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This review discusses progress in efficient solvers which have as their foundation a representation in
real space, either through finite-difference or finite-element formulations. The relationship of
real-space approaches to linear-scaling electrostatics and electronic structure methods is first
discussed. Then the basic aspects of real-space representations are presented. Multigrid techniques for
solving the discretized problems are covered; these numerical schemes allow for highly efficient
solution of the grid-based equations. Applications to problems in electrostatics are discussed, in
particular, numerical solutions of Poisson and Poisson-Boltzmann equations. Next, methods for
solving self-consistent eigenvalue problems in real space are presented; these techniques have been
extensively applied to solutions of the Hartree-Fock and Kohn-Sham equations of electronic
structure, and to eigenvalue problems arising in semiconductor and polymer physics. Finally,
real-space methods have found recent application in computations of optical response and excited
states in time-dependent density-functional theory, and these computational developments are
summarized. Multiscale solvers are competitive with the most efficient available plane-wave
techniques in terms of the number of self-consistency steps required to reach the ground state, and
they require less work in each self-consistency update on a uniform grid. Besides excellent efficiencies,
the decided advantages of the real-space multiscale approach are (1) the near-locality of each function
update, (2) the ability to handle global eigenfunction constraints and potential updates on coarse
levels, and (3) the ability to incorporate adaptive local mesh refinements without loss of optimal
multigrid efficiencies.
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I. INTRODUCTION

The last decade has witnessed a proliferation in meth-
odologies for numerically solving large-scale problems
in electrostatics and electronic structure. The rapid
growth has been driven by several factors. First, theoret-
ical advances in the understanding of localization prop-
erties of electronic systems have justified at a fundamen-
tal level approaches that utilize localized density
matrices or orbitals in their formulation (Kohn, 1996;
Ismail-Beigi and Arias, 1998; Goedecker, 1999). Second,
a wide variety of computational methods have exploited
that physical locality, leading to linear scaling of the
computing time with system size (Goedecker, 1999).
Third, general algorithms for solving electrostatics and
eigenvalue problems have been improved or newly de-
veloped, including particle-mesh methods (Hockney and
Eastwood, 1988; Darden et al., 1993; Pollock and Glosli,
1996), fast-multipole approaches (Greengard, 1994),
multigrid techniques (Brandt, 1977, 1982, 1984;
Hackbusch, 1985), and Krylov subspace and related al-
gorithms (Booten and van der Vorst, 1996). Last, and
1041/72(4)/1041(40)/$23.00 ©2000 The American Physical Society
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perhaps not least, the ready availability of very fast pro-
cessors for low cost has allowed for quantum modeling
of systems of unprecedented size. These calculations can
be performed on workstations or workstation clusters,
thus creating opportunities for a wide range of research-
ers in fields both inside and outside of computational
physics and chemistry (Bernholc, 1999). Several mono-
graphs and collections of reviews illustrate the great va-
riety of problems recently addressed with electrostatics
and electronic structure methods (Gross and Dreizler,
1994; Bicout and Field, 1996; Seminario, 1996; Spring-
borg, 1997; Banci and Comba, 1997; Von Rague
Schleyer, 1998; Jensen, 1999; Hummer and Pratt, 1999).

This review examines one subset of these new compu-
tational methods, namely real-space techniques. Real-
space methods can be loosely categorized as one of
three types: finite differences (FD), finite elements (FE),
or wavelets. All three lead to structured, very sparse
matrix representations of the underlying differential
equations on meshes in real space. Applications of
wavelets in electronic structure calculations have been
thoroughly reviewed recently (Arias, 1999) and will
therefore not be addressed here. This article discusses
the fundamentals of FD and FE solutions of Poisson and
nonlinear Poisson-Boltzmann equations in electrostatics
and self-consistent eigenvalue problems in electronic
structure. As implied in the title, the primary focus is on
calculations in density-functional theory (DFT); real-
space methods are in no way limited to DFT, but since
DFT calculations comprise a dominant theme in modern
electrostatics and electronic structure, the discussion
here will mainly be restricted to this particular theoreti-
cal approach.

Consider a physical system for which local approaches
such as real-space methods are appropriate: a transition-
metal ion bound to several ligands embedded in a pro-
tein. These systems are of significance in a wide range of
biochemical mechanisms (Banci and Comba, 1997).
Treating the entire system with ab initio methods is pres-
ently impossible. However, if the primary interest is in
the nature of the bonding structure and electronic states
of the transition-metal ion, one can imagine a three-tier
approach (Fig. 1). The central region, including the
metal ion and the ligands, is treated with an accurate
quantum method such as DFT. A second neighboring
shell is represented quantum mechanically but is not al-
lowed to change during self-consistency iterations. The
wave functions in the central zone must be orthogonal-
ized to the fixed orbitals in the second region. Finally,
the very distant portions of the protein are fixed in space
and treated classically; the main factors to include from
the far locations are the electrostatic field from charged
or partially charged groups on the protein and the re-
sponse of the solvent (typically treated as a dielectric
continuum). Real-space methods provide a helpful lan-
guage for representing such a problem. The real-space
grid can be refined to account for the high resolution
necessary around the metal ion and can be adjusted for
a coarser treatment further away. There is clearly no
need to allow the metal and ligand orbitals to extend far
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
from the central zone, so a localized representation is
advantageous. Also, the electrostatic potential can be
generated over the entire domain (quantum, classical,
and solvent zones) with a single real-space solver with-
out requiring special techniques for matching conditions
in the various regions. The same ideas could be applied
to defects in a covalent solid or impurity atoms in a
cluster.

In order to place the real-space methods in context,
we first briefly examine other computational ap-
proaches. The plane-wave pseudopotential method has
proven to be a powerful technique for locating the elec-
tronic ground state for many-particle systems in con-
densed phases (Payne et al., 1992). In this method the
orbitals are expanded in the nonlocal plane-wave basis.
The core states are removed via pseudopotential meth-
ods which allow for relatively smooth valence functions
in the core region even for first-row and transition ele-
ments (Vanderbilt, 1990). Therefore a reasonable num-
ber of plane waves can be used to represent accurately
most elements important for materials simulation.
Strengths of this method include the use of efficient fast
Fourier transform (FFT) techniques for updates of the
orbitals and electrostatic potentials, lack of dependence
of the basis on atom positions, and the rigorous control
of numerical convergence of the approximation with de-
crease in wavelength of the highest Fourier mode. Algo-
rithmic advances have led to excellent convergence
characteristics of the method in terms of the number of
required self-consistency steps (Payne et al., 1992; Hut-
ter et al., 1994; Kresse and Furthmüller, 1996); only 5–10
self-consistency iterations are required to obtain tight
convergence of the total energy, even for metals.

In spite of the numerous advantages of this approach,
there are restrictions centered on the nonlocal basis set.

FIG. 1. Schematic diagram for real-space treatment of a
transition-metal ion in a protein. The metal ion is labeled M,
and the ligands are labeled L1–4. The electronic structure is
treated self-consistently in the QM1 zone, while the orbitals
are fixed in QM2. The fixed charges on the protein are located
in the CM region. The solvent (typically water) may be in-
cluded via a continuum dielectric model in the S zone.
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Even with the advances in pseudopotential methods,
strong variations in the potential occur in the core re-
gions (especially for first-row and transition elements),
and local refinements would allow for smaller effective
energy cutoffs away from the nuclei. This issue has been
addressed by the development of adaptive-coordinate
plane-wave methods (Gygi, 1993). If any information is
required concerning the inner-shell electrons, plane-
wave methods suffer severe difficulties. Of course such
states can be represented with a sufficient number of
plane waves (Bellaiche and Kunc, 1997), but the short-
wavelength modes required to build in the rapidly vary-
ing local structure extend over the entire domain to por-
tions of the system where such resolution is not
necessary. Also, for localized systems like molecules,
clusters, or surfaces, nontrivial effort is expended to re-
produce the vacuum accurately; the zero-density regions
must be of significant size in order to minimize spurious
effects in a supercell representation. In addition,
charged systems create technical difficulties, since a uni-
form neutralizing background needs to be properly
added and subtracted in computations of total energies.
Last, without special efforts to utilize localized-orbital
representations, the wave-function orthogonality step
scales as N3, where N is the number of electrons.

In quantum chemistry, localized basis sets built from
either Slater-type orbitals or Gaussian functions have
predominated in the description of atoms and molecules
(Szabo and Ostlund, 1989; Jensen, 1999). The molecular
orbitals are constructed from linear combinations of the
atomic orbitals (LCAO’s). An accurate representation
can be obtained with fewer than 30 Gaussians for a first-
row atom. In relation to plane-wave expansions, the lo-
calized nature of these basis functions is more in line
with chemical concepts. With Slater-type orbitals or
other numerical orbitals, the multicenter integrals in the
Hamiltonian must be evaluated numerically, while with
a Gaussian basis, the Coulomb integrals are available
analytically. The price for using Gaussians is that more
basis functions are required to describe the electron
states accurately, since they do not exhibit the correct
behavior at either small or large distances from the nu-
clei. Techniques such as direct inversion in the iterative
subspace (DIIS) have been developed to significantly ac-
celerate the convergence behavior of basis-set self-
consistent electronic structure methods (Pulay, 1980,
1982; Hamilton and Pulay, 1986).1 The LCAO methods
have led to a dramatic growth in accurate calculations
on molecules with up to tens of atoms. It is now com-
mon to see papers devoted to detailed comparisons of
experimental results and electronic structure calcula-
tions on systems with more than one hundred electrons
(Rodriguez et al., 1998). Often in basis-set calcula-
tions, care must be taken to account for basis-set
superposition errors which arise due to overlap of non-

1One must be careful, however, to properly initialize the or-
bitals in the DIIS procedure. See Kresse and Furthmüller
(1996).
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orthogonal atom centered functions for composite sys-
tems. Linear dependence is also a problem for very large
basis sets chosen to minimize the errors. These factors
lead to difficulty in obtaining the basis-set limit for a
given level of theory.2 The scaling of basis-set methods
can be severe, but recent developments (see Sec. III)
have brought the scaling down to linear for large sys-
tems.

With the successes of plane-wave and quantum-
chemical basis functions, what is the motivation to
search for alternative algorithms? Ten years ago, a re-
view article discussing the relevance of Gaussian basis-
set calculations for lattice gauge theories argued for the
utilization of Gaussian basis sets in place of grids (Wil-
son, 1990). The author stated (concerning the growth of
quantum chemistry): ‘‘The most important algorithmic
advance was the introduction of systematic algorithms
using analytic basis functions in place of numerical grids,
first proposed in the early 1950s.’’ The point was illus-
trated by examination of core states for carbon: only a
few Gaussians are required (with variable exponential
parameters), while up to 83106 grid points are neces-
sary for the same energy resolution on a uniform mesh.
What developments have occurred over the last decade
that could begin to overcome such a large disparity in
computational effort?

This review seeks to answer the above question by
summarizing recent research on real-space mesh tech-
niques. To locate them in relation to plane-wave expan-
sions and LCAO methods, some general features are
introduced here and further developed throughout the
article. The representation of the physical problems is
simple: the potential operator is diagonal in coordinate
space and the Laplacian is nearly local, depending on
the order of the approximation. The near locality makes
real-space methods well suited for incorporation into
linear-scaling approaches. It also allows for relatively
straightforward domain-decomposition parallel imple-
mentation. Finite or charged systems are easily handled.
With higher-order FD and FE approximations, the size
of the overall domain is substantially reduced from the
estimate above. Adaptive mesh refinements or coordi-
nate transformations can be employed to gain resolution
in local regions of space, further reducing the grid over-
head. Real-space pseudopotentials result in smooth va-
lence functions in the core region, again leading to
smaller required grids. As mentioned above, the grid-
based matrix representation produces structured and
highly banded matrices, in contrast to plane-wave and
LCAO expansions (Payne et al., 1992; Challacombe,
2000). These matrix equations can be rapidly solved with
efficient multiscale (or other preconditioning)
techniques. However, while more banded matrices than
in the LCAO representations are produced, the overall

2Moncrieff and Wilson (1993) presented a comparative analy-
sis of FD, FE, and Gaussian basis-set computations for first-
row diatomics to assess their relationship.
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dimension of the Hamiltonian is substantially higher.3

In a sense, the real-space methods are closely linked to
plane-wave approaches: they are both ‘‘fully numerical’’
methods with one or at most a few parameters control-
ling the convergence of the approximation, for example
the grid spacing h or the wave vector of the highest
mode k .4 On the other hand, the LCAO methods
employ a better physical representation of the orbitals
(thus requiring fewer basis functions); attached to this
representation, however, are some of the problems
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
discussed above related to the art of constructing non-
orthogonal, atom- or bond-centered basis sets. The pur-
poses of this paper are (1) to provide a basic introduc-
tion to real-space computational techniques, (2) to
review their recent applications to chemical and physical
problems, and (3) to relate the methods to other com-
monly used numerical approaches in electrostatics and
electronic structure.

The numerical problems addressed in this review can
be categorized into four types in order of increasing
complexity:
¹2f~r!5? ; real-space Laplacian, ~1 !

¹2f~r!5f~r! ; Poisson, ~2 !

¹2f~r!5f~r,f! ; Poisson-Boltzmann, ~3 !

¹2f~r!1v~r,f!f~r!5lf~r! ; eigenvalue. ~4 !
The first expression symbolizes the generation of the La-
placian on the real-space grid. The second is the linear,
elliptic Poisson equation. The third is the nonlinear
Poisson-Boltzmann equation of electrostatics, which de-
scribes the motion of small counterions in the field of
fixed charges. The final equation is an eigenvalue equa-
tion such as the self-consistent Schrödinger equation oc-
curring in electronic structure. Note that both the third
and fourth equations are nonlinear. The Poisson-
Boltzmann equation includes exponential driving terms
on the right-hand side. The self-consistent eigenvalue
problem is ‘‘doubly nonlinear’’: one must solve for both
the eigenvalues and the eigenfunctions, and the poten-
tial generally depends nonlinearly on the eigenfunctions.
The multigrid method allows for solution of both linear
and nonlinear problems with similar efficiencies.

The article is organized into several sections, begin-
ning with background discussion and then following the
order of problems listed above. Section II introduces the
central equations of density-functional theory for elec-
tronic structure and charged classical systems. Section
III reviews developments in linear-scaling computa-
tional algorithms and discusses their relationship to real-
space methods. Section IV presents the fundamental as-
pects of representation in real space by examination of
Poisson problems. Section V discusses multigrid meth-

3To provide a crude estimate of this point, a fourth-order
finite-difference Hamiltonian on a 653 mesh leads to roughly
0.005% nonzero elements or '3.63106 total terms; with 2000
basis functions in an STO-3G/LDA water cluster calculation,
about 10% of the elements are nonzero, implying 43105 re-
maining matrix terms. See Millam and Scuseria (1997).

4The expression ‘‘fully numerical’’ is somewhat misleading, as
all the methods discussed here employ some combination of
analytical and numerical procedures. A more accurate state-
ment is that the representations are more systematic than in
the LCAO approach.
ods for efficient solution of the resulting matrix repre-
sentations. Section VI summarizes recent advances in
electrostatics computations in real space, including both
Poisson and nonlinear Poisson-Boltzmann solvers. Ap-
plications in biophysics are illustrated with several ex-
amples. Section VII discusses real-space eigenvalue
methods for self-consistent problems in electronic struc-
ture. Section VIII summarizes recent computations of
optical response properties and excitation energies with
real-space methods. The review concludes with a short
summary and discussion of possible future directions for
research.

II. DENSITY-FUNCTIONAL THEORY

Motivated by the fundamental Hohenberg-Kohn
theorems (Hohenberg and Kohn, 1964) of density-
functional theory, Kohn and Sham (1965) developed a
set of accessible one-electron self-consistent eigenvalue
equations. These equations have provided a practical
tool for realistic electronic structure computations on a
vast array of atoms, molecules, and materials (Parr and
Yang, 1989). The Hohenberg-Kohn theorems have been
extended to finite-temperature quantum systems by
Mermin (1965) and to purely classical fluids in subse-
quent work (Hansen and McDonald, 1986; Ichimaru,
1994). An integral formulation of electronic structure
has also been discovered in which the one-electron den-
sity is obtained directly without the introduction of or-
bitals (Harris and Pratt, 1985; Parr and Yang, 1989).
This approach is in the spirit of the original Hohenberg-
Kohn theorems, but to date this promising theory has
not been used extensively in numerical studies. This sec-
tion reviews the basic equations of DFT for electronic
structure and charged classical systems. These equations
provide the background for discussion of the real-space
numerical methods.
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A. Kohn-Sham equations

The Kohn-Sham self-consistent eigenvalue equations
for electronic structure can be written as follows (atomic
units are assumed throughout):

S 2
1
2

¹21veff~r! Dc i~r!5e ic i~r!, (5)

where the density-dependent effective potential is

veff~r!5ves~r!1vxc~@r~r!# ;r!. (6)

The classical electrostatic potential ves(r) is due to both
the electrons and nuclei, and the (in principle) exact
exchange-correlation potential vxc(@r(r)# ;r) incorpo-
rates all nonclassical effects. The exchange-correlation
potential includes a kinetic contribution, since the ex-
pectation value of the Kohn-Sham kinetic energy is that
for a set of noninteracting electrons moving in the one-
electron effective potential. The electron density r(r) is
obtained from the occupied orbitals (double occupation
is assumed here):

r~r!52 (
i51

Ne/2

uc i~r!u2. (7)

The electrostatic portion of the potential for a system of
electrons and nuclei (Hartree potential plus nuclear po-
tential) is given by

ves~r!5E r~r8!

ur2r8u
dr82(

i51

Nn Zi

ur2Riu
. (8)

This potential can be obtained by numerical solution of
the Poisson equation:

¹2ves~r!524pr tot~r!, (9)

where r tot(r) is the total charge density due to the elec-
trons and nuclei.

If the exchange-correlation potential is taken as a lo-
cal function (as opposed to functional) of the density
with the value the same as for a uniform electron gas,
the approximation is termed the local-density approxi-
mation (LDA). Ceperley and Alder (1980) determined
the exchange-correlation energy for the uniform elec-
tron gas numerically via Monte Carlo simulation. The
data have been parametrized in various ways for imple-
mentation in computational algorithms (see, for ex-
ample, Vosko et al., 1980). The LDA theory has been
extended to handle spin-polarized systems (Parr and
Yang, 1989). The LDA yields results with accuracies
comparable to or often superior to Hartree-Fock, but
generally leads to overbinding in chemical bonds among
other deficiencies. One obtains the Hartree-Fock ap-
proximation if the local exchange-correlation potential
in Eq. (6) is replaced by the nonlocal exact exchange
operator.

In recent years, a great deal of effort has gone into
developing more accurate exchange-correlation poten-
tials (see Jensen, 1999, for a review). These advances
involve both gradient expansions, which incorporate in-
formation from electron-density derivatives, and hybrid
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
methods, which include some degree of exact Hartree-
Fock exchange. With the utilization of these modifica-
tions, results of chemical accuracy can be obtained.
Since the main focus of this review is on numerical ap-
proaches for solving the self-consistent equations, we do
not further examine these developments.

Pseudopotential techniques allow for the removal of
the core electrons. The valence electrons then move in a
smoother (nonlocal) potential in the core region while
exhibiting behavior the same as in an all-electron calcu-
lation outside the core. Recently developed real-space
versions of the pseudopotentials allow for computations
on meshes (Troullier and Martins, 1991a, 1991b; Briggs
et al., 1996; Goedecker et al., 1996). Inclusion of the
pseudopotentials substantially reduces the computa-
tional overhead, since fewer orbitals are treated explic-
itly and the required mesh resolution can be coarser.
However, truly local mesh-refinement techniques may
allow for the efficient inclusion of core electrons when
necessary (see Secs. VI.A.2 and VII.D).

Self-consistent solution of the Kohn-Sham equations
[Eq. (5)] for fixed nuclear locations is conceptually
straightforward. An initial guess is made for the orbitals.
This yields an electron density from which the effective
potential is constructed by solution of the Poisson equa-
tion and generation of the exchange-correlation poten-
tial. The eigenvalue equation is solved with the current
effective potential [Eq. (6)], resulting in a new set of
orbitals. The process is repeated until the density or to-
tal energy change only to within some desired tolerance.
Alternatively, the total energy can be minimized varia-
tionally, using a technique such as conjugate gradients
(Payne et al., 1992); the orbitals at the minimum corre-
spond to those from the iterative process described
above.

