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The spectacular progress made during the last few years in reaching high energy densities in fast
implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of
experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. At present Z
pinches are the most intense laboratory x-ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter
and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the
present knowledge of physics that governs the behavior of radiating, current-carrying plasma in fast Z
pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation,
instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation
of a transient quasiequilibrium near the stagnation point, and rebound. Considerable attention is paid
to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of
mitigating these instabilities are discussed. Nonmagnetohydrodynamic effects (anomalous resistivity,
generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly
described. Scaling laws governing development of more powerful Z pinches are presented.
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BASIC NOTATIONS

Throughout this paper we use predominantly the SI
system of units. The temperature is measured in energy
units (for instance, we write the equation of state for the
ideal gas as p5nT , with T measured in Joules, and not
p5nkT , with k being the Boltzmann constant and T
measured in Kelvin). In the ‘‘practical’’ formulas we use
a mixed system of units (for instance, the temperature is
measured in electron volts).

B magnetic-field induction
C radial convergence
E electric field
Dm magnetic diffusivity
I pinch current
Iw current in an individual wire
IZ ionization energy of an ion in a charge state Z
L anode-cathode distance
T temperature
Z the charge of a fully stripped ion
Zeff average charge of the ions in a plasma
a Alfvén velocity
c speed of light
g effective gravity acceleration
h characteristic thickness of the imploding shell
k wave vector
m azimuthal mode number
m̂ mass per unit length of the pinch
m̂w mass per unit length of an individual wire
n particle number density
p pressure
r0 initial pinch radius
rmin pinch radius at a maximum compression
s sound speed
t time
vTe electron thermal velocity
vTi ion thermal velocity
G growth rate
L the Coulomb logarithm
) dimensionless pinch parameter
a angle between the wave vector and the mag-

netic field
b ratio of the plasma pressure and the magnetic-

field pressure
g specific-heat ratio
« electric permittivity of the vacuum
h electrical resistivity
l wavelength of the perturbation, l52p/k .
| characteristic length scale of the perturbation,

|51/k .
m permeability of a vacuum
n kinematic viscosity
r mass density
x thermal diffusivity
v angular frequency
vCe ,i electron (ion) gyrofrequency
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vLH lower-hybrid frequency
vpe ,i electron (ion) plasma frequency

I. INTRODUCTION

A. A piece of history

Self-constricted plasma configurations are among the
most fascinating objects in plasma physics, both because
of their natural occurrence in a number of situations,
including geophysics (lightning) and astrophysics (cur-
rent channels at galactic scales), and because of their
importance for a variety of applications. The first sys-
tematic attempts to analyze these configurations began
in 1934, with the publication of a paper by W. H. Ben-
nett (1934) on the equilibrium of streams of charged
particles with a finite temperature. L. Tonks (1937) in-
troduced the term ‘‘pinch’’ to describe these
configurations.1 Later, in the 1950s, the prefix ‘‘Z’’ was
added to distinguish self-constriction by the axial (z)
current from compression of a plasma column by an in-
ductively driven azimuthal (u) current. Only the former
configuration, the Z pinch, will be considered in our pa-
per. We note in passing that the other configuration is
called a u pinch.

A broad attack on the study of Z pinches began in the
early 1950s in conjunction with research on controlled
thermonuclear fusion. The idea was to heat a deuterium-
tritium (DT) mixture by an adiabatic and/or shock com-
pression in a Z pinch and then sustain this system in the
equilibrium state until a sufficient amount of fusion en-
ergy was released. This early stage of pinch research is
covered in a book by Bishop (1958). It was soon discov-
ered, however, that the equilibrium pinch suffered from
a large number of magnetohydrodynamic instabilities,
including sausage and kink instabilities. Current disrup-
tions caused by the development of these instabilities
gave rise to voltage surges and the generation of accel-
erated deuterons that, in turn, produced bursts of neu-
tron radiation. Realization that the neutrons were not of
a ‘‘noble’’ thermal origin but were rather a side effect of
a disastrous instability led to widespread pessimism re-
garding the chances for Z pinches to produce fusion-
relevant plasmas. As a result, Z pinches virtually disap-
peared from the research programs of large fusion
laboratories.

As a legacy of these years, there remain extensive the-
oretical analyses of the stability of pinch equilibria, sum-
marized in particular in the survey by Kadomtsev
(1966), and realization of the role of a so-called ‘‘Pease-
Braginski current’’ (Pease, 1956; Braginski, 1958; see
also a nice compact derivation in Pereira, 1990), a cur-

1Note the title of Sec. V of his more detailed paper (Tonks,
1939): ‘‘Constriction of Arc under its Own Magnetic Field—
Pinch Effect.’’ According to J. A. Phillips (1987), The term
‘‘pinch effect’’ was in fact first used in 1907 by C. Hering, to
describe what would now be called ‘‘a sausage instabillity’’ of a
liquid-metal conductor in induction furnaces.



169Ryutov, Derzon, and Matzen: The physics of fast Z pinches

Rev. Mod. Phys
TABLE I. Characteristic parameters of a fast Z pinch.

Height of the column, L (cm) 1–2
Initial radius of imploding cylinder, r0 (cm) 2
Convergence, C[r0 /rmin 10
Mass per unit length, m̂ (mg/cm) 1–2
Maximum pinch current, Imax (MA) 10
Maximum voltage, Vmax (MV) 1
Maximum magnetic field on the pinch surface,
Bmax(T)

103

Implosion time, t imp (ns) 100
Maximum kinetic energy of the implosion,
Wmax (MJ)

1

rent at which radiative losses can be fully compensated
for by Ohmic heating (1.4 MA for hydrogen, indepen-
dent of the density and the pinch radius). References to
the early studies of Z and u pinches can be found in
Kolb (1960).

B. What are ‘‘fast’’ Z pinches? (What is the scope of this
review?)

Interest in Z pinches revived in the mid 1970s and
early 1980s, initiated by the rapid development of
pulsed-power technology. Various versions of Z pinches
were tried, most notably fiber pinches and imploding gas
puffs. For the fiber pinches (see, for example, Haines,
1982; Hammel, 1989), whose diameter ranged typically
from tens of micrometers to a couple of hundred mi-
crometers, the time for establishing radial equilibrium (a
few nanoseconds) was short compared to the duration of
the current pulse. In other words, they were evolving
along a sequence of Bennett-type (Bennett, 1934) equi-
libria, in which the plasma pressure is approximately
balanced against the magnetic forces.

By contrast, the annular gas puffs (see, for example,
Stallings et al., 1979; Spielman, Hanson, et al., 1985;
Smirnov, 1991) had an initial diameter of a few centime-
ters, and the driving current pulse width was comparable
to the implosion time (which is the time between initial
current flow through the gas puff and stagnation of the
plasma on axis). In this case, a free acceleration of the
gaseous shell towards the axis occupies the major part of
the total current pulse width. After having reached a
certain minimum radius, the plasma bounces back and
ceases to exist; a Bennett-type equilibrium has never
been reached. The word ‘‘fast’’ used in the title of this
survey refers just to this class of pinch discharges and
specifies the scope of the survey: our prime focus will be
discussion of the properties of those pinches for which a
run-in stage is definitive and duration of the whole pro-
cess is too short to reach a Bennett-type state.

There is a significant difference in the important
plasma instabilities for these two systems. Instabilities
with an e-folding growth time much longer than the time
of propagation of an acoustic signal over the pinch ra-
dius are important when considering quasiequilibrium
systems and are, obviously, of much less importance in
., Vol. 72, No. 1, January 2000
the behavior of imploding systems. On the other hand,
instabilities caused by the presence of large inertial
forces (in particular, Rayleigh-Taylor instabilities, which
will be discussed in detail in this paper) are insignificant
for quasiequilibrium systems and become of paramount
importance for fast Z pinches. A nice discussion of vari-
ous physics issues related to the implosion of thin shells
can be found in Turchi and Baker (1973), perhaps the
first paper specifically devoted to fast Z pinches.

Despite a short lifetime (of order 10 ns in some cases),
the plasma assembled by a fast-Z-pinch implosion pro-
vides unique possibilities for experimentation in a num-
ber of areas of physics. The growing interest in this area
of research is reflected in particular by the fact that, at a
recent conference on high-density Z pinches (Pereira,
Davis, and Pulsifer, 1997, Eds., AIP Conference Pro-
ceedings No. 409), more than half of the papers were
directly related to fast (in the aforementioned sense) Z
pinches. The quasiequilibrium self-constricted plasma
configurations, of the type of fiber pinches, have their
own merits and probably deserve a separate survey. We
feel that it would be difficult to cover both subjects in
one paper, partly because of the differences in the domi-
nant physical processes and partly just because of the
space limitations.

As has already been mentioned, the recent progress in
fast Z pinches has been attained, to a great extent, be-
cause of major breakthroughs in pulsed-power technol-
ogy. Pulsed-power technology will not be discussed in
this survey in any detail. A very brief summary of the
pertinent information will be presented in Sec. I.D. This
review will concentrate on the physics issues of fast Z
pinches. We shall discuss in some detail simple models
of various effects important for pinch performance, so
that this survey could be used as a first introduction to
the subject. On the other hand, we shall also consider
more subtle and complicated issues, which could be
skipped during a first reading of this paper.

The physics of fast Z pinches is an active area of re-
search. Many elements of this complex phenomenon are
still not well understood and are the source of scientific
disputes. Sometimes, the lack of experimental data
and/or of a clear theoretical picture does not allow the
discussion to rise above a qualitative, semispeculative
level. Still, even on such occasions, the authors take the
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FIG. 1. Various types of fast Z pinches: (a) An annular gaseous jet (reprinted with kind permission of C. Stallings); the axis of the
diode is horizontal, the nozzle is a cathode, and the mesh is an anode; the plot at the right shows the radial density distribution.
(b) A cylinder made of agar foam in a Z-pinch diode. The anode in this experiment was a transparent wire mesh; the cylinder
(1-cm diameter) is surrounded by eight return-current posts. (c) a photograph of a 4-cm-diameter tungsten wire array used in the
Z facility. The array had 240 wires; the mass per unit length of the array was 2 mg/cm. (d) A high-Z liner imploding on a
low-density foam. An internal ICF capsule is situated in the center of the foam cylinder; (e) a quasispherical liner implosion. An
aluminum liner slides along conical electrodes. The initial radius of the outer surface is 4 cm; the time sequence is t150, t2
512.7 ms, t3514 ms. The right column represents the results of 2D MHD computations (from Degnan et al., 1995, reprinted with
kind permission of J. Degnan).
risk of presenting their thoughts, with the humble hope
that a reader will benefit from comparing her or his
viewpoint with authors’.

To give some general impression of the parameter do-
main of present-day fast Z-pinch experiments, we pro-
vide in Table I some numbers (a much more detailed
discussion will be presented later) that relate not to any
specific experiment but rather to some ‘‘generic’’ fast Z
pinches. In every particular experiment, parameters may
vary by a factor of 2–3.

By convergence (the third line in Table I) we mean
the ratio of the initial pinch radius to the final pinch
radius,

C5r0 /rmin . (1.1)

Note that, because of the skin effect, the voltage Vmax is
not a well-defined quantity (for instance, inside a highly
conducting shell there is no axial electric field at all); in
Table I we are referring to the integral Vmax5*Edl be-
tween the anode and cathode at a distance from the axis
equal to the initial pinch radius.

In addition to the most commonly studied parameter
domain shown in Table I, there exists another group of
experiments, involving implosions of much heavier lin-
ers (with m̂; a few g/cm), with a characteristic implo-
sion time in the range of microseconds (see the end of
Sec. I.C). These pinches fall under our definition of
‘‘fast’’ pinches but will be discussed only very briefly in
our survey.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
The imploding load is often called a ‘‘target,’’ similar
to the term used in inertial confinement fusion (ICF)
research (see, for example, Lindl, 1995). The other tra-
ditionally used term is ‘‘the liner,’’ which designates a
thin imploding annular shell of whatever nature (gas
puff, foil, foam, wire-array plasma, etc.).

We have tried to limit the references to books and
papers in scientific journals that would be easily acces-
sible to the reader. However, in some cases we had to
cite conference proceedings.

C. Specific types of fast Z pinches

There exist a variety of initial configurations that are
imploded in fast Z pinches. Depending on the applica-
tion (as will be discussed in more detail in later sec-
tions), the initial density profile is chosen to be uniform,
annular, or peaked on axis. One initial configuration
that we have already mentioned is a supersonic gas jet,
with either an annular or a uniformly-filled gas density
profile, originating from a nozzle situated at one of the
electrodes. The gas jet flows through a fine mesh that
serves as the opposite electrode, or there may be simply
a hole that receives the jet [Fig. 1(a)]. More complex
multishell gaseous jets are also possible.

To create an initial density profile that is more uni-
form axially between the electrodes, thin annular shells
made of metal and plastic foils have also been used for
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the initial load configuration. Another way of creating
the initial configuration is by machining a cylinder from
a low-density foam [Fig. 1(b), Derzon et al. (1997a)].
Development of aerogel technology allowed experimen-
talists to produce solid cylinders with average mass den-
sity as low as ;1 mg/cm3 (3 mg/cm3 have actually been
used in experiments) and having very small deviations
from cylindrical symmetry (Antolak et al., 1997). Other
foams, such as agar, have a coarser structure but have
the advantage of being more easily machineable; this
allows one to make both uniform and hollow annular
cylinders of agar.

For the loads shown in Figs. 1(a) and (b), the sub-
stance is initially nonconducting. Before the current will
flow through the pinch, breakdown of the material
should occur. Because a breakdown is a statistical pro-
cess, it may cause considerable initial nonuniformities of
the pinch. To try to have a more predictable initiation of
the discharge in a foam, one sometimes uses thin con-
ducting coatings on the surface of the foam. In the case
of gaseous jets, one or another method of preionization
can be used.

More recently (see, for example, Matzen, 1997), con-
siderable progress in the technology of fabricating very
fine wire arrays has allowed assembly of highly sym-
metrical cylindrical shells consisting of hundreds of very
fine (several micrometers in diameter) metal wires [Fig.
1(c)]. The initial state of the imploding shell is in this
case, obviously, conducting. One may therefore expect a
more symmetric initiation of the discharge. For specific
applications, a foam cylinder, uniform or annular, or a
more complex structure may be inserted into the wire
array [Fig. 1(d)].

Thus far we have been discussing Z pinches with an
implosion time in the range of tens of nanoseconds.
There exist devices in which the imploding objects are
relatively heavy metal shells and the implosion time is as
long as hundreds of nanoseconds to microseconds. This
kind of Z pinch also falls under the aforementioned defi-
nition of ‘‘fast’’ Z pinches and will be covered by our
survey. As an example, we mention implosions of metal
shells (Baker et al. 1978; Degnan et al., 1995). A sche-
matic of the latter experiment, in which quasispherical
implosions were successfully realized, is shown in Fig.
1(e) Quasispherical targets may also be pursued in
lower-mass configurations.

D. Pulsed power

The remarkable progress made during the last few
years in fast-Z-pinch parameters became possible owing
to progress in pulsed-power technology and in the devel-
opment of sophisticated diagnostics instrumentation. As
has already been emphasized, this review is directed to
the discussion of the physics of Z pinches and will not
address the equally important issues of pulsed-power
technology and pinch diagnostics. However, to give the
reader some idea of the pertinent work, we briefly sum-
marize the status of both areas.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
The power and current available for Z-pinch implo-
sions reached new heights during the last decade: the
pulsed-power generator Saturn (Spielman et al., 1989)
reached an electrical power of 20 TW and a maximum
current of ;10 MA, and the 50-TW Particle Beam Fu-
sion Accelerator (PBFA II, now called ‘‘Z’’) was modi-
fied to drive fast-Z-pinch implosions, at currents of ;20
MA (Spielman et al., 1996). Both generators are situated
at Sandia National Laboratories (Albuquerque, New
Mexico). The kinetic energy in imploding liners that
were 2 cm long at an initial radius of 2 cm reached ;0.35
MJ at Saturn and ;1.2 MJ at Z. A schematic of the Z
facility is shown in Fig. 2. There are other high-power
generators used in Z-pinch research. In Russia, the best
known is the Angara-5 generator (Al’bikov et al., 1990),
with a maximum current of ;4 MA and a maximum
power to the load of ;10 TW. Generators of a similar
size include Double Eagle at Physics International,
Blackjack 5 at Maxwell Laboratories, and Proto II at
Sandia National Laboratories. Worldwide, about 15 gen-
erators operating at the current level of 1–3 MA and
power to the load of ;1–5 TW are used in Z-pinch re-
search (some of them are described in Camarcat et al.,
1985). There are also numerous smaller generators.
Most of the larger generators use so-called magnetically
insulated transmission lines (MITL) to deliver power to
the axisymmetric diode assembly. These magnetically in-
sulated lines are, in turn, fed by transmission lines insu-
lated with water. The power to the water transmission
lines is supplied by high-voltage Marx generators. A
wealth of information on these issues can be found in
the proceedings of pulsed-power conferences. A typical
geometry of the diode assembly, where the Z-pinch tar-
get is situated, is shown in Fig. 3.

To drive the slower and heavier loads of the type
shown in Fig. 1(e) with an implosion time of the order of
1 ms, slower generators are required. Examples of such
generators are Shiva Star situated at Phillips Labora-
tory, Albuquerque, New Mexico (Degnan et al., 1995),
and Pegasus, situated at Los Alamos National Labora-
tory.

E. Diagnostic instrumentation

Electric parameters of the discharge and the current
through the pinch are inferred by measuring the electric

FIG. 2. Schematic of the Z facility. The diameter of the facility
is 30 m. The outermost part is formed by Marx generators.
They are connected to 36 water-insulated transmission lines
which, in turn, feed magnetically insulated vacuum transmis-
sion lines converging at the diode. The diode is situated inside
the central tank.



172 Ryutov, Derzon, and Matzen: The physics of fast Z pinches
and magnetic fields at specific points of the device in the
generator with millimeter-size magnetic loops and ca-
pacitive probes. To measure the current through the
pinch column, it would be necessary to measure the
magnetic field inside the return-current conductor (Fig.
3). This is difficult to do because of the very large mag-
netic fields in a region of strong radiation and heat
fluxes. Therefore the magnetic field (and the current)
are usually measured in the MITL, at distances larger
than ;3 cm from the axis of the Z pinch. The voltage is
measured at the insulator stack. A description of the
probes, and further references, can be found in Stygar
et al. (1997). A possible way of measuring the magnetic
field in the plasma column is to use a Faraday rotation
technique (Branitskii et al., 1992a; 1992b; Sarkisov et al.,
1995b).

Optical measurements are useful for the characteriza-
tion of the early stage of the Z-pinch implosion, when
the x-ray radiation does not yet overwhelm the optical
detection system. Optical interferometry and hologra-
phy allow one to detect low-density blow-off plasma at
an early stage, as well as to observe instabilities of indi-
vidual wires in the wire arrays. These measurements
have a spatial resolution of a few tens of micrometers to
millimeters and a temporal resolution of ;1 ns. Further
details and references can be found, for example, in
Haines (1997); Muron, Hurst, and Derzon (1997); and
Deeney, McGurn, et al. (1997). Emission tomography is
described by Veretennikov et al. (1992).

For later stages of the Z-pinch implosion, the x-ray
radiation becomes significant and is successfully used for
characterization of the pinch. Total radiation intensity is
typically measured with bolometers, with a temporal
resolution of ;0.5 ns. Calorimeters can be used to mea-
sure the total radiation energy. X-ray diodes and photo-
conducting detectors are used to make broadband time-
resolved measurements of x-ray spectra (Spielman et al.,
1997). Multichannel scintillation detectors have also
been developed for this purpose (Averkiev et al., 1992).
To characterize the radiation in x-ray lines, plasma tem-
peratures, and ionization states, x-ray spectroscopy is
used (Leeper et al., 1997; Pikuz et al., 1997). X-ray pin-
hole framing cameras provide a spatial resolution as

FIG. 3. Cross-section view of the Z diode with on-axis annular
target. There are nine cutaway slots in the current-return can
for diagnostic access. The Z machine is configured with the
anode physically on the top of the target; other machines, such
as Saturn, are configured with the anode down. The power
from the magnetically insulating transmission lines flows to the
diode through the gap in the lower part of the figure.
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small as 100 micrometers, with time duration of the ex-
posure as small as 100 picoseconds.

The high-energy electron beams sometimes generated
in Z pinches can be detected by the gamma radiation
from electrodes, and high-energy ion production can be
observed by gamma spectroscopy of activated materials.
The presence of fast deuterons is inferred from neutron
radiation.

A complete description of the status of diagnostic in-
strumentation would require the inclusion of many tens
if not hundreds of additional references and would lead
us well beyond the intended scope of this paper. We
point out that many diagnostics papers can be found in
the January 1997 and January 1999 issues of the Review
of Scientific Instruments and in the proceedings of the
1997 Conference on Dense Z Pinches edited by Pereira,
Davis, and Pulsifer (1997).

II. IMPLOSION IN THE IDEAL CASE OF THE ABSENCE
OF INSTABILITIES

In this section we discuss the case of an ‘‘ideal’’ im-
plosion that might occur in the absence of instabilities.
This will give us a kind of a reference point to allow us
to see more clearly effects of possible complications
caused by instabilities. Stable, purely cylindrical implo-
sions can be numerically simulated with a great deal of
detail; a great deal of information obtained in such simu-
lations is available in the published literature (e.g., Ham-
mer et al. 1996; Peterson et al., 1996). However, we pre-
fer to concentrate on simple analytical models that allow
the reader to follow more easily the chain of causes and
effects. Working in this spirit, we start from an analysis
of the simplest possible system, a structureless perfectly
conducting thin shell. After that, we gradually add com-
plicating factors, like finite conductivity, radiation, etc.

A. Implosion of a thin shell

In the simplest case of a thin annular shell (like the
one formed by the wire array), the equation of radial
motion can be written as

m̂

2pr
r̈52

B2

2m
52

mI2

8p2r2 , (2.1)

where B5B(t) is the magnetic field at the surface of the
pinch and I5I(t) is the pinch current. Let us measure
the current in units of the maximum current Imax , the
time in units of the time t within which the current
reaches its maximum, and the radius in units of the ini-
tial radius r0 . In other words, we introduce dimension-
less variables

r̃5r/r0 , t̃ 5t/t , Ĩ5I/Imax . (2.2)

Rewritten in these variables, Eq. (2.1) is converted to

r̃ r̈̃52) Ĩ2, (2.3)

where
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)5
mImax

2 t2

4pm̂r0
2 (2.4)

is a dimensionless scaling parameter of the problem.
Two implosions with the same functional dependence of
current on time [i.e., with the same dependence Ĩ
5 Ĩ( t̃ )] occur in a similar fashion if the parameter ) for
them is the same. In particular, the instant in time when
the pinch collapses on the axis, measured in units of t, is
the same for both implosions.

To provide good efficiency for converting the energy
stored in the pulsed-power generator into kinetic energy
of the imploding pinch, one should choose an optimum
mass of the pinch material. This mass should be such
that the implosion time is approximately equal to the
time within which the current reaches its maximum
value: if the mass is too large, the current pulse ends
before the pinching occurs, and if the mass is too small,
the pinching occurs before the current reaches its maxi-
mum, also implying poor efficiency. In other words, for
every current pulse shape there exists an optimum value
of the parameter ).

Let us consider in closer detail the initial stage of the
implosion of a thin shell [Eq. (2.1)]. When the pinch
radius has not yet decreased considerably with respect
to its initial value r0 , one can represent r as r5r02Dr ,
with Dr small. In all our semiquantitative estimates we
shall use a simple model of the current through the
pinch:

I5Imaxsin2S pt

2t D . (2.5)

At an early stage of the implosion, the pinch current can
be approximated, with reasonable accuracy, by a para-
bolic dependence on time,

I5ImaxS pt

2t D 2

, (2.6)

For the dependence (2.6) one easily obtains for Dr

Dr

r0
5

p4)

480 S t

t D 6

. (2.7)

Note that the pinch radius departs from its initial value
very slowly, ;t6. For a load with a mass corresponding
to collapse at t5t , even at t5( 2

3 )t the pinch radius is
decreased by a mere 10% of its initial value. This discus-
sion shows that a pinch has a long ‘‘latent’’ phase fol-
lowed by a very fast collapse that occurs within a small
fraction (;0.1–0.2) of the total implosion time t. Calcu-
lated time histories of the wire-array radius and the
pinch current in one of the shots at the Saturn accelera-
tor are shown in Fig. 4.

An important characteristic of the system is the ki-
netic energy Wkin of the shell at the point at which it
reaches some desired minimum radius rmin . This can be
a radius determined by a finite thickness h of the shell
(i.e., rmin;h), or a radius of an inner cylinder as in the
scheme shown in Fig. 3. To find Wkin one can use the
energy relationship that is obtained by multiplying Eq.
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(2.1) by ṙ and integrating by parts from t50 to t5t* ,
where t* corresponds to the point where r5rmin . One
finds

Wkin5
m

4p E
0

t* dI2

dt
lnS r

rmin
Ddt ; (2.8)

here Wkin is a kinetic energy per unit length of the pinch
at t5t* . The mass of the liner enters Eq. (2.8) only im-
plicitly through the implosion time t* 5t* (m̂) and
through the dependence of the radius on time, r
5r(t ,m̂).

At large convergence, one can obtain a simple ap-
proximate expression for Wkin . To do that, one should
note that the logarithm in the integrand of Eq. (2.8) is
almost constant and equal to ln C for most of the implo-
sion. The contribution of the part where the logarithm
begins to change (roughly speaking, after the pinch ra-
dius reaches r0/2) is small because the time within which
the pinch implodes from r0/2 to rmin is very short com-
pared to the total current pulse width [see Fig. 4 and
comments after Eq. (2.7)]. So, replacing the logarithm in
the integrand of Eq. (2.8) by a constant value ln C (cor-
responding to the final convergence C5r0 /rmin , i.e.,
typically, to C;10–20), one finds

Wkin'
mI2~ t* !ln C

4p
. (2.9)

One sees that the maximum of the transferred energy
corresponds to a mass such that the time t* roughly cor-
responds to the maximum of the current. This statement
has a so-called ‘‘logarithmic accuracy,’’ i.e., it is valid up
to terms of the order of 1/ln C. To make a more accurate
estimate of the optimum implosion time, one should
take a derivative of Wkin over m̂ . From Eq. (2.8) one
finds

]Wkin

]m̂
5

m

4p E
0

t* dI2

dt

1
r

]r

]m̂
dt . (2.10)

Obviously, the derivative ]r/]m̂ is positive: a heavier
liner implodes more slowly and, at a given time, has a
larger radius. Therefore, if t* corresponds to the current
maximum, the derivative ]Wkin /]m̂ is positive. It

FIG. 4. Shot 104 at the Z accelerator: dotted line, measured
current; dashed line and solid line, current and wire-array ra-
dius, both calculated with Screamer code; and a Kimfol-filtered
(200–280 eV) x-ray diode signal, 3106. From Struve et al.,
1997, reprinted with kind permission of K. Struve. The initial
wire array had 290 wires at a radius of 2 cm, the W wires were
7.5 mm in diameter. A long ‘‘latent period’’ during which the
shell radius decreases very slowly is clearly visible.
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reaches zero (i.e., the kinetic energy reaches a maxi-
mum) at some point beyond the maximum of the cur-
rent. This point usually corresponds to a current that is
20–30% less than the current maximum. For a current
wave form like that in Eq. (2.5), the optimum value of
the parameter ) is equal to approximately 4.

In real life, for a given pulse-power generator, the cur-
rent wave form cannot be considered as independent of
the parameters of the load (because of the contribution
of the load impedance to the overall impedance of the
circuit). This circumstance can be taken into account by
solving equations for the pinch together with the circuit
equations (see, for example, Katzenstein, 1981; Struve
et al., 1997). One should also emphasize that the kinetic
energy is not necessarily an appropriate figure of merit.
For example, in experiments on generation of radiation
the figure of merit could be the radiated energy. The
contribution to the radiated energy comes not only from
the kinetic energy of the pinch but also from Joule heat-
ing (see Sec. VIII.A) and pdV work on the plasma dur-
ing the stagnation phase (Peterson et al., 1997, 1998).
Still, the kinetic energy is an important and clearly de-
fined characteristic of the implosion and we shall con-
centrate our discussion on it.

