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Radiative transfer has been studied for almost a century, but only recently have effects of broken
symmetry in the diffusion of light been systematically studied. Familiar concepts such as the mean free
path and the diffusion constant must be generalized. Nematic liquid crystals provide a realistic
complex system in which the new concepts are relevant. Thermal fluctuations of the local optical axis
generate a weak but very specific and anisotropic light scattering and can even be long range. In
addition, two different modes of electromagnetic propagation exist, with different polarization, and
with different speeds, that couple in multiple scattering. It becomes a challenge to describe optical
phenomena such as birefringence, interference, polarization, and intensity fluctuations under such
conditions. In this review, the authors first describe the interesting phenomena in radiative transfer in
complex anisotropic media and nematic liquid crystals. They then develop the systematic theory of
transport starting from the fundamental equations and going through a Green’s-function formulation.
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Met Uw toverstok kunt U niets bezweren,
Eerst moet Gij de formules leren.1

I. RADIATIVE TRANSFER: AN OLD SUBJECT, BUT STILL
VERY MUCH ALIVE

Since its introduction at the beginning of this century,
the study of radiative transfer has attracted continuous

†This work is dedicated to Professor Dr. Hendrik Christoffel
van de Hulst, pioneer in light scattering, who died in Leiden
(the Netherlands) on 31 July 2000 at the age of 81.

1Dutch saying expressing the idea that exact science relies on
mathematics and not on magic.
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interest in physics. The starting point was the equation
of radiative transfer (Schuster, 1905), which is a phe-
nomenological bookkeeping method for keeping track
of scattered and absorbed light in a heterogeneous me-
dium.

The mathematical complexity of this equation has
given rise to many detailed numerical and analytical
studies, mostly initiated by astrophysicists in an effort to
understand multiple light scattering in stellar atmo-
spheres and interstellar clouds (Chandrasekhar, 1960;
Sobolev, 1963; Sobolev, 1975; Mihalas, 1978; van de
Hulst, 1980). Even the simplest problem in radiative
transfer, the classical Milne problem, describing station-
ary scattering of scalar waves from isotropic point scat-
terers in a semi-infinite medium, still serves as a numeri-
cal practice problem for students. Sophisticated
numerical codes, each claimed to be better than the last,
can be found on the Internet for a wide variety of appli-
cations and boundary conditions. Since the beginning of
the 1980s, research has begun to focus on physics ‘‘be-
yond classical radiative transfer,’’ with emphasis on two
aspects: mesoscopic physics and complex media.

The first basic question is how radiative transfer—a
macroscopic transport phenomenon—is compatible with
the underlying Maxwell equations, which should in prin-
ciple provide a complete description. Classical radiative
transfer suffers from two limitations. First, it ignores the
wave nature of light. Second, in phenomenological ra-
diative transfer, an average is performed implicitly. As a
result it deals with the mean flow of energy only, and
does not include any (temporal) fluctuations. These limi-
tations have led to more microscopic studies of radiative
transfer, which have acquired their own name: meso-
scopics. They aim to describe a regime between the mi-
croscopic world of wave equations and the macroscopic
world of transport equations.
1017/72(4)/1017(23)/$19.60 ©2000 The American Physical Society
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Mesoscopic studies have led to many significant dis-
coveries. Most of them originally concentrated on elec-
tron waves in condensed matter (Akkermans et al.,
1995), but it was soon realized that most new develop-
ments have counterparts in classical waves physics
(John, 1991; van Rossum and Nieuwenhuizen, 1999).
The first phenomenon ‘‘beyond’’ conventional radiative
transfer, discovered in 1985 and now called coherent
backscattering (Kuga and Ishimaru, 1984; van Albada
and Lagendijk, 1985; Wolf and Maret, 1985; Akkermans,
Wolf, and Maynard, 1986), is an interference effect that
survives in multiple scattering. Since its discovery, many
aspects of this phenomenon have been studied in great
detail (van Tiggelen and Maynard, 1997; POAN Re-
search Group, 1998). Fluctuations in light transmission
have been investigated, leading to the discovery of long-
range correlations (de Boer et al., 1990; Genack, 1990;
Genack and Garcia, 1993; Scheffold and Maret, 1998).
Although experiments deal with samples much bigger
than the mean free path, i.e., they are macroscopic, the
description of long-range intensity fluctuations requires
a rigorous treatment of wave behavior at the micro-
scopic level (Berkovits and Feng, 1994; Sheng, 1995; van
Rossum and Nieuwenhuizen, 1999), thereby introducing
a completely new ‘‘mesoscopic’’ regime of radiative
transfer.