B. Classical density-functional theory

The ground-state theory discussed above has been ex-
tended to finite-temperature quantum and classical sys-
tems and has found wide use in the theory of fluids
(Rowlinson and Widom, 1982; Hansen and McDonald,
1986; Ichimaru, 1994). Here I discuss the formulation for
systems of charged point particles (mobile ions) moving
in the external potential produced by other charged par-
ticles in the solution (for example, colloid spheres or
cylinders). The solvent is assumed to be a uniform di-
electric with dielectric constant e in these equations. The
free energy for an ion gas of counterions can be written
as the sum of an ideal term, the energy of the mobile
ions in the external field due to the fixed colloid particles
(this term incorporates both the electrostatic potential
from the fixed charges on the colloids and an excluded-
volume potential),

Fext5qE dr rm~r!Vext~r,$Rj%!, (10)

the Coulomb potential energy of the mobile ions inter-
acting with each other, and a correlation free energy.
The mobile-ion density rm(r) is the number density, not
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the charge density, in the solution. The charge on the
counterions is q , and the approximate correlation free
energy typically assumes a local-density approximation
for a one-component plasma. Thus the theory includes
ion correlations, but the approximation is not systemati-
cally refineable, just as in the Kohn-Sham LDA equa-
tions. Löwen (1994) utilized this free-energy functional
in Car-Parrinello-type simulations (Car and Parrinello,
1985) of charged rods with surrounding counterions.

The equilibrium distribution is obtained by taking the
functional derivative of the free energy with respect to
the mobile-ion density and setting it to zero. It is clear
that, if the correlation term is set to zero, the equilib-
rium density of the mobile counterions is proportional
to the Boltzmann factor of the sum of the external and
mobile-ion Coulomb potentials:

rm~r!;exp$2bq@Vext~r!1fm~r!#%. (11)

The potential fm(r) is that due to the mobile ions only
and b5(kT)21.

Since the total charge (fixed charges on colloid par-
ticles and mobile-ion charges) at equilibrium must sat-
isfy the Poisson equation, the following nonlinear differ-
ential equation results for the equilibrium distribution of
the mobile ions in the absence of correlations. The treat-
ment is generalized here to account for the possibility of
additional salt in the solution and a dielectric constant
that can vary in space (Coalson and Beck, 1998):

¹•@e~r!¹f~r!#524p@r f~r!1qn̄1e2bqf(r)2v(r)

2qn̄2ebqf(r)2v(r)# , (12)

where f(r) is the total potential due to the fixed colloid
charges and mobile ions, r f(r) is the charge density of
the fixed charges on the colloids, n̄1 and n̄2 are the bulk
equilibrium ion densities at infinity (determined self-
consistently so as to conserve charge in the region of
interest), and v(r) is a very large positive excluded-
volume potential which prevents penetration of the mo-
bile ions into the colloids. Fushiki (1992) performed mo-
lecular dynamics simulations of charged colloidal
dispersions at the Poisson-Boltzmann level; the nonlin-
ear Poisson-Boltzmann equation was solved numerically
at each time step with finite-difference techniques.

An alternative elegant statistical mechanical theory
for the ion gas has been formulated (Coalson and Dun-
can, 1992). It uses field-theoretic techniques to convert
the Boltzmann factor for the ion interactions into a
functional-integral representation of the partition func-
tion. The Poisson-Boltzmann-level theory results from a
saddle-point approximation to the functional integral.
The distinct advantage of this theory is that correlations
can be systematically included by computing the correc-
tions to the mean-field approximation via loop expan-
sions. However, in practice the corrections are computa-
tionally costly for real-space grids of substantial size.
This theory was used in simulations of colloids (Walsh
and Coalson, 1994), and the deviations from mean-field
theory were investigated. For realistic concentrations of
monovalent background ions, the corrections are often
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
small in magnitude, thus justifying the Poisson-
Boltzmann-level treatment. Correlations must be con-
sidered, however, for accurate computations involving
divalent ions (Guldbrand et al., 1984; Tomac and
Gräslund, 1998; Patra and Yethiraj, 1999).

III. LINEAR-SCALING CALCULATIONS

Several new methods have appeared for computations
involving systems with long-range interactions. In this
section, developments in linear-scaling methods for clas-
sical and quantum systems are summarized. Goedecker
(1999) has clearly reviewed applications in electronic
structure, so the discussion of this topic will be limited.
The purpose is to illustrate the context in which real-
space methods can be utilized in linear-scaling solvers
for electrostatics and electronic structure.

A. Classical electrostatics

Three algorithms have been most widely used in clas-
sical electrostatics calculations that require consider-
ation of long-range forces. The first is the Ewald (1921)
summation, which partitions the Coulomb interactions
into a short-range sum handled in real space and a long-
range contribution summed in reciprocal space. Both
sums are convergent. The partitioning is effected by
adding and subtracting localized Gaussian functions cen-
tered on the discrete charges (Pollock and Glosli, 1996).
In the original Ewald method, the Coulomb interaction
of the Gaussians is obtained analytically:

EGauss5
1
2 (

kÞ0

4p

V

exp~2k2/2G2!

k2 uS~k!u2, (13)

once the charge structure factor,

S~k!5(
i51

N

Zi exp~ ik•ri!, (14)

is computed. In Eq. (13), V is the cell volume and G is
the Gaussian width. This method scales as N3/2 (where
N is the number of particles) so long as an optimal ex-
ponential factor is used in the Gaussians. A discussion of
the optimization equation which yields the N3/2 scaling
can be found in Pollock (1999). The Ewald technique
has been used extensively in simulations of charged sys-
tems (Allen and Tildesley, 1987). An efficient alterna-
tive procedure for Madelung sums in electronic struc-
ture calculations on crystals was proposed by Harris and
Monkhorst (1970).

The scaling of the Ewald method has been reduced by
an alternative treatment for the interaction energy of
the Gaussians. Instead of solving the problem analyti-
cally, one (1) assigns the charge density to a mesh, (2)
solves the Poisson equation using FFT methods, (3) dif-
ferentiates the potential, and lastly (4) interpolates the
forces to the particles. These methods are termed
particle-particle particle-mesh (Hockney and Eastwood,
1988) or particle-mesh Ewald (Darden et al., 1993); an
improved version is called the smooth particle-mesh
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Ewald method (Essmann et al., 1995). Since the poten-
tial is generated numerically via FFT, the methods scale
as N ln N (or NAln N if an optimal G is used; see Pol-
lock, 1999). The above-mentioned methods differ in how
the four steps in the force generation are performed, but
all three center on the use of FFT algorithms for their
efficiency. Comparative studies have suggested that the
original particle-particle particle-mesh method is more
accurate than the particle-mesh Ewald versions; De-
serno and Holm (1998) recommend its use with modifi-
cations obtained from particle-mesh Ewald. See also
Sagui and Darden (1999), where it is argued that the
accuracies obtained with particle-mesh Ewald are simi-
lar to those with the particle-particle particle-mesh
method.

The second algorithmic approach utilizes the fast mul-
tipole method (FMM) (Greengard, 1994) or related hi-
erarchical techniques. In these methods, the near-field
contributions are treated explicitly, while the far field is
handled by clustering charges into spatial cells and rep-
resenting the field with a multipole expansion. The
methods are claimed to scale linearly with system size,
but recent work contends the scaling is slightly higher
(Pérez-Jordá and Yang, 1998). Fast multipole tech-
niques and the quantum-chemical tree code (QCTC) of
Challacombe et al. (1996) have been widely applied in
Gaussian-based electronic structure calculations. Since
the classical Coulomb part of the problem is a significant
or even dominant part of the overall computational ef-
fort, near linear scaling is required for an overall linear-
scaling solver (Strain et al., 1996; White et al., 1996).
Pérez-Jordá and Yang (1997) have developed an alter-
native efficient recursive bisection method for obtaining
the Coulomb energy from electron densities. The fast
multipole method has also been utilized extensively in
particle simulations. In comparative studies of periodic
systems, Pollock and Glosli (1996) and Challacombe
et al. (1997) have shown that, for the case of discrete
particles, the particle-mesh related techniques are more
efficient than the fast multipole method over a wide
range of system sizes (up to 105 particles). However, for
the case of continuous overlapping distributions, it is dif-
ficult to develop systematic ways in the particle-mesh
approach to handle the charge penetration in large-scale
Gaussian calculations (Challacombe, 1999a). Recently,
Cheng et al. (1999) have developed a more efficient and
adaptive version of the fast multipole method which will
make the technique competitive with the particle-mesh
method. Also, Greengard and Lee (1996) presented a
method combining a local spectral approximation and
the fast multipole method for the Poisson equation.

A third set of linear-scaling algorithms for classical
electrostatics employs real-space methods, which will be
discussed in depth in subsequent sections. The problem
is represented with FD equations, FE methods, or wave-
lets, and solved iteratively on the mesh. Since all opera-
tions are near local in space, the application of the La-
placian to the potential is strictly linear scaling.
However, the iterative process on the fine mesh typically
suffers from slowing down in the solution process, so
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
efficient preconditioning techniques must be employed
to obtain the linear scaling. The multigrid method
(Brandt, 1977, 1982, 1984, 1999; Hackbusch, 1985) is a
particularly efficient method for solving the discrete
equations. Linear-scaling real-space methods have been
developed for solution of the Poisson problem in DFT
(White et al., 1989; Briggs et al., 1995; Gygi and Galli,
1995; Merrick et al., 1995, 1996; Modine et al., 1997;
Goedecker and Ivanov, 1998a). These studies have illus-
trated the accuracies and efficiencies of the real-space
approach. One possible application of multigrid tech-
niques that has not received attention is in solving for
the Coulomb energy of the Gaussian charges in the
particle-mesh algorithms. Since the multigrid techniques
are highly efficient, scale linearly, and allow for variable
resolution, they may provide a helpful counterpart to
the FFT-based methods currently used. An advanta-
geous feature of the multigrid solution during a charged-
particle simulation is that, once the potential is gener-
ated for a given configuration, it can be saved for the
next solution process for the updated positions which
have changed only slightly. Thus the required number of
iterations is likely to be low. Tsuchida and Tsukada
(1998) utilized similar ideas in their FE method for elec-
tronic structure, where they employed MG acceleration
for rapid solution of the Poisson equation and discussed
the relation of their method to the particle-mesh ap-
proach.

B. Electronic structure

Electronic structure calculations involve computa-
tional complexities which go well beyond the necessity
for efficient solution of the Poisson equation. In order to
obtain linear scaling, physical localization properties
must be exploited either for the range of the density
matrix or the orbitals. Goedecker (1999) categorized the
various linear-scaling electronic structure methods as
follows: Fermi operator expansion, Fermi operator pro-
jection, divide and conquer, density-matrix minimiza-
tion, orbital minimization, and optimal-basis density-
matrix minimization (OBDMM). He further classified
the algorithms into those which employ small basis sets
(LCAO-type approaches) and those which utilize large
basis sets (FD or FE).5 Clearly the methods most rel-
evant to the present discussion are those which can be
implemented with large basis sets (Fermi operator pro-
jection, orbital minimization, and OBDMM). The two
approaches most directly related to the FD and FE mesh
techniques considered here are the orbital-minimization
and OBDMM methods, so we review their characteris-
tics.

The orbital-minimization method obtains the local-
ized Wannier functions by minimization of the func-
tional:

5See Sec. IV.A.1 for discussion of the use of basis-set termi-
nology in reference to the FD method.



1048 Thomas L. Beck: Real-space mesh techniques in density-functional theory
V52(
n

(
i ,j

c i
nHi ,j8 cj

n2(
n ,m

(
i ,j

c i
nHi ,j8 cj

m(
l

c l
ncl

m .

(15)

The minimization is unconstrained in that no orthogo-
nalization is required; the orthonormality condition is
automatically satisfied at convergence. In Eq. (15), V is
the ‘‘grand potential,’’ the ci

n are the expansion coeffi-
cients for the Wannier function n with basis function i ,
and the Hi ,j8 are the matrix elements of H2mI , where m
is the chemical potential controlling the number of elec-
trons and I is the identity matrix. The functional can be
derived by making a Taylor expansion of the inverse of
the overlap matrix occurring in the total energy expres-
sion (Mauri et al., 1993). Ordejón et al. (1995) presented
an alternative derivation and related the orbital-
minimization functionals to the density-matrix minimi-
zation approach. Assuming no localization restriction on
the orbitals, it can be shown that the functional V gives
the correct ground state at its minimum. However, some
problems arise when localization constraints are im-
posed: (1) the functional can have multiple minima, (2)
the number of required iterations to reach the ground
state can be quite large, (3) there may be runaway solu-
tions depending on the initial guess, and (4) the total
charge is not conserved for all stages of the minimization
(although charge is accurately conserved close to the
minimum).

The original orbital-minimization methods utilized
underlying plane-wave (Mauri et al., 1993; Mauri and
Galli, 1994) and tight-binding or LCAO-type bases
(Kim, et al., 1995; Ordejón et al., 1995; Sánchez-Portal
et al., 1997) for the representation of the localized orbit-
als. In the work of Sánchez-Portal et al. (1997) on very
large systems, a fully numerical LCAO basis developed
by Sankey and Niklewski (1989) was implemented for
the orbitals, and the Hartree problem was solved via
FFT techniques on a real-space grid. Lippert et al.
(1997) developed a related hybrid Gaussian and plane-
wave algorithm which uses Gaussians in place of the
numerical atomic basis. Also, Haynes and Payne (1997)
formulated a new localized spherical-wave basis which
has features in common with plane waves in that a single
parameter controls the convergence.

Real-space formulations have also applied orbital-
minimization ideas; since the real-space approach is in-
herently local, it provides a natural representation for
the linear-scaling algorithms. Tsuchida and Tsukada
(1998) incorporated unconstrained minimization into
their FE electronic structure method. Hoshi and Fuji-
wara (1997) also employed unconstrained minimization
in their FD self-consistent electronic structure solver. Fi-
nally, Bernholc et al. (1997) utilized the original
localized-orbital functional of Galli and Parrinello
(1992) in their FD multigrid method to obtain linear
scaling. They are also investigating other order-N func-
tionals (Fattebert and Bernholc, 2000). These real-space
algorithms will be the subject of extensive discussion in
Sec. VII.
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The OBDMM method is an efficient combination of
density matrix and orbital-based methodologies. The op-
timization process to locate the ground state is divided
into two minimization steps. In the inner loop, the usual
density-matrix minimization procedure is followed to
obtain the density matrix for a fixed contracted basis.
The density matrix F(r,r8) is represented in terms of
contracted basis functions c i and a matrix K which is a
purified form from the minimization method,

F~r,r8!5(
i ,j

c i* ~r!Ki ,jc j~r8!, (16)

and

K53LOL22LOLOL , (17)

where L is the contracted basis density matrix and O the
overlap matrix. The matrix K is ‘‘purified’’ in that if the
eigenvalues of L are close to zero or one, the eigenval-
ues of K will be even closer to those values. The outer
loop searches for the optimal basis with fixed L . The
OBDMM method was developed independently by
Hierse and Stechel (1994) and Hernández and Gillan
(1995). The two approaches differ in that the algorithm
of Hernández and Gillan allows for a number of basis
functions larger than the number of electrons. More-
over, Hierse and Stechel (1994) used tight-binding and
Gaussian bases, while Hernández and Gillan (1995) em-
ployed a finite-difference representation in their original
work. Later, Hernández et al. (1997) developed a blip-
function basis (a local basis of B splines; see Strang and
Fix, 1973), very closely related to finite-element meth-
ods.

In the quantum chemistry literature, efforts have fo-
cused on Gaussian basis-function algorithms. As dis-
cussed above, the Coulomb problem is typically solved
with the fast multipole method or other hierarchical
techniques (Challacombe et al., 1996; Strain et al., 1996;
White et al., 1996; Challacombe and Schwegler, 1997).
Additional algorithmic advances include linear scaling
for the exchange-correlation calculation in DFT (Strat-
mann et al., 1996), for the exact exchange matrix in
Hartree-Fock theory (Schwegler and Challacombe,
1996; Schwegler et al., 1997), and for the diagonalization
operation (Millam and Scuseria, 1997; Challacombe,
1999b). Alternative linear-scaling algorithms include the
early Green’s-function-based FD method of Baroni and
Giannozzi (1992) and the finite-temperature real-space
method of Alavi et al. (1994).

It is evident from the above discussion that real-space
methods, in particular FD and FE approaches,6 are well
suited for linear-scaling algorithms. In classical electro-
statics calculations, the multigrid method provides an ef-
ficient and linear-scaling technique for solution of Pois-
son problems given a charge distribution on a mesh
(finite or periodic systems). In electronic structure, FD
and FE representations have been extensively employed

6See Arias (1999) and Goedecker (1999) for discussion of
linear-scaling applications of wavelets.
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in the orbital minimization and OBDMM localized-
orbital linear-scaling methods.

IV. REAL-SPACE REPRESENTATIONS

The early development of finite-difference and finite-
element methods for solving partial differential equa-
tions stemmed from engineering problems involving
complex geometries, where analytical approaches were
not possible (Strang and Fix, 1973). Example applica-
tions include structural mechanics and fluid dynamics in
complicated geometries. However, even in the early
days of quantum mechanics, attention was paid to FD
numerical solutions of the Schrödinger equation (Kim-
ball and Shortley, 1934; Pauling and Wilson, 1935). Fully
converged numerical solutions of self-consistent elec-
tronic structure calculations have also played an impor-
tant role in atomic physics (see Mahan and Sub-
baswamy, 1990, for a discussion of the methodology for
spherically symmetric systems) and more recently in mo-
lecular physics (Laaksonen et al., 1985; Becke, 1989).

Real-space calculations are performed on meshes;
these meshes can be as simple as Cartesian grids or can
be constructed to conform to the more demanding ge-
ometries arising in many applications. Finite-difference
representations are most commonly constructed on
regular Cartesian grids. They result from a Taylor-series
expansion of the desired function about the grid points.
The advantages of FD methods lie in the simplicity of
the representation and resulting ease of implementation
in efficient solvers. Disadvantages are that the theory is
not variational (in the sense of providing an upper
bound, see below), and it is difficult to construct meshes
flexible enough to conform with the physical geometry
of many problems. Finite-element methods, on the other
hand, have the advantages of significantly greater flex-
ibility in the construction of the mesh and an underlying
variational formulation. The cost of the flexibility is an
increase in complexity and more difficulty in the imple-
mentation of multiscale or related solution methods. In
this section, we review the technical aspects of real-
space FD and FE representations of differential equa-
tions by examination of Poisson problems.

A. Finite differences

1. Basic finite-difference representation

The second-order FD representation of elliptic equa-
tions is very simple but serves to illustrate several key
features. Consider the Poisson equation in one dimen-
sion (the 4p is left here since we shall be considering
three-dimensional problems)

d2f~x !

dx2 524pr~x !, (18)

where f(x) is the potential and r(x) the charge density.
We expand the potential in the positive and negative
directions about the grid point xi :
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f~xi11!5f~xi!1f8~xi!h1
1
2

f9~xi!h21
1
6

f-~xi!h3

1
1
24

f(iv)~xi!h4 . . . ,

f~xi21!5f~xi!2f8~xi!h1
1
2

f9~xi!h22
1
6

f-~xi!h3

1
1
24

f(iv)~xi!h4 . . . . (19)

The grid spacing is h , here assumed uniform. If these
two equations are added and the sum is solved for
f9(xi), the following approximation results:

d2f~xi!

dx2 '
1
h2 @f~xi21!22f~xi!1f~xi11!#

2
1
12

f(iv)~xi!h21O~h4!. (20)

The first contribution to the truncation error is second
order in h with a prefactor involving the fourth deriva-
tive of the potential. Depending on the nature of the
function f(x), the errors can be of either sign. When
f(x) is used to compute a physical quantity such as the
total electrostatic energy, the net errors in the energy
can be either positive or negative. In this sense, the FD
approximation is not variational. As we shall see below,
the solution can be obtained by minimizing an energy
(or action) functional, which is a variational process, but
the solution does not necessarily satisfy the variational
theorem obtained in a basis-set method. Hence the FD
approach is not a basis-set method.

In matrix form, the one-dimensional discrete Poisson
equation is

1
h2F 22 1 0 0 ...

1 22 1 0 ...

0 1 22 1 ...

0 0 1 22 ...

A A A A �

G F f~x1!

•

•

•

f~xN!

G
524pF r~x1!

•

•

•

r~xN!

G . (21)

This equation can be expressed symbolically as

Lhuex
h 5fh, (22)

where Lh is the discrete Laplacian, uex
h is the exact so-

lution on the grid, and fh is 24pr . The operator 2L is
positive definite. An observation from the matrix form
Eq. (21) is that the Laplacian is highly sparse and
banded in the FD representation; its application to the
potential is thus a linear-scaling step. In one dimension
the matrix is tridiagonal, while in two or three dimen-
sions it is no longer tridiagonal but is still extremely
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sparse with nonzero values only near the diagonal. This
differs from the wavelet representation, which is sparse
but includes several bands in the matrix (Goedecker and
Ivanov, 1998b, Fig. 7; Arias, 1999, Fig. 10).

In addition to the truncation error,

th52
1
12

f(iv)~xi!h21O~h4!, (23)

estimates can be made of the function error itself (see
Strang and Fix, 1973, p. 19):

ea
h5uex

h 2ua5e2h21O~h4!, (24)

where ua is the exact solution to the continuous differ-
ential equation and e2 is proportional to the second de-
rivative of the potential. Therefore one can test the or-
der of a given solver for a case with a known solution by
computing errors over the domain and taking ratios for
variable grid spacing h . For example, the ratio of the
errors on a grid with spacing H52h to those on h for
overlapping points should be close to 4.0 in a second-
order calculation.