Using Eq. (2.9), one can derive an expression for the
volume density of the kinetic energy wkin at the stagna-
tion point in the case of an empty liner:

wkin5
Wkin

prmin
2 '2pm* ln C , (2.11)

where pm* is the magnetic pressure at the surface of the
pinch at r5rmin . If this energy is converted to the ther-
mal energy of the monatomic ideal gas, then the gas
pressure will be p5(2/3)wkin , or

p5
4
3

pm* ln C . (2.12)

One sees that, in such a scenario, the gas pressure is
indeed considerably higher than the magnetic pressure,
and the pinch will rapidly expand after stagnation. The
pinch rebound was detected in experiments with alumi-
num wire arrays on the Saturn facility (Sanford et al.,
1997a).

If one deals with a liner made of heavy elements,
then, in fact, a considerable amount of energy will be
spent on ionization, reducing p compared to the esti-
mate (2.12). In implosions of wire arrays, temperatures
in the range of hundreds of electron volts and electron
densities in the range of 1022 are typical (Maxon et al.,
1996; Deeney, Nash, et al., 1997; Matzen, 1997; Sanford
et al., 1997b). Radiative losses also lead to pressures
smaller than Eq. (2.12).

If the radiation-loss time is considerably shorter than
the acoustic time rmin /cs (where cs is the sound speed),
then, in the absence of instabilities, the pinch might ex-
perience a collapse to ever smaller radii (a radiative col-
lapse, see, for example, Meierovich, 1986). The Joule
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heating, especially with the anomalous resistance in-
cluded, works in the opposite direction (Robson, 1991),
as do the radiation imprisonment and effects of electron
degeneracy (Haines, 1989; Chittenden and Haines,
1990). Radiative collapse in a real situation may also be
prevented from happening by the constraints imposed
by circuit equations (a rapid increase of the pinch induc-
tance may decrease the current; Haines, 1989; Choi and
Dumitrescu-Zoita, 1997).

B. Targets with initially uniform density distribution

In this section we consider implosions of targets with
initially uniform density distribution, like foam cylin-
ders, or smooth radial density distributions, e.g., gas
puffs. In this case, a shock wave propagates ahead of the
current-carrying sheath and reaches the axis consider-
ably earlier than the sheath. We assume that the skin
depth is small compared to the radius of the column, as
is the case in real situations.

The converging cylindrical shock, if it possesses a
good symmetry produces a strong increase in density
and temperature which formally diverges on the axis
(Guderley, 1942; see also Whitham, 1974). After the
shock is reflected from the axis and again reaches the
surface of the cylinder, a kind of adiabatic compression
begins, in which the plasma pressure is approximately
equal to the magnetic pressure, and the sound speed in
the plasma is comparable to the Alfvén velocity. This
means that a kind of transient Bennett-type equilibrium
is formed for a few acoustic transit times.

In this discussion so far, we have ignored the role of
radiation. This is negligible with imploding deuterium-
tritium (DT) gas puffs. If, however, one deals with im-
plosions of heavier elements, then the radiation of the
plasma behind the shock can become important. In the
extreme case of very strong radiation losses, the plasma
behind the shock radiates its energy much faster than
the time within which the shock could propagate across
the radius of the pinch. In this extreme case the shock
will not be formed at all, and all the material impacted
by the magnetic piston will just stick to the piston. This
corresponds to the so-called snow-plow model studied in
great detail in the early years of pinch research (1950s).
We shall use the term ‘‘snow-plow’’ in just this sense, to
designate a simple model in which all the material swept
by the magnetic piston merely sticks to it. This case is
similar to that discussed in the previous section and we
shall start from it, leaving discussion of the second pos-
sibility (weak radiation) until the Sec. II.B.2.

When mixtures of gases are used, and the densities
are low enough, the picture may be complicated by a
radial separation of the ion species under the action of
the ambipolar radial electric field (Bailey et al., 1982;
Barak and Rostoker, 1982; Rahman, Amendt, and Ros-
toker, 1985). Gordeev (1987) contends that in a low-
density gas-puff implosion of a multispecies plasma, the
mutual friction between the ion components may cause
an enhanced penetration of the magnetic field.
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1. Snow-plow model (strongly radiating plasma)

The equations of motion for a magnetic piston sweep-
ing the plasma like a snow plow read as

m̂*

2pr
r̈2r~r ! ṙ252

mI2

8p2r2 , (2.13)

ṁ̂* 522prṙr~r !, (2.14)

where r(r) is the initial density distribution and m̂*
5m̂* (t) is the instantaneous mass accreted at the pis-
ton. The second term on the left-hand side of Eq. (2.13)
describes the momentum imparted to the piston by the
accreting material. We assume that the density at a cer-
tain radius remains unchanged until the very moment of
the magnetic piston’s arrival. For two implosions with
initial density distributions having the same functional
dependence on r/r0 , the same similarity law applies as
for Eq. (2.14), i.e., the two implosions are similar if the
parameter P for them is the same.

Consider an early stage of the implosion of a uniform
cylinder in the framework of the snow-plow model. In
this case, at the same mass per unit length as in a thin
shell, the current sheath moves towards the axis faster
than in the case of a thin shell. The reason is merely the
smaller mass involved in the implosion at an early stage.
To illustrate this point more quantitatively, consider an
analog of Eq. (2.7) assuming that the initial density dis-
tribution is uniform, i.e., r5m̂/pr0

2. One now has

Dr

r0
5

p2

4
AP

30S t

t D 3

. (2.15)

This solution is valid until Dr is less than, roughly speak-
ing, r0/3. We see that the implosion begins faster than
for a thin shell. The collapse on axis also occurs earlier
than for a thin shell of the same mass per unit length.
Still, the latent period is present in this case, too.

For the snow-plow model [Eq. (2.13)], the analog of
Eq. (2.1) reads

Wkin5
m

4pm̂ E
0

t* d~m̂* I2!

dt
ln

r

rmin
dt , (2.16)

where m̂ is the total mass per unit length, and m̂* is the
mass swept by the current sheath by time t:

m̂* 52pE
r

r0
r8r~r8!dr8. (2.17)

We assume here that one is dealing with the implosion
of a simple gas puff or a foam cylinder, without an ex-
ternal shell [otherwise, one would have to add the mass
of this shell to both m̂ and m̂* in Eq. (2.13)]. Using the
same arguments as in the case of a thin shell, one can
show that, at high convergences and smooth density dis-
tributions, Wkin is still approximately determined by Eq.
(2.9). From elementary mechanical considerations one
can find that the power released in the inelastic interac-
tion of the initially resting substance with a moving pis-
ton is (per unit length) ṁ̂* ṙ2/2. Integrating this expres-
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sion over time, one finds that, at C@1, the part of the
energy that was radiated from the accreted mass is,
within an order of magnitude, 1/ln C of the final kinetic
energy (i.e., relatively small). This is so because most of
the mass is accreted before the liner reaches a radius of,
say, r0/3, when the liner velocity is still small compared
to its final velocity at r5rmin .

An interesting feature of Eq. (2.13) is that, at the
properly chosen radial density distribution, there are
conditions for which the surface of the pinch does not
experience radial acceleration. Such a regime may be
desirable, since it may be stable with respect to the
Rayleigh-Taylor instability. This idea has been explored
by Hammer et al. (1996). To approach a state of con-
stant velocity, the outermost part of the pinch should
experience a sudden kick that would impart to it the
desired velocity v . As soon as this state has been
reached, further evolution of the system is described by
Eq. (2.13), with the first term on the left-hand side of
this equation omitted. One obtains the following equa-
tion for the desired density profile (Hammer et al.,
1996):

r~r !5
mI2@~r02r !/v#

16p2v2r2 . (2.18)

The density should rapidly increase near the axis
(}1/r2), and essentially all the mass should be concen-
trated within the radius ;2rmin . Figure 5 depicts the
required density distributions. For such sharply varying
density distributions one cannot use Eq. (2.9) to esti-
mate the kinetic energy. The final kinetic energy in this
case is

Wkin5
m̂v2

2
, (2.19)

with the mass m̂ related to the implosion velocity by
Eqs. (2.17) and (2.18), with r5rmin in the former equa-

FIG. 5. Density distributions for constant-velocity implosions
for velocities 33107 cm/s and 63107 cm/s. The current wave
form was determined self-consistently for the Saturn circuit
equations. From Hammer et al., 1996, reprinted with kind per-
mission of J. Hammer.
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tion. The optimum velocity (at which Wkin is at a maxi-
mum) is the velocity at which r5rmin is reached at the
current maximum. It is also important to note that the
radiative losses Wrad in this case are considerable. Using
the same arguments that followed Eq. (2.17) one can
show that the total radiated energy is Wrad5Wkin (see
Hammer et al., 1996).

2. Weakly radiating plasma

In this case, the shock wave splits from the piston and
propagates in front of it, heating and compressing the
plasma. As the initial temperature of the preshocked
plasma is small, the shock has a very large Mach number
and can be considered a strong shock (Landau and Lif-
shitz, 1987). For a gas with adiabatic index g, the plasma
density (r1) and plasma pressure (p1) behind the shock
are

r15
g11
g21

r , p15
2

g11
ru2, (2.20)

where u is the shock velocity. If the magnetic piston is
moving with some constant velocity v , there is a simple
relationship between u and v ; this is a direct conse-
quence of the mass conservation equation, ru5r1(u
2v): u5(g11)v/2. For the ideal monatomic gas (g

5 5
3 ), u5( 4

3 )v , i.e., the shock velocity is approximately
30% higher than the velocity of the piston. This means
that the shock converges on axis when the pinch radius
is equal, roughly speaking, to r0/3. This is a crude esti-
mate, as it does not take into account variations in v and
effects of cylindrical geometry. Still, it does not differ
strongly from more elaborate analyses, in particular
from the ‘‘slug’’ model of Potter (1978) and the energy
analysis of Miyamoto (1984).

Potter’s model assumes that the plasma behind the
shock is uniform, with parameters related to the param-
eters in front of the shock by Eqs. (2.20). The pressure
p1 is, on the other hand, equal to the magnetic pressure.
This allows one to close the set of equations and to find
the position of the shock and the piston as a function of
time. The prediction is that the shock will reach the axis
at r'0.3r0 . After the shock is reflected from the axis
and reaches the piston, a quasiequilibrium state is
formed in which the plasma pressure is approximately
equal to the magnetic pressure. One sees that this is
quite a different situation from an implosion of a thin
shell, in which case the particle pressure in the final state
is much higher than the magnetic pressure.

Such solutions are of interest in implosions of low-Z
targets, in particular, DT gas puffs and deuterated car-
bon foams. Targets of heavier materials may remain not
fully ionized behind the shock. In this case the use of the
power-law adiabats may break down. As a considerable
amount of energy is spent on ionization, the tempera-
ture behind the shock is lower than in the fully ionized
case, and the density higher (Zeldovich and Raizer,
1967). In such a situation, the separation between the
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piston and the shock front is reduced compared to what
was discussed above, and the snow-plow model of Sec.
II.B.1 becomes relevant.

In a plasma with incompletely stripped ions, the tail of
the electron distribution function experiences losses
caused by excitation and ionization events; therefore,
the tail may become depleted, affecting the rate of exci-
tation and the radiation intensity (see, for example,
Clark, Davis, and Cochran, 1986; DeGroot et al., 1997a).
An example of an analysis of experimental data on x-ray
spectra from implosions of the foam loads on the Saturn
device, with nonequilibrium effects included, can be
found in MacFarlane et al. (1997). In quasistatic pinches,
an important channel of heat loss is an enthalpy flow to
the electrodes related to the pinch current (Haines,
1960). In fast pinches this channel is usually subdomi-
nant.

We have discussed three limiting cases of implosions:
that of a thin shell, that of a nonradiating uniform (not
annular) column, and that of a strongly radiating uni-
form column (snow-plow model). Of course, a whole
range of intermediate cases is also possible. In particu-
lar, in gas-puff implosions with annular gas puffs, the
initial density on axis is never zero, because of a finite
angular divergence of the jet. A converging shock would
then propagate in a relatively low-density gas in front of
the main shell and would cause a significant density and
temperature increase on axis prior to arrival of the main
shell. This is a possible explanation for the early forma-
tion of a dense on-axis column in experiments by Shiloh,
Fisher, and Bar-Avraham (1979).

C. Three-dimensional implosions

As has already been mentioned in Sec. I.C, one may
deliberately implode shells with a geometry other than
cylindrical. Figure 1(e) depicts an implosion of an ap-
proximately spherical shell whose polar areas are sliding
along the conical electrodes. This scheme was success-
fully realized in experiments by Degnan et al. (1995).
The magnetic pressure at the surface of the shell is
larger in the polar areas (because of the smaller distance
from the axis). To compensate for this effect (which
would lead to deviations from the spherical implosion),
the shell thickness was made larger in the polar parts. To
avoid jetting at the point of the sliding contacts of the
shell with the electrodes, the angle at their apex was
made greater than 45°.

Another technique for producing quasispherical im-
plosions is tailoring of the thickness of the initially cylin-
drical liner, so that the thickness decreases from the
equatorial plane to the ends (Fig. 6). The liner implosion
then occurs as shown in Fig. 6, with the volume inside
the liner experiencing a three-dimensional (3D) com-
pression after t 5 t2 . Such a scheme has been success-
fully tested in experiments with relatively massive alu-
minum liners by Alikhanov et al., (1977). Numerical
simulations of 3D implosions have been recently per-
formed by Lisitsyn, Katsuki, and Akiyama (1999).
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D. Electrode phenomena

So far, we have been considering problems with a
pure cylindrical symmetry, i.e., problems in which all pa-
rameters depend only on r. Perfect cylindrical symmetry
cannot be reproduced in real life, even if the system is
magnetohydrodynamically stable. Indeed, the pinch al-
ways has a finite length, and there is contact between the
pinch plasma and the electrodes. This creates some axial
nonuniformity and thereby violates pure cylindrical
symmetry. The presence of electrodes may affect the
pinch performance in a number of ways.

First, there is some friction between the liner and the
surface of the electrode. This effect may be significant
for high-temperature and low-density pinch plasmas.
The presence of tangential shear flow in the transition
region between the electrode and the liner may excite
the Kelvin-Helmholtz instability (see Chandrasekhar,
1961) and shear-flow turbulence. This would be turbu-
lence of supersonic flow (the plasma velocity far from
the wall is much higher than the speed of sound in the
plasma shell), with strong radiative losses. Very little is
known about turbulent momentum transfer under such
circumstances. The first observation of Kelvin-
Helmholtz instability in an ICF-relevant environment
was reported by Hammel et al. (1994).

Second, there is a heat flux to cold, massive elec-
trodes. Its significance is again determined by the den-
sity and temperature of the liner. This heat flux causes
an axial variation of the plasma temperature near the
electrodes, thereby violating the cylindrical symmetry of
the implosion.

Third, there may occur some mass influx from the sur-
face of the electrode that makes the end part of the
pinch heavier and causes it to lag with respect to the
equatorial part of the pinch.

FIG. 6. Producing a quasispherical implosion with an initially
cylindrical liner of varying thickness. The liner is thicker near
the equatorial plane (see Drake et al., 1996).
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
Fourth, conducting electrodes impose a ‘‘frozen-in’’
condition on the normal component of the magnetic
field. To illustrate the possible role of this effect, con-
sider a liner implosion in the presence of a weak initial
axial magnetic field Bz0 (such geometries are supposed
to be used in experiments on the generation of strong
magnetic fields; see, for example, Alikhanov et al.,
1967). If (as it usually is) the bias magnetic field is small
compared to the azimuthal magnetic field of the pinch, it
does not considerably affect the pinch dynamics during
the run-in phase. Consider, however, what happens to
the magnetic field itself. The axial magnetic flux through
every element of the electrode and liner is conserved
because of their high conductivity. This creates the situ-
ation shown in Fig. 7: a thin near-electrode layer appears
where the embedded magnetic field becomes almost ra-
dial in direction; the thickness of this layer is of the or-
der of the skin depth d, which is very small compared to
the pinch radius. From the conservation of the magnetic
flux, it follows that the radial magnetic field inside the
skin layer should be Br;Bz0r/d . This estimate corre-
sponds to the intermediate stage of the run-in, where the
pinch radius is equal to, say, half of the initial radius. For
a typical implosion at a time of ;30 ns, the skin depth in
the electrode material is of the order of 1023 cm, and,
for r;1 cm, one obtains Br;103Bz0 . Even if the bias
magnetic field is small, say, 104 G, the magnetic field in
the skin is very large and may become comparable with
the self-magnetic field of the pinch. This, in turn, will
cause a thermal explosion of the electrode skin layer,
because of the very high current density, and also a
change in the dynamics of the liner implosion near the
surface of the electrodes.

In some experimental settings, in order to provide
better diagnostic access, one of the electrodes is made
with a hollow center (Fig. 8). This may lead to a differ-
ent phenomenon, similar in some sense to the plasma
focus effect (for a description of the latter see Sec. 4 in
Vikhrev and Braginski, 1986). When, in the course of
the implosion, the liner slides past the edge of the hole,
a current-carrying ‘‘bridge’’ may be formed from the
materials of both the liner and the electrode (panel 2).

FIG. 7. Distortion of the axial magnetic field in the course of a
liner implosion (d is the skin depth). Strong enhancement of
the initial magnetic field occurs within a skin layer. As the
perfectly conducting liner moves towards the axis, the mag-
netic flux initially enclosed by the liner has to be transferred
through a thin skin layer. Thick lines depict a cylindrical liner,
thin lines with arrows are magnetic-field lines.
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FIG. 8. Possible scenario of the implosion of a wire array in the case of a hollow anode. The picture is made deliberately
asymmetric to emphasize the statistical character of the bridge formation.
The density of this bridge would presumably be less than
the density of the liner itself. Anomalous resistivity may
turn on, causing considerable heating and radiation from
this region. The bridge experiences a magnetic pressure
directed downward and begins to evolve as shown in
panels 3 and 4. The further evolution of the bridge
should lead to its early self-implosion at some axial
point, formation of the ‘‘neck’’ (panel 5), and, possibly,
the breakup of the current channel, with generation of
high-energy particle beams. The collapse should be ac-
companied by injection of material in both directions
from the collapse point. Bright features appearing near
the anode hole relatively early in the pulse were ob-
served by Derzon et al. (1997a), which persisted until
relatively late (Fig. 9).
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
E. Structure of an imploding shell

Knowledge of the structure of an imploding shell is
required for the stability analysis that will be made in
later sections of this review. Consider the implosion of a
thin shell whose thickness h is such that the time of
propagation of the compression wave through the dis-
tance h is small compared to the characteristic time of
the implosion process. This assumption is certainly valid
for thin enough shells. Then the shell can be considered
as being in a quasi-steady-state mechanical equilibrium
governed by the following equation:

rg52
]

]x S p1
B2

2m D , (2.21)
FIG. 9. Scale-size rendition of target compared to time-integrated (TI) and gated x-ray images of the foam target. The image
consists of a time-integrated frame and five 100-ps frames 3 ns apart. The third frame is near the peak in emission. Plasma jetting
along the axis outside of the pinch and near the single mode structure between the electrodes is observed. The diameter of the
anode ring was 1 cm, and the mass of the foam was 78 mg1 .08 mg. The peak current in this shot was 7 MA, and the current had,
roughly, a 60-ns rise time [Color].
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where g is the effective gravity acceleration (in the co-
moving frame) and x is a coordinate directed towards
the axis. We are using here a planar model because of
the small thickness of the shell. The geometry of the
problem is illustrated in Fig. 10.

There is no magnetic field at the inner surface of the
shell (no current inside the shell) and therefore the ac-
celeration is related to the magnetic field B0 at the outer
surface of the shell via the equation

rgh;B0
2/2m , (2.22)

where h is the shell thickness.
First let us assume that the temperature of the shell is

determined by Ohmic heating. A rough estimate of the
thermal energy delivered to the unit area of the shell can
be made by multiplying the Poynting vector by the char-
acteristic time t of the implosion process:

E0B0t/m . (2.23)

The electric field on the surface of the shell depends on
the relationship between the skin depth hskin and the
total thickness h of the shell:

E0;
B0hskin

t
maxS 1,

hskin

h D . (2.24)

We assume first that heat losses via radiation are negli-
gible. Then, the thermal energy per unit area of the shell
is

B0
2

2m
hskin maxS 1,

hskin

h D . (2.25)

This thermal energy determines the plasma pressure in-
side the shell. For the thickness of the skin layer we take
its value at some characteristic point halfway through
the implosion. Note that the estimate (2.25) provides
only a general scaling law; the specific numerical factor
depends on the current wave form.

If the ionization energy is small, so that the thermal
energy per unit volume is of the order of the plasma
pressure (later in this section, we discuss the situation in
which ionization energy is significant), Eqs. (2.22) and
(2.25) show that, in a quasiequilibrium state, the shell

FIG. 10. The slab geometry used in the stability analysis; g
[2exg(g.0).
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
thickness is necessarily of the order of the skin depth
hskin [Fig. 11(a)].

Consider now the other possibilities. If the shell expe-
riences some turbulent motion produced by hydrody-
namic instabilities, then a new source of heating be-
comes available and may deliver much more thermal
energy to the shell than follows from Eq. (2.25). One
situation in which thermal energy may be large is an
implosion of a sufficiently thick gas puff or foam annu-
lus, when the shock wave propagates ahead of the piston
and heats the plasma. When the thermal energy of the
shell is considerably greater than the energy delivered
by Ohmic heating, an equilibrium with the shell thick-
ness much greater than the skin depth hskin becomes
possible [Fig. 11(b)]. In the region beyond the skin layer,
the magnetic pressure in Eq. (2.21) is negligible. At a
uniform temperature and a uniform plasma composi-
tion, one then obtains the familiar exponential density
distribution,

r}exp~2x/h !, (2.26)

with the scale length h defined as

h5T/m̄g , (2.27)

where m̄ is an average atomic weight (half a proton
mass for a hydrogen plasma).

FIG. 11. Density distribution in the shell: (a) the case in which
the density distribution can be characterized by a single length
scale h; (b) thin skin layer, hskin!h ; (c) skin layer much thicker
than the shell thickness.
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The opposite limiting case is that of very fast radiative
losses and/or a large ionization energy, as may be the
case in a plasma of high-Z elements. This case is of par-
ticular interest for the shells formed from wire arrays,
and we discuss it in some detail, following the general
ideas of the papers by Hussey, Roderick, and Kloc
(1980), Hussey and Roderick (1981), Grigor’ev and Za-
kharov (1987), Chukbar (1993a), and Hammer et al.
(1996).

The thermal energy of the plasma in this case is much
smaller than that determined by Eq. (2.25), leading to a
corresponding decrease in the plasma temperature. At
low temperatures, the skin depth becomes greater than
the shell thickness, hskin.h . The axial electric field is
then uniform over the shell thickness. We assume that
the temperature is also uniform, providing a uniform
conductivity and a uniform axial current. The latter, in
turn, means that the magnetic field varies linearly over x.
As it must vanish at the inner side of the shell (we as-
sume that there is no axial current inside the imploding
shell), we find that

B5B0S 12
x

h D , (2.28)

where h is the shell thickness. For further analysis, it is
convenient to introduce the relationship p5s iso

2 r , with
s iso5AT/m̄ being the speed of the isothermal sound
waves. As follows from Eq. (2.27), the assumption that
the skin depth is greater than the shell thickness implies
that almost all the energy delivered to the shell by
Ohmic heating is radiated to make the plasma pressure
less than the magnetic pressure: rs iso

2 !B0
2/2m . In this

case, as follows from Eqs. (2.21), one automatically has
gh@s iso

2 . With this observation made, one can find the
solution of Eq. (2.21) [with B as in Eq. (2.28)]:

r5r0H S 11
s iso

2

gh D F12expS 2
gx

s iso
2 D G2

x

hJ ; r05
B0

2

mgh
.

(2.29)

We have taken into account that the density should be-
come zero at x50; then, at x5h , it is small (in the
parameter s iso

2 /gh!1), as it should be. Our simple
model does not resolve the structure of the further tran-
sition to zero density near the inner side of the shell.
The density distribution (2.29) is shown in Fig. 11(c).
Note that h now is not determined by Eq. (2.27), be-
cause the magnetic force is now dominant in the pres-
sure balance.

For the solution (2.29) the mass per unit area of the
shell is approximately equal to r0h/2; it is determined by
the initial conditions of the experiment. However, Eq.
(2.29) does not allow one to determine r0 and h sepa-
rately. The additional equation needed is provided by a
condition of thermal balance, which equates Joule heat-
ing and radiative losses. This condition, generally speak-
ing, contains a different combination of the parameters
r0 and h and can, therefore, serve as a second equation,
provided the temperature is determined experimentally.
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III. EARLY STAGE OF THE DISCHARGE

A. Breakdown of gas puffs

Although at present fast-Z-pinch research is concen-
trated on wire-array implosions, other fast Z pinches, in
particular, gas puffs (see, for example, Stallings et al.
1979; Branitskii et al., 1991, 1992a, 1992b, Deeney et al.
1993; Baksht, Datsko, Kim, et al., 1995) and pinches with
foam targets (Derzon et al., 1997a) are also of a consid-
erable interest. Therefore we start this section with the
issue of initializing these types of pinches. What we
present here is not a quantitative theory, but rather a
broad qualitative discussion aimed at identifying the
critical physics issues.

In our discussion of gas puffs, we shall present most of
the numerical estimates for the density range ;3
31017–331018 cm23. We mean here peak densities, in
the middle of the gas stream. Taking a representative
value of sa;10215 cm2 for the cross section of electron
scattering on atoms, one finds that the mean free path
for electron scattering, lea51/nasa , where na is a neu-
tral atom density, is much shorter than the typical height
of the pinch. If the applied voltage were such that the
energy acquired by the electron between two collisions
was small compared to the ionization potential, the elec-
tron avalanches would develop quite slowly. The seed
electron would experience a random walk with a super-
imposed average drift in the direction of the anode; its
energy would gradually increase and reach the excita-
tion threshold; at this point, with a high probability, it
would lose energy through excitation and only with a
small probability would reach the ionization threshold
I ion (this, incidentally, is a standard picture of gas break-
down at densities above the Paschen pressure minimum;
see Meek and Craggs, 1978; Raizer, 1991). In the situa-
tion of fast Z pinches, where the voltage is rapidly grow-
ing, before the aforementioned process produces suffi-
cient electron multiplication, the voltage reaches a level
at which electrons acquire ionization energy between
two successive collisions:

eElea.I ion , (3.1)

where E is the electric-field strength. Then, a typical
e-folding time for avalanching will be only 1/venas i ,
where s i is the ionization cross section).

Before going further, we note that in gas-puff experi-
ments the radial density distribution is relatively
smooth, with a gradual transition from the nominal den-
sity inside the jet to a much lower density at the jet
periphery [Fig. 1(a)]. Therefore, with the voltage grow-
ing, condition (3.1) will be first satisfied at low densities.
But the density cannot be too low; in order to produce a
considerable charge multiplication on its way to the an-
ode, the electron would have to experience at least sev-
eral ionizing collisions, i.e., the product Lnas i (where L
is the anode-cathode distance) should be greater than,
say, 10:

Lnas i.10. (3.2)
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Equation (3.2) imposes a lower limit on the density. At
s i;3310216 cm2 and L;1.5 cm the required densities
are ;231016 cm23, and this is where breakdown will
occur first. The time for developing significant ionization
is ;10/venas i (;5 ns at na5231016 cm23).

With applied voltage rapidly growing, the inequality
in Eq. (3.1) will be met in the deeper layers of the jet
and the ionization front will move towards higher den-
sities. Eventually, the conductivity of the outer current-
carrying shell becomes so high that the skin effect be-
comes important. After this time further increase of the
current occurs in the outer layers of the gas puff (this
skin-dominated stage of ionization has been analyzed by
Vikhrev and Braginski, 1986). At this stage, further ion-
ization of the inner layers is produced by radiation from
the current-carrying shell, and, at the later stages of the
implosion, by shock heating.

In gas puffs, the isodensity surfaces are usually not
cylindrical but rather conical, because of the divergence
of the jet (see Hussey, Matzen and Roderick, 1986).
Deeney et al. (1994) and Barnier et al. (1998) developed
special nozzles producing almost cylindrical jets. Super-
imposed on the regular flow, smaller-scale density fluc-
tuations produced by hydrodynamic turbulence may be
present. This brings additional complications to the pic-
ture of the breakdown.