Radiative transport in complex systems has also been
subject to intense study in recent years. Common com-
plex materials under discussion range from liquid crys-
tals, foams (Durian, Weitz, and Pine, 1991; Höhler,
Cohen-Addad, and Hoballah, 1997), emulsions (Gang,
Krall, and Weitz, 1994), and magneto-rheological fluids
(Furst and Gast, 1998), to cirrus clouds (Mishchenko,
Travis, and Hovenier, 1999), actin networks (Gisler and
Weitz, 1999), and human tissue. In ‘‘complex’’ situa-
tions, the best phenomenological treatment of radiative
transfer is not always obvious. Different communities
have focused on different aspects of the subject. Astro-
physicists and scientists interested in remote sensing are
now studying the scattering of light and radiation from
nonspherical particles (Mishchenko, Travis, and Hov-
enier, 1999). Scientists more oriented towards con-
densed matter study media with extreme disorder, i.e.,
media with high optical contrast and a high packing frac-
tion, such as semiconductor powders. A recent experi-
ment (Wiersma et al., 1997) claims localization of infra-
red light in powders of GaAs. Wave localization, which
is expected to happen when the mean free path becomes
as small as the wavelength, refers to a complete halt of
radiative transfer due to destructive interferences. It was
put forward by condensed-matter physicists some 40
years ago to explain disorder-driven metal-insulator
transitions, and has been subject to wide attention in
physics and mathematics (van Tiggelen, 1999). Soft-
matter physicists use radiative transfer to investigate the
dynamics of turbid media with the method called diffus-
ing wave spectroscopy (Maret, 1997). In this method one
studies the temporal correlation function of light inten-
sity in the multiple-scattering regime and generalizes the
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
well-known technique of quasielastic light scattering
that has been widely applied in the single-scattering re-
gime.

The complex nature of wave transport can arise from
an unconventional environment or from unconventional
constraints. Complex media in particular are now sub-
ject to many interdisciplinary collaborations, since the
applications using these media are both numerous and
wide-ranging. Studies of multiple scattering of elastic
waves in the Earth’s crust are now being undertaken to
understand the long-time codas that are observed after
earthquakes (Campillo, Margerin, and Shapiro, 1999).
Light propagation in human tissue (Chance, 1989; Boas,
Campbell, and Yodh, 1995; Yodh and Chance, 1995;
Virmont and Ledanois, 1998) is characterized by special
geometry, inhomogeneous scattering and absorption,
and time dependence, and many efforts are being made
to take advantage of radiative transfer theory to image
in a reliable and realistic way (Boas et al., 1994; Heck-
meier et al., 1997). Atomic gases are another example of
a popular complex medium for multiple light scattering.
Although this medium was originally studied from the
starting point of the radiative transport equation (Hol-
stein, 1947), recent developments in atom cooling have
made possible interference studies in cold gases (Labey-
rie et al., 1999).

Some complex media are characterized by a broken
continuous symmetry that transforms an originally
simple problem rapidly into an intractable set of compli-
cated equations. Intuitive steps become less evident,
since phenomenological descriptions implicitly assume a
variety of symmetries. Rotational symmetry, for ex-
ample, requires that—on average—all directions in
space be equivalent. A nonspherical particle induces a
local anisotropy, but averaging over all its directions re-
stores global rotational symmetry. A nematic liquid
crystal is an example of a complex system that scatters
light and in which rotational symmetry of the isotropic
liquid is broken. Another contemporary example occurs
in the magneto-optics of diffuse light (Rikken and van
Tiggelen, 1996), where the presence of an external ho-
mogeneous magnetic field breaks rotational symmetry.