The two- and three-dimensional representations are
obtained by summing the one-dimensional case along
the two or three orthogonal coordinate axes (this holds
for higher-order forms as well). Since the Laplacian is
the dot product of two vector operators, off-diagonal
terms are not necessary. The second-order two-
dimensional Laplacian consists of five terms with a
weight of 24 instead of 22 on the diagonal, and the
three-dimensional case has seven terms with a weight of
26 along the diagonal. See Abramowitz and Stegun
(1964, Secs. 25.3.30 and 25.3.31) for the two-dimensional
representation of the Laplacian.

2. Solution by iterative techniques

Consider the action functional

S@f#5
1
2 E u¹fu2 d3x24pE rf d3x . (25)

If the first term on the right-hand side is integrated by
parts (assuming the function and/or its derivative go to
zero at infinity or are periodic), one obtains

S@f~r!#52
1
2 E f¹2f d3x24pE rf d3x . (26)

Take the functional derivative of the action with respect
to variations of the potential, and a ‘‘force’’ term results,

2
dS

df
5¹2f14pr , (27)

which can be employed in a steepest-descent minimiza-
tion process,

df

dt
52

dS

df
, (28)

where t is a fictitious time variable.
Then discretize the problem in space and time, lead-

ing to (for simplicity of representation a one-
dimensional form is given here)
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f~xi!
t115~12v!f~xi!

t1
v

2
@f~xi21! t1f~xi11! t

14pr~xi!h2# . (29)

The parameter v is 2dt/h2. The two- and three-
dimensional expressions are easily obtained following
the same procedure. Since the action as defined in Eq.
(26) possesses only a single minimum, the iterative pro-
cess eventually converges so long as a sufficiently small
time step dt is chosen to satisfy the required stability
criterion (below).

Several relaxation strategies result from the steepest-
descent scheme of Eq. (29). As it is written, the method
is termed weighted Jacobi iteration. If the previously up-
dated value f(xi21) t11 is used in place of f(xi21) t on
the right-hand side, the relaxation steps are called suc-
cessive over-relaxation or SOR. If the parameter in suc-
cessive over-relaxation is taken as v51, the result is
Gauss-Seidel iteration. Gauss-Seidel and successive over-
relaxation do not guarantee reduction in the action at
each step, since they use the previously updated value.
Generally, Gauss-Seidel iteration is the best method for
the smoothing steps in multigrid solvers (Brandt, 1984).
If one cycles sequentially through the lattice points, the
ordering is termed lexicographic. Higher efficiencies
(and vectorization) can be obtained with red-black or-
dering schemes in which the grid points are partitioned
into two interlinked sets and the red points are first up-
dated, followed by the black (Brandt, 1984; Press et al.,
1992). Similar techniques can be used for high orders
with multicolor schemes. Conjugate-gradient methods
(Press et al., 1992) significantly outperform the above re-
laxation methods when used on a single grid level. How-
ever, in a multigrid solver the main function of relax-
ation is only to smooth the high-frequency components
of the errors on each level (see Sec. V.A), and simple
relaxation procedures (especially Gauss-Seidel) do very
well for less cost.

An important issue in iterative relaxation steps relates
to the eigenvalues of the update matrix defined by Eq.
(29) (Briggs, 1987). Solution of the Laplace equation us-
ing weighted Jacobi iteration illustrates the basic prob-
lem. For that particular case, the eigenvalues of the up-
date matrix are

lk5122v sin2S kp

2N D ;1<k<N21, (30)

where v is the relaxation parameter defined above, N
11 is the number of grid points in the domain, and k
labels the mode in the Fourier expansion of the func-
tion. Generally, the Fourier component of the error with
wave vector k is reduced in magnitude by a factor pro-
portional to lk

t in t iterations.
First, it is easy to see that if too large an v value (that

is, ‘‘time’’ step for fixed h) is taken, the magnitude of
some modes will exceed one, leading to instability. This
shows up very quickly in a numerical solver! Second, for
the longest-wavelength modes, the eigenvalues are of
the form
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l512O~h2!. (31)

As more grid points are used to obtain increased accu-
racy on a fixed domain, the eigenvalues of the longest-
wavelength modes approach one. Therefore these
modes of the error are very slowly reduced. This fact
leads to the phenomenon of critical slowing down in the
iterative process (Fig. 2), which motivated the develop-
ment of multigrid techniques. Multigrid methods utilize
information from multiple length scales to overcome the
critical slowing down (Sec. V).

3. Generation of high-order finite-difference formulas

Mathematical arguments lead to the conclusion that
the FD scheme discussed above is convergent in the
sense that Eh→0 as h→0 (Strang and Fix, 1973; Vichn-
evetsky, 1981). Therefore one only needs to proceed to
smaller grid spacings to obtain results with a desired ac-
curacy. This neglects the practical issues of computer
time and memory, however, and it has become apparent
that orders higher than second are most often necessary
to obtain sufficient accuracy in electronic structure cal-
culations on reasonable-sized meshes (Chelikowsky,
Troullier, and Saad, 1994).

The higher-order difference formulas are well known
(Hamming, 1962; Vichnevetsky, 1981) and can easily be
generated using computer algebra programs (see the
Appendix). Why does it pay to use high-order approxi-
mations? Consider the three-dimensional Poisson equa-
tion with a singular-source charge density

¹2f~x!524pd~x!. (32)

The Dirac delta function is approximated by a unit
charge on a single grid point. Let us solve the FD ver-
sion of Eq. (32) on a 653 domain using second- and
fourth-order Laplacians and compare the potential eight

FIG. 2. Typical behavior of the residual during iterations on a
fine level only.
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grid points away from the origin.7 In order to obtain
the same numerical accuracy with a second-order La-
placian, a grid spacing with one-third that for the fourth-
order case is required. This implies a 27-fold increase in
storage and roughly a 14-fold increase in computer time,
since the application of the Laplacian contains terms for
the second-order calculations and 13 terms for the
fourth-order calculations.

As a second example, we solve for five states of the
hydrogen-atom eigenvalue problem using the fixed po-
tential generated in the solution of Eq. (32). The grid
parameters are the same as those used in the multigrid
eigenvalue computations of Sec. VII.A.2. The variation
of the eigenvalues, the first orbital moments, and the
virial ratios with approximation order are presented in
Figs. 3, 4, and 5. A possible accuracy target is the ther-
mal energy at room temperature (kT'0.001 a.u.); this
accuracy is achieved at 12th order. Clearly the results at
second order are not physically reasonable, but accurate
results can be obtained with the higher orders. Merrick
et al. (1995) and Chelikowsky, Trouller, Wu, and Saad
(1994) have presented analyses of the impact of order on
accuracy in density-functional electrostatics and Kohn-
Sham calculations; in the Kohn-Sham calculations, 8th
or 12th orders were required for adequate convergence.

There exist alternative high-order discretizations such
as the Mehrstellen form used in the work of Briggs et al.
(1996). This discretization is fourth order and leads to
terms that are off-diagonal in both the kinetic and the
potential operators. The advantage of the Mehrstellen
approach is that both terms only require near-neighbor
points on the lattice, while the high-order forms above
include information from further points (which increases

7The calculations in this section were performed with multi-
grid solvers discussed in Secs. V and VII.

FIG. 3. Effect of order on the eigenvalues for the H atom. The
(1) symbols are for the 1s orbital, (x) is for 2s , and the stars
are for 2p . The analytical results are 20.5, 20.125, and
20.125, respectively.
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the communication overhead somewhat in parallel
implementations). However, the fourth-order Me-
hrstellen operator involves 33 multiplies to apply the
Hamiltonian to the wave function, while the standard
fourth-order discretization requires only 14 (a twelfth-
order standard form uses 38 multiplies). Also, the Me-
hrstellen representation has only been applied to the
fourth-order case, and for some applications higher or-
ders may be required. The exact terms for the Me-
hrstellen representation of the real-space Hamiltonian
are given in Briggs et al. (1996).

B. Finite elements

1. Variational formulation

Consider again the action of Eq. (25) in one dimen-
sion:

S@f#5
1
2 E S df

dx D 2

dx24pE rf dx . (33)

This form of the action proves useful since the appear-
ance of the first derivative as opposed to the second
expands the class of functions that may be used to rep-
resent the potential. Now, expand the potential in a ba-
sis:

f~x !5(
i51

n

uiz i~x !, (34)

where the ui are the expansion coefficients and z i the
basis functions. The action is then

S5
1
2 E S (

i51

n dz i

dx
uiD 2

dx24pE rS (
i51

n

z iuiD dx .

(35)

FIG. 4. Effect of order on the orbital first moments for the H
atom. The (1) symbols are for the 1s orbital, (x) is for 2s , and
the stars are for 2p . The analytical results are 1.5, 6, and 5,
respectively.
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The variational calculation is performed by minimizing
the action with respect to variations in the expansion
coefficients (assuming the original differential operator
is positive definite):

]S

]ui
5E Fdz i

dx S (
j51

n dz j

dx
ujD 24prz iGdx50. (36)

The minimization equation leads to a matrix problem
completely analogous to Eq. (22). In the present case,
the grid index is replaced by the basis-function index. It
is often necessary to perform the integral of the second
term (which involves the charge density) numerically.

A more general origin of the FE method, termed the
Galerkin approach, takes as its starting point the
‘‘weak’’ formulation of the problem. This approach al-
lows one to handle problems that cannot be cast in the
minimization format described above by requiring only
an extremum of the action functional and not a mini-
mum. It also does not require symmetric operators.
Take the action functional of Eq. (33) and perturb
it by the addition of a small term ev .8 The action
becomes

S@f1ev#5S@f#1
1
2

e2E S dv
dx D 2

dx

1eE S df

dx D S dv
dx Ddx24peE rv dx .

(37)

By taking the derivative with respect to e, making e zero,
and setting what remains to zero, one obtains the sta-
tionary point. This variational form results in the follow-
ing integral equation:

8The functions f and v exist in a subspace of a Hilbert space
which becomes a finite-dimensional subspace for any FE basis-
set numerical computation.

FIG. 5. Effect of order on the orbital virial ratios for the H
atom. The (1) symbols are for the 1s orbital, (x) is for 2s , and
the stars are for 2p . The analytical result is 2.
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E S df

dx D S dv
dx Ddx54pE rv dx . (38)

This equation is valid for any test function v ; solution
requires finding the function f for which the equation
holds for all v . Alternatively, Eq. (38) can be derived by
simply left multiplying the differential equation by the
test function v and integrating by parts. When the func-
tions f and v are represented in the z i basis, a matrix
equation the same as Eq. (36) is obtained. This basis-set
manifestation of the weak formulation is termed the
Galerkin method. If the test function space for v is
taken to include all Dirac delta functions, and the prob-
lem is cast in the strong form ^v ,Lf14pr&50 (where
L is the differential operator, in this case the Laplacian),
the collocation (or pseudospectral) approximation re-
sults when the problem is discretized (Orszag, 1972;
Vichnevetsky, 1981; Ringnalda et al., 1990). Excellent
reviews of the theory and application of finite elements
are given in Strang and Fix (1973), Vichnevetsky (1981),
Brenner and Scott (1994), and Reddy (1998).

2. Finite-element bases

Any linearly independent basis may be used to ex-
pand the potential. One choice would be to expand in
trigonometric functions which span the whole domain.
Then Fourier transform techniques could be used to
solve the equations. In the FE method, the basis func-
tions are rather taken as piecewise polynomials which
are nonzero only in a local region of space (that is, have
small support). The simplest possible basis consists of
piecewise-linear functions whose values are one at the
grid point about which they are centered and zero ev-
erywhere beyond the nearest-neighbor grid points. Then
the coefficients ui correspond to the actual function val-
ues on the mesh. With this basis and a basis-set repre-
sentation of the charge density r(x), the resulting ma-
trix representation of the one-dimensional Poisson
equation is identical to Eq. (21), except the right-hand
side is replaced by terms that are local averages of the
charge density over three points. The local average is
identical to Simpson’s rule integration. Therefore, for
uniform meshes, there is a close correspondence be-
tween FD and FE representations. Relaxation methods
similar to those described above can be used to solve the
FE equations.

Besides the variational foundation of the FE method,
the key advantage over FD approaches is in the flexibil-
ity available to construct the mesh to conform to the
physical geometry. This issue becomes particularly rel-
evant for two- and three-dimensional problems. There is
of course an immense literature on development of ac-
curate and efficient basis sets for FE calculations in a
wide variety of engineering and physical applications,
and that topic cannot be covered properly here. Some
representative bases are mentioned from recent three-
dimensional electronic structure calculations. White
et al. (1989) employed a cubic-polynomial basis and con-
structed an orthogonal basis from the nonorthogonal
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
set. Ackermann et al. (1994) used a tetrahedral discreti-
zation with orders p51 –5. Pask et al. (1999) utilized
piecewise cubic functions (termed ‘‘serendipity’’ ele-
ments). Yu et al. (1994) employed a Lobatto-Gauss basis
set with orders ranging from five to seven. Hernández
et al. (1997) developed a B-spline basis which is closely
related to traditional FE bases. Tsuchida and Tsukada
(1998) used piecewise third-order polynomials in their
self-consistent electronic structure calculations.

In relating the FD and FE methods, two points are
worth noting. First, the FE bases are typically non-
orthogonal and this issue must be dealt with in the for-
mulation. Second, since the basis is local, the represen-
tation is banded, with the width depending on the
degree of the polynomials. For the FD representation,
the high-order Laplacian includes 3p11 terms in a row
of L for three-dimensional calculations. Alternatively,
the FE method requires O(p3) terms along a row of L
in the limit of high orders, although the exact number of
terms depends on the particular elements (Pask, 1999).
This issue of scaling of the bandwidth with order may
become a significant one in development of efficient it-
erative solvers of the equations. Due to the relative mer-
its of the two representations, there is no clear answer as
to which one is preferable; the key feature for this re-
view is that both are near-local, leading to structured
and sparse matrix representations of the differential
equations. The wavelet basis method is closer in form to
the FE representation but, as mentioned above, leads to
more complicated matrix structures than either the FD
or FE cases (Goedecker and Ivanov, 1998b; Arias,
1999).

V. MULTIGRID TECHNIQUES

The previous section discussed the basics of real-space
formulations. The representations are near-local in
space, and this locality manifests itself in the stalling
process of iterative solvers induced by Eq. (31). The
finer the resolution of the mesh, the longer it takes to
remove the long-wavelength modes of the error. The
multigrid technique was developed in order to overcome
this inherent difficulty in real-space methods. Multigrid
methods provide the optimal solvers for problems rep-
resented in real space.

A. Essential features of the multigrid method

The asymptotic convergence of an iterative solver on
a given scale is controlled by Eq. (31). However, for
shorter-wavelength modes it is easy to show that the
convergence factor

m5
u ẽhu
uehu

, (39)

where uehu is the norm of the difference vector between
the exact grid solution uex

h and the current approxima-
tion uh, and ẽh is the vector for the next step of itera-
tion, is of order 0.5 for Gauss-Seidel iteration on the
Poisson equation (Brandt, 1984). Those components of
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the error are reduced by an order of magnitude in only
three relaxation sweeps. Thus relaxation steps on a
given grid level are referred to as smoothing steps; the
high-frequency components of the error are efficiently
removed while the long-wavelength modes remain. Fol-
lowing the fine-scale smoothing, the key step of the mul-
tigrid method is then to pass the problem to a coarser
level, say H52h (with appropriate rules for the con-
struction of the problem on the coarse grid); smoothing
steps on the coarse level efficiently remove errors of
twice the wavelength. Finally, the fine-grid function is
corrected with the error interpolated from the coarse
level, and further iterations on the fine level remove re-
maining high-frequency components induced by the
coarse-grid correction.

When this process is recursively followed through sev-
eral levels, the stalling behavior can be completely re-
moved and the solution is obtained in O(N) operations,
where N is the number of unknowns. Typically, the
problem can be solved to within the truncation errors in
roughly ten total smoothing steps on the finest level. The
previous discussion rests on a local-mode analysis of the
errors (Brandt, 1977, 1984); additional mathematical ar-
guments confirm the excellent convergence rates and
linear scaling of multigrid solvers (Hackbusch, 1985).

B. Full approximation scheme multigrid V cycle

For linear problems, the algebraic Eq. (22) can be re-
written as

Lheh5rh, (40)

where h is the finest grid spacing, eh5uex
h 2uh (grid er-

ror), and rh5fh2Lhuh (residual equation). During the
multigrid correction cycles, the coarse-grid iterations
only need to be performed on the error term eH which is
subsequently interpolated to the fine grid to provide the
correction. However, this rearrangement is not possible
for nonlinear problems. Brandt (1977, 1984) developed
the full approximation scheme (FAS) approach for han-
dling such problems. Besides providing solutions to non-
linear differential equations like the Poisson-Boltzmann
equation, the full-approximation-scheme strategy is well
suited to handling eigenvalue problems and mesh-
refinement approaches. This form of multigrid is thus
presented here due to its generality. In the case of linear
problems, the full approximation scheme is equivalent
to the error-iteration version mentioned above.

Consider a Poisson problem discretized on a Carte-
sian lattice with a FD representation on a fine grid with
spacing h [Eq. (22)]. Now construct a sequence of
coarser grids, each with grid spacing twice the previous
finer value. For a four-level problem in three dimen-
sions, the sequence of grids will consist of 173, 93, 53,
and 33 points including the boundaries. If h51, the
coarser grid spacings are 2, 4, and 8. The boundary val-
ues of the potential on each level are fixed based on the
physics of the problem. For example, if there are a set of
discrete charges inside the lattice, direct summation of
the 1/r potential or a multipole expansion can be per-
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
formed. Alternatively it is easy to apply periodic bound-
ary conditions by wrapping the potential. On the coars-
est grid, only the one central point is iterated during
relaxation steps there.

Assume there are l levels for the general case; each
level is labeled by the index k , which runs from 1 (coars-
est level) to l (finest level). The operator Lk is defined
by the FD discretization on level k with grid spacing hk.
The goal is to obtain the solution uex

l of Eq. (22) on the
finest level. The equations to be iterated on level k take
the form

Lkuk5fk1tk, (41)

where one starts from a trial uk and improves it. The
initial uk on coarse levels is obtained by applying the
full-weighting restriction operator Ik11

k to uk11:

uk5Ik11
k uk11. (42)

The restriction operator takes a local average of the
finer-grid function. The average is over all 27 fine grid
points (in three dimensions), including the central point,
which coincides with the coarse grid and the 26 neigh-
boring points. The weights are: 1/8 for the central point,
1/16 for the 6 faces, 1/32 for the 12 edges, and 1/64 for
the 8 corners. The restriction operator is a rectangular
matrix of size Ng

k11 (columns) by Ng
k (rows) where Ng

k is
the number of grid points on level k . Of course, only the
weights need be stored. The coarse-grid charge density
fk is obtained simillary from fk11. The defect correction
tk is defined as

tk5LkIk11
k uk112Ik11

k Lk11uk111Ik11
k tk11. (43)

The defect correction is zero on the finest level l . There-
fore the third term on the right-hand side is zero for the
grid next-coarser to the fine scale. It is easy to show that
if one had the exact grid solution uex

l on the finest level,
the coarse-grid equations [Eq. (41)] would also be satis-
fied on all levels, illustrating zero correction at conver-
gence. Another point of view is that the defect correc-
tion modifies the coarse-grid equations to ‘‘optimally
mimic’’ the finer scales. The defect correction provides
an approximate measure of the discretization errors and
can be used in the construction of adaptive solvers
(Brandt, 1984): higher resolution is placed in regions
where the defect correction magnitude exceeds a pre-
scribed value.

The solver begins with initial iterations on the finest
level (typically two or three relaxation steps are ad-
equate on each level). The problem is restricted to the
next coarser level as outlined above, and relaxation
steps are performed there. This process is repeated until
the coarsest grid is reached. The solver then returns to
the fine level by providing corrections to each next-finer
level and applying relaxation steps there. The correction
equation for grid k11 is

uk11←uk111Ik
k11~uk2Ik11

k uk11!. (44)

The additional operator Ik
k11 is the interpolation opera-

tor. Most often it is acceptable to use linear interpola-
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tion, and the easiest way to apply the operator in three
dimensions is to interpolate along the lines in each plane
and finally to interpolate along lines between the planes.
That is, the operator can be applied by a sequence of
one-dimensional interpolations. For linear interpolation,
the coarse-grid points which coincide with the fine grid
are placed directly into the fine-grid function, and the
intermediate points get a weight of 1/2 from each neigh-
boring coarse-grid point. In the same way, high-order
interpolation operators can be applied as a sequence of
one-dimensional operations; see Beck (1999b) for a list-
ing of the high-order interpolation weights. The high-
order weights are used in interpolating to new fine levels
in full multigrid eigenvalue solvers (Brandt et al., 1983)
and in high-order local mesh-refinement multigrid meth-
ods (Beck, 1999b). The interpolation operator is a rect-
angular matrix of size Ng

k (columns) by Ng
k11 rows. Only

the weights need be stored, just as for the restriction
operator. All of the operators defined above can be ini-
tialized once and used repeatedly throughout the algo-
rithm. The multigrid cycle defined by the above discus-
sion is termed a V cycle and is shown schematically in
Fig. 6. Alternative cycling methods have been employed,
as well, such as W cycles. Reductions in the norm of the
residual in one V cycle are generally an order of magni-
tude. The same set of operations is employed in a high-
order solver; the second-order Laplacian is simply re-
placed by the high-order version. The form of the
multigrid solver is quite flexible; for example, a lower-
order representation could be used on coarse levels dur-
ing the correction cycles. In our own work, we have ob-
served optimal convergence rates for high-order solvers
that are similar to those for second-order ones, so there
is no degradation in efficiency with order. Applications
in electrostatics and extensions for eigenvalue problems
are discussed in Secs. VI and VII.