In very-low-density pinches, where even the maxi-
mum density of the jet is less than roughly 1016 cm23, the
electron multiplication factor becomes insufficient [see
Eq. (3.2)] and a different breakdown mechanism should
come into play. It should strongly depend on the genera-
tion of electrons at the cathode (Baksht, Russkikh, and
Chagin, 1997), via, probably, photoemission.

Note that, at low gas densities, even a very weak cur-
rent may cause magnetization of electrons, thereby af-
fecting the avalanching process. At a density of
1016 cm23 the electron-neutral elastic collision frequency
of, say 30-eV electrons is 33109 s21 and becomes lower
than the electron gyrofrequency at a magnetic field of
only 0.015 T. In a 4-cm-diameter column such a mag-
netic field would be created by a current of only ;1.5
kA (!). Therefore even a relatively weak axial magnetic
field (weak compared to the pinch azimuthal field at the
maximum current) may affect the breakdown process
and thereby the overall pinch performance. The favor-
able effect of an axial magnetic field ;0.3 T has been
recorded in experiments by Gasque et al. (1996) and
Baksht, Russkikh, and Chagin (1997). Of course, we do
not claim that the bias magnetic field has no other ef-
fects on pinch physics (in particular, on the pinch stabil-
ity at the later stages of the implosion, when it increases
because of the radial compression). We merely empha-
size that even a very weak field can influence the break-
down of gas puffs and make it more ‘‘regular.’’

The gas breakdown itself is a statistical process and
may lead to formation of azimuthally asymmetric
current-carrying channels, especially at lower densities
where electrode effects become important (and bring
about a new source of nonuniformities). Therefore the
pre-ionization of the gas by some external source might
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be beneficial. This is shown in the papers of Stallings
et al. (1979), Ruden et al. (1987), Baksht, Russkikh, and
Fedyunin (1995), Baksht, Russkikh, and Chagin (1997),
and Rousskikh et al. (1999).

The presence of a long enough prepulse may also be
beneficial for creating a uniformly ionized column. The
effect of the prepulse is determined by its time duration
and its voltage. In particular, in Baksht, Russkikh, and
Fedyunin (1995) the prepulse (1.5 ms, 1 kV) did not
cause a breakdown because the axial line density n0L
,3.631015 cm22 was well below the Paschen optimum
for Ar. Such a prepulse would have caused a breakdown
of Ar with a density an order of magnitude higher.
Whether this would be beneficial for a further fast im-
plosion is not clear, because during the long prepulse
numerous ionization-radiation instabilities (see Sec.
III.C) could develop and lead to strong perturbation of
the initial state. Prepulse breakdown was reported by
Smith and Dogget (1985), who also studied the current
distribution of argon gas puffs with a density below
1016 cm23 during the first 20 ns of the discharge.

B. Breakdown of foams

As the commonly used foams of CHx , SiO2, and agar
('CH2O) are insulators, the question of the time and
quality of the breakdown exists for these loads, too. In
particular, it is important to know whether breakdown
occurs at the outer surface, or whether some discharge
channels are formed in the bulk of the foam. Very little
is known at the moment about these issues, so our dis-
cussion must necessarily be limited.

To be more specific, we shall discuss the breakdown
of SiO2 foam. The breakdown voltage for SiO2 foam
could be quite large. This can be understood from the
following qualitative considerations. If we replaced the
foam with a gas of the same average particle density, i.e.,
with 631020r0 (mg/cm3)/A particles per cm3, the gas
density would be quite high. For example, for r0
55 mg/cm3 and A520, the particle density would be
1.531020 cm23. At room temperature, this density would
correspond to a pressure of approximately 5.5 atm; the
Paschen product (pressure times length) would then be,
roughly speaking, 1000 times higher than its optimum
value for the majority of gases. This would correspond
to breakdown voltages in the range of a hundred kilo-
volts. The high voltages needed for initiation of dis-
charge in foam loads and the corresponding delay of the
onset of current flow may cause strong leaks and even a
closure of the gap in the magnetically insulating trans-
mission line (see Fig. 3).

As soon as the voltage reaches ;100 kV, breakdown
occurs. At high densities, it has a tendency to develop in
the form of a narrow channel which, generally speaking,
is not straight (Raizer, 1991). The energy required to
ionize a breakdown channel to a singly charged state is
very small. An estimate from below for this quantity is

W ion.pLa0
2I ionr/Amp , (3.3)
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where L is the column length, a0 is its radius, I ion is the
ionization energy, r0 is the foam density, mP is the pro-
ton mass, and A is an average atomic weight. In ‘‘prac-
tical’’ units,

W ion~J!'33103L~cm!@a0~cm!#2r0~mg/cm3!/A . (3.4)

Taking L51 cm, a050.05 cm, r055 mg/cm3, and A
520, one obtains W ion'0.2 J. After the first breakdown
channel is formed, new breakdowns may still occur, be-
cause the inductive voltage induced in the bulk of the
dielectric can be quite high until 3–5 channels are
formed. So, one can expect that, after this first phase of
the current pulse, the column will carry several dis-
charge channels. Though the energy released in the
breakdown is very small compared to the total energy
delivered to the pinch during the whole implosion pro-
cess, the consequences of the formation of nonaxisym-
metric breakdown channels can be quite severe because
a channel will have a density different from that of the
external medium and will serve as a strong perturbation
during the magnetohydrodynamic phase of the implo-
sion. The appearance of thin breakdown channels in fi-
ber pinches with dielectric (frozen deuterium) fibers was
discussed by Meierovich and Sukhorukov (1991).

In a state of single ionization, the plasma should have
a temperature of 2 to 3 eV. This would correspond to a
relatively low magnetic diffusivity (Huba, 1994), DM
;53105 cm2/s. With this diffusivity, the resistive broad-
ening of the current channel should be slow (for t
510 ns the broadening would be ;1 mm). In other
words, as soon as several highly conducting channels are
formed, the initial current will be trapped in them. With
continuing ionization of the column, further current
buildup will occur in a thin skin layer at the surface of
the column. But, as we have already emphasized, the
initial current will remain trapped within several narrow
channels inside the column. The presence of this current
will cause some distortions of the equilibrium; the
trapped magnetic field will grow proportionally with
convergence. Formation of several channels was ob-
served in experiments with gaseous liners at the Angara-
5-1 facility (Volkov, Utyugov, and Frolov, 1993). The
reason for their formation and persistence during the
whole implosion event could be just the one suggested
above.

An ideal situation would be, of course, production of
breakdown uniformly over the surface of the cylinder
and interception of so much current that the voltage
drop inside the cylinder becomes insufficient to produce
any internal breakdowns. In this sense, an interesting
option is the use of a thin conducting coating. The coat-
ing should not necessarily be thicker than the skin
depth. What is sufficient (and relatively easily achiev-
able even for metal coatings with a thickness of the or-
der of a fraction of a micron) is that the L/R time of the
circuit be considerably greater than 10–20 ns. There is
experimental evidence that conductive coatings and a
prepulse have a favorable effect on the quality of the
discharge (Nash et al., 1997a).
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The presence of a prepulse can have a considerable
effect on the breakdown of the coated foam. Even if the
voltage during the prepulse is in the range of only a few
kilovolts, it is sufficient, in the time frame of ;1 ms, to
fully evaporate the conducting coating. Depending on
the voltage and the prepulse length, the evaporated ma-
terial can expand by up to a few millimeters. The con-
ductivity of this relatively cold vapor will be low and,
probably, insufficient to shield the liner inductively. On
the other hand, the presence of a gaseous corona around
the foam load may turn on the same breakdown mecha-
nism as in the case of gas puffs (Sec. III A). A small axial
magnetic field (;0.3 T) may be beneficial in producing a
more symmetric current-carrying shell.

The aforementioned scenario in which the coating is
evaporated without ionization corresponds to just one
possible shape of the prepulse, with a long ‘‘pedestal’’ of
a low voltage. If the prepulse is shorter, with a higher
voltage, then a fast transition from vapor to a highly
ionized plasma may occur.

The effect of a current prepulse on the explosion of a
single carbon fiber was studied by Lebedev et al. (1998a)
and Aliaga-Rossel et al. (1998). During the first 80 ns
after arrival of the main pulse, the fiber exposed to a
prepulse showed a less-developed coronal plasma; later
on, the differences between the wires exposed and not
exposed to a prepulse became insignificant. Mosher
et al. (1998) reported a better uniformity of discharges in
preheated white-hot wires.

C. Thermal instabilities; filamentation and striations

It has been known since the mid 1980s that, early in
the pulse, surface layers of the gas-puff pinch experience
fast instabilities that cause formation of bright stripes
perpendicular to the axis and (usually later) parallel to
the axis. We call the first of these ‘‘striations’’ and the
second ‘‘filaments.’’ Such patterns have been clearly ob-
served, for instance, in a study by Branitskii et al. (1991)
at the Angara-5-1 facility (Fig. 12). In this particular ex-
periment the maximum current was 3 MA, the voltage
was 0.4–0.6 MV, and the current rise time was ;100 ns.
The loads were usually Xe gas puffs with a height of 1
cm, an initial diameter of 3 cm, and a mass per unit
length of ;0.1 mg/cm. Ripples with a wavelength ;1
mm were formed immediately after arrival of the cur-
rent pulse and were gradually replaced by filamentary
structure with the same wavelength; these filaments per-
sisted halfway to the current maximum. Azimuthal in-
stabilities were not affected by replacing Xe with Ne.

These modes develop very rapidly compared to
Rayleigh-Taylor instability and should have a different
nature. They are usually identified with thermal insta-
bilities in which, once the temperature in some fluid el-
ement increases or decreases, it continues to increase or
decrease. Possible causes of such behavior are an in-
crease in radiation losses at decreasing temperatures and
positive feedback in the Joule heating. In its ‘‘pure’’
form this instability does not require mass redistribution
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and may occur at times that are short compared to the
acoustic time for the spatial scale of the instability (Afo-
nin, 1995).

If the parameters of the system are such that the
growth rate of thermal instability becomes comparable
to the growth rate of Rayleigh-Taylor instability, the two
instabilities become strongly coupled. Such a situation
was discussed by Imshennik and Neudachin (1987,
1988). In the absence of gravity (and hence the
Rayleigh-Taylor instability), the slow thermal instability
gets coupled with acoustic motions. This instability can
be called ‘‘radiative-condensation instability’’ because of
the formation of clumps of colder matter at its nonlinear
stage (Aranson, Meerson, and Sasorov, 1993). Various
aspects of these instabilities have been considered by
Velikhov et al. (1972), and Haines (1974).

We discuss these instabilities here for the case in
which the thickness of the cylindrical conducting shell is
much less than the skin depth and in which the mechani-
cal motions of the shell can be neglected (‘‘fast’’ thermal
instability). First, by solving Maxwell’s equations we re-
late the current perturbation to the perturbation of the
resistivity, and then we plug this perturbation into the
thermal balance equation.

The properties of a thin shell can be characterized by
the ‘‘surface conductivity’’ ss , which is the product of
the shell thickness and the conductivity proper, or by a

FIG. 12. Laser shadowgraphs of a Xe liner implosion at the
Angara-5 facility (Branitskii et al., 1991, reprinted with kind
permission of V. Smirnov). The frames are separated by 30 ns;
the current was 1.6 MA. The axis of the discharge is vertical.
The cathode is at the bottom. The anode (a thick dark strip in
the middle of the figure) was made of a mesh, so that the
plasma penetrates beyond the anode and produces some per-
turbations there.
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‘‘surface resistivity’’ hs[1/ss . The surface current can
be presented as

Jt5Et /hs , (3.5)

where Et is the tangential component of the electric
field. For perturbations, one has

dJt5dEt /hs2~dhs /hs
2!Et , (3.6)

where the sign ‘‘d’’ designates the perturbations, and the
unperturbed quantities do not bear this sign. As we are
going to consider perturbations with scale lengths
shorter than the shell radius, we replace the cylindrical
geometry by a planar one, with the x axis corresponding
to the radial coordinate, and the y axis corresponding to
the azimuthal coordinate. In the unperturbed state, the
current and the electric field have only z components,
while the magnetic field has only a y component. The
unperturbed magnetic field is zero inside the shell (in
our geometry, at x,0).

As there are no currents outside the shell, the mag-
netic field there is curl free and can be represented as a
gradient of some scalar function c, dB52¹c . This
function satisfies the Laplace equation ¹2c50. We con-
sider perturbations of the form exp(Gt1iky y1ikzz),
where ReG is a growth rate. In addition to the Laplace
equation for c, we shall need the x component of Fara-
day’s law,

ikydEz2ikzdEy52GdBx . (3.7)

The solution of the Laplace equation for the x.0 (x
,0) half space reads as

c65A6exp~7kx !, (3.8)

where k5Aky
21kz

2. We need to supplement these equa-
tions with the boundary conditions at the x50 surface:
the continuity of the normal component of the magnetic
field [this yields A152A2 in Eq. (3.8)], and the jump
condition for the tangential components of the magnetic
field in terms of the surface current (3.6). Using these
conditions, after some elementary algebra one finds the
following expression for the perturbation of the current:

dJz52Jz

ky
2

k2

1
11~G/G0!

dhs

hs
, (3.9)

where 1/G0 is a characteristic decay time for the current
perturbations,

G05
2khs

m
[

2kh

mh
, (3.10)

where h is the shell thickness. The y component of the
current perturbation is dJy52(kz /ky)dJz , and ky is re-
lated to the azimuthal mode number m: ky5m/r . It is
also convenient to introduce the angle a between the
unperturbed magnetic field and the wave vector: sin a
5kz /k. Note that, according to Eq. (3.9), for highly con-
ductive shells, where the resistive decay time is very long
compared to the time of the process, the relative current
perturbation dJz /Jz can be small even for considerable
perturbation of the resistivity, (dhs /hs);1.
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Now we turn to the equation for thermal balance. It
can be presented in the form

Q̇~T !5hs~T !J22q~T !, (3.11)

where Q is the plasma-energy content per unit area of
the shell and q is the power loss (radiation) per unit
area. The equilibrium state corresponds to a balance of
the two terms on the right-hand side:

hs~T0!J22q~T0!50. (3.12)

The equation for the temperature perturbation, with the
equilibrium condition (3.12) taken into account is

CV

]dT

]t
52q

dJz

Jz
1q

hs8

hs
dT2q8dT , (3.13)

where the prime designates the derivative of the corre-
sponding quantity with respect to the temperature, and
CV is the heat capacity per unit area of the shell. Using
Eq. (3.11), one then obtains the dispersion relation

G5
qhs8

CVhs
F12

2 cos2 a

11~G/G0!G2
q8

CV
. (3.14)

Instead of exactly solving this (quadratic) equation,
we present a qualitative discussion of possible instabili-
ties in some limiting cases. One extreme case is that of a
strong temperature dependence of the heat losses and a
weak temperature dependence of the resistivity. In this
case, one can neglect the first term on the right-hand
side of Eq. (3.14). The remaining term predicts an in-
stability of q8,0, in other words, if the radiative losses
decrease with a temperature increase. This may happen
in an optically thin plasma dominated by free-bound ra-
diation or by line radiation in which some strong transi-
tions disappear with increasing temperature because of a
change in the ionization state.

In the opposite limiting case, in which the tempera-
ture dependence of the resistivity is dominant, one can
neglect the last term on the right-hand side. Instabilities
present in this case are driven by the temperature de-
pendence of the resistivity. Somewhat paradoxically,
these instabilities are present for either sign of hs8 ; the
sign determines their spatial structure. At hs8.0, to
make the right-hand side as large as possible (at G posi-
tive), one has to choose a5p/2 (m50). In other words,
the fastest growing modes at a positive temperature de-
pendence of the resistivity are the axisymmetric modes
(‘‘striations’’). At hs8,0, the most unstable modes corre-
spond to a50, in other words, to the purely azimuthal
perturbations. For them one has (with q850)

G5
quhs8u
CVhs

12~G/G0!

11~G/G0!
. (3.15)

The largest growth rate corresponds to G0→` , or, ac-
cording to Eq. (3.10), to large m number (thin filaments
stretched along the axis). Our simple model does not
include the thermal conductivity along the surface of a
layer. If included, it would limit from below the size of
both striations and filaments.
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The positive dependence of resistivity on temperature
is typical for low temperature, where the degree of ion-
ization grows and electron-neutral collisions are re-
placed by Coulomb collisions with much higher cross
sections. Accordingly, striations should form predomi-
nantly at the early stage of the pulse. This instability, as
well as the other thermal instabilities, can reach a
strongly nonlinear stage. They will eventually cause re-
distribution of matter (the process that we have not in-
cluded into the analysis presented above). Such nonlin-
ear structures may exist much longer than hs8 is positive
and may seed the Rayleigh-Taylor instability.

The negative dependence of resistivity on tempera-
ture takes over later, when the plasma becomes singly
ionized. Therefore filamentation should develop later
than striations, in agreement with the aforementioned
experimental data by Branitskii et al. (1991) (Fig. 12).
The presence of azimuthally asymmetric structures in
the foam loads was recorded on the Saturn device (La-
zier et al., 1997), although in this case their appearance
might also have been caused by a discrete azimuthal
structure of the return-current conductor.

D. Early stage of a wire-array discharge; merging of wires

The driving of pulsed currents through single metal
wires and dielectric fibers has been the subject of numer-
ous experimental studies2 and theoretical analyses.3

An important feature of the discharge in a single wire
is that the wire core, at least for thick wires, may remain
cold and expand very slowly. The core is surrounded by
a plasma ‘‘corona’’ that contains only a small fraction of
mass but carries almost all the current. This conclusion
was made in the paper by Aranchuk et al. (1986) specifi-
cally devoted to experimental studies of single-wire ex-
plosions [see also an earlier paper by Aranchuk, Bogoly-
ubskii, and Tel’kovskaya (1985)]. They found that, in
explosions of 20-mm-diameter copper wires, only 2–7%
of the total mass was carrying the current and radiating.
The rest of the mass remained cold. This corona was
subject to violent unstable motions, while the core re-
mained more or less cylindrical. The maximum current
through the wire was 0.5 MA, and the current rise time
was approximately 100 ns. The halo plasma can be
formed because of desorption during a prepulse (a point
made by Bartnik et al. 1990) or just because of the
evaporation of the whole wire. This relatively low-
density halo provides better conditions for the break-
down (cf. Sec. III.A). A strong effect of wire cleanliness
on formation of the corona was reported by Bartnik

2See, for example, Skowronek and Romeas (1985), Aranchuk
et al. (1986), Sethian et al. (1987), Bartnik et al. (1990), Mosher
and Colombant (1992), Sarkisov and Etlicher (1995), Sarkisov
et al. (1995), Sarkisov, Shikanov, et al., 1995a, Beg et al. (1997),
Aliaga-Rossel et al. (1998).

3See, for example, Coppins et al. (1988), Rosenau et al.
(1988), Bud’ko, Liberman, and Kamenets (1990), Neudatchin
and Sasorov (1991), Sasorov (1991) and Bobrova et al. (1992).
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et al. (1994). A long-lasting core of the exploded wire
was observed by Kalantar and Hammer (1993).
Sarkisov, Etlicher et al. (1995) and Sarkisov, Shikanov
et al. (1995a) detected a thick core in explosions of
20-mm copper wires; they used absorption of the 532-nm
laser light to detect the evolution of the exploding wire.
Beg et al. (1997) performed a very detailed study of ex-
plosions of carbon (7- and 33-mm diameter) and alumi-
num wires (25-mm diameter) at the maximum current of
;100 kA and a current rise time of 55 ns. For the thicker
wires, the core existed at least until the current maxi-
mum, whereas for the 7-mm carbon wire it disappeared
within ;10 ns [we note in passing that the paper by Beg
et al. (1997) contains a wealth of information on wire
pinches, including detailed characterization of the insta-
bilities in coronal plasma, and detection of electron
beams]. Detailed numerical simulations of the develop-
ment of the m50 instability have been recently pub-
lished by Chittenden et al. (1997). One theory attributes
formation of the corona to Ohmic heating of the low-
density plasma due to anomalous resistivity (Sasorov,
1991; Haines et al. 1996). We shall return to this issue in
Sec. VII.A. Afonin (1999) has studied a 1D model of a
wire explosion accounting for the changes of the resis-
tivity during transition from metal to liquid, and to a
weakly ionized gas, and corresponding changes of the
skin thickness. His model also predicts the halo forma-
tion.

The behavior of the plasma corona of the wires as-
sembled in a cylindrical array is very different from that
of separate wires, because of the presence of a strong
common magnetic field. A curious feature of such arrays
is that the common magnetic field near the surface of
the wire array is mI/2pr , where r is the array’s radius.
The magnetic field produced by a certain wire at the
location of its closest neighbor (i.e., at a distance 2pr/N ,
where N is the number of wires in the array) is
mI/(2p)2r , i.e., universally smaller by a factor of 2p
than the common field.

This common field accelerates the light coronal
plasma towards the center of the array and therefore
there is reason to believe that the current will be forced
to flow in the wire cores. This assumption is supported
by the fact that the dynamics of a wire-array implosion
correspond, to good accuracy, to a model in which the
whole mass of the wire array is involved in the implo-
sion, at least for a sufficiently large number of wires in
the array (see Sanford et al., 1999a, 1999b). The system-
atic study carried out in these papers on the effect of
number of wires on the pulse width of the radiation
emission also points to a significant decrease in precur-
sor plasma for a large number of wires. There is good
agreement of the radiation pulse with simulations based
on the assumption that all of the wire mass is involved in
the implosion (see, for example, Fig. 11 in Spielman
et al., 1998). It should be noted that, for a smaller num-
ber of thicker wires, the effect of current interception by
the coronal plasma may be significant, with a large
amount of blow-off plasma accelerated to the center of
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the array (Aivazov et al., 1988; Lebedev et al. 1998b,
1999; see also numerical simulations by Chittenden
et al., 1999).

Limiting ourselves to the case of a large number of
wires, we assume that essentially all of the mass of the
wire is involved in hydrodynamic motions. As is well
known (see Kadomtsev, 1966; Bateman, 1980), a wire is
unstable with respect to magnetohydrodynamic (MHD)
sausage and kink modes. For perturbations with wave-
lengths exceeding the wire radius, kz,rW

21, growth rates
are

G;A Bw
2 kz

2

m~m̂/Nprw
2 !

, (3.16)

where Bw is the magnetic-field intensity at the surface of
the wire (we ignore the factor of 2–3 difference between
the growth rates of the kink and sausage modes). Nu-
merical results pertaining to specific radial profiles of the
current and the density can be found, for example, in
Felber (1982) and Pereira, Rostoker, and Pearlman
(1984).

As stated above, we assume that all of the wire mass is
involved in the hydrodynamic motion. The modes with
kz;1/rw , where rw is the instantaneous radius of an in-
dividual wire, create perturbations randomly distributed
over the wire length and cause a gradual broadening of
the wire (an increase in the effective rw). Assuming that
the growth rate of short-wave perturbations is large
compared to the characteristic times involved in the
problem (so that the perturbations reach a nonlinear
state), the expansion velocity is independent of initial
perturbations. In this regime the expansion velocity can
be evaluated (in particular from dimensional consider-
ations) as v;Grw . Using expression (3.16) and noting
that Bw5mI/2pNrw , one finds

v;IA m

4pm̂N
. (3.17)

In ‘‘practical’’ units,

v~cm/s!;
33106I~MA!

AN•m̂~mg/cm!
. (3.18)

Solving the equation ṙ5v with I as in Eq. (2.6), one
finds that rw reaches half of the interwire gap, pr/N , at

1
t

;15F m̂~mg/cm!

N G1/6F r~cm!

t~ns!I0~MA!G
1/3

. (3.19)

For a wire array with the ‘‘standard’’ Z parameters, t/t
is ;0.5. Therefore development of MHD instabilities in
the wires can, in principle, cause an early merging of the
wires. Note that at t/t;0.5 the current in the wires at-
tains only a quarter of its maximum value, and the ar-
ray’s diameter experiences only a very small change.
This is why we neglected the change of r in the preced-
ing discussion. In a more sophisticated version of this
analysis, one should take convergence into account.

If the MHD mechanism of wire merging is indeed the
dominant one, one can make some predictions with re-
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gard to the initial state of the liner thus formed; it will be
grossly nonuniform, with the spatial scale of the nonuni-
formities of the order of half the interwire distance.
These nonuniformities will be both axial and azimuthal.
This observation may be of some value for numerical
simulations of Rayleigh-Taylor instability of the type
carried out by Peterson et al. (1996, 1997, 1999). In a
model suggested by Haines (1998), the perturbations de-
veloping in the wires are assumed to be uncorrelated.
Based on this assumption, Haines comes to the conclu-
sion that the amplitude of macroscopic axisymmetric
perturbations (which has to be obtained by averaging
over the azimuth), should scale as N21/2, with N being
the number of wires in the array. Experimentally, an
increase in the number of wires had a favorable effect
on the implosion symmetry (Sanford et al., 1996,
Deeney, Nash, et al., 1997, 1998). The authors of these
papers relate improved performance to early formation
of a continuous shell in the case of a large number of
wires (see also a more recent study by Sanford et al.,
1999a, 1999b).

In summary, the merging of wires most probably oc-
curs in a turbulent fashion, with development of pertur-
bations on a scale of the order of the instantaneous wire
radius. When merging occurs, the shell thus formed has
a thickness of the order of the interwire distance and
nonuniformities of the same scale. The amplitude of
nonuniformities is of the order of 1. This sets the stage
for the further evolution of the liner, in which two com-
peting processes occur: smoothing out of the inhomoge-
neities by virtue of hydrodynamic motions and thermal
conductivity, and enhancement of those modes that are
Rayleigh-Taylor unstable.

IV. HYDRODYNAMIC STABILITY OF AN IMPLODING
LINER

The Rayleigh-Taylor instability plays an important
role in essentially all high-energy-density experiments,
including experiments with fast Z pinches and ICF cap-
sules. This instability is universal and very difficult to
stabilize. It is a key factor in limiting the performance of
fast Z pinches and other pulsed-power devices. As one
might expect, there are hundreds of publications de-
voted to the study of this instability in general and its
occurrence in pulsed-plasma systems in particular. We
shall certainly not be able to cover all the relevant re-
sults in this relatively compact paper. The interested
reader can find further references in the surveys by
Sharp (1984), Kull (1991), and Lindl (1995), the latter
survey considering specifically the physics of ICF cap-
sules. A summary of experimental results for ICF cap-
sules was given by Kilkenny et al. (1994). As a good gen-
eral introduction, we recommend Chandrasekhar’s book
(1961), which, however, deals only with incompressible
systems.

In this section we discuss the instability of an ideal
fluid, without accounting for dissipative processes like
viscosity, thermal conductivity, and electrical resistivity
in the body of the fluid (although we allow for the pres-
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ence of shock waves, which are, of course, dissipative
structures). Dissipative effects are discussed in Sec. V.

Generally, theoretical analysis of the magnetic
Rayleigh-Taylor instability involves very lengthy calcu-
lations that are beyond the scope of this survey. Still, to
give the reader the background to follow some impor-
tant arguments more closely, we present a complete
derivation of the growth rates for one relatively simple
system: a slab of a uniform, incompressible, perfectly
conducting fluid supported from below by a horizontal
magnetic field (Harris, 1962). After that, mostly on the
qualitative level, we shall add new elements to the pic-
ture of stability.

One should remember that, in implosions of thick
metal shells of the type used by Degnan et al. (1995), the
structural strength of the material can have a consider-
able stabilizing effect early in the implosion process.
This effect has not yet been studied in great detail and
we shall not discuss it below. Some further information
and pertinent references can be found in Ruden and
Bell (1997); experimental data were presented by Atch-
inson et al. (1997).

A. Stability of a slab of an incompressible fluid

The geometry of the problem is illustrated by Fig. 10:
the slab thickness is h, the force of gravity is directed
downward in the x direction, with gx52exg and g.0;
the unperturbed magnetic field B occupies the lower
half of the space, x,0, and is parallel to the axis y. In
the geometry of a cylindrical implosion of a thin shell, x
corresponds to the radial coordinate (directed in this
case to the axis), y corresponds to the azimuthal (u) co-
ordinate, and z to the axial coordinate. The unperturbed
magnetic field that supports the slab is related to the
gravity and fluid density as

rgh5
B2

2m
[pm , (4.1)

where we use the notation pm to designate the magnetic
pressure.

