and systemic experiments.

Note added. After submission of this manuscript, the
authors received a preprint by Stoycheva and Singer
(Stoycheva, A. D., and S. J. Singer, ‘‘Stripe melting in a
two-dimensional system with competing interactions,’’
Ohio State University preprint). Using a non-Metropolis
Monte Carlo algorithm and a multipole expansion to
treat the long-range part of the dipolar interaction, these
authors determine the critical temperature at which the
twofold order of the striped phase is lost for a triangular
lattice of spins with orientation perpendicular to the
plane. The authors provide an analytic scaling theory.
Comparison of the results with results for the square
lattice (summarized in this review) appears to confirm
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
that the lattice structure plays a significant role in deter-
mining the phases and related phase transitions avail-
able to the system.

In a private communication, Professor Singer also
drew our attention to the maxima observed in the mag-
netization as a function of temperature at constant ex-
ternal magnetic field, in Fig. 3 of Arlett et al. (1996). If
the sharp increases in magnetization just below the
maximum are assumed to be discontinuities in the limit
of large systems, this would tend to support the conjec-
ture of Arlett et al. (1996) that the transition is first or-
der for any finite field, even though hysteresis loops
were not observable in the small-field Monte Carlo data.
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