C. Full multigrid

The grid solution can be efficiently obtained with one
or at most a few V cycles described above. The process

FIG. 6. A multigrid V cycle. Iterations begin on the fine level
on the left side of the diagram. R indicates restriction of the
problem to the next-coarser level. Corrections (C) begin as the
computations move from the coarsest level to the finest level.
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obeys linear scaling, since the solution is obtained with a
fixed number of multigrid cycles and each operation on
the grid scales linearly with the number of grid points. In
three dimensions, the total grid overhead is N tot
5SlNfine , where

Sl5
8
7 S 12

1
8 lD (45)

and l is the number of levels. In the limit of many levels,
N tot thus approaches 1.143Nfine . Another development
in the multigrid approach, full multigrid (FMG), can
even further accelerate the solution process beyond the
V-cycle algorithm. The idea of full multigrid is to begin
iterations on the coarsest level. The initial approxima-
tion there is interpolated to the next-finer level, iterated,
and the new fine-grid approximation is corrected in a V
cycle on that level. This process is repeated until the
finest scale is reached. The full-multigrid solver for a
Poisson problem is illustrated in Fig. 7. The advantage of
this approach is that a good initial (or preconditioned)
approximation to the fine-scale function is obtained on
the left side of the final V cycle. With this strategy, the
solution to Poisson problems can be obtained with a
single passage through the full-multigrid solver. (Self-
consistent problems may require two or more passages
through the final V cycle to obtain convergence.) Note
that a direct passage via iterations and interpolation
from coarse to fine scales without the correction cycles
does not guarantee multigrid convergence behavior,
since residual long-wavelength errors can remain from
coarser levels. The multigrid corrections on each level
serve to remove those errors, leading to optimal conver-
gence (Brandt, 1984; Hackbusch, 1985; Briggs, 1987;
Wesseling, 1991).

Multigrid solvers have been applied to many problems
in fluid dynamics, structural mechanics, electrostatics, ei-
genvalue problems, etc. The majority of applications
have utilized FD-type representations, but significant ef-
fort has gone into developing efficient solvers for FE
representations as well (Brandt, 1980; Deconinck and
Hirsch, 1982; Hackbusch, 1985; Braess and Verfurth,
1990; Brenner and Scott, 1994). An additional difficulty
with FE multigrid methods is a proper representation of
the problem on coarse levels: the more regular the fine-
scale mesh, the easier is the coarsening process.

FIG. 7. Full multigrid cycle. Iterations begin on the left on the
coarsest level. The solver proceeds sequentially down to the
finest level, where a good initial approximation is generated
from the coarse-level processing.
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VI. ELECTROSTATICS CALCULATIONS

The original formulation of the multigrid method was
directed at solution of linear elliptic equations like the
Poisson equation. Subsequently, methods were devel-
oped to handle nonlinear problems such as the Poisson-
Boltzmann equation of ionic solution theory. In this sec-
tion, applications of real-space methods to electrostatics
problems are discussed. First, the high efficiency of the
multigrid method is demonstrated by examination of a
Poisson problem. Then, new mesh-refinement tech-
niques which allow for treatment of widely varying
length scales are examined. Poisson-Boltzmann numeri-
cal solvers are discussed, with presentation of some rep-
resentative applications in biophysics.

A. Poisson solvers

1. Illustration of multigrid efficiency

We investigate a model atomiclike Poisson problem
that has an analytic solution:

¹2f~r!524pFd~r!2
1

4p

e2r

r G . (46)

The analytic solution is f(r)5e2r/r . The source singu-
larity is modeled as a single discrete charge at the origin,
and the neutralizing background charge value at the ori-
gin is set to give a net charge of zero summed over the
whole domain. Here we discretize the problem with a
12th-order Laplacian on a 653 lattice with fine grid spac-
ing h50.25. The problem was solved with the full-
approximation-scheme/full-multigrid (FAS-FMG) tech-
nique with a single passage through the full-multigrid
process. Linear interpolation and full-weighting restric-
tion were employed for the grid transfers. The potential
was initially set to zero over the whole domain. Three
Gauss-Seidel smoothing steps were performed on each
level. Several additional smoothing steps were taken for
points just surrounding the singularity to accelerate the
convergence there (Bai and Brandt, 1987). This requires
virtually no additional effort, since only few grid points
are involved.

The solution is obtained to within the truncation er-
rors with a total of six relaxation sweeps on the finest
level (Fig. 8). Thus the entire solution process only re-
quires roughly ten times the effort it takes to represent
the differential equation on the grid. The total energy of
the charge distribution is E52S/4p , where S is the ac-
tion of Eq. (26). After the single full-multigrid cycle, the
energy is converged to within 0.000 29 a.u. of the fully
converged energy of 4.318 00 a.u. (obtained with re-
peated V cycles on the finest level). The final residual
(using the 1-norm divided by the total number of points,
that is, the average absolute value of the grid residuals)
is 531026. After 1200 Gauss-Seidel iterations on the
finest level alone, the residual is still of magnitude 9
31026. (With an optimal successive over-relaxation pa-
rameter, the number of iterations to obtain a residual of
531026 can be reduced to 200 iterations.) Thus there is
an enormous acceleration due to the multiscale process-
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ing. Similar efficiencies are observed for an FAS-FMG
eigenvalue solver (Sec. VII.A). Since the number of it-
erations is independent of the number of fine grid
points, these efficiencies are quite general and can be
routinely expected from a correctly functioning multi-
grid solver.

Next we compare the operations count for generating
the solution to Eq. (46) from scratch using multigrid and
FFT methods on the same 653 lattice.9 The FFT solver
required 333106 floating-point operations. The multi-
grid solver required 273106, 433106, 753106, and 106
3106 operations for the 2nd, 4th, 8th, and 12th-order
solvers, respectively. Therefore there appears to be no
clear advantage in generating the Poisson potential from
scratch with multigrid as opposed to FFT. However,
there are some advantages to using the real-space mul-
tigrid approach: (1) finite and periodic systems are
handled with equal ease, (2) in a quantum simulation
where particles move only slightly from a previous con-
figuration, the potential can be saved from the previous
configuration, thus reducing the number of iterations,
and (3) one can incorporate mesh refinements to reduce
the computational overhead. For example, if the same
problem is solved with three nested refinement patches
centered on the singularity, the number of floating-point
operations is reduced by nearly two orders of magnitude
while the accuracy is sufficient, since the smooth parts of
the potential away from the singularity can be well rep-
resented on coarser meshes. In addition, multigrid meth-

9I thank Jeff Giansiracusa for providing the FFT results.

FIG. 8. The electrostatic potential for the screened atomic
model: solid line, analytic curve; crosses numerical results. The
numerical result deviates noticeably from the analytic values at
points neighboring the origin due to the source singularity. The
numerical result at the origin has been omitted.
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ods can be used to solve nonlinear problems such as the
Poisson-Boltzmann equation with similar efficiencies.

A situation that arises in many applied electrostatics
computations is that of strongly varying dielectric pro-
files. Analogous problems occur in steady-state diffusion
problems with widely varying diffusion coeffcients such
as those encountered in neutron diffusion. If the coeffi-
cients vary by orders of magnitude, multigrid efficiency
can be lost (Alcouffe et al., 1981). The reason is that the
correct continuity condition across the boundaries is
e1¹f(r1)5e2¹f(r2) rather than continuity of the gra-
dients themselves. Thus the gradients vary widely across
the boundaries, and the standard smoothing steps do not
properly reduce the errors in the function. Alcouffe
et al. (1981) developed procedures based on the above
continuity condition which restore the standard multi-
grid convergence. In biophysical applications, the dielec-
tric constant varies from 1 to 80, so such modifications
prove useful for that case (Holst and Saied, 1993).

2. Mesh-refinement techniques

Many physical problems require consideration of a
wide range of length scales. One example given in the
Introduction is a transition-metal ion buried inside a
protein. A protein interacting with a charged membrane
surface is another example: particular charged groups
near the interaction region must be treated accurately,
but distant portions of the protein and membrane do not
require high resolution to obtain reliable energetics. In
electronic structure, the electron density is very large
near the nucleus but is diffuse further away. A signifi-
cant strength of real-space methods lies in the ability to
place adaptive refinements in regions where the desired
functions vary rapidly while treating the distant zones
with a coarser description.

Two approaches exist for such refinements in the
finite-difference method (finite-element methods allow
quite easily for grid adaptation): grid curving and local
mesh refinements. While grid curving is an elegant pro-
cedure for adapting higher resolution in certain regions
of space, generally the coordinate transformations are
global. Therefore the higher resolution tends to spread
some distance from where the refinement is necessary
(Modine et al., 1997, Figs. 1, 4, and 5), and depending on
the geometry of the problem it may be difficult or im-
possible to design an appropriate grid transformation.
Also, the transformations can be quite complex, leading
to additional difficulties in the solution process. Finally,
the grid-curving transformations alter the underlying
spectral properties of the operators, which can in prin-
ciple lead to degradation of the multigrid efficiency in
the solution process. However, this does not appear to
have been a problem in the methods of Gygi and Galli
(1995) and Modine et al. (1997), although the conver-
gence behavior of their multigrid Poisson solvers was
not extensively discussed in those works. Mesh-curving
strategies for electronic structure calculations are dis-
cussed in Sec. VII.D.
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An alternative procedure is to place nested uniform
patches of refinement locally in space (Fig. 9). Then the
overall structure of the multigrid solver is the same, ex-
cept that fine-level iterations are performed only over
the nested patches. The same forms for the Laplacian,
restriction, interpolation, and smoothing operators are
maintained. This procedure is highly flexible, since the
nested refinements can be centered on any locations of
space and can move as the problem evolves. The place-
ment of the refinements can be adaptively controlled by
examination of the defect correction tH; higher resolu-
tion should be placed in regions where tH is large. If an
underlying FD representation is employed, it is rela-
tively easy to extend the method to high-order solvers
since the mesh of the refinement patch is uniform.

Bai and Brandt (1987) developed a full-
approximation-scheme multigrid mesh-refinement
method for treating Poisson-type problems of widely
varying length scale. They first developed a l-full-
multigrid exchange-rate algorithm which minimizes the
error obtained for a given amount of computational
work. Since the number of visits to the coarse levels
(which extend over the whole domain) is proportional to
the number of patches, direct application of the multi-
grid algorithm does not scale strictly linearly for many
levels; the l-full-multigrid process restores the linear
scaling for a solver including the mesh refinements. Sec-
ond, they showed that extra local relaxations around
structural singularities restore asymptotic convergence
rates which can otherwise degrade. Third, they devel-
oped a conservative differencing technique for handling
source singularities.

To motivate the need for conservative differencing in
the FAS-FMG mesh-refinement solver, consider Eq.
(41) and a two-level problem with one nested patch. The
defect correction on the coarse level H is initially de-
fined only over the interior region of the patch. How-
ever, if one examines the sum of tH over the refinement,

FIG. 9. Four-level local mesh-refinement grid.
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most of the terms in the interior cancel, but nonzero
values remain near the boundaries. The remaining terms
closely resemble flux operators at the boundary. The net
effect is thus the introduction of additional sources in
the Poisson equation, which pollutes the solution se-
verely over the whole domain. By balancing the local
fluxes with additional defect correction terms on the
patch boundary, the correct source strength is restored.
Bai and Brandt (1987) solved this problem for second-
order equations and tested the method on a source-
singularity problem in two dimensions.

Recently the method has been extended to high-order
FD approximations by Beck (1999b, 2000). The bound-
ary defect correction terms were determined by exami-
nation of the noncancelling terms for the high-order ap-
proximations. Without the conservative scheme,
significant errors are apparent over the whole domain.
With the inclusion of the boundary corrections, the sum
of tH over the patch is zero to machine precision and the
correct high-order behavior is obtained over the whole
domain. The method was tested on a source-singularity
problem in three dimensions for multiple nested
patches. Typical multigrid efficiencies were observed.
Additional corrections will be necessary at the bound-
aries for continuous charge distributions which cover the
refinement boundaries, but these are independent of the
order of the Laplacian. These techniques are currently
being included in high-order FD electronic structure cal-
culations. They will significantly reduce the grid over-
head in comparison to uniform-grid calculations while
still maintaining the linear-scaling properties of the mul-
tigrid method. It is not possible to handle truly local
refinements with the FFT approach.

In related work, Goedecker and Ivanov (1998a) de-
veloped a linear-scaling multiresolution wavelet method
for the Poisson equation which allows for treatment of
widely varying length scales. They utilized second-
generation interpolating wavelets, since the mapping
from grid values to expansion coefficients is easy for
these functions, and they have a fast wavelet transform.
They solved the Poisson equation for the challenging
case of the all-electron uranium dimer. Their solver em-
ployed 22 hierarchical levels, and the potential was ob-
tained to six significant digits.

B. Poisson-Boltzmann solvers

As discussed in Sec. II.B, the Poisson-Boltzmann
equation arises from the assumption of no ion correla-
tions. That is, it is a mean-field treatment. Onsager
(1933) showed that there exists an inherent asymmetry
at the Poisson-Boltzmann level. Nevertheless, calcula-
tions performed at this level of theory can yield accurate
energetics for monovalent ions at moderate concentra-
tions (Honig and Nicholls, 1995; Tomac and Gräslund,
1998; Patra and Yethiraj, 1999). Linearization of the
Poisson-Boltzmann equation restores the symmetry, but
for many cases of experimental interest the linearization
assumption is too severe. Solution of the Poisson-
Boltzmann equation produces the electrostatic potential
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
throughout space, which in turn generates the equilib-
rium mobile-ion charge densities and the total free en-
ergy of the ion gas (below). By computing the total en-
ergies for several macroion configurations, the potential
of mean force due to electrostatic effects can be approxi-
mated (Rice, 1959). In this section, we focus on real-
space numerical methods for solution of the nonlinear
Poisson-Boltzmann equation [Eq. (12)].

Numerical solution of nonlinear partial differential
equations is problematic. For the Poisson-Boltzmann
case, the nonlinearities can be severe near fixed charges,
since the ratio of the potential to kT can be large. Also,
strong dielectric discontinuities at the boundary of a
large molecular ion and the solution create technical dif-
ficulties. However, it is known that there is a single
stable minimum of the action functional whose deriva-
tive yields the Poisson-Boltzmann equation (Coalson
and Duncan, 1992; Ben-Tal and Coalson, 1994). There-
fore properly constructed iterative processes can be ex-
pected to locate that minimum.

Early numerical work centered on FD representa-
tions. Nicholls and Honig (1991) developed an efficient
single-level successive over-relaxation method which in-
cluded special techniques for memory allocation and for
locating the optimal relaxation parameter. For the test
cases considered, between 76 and 184 iterations were
required for convergence. They also observed diver-
gence for some highly nonlinear cases. Davis and Mc-
Cammon (1989) and Luty et al. (1992) used instead a
conjugate-gradients relaxation method. Between 90 and
118 iterations were required to obtain convergence.
They observed a factor of at least 2 improvement in
efficiency in comparison with successive over-relaxation
in their test calculations.

After the development of multigrid methods for solv-
ing linear Poisson-type problems, efforts focused on
nonlinear problems. The full-approximation-scheme al-
gorithm presented above is well suited for solving non-
linear problems (Brandt, 1984). Two modifications are
needed: the driving term fh on a given level now in-
cludes the nonlinear terms, and additional terms must be
included in the defect correction to ensure zero correc-
tion at convergence. The defect correction for the
Poisson-Boltzmann problem is of the form (a single
monovalent positive-ion component with uniform di-
electric is considered here)

tH5LHIh
Huh2Ih

HLhuh

1
4p

e
@ n̄1

He2buH2vH
2n̄1

h Ih
He2buh2vh

# , (47)

where the additional terms reflect the differing represen-
tations of the nonlinear terms on the two levels. The
concentration on a given level is given by

n̄1
h 5

N1

h3(e2buh2vh . (48)

The sum is over the lattice and N1 is the number of
positive ions in the computation domain (Coalson and
Duncan, 1992). This procedure for obtaining the bulk
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ion concentrations ensures charge conservation at all
steps of iteration. Simple smoothing steps can be taken
to relax on a given level, or Newton iterations (Press
et al., 1992) may also be conducted on each level. Vari-
able v parameters may be required in the relaxation
steps due to the differing degrees of nonlinearities on
the respective levels. Related multigrid techniques for
nonlinear problems are presented by Stüben and Trot-
tenberg (1982) and Hackbusch (1985).

Holst and Saied (1995) developed a highly efficient
method which combines linear multilevel techniques
with inexact Newton iterations. They compared the con-
vergence behavior of the inexact Newton multigrid
method with successive over-relaxation and conjugate-
gradients minimization on a single level. Their multi-
level technique converged robustly and more efficiently
than the relaxation methods on all problems investi-
gated, including challenging source problems with di-
electric discontinuities. Conjugate gradients and succes-
sive over-relaxation exhibited similar convergence rates
when compared with each other. They also examined a
standard nonlinear multigrid method similar to that out-
lined above. For some cases, the nonlinear multigrid
technique gave good convergence, but under certain
conditions it diverged. The authors thus recommended
caution in applying the full-approximation-scheme mul-
tigrid method directly to the Poisson-Boltzmann equa-
tion. Coalson and Beck (1998) tested the full-
approximation-scheme approach on model problems in
the lattice field theory including source singularities and
found convergence for each case. Oberei and Allewell
(1993) have also developed a convergent multigrid
solver for the Poisson-Boltzmann equation. It is not en-
tirely clear at the present time whether differences in
observed convergence are due to the model problems
investigated or to differences in the algorithms.

One issue that has not been addressed to date con-
cerns charge conservation on the various levels. The
standard form of the Poisson-Boltzmann equation
(Honig and Nicholls, 1995) assumes fixed and equal con-
centrations of the mobile ions at infinity, where the po-
tential is zero. The ion charge density can then be ex-
pressed as the product of a constant term involving the
Debye length of the ion gas and a sinh term involving
the potential. Typically the boundary potential is fixed
with the linearized Debye-Hückel value. This represen-
tation conserves charge if the system size is allowed to
go to infinity due to the infinite extent of the bath. How-
ever, charge is not conserved for finite system sizes, and
in a multilevel procedure differing charge states will be
encountered on the various levels. In the lattice field
theory of Coalson and Duncan (1992), on the other
hand, the charge is naturally conserved (maintaining
overall charge neutrality) by updating the parameters
n̄1 and n̄2 during each step of iteration [see Eqs. (12)
and (48)]. Lack of conservation of charge on the grid
levels in the standard approach may impact the conver-
gence behavior of a multilevel solver; this issue deserves
further attention.
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
In a recent study, Tomac and Gräslund (1998) ex-
tended the Poisson-Boltzmann level of theory to include
ion correlations in an approximate way. They solved for
the Kirkwood (1934) hierarchy of equations on a FD
grid assuming a closure proposed by Loeb (1951). Mul-
tigrid techniques were used to solve the initial Poisson-
Boltzmann equation and to implement the inclusion of
ion correlations. Coarser grids were used to estimate the
fluctuation term, and the impact of large grid spacing on
the accuracy of the correlation term was examined. Ex-
cellent agreement with previous theoretical results and
Monte Carlo simulation was obtained for divalent ion
distributions around a central sphere. Test calculations
were also performed on ion distributions around an
ATP molecule. This work allows for the more accurate
treatment of systems containing multivalent ions. The
computational expense of obtaining the fluctuation con-
tribution is extensive, however.

What is clear from the multigrid studies to date is that
multilevel methods can yield solutions to the Poisson-
Boltzmann equation (and its modifications to include
ion correlations) with efficiencies resembling those for
linear problems and with linear-scaling behavior. Hence
they show a great deal of promise for large-scale colloid
and biophysical applications. Under some circum-
stances, special measures may be necessary to obtain
correct multigrid convergence efficiencies. To my knowl-
edge, all FD Poisson-Boltzmann calculations so far have
employed second-order Laplacians; going to higher or-
ders improves accuracy for little additional cost, so
higher-order solvers should be considered. However,
high-order techniques near dielectric discontinuities in-
troduce some additional complexity.