As the unperturbed state does not depend on time or
the coordinates y and z, one can seek solution of the
problem in the form of harmonic perturbations in these
variables, i.e., in the form f(x)exp(2ivt1ikyy1ikzz).
The instability corresponds to Im v.0. Sometimes, in-
stead of v, one uses the growth rate,

G52iv . (4.2)

The linearized hydrodynamics equations are

2v2rj52¹dp and (4.3)

¹•j50, (4.4)

where j is the displacement of the fluid element with
respect to its unperturbed position, and dp is the pres-
sure perturbation. These equations yield ¹2dp50, with
the solution

dp5A exp~kx !1B exp~2kx !, (4.5)

where
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k5Akx
21ky

2 (4.6)

and where A and B are arbitrary constants. One finds
then from Eq. (4.3) that

jx5
k

rv2 @A exp~kx !2B exp~2kx !# . (4.7)

At the upper and lower boundaries of the slab, one
should impose boundary conditions of the pressure bal-
ance at the perturbed boundary. These conditions are

dp2rgjx50, for the upper boundary and (4.8)

dp2rgjx5dpm , for the lower boundary, (4.9)

with dpm5BdBy /m . To find the magnetic-field pertur-
bation at a perfectly conducting surface, one should use
the condition that the magnetic field has a zero normal
component at the surface, or, in other words, that

n•dB1B•dn[2dBx1Bdny50, (4.10)

where n is the unperturbed outer normal to the lower
surface, n5(21, 0, 0), and dny5]jx /]y5ikyjx . Pertur-
bation of the vacuum magnetic field is curl free, whence

dB52¹c . (4.11)

where c is a scalar potential. It satisfies the Laplace
equation,

¹2c[
]2c

]x2 2k2c50. (4.12)

Its solution, evanescent at x→2` , is

c5C exp~kx !, (4.13)

where C is another arbitrary constant. Substituting this
solution into Eq. (4.11) to find dBx , substituting the re-
sulting expression for dBx into Eq. (4.10) to express C in
terms of the value of jx at the lower boundary, and re-
turning to Eq. (4.11) to express dBy in terms of jx , one
finds that the magnetic pressure perturbation dpm
5BdBy /m at the lower boundary is

dpm522
ky

2

k
pmjx . (4.14)

This equation shows that magnetic pressure increases or
decreases at the bumps (jx,0) or dips (jx.0) of the
sinusoidally perturbed surface. This can also be re-
phrased as a statement that the magnetic-energy pertur-
bation is positive, thereby providing a stabilizing effect
(the perturbation of the gravitational energy, for un-
stable perturbations, is negative).

Using Eq. (4.14) and substituting solutions (4.5) and
(4.7) into the boundary conditions (4.8) and (4.9), one
finds two linear homogeneous equations for the con-
stants A and B. From the condition that the determinant
of this set of equations is zero, one obtains the following
dispersion relation for the eigenfrequencies of the prob-
lem:

S v2

kg D 2

2
2ky

2h

k

11exp~22kh !

12exp~22kh !

v2

kg
211

2ky
2h

k
50. (4.15)
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Introducing an angle a between the magnetic field and
the wave vector,

cos a5ky /k , (4.16)

one can present the roots of this dispersion relation as

v2

kg
5kh cos2 a

11exp~22kh !

12exp~22kh !

6H Fkh cos2 a
11exp~22kh !

12exp~22kh !G
2

1122kh cos2 aJ 1/2

. (4.17)

The plus sign corresponds to a stable root. The nature
of a stable mode becomes particularly clear in the limit
k→` , where the eigenmode corresponding to this root
is strongly localized near the upper surface, with A/B in
Eq. (4.5) becoming of the order of 1 [this means that,
near the upper surface, the second term in Eq. (4.5) is
exponentially small compared to the first one]. The
stable mode is an analog of the gravity wave on the
surface of a fluid (see, for example, Landau and Lifshitz,
1987). At smaller k, the eigenfunction of this mode en-
compasses the whole layer but is still somewhat more
concentrated near the upper surface, where the gravity
force is directed towards the fluid, so that the stabilizing
contribution dominates.

The second root corresponds to a mode that can be
stable or unstable, depending on the wave number k.
The mode is unstable at small k’s and stable at large k’s.
The critical wave number k0 at which the mode becomes
stable, is

k05
1

2h cos2 a
. (4.18)

For a;45° the critical wave number is of the order of
h21. At large k’s, the magnetic-energy perturbation
(positive) overbalances the gravitational-energy pertur-
bation (negative, for a mode localized near the lower
surface), whence the stability at large k’s.

For perturbations with a5p/2, however, the system is
unstable at all k’s. A perturbation with a5p/2 is some-
times called a flute mode. Its remarkable feature is that
it does not perturb the vacuum magnetic field and there-
fore the positive (stabilizing) contribution of the
magnetic-energy perturbation vanishes. In cylindrical
geometry this mode corresponds to axisymmetric per-
turbations, with no dependence on the azimuthal angle
u.

At small k’s the growth rate reduces to

G5Akg@A11cos4 a2cos2 a# (4.19)

and becomes independent of the thickness of the layer.
For these large-scale perturbations the layer can be con-
sidered as a structureless, infinitesimally thin gravitating
sheet. The overall dependence of the growth rate [Eq.
(4.17)] on the wave vector for several values of a is
shown in Fig. 13. At a50 (a purely azimuthal mode in
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the cylindrical geometry) the growth rate is equal to
Akg(&21) (see, Harris, 1962; Kleev and Velikovich,
1990).

These results pertain to stepwise density distributions.
A broader class of density distributions of incompress-
ible fluids has been studied by Munro (1988). If the
lower surface of the fluid is free, then there exist modes
with the growth rate (kg)1/2. At large k they are strongly
localized near the interface and have a large growth
rate. If, however, the transition is smooth enough, the
growth rate is limited from above. Some further discus-
sion of these modes can be found in Inogamov (1985),
Bychkov, Liberman, and Velikovich (1990), and Bud’ko
et al. (1989).

B. Effects of compressibility

The most important new element that emerges from
finite compressibility is the presence of propagating
acoustic waves. Various aspects of the Rayleigh-Taylor
instability in compressible fluids have been widely
discussed.4 We discuss here a slab of plasma whose tem-
perature in the unperturbed state is constant, supported
from below by a uniform magnetic field in a geometry
identical to that shown in Fig. 10, under the assumption
of perfect plasma conductivity and a vanishingly thin
transition layer between the plasma and the magnetic
field. Later, in Sec. IV.C, we address issues related to a
finite thickness of the transition layer.

If the composition of the plasma does not change in
the vertical direction, then plasma density and pressure
follow an exponential dependence [Eq. (2.26)], p, r
}exp(2x/h) with a scale length h determined by Eq.

4See, for example, Catto (1978), Bernstein and Book (1983),
Parks (1983), Landau and Lifshitz (1987), Gratton, Gratton,
and Gonzales (1988), Lezzi and Prosperitti (1989), Gonzales
and Gratton (1990), Budko and Liberman (1992), Ryutov and
Toor (1998).

FIG. 13. Growth rates for several values of the propagation
angle a; the values of a are p/2, p/4, and 0 (from the top to the
bottom curve).
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(2.27). It turns out that the problem in the case of a
sharp plasma-vacuum transition has an exact solution
(Bernstein and Book, 1983, Parks, 1983, Gratton, Grat-
ton, and Gonzales, 1988). When acoustic waves (that are
present now in a fluid) propagate in a plasma with ex-
ponentially decreasing density (as is the case in a
constant-temperature slab supported from below), their
amplitude grows exponentially. Therefore in the pertur-
bation analysis one must allow for the presence of solu-
tions growing exponentially in the vertical direction; it
would be incorrect to constrain the solution to an expo-
nential decrease. Further details related to this issue can
be found in a comprehensive analysis by Gratton, Grat-
ton, and Gonzales (1988).

A dispersion relation for unstable modes can be con-
veniently presented in the form derived by Ryutov and
Toor (1998). Using the same notation as in Sec. IV.A,
one can write this relation as

v42k2g212 cos2 akgFv2S 2 cos2 a
kgh2

s2 21 D
12k2gh~12kh cos2 a!G50, (4.20)

where

s25
gp

r
5

gT

m̄
5ggh (4.21)

is the speed of sound. Its unstable solution behaves in
much the same manner as the solution of Eq. (4.15): at
small k’s (kh!1) the growth rate is determined by the
same expression as for the incompressible fluid, i.e., by
Eq. (4.19). At larger k’s it decreases and becomes zero
at some critical k5k0 , which is exactly the same as Eq.
(4.18).

Formally, Eq. (4.20) has unstable solutions even at k
.k0 . However, these solutions correspond to modes
whose amplitude grows in the vertical direction faster
than exp(x/2h), so that the energy density diverges at
large x. One this basis, Gratton, Gratton, and Gonzales
(1988) correctly consider these solutions to be unphysi-
cal. What happens with perturbations at k.k0 can be
more clearly demonstrated by an analysis of the initial-
value problem based on the use of the Laplace trans-
form: if one stirs the plasma near the lower boundary
and creates there perturbations with spatial scales much
smaller than 1/h , then a part of the perturbation is radi-
ated as acoustic waves in the upward direction, and a
part stays near the boundary as a stable surface wave.

Let us discuss in further detail the reason why, at
small k’s, the scale height h drops out from the disper-
sion relation so that all information on the structure of
the plasma slab disappears from the dispersion relation;
the speed of sound also disappears. First one notes that
the sound speed s is related to the other parameters of
the problem through Eq. (4.21). The sound propagation
time over the distance ;1/k is 1/ks . Using Eq. (4.21),
one can easily show that for long enough perturbations
with k,k0;1/h , the instability e-folding time
(;1/Akg) becomes shorter than the sound-propagation
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time (1/ks). Basically, this means that the parts of the
slab that are separated by a distance exceeding 1/k0 can-
not communicate with each other by acoustic signals
propagating inside the slab; therefore they evolve inde-
pendently of each other.

From these considerations we see that, for modes with
a parallel scale length exceeding the thickness of the
layer, k,1/h , one can neglect the interaction between
different points along the surface of the imploding shell.
The shell itself, for such modes, can be considered as a
thin structureless surface possessing some inertia (deter-
mined by the mass per unit area). This is a very impor-
tant observation that helps one to make some clear pre-
dictions regarding the evolution of the modes with k
,1/h (see Sec. IV.D).

These arguments also allow one to arrive at some con-
clusions with regard to the stability of the wire array
before the wires merge: if one considers the m50 per-
turbation with wavelengths much greater than the inter-
wire distance, the fact that the array consists of separate
wires does not manifest itself in any way, and expression
(4.19) correctly describes the growth rate.

The stability of some modes with wavelengths compa-
rable to the interwire distance has been studied by Fel-
ber and Rostoker (1981) and Samokhin (1988). Felber
and Rostoker have shown that there exist two types of
modes: those in which the wires remain within the me-
ridianal planes (medial modes, according to terminology
introduced by Hammer and Ryutov, 1999), and those in
which the wires bend along the surface of the cylinder
(called lateral modes by Hammer and Ryutov). A com-
plete linear stability analysis for arrays consisting of a
large number of wires (Hammer and Ryutov, 1999) has
shown that a Akg scaling holds for surprisingly short
wavelengths, approaching the interwire spacing. The
growth rate for the lateral modes is as high as the growth
rate for the medial Rayleigh-Taylor modes. For wave-
lengths shorter than the interwire spacings, an approxi-
mately linear dependence on k takes over. For the m
50 medial mode, Desjarlais and Marder (1999) have
considered both linear and nonlinear stages of the insta-
bility. The amplitude of the initial perturbation for the
m50 mode was determined on the basis of Haines’
theory (Haines, 1998), mentioned at the end of Sec.
III.D of this survey.

C. Smooth transition between the plasma and the
magnetic field; local modes

The finite character of the plasma resistivity smoothes
the transition between the vacuum magnetic field and
the plasma. Rapid development of short-wavelength
flute perturbations (for which the critical wave number
is infinite) also smears out the transition. We shall use
the notation h1 to denote the thickness of the transition;
h1 can be smaller than or comparable to the total thick-
ness of the shell h (Sec. II.E). For perturbations with
wave numbers below 1/h1 , one can use the results of the
previous section. In this section, we consider perturba-
tions with wave numbers much greater than 1/h1 , the
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so-called local modes. The growth rate of these modes
depends on the local value of the density gradient r8.
Since within the transition layer the characteristic value
of the magnetic-field strength is of the order of the
vacuum magnetic field, these short-wavelength pertur-
bations can be unstable only if they are of a flute type
(otherwise, perturbation of the magnetic energy be-
comes prohibitively high). The growth rate for flute per-
turbations has been derived by Chen and Lykoudis
(1972):

G25S g2

a21s2 1
gr8

r D , (4.22)

where a252pm /r is the local value of the Alfvén speed.
For r8.0 the local modes are universally unstable. Tak-
ing into account the rough estimates r8/r;1/h1 and
gh;a21s2 that follow from the equilibrium condition,
one can estimate the growth rate of the localized modes
as

G2;g/h1 . (4.23)

Note that the presence of the magnetic field within the
shell does not change the conclusion made in Sec. VI.B
regarding the properties of the long-wavelength pertur-
bations: at k!1/h , the instability e-folding time is
shorter than the time needed for the Alfvén wave to
propagate over the distance 1/k . Therefore, even if the
magnetic field penetrates into the shell, the long-wave
perturbations behave as perturbations of a massive,
structureless, infinitesimally thin sheet.

Another comment should be made regarding pertur-
bations localized near the interface between the plasma
and the magnetic field. The growth rate of modes local-
ized near this interface, at large k’s, does not reach satu-
ration, because the parameter r8/r near the interface
becomes infinite. On the other hand, if the interface is
smeared and the density decreases, say, exponentially,
the growth rate of localized perturbations (k@1/h) does
reach saturation (see also the comment at the end of
Sec. IV.A).

D. More on the stability of a thin shell; effects of
accretion

As has been shown in Secs. IV.A and IV.B, the analy-
sis of perturbations with wavelengths exceeding the shell
thickness can be carried out without taking account of
the internal structure of the shell. This allows one to
obtain a relatively simple description of the instability,
including effects of the cylindrical implosion geometry
(Harris, 1962) and of mass accretion (Gol’berg and Ve-
likovich, 1993; DeGroot et al., 1997b); one can even gain
some insights into the nonlinear phase of the problem
(Ott, 1972; Bashilov, Pokrovskii, 1976; Manheimer, Co-
lombant, and Ott, 1984; Basko, 1994; Book, 1996). We
derive the equations in the planar case. Later, in Sec.
IV.F, we discuss the effects of a cylindrical geometry.

Consider a thin shell accelerated by a magnetic pres-
sure p in the x direction (Fig. 14). The horizontal line at
x50 depicts the initial position of the shell. We shall
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FIG. 14. The Lagrange coordi-
nates j(z ,t)[„jx(z ,t);jz(z ,t)…
describing implosion of a thin
shell.
analyze only the most dangerous flute perturbations,
which are aligned with the magnetic-field lines, directed
along the y axis. In other words, we consider perturba-
tions that do not depend on the coordinate y. The mo-
tion occurs in the (x,z) plane. The magnetic pressure
then is uniform even on the perturbed surface of the
shell.

Following Ott, we denote by jx(z ,t) and jz(z ,t) the x
and z displacements of a certain element of the shell
(whose initial location on the shell surface was z). In
other words, at this point we are using a Lagrangian
description of the perturbations. These displacements
are not assumed to be small; we are going to obtain a
nonlinear set of equations. We shall also take into ac-
count the possibility of mass accretion on the shell from
the gas initially situated at the x.0 half space, assuming
that the gas just sticks to the shell (strongly radiating
plasma; see Secs. II.B and II.C). In the unperturbed mo-
tion one obviously has jz50 and

]

]t S s0

]jx
0

]t D 5p ,
]s0

]t
5r

]jx
0

]t
, (4.24)

where r is the density of the cold, resting gas swept by
the shell and s0 is the mass per unit area of the shell
(varying with time because of accretion).

Let us denote by Dz an initial distance between the
two neighboring points at the surface (Fig. 14). One of
them gets displaced to the point „jx(z ,t), jz(z ,t)…, the
other to the point „jx(z ,t)1Dz]jx(z ,t)/]z , jz(z ,t)
1 Dz]jz(z ,t)/]z…. Let the mass of this element of the
surface be Dm . The change in mass occurs because of
accretion. Using simple geometrical considerations iden-
tical to those used by Ott (1972), one finds

Dṁ5rS ]jz

]z
j̇x2

]jx

]z
j̇zDDz , (4.25)

or

ṡ5rS ]jz

]z
j̇x2

]jx

]z
j̇zD , s[

Dm

Dz
, (4.26)

where the dot designates a partial derivative with re-
spect to time. Equations of motion can be obtained in
the same way as in the paper by Ott (1972). They read as

]

]t S s
]jx

]t D5p
]jz

]z
;

]

]t S s
]jz

]t D52p
]jx

]z
. (4.27)

If the shell is being accelerated into the vacuum, then
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s does not depend on time, and one does not need Eq.
(4.26) for s. In this case Eqs. (4.27) become linear equa-
tions. This observation was made by Ott; the Lagrangian
formulation of the problem in this case leads to linear
equations describing even finite-amplitude perturba-
tions. Note that Bashilov and Pokrovskii (1976) general-
ized Ott’s nonlinear solution to the cylindrical case. We
shall comment on the properties of the nonlinear solu-
tion later. For now, let us consider small perturbations
of the shell. To distinguish the perturbations, we shall
mark them by a symbol ‘‘d.’’ We get

]

]t S s0

]djx

]t D5~p2rv2!
]djz

]z
2 v̇ds ;

]

]t S s0

]djz

]t D52p
]djx

]z
; (4.28)

]ds

]t
5rv

]djz

]z
,

where v5]jx
0/]t .

If there is no material in front of the accelerated shell
(r50), then the set of Eq. (4.28) becomes particularly
simple:

]2djx

]t2 5g
]djz

]z
;

]2djz

]t2 52g
]djx

]z
. (4.29)

Here g[p/s0 is the effective gravity force. For pertur-
bations with exp(2ikz) dependence on the coordinates
this equation yields the familiar expression for the
growth rate [cf. Eq. (4.19) with a5p/2]: G5(kg)1/2.

An interesting point here is the surface density pertur-
bation of the shell. The quantity s that we have been
using so far is the Lagrangian density: a mass that cor-
responds to a segment of the shell whose end points
originated at the ends of the initial segment Dz , divided
by this Dz [see Eq. (4.26)]. If there is no accretion, then
the density thus defined is constant. But the real density
of the shell defined as a mass Dm occupying some seg-
ment Dl on the surface of the shell, divided by this Dl , is
changing (because Dl is changing). One can show that
the surface density is redistributed over the shell in such
a way that the density decreases on the bulges of the
surface and increases in the troughs (Fig. 15). This fea-
ture suggests that, in the process of self-acceleration of
an instability at the nonlinear stage, the areas of lower
(higher) density tend to move ahead (lag behind) faster
than in a linear approximation. We shall return to this
issue in Sec. IV.G.
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Consider now a linear instability in a more general
case where accretion of the material is substantial and
one has to use the general set of Eqs. (4.28). A charac-
teristic time over which the system’s parameters change,
in particular, the mass per unit area and the accelera-
tion, is

t[s/ṡ5s/~rv !. (4.30)

As the e-folding time for short-wavelength perturbations
decreases with increasing k, at large enough k’s it be-
comes much shorter than t. This happens at k
@r2v2/gs . The magnetic pressure is related to the ram
pressure of the accreted material via rv2;p . Using this
relationship, one finds that the limit of large growth
rates corresponds to

k@r/s , (4.31)

in agreement with DeGroot et al. (1997b). At some me-
dium point in the acceleration process the right-hand
side of Eq. (4.31) is of the order of the inverse path
traveled by the shell, in other words, the inverse pinch
radius. In this case one can consider all the unperturbed
parameters entering the set (4.28) as constant. This
yields the following equation for the instantaneous
growth rate:

G45S k

s D 2

@p~p2rv2!# . (4.32)

This expression differs from the corresponding expres-
sion of DeGroot et al. (1997b); in particular, Eq. (4.32)
predicts that the growth rate approaches zero at p close
to rv2 when the shell is moving without acceleration.
Note that the instability in an overstable mode, Im G
Þ0, is present even at p,rv2 (Vishniac, 1983).

For wavelengths that do not satisfy condition (4.31),
the perturbation growth cannot be adequately defined in
terms of the instantaneous growth rate; in this domain
one has to solve the full set of differential Eqs. (4.28).
Qualitatively, in this domain the accretion still should
lead to a decrease of the perturbation growth (see
Gol’berg and Velikovich, 1993). Cochran, Davis, and
Velikovich (1995) have shown by solving numerically a
2D set of radiative hydrodynamics equations that uni-
form gas puffs are more stable with respect to axisym-
metric Rayleigh-Taylor instability than annular gas
puffs—in agreement with the general trend predicted by
Eq. (4.32).

FIG. 15. Surface-density redistribution in the flute mode. The
thickness of the solid line roughly corresponds to the density.
The dashed line depicts the initial position of the shell.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
E. The case of a detached shock wave

In the previous section we discussed the stability of a
system in which the gas sticks to the surface of the pis-
ton. As we mentioned in Sections II.B and II.C, such a
model correctly reflects a situation in which the gas col-
lected by the piston is strongly radiating, so that the dis-
tance between the shock and the piston is negligible (the
ultimate case of the snow-plow model). For the short
current pulses typical of experiments on fast Z pinches
and for low initial temperature of the matter, a strong
shock will form that will propagate ahead of the piston.
In this section, we discuss the situation of a weakly ra-
diating plasma, in which the plasma behind the shock
remains hot, with the pressure at the surface of the mag-
netic piston equal to the magnetic pressure (Fig. 16).
There exists a broad class of exact (self-similar) solu-
tions describing plasma flow between the shock and the
piston in the planar case, i.e., at the early stage of the
implosion (see, for example, Gol’berg and Velikovich,
1993). The stability of this solution with respect to
Rayleigh-Taylor modes was discussed by Gol’berg and
Velikovich (1993), who, in particular, formulated bound-
ary conditions at the surface of the shock wave, and later
by DeGroot et al. (1997b). We present here only our
own qualitative discussion of the problem.

We denote by h the thickness of the layer between the
shock and the piston. The modes with k@1/h localized
near the piston do not differ significantly from the
modes considered in Sec. IV.B. Among those, only per-
turbations close to flute modes are unstable. However,
for these unstable modes the growth rate is large
;(kg)1/2. These perturbations will cause a gradual
broadening of the transition between the plasma and the
magnetic field.

Consider now long-wavelength modes (k!1/h). For
these modes, the transition layer is ‘‘thin’’ and, accord-
ing to the results of Secs. IV.A–IV.C, can be considered
essentially as a structureless surface. A growth rate
could be estimated again as ;(kg)1/2. In the k!1/h
case, unlike the opposite case, the modes with an arbi-

FIG. 16. Density, pressure, and velocity distribution in a
plasma column when strong shock is excited. The magnetic
piston is situated at surface 1, the shock wave at surface 2.
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trary orientation of the wave vector are unstable. The
mass of the layer gradually increases as additional mate-
rial is swept up by the shock wave. At small k’s (small
growth rates) the change of mass within one e-folding
time may be considerable, and the concept of an instan-
taneous growth rate may break down (Gol’berg and Ve-
likovich, 1993).

The thickness of the layer h is relatively small even for
a nonradiating plasma; since the shock is strong, the
density behind the shock is determined by Eq. (2.20).
For a fully ionized gas with g5 5

3 the density is four
times higher than the density before the shock, and the
thickness of the shocked material is, roughly speaking,
four times less than the distance travelled by the shock.
If one is dealing with a weakly ionized gas in which a
considerable fraction of the energy is spent on ionization
of the shocked gas, ‘‘the effective g’’ becomes smaller
than 5

3 and the layer of shocked material becomes even
thinner.

At a convergence of ;3–4 (for a gas with g5 5
3 ), the

shock reaches the axis and upon rebounding returns to
the piston, leaving behind a hot plasma with a pressure
approximately equal to the magnetic pressure. Further
compression of the hot material occurs in a quasistatic
manner, almost adiabatically, with the plasma pressure
equal to the magnetic pressure (Potter, 1978). This adia-
batic compression in the absence of radiative losses may
occur only if the current continues to grow. The plasma
boundary at this phase decelerates and stops at the cur-
rent maximum. The pinch at this point is very similar to
an equilibrium Bennett pinch (Bennett, 1934). Of
course, the Rayleigh-Taylor instability ceases to exist.
Of the hydrodynamic instabilities, only those driven by
the curvature of the magnetic-field lines remain. Their
e-folding time is of the order of r/s , where s is the speed
of sound. A stability analysis of these modes goes be-
yond the scope of our survey. A discussion of this prob-
lem in a purely MHD approximation can be found in
Kadomtsev (1996) and Bateman (1980); among possible
equilibria there are diffuse equilibria that are stable with
respect to the m50 mode (so-called ‘‘Kadomtsev equi-
libria’’). Asymptotically, at large radii, the pressure in
these equilibria decreases as r210/3. Nonlinear evolution
of a sausage instability for an incompressible fluid was
studied by Book, Ott, and Lampe (1976). It should be
remembered that the plasma column after stagnation
can be so hot that the MHD approximation breaks
down, and non-MHD effects, in particular, those caused
by large ion orbits, become important. A general char-
acterization of the parameter space for stability in a
Bennett-type pinch, identifying the subdomains where
various anomalies may surface, is offered by Haines and
Coppins (1991).

F. Effects of cylindrical convergence

As we have seen, the most dangerous modes are flute
modes with wave numbers k of the order of the inverse
shell thickness 1/h . Until a very late stage in the implo-
sion, when the liner is about to collapse on axis, the
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wavelengths of these modes are small compared to the
linear radius (kr@1). Therefore their instantaneous
growth rate should be adequately described by the pla-
nar model discussed in the previous three sections. Still,
cylindrical convergence effects may become important
earlier in the implosion; two reasons are discussed be-
low.

The first is the effect of convergence on the mass s
per unit area: one obviously has s5s0(r0 /r). This may
alter the sheath thickness from what it was in the case of
a planar system with the same time-history of accelera-
tion. Accordingly, the maximum growth rate is different
from the planar case. In addition, there is a direct en-
hancement of the amplitude of even stable perturbations
due to cylindrical convergence effects (like the growth
of an amplitude of a cylindrically converging light wave).

The second effect is an increase in the azimuthal com-
ponent of the wave vector, ku5m/r ; as the mode num-
ber m does not change with time, ku scales as 1/r (recall
that, in our notations, ky[ku). This causes a gradual
decrease in the angle a between the wave vector and the
direction of the magnetic field and may eventually lead
to stabilization of the mode by making the product

k cos2 a[
ky

2

Akz
21ky

2 (4.33)

less than 1/2h , thereby causing stabilization of the mode
[see Eq. (4.18)]. Remember that, in a purely cylindrical
system, kz does not change with time.

The growth of perturbations at the linear stage of in-
stability is determined by the exponentiation factor (see,
for example, Lindl, 1995),

j~ t !5j0 exp G~ t !, (4.34)

where

G~ t ![E
0

t
G~ t8!dt8, (4.35)

and G is the instantaneous growth rate (4.2).
The linear approach breaks down as soon as the am-

plitude reaches a certain level j5jNL . A rough estimate
for jNL is jNL;1/h for the most dangerous perturbations
(with k;1/h) and jNL;1/k for long-wavelength pertur-
bations (with k!1/h). The transition to the nonlinear
stage occurs at the instant of time determined from the
equation

G~ t !5ln~jNL /j0!. (4.36)

Since the initial perturbations are small, say, a couple of
orders of magnitude less than jNL , the logarithm is
equal to 4–5 and weakly depends on both j0 and jNL .

For long-wavelength perturbations, the growth rate
does not depend on the structure of the shell, and the
function G has a universal dependence on time deter-
mined by the solution of Eq. (2.1). In this solution, the
radius is a unique function of time and, therefore G can
also be expressed in terms of the instantaneous value of
the radius. A plot of G/(kr0)1/2 vs the convergence is
presented in Fig. 17 for the current given by Eq. (2.5)
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and the parameter P (Eq. 2.4) corresponding to stagna-
tion at the point of the maximum current (i.e., P'4).

However, for the most dangerous perturbations with
k;1/h , the function G also depends on the thickness h
of the shell, which in general varies with time. A factor
that acts towards reducing h is growing acceleration [the
scale height is inversely proportional to g; see Eq.
(2.27)], while factors acting in the opposite direction are
radial convergence (which increases mass per unit area),
possible onset of anomalous resistivity, and increase in
temperature. So, the issue of the transition to the non-
linear regime for the fastest growing modes is more
complicated. If one assumes that the thickness h remains
constant during the implosion, one can use the plot of
Fig. 17 to roughly find the transition point by assuming
that k;1/h and imposing the condition that G be ap-
proximately equal to, say, 4. For a shell thickness equal
to 0.1 of the initial liner radius [and, accordingly,
(kr0)1/253], nonlinear effects become important (i.e., G
becomes equal to approximately 4) at a convergence
equal to 4.

As in to our previous discussion, we have considered
here only modes with small azimuthal numbers m; the
modes with large m are stabilized at a moderate conver-
gence because of the aforementioned effect of growing
ky(ky;1/r).

G. Nonlinear effects; turbulence and turbulent broadening
of the shell

We begin this discussion by considering the local
modes with k.1/h . When the displacement jx becomes
greater than 1/k , it changes the density gradient, which
drives the instability and determines the growth rate, by
a factor of the order of unity (Fig. 18). This signifies that
further development of the perturbations depends on
their amplitude. In the case of short-wavelength pertur-
bations, where the growth rate does not substantially
depend on k, one can expect development of random
motions with a broad spectrum of length scales and the
amplitude of a particular scale of the order of 1/k . The
characteristic turnaround time of the vortices should be
of the order of the inverse growth rate 1/G;(h/g)1/2.

FIG. 17. Plot of the amplification factor vs convergence for a
load imploding on axis at the time of the maximum of the
pinch current for purely axisymmetric perturbations.
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These random motions cause a kind of diffusion evolu-
tion of the density profile with the diffusion coefficient
G/k2}1/k2. One can see that the greatest contribution
comes from the largest length scale compatible with the
local approximation (1/k;h). But this means that the
diffusive approximation does not correctly describe the
situation, that is, the characteristic step size is of the
order of the gradient length scale. This is a fundamental
difficulty of nonlinear theories of the Rayleigh-Taylor
instability. A diffusive description may become relevant
if the mode with the largest scale is, for one reason or
another, suppressed. We shall not discuss here this
rather artificial possibility.

Dimensional arguments similar to those used in the
theory of mixing at the interface of two semi-infinite
fluids (Youngs, 1991) show that broadening should oc-
cur according to the law

h5«gt2, (4.37)

where « is some numerical factor. In Youngs’ case « is
approximately equal to 0.07.

Let us now turn our attention to large-scale perturba-
tions, with k much less than the inverse shell thickness.
We consider only the most dangerous flutelike (axisym-
metric) perturbations. This type of motion can be prop-
erly described by Ott’s equations [Eq. (4.29)]. One can
expect that, as there are no other scales in this problem,
the nonlinearity turns on when the amplitude of the per-
turbations becomes of the order of 1/k . This hypothesis
can be easily checked on the basis of the exact solution
obtained by Ott (1972). For a single-mode initial pertur-
bation the time evolution of the shell is illustrated by
Fig. 19 (Basko, 1994). Strong deformations from a sinu-
soid indeed appear at jx;1/k .

For a long-wavelength perturbation, entering the non-
linear phase does not mean stabilization or slowing
down. Quite the contrary, the effects of the mass redis-
tribution (Fig. 15) cause an acceleration of the mode
development. This, in particular, manifests itself in the
formation of singular spikes within a finite time (Fig.
19). The time of the spike formation is equal to
2(kg)21/2 ln(2/kjx0). Although the Lagrangian descrip-
tion breaks down after the formation of singularities,
there is no reason why the lighter parts of the shell
should not continue their accelerated motion to the axis,

FIG. 18. Variation of the density distribution caused by local
displacement of the fluid element. The average gradient within
the segment ab becomes zero.
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so there are no signs of a self-stabilization here. The
picture grows more complex if one takes into account
development of multiple modes growing from initially
random perturbations. The shorter wavelengths grow
faster and reach their strongly nonlinear stage earlier
than the longer ones. The mode that has the strongest
effect on the distortion of the shell is the mode with a
scale length comparable to the shell thickness. This
mode may reach an amplitude several times greater than
the instantaneous shell thickness because of the pres-
ence of some numerical factors in the scaling problem.

We conclude this discussion by noting that, for shells
that are not very thin (with a thickness of the order of
0.1 of the initial radius), reaching a convergence of
;10–20 seems feasible (Fig. 20). The thinner the shell,
the faster the instabilities reach their nonlinear phase.
Whether an instability at this nonlinear stage will cause
a gradual broadening of the sheath and mixing with the
magnetic field or cause more coherent structures of the
type shown in Fig. 21(a) to develop (causing disruptions
of the current and violent destruction of a well-defined
shell) is an open question. Numerical simulations and
theoretical analyses (e.g., Peterson et al. 1996, 1997;
Thornhill et al., 1997) seem to point in the direction of
more violent scenarios (Fig. 22).

H. More on the relationship between flute and nonflute
modes

Let us examine the case in which the thickness of a
current-carrying transition region is comparable to the

FIG. 19. Development of a nonlinear mode of a thin shell
(from Basko, 1994, reprinted with kind permission of M.
Basko). The time is measured in units of the inverse growth
rate. The time t* of the first appearance of the cusps is, in
these units, equal to 2ln(kjj0) where kjj0 is the initial ampli-
tude of the perturbation. The vertical axis corresponds to a
radial coordinate, and the horizontal axis to an axial coordi-
nate.
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overall thickness of the shell, h1;h . As we know, one
should distinguish between flute modes, for which the
wave number is perpendicular to the magnetic field (an
axisymmetric mode in the cylindrical geometry), and
nonflute modes. As a representative example of the lat-
ter, we consider a mode propagating at an angle of 45°
with respect to the magnetic field. A qualitative plot of
the growth rates vs the wave number k for these two
modes is shown in Fig. 23. The curve for the flute mode
lies above the curve for the nonflute mode. At small k’s,
one can make an exact prediction of the growth rate
[Eq. (4.19)], which in this limit is independent of the
specifics of the density and magnetic-field distribution
inside the shell. The reason for this was discussed in
Secs. IV. A. and IV. B.

At larger k’s, the nonflute mode becomes stable. A
specific value of the critical wave number k0 is deter-
mined by the details of the density and magnetic-field
distribution within the shell thickness. Within an order
of magnitude, k0;1/h . For a flute mode the growth rate
at large k’s reaches saturation as determined, to within
an order of magnitude, by Eq. (4.22). In fact, the growth
rate of the local modes (k@1/h) is determined by the
layer in which the mode is localized. Note that the maxi-
mum growth rate of the local modes is a well-defined
quantity; it corresponds to the maximum value of the
right-hand side of Eq. (4.22) over the thickness of the
sheath (roughly speaking, the maximum value of r8/r ,
assuming that this maximum does exist).

Figure 23 underlines the exceptional role played by
the flute (axisymmetric) mode in the dynamics of im-
ploding liners. The prevalence of the flute mode be-
comes even more visible at the nonlinear stage of the
instability. When the shell becomes strongly distorted
with respect to its unperturbed state [Fig. 21(a)], the
magnetic field at the tips of the fingers remains the same
as in the unperturbed state (or even increases, if one
takes into account effects of the cylindrical geometry),
while the mass density in the fingers decreases. This
causes a catastrophic self-acceleration of the breakup
process and may cause total disruption of the pinch.

This scenario of developing axisymmetric modes at
their nonlinear stage, which can be traced back to Hus-
sey, Roderick, and Kloc (1980), Baker and Freeman
(1981), Kloc, Roderick, and Hussey (1982), and Roder-
ick and Hussey (1986), has found confirmation in mod-
ern simulations of randomly distributed axisymmetric
perturbations (Peterson et al. 1996, 1997, 1999; Matuska
et al. 1996, Benattar et al., 1999). Figure 22 depicts
isodensity contours with a clearly visible fingerlike struc-
ture. The breakup of the shell was also found in the case
where the initial perturbation was a single mode or a
mixture of up to three single modes (Douglas, Deeney,
and Roderick, 1998).

Nothing like this can happen for nonflute modes, at
least for a thin-shell liner, with h!r . This is because of a
very different reaction of the magnetic field to strongly
nonlinear, nonaxisymmetric perturbations of the type
shown in Fig. 21(b); the magnetic field does not pen-
etrate to the ‘‘fingertips’’ in this case and is, on the con-
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FIG. 20. View of 200–280-eV pinch radiation
taken from 88° at Z (from Deeney, Douglas,
et al., 1998, reprinted with kind permission of
C. Deeney). The radiation is created by the
stagnation of a nested wire array on-axis. The
diameter of the radiating zone is approxi-
mately 2 mm. The initial diameter of the
outer (inner) wire array was 40 mm (20 mm).
The current waveform was similar to that
shown in Fig. 4 [Color].
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
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trary, increasing at the lagging parts of the liner surface.
Therefore one can expect an early nonlinear saturation
of the nonaxisymmetric modes and a correspondingly
weaker effect on the liner implosion. As we shall see
(Sec. VI. F), this suggests that one might even introduce
nonaxisymmetric perturbations, deliberately to damp
too rapid growth of axisymmetric fingers.

The dominance of axisymmetric modes seems to be in
agreement with experimental data. Figure 20 shows an
x-ray pinhole image of the pinch near the point of maxi-
mum compression in the Z accelerator. The features
perpendicular to the pinch axis are most
pronounced—as one should expect in the case of axi-
symmetric perturbations. Note that in cylindrical implo-
sions driven by an ablative force (Hsing et al. 1997;
Hsing and Hoffman, 1997) the high-m modes could be
dominant players in the dynamics of the implosion,
reaching a nonlinear stage and affecting the maximum
convergence. This underlines once again the exceptional
role of the magnetic drive in selecting the m50 mode as
the most dangerous one.

On the other hand, experiments on both gas-puff im-
plosions (e.g., Shiloh, Fisher, and Bar-Avraham, 1978;
Burkhalter et al. 1979; Wong et al. 1998) and wire-array
implosions (e.g., Deeney, Nash, 1998, Spielman et al.
1998) show that the ‘‘final’’ imploded state always mani-
fests significant deviations from perfect axial symmetry,
which can be attributed to low-m (m51,2) modes with
kz of the same order as for m50 perturbations. Accord-

FIG. 21. Nonlinear stage of the development of the Rayleigh-
Taylor instability: (a) flute (axisymmetric) mode, a vertical
cross section; (b) nonaxisymmetric mode, a horizontal cross
section.
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ing to the discussion at the end of Sec. IV. F, develop-
ment of low-m modes is not prohibited. The aforemen-
tioned experimental results show that they may reach a
level comparable to the m50 mode. A quantitative
analysis of the degree of nonaxisymmetry late in the im-
plosion may help in understanding and control of hydro-
dynamic stability.

V. EFFECTS OF DISSIPATIVE PROCESSES

A. Viscosity

The effects of plasma viscosity are among those whose
influence on the Rayleigh-Taylor instability have been
studied in the greatest detail, starting with Chan-
drasekhar’s monograph (1961), which considered the
stability of a boundary between two semi-infinite viscous
fluids. A careful analysis of viscous effects in the case of
a slab was performed by Mikaelian (1996); see also ref-
erences therein.

Viscous terms in the hydrodynamic equations are
most important for small-scale motions. Therefore it is
reasonable to consider their effect on perturbations with
a length scale that is small compared to the characteris-
tic scale of the density gradient h [Fig. 11(a)]. If an ele-
ment of the fluid is displaced by a small distance j in the
vertical direction, it experiences the action of the buoy-
ancy force produced by the difference between the den-
sities inside this element and in the surrounding sub-
stance, dr[r i2re52(]r/]x)j . The force is equal to
dF52Vgdr , where V is the volume of the liquid ele-
ment (;1/k3). The viscous force acting on an element
of size ;1/k moving in the resting fluid is (Landau and

FIG. 22. Numerical results showing the possibility of current
disruption by the m50 mode (a 40-mm-diameter tungsten
wire array on PBFA-Z after impacting a 2.5-mm-radius foam).
From Peterson et al., 1999, reprinted with kind permission of
D. Peterson.
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Lifshitz, 1987) dFvisc'2rnk2j̇V where n is the kine-
matic viscosity. In this way one arrives at the following
equation of motion:

j̈5
g

r

]r

]x
j2nk2j̇ . (5.1)

From Eq. (5.1), one gets the following expression for the
growth rate:

G5Ag

h SA11«visc
~kh !4

4
2A«visc

~kh !2

2 D , (5.2)

with h21[(1/r)]r/]x , and

«visc[
n2

gh3 . (5.3)

The dimensionless parameter «visc characterizes the
role of viscosity. For implosions of wire arrays, the pa-
rameter «visc is typically very small. Kinematic viscosity
is related to the mean free path l ii of the plasma ions as
n;l iivTi . Using estimate (2.27), relating the thickness of
the shell and the gravity acceleration, one finds that

«visc;
A

Zeff11 S l ii

h D 2

. (5.4)

Here we have taken into account the relationship
m̄/mi5A/(Zeff11). In implosions of metal liners, the
ion-ion mean free path is orders of magnitude smaller
than the liner thickness. Therefore, in this situation, «visc
is universally small. Only modes with very short wave-
lengths are affected by the viscosity: kh.«visc

21/4 .
Note that for these small-scale perturbations viscosity
still does not provide complete stabilization. It just re-
duces the growth rate, which now becomes G
'«visc

21/2(kh)22Ag/h .
In gas-puff systems, with lower densities and higher

temperatures in the imploding plasma, one may reach

FIG. 23. Overall sketch of the growth rate for a flute mode
(upper curve) and a mode propagating at 45° to the magnetic
field (lower curve) for a shell with a smooth density distribu-
tion that can be characterized by a single spatial scale h; k is a
tangential wave number. Shown in the figure is a maximum
growth rate over all modes with a given k. This comment be-
comes significant at large k, for which localized (in x) modes
form essentially a continuous spectrum, occupying the whole
range of G, from the maximum (shown in the figure) to zero.
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conditions under which «visc becomes ;1. A transition to
the case «visc;1 may, in particular, occur in the implo-
sion of two coaxial gaseous shells, where the outer shell
hits the inner shell, causing a sudden increase in tem-
perature and, accordingly, in the viscosity (recall that
the Coulomb collision cross section decreases with the
temperature). At even higher temperatures one may
find that the ion gyroradius becomes less than the ion
mean free path (see also Sec. VI. I). This causes a reduc-
tion in the shear viscosity (Braginski, 1965) but the bulk
viscosity remains high. The bulk viscosity appears in a
manner similar to that of the thermal conductivity,
which we shall describe shortly.

B. Thermal conductivity and internal relaxation

Now we turn to a discussion of the effects of thermal
conductivity. The characteristic time for smoothing of
temperature perturbations of a scale 1/k is t;1/k2x ,
where x is the thermal diffusivity. Usually, in unmagne-
tized plasma, the thermal diffusivity is large compared to
the kinematic viscosity (see Braginski, 1965; Huba,
1994).

In models of an incompressible fluid, the temperature
of the medium does not explicitly enter the governing
equations. This shows that the effects of thermal con-
ductivity may enter the problem of the Rayleigh-Taylor
instability only via the finite compressibility of matter.
Therefore we shall base our discussion on Eq. (4.20),
which takes compressibility effects into account. The
thermal conductivity affects the dissipation of mechani-
cal motion by creating a phase shift between the density
perturbation of a certain liquid element and the pressure
perturbation introduced by this change in density. Then
an irreversible part appears in the pdV work.

If the thermal conductivity is very large, it maintains a
uniform temperature in the perturbations (isothermal
perturbations). In particular, the sound speed that enters
Eq. (4.20) for the growth rate becomes an isothermal
sound speed. However, Eq. (4.20) still has unstable
roots, with growth rates not much different from the
adiabatic case. For short-wavelength perturbations, k
.1/h , as described by Eq. (4.22), the thermal diffusivity
has a stabilizing effect (Catto, 1978). The characteristic
time for the heat to diffuse over the scale length 1/k of
the perturbation is t;1/k2x . The growth rate signifi-
cantly decreases if this time is less than the characteristic
growth rate for adiabatic perturbations, (g/h)1/2. There
may exist other relaxation processes in the system, for
example, establishing the ionization equilibrium (see,
for example, DeGroot et al., 1997a). Such processes also
affect the growth rate of perturbations by causing a
phase shift between dp and dr.

C. Resistivity

As has been pointed out by Hussey et al. (1995),
Hammer et al. (1996), and Benattar et al. (1999),
magnetic-field penetration through the imploding shell
may influence the Rayleigh-Taylor instability of flute
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(axisymmetric) modes. One might expect that it would
add some dissipation and thereby decrease the growth
rate. However, as was shown by Hammer et al. (1996),
there may exist modes that do not perturb the currents
and therefore do not induce any additional dissipation.
For a profile of the type of Eq. (2.28), such a mode is
localized near the surface x50 and has a growth rate
unaffected by the resistivity. The presence of this mode
is related to the singularity of r8/r as x goes to zero.

As soon as the density profile near x50 gets
smoothed by the development of the instability, the
short-wavelength perturbations are affected by the finite
resistivity. The expression for the growth rate of these
mode reads (Hammer et al., 1996).
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where DM is a magnetic diffusivity, DM5h/m , and s and
a are the sound velocity and Alfvén velocity, respec-
tively. Note that in a strongly radiating plasma, in which
the magnetic pressure is much greater than the plasma
pressure [see discussion related to Eqs. (2.28) and (2.29)
in Sec. II. E] and for which, accordingly, s!a , the stabi-
lizing effect of resistive losses contains a small param-
eter s2/a2 and is relatively insignificant.

So far, we have been discussing the instability of the
purely flute mode, i.e., the only mode that remains un-
stable at large wave numbers in the case of a perfectly
conducting plasma (see Secs. IV. A–IV. C). The short-
wavelength modes that have a cross-field (azimuthal)
component of the wave vector are stabilized in such a
plasma by virtue of the restoring force produced by a
curved magnetic field that is frozen into the plasma and
follows its displacements. It is clear that the high plasma
resistivity decouples the plasma displacement and the
magnetic field. A complete analysis of this problem goes
beyond the scope of our survey. Here we restrict our-
selves to the notion that in the case of plasma pressure
comparable to the magnetic pressure and skin depth
comparable to the whole thickness of the layer (Alfvén
velocity comparable to the sound velocity), the resistive
uncoupling becomes significant at DM.sh , where s is
the sound velocity. In other words, the finite resistivity
may lead not only to stabilizing but also to destabilizing
effects.

VI. POSSIBLE WAYS OF MITIGATING THE
RAYLEIGH-TAYLOR INSTABILITY

A. General comments

In the previous two sections we discussed in some
depth the physics of the Rayleigh-Taylor instability. One
important (and already mentioned) difference between
the stability of an imploding liner and the stability of a
steady-state object, like a plasma in a device with mag-
netic confinement, is that implosion takes a finite time,
while a steady-state plasma configuration is supposed to
last essentially forever. Therefore, if some instability is
present in the steady-state system, the perturbations cer-
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tainly reach a nonlinear stage independent of the initial
perturbations. A saturated turbulence then exists for as
long as the plasma does, sustained by external particles
and energy sources. In imploding systems, on the other
hand, the exponentiation factor G introduced by Eq.
(4.35) is finite and sometimes not very large (on the or-
der of 5). Under such circumstances, one can hope to
reduce the deleterious role of instability by making
more perfect initial states, with relative root-mean-
square perturbations of less than 1022. Conversely, if
the growth rate can be reduced by, say, 20% (DG/G
;0.2), the requirements for the symmetry of the initial
state could be reduced by a factor of 2.

Therefore one possible line of defense is to create
more perfect initial states (smaller initial perturbations)
and look for ways to reduce the linear growth rate. If
this approach fails and the instability reaches a nonlin-
ear stage, one can try to prevent the most disastrous
scenarios associated with self-accelerating growth of the
‘‘bubbles’’ and gross violations of the cylindrical symme-
try of the liner [Fig. 21(a)]. In the following discussion,
we mention various effects that may influence the linear
and nonlinear stages of the problem. We emphasize that
the original stability analyses that we are referring to
were often not directly related to fast pinches.

The mitigation methods discussed below do not pro-
vide an ultimate solution for instability effects. More-
over, many of them introduce complications into the ex-
perimental setting. Still, we present a more or less
complete set of existing suggestions with the hope that
they may help in finding an efficient solution. One more
general conclusion that can be drawn with respect to
mitigation is that very little can be done to affect the
linear stability of long-wavelength perturbations of an
‘‘empty’’ thin shell (|@h , where h is the shell thick-
ness); the linear behavior of these perturbations is de-
scribed by Eq. (4.19), which does not contain any free
external parameters.

B. Magnetic shear

As was mentioned in Secs. IV.A and IV.B, the most
dangerous modes are axisymmetric modes that do not
create any ripple in the magnetic-field lines, maintaining
their circular (straight in the planar geometry) shape.
These modes remain unstable at high wave numbers, k
;1/h , and have a large growth rate, ;(g/h)1/2. Con-
versely, modes with a finite azimuthal component of the
wave number become stable if the wave number is high
enough. It is well known from the theory of magnetically
confined plasmas (see the original paper by Suydam,
1958, and general surveys by Bateman, 1980, and Fre-
idberg, 1982) that one may achieve reduction of the
growth rate or even stabilization of flute modes by cre-
ating a magnetic shear, i.e., by creating a situation in
which the magnetic-field vector, remaining normal to
the gravity force, would change direction over the depth
of the transition layer. In the Z-pinch geometry this
would require introducing the axial magnetic field Bz ,
possibly, varying over the thickness of the shell.
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For the reasons discussed in Sec. IV.B, one can as-
sume that magnetic shear will have no effect on the sta-
bility of long-wavelength modes, |@h . One can, how-
ever, hope that the growth rate of modes with |;h (and
these are the most dangerous modes) will be reduced.
Indeed, applying a general approach based on the en-
ergy principle (Suydam, 1958), Gratton, Gratton, and
Gonzalez (1988) have shown that, for the local modes
(|!h), the presence of the shear leads to the appear-
ance of a stabilizing contribution to Eq. (4.22) for the
growth rate:
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The parameter z is the z derivative of the angle formed
by the magnetic field with the direction of the wave vec-
tor at the point where the magnetic field is normal to the
wave vector. If the z component of the magnetic field is
zero, then the shear is also zero. If the z component of
the magnetic field is comparable to the azimuthal com-
ponent, then z;1/h . In this case the magnetic shear can
considerably reduce the growth rate of the local modes
and can even completely stabilize them. In other words,
the magnetic-shear stabilization has some promise for
local modes.

As we have already mentioned, the shear does not
stabilize the large-scale modes, with |@h . Still, the pres-
ence of an axial magnetic field enclosed by the liner may
have some effect on the stability. Using an approach
similar to that developed by Harris (1962), one can show
that, if the magnetic field has components Bye and Bze
on the outer side of the shell, and a component Bzi on
the inner side of the shell (there is no y component of
the magnetic field inside the shell if there is no axial
current inside the shell), the dispersion relation for the
|@h modes, an analog of Eq. (4.19), becomes (see
Bud’ko, Liberman, Velikovich, and Felber, 1990)
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where a is defined according to Eq. (4.16) and the accel-
eration is g5(Bye

2 1Bze
2 2Bzi

2 )/2ms . The dispersion re-
lation (6.2) universally has an unstable root that scales
as Akg (we assume that the acceleration is directed in-
ward, i.e., Bye

2 1Bze
2 2Bzi

2 .0). On the other hand, if
Bzi.Bze , the growth rate for the a50 mode is reduced
compared to Eq. (4.19).

One should remember that it is undesirable to have an
axial magnetic field enclosed by the shell, because then
part of the energy of the imploding liner would be spent
on the compression of this magnetic field. The other dif-
ficulty with imposing an axial magnetic field is that, in
the time frame of the implosion, the axial magnetic field
remains frozen into the conducting electrodes. There-
fore strong distortions of the cylindrical symmetry, of
the type shown in Fig. 7, are inevitable. One could re-
duce this effect by introducing radial cuts, but, as the
skin depth is very small, the axial magnetic field would
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remain frozen into the segments of the electrode be-
tween two neighboring cuts.

C. Rotation

The possibility of using rotation of the shell for stabi-
lization purposes has been discussed by Book and Win-
sor, 1974; Barcilon, Book, and Cooper, 1974; and Turchi
et al., 1976. The stabilizing effect comes from the cen-
trifugal force that is directed opposite to the effective
gravity force near the stagnation point. In the early
works, it was supposed that rotation would be intro-
duced by mechanical means. The concept of centrifugal
stabilization was recently reconsidered by Rostoker,
Peterson, and Tashiri (1995), who suggested using a cusp
magnetic field to create an azimuthal torque that would
appear because of the interaction of the z component of
the current and the r component of the magnetic field.
Hammer and Ryutov (1996) suggested using an ablative
torque by producing a left-right asymmetric structure at
the surface of the shell. One can also use left-right asym-
metric coatings on the surfaces of wires (Fig. 24); an
ablation of the coating early in the pulse would produce
a torque acting on the wires and imparting an angular
momentum to them.

To have an appreciable effect on the instability, the
rotation should change the radial acceleration by a fac-
tor of the order of 1. This, in turn, means that, near the
point of maximum compression, the rotation energy

FIG. 24. Left-right asymmetric coating. Shown in heavier lines
are the areas coated by material with a lower sublimation en-
ergy, which will ablate early in the pulse. The direction of the
ablation flow is shown by arrows. Diameters of the wires are
grossly exaggerated. Only part of the array is shown. Current
flows into the paper.
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should be comparable to the total implosion energy.
This is the energy penalty associated with this method of
stabilization.

A stability analysis of an imploding rotating liner
compressing an axial magnetic field was carried out by
Barcillon, Book, and Cooper (1974). The critical point in
this system was the turning point of the radial motion of
the rotating liner. Barcillon et al. concluded that it is dif-
ficult to achieve a strong stabilizing effect, especially in
the case of a thin liner. Velikovich and Davis (1995)
studied the stability of a steady-state configuration, r
5const, in which the centrifugal force was exactly bal-
anced by the magnetic pressure (in the Z-pinch geom-
etry). The stabilizing effect in this case was relatively
modest. Although these results are somewhat discourag-
ing, it is probably worth considering the stability of the
Z pinch under realistic assumptions with regard to the
time-history of the pinch radius r(t). Although it is not
very probable that rotation would entirely stabilize the
system, it might reduce the growth rates of instabilities
to an admissible level.

D. Velocity shear

In principle, one can introduce an azimuthal shear
flow instead of a solid-body rotation. The possible stabi-
lizing effect of shear flow on the Rayleigh-Taylor insta-
bility was mentioned as early as 1961 by Chandrasekhar;
in conjunction with fast Z pinches it was discussed by
Hammer and Ryutov (1996) and Shumlak and Roderick
(1998). To understand the role of the shear qualitatively,
consider a slab geometry with a slab of an incompress-
ible fluid supported from below by a massless fluid. Let
the unperturbed flow velocity be directed along the y
axis and be linearly dependent on x: vy5u(x/h). The
shear flow will have the strongest effect on perturbations
whose wave vector is directed along the direction of
flow. For such perturbations, the shear flow will lead to
stretching in the y direction and thereby to greatly
changed eigenfunctions. One might hope that stretching
of the ‘‘fingers’’ typical of a Rayleigh-Taylor instability
would reduce their growth. The stretching time of the
perturbation is of the order of h/u , independent of the
scale of the perturbation, while the growth rate of a
gravity-driven perturbation is of the order (kg)1/2. Ob-
viously, shear flow can have a significant effect on the
development of perturbations if the condition (h/u)
3(kg)1/2,1 holds. For the most dangerous perturba-
tions, with k;1/h , one can rewrite this condition in
terms of a so-called Froude number,

Fr[
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Taking as an example h50.1 cm and g5331015 cm/s2,
one finds that the velocity of the shear flow should be
rather high, greater than 107 cm/s. It is difficult to pro-
duce such a velocity directly. One can, however, expect
an enhancement of the azimuthal velocity during implo-
sion, owing to conservation of angular momentum. (For
a ‘‘canonical’’ wire-array implosion, the viscous damping
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of the shear flow is insignificant.) If the initial shear flow
velocity is 106 cm/s, the desired value will be reached at
a convergence equal to 10. One can also speculate that
the actual time required for perturbations to grow from
an initial small level to a nonlinear phase constitutes at
least several e-folding times (kg)21/2. Accordingly, one
might hope to be able to write, on the right-hand side of
inequality (6.3), some small number instead of 1. A nu-
merical analysis by Shumlak and Roderick (1998) seems
to point in this direction.