In addition to FD-related methods for solving the
Poisson-Boltzmann equation, FE solutions have ap-
peared. The FE discretization leads to a more accurate
physical representation of complex molecular surfaces at
the expense of additional computational overhead. You
and Harvey (1993) developed a three-dimensional FE
method for solving the linearized Poisson-Boltzmann
equation. More accurate results were obtained with the
FE approach than with FD solutions in model problems.
Potential distributions were computed surrounding
tRNA molecules and the enzyme superoxide dismutase.
This was the first application of the FE method to large-
scale biological macromolecular electrostatics. Cortis
and Friesner (1997) formulated a method for construct-
ing tetrahedral FE meshes around macromolecules. The
authors discussed the relative merits of FD and FE rep-
resentations, including applications of multilevel meth-
ods in their solution. They used their discretization pro-
cedure to solve the linearized Poisson-Boltzmann
equation. Bowen and Sharif (1997) presented a FE nu-
merical method for solution of the nonlinear Poisson-
Boltzmann equation in cylindrical coordinates. Adaptive
mesh refinements were employed to gain accuracy near
curved surfaces. They considered applications to mem-
brane separation processes by examining the case of a
charged spherical particle near a cylindrical pore. Alter-
native formulations of electrostatic problems include
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boundary-element methods which reduce Poisson prob-
lems to calculations involving the molecular surface
(Yoon and Lenhoff, 1990, 1992; Pratt et al., 1997). They
lead to dense matrix representations of the problem; if
nonlinear salt effects are to be included, volume inte-
grals, in addition to surface integrals, must be incorpo-
rated.

C. Computations of free energies

Several proposals have appeared concerning compu-
tation of free energies of the ion gas once the solution of
the Poisson-Boltzmann equation is obtained. The free
energies are crucial for determining electrostatic interac-
tion energies of charged macromolecules at the mean-
field level. The energies can be obtained either by charg-
ing methods or volume/surface integrations (Verwey
and Overbeek, 1948; Marcus, 1955; Rice, 1959; Reiner
and Radke, 1990). The most commonly used volume in-
tegration approach stems from the variational formula-
tion of Sharp and Honig (1990b). They postulated a
form for the free energy which, when extremized, pro-
duces the Poisson-Boltzmann equation. Fogolari and
Briggs (1997) critiqued this variational form, showing
that the extremum in the free energy is a maximum, not
a minimum, with respect to variations of the potential.
They presented another form which is minimized. The
lattice-field theoretic free energy is derived from a rig-
orous representation of the grand partition function of
the ion gas (Coalson and Duncan, 1992). In this section,
we shall derive the variational form from the lattice-
field-theory formulation to illustrate differences be-
tween the two; the variational form is obtained from the
infinite system size limit of the lattice-field theory. We
assume here the case of uniform dielectric and monova-
lent ions; the extensions for variable dielectric and
higher valences follow the same arguments.

The mean-field lattice-field-theory Helmholtz free en-
ergy is

bF52SLFT1N1 ln~ n̄1h3!1N2 ln~ n̄2h3!, (49)

where SLFT is an action term (defined below) and N1

and N2 are the total numbers of positive and negative
mobile ions in the calculation domain. In order to
handle periodic as well as finite domains, we assume that
the total number of mobile and fixed charges is such that
overall charge neutrality is maintained. The free-energy
equation (49) is invariant to a uniform shift of the po-
tential, which is the correct physical result. The concen-
tration n̄1 is given by Eq. (48), while n̄2 is obtained by
the analogous formula for negative charges.

Consider the action which, when minimized, results in
the Poisson-Boltzmann equation

S52
1
2 E f¹2f d3x

2
4p

e E Fr ff2
n̄1

b
e2bf2v2

n̄2

b
ebf2vGd3x . (50)

The action of Eq. (49) is related to S by
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SLFT5
be

4p
S . (51)

Then the total Helmholtz free energy on the lattice is

bF5
beh3

8p ( fhLhfh1bh3( r f
hfh

1N1 ln~ n̄1h3/e !1N2 ln~ n̄2h3/e !, (52)

where the grid potential is fh, and the sums are over the
lattice points.

Let us examine a process in which two macroions are
moved relative to each other (Fig. 10). The macroions
are assumed to reside in a large calculation domain
which contains counterions plus perhaps salt ions, so the
potential is screened at large distances. We assume that
the potential decays effectively to zero some finite dis-
tance from the ions and is zero all the way to the bound-
aries. The mobile ions behave as an ideal gas where the
potential is zero. The numbers of fixed and mobile ions
is maintained constant throughout the process. Now,
consider the free-energy change from the ‘‘activity’’
term for the positive mobile ions upon moving from con-
figuration 1 to 2:

bDFa15N1 ln
(e2bf1

h
2v1

h

(e2bf2
h

2v2
h . (53)

Call the number of free sites in the domain where the
potential is effectively zero N1

f and N2
f . The sums over

regions where the potential is nonzero are labeled S1
and S2 . The free-energy change DFa1 is then

bDFa15N1 ln
@N1

f 1S1#

@N2
f 1S2#

. (54)

Factor out the Nf terms:

FIG. 10. Schematic of two colloid particles located in a solu-
tion containing counterions and salt. The potential decays to-
ward zero at locations distant from the colloids due to expo-
nential screening.
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bDFa15N1 ln

N1
f F11

S1

N1
f G

N2
f F11

S2

N2
f G . (55)

The term involving the ratio of the free sites can be
represented as

N1 ln
N1

f

N2
f 5N1 ln

N tot8 F12
S1g

N tot8 G
N tot8 F12

S2g

N tot8 G , (56)

where N tot8 is the total number of grid points outside any
excluded volume regions and S1g and S2g count the
numbers of grid points outside of excluded-volume
zones where the potential is nonzero.

For very large system sizes, the above expressions can
be approximated as

bDFa1'N1S S1

N1
f 2

S2

N2
f D 1

N1

N tot8
~2S1g1S2g!. (57)

Analogous terms are obtained for the negative-ion case.
As the system size approaches infinity, we can make the
further approximations N1'N2 and N1

f 'N2
f 'N tot8 .

The resulting free-energy change for both ionic spe-
cies is then

bDFa5
N1

N tot8
F( ~e2bf1

h
1ebf1

h
22 !e2v1

h

2( ~e2bf2
h
1ebf2

h
22 !e2v2

hG . (58)

If we call the grid concentration cg5N1 /N tot8
5N2 /Ntot8 , then the free-energy change can be written as

bDFa522cgF( „cosh~bf2
h!21…e2v2

h

2( „cosh~bf1
h!21…e2v1

hG . (59)

The grid activity coefficient g is cg /h3, which can be
assumed to be g5An̄1n̄2. In the continuum limit the
free-energy change due to the logarithmic terms in the
total free energy is thus

bDFa522gS E @cosh~bf2!21#e2v2d3x

2E @cosh~bf1!21#e2v1d3x D . (60)

The overall free-energy change can then be written as
the difference of two terms, one for each configuration:

bF5bE r ff d3x22gE @cosh~bf!21#e2v d3x

1
be

8p E f¹2f d3x . (61)
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So long as the potential and/or its derivative go to
zero on the boundaries, Eq. (61) can be rewritten as

bF5bE r ff d3x22gE @cosh~bf!21#e2v d3x

2
b

8p E eu¹fu2 d3x , (62)

which is identical to Eq. (13) in Sharp and Honig
(1990b). Thus the variational free energy of Sharp and
Honig is derived as the infinite system limit of the
lattice-field-theory expression, where the potential is as-
sumed to go to zero at the distant boundaries. Since the
variational form is not invariant to a uniform shift of the
potential, some arbitrariness is introduced. In addition,
charge conservation is not maintained, as discussed
above. The issue of charge conservation is particularly
relevant if one considers periodic boundary domains.
Therefore it is recommended to use the lattice-field-
theoretic form for computations of free energies for
cases in which these considerations are deemed impor-
tant.

D. Biophysical applications

One reason for a resurgence of interest in continuum
models for large macromolecules is that, for many sys-
tems of interest, the total number of particles is simply
too large to model accurately at the atomic level. For
example, consider a protein interacting with a DNA
strand: the atomistic treatment including solvent and salt
effects would involve several tens of thousands of atoms,
and the motions occur over time scales longer than
nanoseconds. So long as the energetics are proven to be
reasonable in testable model calculations, some confi-
dence can be placed in the Poisson-Boltzmann calcula-
tions on larger systems. The number of applications of
Poisson-Boltzmann-level theory to biological macromol-
ecules is now very large. Previous reviews summarize
progress in this area (Sharp and Honig, 1990a; Honig
and Nicholls, 1995). A few representative studies from
the main categories of application are presented here to
give a flavor of the types of problems that are accessible.

The first type of application concerns the computed
average electrostatic potential and the resulting charge
distributions. Haggerty and Lenhoff (1991) performed
FD calculations to generate the electrostatic potential
on the surfaces of proteins. They found a clear correla-
tion between retention data in ion-exchange chromatog-
raphy and the average protein surface potential. Ion-
exchange chromatography is one of the important
techniques for separating mixtures of proteins. Montoro
and Abascal (1998) compared Monte Carlo simulations
and FD Poisson-Boltzmann calculations on distributions
of monovalent ions around a model of B-DNA. They
found good agreement between the simulations and
Poisson-Boltzmann calculations for low to moderate ion
concentrations, but for concentrations above 1 M, the
agreement deteriorates. Pettit and Valdeavella (1999)
compared electrostatic potentials obtained from
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molecular-dynamics simulations and Poisson-Boltzmann
calculations for a tetra-peptide. They observed qualita-
tive differences for the electrostatic potentials around
the peptide. However, they argued that the free energies
obtained by integration over the entire domain include
cancellation of errors and yield more reliable results
than the potential itself. Patra and Yethiraj (1999) de-
veloped a density-functional method for the ion atmo-
sphere around charged cylinders (a model for DNA or
tobacco mosaic virus). Their theory includes contribu-
tions from finite ion size and ion correlations beyond the
mean-field level. Their density-functional approach gave
good agreement with simulations for both monovalent
and divalent ion atmospheres. The Poisson-Boltzmann
level theory does well for low axial charge densities on
the cylinder. Interesting charge-inversion effects were
seen for divalent salts which are entirely absent from the
Poisson-Boltzmann calculations. Recently Baker et al.
(1999) developed a highly adaptive multilevel FE
method for solving the Poisson-Boltzmann equation. By
placing adaptive meshes in the regions of the dielectric
discontinuities, they were able to make large reductions
in overall computation cost. Computations were per-
formed to obtain the electrostatic potential around large
protein and DNA systems.

The second utility of Poisson-Boltzmann calculations
lies in the computation of free energies and resulting
interaction energies for variable macromolecule confor-
mations. Yoon and Lenhoff (1992) used a boundary-
elements method to compute interaction energies for a
protein and a negatively charged surface at the linear-
ized Poisson-Boltzmann level. They found the most fa-
vorable orientation with the protein active site facing
the surface. Zacharias et al. (1992) investigated the inter-
action of a protein with DNA, utilizing the FD Poisson-
Boltzmann method. They studied the distribution of
ions in the region between the two species and the en-
ergetics for protein binding. The interaction energy de-
pended strongly on the charge distributions on the DNA
and protein. The computed number of ions released
upon complexation agreed well with experiment. Misra
et al. (1994) performed FD Poisson-Boltzmann calcula-
tions to study the influence of added salt on protein-
DNA interactions. Long-range salt effects play a signifi-
cant role in the relative stabilities of competing
structures of protein-DNA complexes. Ben-Tal et al.
(1997) examined electrostatic effects in the binding of
proteins to biological membranes. The binding constant
for the protein-membrane complex was successfully
compared with experimental data. Chen and Honig
(1997) extended their FD Poisson-Boltzmann method to
mixed salts including both monovalent and divalent spe-
cies. They found that, for pure salt cases, the electro-
static contribution to binding varied linearly with the
logarithm of the ion concentration; for divalent salts,
nonlinear effects were observed due to competitive
binding of the two ionic species.

A third type of problem addressed by Poisson-
Boltzmann level computations is the determination of
pH-dependent properties of proteins. Since the net
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
charge of the protein is crucial in understanding its prop-
erties, a predictive method is desired for computing elec-
trostatic effects (due to other charged groups) on the
pKa’s of ionizable groups. Antosiewicz et al. (1994,
1996) presented extensive calculations on a large data
set for several proteins. Somewhat surprisingly, they ob-
tained the best agreement with experiment assuming an
interior dielectric constant of 20 for the protein. Possible
explanations of this effect were discussed, including ap-
proximate accounting for specific ion binding and con-
formational relaxation of the protein. They also found
improvements if NMR structural sets were used as op-
posed to single-crystal x-ray structures for the proteins.
Vila et al. (1998) recently performed boundary-element
multigrid calculations to determine pKa shifts; they ob-
tained excellent agreement with experiment for poly-
pentapeptides.

Fourth, Poisson-Boltzmann methods have been incor-
porated into electronic structure calculations to study
solvation effects. As an example, Fisher et al. (1996) per-
formed density-functional electronic structure calcula-
tions on a model for the manganese superoxide dis-
mutase enzyme active site. The region treated explicitly
included 37 or 38 atoms (115 valence electrons). The
surrounding solvent was modeled as a dielectric con-
tinuum (water). The electronic structure was computed
self-consistently by updating the reaction-field potential
due to the solvent following calculations with fixed po-
tential. Typically, the continuum solvation procedure
converged within seven iterations. The authors com-
puted redox potentials and pKa’s for the complex. Dif-
ferences from measured redox potentials were observed,
and the authors stressed the importance of explicitly in-
cluding electrostatic effects from the rest of the protein
in the calculations.

As a final biophysical real-space application, a lattice
relaxation algorithm has been developed by Kurnikova
et al. (1999) to examine ion transport through
membrane-bound proteins. The coupled Poisson and
steady-state diffusion equations (Poisson-Nernst-Planck
or PNP equations) were solved self-consistently on a FD
real-space grid for motion through a membrane protein,
the Gramicidin A dimer. The charges embedded in the
channel interior had a large impact on computed diffu-
sion rates. The computed current-voltage behavior
agreed well with experimental findings. The accuracy of
the continuum mean-field treatment is encouraging for
the further study of ion transport through a wide range
of membrane proteins. A recent study (Corry et al.,
2000) has critiqued the mean-field approach for narrow
ion channels, so some modifications in the Poisson-
Nernst-Planck theory may be required for those cases.

VII. SOLUTION OF SELF-CONSISTENT EIGENVALUE
PROBLEMS

Eigenvalue problems arise in a wide range of applica-
tions. Solution of the Schrödinger equation with fixed or
self-consistent potential is of course a dominant one.
However, eigenvalue problems occur in several other
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areas. Included are computation of modes and frequen-
cies for molecular vibrations (Jensen, 1999) and optical
modes of waveguides (Coalson et al., 1994). Self-
consistent eigenvalue problems also arise in polymer
theory (Tsonchev et al., 1999). This section reviews re-
cent research on real-space methods for fixed and self-
consistent potential eigenvalue problems. The main fo-
cus is on novel methods for solving the Kohn-Sham
equations in electronic structure. Additional discussion
concerns applications in semiconductor and polymer
physics.

A. Fixed-potential eigenvalue problems in real space

1. Algorithms

Let us consider the problem of minimizing the total
energy for a single quantum particle subject to the con-
straint that the wave function must be normalized. With
the inclusion of a Lagrange multiplier term for the con-
straint, the energy functional reads

E@c~r!#52
1
2 E c* ¹2c d3x1E c* Vc d3x

2lE c* c d3x , (63)

where l is the Lagrange multiplier. If multiple states are
desired, then the single Lagrange multiplier becomes a
matrix of multipliers designed to enforce orthonormality
of all the eigenfunctions. The ‘‘force’’ analogous to Eq.
(27) is then

2
dE

dc*
5

1
2

¹2c2Vc1lc . (64)

When the force term is set to zero, indicating location of
the minimum, the eigenvalue equation for the ground
state results. Discretizing this equation on a one-
dimensional grid leads to the second-order finite-
difference representation of the Schrödinger equation:
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Solution of this matrix equation with standard diagonal-
ization routines (excluding the Lanczos and multigrid
methods) results in an Ng

3 scaling of the solution time,
where Ng is the number of grid points. Since the matrix
is sparse, iterative techniques are expected to lead to
increased efficiencies, just as for Poisson problems. We
can note that the solution of Eq. (65) is a nonlinear
problem, since we seek both the eigenvalues and eigen-
vectors. In this section, we consider necessary extensions
of the FAS-FMG method for the eigenvalue problem
and discuss applications of finite-difference and finite-
element real-space methods for fixed-potential cases.
Clear discussion of alternative Lanczos and related algo-
rithms (such as the conjugate-gradient, GMRES, and
Jacobi-Davidson algorithms) for handling sparse matrix
diagonalization is given in Golub and van Loan (1996)
and Booten and van der Vorst (1996).

The derivation of the FD matrix eigenvalue equation
above parallels that for the Poisson problem. The addi-
tional complexities introduced are: (1) the necessity of
solving for multiple eigenfunctions, (2) computation of
eigenvalues, and (3) enforcement of orthonormality-
related constraints. Brandt, McCormick, and Ruge
(1983) extended the FAS-FMG algorithm to eigenvalue
problems. Hackbusch (1985) discussed related eigen-
value methods. The algorithm of Brandt, McCormick,
and Ruge allows for fully nonlinear solution of the ei-
genvalue problem; due to the nonlinear treatment, the
eigenvalues and constraint equations only need to be
updated on the coarsest level, where the computational
expense is small. One exception to the previous state-
ment in the original Brandt-McCormick-Ruge algorithm
is a Ritz projection (below) on the finest level at the end
of each V cycle, preceded by a Gram-Schmidt orthogo-
nalization. Costiner and Ta’asan (1995a) have since ex-
tended the method to process the Ritz projection on
coarse levels as well.

The same basic procedure is followed in the Brandt-
McCormick-Ruge eigenvalue algorithm as discussed
above for Poisson problems. The Laplacian operator Lh

in Eq. (22) is replaced by the real-space Hamiltonian
minus the eigenvalue l i . There is no source term fh,
and there are q equations, where q is the number of
eigenfunctions. Since the orthogonalization constraints
are global operations involving integrals over the whole
domain, these processes can be performed on the coarse
levels. The relaxation sweeps (two or three) on finer lev-
els smooth the high-frequency errors and do not destroy
the existing orthonormality of the functions; of course, if
many unconstrained iterations were performed on fine
levels, all wave functions would begin to collapse to the
ground state. Linear interpolation and full-weighting re-
striction are sufficient, but use of cubic interpolation re-
sults in more accurate eigenfunctions upon entry to a
new finer level. A direct Gram-Schmidt orthogonaliza-
tion is not applicable on coarse levels; if the exact grid
solution is restricted to the coarse levels, the resulting
eigenfunctions are no longer orthonormal. Therefore, to
satisfy the zero correction at convergence condition, a
coarse grid matrix equation for the constraints is
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Solution requires inversion of a q3q matrix. The inver-
sion can be effected by direct matrix methods if q is
small or iterative procedures can be used as performed
by Brandt, McCormick, and Ruge in their solver. The
grid overhead for the operation is very small, since it is
performed on the coarsest level; for example, if three
levels were employed in the eigenvalue solver, the
coarse-grid operations would require 1/64 the effort
needed by the fine scale in three dimensions. An addi-
tional consideration in the eigenvalue problem is that
the coarse grid must contain enough points to properly
resolve the eigenfunctions; Brandt, McCormick, and
Ruge give a criterion of Ncg54q for the required num-
ber of points.

The eigenvalues can also be updated on the coarse
levels by inclusion of the defect correction

l i5
^H Hui

H2t i
H ,ui

H&

^ui
H ,ui

H&
. (67)

The grid Hamiltonian on the coarse level is H H. The
same set of eigenvalues applies on all levels with this
formulation. Relaxation steps are performed on each
level with Gauss-Seidel iterations.

A final addition to the FAS-FMG technique in the
eigenvalue algorithm of Brandt, McCormick, and Ruge
is a Ritz projection performed at the conclusion of each
V cycle in the full-multigrid solver. The purpose of this
step is to improve the occupied subspace by making all
residuals orthogonal to that subspace. The eigenfunc-
tions are first orthogonalized with a Gram-Schmidt step
and the q3q Hamiltonian matrix in the space of the
occupied orbitals is diagonalized. The orbitals are then
corrected. This step improves the convergence rate. The
Ritz projection can be written as

vTH hvzi2l izi50, (68)

where v is the q3Ng (Ng is the total number of grid
points) matrix of the eigenfunctions, H h is the grid
Hamiltonian, and the zi are the solved-for coefficients
used to improve the occupied subspace. We have closely
followed this algorithm in our own work with two
changes: (1) we update the eigenfunctions simulta-
neously (as opposed to sequentially in the original algo-
rithm) and (2) high-order approximations are used in
the finite-difference Hamiltonian.