Unfortunately, shear flow does not have any effect on
perturbations whose wave vectors are perpendicular to
the direction of the flow. In other words, if the shear
flow is in the azimuthal direction (the differential rota-
tion), it does not affect azimuthally symmetric perturba-
tions (m50). To stabilize these perturbations, one has
to generate an axial shear flow, with vz varying with x.
This type of shear motion cannot be enhanced by angu-
lar momentum conservation; therefore requirements
stemming from inequality (6.3) become more stringent.

To generate shear flow, one can use a target consisting
of two nested liners (Hammer and Ryutov, 1996). If the
left-right asymmetric features are embedded into one of
these liners, then ablation will cause its rotation; when
the two liners collide, a differential rotation emerges. If
up-down asymmetric features are created, then axial
shear flow is formed. Shumlak and Roderick (1998) dis-
cussed the use of a conical gas puff to generate the axial
shear.

Axial shear flow may have a stabilizing influence on
quasiequilibrium Z pinches that can be formed near the
stagnation point. This stabilization mechanism for equi-
librium Z pinches was discussed by Shumlak and Hart-
man (1995). Their conclusion was that, if the initial pro-
file is not very far from the marginally stable
‘‘Kadomtsev profile,’’ then even a weak-velocity shear
can produce considerable stabilization. On the other
hand, Arber et al. (1995) have not found significant sta-
bilization by the shear.

E. Hourglass effect

Douglas, Deeney, and Roderick (1997) have discov-
ered in numerical simulations that, by making the initial
surface of a uniform-fill Z pinch concave (Fig. 25), one
can suppress the growth of Rayleigh-Taylor perturba-
tions. Because of the characteristic shape of the sheath,
one can call this effect an ‘‘hourglass effect.’’ Douglas,
Deeney, and Roderick considered implosions of high-Z
(strongly radiating) gas puffs (Ne, Xe), in which the
transition layer between the magnetic piston and the
shock front was thin (see Sec. II.B). For a sufficiently
large initial curvature, the stabilizing effect is quite
strong. The authors attribute this effect either to the ad-
vection of perturbations to the electrodes (there is tan-
gential flow along the curved surface, in the direction of
electrodes) or to the presence of axial shear flow. In
principle, one could discriminate between these two pos-
sibilities by changing the sign of the curvature (making
the surface convex instead of concave); the flow would
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change its sign and would advect perturbations to the
equatorial plane, while the effect of shear should remain
the same as for a concave surface.

F. Deliberate violation of the azimuthal symmetry

As already mentioned in Sec. IV, the most dangerous
small-m modes show a trend to strongly nonlinear devel-
opment, with the fingerlike structures penetrating deep
to the axis of the device (Fig. 22). Self-acceleration of
the ‘‘fingertips’’ occurs because their mass density de-
creases, while the driving azimuthal magnetic field freely
penetrates into this area through disklike slots—a char-
acteristic feature of axisymmetric perturbations. Derzon,
Nash, and Ryutov (1997) suggested reducing the growth
rate of the axisymmetric perturbations by deliberate in-
troduction of a periodic azimuthal asymmetry, as shown
in Fig. 26, with a large enough amplitude and a large
enough mode number m to destroy the azimuthal coher-
ence of the fingerlike structure and to create conditions
for short-circuiting (crow-barring) the disklike slots in
many (m) points over the azimuth.

For this closure of the slots to occur at a moderately
nonlinear stage in the growth of axisymmetric perturba-
tions, when the peak-to-valley distance is of the order of
their axial period l, one has to produce azimuthal per-
turbations for which the amplitude, j, satisfies, roughly
speaking, the condition: j.l/2. One can conceive of
several ways of creating azimuthal perturbations in a
controlled manner. One way is to assemble the wire ar-
ray with wires of azimuthally varying thickness (i.e., of
varying mass), similar to what is shown in Fig. 26(b); the
heavier wires will lag behind the lighter ones, thereby
creating a corrugated structure. Another possibility is to

FIG. 25. Effect of a curved surface of a uniform-fill krypton Z
pinch (from Douglas, Deeney, and Roderick, 1997, reprinted
with kind permission of M. Douglas). Shown are density isoc-
ontours at the same time in the implosion for (a) a straight
cylinder, (b) a 1.0-mm circular arc, (c) a 2.5-mm circular arc,
and (d) a 5.0-mm circular arc.
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use wires of different materials (and, accordingly, of dif-
ferent mass). Still one more possibility is to use a kind of
‘‘imprinting’’ produced by the discrete structure of the
return-current structure (which typically consists of ;10
separate posts; the gaps between the posts provide a
necessary diagnostic access). At an early stage of the
discharge, when the separation of the current sheath
from the posts is comparable to the interpost distance,
the radial driving force varies over the azimuth, giving
rise to formation of a corrugated structure. Such a struc-
ture has been observed experimentally by Derzon, Nash,
and Ryutov (1997).

In wire-array implosions, the axial period of the most
dangerous modes is in the range of 1–1.5 mm. There-
fore, according to the condition j.l/2a , a relatively
modest amplitude of corrugation (0.5–0.75 mm) could
be sufficient to produce a considerable stabilizing effect.
The mode number of the corrugation should be made
large enough to provide many short-circuit channels
over the azimuth. This is limited from above by the con-
straint that, at a given amplitude, the high-mode-number
perturbation becomes nonlinearly stabilized by expul-
sion of the magnetic field from the tips of azimuthal
perturbations [Fig. 21(b)]. The upper limit on the mode
number set by this constraint is m,r/2j;r/l . For a
typical set of parameters of a wire-array implosion, the
optimum mode number is ;15.

G. Accretion

As mentioned in Secs. II and IV, in implosions of gas-
puff loads one can, in principle, create an initial density
distribution such that the sheath will converge on axis
without any acceleration (Fig. 5). In its clearest form,
this idea was expressed by Hammer (1995) and, later, by
Hammer et al. (1996) and Velikovich, Cochran, and

FIG. 26. A corrugated wire array. The azimuthal mode num-
ber in this case is m56. The thickness of the line in panel (a)
corresponds to the local surface density of the liner material.
The surface of a perfectly conducting liner coincides with one
of the field lines. The adjacent field line is shown as a dashed
line. Panel (b) shows a part of the initial array that can pro-
duce a structure similar to the one shown in panel (a): The
array is assembled of the wires of two different diameters, d1
and d2 .
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Davis (1996). The energy penalty is associated with ra-
diative losses of the accreted material. The stabilizing
effects are caused merely by the absence of acceleration.
The interface between the magnetic field and the plasma
remains stable with respect to exponentially growing
modes, even for very short wavelengths (shorter than
the distance between the shock and the interface). An-
other source of stabilization is the presence of a de-
tached shock, as discussed by Gol’berg and Velikovich
(1993): because the shock front itself is stable with re-
spect to the ripple perturbations, it extends its stabilizing
influence over the whole area between the shock and
magnetic piston.

One can think of a discrete version of the scheme
proposed by Hammer et al. (1996) in which, instead of a
continuous density distribution, one would create a set
of nested wire arrays, with masses approximately follow-
ing the desired density distribution. This would mean
that the lightest arrays would be on the outside and that
their mass would gradually grow towards the inside.
Whether the improved stability would outweigh the
added complexity is a question that can be answered
only experimentally.

It has recently been discovered experimentally
(Deeney, Douglas, et al., 1998) that a considerable im-
provement in the quality of the implosion can be
reached by using a two-shell wire array, with the inner
shell situated at a half radius of the outer shell and hav-
ing a mass smaller (not greater as in the aforementioned
scheme) than the outer shell. The best result was
reached with the inner mass as small as a quarter of the
outer mass. It is not clear yet what specific mechanism is
responsible for this improvement. One can speculate
that strong heating during collision of the two shells
causes a rapid viscous and thermal damping of perturba-
tions developed in the outer shell by the time of the
collision.

H. Enhanced thermal dissipation

The suggestion has been made (Ryutov, 1996; Ryutov
and Toor, 1998) that, to increase the rate of viscous and
thermal dissipation, one should replace a uniform me-
dium with a finely structured medium, with a scale l of
preexisting nonuniformities that is small compared to
the scale | of the most dangerous perturbations. In the
case of wire arrays, this could be done by replacing uni-
form wires with bundles of interwoven finer wires or by
alternating the composition of the wires in the array.
The hope is that the presence of the fine structures will
introduce small-scale motions (and temperature varia-
tions) overlaid on the ‘‘averaged’’ motions (and tem-
perature variations) on the larger scale of the most dan-
gerous perturbations. Because the dissipation rate by
both viscosity and thermal conductivity scales as 1/l2,
one could expect that the growth rate of the instability
would be substantially reduced. The effect of enhanced
dissipation is certainly present, but in the examples stud-
ied so far it causes only a relatively small decrease in the
linear growth rate (see also Sec. V B). A new element
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that emerges in this picture is the appearance of oscilla-
tory damping modes (in addition to the ‘‘standard’’
Rayleigh-Taylor modes). The presence of these modes
may favorably affect the nonlinear stage of the instabil-
ity. However, this issue has not been studied thus far.

I. Finite Larmor-radius (FLR) effects

The ion gyroradius is small compared to a typical
sheath thickness during the run-in phase. At this stage,
the ion component can be well described by fluid equa-
tions. The situation changes dramatically after stagna-
tion, when the ion thermal energy increases by orders of
magnitude. Arber et al. (1995) studied the stability of an
equilibrium pinch with an ion Larmor radius compa-
rable to the pinch radius. They concluded that even if
the m50 mode is almost stable by virtue of reaching the
Kadomtsev profile, the m51 mode remains strongly un-
stable, despite finite Larmor-radius (FLR) effects. The
growth rate is reduced by a factor of 2–3 with respect to
an ideal MHD, but this is insufficient for a long-lasting
steady-state equilibrium. Scheffel et al. (1997) have
shown that a finite electron temperature has a destabi-
lizing effect on a plasma with a finite Larmor radius.

Isichenko, Kulyabin, and Yan’kov (1989) considered a
pinch column with a skin layer much thinner than the
ion gyroradius so that ion motion in the interior of the
pinch was unmagnetized. They found that the growth
rate of short-wavelength perturbations, with |!r ,
reached saturation at ;vTi /r , i.e., became slower than
in the MHD approximation, where it was ;(vTi /r)
3(r/|)1/2. However, the most disruptive mode with |
;r remained essentially as unstable as in the MHD ap-
proximation. Therefore the effects of a large Larmor ra-
dius do not provide sufficient stabilization in the stagna-
tion phase. Velikovich (1991) came to a similar
conclusion.

VII. NON-MHD PHENOMENA

A. Microturbulence and anomalous resistivity

A potential source of microinstabilities is the relative
motion of electrons and ions. The velocity u of this mo-
tion is directly related to the current density, j5enu ,
where n is the electron density. In implosions of thin
shells (like those formed in wire-arrays,) assuming that
the current occupies the whole shell thickness, one can
express u in terms of the total pinch current I:

u~cm/s !;104
AI~MA!

Zeffm̂~mg/cm!
. (7.1)

The assumption that the current flows through the
whole thickness of the shell is quite plausible for the
run-in phase of strongly radiating liners (Sec. II E).

In Z pinches, the current is directed across the mag-
netic field; the electron temperature is comparable to or
lower than the ion temperature. Under such circum-
stances, the most likely instability that could lead to the
appearance of anomalous resistivity would be a lower-
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hybrid instability, described by Krall and Liewer (1971)
and Davidson and Gladd (1975). Early studies of this
instability have been summarized in the survey by
Davidson and Krall (1977). More recent results, specifi-
cally addressing the issues of nonlinear stabilization, can
be found in analytical studies by Drake, Huba, and
Gladd (1983) and by Drake, Guzdar, and Huba (1983)
and in a numerical analysis by Brackbill et al. (1990).
Possible effects of this instability on the Pease-Braginski
current in a fiber pinch were studied by Robson (1991)
and Chittenden (1995).

The ‘‘natural’’ frequency of lower-hybrid oscillations
is (see, for example, Davidson and Krall, 1977)

vLH5vceAZeffme

Amp
, (7.2)

where mp is the proton mass. Expression (7.2) for the
lower-hybrid frequency pertains to the situation vpe
.vce , which is typical of Z pinches (vpe and vce are
electron-plasma and electron-cyclotron frequencies, re-
spectively).

In an analysis of lower-hybrid instabilities, usually
only perturbations with k i50 are considered. In order
for such perturbations to cause electron scattering and
contribute to the anomalous resistivity, their transverse
scale length should be comparable to or shorter than the
electron gyroradius re . Otherwise, because the pertur-
bations are slow, vLH!vce , the electron magnetic mo-
ment will be conserved, and electrons will experience
only adiabatic (reversible) variations of their velocity,
thereby preventing the appearance of anomalous resis-
tivity.

Another current-driven microinstability is the ion
acoustic instability, which typically has a higher thresh-
old in terms of the relative velocity of electrons and ions.
Extensive studies of this instability are summarized in
the surveys by Vedenov and Ryutov (1975) and Galeev
and Sagdeev (1979). In a singly charged plasma this in-
stability can be present only if the electron temperature
is much higher than the ion temperature, Te@Ti : at
Te;Ti the ion sound speed is comparable to the ther-
mal velocity of the ions, and acoustic waves experience a
strong ion Landau damping. However, in a plasma with
Zeff@1, this instability can be excited even at Ti.Te .
Indeed, the sound speed in a plasma with high-Z ions is
equal to

AZeffTe1Ti

mi
, (7.3)

while the ion thermal speed is A2Ti /mi. Imposing a con-
straint that the sound speed exceed the ion thermal
speed by a factor of 2, one finds the condition of weakly
damped ion acoustic waves in a high-Z plasma:

Te.7Ti /Zeff . (7.4)

One sees that, at Zeff@1, weakly damped ion acoustic
modes can exist even at Ti.Te . The critical current ve-
locity for the onset of ion acoustic instability under such
conditions is several ion thermal velocities,
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ucrit5zvTi , (7.5)

with z equal to 2–4. In the case of hydrogen-containing
substances (for example, agar), the hydrogen ions, be-
cause of their high thermal velocities, can considerably
increase the Landau damping and push the critical ve-
locity to higher levels, approaching ucrit;vTe

, typical of
the Buneman instability.

If condition (7.4) is violated with a large enough mar-
gin (so that ion acoustic instability is not present), the
relative electron-ion velocity u may reach an electron
thermal velocity, and a modified two-stream (or Bune-
man) instability may develop. Its growth rate is higher
than that of an ion acoustic instability. However, reach-
ing such high u’s for the typical parameters of dense
pinches is not very probable (see Sec. IX).

The effect of microinstabilities on plasma resistivity is
traditionally described in terms of the effective electron-
scattering frequency neff , which should be added to the
electron-ion collision frequency 1/tei in the expression
for plasma resistivity,

h5
me~neff11/tei!

ne2 . (7.6)

An estimate that is commonly used for the effective col-
lision frequency produced by a lower hybrid instability is
(Davidson and Gladd, 1975; Drake et al., 1984)

neff5z1vLHS u

vTi
D 2

, (7.7)

where z1 is a numerical factor of the order of 1.
At low plasma density and high pinch currents, when

the current velocity u reaches the threshold of ion acous-
tic instability, this latter instability becomes dominant
because it usually results in a higher effective collision
frequency approaching the ion-plasma frequency. Under
the condition vpe.vce , typical of a Z-pinch environ-
ment, the ion-plasma frequency is much higher than the
lower hybrid frequency. Therefore, if the threshold for
excitation of ion acoustic perturbations is reached at all,
this instability takes over in establishing the anomalous
resistivity. When the instability threshold u5ucrit is
reached, the effective scattering turns on so sharply that,
in most cases of interest for Z pinches, it keeps the rela-
tive velocity just at the threshold level, so that the cur-
rent density is

j5enucrit (7.8)

with ucrit as in Eq. (7.5). Equations (7.6)–(7.8) can serve
as a basis for analyzing the effect of anomalous resistiv-
ity on the properties of Z pinches.

Microfluctuations produced by the plasma current, in
addition to the anomalous resistivity, may cause accel-
eration of some of the plasma ions to suprathermal en-
ergies (see Sec. VII B). The anomalous resistivity, if
present, affects the skin depth and therefore the
Rayleigh-Taylor instability. The heating rate of the elec-
trons during the implosion phase may grow considerably
and therefore lead to enhancement of radiation losses
compared to classical estimates. In the case of quasiequi-
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librium pinches, the anomalous resistivity affects the
Pease-Braginski current (Robson, 1991). We shall not
attempt here to consider a completely self-consistent
picture. Our discussion provides only a general frame-
work for the analysis of the corresponding processes. As
we shall see, in the fast-Z-pinch environment the veloc-
ity u is typically smaller than or comparable to the ion
thermal velocity. Therefore we concentrate our atten-
tion on the lower hybrid instability.

1. Run-in phase

To be specific, we begin this subsection with a discus-
sion of wire arrays; later in this subsection we also men-
tion gas puffs. The velocity u of the relative motion of
the electron and ion fluids is typically comparable to the
ion thermal velocity. For a set of characteristic param-
eters of the run-in phase of tungsten wire-array implo-
sions (A;180, T;40 eV, Zeff;7, I510 MA, m̂;3
mg/cm), one finds u;106 cm/s, roughly equal to the ion
thermal velocity vTi . For the ‘‘canonical’’ lower hybrid
instability, vLH according to the paper by Davidson and
Gladd (1975), the growth rate at u,vTi scales as

~u/vTi!
2vLH , (7.9)

In the aforementioned numerical example, it is of the
order of vLH;1.531011 s21, i.e., the e-folding time for
this instability is orders of magnitude shorter than the
duration of the run-in phase. Accordingly, the instability
reaches its nonlinear saturation.

There is a subtlety here: for the set of parameters cho-
sen above and ni;1019 cm23, one finds that both the
electron and ion magnetization products, vLHtei and
vLHt ii , are considerably less than 1. This implies that
the plasma is strongly collisional with respect to the
lower hybrid modes. By itself, this does not necessarily
mean that the instability is damped. Rather, it means
that the theory presented in the aforementioned refer-
ences should be reworked to include a hydrodynamic
description of both electrons and ions (see, for example,
Braginski, 1965). The strongly collisional plasma also
makes it very difficult for the instability to affect the
plasma resistivity (because the anomalous collision fre-
quency has to compete with classical collision frequency,
which is very high).

In gas-puff implosions with a lower particle density,
the role of the lower hybrid instability can be more im-
portant. However, the classical electron-ion collision
time remains shorter than the expected anomalous col-
lision time. Therefore, again, the current penetration
should be determined by classical resistivity and/or by
gross hydrodynamic instabilities. The anomalous resis-
tivity may possibly play some role in the behavior of a
very-low-density halo plasma that may surround the
main discharge.

The effect of anomalous resistivity can, in principle,
be used to reduce the current rise time in a wire array.
The idea is to surround it by another, lower-density shell
where the current would be sharply terminated by de-
velopment of anomalous resistivity. Branitskii et al.
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(1996) pursued this idea, studying implosions of gas
puffs on a thin agar cylinder in the Angara-5 facility; Xe,
Ar, and C3H8 (propane) were used as working gases.
The annular jet had a radius of r051.6 cm and a mass of
0.07 mg/cm; the maximum current was ;3 MA and the
half-width of the current pulse was ;100 ns. The inner
cylinder was made of agar, with a radius of ri
50.5–1 mm and a mass of 0.05–0.07 mg/cm. The switch-
ing of the current indeed occurred, but it did not have a
sharp front. The authors concluded that the current dis-
ruption in the outer shell was probably caused by the
Rayleigh-Taylor instability, although other factors may
also have contributed.

Baksht et al. (1997) also studied a multiwire array sur-
rounded by an outer gas shell. The dimensions were
larger than in the previous work; the diameter of the gas
jet was 8 cm and the diameter of the wire array was 3
cm, with wires 20 mm in diameter (68 mg/cm). Reproduc-
ibility of the current switching was not very good. To
improve the symmetry of implosions, the authors plan to
introduce preliminary ionization of the gaseous shell
(see Sec. III of this paper). Note that another way of
switching the current (not based on the phenomenon of
anomalous resistance) is to use a light external wire ar-
ray imploding on a smaller-diameter heavier wire array;
the current through the inner array will be small until
the outer array reaches it (Davis, Gondarenko and Ve-
likovich, 1997).

2. The stagnation phase

In the stagnation phase, the temperatures of both
plasma species are much higher, with the ion tempera-
ture considerably exceeding the electron temperature.
On the other hand, the relative velocity u, according to
Eq. (7.1), only decreases because of the increased Zeff .
Therefore the ratio u/vTi should drop by a factor of
;100 compared to the run-in phase. This decrease more
than compensates for the growth of the magnetic field
caused by a reduced pinch radius, so that the growth
rate (7.9) decreases to, roughly speaking, 108 s21. The
corresponding e-folding time is long compared to the
duration of the stagnation phase; this instability can
hardly have a significant effect on the plasma resistivity
during this phase.

It is interesting to note that, for the stagnation phase,
the ratio of the relative velocity u to the ion thermal
velocity is equal to the ratio of the ion gyroradius to the
pinch radius and can be expressed in terms of very few
input parameters. One can show that, assuming that the
current flows uniformly over the cross section of the
stagnated plasma,

r i

rmin
;

u
vTi

;
A

ZeffAln C
A mp

ropm̂;1023
A

ZeffAm̂~mg/cm!
,

(7.10)
where r i is the ion gyroradius, rop51.6310216 cm is the
classical radius of a proton, and C is the convergence
(1.1). The estimate (7.10) corresponds to the ion tem-
perature before equilibration with electrons begins, i.e.,
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to an ion thermal velocity approximately equal to the
liner velocity just before on-axis stagnation.

Of course, if the current is concentrated in a thin shell,
or flows through a low-density plasma halo, the role of
microinstabilities may become more important. The
other place where anomalous resistivity may become im-
portant is the neck [Fig. 21(a)] formed as a result of the
development of a sausage mode (we discuss this latter
situation in Sec. VII.B). A discussion of the effects of
anomalous resistance of the neck and some further ref-
erences on this issue can be found in Sasorov (1992).

A study of the effects produced by anomalous resis-
tivity in an equilibrium pinch can be found in Chit-
tenden (1995). In equilibrium Z pinches, where plasma
density is typically lower than in fast Z pinches, instabil-
ity can become quite important because of a higher ratio
u/vTi and much lower frequency of Coulomb collisions.

B. Generation of suprathermal particles and particle
beams

As mentioned in Sec. IV, development of the
Rayleigh-Taylor instability may lead to a situation in
which one or several constrictions of the type shown in
Fig. 21(a) are formed. Most commonly, the formation of
high-energy particles in Z pinches is related to forma-
tion of m50 constrictions. Various theories concerning
generation of nonthermal fast particles are discussed by
Haines (1983), Trubnikov (1986), Vikhrev (1986), and
Deutsch and Kies (1988). These papers also provide fur-
ther bibliography. Experimental results from fast Z
pinches are essentially unavailable. For experiments per-
taining to generation of high-energy particles in fiber
pinches see Mitchell et al. (1998) and references therein.

One can distinguish three mechanisms that lead to the
formation of high-energy particles in constrictions. First,
there is a direct acceleration mechanism related to the
generation of a high inductive voltage during current
breakup after formation of the neck. This mechanism
was the first to be suggested to explain generation of
neutrons in the experiments of the early 1950s (see
Vikhrev, 1986, and Deutsch and Kies, 1988, for refer-
ences to experimental work). Second, there is a mecha-
nism related to compressional heating of the substance
situated in the neck, accompanied by ejection of hot ma-
terial from the ends of the constriction. Third, if micro-
turbulence is excited in the constriction (because of a
high current density), stochastic acceleration of the tails
of the ion distribution function may lead to generation
of high-energy ions. It is quite conceivable that all three
mechanisms for the formation of fast ions may act simul-
taneously. This is what makes the analysis of experi-
ments on the generation of fast ions so difficult.

The chain of events that leads to inductive accelera-
tion is as follows. After constriction develops, imped-
ance grows, and the current through the neck dimin-
ishes, causing the generation of a large inductive
voltage. The spatial and temporal evolution of the elec-
tric fields that can be generated in such an event have
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been analyzed in great detail by Trubnikov (see a sum-
mary of these results in Trubnikov, 1986).

Trubnikov’s analysis offers the following qualitative
picture. Consider the motion of an individual ion in a
time-varying electric field perpendicular to the azi-
muthal magnetic field. If the ion gyroradius is small
compared to the neck radius a, and the electric field
varies with a time scale exceeding vCi

21, the electric field
does not accelerate ions but rather causes drift motion,
with the velocity proportional to the electric-field
strength E. This is an adiabatic process in the sense that
the drift velocity grows when the electric field (in the
location of the ion) grows and decreases when the elec-
tric field decreases (either because of the temporal
variation of the electric field, or because the ions leave
the zone of the strong electric field near the neck).
Therefore, to ensure an efficient nonadiabatic energy
transfer to the ions, one has to assume that the electric
field varies on a time scale short compared to the ion
gyroperiod. Another possibility is that the ion acceler-
ates near the axis of the discharge where the magnetic
field is small. (An interesting question is what sets the
lower limit for the pinch radius in the constriction. One
surmises that this is the ion gyroradius; see the trajectory
analysis in Haines, 1983.) To sustain the current through
the neck with a rapidly growing resistance, an inductive
electric field is generated directed along the pinch cur-
rent. Accordingly, the ions should be accelerated pre-
dominantly in the direction of the pinch current at a
time just before disruption. Collisions between beam
and plasma ions would cause scattering of the beam. To
reach the electrode, the beam must be formed at a dis-
tance not greater than a couple of mean free paths. The
drag against plasma electrons in a cold plasma may also
be substantial. An analysis of experimental measure-
ments at Angara-5 from the viewpoint of their compat-
ibility with the beam source of the neutrons is presented
by Imshennik (1992).

We note in passing that it is conceivable that the cur-
rents present on the galactic scale form pinchlike struc-
tures and that development of the sausage instability
gives rise to the generation of high-energy cosmic rays.
This viewpoint was presented by Haines (1983) and
Trubnikov (1990; see also further references in the latter
paper). The arguments pointing out the presence of cur-
rents up to 1019 A in the galactic environment were pre-
sented by Peratt (1986, 1990). Figure 27 (Yusef-Zadeh,
Morris, and Chance, 1984) depicts an object near the
center of our galaxy where the presence of filaments
may be a reflection of the pinch effect.

The second mechanism, most completely presented in
the paper by Vikhrev (1986), attributes the generation
of fast particles to an adiabatic compression of the
plasma in the neck. This process is conceived as a
gradual compression of the plasma along the sequence
of Bennett equilibria, with a gradual decrease in linear
particle density N (the number of particles per unit
length of the pinch) in the constriction by virtue of axial
ion losses through the ends; the hot ions escape in both
directions. The Bennet (1934) equilibrium condition,
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T5
mI2

4pN , (7.11)

shows that the plasma temperature in the constriction
must grow. If the constriction is short, with a radius r
comparable to its length l , the hot plasma will escape
very rapidly through the ends, and no significant number
of hot particles will be formed. However, if the length of
the constriction is large, l @r , then the number of hot
particles will increase, and conditions for generation of a
considerable number of neutrons (in the case of a deu-
terium or a deuterium-tritium plasma) will be reached.