In the form presented above, the algorithm exhibits
q2Ng scaling due to the Ritz projection on the fine scale.
The scaling of the relaxation steps is qNg so long as the
orbitals span the entire grid. If a localized representation
of the orbitals is possible (Fattebert and Bernholc,
2000), then linear scaling of each step in the algorithm
results. Further discussion of the scaling of each opera-
tion is presented by Wang and Beck (2000). Costiner
and Ta’asan (1995a) have generalized the Brandt-
McCormick-Ruge algorithm in several ways. They trans-
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ferred the Ritz projection step to coarse grids and added
a backrotation to prevent rotations of the solutions in
subspaces of equal or close eigenvalues. They also de-
veloped an adaptive clustering algorithm for handling
groups of eigenfunctions with near eigenvalues. The
scaling of their algorithm is qNg when the eigenfunc-
tions span the entire grid. Several numerical experi-
ments in two and three dimensions demonstrated the
high efficiency of their method, and the method was ex-
tended to handle self-consistency (Costiner and Ta’asan,
1995b).

2. Applications

To demonstrate the efficiency of the Brandt-
McCormick-Ruge eigenvalue solver, consider the three-
dimensional hydrogen atom. While this may seem a very
simple case, it presents numerical difficulties for a real-
space method due to the presence of the Coulomb sin-
gularity in the potential. In addition, the s orbitals ex-
hibit cusps at the singularity and the excited states are
degenerate. Beck (1999a) presented numerical results
for the hydrogen atom which exhibit the excellent con-
vergence characteristics of the nonlinear FAS-FMG ei-
gensolver. The potential was generated numerically with
a 12th-order Poisson solver as described above. The grid
was taken as a 653 Cartesian lattice. The boundary po-
tentials were set to the analytical 1/r values. The fine-
grid uniform spacing was h50.5 a.u., and a 12th-order
FD discretization was employed. Five eigenfunction/
eigenvalue pairs were computed. The fully converged
eigenvalues (obtained by repeated V cycles on the finest
scale) were 20.500 50 for the 1s state, 20.125 04 for the
2s state, and 20.124 96 for the three 2p states (which
are degenerate out to 10 decimal places when fully con-
verged), so the results are accurate to better than kT .
The eigenvalues were converged to five decimal places
following one passage through the FAS-FMG solver
with three relaxation sweeps on each level on each side
of the V cycles. Thus only six fine-scale applications of
the Hamiltonian to the wave functions were required to
obtain the solution. The major computational cost for
this system occurred during the relaxation steps on the
fine scale. The total solution time was roughly 90 sec-
onds on a 350 MHz Pentium II machine. These results
show that eigenvalue solvers can be expected to have
similar convergence behavior to that of Poisson solvers,
so long as the nonlinear FAS-FMG methodology is fol-
lowed. Mesh refinements will yield comparable accura-
cies with much less numerical overhead. The required
high-order methods are now in place (Beck, 1999b) and
are being incorporated into the eigenvalue solver.

We now consider related efforts at efficient solution
of real-space fixed-potential eigenvalue problems. Grin-
stein et al. (1983) developed a second-order FD multi-
grid method to solve for a single eigenfunction. They
employed an FAS-FMG approach and used a Gauss
elimination method to solve the equations exactly on the
coarsest level. Since they solved for single eigenfunc-
tions, constraints were not necessary. The eigenvalue
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was fixed and not computed, so the problem was effec-
tively linear. Seitsonen et al. (1995) solved fixed-
potential eigenvalue problems using a high-order FD
representation and a conjugate-gradient method for ob-
taining the eigenfunctions and eigenvalues. They tested
their method on the P2 dimer and obtained rapid con-
vergence of the approximation with decreasing grid size.
The representation of the wave functions was better
than in corresponding plane-wave calculations. They
also computed eigenfunctions for positron states cen-
tered on a Cd vacancy in CdTe.

Extensive effort has also been applied to development
of FE methodology for fixed-potential problems. Hackel
et al. (1993) proposed a two-dimensional FE method in
which Coulomb singularities were handled with con-
densed special elements around the nuclei. Test calcula-
tions were performed on the linear H3

21 molecule, and
highly accurate results (to 1027 a.u.) were obtained.
Ackerman and Roitzsch (1993) proposed an adaptive
multilevel FE approach which utilized high-order shape
functions. Inverse iteration was used to solve the large-
dimension eigenvalue problem for the two-dimensional
harmonic oscillator and the linear H3

21 molecule; accu-
racies comparable or even superior to the previous study
were reported. Subsequently, they extended their
method to three dimensions (Ackerman et al., 1994); in
this work, conjugate-gradient techniques were employed
to solve the eigenproblem. Results were presented for
the three-dimensional harmonic oscillator and H3

21 in
the equilateral triangle geometry. Sugawara (1998) pre-
sented a hierarchical FE method in which the mesh
points and polynomial orders are generated adaptively
to gain high accuracy. The method was tested on the
one-dimensional harmonic oscillator. Batcho (1998) pro-
posed a spectral-element method which combines ideas
from FE and collocation approaches. The Coulomb sin-
gularity was treated with a Duffy (1982) transformation.
Pask et al. (1999) have recently developed a FE method
for periodic solid-state computations. The method uses a
flexible C0 piecewise-cubic basis and incorporates gen-
eral Bloch boundary conditions, thus allowing arbitrary
sampling of the Brillouin zone. Band-structure results
were presented which illustrate the rapid convergence of
the method with decreasing grid size. The authors em-
phasized the structured, banded, and variational proper-
ties of the FE basis. Sterne et al. (1999) subsequently
applied the method to large-scale ab initio positron cal-
culations for systems of up to 863 atoms.

B. Finite-difference methods for self-consistent problems

In this section, we begin our examination of real-space
methods for solving self-consistent eigenvalue problems
with a discussion of finite-difference methods. The focus
here is mainly on the basic FD formulation and its rela-
tionship to other numerical methods in terms of accu-
racy. Later sections will discuss specialized techniques
for solution in the real-space representation including
multigrid, mesh refinements, FE formulations, and re-
lated LCAO methods.
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One direction has been to develop atom-centered nu-
merical grids in order to obtain converged results inde-
pendent of basis-set approximations. Becke (1989) pre-
sented a fully numerical FD method for performing
molecular-orbital calculations. In this method, the physi-
cal domain was partitioned into a collection of single-
center components, with radial grids centered at each
nucleus. A polyatomic numerical integration scheme
was developed. This work was the first to extend the
previous two-dimensional methods for diatomics (see,
for example, Laaksonen et al., 1985). This numerical
method has allowed for accurate computations to test
various levels of density-functional approximations on
small molecules without concerns about basis-set linear-
dependence effects. The main focus of this approach has
been on numerically converged results and not on scal-
ing and efficiency for large-scale problems.

In contrast to the atom-centered grids discussed
above, recent work has focused on development of high-
order pseudopotential methods on uniform Cartesian
grids. Chelikowsky, Troullier, and Saad (1994) and Che-
likowsky, Troullier, Wu, and Saad (1994) proposed a FD
pseudopotential method in which high-order forms were
utilized for the Laplacian (see Appendix). They em-
ployed the real-space pseudopotentials of Troullier and
Martins (1991a, 1991b). The simplicity of the FD
method in relation to plane-wave approaches was high-
lighted. The Hartree potential was obtained either by a
direct summation on the grid or by iterative subspace
techniques. Chelikowsky et al. also employed iterative
subspace methods for the eigenvalue problem. The main
emphasis was on the accuracy of the FD approximation
in relation to plane-wave methods. A multipole expan-
sion was used to generate the fixed potential on the
boundaries. Three parameters determined the accuracy
of their FD calculations: the grid spacing, the order of
the Laplacian, and the overall domain size.

Results were presented concerning the convergence
of the eigenvalues with order and decreasing grid spac-
ing. The 12th-order form of the Laplacian was found to
be sufficient for well-converged results. Accurate eigen-
values (to 0.01 a.u.) were obtained for atomic states. Ex-
tensive calculations on diatomic molecules were also
presented. The high-order FD approximation gave good
results for binding energies, bond lengths, and vibra-
tional frequencies. Comparisons were made to plane-
wave calculations with two supercell sizes, one with 12
a.u. and one with 24 a.u. on a side. The FD calculation
box was 12 a.u. on a side. The plane-wave energies were
not converged with the smaller box size, but the plane-
wave calculations approached the FD results when a su-
percell of 24 a.u. was used, suggesting that quite large
supercells must be employed (even for nonpolar mol-
ecules) for converged orbital energies in localized sys-
tems (see Table I). The authors obtained a dipole value
of 0.10 D for the CO molecule (with the C2O1 orienta-
tion). The experimental value is 0.1227 D with the same
orientation, while Hartree-Fock theory yields the wrong
sign for the dipole. However, the fully converged LDA
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dipole is 0.24 D (Laaksonen et al., 1985).10 The error is
most likely due to the restricted overall domain size in
their calculation (see Kim, Städele, and Martin, 1999;
Wang and Beck, 2000). To conclude, the authors empha-
sized that the FD method is ideal for localized and
charged systems, is easy to implement, and is well suited
for parallel computations. Related work which has ana-
lyzed the impact of FD order on accuracy for Poisson
problems can be found in the multigrid papers of Mer-
rick et al. (1995), Gupta et al. (1997), and Zhang (1998).
See also Sec. IV.A.3.

Subsequently, Jing et al. (1994) extended the high-
order FD method to computing forces and performing
molecular-dynamics simulations of Si clusters. For most
of their work, they performed Langevin molecular-
dynamics simulations with a random force component to
simulate a heat bath. The clusters were annealed from
high temperature to room temperature and the cluster
structures were examined; the FD method gave excel-
lent agreement with other numerical methods. When the
heat bath was turned off, the trajectory exhibited total
energy fluctuations two orders of magnitude smaller
than the potential energy fluctuations. The fluctuations
agreed in magnitude with those in a plane-wave simula-
tion to within a few percent. Vasiliev, et al. (1997) re-
cently utilized the higher-order FD methods in compu-
tations of polarizabilities of semiconductor clusters with
finite-field methods for the response. The results of the
high-order FD method from Chelikowsky’s group
clearly show that the FD representation can yield results
of comparable or superior accuracy to those of plane-
wave calculations on similar-sized meshes.

In related work, Hoshi et al. (1995) presented a super-
cell FD method in which they used an exact form of the
FD Laplacian which spans the whole domain along each
direction. Therefore 3Ng

1/3 points were necessary to ap-
ply the Laplacian to the wave function at each grid
point; the method is equivalent to a very high-order rep-
resentation. Fast-Fourier-transform routines were used
to solve for the Hartree potential. A preconditioning

10This paper uses the Dirac-Slater Xa form for the exchange-
correlation potential. However, the computed dipole is insen-
sitive when that potential is changed to the LDA form. See
Jensen (1999) for converged basis-set LDA results.

TABLE I. Orbital energies for the oxygen dimer, from Che-
likowsky, Troullier, Wu, and Saad (1994). FD-12 refers to
high-order FD calculations in a 12-a.u. box. PW-12 and PW-24
refer to plane-wave calculations with supercells of 12 and 24
a.u. on a side. Energies are in eV.

Orbital FD-12 PW-12 PW-24

ss 232.56 232.09 232.60
ss* 219.62 219.11 219.57
sp 213.63 212.93 213.37
pp 213.24 212.54 212.98
pp* 26.35 25.53 25.98
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technique similar to that of Payne et al. (1992) was em-
ployed to improve convergence. Pseudopotential results
were presented for the He atom and the H2 molecule.
Their method required 45 steps of iteration to converge
within 1025 a.u. with the preconditioning. Subsequently,
Hoshi and Fujiwara (1997) incorporated the uncon-
strained orbital-minimization linear-scaling scheme into
their method. Windowing functions were employed to
confine the orbitals to localized regions of space. Test
calculations were performed on the diamond crystal
with four localized orbitals per atom. They obtained a
ground-state energy of 5.602 a.u./atom, which compared
reasonably well with their previous result of 5.617 a.u./
atom.

As mentioned above, FD methods have found appli-
cation in areas outside of traditional electronic structure
theory. Abou-Elnour and Schuenemann (1993) devel-
oped a self-consistent FD method for computing wave
functions, carrier distributions, and subband energies in
semiconductor heterostructures. Only one-dimensional
problems were examined. They compared the FD
method to a basis-set calculation and found the FD ap-
proach to be faster. In polymer physics, self-consistent
FD methods have also appeared. Tsonchev et al. (1999)
derived a formal field theory for the statistical mechan-
ics of charged polymers in an electrolyte solution. The
theoretical development parallels the earlier work of
Coalson and Duncan (1992) for the ion gas. A
functional-integral representation was derived for the
partition function of the coupled polymer/ion system.
The mean-field theory solution leads to coupled
Poisson-Boltzmann (for the ion gas moving in the field
of the other ions and the polymer charges) and eigen-
value (for the polymer chain distribution) equations.
These equations were solved numerically with FD meth-
ods for polymers confined within spherical cavities. The
three-dimensional eigenvalue problem was solved with
the Lanczos technique. Electrostatics plays a key role in
the chain structure for high chain charge densities and
low salt concentrations in the cavities.

C. Multigrid methods

The finite-difference results of the previous section
show that accurate results can be obtained on uniform
grid domains with high-order approximations. Multi-
scale methods allow for accelerated solution of the grid-
based equations. The first application of multigrid meth-
ods to self-consistent eigenvalue problems in electronic
structure was by White et al. (1989). Many of the impor-
tant issues related to real-space approaches were laid
out in this early paper. The authors developed an or-
thogonal finite-element basis and solved the Poisson
equation numerically with multigrid. Due to the or-
thogonal basis, a standard FD solver required only
simple revisions to apply to the FE case. They also pre-
sented preliminary results of multigrid methods applied
to the eigenvalue portion of the problem, but only single
orbital cases were considered. They found that the mul-
tigrid solver was faster than a conjugate-gradient
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method (without preconditioning). Computations were
performed on the hydgrogen atom, the H2

1 molecular
ion, the He atom, and the H2 molecule. More discussion
of their method will be given below in Sec. VII.E on FE
methods. Another early method by Davstad (1992) pro-
posed a two-dimensional multigrid solver for diatomic
molecules in the Hartree-Fock approximation. He com-
bined multigrid and Krylov subspace methods in the
solver. High-order FD discretization was employed. The
Orthomin procedure (a Krylov subspace method) was
used for iterations on all coarse levels, with Gauss-Seidel
iteration as preconditioner. Computations were per-
formed on the diatomics BH, HF, CO, CuH, and the Zn
atom. Good convergence rates were observed (pre-
sented in terms of orbital residuals), and excellent agree-
ment with previous numerical work was obtained for
total energies and orbital eigenvalues.

Since this early work, several groups have utilized
multigrid solvers for many-orbital problems in three di-
mensions. Bernholc’s group has developed a multigrid
pseudopotential method for large systems. Preliminary
calculations (Bernholc et al., 1991) were reported for the
H atom and the H2 molecule. A grid-refinement strategy
for adding resolution around the nuclei was also pre-
sented. Subsequently, Briggs et al. (1995) included real-
space pseudopotential techniques into their multigrid
method and presented calculations for large condensed-
phase systems on uniform grids. They introduced the FD
Mehrstellen discretization, which leads to a fourth-order
representation. Variations of the total energy of atoms
when moved in relation to the grid points were investi-
gated. With increasing grid resolution, the errors de-
creased, so this criterion can be used to choose the nec-
essary fine-grid spacing for accurate dynamical
simulations. The Hartree potential was also generated
with a multigrid solver. In their method, the computa-
tion time to perform one multigrid step is comparable to
a single propagation step in the Car-Parrinello method.
Results were presented for a 64-atom diamond super-
cell, the C60 molecule, and a 32-atom GaN cell. For large
systems, the multigrid method was found to converge to
the ground state an order of magnitude faster than their
Car-Parrinello code. For the GaN case, 240 multigrid
iterations were required to reach the ground state from
random initial wave functions, while for an 8-atom dia-
mond cell roughly 20 iterations were necessary to con-
verge the total energy to a tolerance of 1028 a.u.

Their multigrid algorithm was further developed by
Briggs et al. (1996), who presented extensive details of
the solver. Calculations were performed on a Si super-
cell, bulk Al, and an AlN supercell with comparisons
made to Car-Parrinello calculations to test the accuracy
of the approximations. Excellent agreement with the
Car-Parrinello results was obtained. The multigrid
implementation of Briggs et al. for the eigenvalue prob-
lem utilized a double-discretization scheme; on the fine
level the Mehrstellen discretization was employed, while
on the coarse grids a seven-point central-difference for-
mula was used. Full-weighting restriction and trilinear
interpolation were used for the grid transfers, and Jacobi
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
iterations were performed for the smoothing steps. The
eigenvalue problem was linearized by computing the ei-
genvalues only on the fine grid and performing coarse-
grid corrections on each eigenvector. The constraints
were imposed on the fine scale at the end of the double-
discretization correction cycle. Subspace diagonalization
was performed to accelerate convergence. Tests of the
convergence were conducted on a 64-atom Si cell and a
64-atom diamond cell with a substitutional N impurity.
Substantial accelerations were obtained with multigrid
in comparison to steepest-descent iterations; roughly 20
self-consistency iterations were required in the multigrid
solver to obtain 1023 Ry convergence in the total en-
ergy. While these convergence rates are a significant im-
provement over steepest-descent iterations, they are
nonoptimal due to the linearization in their method (see
below). The overhead for implementing multigrid in ad-
dition to steepest-descent iterations was only 10% of the
total computing time. The authors discussed extensions
of the multigrid method for molecular dynamics (tested
on a 64-atom Si supercell which exhibited good energy
conservation). Applications to other large-scale systems
appear in Bernholc et al. (1997).

In an algorithm very similar to that described above,
Ancilotto et al. (1999) developed a solver that included
full-multigrid processing to provide a good initial guess
on the finest level. The Mehrstellen discretization was
employed on all levels. With the full-multigrid addition,
the initial state of the orbitals is irrelevant, since it takes
very little numerical effort to obtain the initial fine-grid
approximation during the preliminary coarse-grid cycles.
They performed red-black Gauss-Seidel smoothing steps
on each level and used full-weighting restriction and tri-
linear interpolation for grid transfers. Eigenvalues were
computed only on the finest level, and Ritz projections
were also performed to accelerate convergence. They
also reported 20 self-consistency iterations to obtain
convergence on several diatomic molecules (C2, O2, CO,
and Si2), and good agreement with plane-wave results
was observed for equilibrium bond lengths and vibra-
tional frequencies (both to within 1%). They presented
numerical results for the C2 dimer (pseudopotential cal-
culations) which illustrated the convergence of their al-
gorithm in comparison to a Car-Parrinello (damped mo-
lecular dynamics) plane-wave code. Superior
convergence was found even in relation to state-of-the-
art Car-Parrinello algorithms (Tassone et al., 1994),
which exhibit performance similar to conjugate-gradient
algorithms. The method was tested by using simulated
annealing cycles to locate the most stable ground state
of the Al6 cluster. Then calculations were performed to
find stable minima for charged Li clusters with sizes N
59 –11. The numerical results indicated that the frag-
mentation behavior observed in experiments likely has a
strong nonstatistical component.

In addition to the two-dimensional solver of Davstad
discussed above, all-electron multigrid methods in three
dimensions have been developed. Iyer et al. (1995) dis-
cussed a multigrid method for solving the Kohn-Sham
equations in which the entire problem was discretized
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on a three-dimensional Cartesian lattice, including all
electron orbitals and the nuclear charge densities. An
eighth-order FD form for the Laplacian was used in this
work. The nuclear charge densities were discretized as a
single cube on the lattice, and the Poisson equation was
solved with the standard multigrid technique. Since the
total charge density included both the electron and
nuclear densities, all the electrostatic interactions were
handled in a single linear-scaling step, including the
nucleus-nucleus term. A self-energy must be subtracted
from the total energy, but this is a one-time computation
for each order of the Laplacian, since the self-energy
scales as Z2/h . Computations were performed on hydro-
genic atoms and the H2

1 molecule. A simple nested pro-
cedure was utilized for the Kohn-Sham solver in which
an initial approximation was generated on a coarse level,
smoothing steps were performed, and the problem was
interpolated to the next finer grid followed by relax-
ations. This process significantly accelerated the conver-
gence, but some critical slowing down remained, due to
incomplete decimation of long-wavelength modes on the
coarse levels. These results show that a one-way multi-
grid procedure without coarse-grid corrections does not
guarantee proper multigrid convergence. Various relax-
ation procedures were compared; conjugate gradients
gave the best convergence per step but required more
numerical effort than simple Gauss-Seidel iterations, so
Gauss-Seidel is equally efficient. This result illustrates
the important point that simple smoothing iterations are
enough to decimate the errors with wavelength on the
order of a few grid spacings on a given level, and special
techniques are not necessary. Results were presented for
the all-electron Ne atom, which exhibited the significant
speedup due to a multiscale treatment, but the residual
stalling on the fine levels was used to motivate inclusion
of the Brandt-McCormick-Ruge FAS-FMG method for
the eigenvalue problem.