If the ion-ion collision frequency is high enough, then
the ion distribution is almost isotropic, and therefore the
neutron radiation generated in the constriction will also
be isotropic. Still, if some hot ions do escape along the
axis, an asymmetry in the number of ions reaching the
anode and the cathode may appear (leading to asymme-
try of neutron generation on the electrodes). The situa-
tion is illustrated in Fig. 28, which depicts two ion tra-
jectories originating on the axis. If the initial ion velocity
is slightly tilted to the axis and directed towards the
cathode, the magnetic field produces a focusing force,
and the ion rapidly moves along the axis towards the
cathode. On the other hand, if the initial velocity is di-
rected toward the anode, the magnetic force is defocus-
ing, and the ion gets involved in a gyromotion with a
slow drift towards the anode (see Haines, 1983). A col-
lisionless version of ion acceleration by pinch ‘‘walls’’
converging on the axis was discussed by Deutsch and
Kies (1988).

The third mechanism can be efficient in a plasma of
relatively low density, where the plasma resistance is
dominated by microfluctuations (Sec. VII.A). The ion

FIG. 27. The image of filaments near the center of our galaxy
obtained at the wavelength 20 cm (courtesy of F. Yusef-Zadeh
and the National Radio Astronomy Observatory, Charlottes-
ville, Virginia). The length of the arcs is ; 30 pc. According to
Trubnikov (1990), they may be pinches.
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scattering on microfluctuations usually leads to forma-
tion of a high-energy tail of the ion distribution function
[Vedenov and Ryutov (1975) and Galeev and Sagdeev
(1979)], whose evolution is governed by a Fokker-
Planck-type equation,

]f

]t
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v2

]

]v
v2D~v !

]f

]v
, (7.12)

with the diffusion coefficient proportional to the energy
density of the fluctuations. The distribution function in
Eq. (7.12) is normalized according to the relationship
dn54pf(v)v2dv , where dn is the number of ions per
interval dv of the ion velocities. For simplicity, we
present Eq. (7.12) for the case of an isotropic spectrum
of fluctuations. This equation describes the diffusive
broadening of the high-energy tail of the ion distribu-
tion. The majority of the ions remain in the ion core
dominated by Coulomb collisions. Despite the small
number of ions in the tail, they may be responsible for
nuclear reactions with a high energy threshold and may
thereby be used for diagnostics purposes (to identify re-
gimes where suprathermal particles are present).

Let us consider in greater detail the acceleration of an
ion in the ion acoustic turbulence in a high-Z plasma.
Assuming approximately equal temperatures of the
electrons and ions, one finds that the oscillations excited
by this instability near its threshold, given in Eq. (7.5),
have a wave number

k;AZeff

vpe

vTe
. (7.13)

Based on the standard equations of the quasilinear
theory, one finds that the diffusion coefficient in Eq.

FIG. 28. Two ion trajectories originating in the same point
‘‘O’’ on the axis and forming initially the same small angle with
the axis. If the initial velocity is directed towards the cathode,
the ion trajectory remains close to the axis; if the initial veloc-
ity has an opposite direction, the ion trajectory acquires a pe-
culiar character, with a much slower drift towards the anode.
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(7.12) is directly related to the effective electron colli-
sion frequency neff that enters the expression for anoma-
lous resistivity:

D;v2neffZeff
2 Ame

mi
S T

miv
2D 5/2

. (7.14)

The characteristic energy W* of the tail ions at time t
after the onset of anomalous resistivity will be

W* ;T~Zeff
2 nefft !

2/5~me /mi!
1/5. (7.15)

Equation (7.15) directly links the ion energy with neff
and thereby with the anomalous resistivity (7.6) and pro-
vides a phenomenolgical link between the two effects—
anomalous resistivity and the formation of an ion tail.

The maximum energy is limited by the duration of the
turbulent state or by the residence time of the ion within
the neck. An absolute upper limit is set by the condition
that the ion gyroradius must become comparable to the
neck size. This yields the following estimate for the
maximum ion velocity v i : v imi /ZeffeB;a, where a is the
neck radius. As B;mI/2pa , one finds that

v i

c
;

Zeff

A

I~MA!

30
. (7.16)

At a current of ;20 MA, the protons, in principle, can
be accelerated to subrelativistic energies [equation
(7.16) corresponds to nonrelativistic energies; at higher
currents it breaks down]. Of course, this is an estimate
from above. Still, it shows the significance of the pinch
current in providing conditions for generating high-
energy particles.

So far we have been discussing the generation of fast
ions. Fast-Z-pinch discharges often are accompanied by
bursts of hard x rays, pointing to the presence of high-
energy electrons. [An analogous situation might be the
generation of multi-MeV electrons in high-altitude light-
ning (Fishman et al., 1984).] Formation of electron
beams is strongly suppressed by the presence of the
transverse magnetic field of the pinch. One would not
expect formation of an electric field exceeding cB, as
this would require a complete current breakup within a
time of the order of r/c . At E,cB , on the other hand,
electrons cannot accelerate; they experience a slow non-
relativistic drift motion, with a velocity E/B!c . For this
reason, models that attribute the formation of high-
energy electrons to a mechanism of local adiabatic com-
pression are of some interest. They predict the forma-
tion of hot (possibly relativistic) electrons near the necks
(Vikhrev, 1986). These areas could then serve as sources
of hard x rays. It is interesting to note that electron
beams were detected in so-called X pinches (a discharge
through two or more crossed wires), in which they were
generated near the intersection point (Ivanenkov et al.,
1996).

Formation of beams of runaway electrons is possible
near the pinch axis where the magnetic field is weak and
the condition E.cB can be satisfied. At a given density
and a given electric-field strength, there exists a group of
electrons experiencing runaway. To be involved in a
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runaway process, the electron should have high enough
initial energy that, before the first scattering, it doubles
its energy. This condition, if expressed in terms of the
effective collision frequency, reads as

eEv
neff~v !

.
mev

2

2
. (7.17)

We have explicitly included the dependence of the effec-
tive collision frequency on the electron velocity. Electro-
static fluctuations of the lower hybrid or ion acoustic
type give rise to a dependence of 1/v3 in neff , very much
like that in a classical Coulomb collision. If classical col-
lisions are important, veff should include them too. From
Ohm’s law, one finds that

u5
eE

meneff~vTe!
. (7.18)

Because the current is carried by the main body of the
electron distribution, the collision frequency that enters
this equation corresponds to ‘‘thermal’’ electrons. For
the 1/v3 dependence of the collision frequency, one finds
from Eqs. (7.17) and (7.18) that the critical energy above
which the runaway process begins is (Benford, 1978)
wcrit5TvTe /u . The drift velocity u usually does not ex-
ceed a few ion thermal velocities. Therefore only a small
fraction of the total electron population can be involved
in a runaway process. The spectrum of the runaway elec-
trons can be found in Benford (1978).

The phenomena discussed in this section can be
strongly affected by the presence of even a weak axial
magnetic field. In particular, neck formation can be
stopped because the axial field would grow inversely
proportional to the square of the neck radius, while the
azimuthal field would grow inversely proportional to the
first power of the radius. On the other hand, an axial
magnetic field considerably broadens the zone in which
runaway electrons can be accelerated.

In the implosions of hollow shells (e.g., wire arrays),
favorable conditions for runaway formation may be met
inside the shell, where there is no magnetic field and the
plasma density is low. An axial electric field may be
present inside the shell if the skin depth exceeds the
thickness of the shell (see Sec. II.E). A beam of acceler-
ated electrons will be formed long before on-axis stag-
nation occurs. An early appearance of the beam (de-
tected by x-ray radiation from the anode) can serve as
an indicator of a great skin depth. At a high enough
beam-to-plasma density ratio, the beam may experience
a two-stream instability. A survey of the effects caused
by this instability can be found in Breizman and Ryutov
(1974).

In addition to acceleration mechanisms related to the
formation of a neck, mechanisms based on ion accelera-
tion through the sheaths near the electrodes have also
been studied (see Haines, 1983, and Trubnikov, 1986,
for further references).

C. The Hall effect

When the electron gyrofrequency becomes greater
than the electron collision frequency, the Lorenz force
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in the electron momentum equation predominates over
the electron-ion friction term. In a uniform plasma, the
electron momentum equation should be written as

meneiu52eE2e~u1v!3B. (7.19)

Here the electron-ion collision frequency includes, gen-
erally speaking, both Coulomb collisions and anomalous
scattering; v is the ion velocity (which almost coincides
with the velocity of the center of mass) and u is a rela-
tive electron-ion velocity. If uuu is greater than the char-
acteristic velocity of the ion motion, then Eq. (7.19)
shows that the magnetic field is convected together with
the electron fluid (not with the plasma as a whole). In
the limit of low collision frequency, the magnetic field is
frozen into the electron fluid. It then becomes possible
that the magnetic field will be redistributed over a time
scale that is short compared to that for ion motion. Be-
cause the ion density within this short time scale remains
constant, only those electron displacements are allowed
that do not perturb the electron density. This type of
motion is described by so-called ‘‘electron magnetohy-
drodynamics’’ (EMHD), or ‘‘Hall magnetohydrodynam-
ics.’’ The latter name is related to the analogy between
the last term in Eq. (7.19) and the Hall term in the
theory of current flow in solid conductors. A general
survey of EMHD has been published by Gordeev, King-
sep, and Rudakov (1994). In a more recent paper, King-
sep and Rudakov (1995) present a set of criteria defining
the parameter domain in which the effects of EMHD
are important. Dissipative phenomena in EMHD were
discussed by Sevast’yanov (1993). Roughly speaking, the
effects of EMHD become important if the following two
conditions are satisfied: vCe.nei and u.s ,a , where s
and a are the sound and the Alfv́en velocities, respec-
tively.

The motions of an electron fluid become particularly
interesting when the plasma density is nonuniform. If
the plasma density varies in the z direction, the skin
effect becomes dependent on the direction of the cur-
rent (see Gordeev, Kingsep, and Rudakov, 1994). Fast
axisymmetric striations can be self-generated (Rudakov
and Sevast’yanov, 1996). The streamlines of the current
become wavy, with the axial wavelength of the order of
the shell thickness. This happens within a time that is
short compared to the time within which the ions would
react to the field perturbation (the ion background is
assumed to be steady).

An interesting and so far unresolved issue is that of
the influence of these fast phenomena on the quality of
the shell implosion and the development of slower insta-
bilities involving ion motion (in particular, the Rayleigh-
Taylor instability). In this respect, one should note that
the current perturbations discussed by Rudakov and
Sevast’yanov propagate along the axis with a velocity
approximately equal to u; therefore, although the instan-
taneous force acting on the ions is strongly z dependent,
an averaging that occurs because of the traveling nature
of these perturbations should make the average force z
independent and thus the possible seed for m50 hydro-
dynamic instability decreases.
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For a flute-type mode, with the wave vector orthogo-
nal to the magnetic field, even the presence of a strong
Hall effect does not change the k1/2 scaling of the growth
rate (Gordeev, 1999a, 1999b).

The electron flow at the boundary between the elec-
trode and the plasma is another important issue. At the
electrode surface the tangential component of the elec-
tric field vanishes, and the electron flow becomes almost
parallel to the wall. Weak collisions gradually shift elec-
trons in the direction of the wall. Because this (axial)
motion is slow (at weak collisions), the resistivity of the
transition layer becomes anomalously high. More details
on these issues can be found in the aforementioned sur-
vey of Gordeev, Kingsep, and Rudakov (1994). A 2D
effect in electron magnetohydrodynamics may lead to
increased plasma resistance (Esaulov and Sasorov,
1997).

D. Spontaneous generation of a magnetic field

In implosions of uniform gas loads, where a shock
wave propagates in front of the magnetic piston, there
exists a zone of highly ionized plasma behind the shock
but before the piston where the magnetic field is zero, at
least in the ideal case in which no stray early-time break-
downs occur at the beginning of the shot. It turns out
that, if the system does not possess perfect symmetry, a
high magnetic field can be spontaneously generated in
this zone. The mechanism we are referring to was iden-
tified a long time ago in conjunction with experiments
on laser plasma heating and is associated with noncol-
linearity of the gradients of electron temperature and
density (Stamper et al., 1971). When ¹n and ¹T are not
parallel, an electromotive force is generated in a plasma
that drives the current and produces a magnetic field.
This term should be added to the standard induction
equation, which acquires the form (Stamper et al., 1971)
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The first term on the right-hand side describes the con-
vection of the magnetic field with a plasma flow (line-
tying), the second term describes joule dissipation (in
the case of a uniform magnetic diffusivity, it reduces to a
diffusion term DM¹2B), and the last term is the thermo-
electromotive force. Noncollinearity of ¹n and ¹T in
the problem under consideration may emerge from
waviness of the piston caused, in turn, by the Rayleigh-
Taylor instability.

Let us neglect for the moment the ohmic losses (this is
equivalent to a statement that the skin depth is much
smaller than the spatial scale of the perturbations). Then
the maximum magnetic field is determined by balancing
the first and the third terms on the right hand side of Eq.
(7.20). Estimating the velocity of a plasma flow as a
sound velocity s, we find that, to within an order of mag-
nitude, B;T/es| , where | is a spatial scale of nonuni-
formities. The magnetic field will vary (randomly, if the
perturbations are random) at the scale |. Assuming that
one is dealing with an Ar plasma with a temperature of
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100 eV and Zeff;10, one finds that for |;0.5 mm, the
magnetic field is B;10 T. Under typical Z-pinch condi-
tions, this magnetic field does not lead to magnetization
of electrons, and vBetei remains less than 1. However,
this field will be compressed at later stages of the implo-
sion, when the shock wave has converged on the axis.
This happens if the resistive dissipation time is longer
than the compression time. In the opposite case, the
magnitude of the magnetic field will be considerably de-
creased. Estimates for the conditions of a particular ex-
periment can be made on the basis of Eq. (7.20). This
mechanism of magnetic-field generation was possibly
observed by Afonin and Murugov (1998).

Although this random field is usually small compared
to the pinch magnetic field, it may play a significant role
after the quasiequilibrium configuration is formed (Sec.
II) and necks develop. In particular, this random field
may prevent runaway electrons from being freely accel-
erated along the axis of the column (Sec. VII.B).

The other situation in which this mechanism for
magnetic-field generation may play a role is a blow-off
plasma filling the interior of the imploding shell. One
expects that this plasma will be strongly nonuniform and
that the conditions for the appearance of a thermal elec-
tromotive force will be thereby satisfied. The presence
of a random magnetic field will affect transport proper-
ties of the blow-off plasma.

VIII. APPLICATIONS OF FAST Z PINCHES

A. Radiation sources

1. Hard x rays

One of the traditional applications of fast Z pinches is
generation of short pulses of intense kilo-electron-volt
radiation, with the energy of the quanta up to 10 keV.
For such applications, one can use a wire array made of
some high-Z material (say, nickel) or an annular gas
puff of gases like Ar or Kr. If the parameters of the
pinch are properly chosen, a plasma with an electron
temperature of several hundred electron volts to over 1
keV can be formed, and excitation of the L or K shells
becomes feasible. A survey of studies in this area prior
to 1988 was published by Pereira and Davis (1988).

A rough optimization of the Z-pinch parameters for
the highest yield in the desired K or L transition can be
made based on the following arguments. The efficiency
of converting the magnetic energy into the kinetic en-
ergy of the imploding shell is determined by the condi-
tion P5Popt where P is a dimensionless parameter de-
fined by Eq. (2.4). As is clear from Eq. (2.4), for a given
pulse-power generator, i.e., for given values of Imax and
t, the product m̂r0

2 must be kept constant. This means
that the pinch mass m̂ and the initial pinch radius r0 can
be varied only subject to the constraint

m̂r0
25const. (8.1)

The kinetic energy per ion scales as the implosion veloc-
ity squared, i.e., as (r0 /t)2. The electrons acquire their
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energy from the ions, and the electron temperature
therefore correlates with (r0 /t)2. According to Eq.
(8.1), the heavier liners have smaller initial radii, i.e., the
electron temperature at stagnation decreases as the mass
of the liner increases. Eventually the electron tempera-
ture becomes insufficient to excite a certain K or L tran-
sition. Conversely, for liners with less mass (larger initial
radii), the kinetic energy per ion grows. At first sight,
this would seem to mean that the lighter liners are better
as sources of kilo-electron-volt x rays. However, if one
goes too far in this direction, the radiation yield starts to
decrease because the radiation power per unit volume
scales as the density squared and, at small masses, de-
creases. Because of this, the pinch plasma begins to ex-
pand and cool down before any substantial fraction of
the thermal energy gets converted into radiation. The
slower energy exchange between electrons and ions at
higher temperatures also acts in the same direction.
These two opposite trends—decrease of the electron
temperature at high masses, and decrease of the radia-
tion power at low masses—determine the optimum mass
of the imploding liner. At higher masses, self-absorption
may reduce the K-shell radiation yield (Apruzese et al.
1998). A more detailed discussion of these issues, to-
gether with supporting experimental information, can be
found in Pereira and Davis (1988), Thornhill, Whitney,
and Davis (1990), Deeney, LePell et al. (1993, 1994),
Deeney, McGurn, et al. (1997), Deeney, Nash et al.,
1998), and Whitney et al. (1990, 1994).

In recent experiments at the Z facility (Deeney, Nash,
et al., 1997), the energy radiated in the K-shell transi-
tions of Ti was well over a hundred kilojoules (Fig. 29).
Deeney, Peterson et al. (1998) showed that reducing the
height of the pinch from 2 to 0.75 cm did not change the
total radiation power or the radiation energy. As the
shortening of the pinch resulted in a decrease in the
pinch inductance and some increase in the pinch current,
the authors increased the mass per unit length to keep

FIG. 29. The measured currents and x-ray powers from shot
Z302, a 40-mm-diameter, 96-wire array with 20.3-mm-diameter
titanium wires. The load (solid) and MITL (dashed) currents
are shown, along with the total power (solid) and kilo-
electron-volt (dashed) x-ray powers (from Deeney et al.,
1999a, reprinted with kind permission of C. Deeney).



210 Ryutov, Derzon, and Matzen: The physics of fast Z pinches
the load match by keeping the parameter [Eq. (2.4)]
more or less constant. The possibility of increasing im-
plosion time from ;50 ns to ;170 ns by a proper in-
crease of the initial array radius and mass has been dem-
onstrated experimentally at the Saturn generator, with a
favorable effect on the radiated power (Deeney et al.,
1999b).

In real life, although a considerable fraction of the
kinetic energy can be converted to radiation upon stag-
nation, the plasma column still has sufficient pressure to
expand somewhat and to be compressed again by the
magnetic pressure. This process may explain the pres-
ence of a longer, lower-amplitude, and longer-
wavelength radiation pulse that follows the main peak
(Peterson et al., 1997, 1999). Another phenomenon that
may affect the final radiation yield is a short-circuiting of
the transmission lines later in the pulse (Giuliani et al.
1990).

The stability of a Z-pinch implosion is important for
efficient x-ray generation; it sets the minimum effective
size to which the pinch can be compressed. A more
stable implosion would allow one to increase the initial
pinch radius and to reduce the mass while still having
high density at stagnation (sufficient to radiate the ther-
mal energy before the pinch rebounds).

To obtain harder x rays, in the range of tens of kilo
electron volts, one could use an alternative approach
based on adiabatic compression of a hydrogen plasma
seeded with heavy impurities; the plasma temperature
could possibly be made as high as 10 keV, allowing ex-
citation of the K lines of such elements as Xe. We dis-
cuss this possibility in more detail at the end of Sec.
VIII.D.1.

2. Blackbody radiation

Fast Z pinches with high-atomic-number materials are
also used as a source of thermal radiation with a tem-
perature from tens of electron volts to ;200 eV (and, in
the future, over 300 eV). If the implosion occurs in the
center of a closed cavity (sometimes called a ‘‘hohl-
raum’’), the radiation from the pinch after several reflec-
tions from the walls, becomes almost blackbody radia-
tion (Matzen, 1997). The wall (and the radiation)
temperature can be roughly evaluated from the equation
Prad5(12a)AsT4, where Prad is the power radiated by
the pinch, A is the surface area of the cavity, and a is the
albedo of its walls. In experiments at the Saturn facility
at Sandia, the radiation temperatures were in the range
of 80 to 90 eV (Matzen, 1997; Matzen et al., 1999). In
experiments at the Z facility, temperatures in the range
of 120 to 140 eV (Porter, 1997) and, more recently, 155
610 eV (Matzen et al., 1999) have been obtained.

B. Studies of material properties under extreme conditions

Thermal radiation generated by the method just de-
scribed can be used to drive shock waves in various ma-
terials. By studying the shock velocity, one can gain in-
formation about the equations of state of the materials
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
under study. A typical geometry for such an experiment
is shown in Fig. 30 (Olson et al., 1997). Thermal radia-
tion causes ablation of the material from the inner side
of the sample, and the ablation pressure drives a shock
whose velocity can be measured according to its time of
arrival at the outer side of the sample. To be sure that
the radiation spectrum is indeed close to the black-body
spectrum [and therefore that the drive can be character-
ized by a single function T(t)], small cavities can be
attached to the main one in such a way (Fig. 31) that the
samples are protected from direct irradiation by the
pinch, and only radiation from the walls of the cavity
hits the surface of the sample (Matzen, 1997). Several
configurations have been proposed that increase the uni-
formity of the radiation on the sample under study.

The hohlraum technique has been successfully used to
study propagation of shocks in the materials that will be
used in ICF capsules (Olson et al., 1997) and to study
equations of state of metals with pressures of ;3 Mbars
(Branitskii et al., 1996). The same technique is widely
used in physics research with laser-driven hohlraums
where it has reached a high degree of sophistication. A
general survey of this approach can be found in Rosen

FIG. 30. Experimental arrangement used in 1997 studies of
shock-wave propagation (from Olson et al., 1997, reprinted
with kind permission of R. Olson): (a) the average shock ve-
locity measured by comparing the shock breakout times at two
steps; (b) continuous measurements of the shock velocity
made in a wedge sample.

FIG. 31. Sideview (above) and end-on view (below) of a con-
figuration with secondary hohlraums attached to the main one;
this eliminates the effect of a direct irradiation of the sample
by the pinch plasma.
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(1996). It has been successfully used for studies of the
structure of shock-compressed materials (Kalantar et al.,
1999), of hydrodynamic Rayleigh-Taylor and
Richtmyer-Meshkov instabilities with controlled initial
perturbations (Remington et al., 1997a, of the effects of
material strength on hydrodynamic phenomena (Kalan-
tar et al., 1997, Remington et al., 1997a), and for astro-
physical simulations (Remington et al., 1997b). Two ad-
vantages of Z-pinch-driven hohlraums is their larger size
and their considerably higher total radiation output
(centimeters vs millimeters, and hundreds of kilojoules
vs tens of kilojoules). This allows one to use thicker hy-
drodynamic packages, minimizing problems with radia-
tion preheat. Larger sample sizes and longer times will
also lead to better accuracy of the equation-of-state
measurements. Gasilov et al. (1995) suggested generat-
ing multimegabar shocks in a central rod (;1 cm long)
hit by an imploding liner. For yet larger experimental
volumes, other techniques, based on magnetic compres-
sion driven by chemical explosives, are feasible (Hawke
et al., 1972).

C. Generation of high magnetic fields

The use of an imploding cylindrical shell for generat-
ing high magnetic fields was suggested many years ago
(Fowler et al., 1960; Sakharov et al., 1965). High fields
are generated by compressing an initially modest axial
field within an imploding, conducting cylindrical shell.
Experiments with explosively driven systems were re-
ported in the 1960s (Fowler et al., 1960; Sakharov et al.,
1965), reaching magnetic fields as high as 20 MG. Implo-
sions of metal shells in the Z-pinch geometry were stud-
ied by Alikhanov et al. (1981); a maximum magnetic
field of 3.5 MG was obtained in a volume of a few tens
of cubic centimeters.

We present a qualitative consideration of the
magnetic-field compression in the Z-pinch setting, as-
suming that the thickness of the shell is negligibly small
and that the shell has a high conductivity. The condition
of conservation of the axial magnetic flux enclosed by
this plasma shell is

Bzr25Bz0r0
2, (8.2)

where Bz0 is the initial axial magnetic field. When the
convergence ratio is high enough, the final axial mag-
netic field can be considerably greater than the initial
one. Here we neglect edge effects of the type discussed
in Sec. II.D. This is correct if the length of the pinch is
greater than its radius.

The compression of the axial magnetic field can be
analyzed in a particularly straightforward fashion in the
reference case of a constant pinch current. In this case
the energy conservation law shows that at the point of
maximum compression, where the liner is at rest and its
kinetic energy is zero, the following relationship holds:
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where Bw is the azimuthal magnetic field at the surface
of the liner. At a convergence of C@1, one can neglect
the second term on the left-hand side of this equation.
One then finds that, at the stagnation point, the (axial)
magnetic field inside the liner is related to the (azi-
muthal) magnetic field of the pinch current by the equa-
tion

Bz5BwA2 ln C . (8.4)

Taking C520, one finds that the magnetic field inside
the liner can be made approximately 2.5 times higher
than the azimuthal Z-pinch field at the point of maxi-
mum compression. In other words, this scheme leads to
relatively modest enhancement of the internal field com-
pared to the external field that would be reached at the
same convergence ratio. Still, this factor is non-
negligible, especially because it is topologically more
convenient to use the magnetic field inside the shell for
studies of the interaction of superhigh fields with matter.

From Eqs. (8.2) and (8.4) one can see that the initial
axial magnetic field required to reach this state is Bz0
5Bw0A2 ln C/C, where Bw0 is the initial azimuthal mag-
netic field. Taking as an example Bw050.5 MG and a
modest convergence of C520, one finds that the initial
axial magnetic field should be ;60 kG, and the final
axial magnetic field will be 25 MG. Accounting for the
finite thickness of the imploding shell leads to somewhat
smaller enhancement factors, because part of the implo-
sion energy is spent on plasma heating and compression.
These and other pertinent effects have been discussed
by Felber, Liberman, and Velikovich (1985).

In experiments carried out during the last decade, an-
nular gas puffs have been used to produce conducting
imploding shells (Wessel et al., 1986; Baksht et al., 1987;
Felber, Malley, et al., 1988; Felber, Wessel, et al., 1988).
Magnetic fields in the range of 40 MG were reported by
Felber, Malley et al. (1988). In summary, an axial implo-
sion of the seed magnetic field is a proven way of reach-
ing an axial magnetic field a few times higher than the
azimuthal magnetic field at the stagnation point.

D. Controlled thermonuclear fusion

There are two significantly different ways for using
fast Z pinches for reaching controlled thermonucleus fu-
sion (CTF). The first is based on the direct shock and/or
adiabatic heating of an imploding DT plasma (possibly
nested inside a liner made of a heavier material). The
second is based on the generation of high-temperature
blackbody radiation in a collision of the liner with some
inner shell; the blackbody radiation then drives a spheri-
cal pellet in very much the same fashion as in the indi-
rectly driven laser fusion systems (for a survey of those
see Lindl, 1995). We discuss these two schemes in the
next two subsections.

As was mentioned in the Introduction, quasiequilib-
rium pinches (not the fast pinches that are the subject of
this survey) have also been considered as a potential
candidate for fusion reactors, but we shall not discuss
that approach here. Surveys of quasistatic pinches in
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conjunction with fusion applications have been pub-
lished by Haines (1982), Dangor (1986), and Robson
(1989, 1994).

A well-known difficulty with using fast Z pinches in a
future commercial fusion reactor is the considerable
neutron and thermomechanical damage that would be
suffered by the pulsed-power generator if the pinch
were not separated from the generator by a large
enough distance. A possible solution to this problem was
suggested by Robson (1989), who envisaged using two
long liquid-lithium jets that would serve as electrodes
for the Z pinch. Drake et al. (1996) considered another
technique that might be used if the energy to be deliv-
ered to the Z pinch were less than ;1 MJ per pulse. For
this case one could conceive of dropping miniature di-
ode assemblies, consisting of fusion targets and the nec-
essary circuitry, into the reactor chamber and energizing
them by a charged particle beam or even by a fast pro-
jectile (in this latter case, the assembly would have to
carry a seed magnetic field that would be compressed by
a fast projectile and drive the Z-pinch circuit).

The whole issue of standoff energy sources has not
been explored in any detail. It would therefore be pre-
mature to write off Z pinches as a prototype for a fusion
reactor solely on the basis of the absence of proven so-
lutions for the power-supply problem. In addition, even
if such solutions are not found, fast Z pinches can still be
very useful for the fusion program; they could provide a
relatively inexpensive demonstration of fusion ignition
in a variety of pulsed-power fusion applications.