Beck et al. (1997) presented the first application of the
Brandt-McCormick-Ruge FAS-FMG algorithm (Sec.
VII.A.1) to self-consistent electronic structure problems.
In this initial effort, the Brandt-McCormick-Ruge algo-
rithm was followed, except that the orbitals were up-
dated simultaneously during the correction cycle as op-
posed to sequentially in the original method. Also,
Gram-Schmidt orthogonalization steps were imple-
mented on each level, so the constraint procedure out-
lined in Sec. VII.A.1 was not followed exactly. Conver-
gence calculations were performed on the Ne atom on a
333 grid; the FAS-FMG approach led to faster conver-
gence than the one-way multigrid calculations of Iyer
et al. (1995). Beck (1997) extended these calculations to
the CO molecule (all electrons and three dimensions)
and developed a full-approximation-scheme solver for
the Poisson-Boltzmann equation. The convergence of
the CO molecular calculation was limited by the han-
dling of the constraints discussed above. A relatively ac-
curate dipole moment of 0.266 D (C2O1) was obtained
on a 333 mesh.

Subsequently, Beck (1999a) and Wang and Beck
(2000) developed a fully convergent FAS-FMG Kohn-
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Sham self-consistent all-electron solver. In this work, the
eigenfunction constraint equations [Eq. (66)] were
implemented on the coarsest grid only, and the eigenval-
ues were also updated on the coarsest level via Eq. (67).
Ritz projection was performed on the finest level at the
conclusion of each V cycle. The effective potential was
updated once upon entry to the next-finest level and at
the end of each V cycle. Both sequential and simulta-
neous updates of the orbitals were examined to test the
efficiency of each approach. The sequential method
leads to slightly more rapid convergence to the ground
state, but it results in a qNg scaling in a self-consistent
method, since the effective potential is updated follow-
ing coarse-grid corrections on each orbital. The dis-
cretized problem was solved on a 653 grid domain with a
12th-order form for the Laplacian. Atomic ionization
potential computations were performed to illustrate the
ease of applicability to charged, finite systems. Numeri-
cal results were presented for the all-electron CO mol-
ecule. The CO eigenvalues were accurate to within 0.015
a.u. for all states above the core, and the highest occu-
pied p(2p) and s(2p) states were accurate to within
0.006 a.u. The computed dipole was 0.25 D, in good
agreement with previous fully numerical results on di-
atomics (Laaksonen et al., 1985). Convergence data
were presented for the Be atom and the CO molecule
(Fig. 11). Implementation of the nonlinear FAS-FMG
strategy led to order-of-magnitude efficiency improve-
ment over linearized versions of the multigrid algorithm
(Ancilotto et al., 1999). The converged ground state was
obtained in only two or three self-consistency cycles,
with three orbital relaxation steps on each side of the V

FIG. 11. Convergence behavior. The top curve is the Car-
Parrinello (damped molecular-dynamics) result of Ancilotto
et al. (1999). The second curve is the multigrid result from that
work. The next is the full-approximation-scheme/full-multigrid
(FAS-FMG) result of Wang and Beck (1999) for the CO mol-
ecule. The bottom curve is the FAS-FMG result for the Be
atom.
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cycle. Therefore the entire self-consistent solution pro-
cess required a total of only 12–18 smoothing steps on
the finest grid and a few updates of the effective poten-
tial. One self-consistency cycle for the 14-electron CO
molecule on a 653 grid required roughly a minute of
CPU time on a 350-MHz Pentium-II machine. The up-
date of the Hartree potential involves the same effort as
the update of a single eigenfunction; it is therefore a
small contributor to the overall numerical effort. Due to
the handling of the constraints and eigenvalues on the
coarsest level, each self-consistency update requires less
computation than the algorithms of Briggs et al. (1996)
and Ancilotto et al. (1999).

Since these FAS-FMG computations included all elec-
trons and the nuclear singularities in three dimensions,
the rapid convergence in relation to the pseudopotential
computations of Ancilotto et al. (1999) is noteworthy
(the total energy is nearly three orders of magnitude
larger than in the pseudopotential calculation). These
results are the first to exhibit the full power of the non-
linear Brandt-McCormick-Ruge technique for solution
of self-consistent electronic structure problems. The
slightly slower convergence for the CO molecule (com-
pared with the Be atom) is due to the relatively poor
treatment of the core electrons on a uniform grid; with a
finer grid, the convergence is even more rapid. Wang
and Stuchebrukhov (2000) have applied the FAS-FMG
algorithm described above to computation of tunneling
currents in electron transfer; they found that real-space
calculations give a significantly more accurate represen-
tation of current densities than Gaussian basis-set calcu-
lations.

Some simple arguments can be made concerning the
total number of operations for the multigrid solution vs
the conjugate-gradient plane-wave method. The present
discussion assumes the orbitals span the entire physical
domain. Payne et al. (1992) showed that the conjugate-
gradient method requires 6qNFFT12q2NPW operations
to update all the orbitals. The second term is for the
orthogonalization constraints. The variable q is the
number of orbitals and NFFT is 16NPW ln NPW where
NPW is the number of plane waves. Thus NFFT is the
number of operation counts for Fourier transformation
on the real-space grid. The multigrid method requires
qNmgop12q2Ng1Nmgop5(q11)Nmgop12q2Ng opera-
tions, where Nmgop is the number of operations to up-
date one orbital with the multigrid method and Ng is the
number of fine grid points. The q2-dependent term is for
the orthogonalization constraints (Gram-Schmidt fol-
lowed by Ritz projection) which are performed once at
the end of each correction cycle, and the second Nmgop
term is for the Poisson solver. Since a multigrid update
of one eigenfunction (with, say, an eighth-order approxi-
mation) requires roughly four times the number of op-
erations of a single FFT (see Sec. VI.A.1), the net cost
for the multigrid update (neglecting the relative con-
straint costs, which are much smaller with multigrid; see
below) is slightly less than that for the conjugate-
gradient method. Figure 11 shows that the number of
self-consistency iterations is also very low with the mul-
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tigrid solver. The study of Ancilotto et al. (1999) com-
pared damped molecular dynamics to their linearized
multigrid method (on diatomic molecules). They also
compared multigrid (favorably) with the optimized dy-
namics method of Tassone et al. (1994), which in turn
exhibits convergence rates very similar to conjugate gra-
dients. Since the nonlinear FAS-FMG solver outper-
forms the linearized multigrid method by an order of
magnitude, this suggests the multigrid solver is more ef-
ficient than the conjugate-gradient approach. The best
available plane-wave techniques (see, for example,
Kresse and Furthmüller, 1996) can reduce the number of
self-consistency iterations to 5–10, so the multigrid
solver is at least as efficient as the most efficient plane-
wave techniques for uniform-domain problems where
the orbitals span the whole domain.

The major benefits of the multigrid approach in addi-
tion to the above discussion are

(1) all the constraint and subspace orthogonalization
operations can be removed to coarse levels where
the cost is minimal; for example if they are per-
formed two levels removed from the fine level, the
cost is 1/64 that on the fine level (Costiner and
Ta’asan, 1995a);

(2) it is quite easy to impose localization constraints in
the real-space multigrid approach (Fattebert and
Bernholc, 2000);

(3) mesh refinements can be incorporated while main-
taining the same convergence rates (see Beck,
1999b, for the Poisson version).

The mesh-refinement methods are in place and are cur-
rently being incorporated into Kohn-Sham solvers; they
should lead to a further near order-of-magnitude reduc-
tion in computational cost. Finally, Costiner and Ta’asan
(1995b) have shown that by updating the effective po-
tential simultaneously with the eigenfunctions on coarse
levels one can obtain self-consistent solutions in a single
passage through the final V cycle of the full-multigrid
process. Therefore multiscale real-space approaches of-
fer a promising alternative to plane-wave techniques.

Recently, Lee et al. (2000) proposed a one-way multi-
grid method similar to that of Iyer et al. (1995). Initial
approximations were obtained on coarse levels, and the
solution was interpolated to the next-finer level without
multigrid correction cycles. High-order interpolation
was used to proceed to the next-finer grid. Conjugate-
gradient techniques were employed to relax the orbitals
on each level. The method led to a factor-of-5 reduction
in computation time compared to a single-grid calcula-
tion. Computations were performed on a 20-electron
quantum dot and charged H clusters. Kim, Lee, and
Martin (2000) developed an object-oriented code for
implementation of the one-way multigrid algorithm.
Several other groups have utilized multigrid solvers as
components of real-space electronic structure algo-
rithms; these will be discussed in the following sections
on mesh-refinement techniques and FE methods.
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D. Finite-difference mesh-refinement techniques

The previous sections have discussed FD methods for
electronic structure; the calculations were performed
primarily on uniform grids. With the incorporation of
real-space pseudopotentials, results with accuracies
comparable to plane-wave methods (with similar grid
cutoffs) can be obtained with high-order FD techniques.
The calculations of Beck (1999a) and Wang and Beck
(2000) are instructive in that surprisingly accurate results
are possible even in all-electron calculations on uniform
grids; in addition, their work shows that multigrid effi-
ciencies are obtainable for the challenging case of very
harsh effective potentials which include the nuclear sin-
gularities. However, it is clear that increasing uniform
grid resolution until acceptable accuracy is reached is a
wasteful process, since small grid spacings are only re-
quired in the neighborhood of the atomic cores. This
section reviews recent work on development of FD
mesh-refinement techniques which address this issue for
the eigenvalue problem.

As discussed in Sec. VI.A.2, which covered closely re-
lated methods for the Poisson equation, there are at
present two strategies for mesh refinements: grid curving
and local refinements which are included within a
coarser mesh (Fig. 9). Gygi and Galli (1995) extended a
previous plane-wave method of Gygi (1993) to adaptive-
coordinate FD calculations. A curvilinear coordinate
system was developed which focused resolution near the
nuclei. The necessary extensions of the standard FD
method to handle the curvilinear Laplacian were pre-
sented. FD forms of order 2 and 4 were utilized, and
norm-conserving pseudopotentials were employed. The
Poisson equation was solved with a multigrid method.
The calculations were implemented on a Cray-T3D mas-
sively parallel machine. Test calculations were con-
ducted on diatomics and the CO2 molecule. The calcu-
lations of the total energy of the CO2 molecule vs
internuclear distance exhibited a spurious double mini-
mum with a uniform grid treatment (cutoff energy of
227 Ry). This double minimum is due to the numerical
errors from a grid that is too coarse. When the adaptive-
coordinate transformation was included (with effective
cutoffs of 360 Ry for carbon and 900 Ry for oxygen), a
single minimum was observed near the correct experi-
mental bond length.

Modine et al. (1997) presented another adaptive-
coordinate FD method which they termed ACRES
(adaptive-coordinate real-space electronic structure).
They first discussed the goals of their real-space method:
(1) sparsity, (2) parallelizability, and (3) adaptability.
The real-space approach satisfies these criteria, while
the plane-wave method does not. Extensive details were
given concerning the construction of their grid-curved
meshes and the resulting Laplacian. One issue to note is
that the FD Laplacian in curvilinear coordinates con-
tains off-diagonal terms and the number of terms scales
as 3@(2n)214n11# , where n is the order. Therefore
high-order derivative forms add complexity to the
adaptive-coordinate approach. Computations were per-
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
formed on atoms and molecules at both the all-electron
and pseudopotential levels. The authors discussed the
limitations of the Lanczos method for the eigenvalue
problem; the width of the real-space spectrum is domi-
nated by the largest eigenvalue, which in turn is deter-
mined by the minimum grid spacing, so the method
slows with increasing resolution. Instead, they used a
modified inverse iteration eigensolver. The equations
were solved with a conjugate-gradient algorithm.
Conjugate-gradient techniques were also employed for
the Poisson equation, with multigrid used for precondi-
tioning. Highly accurate all-electron results were ob-
tained for the O atom and the H2 and O2 molecules;
computed bond lengths for O2 agreed with both the pre-
vious calculations of Chelikowsky, Trouller, Wu, and
Saad (1994) and experiment to within 0.02 Å. To con-
clude, they discussed the high efficiency of ACRES in
relation to uniform grid computations.

Two works have appeared which utilize nested mesh
refinements as opposed to grid-curving techniques for
increased resolution. Fattebert (1999) developed an al-
gorithm to treat a single grid refinement placed inside a
coarser-level grid domain. A FD Mehrstellen discretiza-
tion was employed over the whole domain, with nonuni-
form difference stencils at the boundaries between the
fine and coarse levels. The discretization is fourth order
over the uniform regions and second order at the bound-
aries. The impact of this nonuniformity of the represen-
tation order on the solution order was not examined.
The eigenvalue problem was solved with a block Galer-
kin inverse iteration in which multigrid methods were
used to solve the linear systems. Smoothing iterations
were enacted with the GMRES algorithm (Golub and
van Loan, 1996). Pseudopotential calculations were per-
formed on the furan molecule which requires treatment
of 13 eigenfunctions. Excellent convergence rates were
observed, especially on the finer composite meshes; the
coarse-grid convergence was not as rapid. The author
also presented results for the total energy of the CO
molecule which are similar to those of Gygi and Galli
(1995) described above. Incorporation of the grid refine-
ments led to smooth variations of the energy, while the
coarser-grid computation resulted in irregular varia-
tions. Ono and Hirose (1999) proposed another double-
grid method in which the inner products of the wave
functions and pseudopotentials are treated on a fine
grid. The double-grid treatment leads to smooth forces
without the necessity of Pulay (1969) corrections (which
are required in the adaptive-coordinate method).

E. Finite-element solutions

Just as for the FD formulation, the application of FE
methods to self-consistent eigenvalue problems has fol-
lowed two different tracks. In the first, the FE basis has
been utilized to obtain highly accurate results for atoms
and small molecules. The FE method can achieve very
high accuracies since it does not suffer from the linear-
dependence problems of LCAO approximations, and
the mesh can be arbitrarily refined. The second type of
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application concerns development of efficient methods
for large-scale electronic structure problems. We begin
with methods designed to obtain high accuracies.

Levin and Shertzer (1985) performed FE calculations
on the He atom ground state. The problem reduces to
three-dimensional for the s state. A basis of cubic Her-
mite polynomials was employed. They computed both
the ground-state energy and the moments ^rn& of the
wave function. An energy within 0.0005 a.u. of the nu-
merically exact result was obtained. The orbital mo-
ments were also substantially more accurate than those
computed in basis-set calculations. This occurs since the
LCAO basis functions are global; if the functions are
optimized to give a good wave function near the nucleus
(where the largest contribution to the total energy oc-
curs), they cannot be adjusted simultaneously to give a
good representation far from the origin. The FE basis
overcomes this difficulty. Heinemann et al. (1987, 1988)
developed a two-dimensional FE method and applied it
to computations on the H2, N2, BH, and CO molecules.
Using a fifth-order basis, they observed accuracies to
better than 1028 a.u. for the total energies, which ex-
ceeds by two orders the accuracy of the FD calculations
by Laaksonen et al. (1985). Yu et al. (1994) implemented
an order 5 or 6 Lobatto-Gauss FE basis and employed a
block Lanczos algorithm to solve the eigenvalue prob-
lem. A Duffy (1982) transformation allowed for han-
dling of the Coulomb singularity. Calculations were per-
formed on diatomic and triatomic hydrogen molecules
and ions; these three-dimensional results were not as ac-
curate as in the two-dimensional study of Heinemann
et al. (1987), differing by 0.000 51 a.u. in the total energy
of H2. More recently, von Kopylow et al. (1998) incor-
porated a full-multigrid solver into their two-
dimensional method for diatomics. Conjugate-gradient
smoothing steps were employed on each level. Excellent
convergence rates were obtained for the solver which
was tested on the Be2 molecule; only five self-
consistency iterations were required to obtain 1026-a.u.
convergence in the energy. Düsterhöft et al. (1998) com-
bined the LCAO and FE methods in a defect correction
approach which allowed for a more rapid attainment of
the ground state due to a better representation around
the nuclei.

Next, we consider methods directed toward larger sys-
tems. The FE method of White et al. (1989) was dis-
cussed above in relation to multigrid methods for self-
consistent problems. They utilized a high-order FE basis
and constructed orthogonal functions from the non-
orthogonal basis. The cost of this construction is the re-
quirement of more functions to obtain the same level of
completeness. The three-dimensional basis functions
were products of the one-dimensional functions on a
Cartesian grid. The Coulomb singularity was handled
with an integral transform representation of 1/r . The
Hamiltonian is sparse in their basis, since only near-
neighbor overlaps need to be considered. To solve the
Poisson equation, multigrid techniques were employed
with a double-discretization procedure similar to that of
Briggs et al. (1996); on coarser levels, the problem was
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
represented with a FD form rather than with a FE basis.
As discussed above, multigrid solution of the eigenvalue
problem was faster than conjugate gradients. To con-
clude, White et al. emphasized the importance of devel-
oping new grid methods for refinements around the nu-
clei, where the largest errors occur.

Gillan and co-workers have developed a general
method for linear-scaling electronic structure (of the
OBDMM form discussed in Sec. III.B). Closely related
is the work of Hierse and Stechel (1994), which differs in
the choice of basis and the number of basis functions. In
their initial work (Hernández and Gillan, 1995), the OB-
DMM strategy was developed, and the calculations were
performed directly on a real-space grid with second-
order FD techniques. The total energy was minimized
with conjugate-gradients iterations. Typically, 50 itera-
tions were required to obtain energy convergence to
within 1024 eV/atom.

Hernández et al. (1997) employed a blip-function ba-
sis instead of the previous FD representation. This
method is general in the sense that any local function
(that is, completely restricted to a finite volume) can be
used for the basis; however, we examine this method in
relation to FE bases since it is so closely related. The
actual basis employed in their work is a set of B splines
(see, for example, Strang and Fix, 1973, p. 60). The basis
was implemented on a Cartesian mesh as products of
three one-dimensional functions. The kinetic and over-
lap terms were treated analytically, but the matrix ele-
ments of the potential were evaluated numerically on a
grid different from the blip grid. The blip-function basis
agreed very well with plane-wave results in calculations
on Si solids; a discrepancy of only 0.1 eV/atom was ob-
served between the two different approaches. Goringe
et al. (1997) discussed implementation of the algorithm
on very large systems (up to 6000 atoms) on parallel
machines. The essential features of the OBDMM
method were reviewed. Fast Fourier transform methods
were used to solve for the electrostatic potential on a
grid. Complete discussion was given of the steps in par-
allelizing every portion of the code using real-space do-
main decomposition. The numerical results on a Cray-
T3D parallel machine exhibited linear scaling of CPU
time with the number of atoms using between 32 and
512 processors.

As discussed in Bowler et al. (1999) and reviewed in
Goedecker (1999), three forms of ill conditioning can
lead to degradation of convergence to the ground state
in the OBDMM method: length-scale, superposition,
and redundancy ill conditioning. The first is an inherent
feature of any real-space solver (Sec. IV.A.2). The sec-
ond form results from the localization constraints im-
posed in the method and is similar to problems in
orbital-minimization methods. The third is related to the
fact that their method includes more basis functions
than occupied orbitals; the localization constraints lead
to small but nonzero occupation numbers of the higher-
lying states, and they have little influence on the total
energy. Bowler and Gillan (1998) addressed the length-
scale ill-conditioning problem. They developed a pre-
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conditioning technique related to the plane-wave
method of Payne et al. (1992). The blip-function precon-
ditioning matrix only needs to be calculated once. Test
calculations were performed for a Si crystal with signifi-
cant accelerations of the convergence due to the precon-
ditioning. However, the convergence efficiency of their
method decreased both with decreasing grid spacing and
with increasing localization radius. It is an interesting
question whether multigrid methods might lead to
higher efficiencies in the context of the OBDMM
method.

An alternative FE method for large-scale electronic
structure has been developed by Tsuchida and Tsukada
(1995, 1998). In their original method, the authors uti-
lized first- and second-order shape functions and derived
the appropriate variational expression for the total en-
ergy at the LDA level. The Hartree potential was gen-
erated by conjugate-gradient iteration. They also imple-
mented the orbital-minimization linear-scaling method.
Nonuniform meshes were employed to focus resolution
around the nuclei in the H2 molecule. Test calculations
were also performed on an eight-atom Si solid with 163

uniform elements of second order. Good agreement
with plane-wave calculations and experiment were ob-
tained for the lattice constant, cohesive energy, and bulk
modulus. Due to the integral formulation of the total
energy, the Coulomb singularity in the potential be-
comes finite. Tsuchida and Tsukada (1998) substantially
extended the method for large-scale condensed-phase
systems. Third-degree polynomials were used as FE ba-
sis functions. They implemented the grid-curving
method of Gygi and Galli (1995) to adapt for higher
resolution near the nuclei. Pulay (1969) corrections were
computed to obtain accurate forces on the ions. A mul-
tigrid procedure was followed to solve the FE Poisson
equation. The multigrid aspect was used as precondi-
tioner to final conjugate-gradient iterations on the finest
scale. Again, orbital-minimization techniques were used
to obtain linear scaling. They also utilized a one-way
multigrid-type approach for the eigenvalue problem,
where a good initial approximation was obtained on the
finest level from previous iterations on a coarser level.
With this approach, 20 to 30 self-consistency iterations
were required for convergence on the fine level. Calcu-
lations were limited to the G point; for the treatment of
general Bloch boundary conditions, see Pask et al.
(1999). A parallel code was written using real-space do-
main decomposition. Many applications were consid-
ered in this work, including computations on diamond
lattices, cubic BN, the C60 molecule, molecular-dynamics
simulations, and parallel implementations. Pseudopo-
tential calculations on systems with up to 512 carbon
atoms were presented. The final statement from this pa-
per captures well the rapid development of real-space
methods in the last decade: ‘‘About ten years ago, the
FE method was described to be in its infancy for elec-
tronic structure calculations (White et al., 1989). We
have shown in this paper that it can be routinely used for
large systems today.’’
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
As a final example of application of FE methods to
self-consistent eigenvalue problems, Lepaul et al. (1996)
considered semiconductor quantum nanostructures.
They solved the two-dimensional Schrödinger equation
self-consistently with updates of the Poisson equation
(variable dielectric case) to obtain carrier densities, con-
duction bands, and the potential distribution at finite
temperatures. The image potential and exchange-
correlation energies were neglected. The carrier confine-
ment was due to heterojunction discontinuities and the
electrostatic potential. By varying the potential bias,
they were able to observe a bidimensional quantum gas.
The real-space approach allowed for treatment of real-
istic device geometries.