1. Plasma heating by implosion

Let us consider implosions of thin shells made of a DT
mixture (see, for example, Nedoseev, 1991). Cryogenic
DT fiber arrays can serve as such shells. The lifetime t of
the hot plasma column formed at the stagnation point
will be of the order of rmin /vTi where rmin is the radius of
the column [related to the initial radius of the shell by
Eq. (1.1)], and vTi is the ion thermal velocity corre-
sponding to the temperature ;10 keV (i.e., vTi
;108 cm/s). The Lawson criterion reads

n~cm23!t~s!.Q•1014, (8.5)

where n is the DT plasma density and Q is the ratio of
the fusion energy to the thermal energy of the imploded
plasma (the gain factor). This condition can be rewritten
as W(J/cm).1031Q2/n(1/cm3), where W is the energy
per unit length of the plasma column. Even with a rela-
tively modest assumption with regard to the required
gain, Q;10, this condition means that one has to reach
a density level of ;1025 cm23 to keep the energy of the
plasma below 108 J/cm. According to Eq. (2.9), to reach
this energy, one would have to generate unrealistically
high pinch currents, ;109 A. On the other hand, in-
creasing the density in the imploded state above
1025 cm23 would require unrealistically high conver-
gence. A possible way of improving implosion stability
and, thereby, axial convergence was analyzed by Gol-
berg, Liberman, and Velikovich (1990), with the conclu-
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sion that a break-even requires a radial convergence of
;30, with an energy release in the range of hundreds of
megajoules/cm.

These observations point out the desirability of using
a heavier shell to confine the DT plasma near the stag-
nation point. In this case, however, another difficulty
surfaces: high electron thermal conductivity in the fusion
plasma. Because the thermal capacity of a heavy shell is
much greater than that of the fusion plasma it confines,
there will be heat losses from the DT plasma to the
confining shell. It turns out that this heat-loss mecha-
nism leads to approximately the same energy limitations
as discussed above and, for this reason, does not offer a
more realistic alternative.

Potentially, very high densities can be achieved in 3D
implosions with a linear convergence of ;30 (typical for
laser-driven fusion). The whole concept then becomes
similar to that of laser fusion, with the only difference
being that the implosion of the capsule is driven by mag-
netic pressure. In principle, almost spherically symmet-
ric implosions are feasible in the magnetic compression
scheme, despite the fact that the magnetic pressure can-
not be made spherically symmetric. This was demon-
strated in a multimegajoule explosively driven experi-
ment by Mokhov et al. (1979). More recently,
quasispherical implosions in the Z-pinch geometry have
been experimentally studied by Degnan et al. (1995). A
linear convergence ratio of ;6–7 was reached. It re-
mains, unclear however, whether the very fast, high-
convergence implosions needed to ignite the fuel in the
center of the capsule are actually feasible. This issue re-
quires further analysis.

One more school of thought (see, for example,
Yan’kov, 1991) pursues the detonation wave approach,
in which the nuclear burn wave would be ignited at
some point in a cylindrical column and would propagate
along the axis. The detonation could be ignited in a
‘‘neck’’ that could be deliberately produced at a certain
axial location. Linhart et al. (1994) considered even the
possibility of detonating a column of pure deuterium
(not a DT mixture) by imploding a short section filled
with DT. These schemes would give rise to very large
energy release per pulse, in the range of 1 GJ (approxi-
mately equivalent to 250 kg of high explosives). Strong
heating of a CH fiber plasma in the zone of a deliber-
ately created constriction was observed by Aranchuk
et al. (1997). Numerical simulations by Lindemuth
(1990) have shown spontaneous formation of hot spots
as a result of the development of a sausage instability in
cryogenic deuterium fibers. Alikhanov et al. (1984) ob-
served a spontaneous formation of 10 mm diameter
necks in gas-puff pinches with an initial radius of a few
centimeters. Some degree of control over the location of
hot spots has been demonstrated by Afonin et al. (1999)
in a single-wire pinch with axially varying initial compo-
sition.

Very high densities of DT fuel can be reached in the
so-called staged pinch (Rahman et al., 1995), where a
liner would implode onto a DT fiber situated near the
liner axis and carrying an initial axial current. Compres-
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sion of the azimuthal magnetic field has an interesting
feature; growth rate of the field becomes very high when
the outer liner comes close to the inner fiber. This is a
result of the fact that, when the gap between the fiber
and the liner is much greater than the fiber radius, the
fiber inductance depends on the gap only logarithmi-
cally, whereas with gaps smaller than the fiber radius,
the dependence is linear. Therefore the current in the
fiber experiences a very sharp rise, compresses the fiber,
and ignites the fusion fuel. Numerical examples pre-
sented by Rahman et al. (1995) show that the fiber den-
sity may reach values of ;1025 cm23 even at a relatively
modest current of 2 MA in an imploding liner with an
initial radius of 2 cm. However, this optimistic conclu-
sion is based on the assumption that the inner surface of
the liner remains cylindrical to within an accuracy of a
few micrometers at the time of maximum compression.
This does not seem easily achievable.

Probably the most straightforward approach, to
break-even if not to ignition is based on adiabatic com-
pression of a magnetized plasma. It has been understood
for many years that, to suppress heat losses from the
fusion plasma to the walls of the imploding liner, one
can use a relatively weak magnetic field, such that its
pressure is small compared to the plasma pressure, i.e.,

b[
2mp

B2 @1 (8.6)

is satisfied. This condition is, in fact, almost mandatory
because, if the inequality (8.6) reverses its sign, the liner
implosion becomes inefficient; the liner works predomi-
nantly against the magnetic pressure, and the liner en-
ergy is converted predominantly to the energy of the
compressed magnetic field, not the thermal energy of a
plasma.

As was pointed out by Drake et al. (1996), a 3D im-
plosion of the liner is preferable to a purely cylindrical
implosion. This can be understood in the following way:
the z component of the magnetic field inside the shell
scales as the square of the instantaneous convergence
C2; in other words, the magnetic pressure scales as C4:

pM5pM0C4, (8.7)

where pM0 is the magnetic pressure of the axial mag-
netic field at the beginning of the implosion. The pres-
sure p of a fully ionized hydrogen plasma scales as a
volume to the power (2 5

3), or p5p0C10/3 for a purely
cylindrical implosion. Clearly, the magnetic pressure
grows faster than the plasma pressure, and, at the high
convergence ratios that are of interest in this problem,
becomes greater than the plasma pressure. On the other
hand, for a 3D implosion, the scaling for the magnetic
pressure remains unchanged [Eq. (8.7)], while the
plasma pressure now scales as C5 and grows faster than
the magnetic pressure.

Plasma confinement under condition (8.6) was dis-
cussed many years ago by Budker and his co-workers
(see Alikhanov et al. 1967; Budker, 1973). In the context
of a laser-heated plasma it was discussed by Pashinin
and Prokhorov (1971). Since then, it has been studied in
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great detail both theoretically and numerically (see, for
example, Vekshtein, 1990). The general conclusion was
that, because the plasma pressure is almost constant
over the radius, the plasma density becomes very high
near the cold walls. The magnetic field is convected to
this high-density region from the plasma core, and a
‘‘cushion’’ of very high magnetic field is formed near the
walls. At moderate plasma betas [see Eq. (8.6) for the
definition of beta], below 10–20, the resulting confine-
ment of the hot plasma core proves to be quite satisfac-
tory; the confinement time exceeds tens of the Bohm
confinement time. At the high densities typical of the
system under consideration, this confinement time does
not substantially limit the plasma gain (see Drake et al.,
1996, for more details). This concept is sometimes re-
ferred to as magnetized target fusion (MTF; Lindemuth
and Kirkpatrick, 1983). A high-energy (many tens of
megajoules) variant of this system is the MAGO device
under study at Los Alamos National Laboratory and the
All-Russian Scientific Research Institute of Experimen-
tal Physics (Lindemuth et al., 1996).

Among magnetic configurations that could be im-
ploded are the field-reversed configuration (FRC), the
spheromak, and the diffuse Z pinch. Figure 32 shows an
FRC nested inside the liner. To make the implosion
three dimensional, it was suggested that the liner mass
density vary over the length, with a maximum density
near the equatorial plane (see Alikhanov et al., 1977).
The liner would then be squeezed near the ends faster
than near the equator, and the FRC would be com-
pressed both axially and radially. What is yet to be
proven in this approach is the formation of a field-
reversed configuration suitable for the subsequent com-
pression. Experience here is limited to relatively large
(tens of centimeters in diameter) FRC’s with a plasma
with a density of ;1015 cm23. Preliminary scaling analy-
sis (Ryutov, 1997) shows that creation of a much smaller
(1–2 cm diameter) FRC with a plasma density
;1018 cm23 and temperature ;100 eV is feasible.

In Drake et al. (1996) this scheme has been analyzed
for relatively slow (1–2 ms implosions of heavy (at least
a few grams) liners that could be driven by relatively
simple condenser banks. The conclusion was reached
that a 10-keV DT plasma under break-even conditions
could be formed at as low a plasma energy content as
;100 kJ. No analyses have been made with regard to the
potentials of this scheme with much lighter liners and
faster drivers, like those used in the Z facility.

Note that, if seeded with heavier impurities, this

FIG. 32. A field-reversed configuration nested inside the liner
with axially varying thickness of the walls.
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plasma could serve as a high-power source of hard x
rays. If the atomic number of the impurities is chosen in
such a way that they are completely stripped at 10 keV,
one can generate a smooth bremsstrahlung spectrum,
corresponding to a temperature of ;10 keV. If the im-
purities are heavy (like Xe), then a considerable fraction
of energy could be radiated in K-shell lines with energies
;20 keV and higher (Toor and Ryutov, 1997).

2. Generation of blackbody radiation to drive a fusion capsule

A very different way of using Z pinches for fusion
(Smirnov, 1991; Matzen, 1997; and also earlier unpub-
lished reports from both Sandia and Troitsk) resembles
indirect-drive laser inertial confinement fusion (ICF); a
nice qualitative discussion of this application of fast Z
pinches has recently been published by G. Yonas (1998).
When an imploding liner collides with an inner shell
situated near the axis, the impact energy is converted
into thermal energy in both shells. If the imploding
plasma shell is sufficiently thick, it will trap the radiation
produced by the stagnation (Fig. 33). In analogy with the
terminology used in laser fusion, the interior of a shell
filled with (almost) blackbody radiation is called a
‘‘hohlraum.’’ To emphasize the fact that the walls of the
hohlraum continue to implode after the impact between
the two shells, the term ‘‘flying radiation case’’ or ‘‘dy-
namic hohlraum’’ is often used (Matzen, 1997; Brownell
et al. 1998, Matzen et al., 1999). A spherically symmetric
capsule filled with DT fuel is situated in the center of the
dynamic hohlraum. Thermal radiation causes the abla-
tion and implosion of the surface layers of the capsule.
We shall not discuss here issues of the capsule’s design
and its implosion physics (see Olson et al., 1999, and
Hammer et al., 1999, for capsule designs). Instead we
shall focus on some issues related to Z-pinch-driven
hohlraums.

The radiation temperatures required for ignition of an
indirect-drive DT capsule are around 250 eV for designs

FIG. 33. Schematic of a dynamic hohlraum experiment.
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similar to ICF capsules driven by lasers (Lindl, 1995).
The temperatures currently reached in Z-pinch experi-
ments are in the range of 130 to 180 eV (see, for ex-
ample, Nash et al. 1997b, 1999; Leeper et al. 1998).
These ICF-ignition and high-yield capsules also require
precise pulse shaping and a high degree of radiation
symmetry.

The temporal dependence of the radiation flux can be
controlled by adjusting the shape of the inner and/or
outer shells. For example, the configuration shown in
Fig. 34(a) will produce a long ‘‘pedestal’’ caused by the
interaction of the ends of the two shells, followed by a
sharp pulse produced during the impact of the central,
almost parallel, parts of the shells. The minimum attain-
able duration of the impact (and, accordingly, the maxi-
mum possible radiation flux) is determined by the thick-
ness of the two shells at the time of impact. In the
overall context of pulse shaping and radiation symmetry,
the importance of eliminating gross hydrodynamic insta-
bilities becomes quite clear.

For these ICF capsules to reach ignition, the radiation
field at the location of the capsule ablating surface
should be spherically symmetric to within an accuracy of
;1% in the lower azimuthal modes. Because the
Z-pinch geometry does not possess this symmetry, the
size of the capsule should be a small fraction of the size
of the radius of the dynamic hohlraum. One method of
isolating the radiation source from the capsule is to fill
the dynamic hohlraum with a low-atomic-number, low-
density material that creates a large plasma pressure but
is relatively thin to the radiation produced by stagnation
of the imploding plasma. A more radical solution of this
problem is an overall spherical symmetrization of the
implosion, as shown in Fig. 34(b). Although the problem
of irradiation symmetry is difficult, it does not appear to
be insurmountable. Detailed studies of laser-driven
hohlraums have shown that one can reach quite satisfac-
tory results by a proper shaping of the hohlraum, by
using optimally placed passive screens, and by reducing
the pellet diameter to approximately one third of the
diameter of the hohlraum.

An attractive feature of Z-pinch-driven dynamic hohl-
raums is the relatively low cost of the pulsed-power gen-
erator and the high total impact energies (in the range of
a few hundred kilojoules to a few megajoules) available
in the existing devices like Z, Saturn, or Angara-5.

In addition to radiation temperature, pulse shaping,
and symmetry, several other issues should be considered
in the design of dynamic hohlraums. We mention some
of them here without attempting serious analysis:

(1) The ablation surface of the capsule must be iso-
lated from the imploding liners and the shocks
that they generate; if the hohlraum is filled with a
foam, the shock wave excited in the foam by the
impact with the liner must not interact with the
ablation surface of the capsule before the capsule
implodes. In the case of an empty hohlraum, low-
density ejecta can be of some concern if they
reach the capsule before the ablation process is
well established.
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FIG. 34. Configurations of the dynamic hohlraum: (a) A configuration with a shaped inner shell. A hyperboloid-of-revolution
shape can be made from straight wires, by tilting them by the same angle with respect to the axis of revolution. (b) A quasispheri-
cal implosion. This type of implosion can also be generated from the initially cylindrical wire array with axially varying linear mass
density. The axial variation of the mass can be reached by a controlled surface-deposition technique; the substrate will be an
initially uniform wire array.
(2) Some low-density blow-off plasma will almost cer-
tainly be present inside of an empty hohlraum
during the early phase of the Z-pinch implosion
(its source can be the radiation preheat during the
run-in phase or inductive splitting of the drive
current). By itself, because of its low density, it
will probably have no significant effect on the pel-
let. However, if the axial electric field penetrates
through the liner, it could generate particle beams
in this low-density plasma, which might then
cause considerable preheating of the pellet and
violate its spherical symmetry.

(3) A magnetic field may be generated inside the
plasma filling the hohlraum, which may affect pel-
let performance.

All these issues are in a relatively early stage of as-
sessment. On the other hand, none of them seems to
pose insurmountable problems for the dynamic-
hohlraum concept in general. In particular, one could
eliminate most of the problems by using geometries of
the type shown in Fig. 35, in which the Z-pinch implo-
sions occur at the ends of the main hohlraum (Matzen,
1997).

E. Other possible applications

In some modes of operation, especially if the neck
formation could be triggered in a controlled way, Z
pinches could serve as sources of high-energy, high-
intensity beams of charged particles, in particular, pro-
tons and deuterons. Such beams could then be used for
the generation of short-lived isotopes. The proton-rich
isotopes required for positron emission tomography for
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
medical purposes could possibly be produced (see Daw-
son, 1993, for a discussion of a different method of pro-
ducing these isotopes). The beam could also be used for
measuring nuclear cross sections of very short-lived iso-
topes.

Rudakov et al. (1991) and Kingsep et al. (1997) have
discussed the possibility of creating a very-high-power
flux to the electrodes by adiabatic compression of a
plasma by an imploding liner. The heat losses to the
liner would be suppressed by an axial magnetic field.
Amplification of the flux to the electrodes would occur
because of a very strong dependence of the electron
thermal diffusivity on the electron temperature (xe
}Te

5/2 ; see Huba, 1994).
The fact that a Z pinch produces high-intensity radia-

tion with a spectrum that is at least crudely controllable

FIG. 35. A static hohlraum with two Z-pinch radiation sources
situated at the ends.
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can be used for generating population inversion in vari-
ous active media. Porter, Spielman, Matzen, et al.
(1992), and Porter, Spielman, Vargas, and Matzen
(1992) have successfully used the radiation of a sodium
wire array to pump a Ne gas cell and create a population
inversion for transitions with wavelengths near 11 Å.

Z pinches have already been used for collecting infor-
mation that could be of interest in astrophysics. Very
encouraging results have been achieved in studies of the
opacities of iron plasma (Springer et al. 1997). Interest-
ing possibilities exist for simulating various high-energy-
density astrophysical phenomena—for example, the for-
mation of high-energy intergalactic jets. For this
purpose, jets of the type shown in Fig. 8 could be made,
and their propagation detected through the gas or
plasma filling the space beyond the anode surface.

IX. SUMMARY AND A GLANCE TO THE FUTURE

The fast Z pinch is a fascinating object, whose behav-
ior is determined by a variety of processes of magneto-
hydrodynamics, radiative transport, atomic physics,
plasma microinstabilities, and beam physics. A particu-
lar ‘‘shot’’ is formed by a chain of inseparable stages,
from the current initiation and fast early-time instabili-
ties, through the run-in phase where hydrodynamic in-
stabilities distort and broaden the imploding shell, to a
final on-axis stagnation, accompanied by a burst of in-
tense radiation, possible formation of a transitional qua-
siequilibrium configuration, and, sometimes, disruption
of the plasma column and the generation of fast par-
ticles. The Z pinch is to a high degree a self-organized
object, for which a change of a single input parameter
may trigger a long chain of tightly interwoven processes
occuring on various temporal and spatial scales and
leading to an outcome very different from simple
‘‘mechanistic’’ predictions.

We believe that all the pieces of physics that are im-
portant for Z-pinch performance have been identified in
this survey. Theory and simulations correctly describe
many aspects of these phenomena. In particular, the
gross dynamics of implosions of wire arrays is nicely pre-
dicted by one-dimensional hydrodynamic simulations,
which provide a correct value for the time of a pinch
collapse on axis (or on the inner cylinder). On the other
hand, it is still difficult to predict, based on first prin-
ciples, the temporal evolution of the thickness of the
shell and the experimentally observed shape of the ra-
diation pulse (although, by playing with a few adjustable
parameters, one can reach a reasonable agreement). In
addition, experimental information on the development
of hydrodynamic perturbations during the run-in phase
is relatively sparse. Although the key physics phenom-
ena have probably already been identified, their some-
times subtle interplay still requires a much better under-
standing.

One area where experimental information is almost
nonexistent is the direct detection of microturbulence
that may be responsible for the anomalous resistance
and other effects. Any measurements of this kind are
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particularly difficult at large facilities, where the huge
energy release in the diode region requires heavy shield-
ing and forces one to locate the diagnostics equipment at
large distances from the pinch area. In such a situation,
indirect information can probably be used to detect
anomalous plasma resistance. If it is actually present,
then one can expect a considerable axial electric field to
exist inside the empty imploding shell, leading to gen-
eration of electron beams early in the pulse. Another
way of making indirect measurements is to change the
composition of the pinch material. For instance, varying
the relative amount of a light (say, deuterium) compo-
nent may considerably affect microturbulence and may
interfere with the phenomena of electron magnetohy-
drodynamics. The effects of electron magnetohydrody-
namics can be controlled to certain extent by a weak
axial magnetic field that would lift the restriction associ-
ated with current flow across the field lines in the outer
part of the pinch. The present survey contains some in-
formation and references necessary for the planning of
such dedicated experiments, which seem to be quite im-
portant. They would allow one to define the parameter
domain in which fast Z pinches are governed by stan-
dard MHD equations, and would establish the signifi-
cance (or insignificance) of the anomalies outside that
domain. Smaller university-scale facilities (of the type
described by Bauer et al., 1997 and Haines, 1997), where
one can study specific phenomena in a more benign en-
vironment, can also be of great help.

Previous advances in fast-Z-pinch physics were made
in direct correlation with progress in pulsed-power tech-
nology; a higher pinch current has always led to a con-
siderable increase in the maximum kinetic energy of the
imploding liner and maximum radiation power. A good
recent example is the progress made in the transition
from the Saturn facility to the Z facility. The current
pulsewidth was increased by over a factor of 2 (from
;50 to ;110 ns) and the current was increased by a
factor of ;2.5 (from approximately 7 to approximately
18 MA), resulting in an increase in the radiated energy
of a factor of ;5 and an x-ray power increase of a factor
of ;3 (see Matzen, 1997). Therefore it is interesting to
conjecture what one can expect from a further increase
in the pinch current if new facilities become available
(see for example, the discussion of a 60-MA generator
X-1 by Leeper et al., 1998 and of a 50-MA-range facility
based on inductive energy storage by Azizov et al.,
1998). In the discussion that follows, we assume that the
current can be represented as

I5Imax f~ t/t!, (9.1)

where f is some given bell-shaped function with a maxi-
mum equal to 1; in other words, we assume that the
shape of the current wave form does not change, but
only scaling factors over the horizontal (t) and vertical
(Imax) axes, where t is a pulse width. For discharges with
similar current wave forms, the optimum set of param-
eters is related by Eq. (2.4):
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mImax
2 t2

4pm̂r0
2 5P5const. (9.2)

Provided the parameter P is kept constant, the time-
histories of the pinch radius are similar for similar cur-
rent wave forms [i.e., for the same function f in Eq.
(9.1)]. One expects that, if the shell thickness h is deter-
mined by the hydrodynamic instability, then the thick-
nesses of two shells with the same value of the param-
eter P will also have similar time-histories, i.e., the shell
thickness will be proportional to r0 times some function
g(t/t), identical for two systems with similar current
wave forms. This would also mean that, in two implo-
sions with the same function f and the same P, the at-
tainable convergence Cmax will be the same.

The velocity of the shell scales as r0 /t :

v;r0 /t . (9.3)

According to Eq. (9.2), this means that the kinetic en-
ergy of the shell (per unit length) at the instant of on-
axis collapse scales as Imax

2 :

Wkin}Imax
2 . (9.4)

Remarkably, the radius, mass, and implosion time do
not enter this relationship. The maximum power Q (per
unit length) that can be released in the stagnation is of
the order of

Q;Wkin~v/h ! (9.5)

where h is a shell thickness at the instant of stagnation.
For similar implosions, h scales as r0 . Therefore, accord-
ing to Eq. (9.3),

Q}Imax
2 /t . (9.6)

The initial radius of the pinch and the mass m̂ do not
enter this equation (provided the parameter P is kept
constant). Equations (9.4) and (9.6) provide a rationale
for increasing the current in the generators used to feed
the pinch discharge; both the maximum attainable im-
plosion energy and the maximum power scale as Imax

2 .
They also show that the maximum power is inversely
proportional to the current pulse width.

Some additional constraints on the parameters of sys-
tems with a higher current may stem from the possible
breakdown of the applicability conditions of the hydro-
dynamic description of the system. In particular, at
higher currents one may enter the parameter domain in
which the relative velocity of electrons and ions consid-
erably exceeds the ion thermal velocity, triggering the
onset of anomalous resistivity and increasing Ohmic
losses during the implosion phase. The relative velocity
u of electrons and ions scales (for the liners made of the
same material) as I0 /m̂ [see Eq. (7.1)]. The plasma tem-
perature during the implosion of liners of heavy materi-
als is not sensitive to the other parameters of the system
and is in the range of 30 to 40 eV (i.e., the ion thermal
speed is essentially constant). For a tungsten liner with
T540 eV and Zeff56, one finds that the constraint u
,4vTi [Eq. (7.5)] can be rewritten as
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Imax~MA!

m̂~mg/cm!
,10. (9.7)

The electron magnetization parameter vCetei at a
constant temperature (characteristic of the run-in
phase), and for liners made of the same material, scales
as I0r0 /m̂ . In implosions of tungsten wire arrays at the
Z facility (Imax520 MA, m̂52 mg/cm, r052 cm), the
magnetization parameter is ;0.5. Accordingly, the con-
dition that this parameter remains less than 1 can be
presented as

Imax~MA!r0~cm!

m̂~mg/cm!
,40. (9.8)

It is not obvious that violation of conditions (9.7) and
(9.8) will necessarily lead to any catastrophic conse-
quences. Still, to remain in the domain where a rela-
tively simple hydrodynamic description is valid and
where successful experiments at the existing devices Z
and Saturn have been carried out, it is probably reason-
able, in the planning of future experiments, to take into
account constraints (9.7) and (9.8). Figure 36 shows the
split of the parameter domain by these constraints for
Imax520 MA, t5100 ms [Fig. 36(a)] and Imax560 MA,
t5150 ns [Fig. 36(b)].

At higher currents, constraints on the dimensions of
the diode assembly may become important. If the mag-
nitude of the surface current in a magnetically insulated
transmission line (MITL) is too high, an explosion of the
skin layer in the line may occur within the pulse dura-
tion, resulting in greater Joule heating losses in the line.
The surface current in an MITL scales as the current
divided by the diode radius. To keep this current below
its critical value, one would have to increase the diode
radius proportionally to the current. An increase in the
radius of the return current conductor should be accom-
panied by a proportional increase in the initial pinch
radius (to maintain the parasitic inductances at a low
level). Therefore one concludes that the parameter
Imax /r0 should remain below some critical level. Taking
this value from the current experiment at the Z facility,
we obtain one more constraint on the parameters of an
experiment with a higher current:

Imax~MA!

r0~cm!
,15. (9.9)

An inspection of Fig. 36(b) reveals that there is a
broad area in the parameter space in which a Z pinch
with a current several times higher than the currently
attained level of 20 MA can operate with the high effi-
ciency characteristic of the existing experiments. Taking
as an example an operational point m̂510 mg/cm in Fig.
36(b), one finds that the optimum radius is approxi-
mately 4 cm. With the assumed pulse width of 150 ns,
this would give an implosion velocity only 30% higher
than in the current experiments. This is beneficial in the
sense that collisional relaxation times will remain short
and no further deviations from local thermodynamic
equilibrium than in current experiments will occur. At
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FIG. 36. Parameter space for fast Z pinches: (a) Imax520 MA, t5100 ns; (b) Imax560 MA, t5150 ns. Shaded area represents the
domain where conditions (9.7)–(9.9) are satisfied. The bold line corresponds to Eq. (9.2) with
@Imax(MA)#2@t(ns)#2/m̂(mg/cm)@r0(cm)#2553105 (a typical value for the current experiments).
the same time, the total liner energy will increase by a
factor of 9, and the power will increase by a factor of 6.

Reaching a higher current may be interesting not only
as a means for generating higher radiation power or a
higher temperature in a dynamic hohlraum but also for a
range of problems of more general interest. In particu-
lar, it is worth noting that the currently achieved current
is only several times less than the so-called proton Al-
fvén current,

IpA[
2pmpc

em
530 MA. (9.10)

At currents exceeding IpA , the gyroradius of a subrela-
tivistic proton becomes smaller than the radius of the
current channel. The attainment of this current may
bring about some interesting new phenomena in the
generation of high-energy ion beams at the stagnation
phase (Sec. VII.B). This may be of great value for better
understanding the mechanism of the generation of cos-
mic rays.

In summary, during the past decade, the physics of
fast Z pinches has made significant progress, both in
terms of pinch parameters attained in experiments at
large facilities and in the identification of key physics
issues governing pinch phenomena. In the coming years,
one can expect further progress related to (1) develop-
ment of diagnostic instrumentation; (2) dedicated ex-
periments at smaller, university-scale facilities; (3) ad-
vances in computer simulations; and (4) development of
schemes for mitigation of the most dangerous instabili-
ties. Fast Z pinches will continue to play an important
role as the sources of kilo-electron-volt radiation, as
drivers for fusion-related experiments, and as sources of
information on material properties at extreme condi-
tions. With the development of better means of control
of the neck formation at the point of a maximum com-
pression, new possibilities can open for generating high-
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
current beams of heavy ions. Fast Z pinches may also
provide important insights into the mechanisms of astro-
physical phenomena.
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