F. Orbital-minimization methods

To conclude our review of real-space self-consistent
eigenvalue problems, we consider a related orbital-
minimization linear-scaling algorithm which uses LCAO
bases (Sánchez-Portal et al., 1997). The reason for its in-
clusion here is that the bases (Sankey and Niklewski,
1989) are (1) numerical and (2) confined to a local re-
gion of space. Therefore the method shares features in
common with FD and FE approaches. The authors dis-
cussed construction of the Hamiltonian matrix elements
and the total energy in the numerical bases. The total
energy was reexpressed in a form that has terms involv-
ing only two-centered integrals, which are interpolated
from calculated tables (one-time calculation), and other
terms computed entirely on a real-space grid (involving
screened neutral-atom potentials and the Hartree and
exchange-correlation potentials). The Hartree potential
was computed via FFT methods. Rapid convergence of
the approximations with decreasing grid spacing was ob-
served. The orbital-minimization functional of Kim et al.
(1995) was employed to obtain linear scaling.

The method was applied in calculations on several di-
atomics and triatomics where various-quality basis sets
were tested in computations of bond lengths, bond
angles, and binding energies. Gradient corrections to the
LDA approximation were also considered. Finally,
large-scale computations were performed on a turn of
the DNA double helix consisting of ten guanine-cytosine
base pairs in periodic boundaries (650 atoms). The equi-
librium geometry was obtained in 200 minimization
steps, requiring five days of computation on an HP C110
workstation. The number of self-consistency iterations
required for each minimization step was not given. It is
also not entirely clear what is the sparsity of the Hamil-
tonian in the numerical localized LCAO basis in relation
to FD and FE methods. The spherical-wave basis set of
Haynes and Payne (1997) should also prove useful, since
it is localized in space and its truncation is controlled by
a single parameter, the kinetic-energy cutoff (similar to
plane-wave methods). Hybrid basis-set/grid-type meth-
ods such as discrete variable representations (DVR’s)
and distributed approximating functionals (DAF’s) also
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exist which yield accurate local representations (Light
et al., 1985; Marchioro et al., 1994; Schneider and Feder,
1999).

VIII. TIME-DEPENDENT DENSITY-FUNCTIONAL
CALCULATIONS IN REAL SPACE

The Kohn-Sham method for electronic structure lies
on solid theoretical ground due to the Hohenberg-Kohn
theorems. Extensions of density-functional theory to ex-
cited states and/or frequency-dependent polarizabilities
present more difficult challenges, but significant progress
has been made in this area in the last few years. The
developments include real-space computations of excita-
tion energies and response properties (Yabana and
Bertsch, 1996; Vasiliev et al., 1999; Kim, Städele, and
Martin, 1999). Thorough reviews of the foundations of
time-dependent DFT (TDDFT) methods are available
(see, for example, Gross and Kohn, 1990; Casida, 1996).
The starting point for practical computations is typically
the solution of the time-dependent LDA (TDLDA)
equations:

S 2
1
2

¹21veff~r,t ! Dc i~r,t !5i
]c i~r,t !

]t
, (69)

where the density-dependent effective potential is just
the Kohn-Sham LDA potential [Eqs. (6) and (8)] for the
set of orbitals at time t . The time-dependent LDA
method includes dynamic screening effects, which
modify the excitation frequencies away from the Kohn-
Sham LDA eigenvalue differences toward the physical
ones. Inclusion of gradient corrections does not signifi-
cantly improve the results (Bauernschmitt and Ahlrichs,
1996; Casida et al., 1998). There are two important ap-
proximations involved in Eq. (69): (1) the static LDA
potential exhibits the incorrect asymptotic behavior at
long range (exponential rather than 21/r), and (2) no
time dependence is incorporated in the exchange-
correlation potential (adiabatic approximation). It is
generally recognized that the first approximation is the
most severe (Van Gisbergen et al., 1998); with improve-
ments to the LDA which yield the correct asymptotic
large-r behavior, quite accurate results are obtainable
even for Rydberg states (Casida, 1996; Jamorski et al.,
1996; Casida et al., 1998; Tozer and Handy, 1998; Van
Gisbergen et al., 1998). The adiabatic approximation
makes physical sense for slow processes, and integrals
(over frequency) of the response in the mean-field
theory obey rigorous sum rules which are satisfied for
the small-amplitude time-dependent LDA (Yabana and
Bertsch, 1999). Proper modeling of the long-range be-
havior of the effective potential is important for the
higher-lying Kohn-Sham states, which in turn are crucial
for obtaining accurate excitation energies above the
highest occupied Kohn-Sham LDA eigenvalue. These
states are also important for computing accurate polar-
izabilities. For low-lying excitations, the time-dependent
LDA level of theory is remarkably accurate (Casida
et al., 1998; Yabana and Bertsch, 1999). Observed errors
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in excitation energies are on the order of one or a few
tenths of an eV for small molecules in comparison with
experiments.

Two main approaches have been followed in develop-
ment of the time-dependent DFT method. In the first
(Yabana and Bertsch, 1996), Eq. (69) is solved directly
in real time by propagating the orbitals on a real-space
grid. The frequency-dependent polarizability and the
strength function are obtained by Fourier transforma-
tion of the time-dependent dipole moment computed on
the grid. In the second approach (Casida, 1996; Peter-
silka et al., 1996), the problem is recast in the energy
representation by calculating the response at the linear-
response level. Solution of an eigenvalue problem in-
volving the Kohn-Sham energy differences and a cou-
pling matrix yields the excitation energies and oscillator
strengths and from them the frequency-dependent po-
larizabilities. Applications of the second theoretical ap-
proach have employed both basis-set (Casida, 1996;
Tozer and Handy, 1998; Van Gisbergen et al., 1998) and
real-space (Vasiliev et al., 1999) formulations. The real-
time and energy representations should give equivalent
results for physical situations that allow a linear-
response treatment. In this section, we review recent
real-space computations in time-dependent LDA
theory.

A. Time-dependent density-functional theory in real time
and optical response

The real-time approach directly integrates Eq. (69)
once an initial impulse has been given to the one-
electron orbitals (obtained from a previous ground-state
calculation). Yabana and Bertsch (1996) propagated the
wave functions in time with a fourth-order Taylor ex-
pansion of the time-dependent LDA equation. The pro-
cedure followed the previous time-dependent Hartree-
Fock method of Flocard et al. (1978) in nuclear physics.
That method was shown to conserve the energy and
wave function norms to high accuracy.11 A predictor-
corrector method was implemented to fix the density at
times between successive wave-function evaluations.
The Hamiltonian was represented with a FD form on a
uniform Cartesian mesh. An eighth-order expression
was employed for the Laplacian operator, and the real-
space pseudopotentials of Troullier and Martins (1991a,
1991b) were utilized to remove the core electrons. The
method scales as qNg , since it only requires repeated
applications of the Kohn-Sham Hamiltonian to the wave
functions, here assumed to cover the whole domain. If
the orbitals could be confined to local regions of space,
the method would scale linearly. Roughly 104 time-
propagation steps are required to obtain the frequency-

11Alternative accurate methods for propagating wave func-
tions developed in the chemical physics community are dis-
cussed by Leforestier et al. (1991). See also Yu and Bandrauk
(1995), who discuss a FE method for propagating wave func-
tions in real time. The method was used to examine molecules
in intense laser fields.
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dependent response. As mentioned above, the physical
quantities generated are the frequency-dependent polar-
izability and the closely related dipole strength function.
The entire spectrum is produced in a single calculation
without computations of excited-state Kohn-Sham orbit-
als, and the method is not restricted to the linear-
response level of theory. In addition, the method only
requires storage of the occupied states.

Computations were first performed on the jellium
model for Li138 to compare with previous numerical re-
sults; the dipole strength function agreed well with that
computed using a Green’s-function technique. Then cal-
culations were performed on more physically realistic
models of large charged Na clusters and C60 . The
strength function yields the polarizability; for the C60
case, a value of a580 Å3 was computed compared with
the experimental value of 85 Å3 obtained from the di-
electric constant. A tight-binding model predicted a
much lower polarizability of 45 Å3. In a second study,
Yabana and Bertsch (1997) applied the method to car-
bon chains and rings which are found in interstellar mat-
ter. For the C7 chain, the lowest time-dependent LDA
mode occurs at roughly twice the frequency of the
HOMO-LUMO gap in the Kohn-Sham LDA states. The
size dependence of the transitions was modeled as the
classical resonance of electrons in a conducting needle.
The ring and chain geometries led to widely different
frequencies for the lowest collective mode. Yabana and
Bertsch (1999) presented further computations on con-
jugated hydrocarbons including polyenes, retinal
(C20H28O), benzene, and C60 . In this work, the scaling
of the method was displayed vs system size and was
found to be even below N2. The time-dependent LDA
dipole strength was compared to precise experiments for
the benzene molecule, and excellent agreement for the
dipole strength was obtained. The computed lowest p
→p* sharp transition was at 6.9 eV, the same as the
experimental value, and a broad feature above 9 eV due
to s→s* transitions was also relatively accurately re-
produced. The applicability of the Hückel Hamiltonian
was discussed; the Hückel treatment performed well for
the p→p* manifold. In light of the large systems al-
ready addressed with the real-time time-dependent
LDA method, it holds significant promise for examining
such problems as solvation effects on electronic excita-
tions in condensed phases.

B. Time-dependent density-functional calculation of
excited states

In the spin-unrestricted linear-response energy repre-
sentation (Casida, 1996), the excitation energies are ob-
tained from an eigenvalue equation:

VFI5vI
2FI , (70)

where the excitation energy differences are vI and the
matrix V is
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The (f is2f js) terms are the occupation differences be-
tween the i and j s-spin states, (e js2e is) are the corre-
sponding Kohn-Sham energy differences, and the re-
sponse matrix is

Kijs ,klt5
]v ijs

SCF

]Pklt
, (72)

where Pklt is the linear response of the Kohn-Sham den-
sity in the basis of the unperturbed orbitals. The result-
ing full expression for Kijs ,klt in terms of the Kohn-
Sham orbitals can be found in Casida (1996) and
Vasiliev et al. (1999); it involves the unperturbed orbit-
als only and (in the adiabatic approximation) the second
derivatives of the static exchange-correlation functional
Exc with respect to the spin densities. Therefore, at this
level of theory, Kijs ,klt is time- and frequency-
independent. However, it includes screening effects
which alter the spectrum toward the correct physical re-
sult. The eigenvalues of Eq. (70) give the transition en-
ergies, and the eigenvectors yield the oscillator strengths
from which the dynamic polarizability can be computed.
The oscillator strengths in this formulation satisfy the
same sum rule as for the real-time version presented
above. The method scales as N3 [where N is the number
of electrons; see Casida (1996)]; however, linear-scaling
methods can be applied just as for the ground-state
Kohn-Sham theory.

Vasiliev et al. (1999) utilized the high-order FD pseu-
dopotential method of Chelikowsky, Troullier, and Saad
(1994) in solving Eq. (70) for excitation energies. They
considered the exact form for V [Eq. (71)] and two ap-
proximate forms, one of which was employed by Peter-
silka et al. (1996) in their work. They first examined ex-
citations in closed-shell atoms and found that the exact
expression resulted in the highest accuracies. Errors for
low-lying excitations attributed to the LDA exchange-
correlation potential in Petersilka et al. (1996) were cor-
rected by using the exact expression. Computed energies
were in error by only a few tenths of an eV in compari-
son with experiment for singlet excitations. They also
found that transition energies for singlet and triplet ex-
citations computed with time-dependent LDA theory
are in better agreement with experiment than optimized
effective-potential (see Talman and Shadwick, 1976) or
ordinary self-consistent field methods due to the ap-
proximate inclusion of correlation effects. The authors
proceeded to apply the time-dependent LDA method to
computations of absorption spectra for Na clusters. Only
computations using the exact formulation resulted in
spectra that agreed with experiment (to within 0.2 eV).
This indicates the importance of collective excitations,
since the approximate forms neglect these contributions.
Finally, Vasiliev et al. computed the static polarizabil-
ities of Na and Si clusters with the exact and approxi-
mate formulations and found that only the exact repre-
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sentation yielded good agreement with finite-field
calculations. In related work, Öğüt et al. (1997) com-
puted ab initio optical gaps for very large Si nanocrystals
(up to Si525H276) with high-order FD methods. Kim, Stä-
dele, and Martin (1999) have recently utilized the high-
order FD pseudopotential method in calculations on
small molecules at the Krieger-Li-Iagrate (1992) level
for the effective potential. This potential is an approxi-
mation to the optimized effective-potential theory,
which is computationally tractable and has the correct
21/r tail in the effective potential. The calculations
yielded better approximations to excited-state energies
in relation to the Kohn-Sham LDA values, but the full
time-dependent DFT energy-representation method was
not employed for corrections to the Kohn-Sham
Krieger-Li-Iagrate levels.

IX. SUMMARY

Real-space methods for solving electrostatics and ei-
genvalue problems involve either local Taylor expan-
sions of the desired functions about a point or localized
basis-set representations. Higher accuracy is obtained by
increasing the order of the approximation and/or the
resolution of the mesh. However, standard iterative pro-
cesses become less efficient on finer meshes due to the
difficulty of reducing the long-wavelength modes of the
errors. Multigrid methods provide a remedy for this
slowing-down phenomenon inherent in real-space nu-
merical methods. Many of the early limitations of real-
space methods (such as very large required meshes)
have been overcome in recent years with the develop-
ment of efficient high-order finite-difference and finite-
element methods. This review has surveyed a wide range
of physical applications of real-space numerical tech-
niques, including biophysical electrostatics, ground-state
electronic structure, and computations of electronic re-
sponse and excitation energies. Recent real-space com-
putations have tackled problems with hundreds to thou-
sands of atoms at a realistic level of representation. The
discussion presented in this review leads to several con-
clusions:

The underlying representation is relatively simple in real
space. The finite-difference method is particulary
straightforward, while the finite-element and wavelet
methods involve some increased complexity. As an ex-
ample, a self-consistent Kohn-Sham LDA multigrid pro-
gram using the high-order finite-difference method re-
quires fewer than 5000 lines of computer code.

With the incorporation of high-order methods, accu-
racies comparable or even superior to plane-wave calcu-
lations are obtained on similar-sized meshes.

The Laplacian and Hamiltonian operators require in-
formation only from close lattice points; that is, the op-
erators are near-local in space. Therefore the matrices
are sparse, highly banded, and very structured. Each ap-
plication of the operators scales linearly with system
size, and the method is readily implemented on parallel
computers by partitioning the problem in space. The lo-
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
cality also allows for incorporation into linear-scaling
electronic structure methods.

Multigrid methods provide the optimal solvers for
problems represented in real space. For Poisson prob-
lems, the multigrid method scales linearly with system
size and requires only about ten iterations on the finest
level to obtain convergence. Eigenvalue solvers scale as
q2Ng (where q is the number of eigenfunctions and Ng
the number of fine-grid points) if the eigenfunctions
span the whole space.12 If a localized orbital representa-
tion is possible, the multigrid eigenvalue methods scale
linearly with size due to the locality of each operation in
the algorithm.

Nonlinear multigrid methods require fewer operations
per self-consistency update than plane-wave methods on
uniform grids with orbitals that span the physical do-
main. In addition, the multigrid method is at least as
efficient as the best plane-wave methods in terms of the
number of self-consistency steps to reach the ground
state. The multigrid solution requires at most a few self-
consistency iterations. The solution involves 10-20 total
applications of the Hamiltonian to the wave functions
on the finest level and a few updates of the effective
potential (one for each self-consistency cycle); each up-
date of the Hartree potential requires the same effort as
the update of one orbital.

Real-space methods allow for higher resolution in
space without loss of efficiency. That is, they are readily
adaptable and thus can handle problems with a wide
range of length scales.

The eigenfunction constraint and subspace orthogo-
nalization operations can be performed on coarse levels
where the cost is very low. Moreover, the effective po-
tential can be updated on coarse levels, leading to the
possibility of complete solution in a single self-
consistency cycle. These developments, along with the
mesh-refinement techniques, will lead to reductions in
computational cost of an order of magnitude compared
with existing algorithms.

The flexibility of the representation has been utilized
both in very-high-accuracy computations and in applica-
tions to large systems. The real-space methods do not
suffer from linear dependence problems which occur in
LCAO methods. Typically, the numerical convergence
is controlled by a few parameters such as grid spacing,
domain size, and order of the representation.

Real-space algorithms very similar to those for elec-
trostatics and ground-state electronic structure can be
employed to solve time-dependent problems.

In the view of the author, the most promising areas
for future work on real-space methods concern the de-
velopment of highly adaptive and efficient numerical
techniques which focus resolution in key regions of
space as the iterative process moves towards the ground-

12With algorithmic improvements, this scaling can be reduced
to qNg . See Costiner and Ta’asan (1995a, 1995b). Recent de-
velopments indicate it may be possible to obtain Ng scaling
with orbitals that span the whole domain (Brandt, 1999).
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TABLE II. Coefficients for the Laplacian. One side plus the central point are shown. Each coeffi-
cient term should be divided by the prefactor. The Laplacian is symmetric about the central point.

Points Order Prefactor Coefficients

N53 2nd 1 1 22
N55 4th 12 21 16 230
N57 6th 180 2 227 270 2490
N59 8th 5040 29 128 21008 8064 214350
N511 10th 25200 8 2125 1000 26000 42000 273766
N513 12th 831600 250 864 27425 44000 2222750 1425600 22480478
state solution or evolves in real time. There will always
exist a tradeoff between the simplicity of the represen-
tation (where finite differences are best) and the flexibil-
ity and accuracy of local basis functions (where finite-
element methods are superior). The related local LCAO
methods allow for significantly smaller overall basis-set
size in relation to real-space formulations, but the La-
placian and Hamiltonian operators are not as well struc-
tured and banded. The intersection between the simple
structured approaches on the one hand and the more
physical local bases on the other should provide for a
fruitful growth of new ideas in computational materials
science. Multiscale methods for solving the problems
will figure prominently, since they allow for flexibility in
the representation while maintaining high efficiency. A
brief survey of physical and chemical problems that have
already been addressed serves to illustrate the wide
range of length scales accessible with real-space tech-
niques: electrostatics of proteins interacting with nucleic
acids, charged polymers in confined geometries, large-
scale electronic structure of materials, and computation
of spectroscopic quantities for large molecules in the gas
phase. One can imagine a time in the not-too-distant
future when it is possible to simulate the motion of a
solute molecule in a liquid with the inclusion of all the
valence electrons and model the solvent influence on the
., Vol. 72, No. 4, October 2000
electronic absorption spectra. Real-space methods pos-
sess many of the features that would be required to ad-
dress such a challenging problem.

Note added in proof. Following completion of this re-
view, the author became aware of two additional studies
utilizing real-space methods in electronic structure cal-
culations (Jin et al., 1999; Benham et al., 2000).
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APPENDIX

As an example of the ease of generating a high-order
form for the Laplacian operator, the following
MATHEMATICA script for the tenth-order case is
included:
g[x–]ª

Evaluate[InterpolatingPolynomial[$$x025,ym5%,$x024,ym4%,$x023,ym3%,

$x022,ym2%,$x021,ym1%,$x0,y0%,$x011,yp1%,$x012,yp2%,$x013,yp3%,

$x014,yp4%,$x015,yp5%%,x]]

gp[x–]ªEvaluate[D[g[x],{x,2}]]

r5Simplify[Expand[Collect[gp[x010],$ym5,ym4,ym3,ym2,ym1,y0,yp1,yp2,

yp3,yp4,yp5%]]]

OUTPUT:

Out[1]5(273766 y0142000ym126000ym211000ym32125ym418ym5
142000yp126000yp211000yp32125yp418yp5)/25200
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The weights obtained for the FD Laplacian up through
12th order are presented in Table II. For the three-
dimensional case, the pth-order approximation requires
3p11 state terms. Hamming (1962) also discusses pro-
cedures for generating other high-order formulas such as
interpolation and integration.
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