A magnetic field also breaks time-reversal symmetry
in light propagation and is, for that reason, an important
tool for controlling symmetry in radiative transfer.
Time-reversal symmetry is broken by the (often implic-
itly adopted) ensemble averaging in the equation of ra-
diative transfer. It is possible to influence interference
effects in multiple light scattering with a magnetic field
(Erbacher, Lenke, and Maret, 1993), as was seen with
mesoscopic electron waves (Sharvin and Sharvin, 1981).
Similar time-reversal studies with acoustic waves—the
magnetic field being replaced by liquid vortices—have
been carried out by Roux and Fink (1995). Both this
study and that of Sharvin and Sharvin have shown the
considerable sensitivity sensibility of multiple scattering
of waves to broken time reversal, a conclusion that is
confirmed by recent developments in random-matrix
theory (Beenakker, 1997). In addition, acoustic studies
have established a robust time reversal in high-order
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multiple scattering (Derode, Roux, and Fink, 1995),
which is not expected for classical particles. Multiple
scattering of light has recently been investigated in chi-
ral media, where mirror symmetry is broken. Since sugar
is chiral, such studies may be relevant to medical imag-
ing (Silverman et al., 1999).

In keeping with the larger goal of understanding ra-
diative transfer in systems with broken symmetries. The
aim of the present work is to introduce the reader to an
approach that links Maxwell’s equations to the equa-
tions of radiative transfer, going through all the impor-
tant steps in a self-contained way. This is necessary in
order to understand the consequences of broken sym-
metry in multiple light scattering. In this review we shall
focus on nematic liquid crystals as a concrete example.
This choice is motivated by experiments that have been
carried out on coherent backscattering of light in multi-
domain nematic liquid crystals (Vlasov et al., 1988) and
monodomain liquid crystals (Vithana, Asfaw, and
Johnson, 1993), as well as static and dynamic measure-
ments of diffusing light (Kao et al., 1997; Wiersma et al.,
1999) in aligned nematics. We hope that our approach
may serve as a more general guide to the formulation
multiple waves scattering in complex media.

The review is organized as follows. In Sec. II we in-
troduce nematic liquid crystals as a medium for optics
and discuss the optical properties that affect light scat-
tering in nematic liquid crystals. In Sec. III we introduce
a common and popular simplification in radiative
transfer—the diffusion approximation—to describe the
multiple scattering of light. This approximation avoids
the complex equation of radiative transport. We intro-
duce basic concepts and outline their consequences in
‘‘simple’’ media. Finally, in Sec. IV, we treat multiple
scattering in nematic liquid crystals and concentrate on
properties that make multiply scattered light in these
systems unusual and unfamiliar, such as anisotropic dif-
fuse transport and polarization of diffuse light.

II. NEMATIC LIQUID CRYSTALS: WHAT WE HAVE KNOWN
FOR A LONG TIME

The nematic liquid-crystalline phase consists of rod-
like organic molecules that tend to align parallel to each
other but that show no long-range positional order of
their centers of mass. The local average direction of the
molecules is described by a unit vector n(r,t) called the
Frank director. It gives the direction of the optical axis
and appears in the local dielectric tensor

« ij~r,t !5«'d ij1«ani~r,t !nj~r,t !, (1)

where «' and « i5«a1«' are the dielectric constants for
electric fields, perpendicular and parallel respectively, to
the director, and where «a5« i2«' stands for the dielec-
tric anisotropy. In the nematic state, the dielectric an-
isotropy is proportional to the Maier-Saupe order pa-
rameter S , «a}S , which characterizes how well the
molecules are aligned along the local director n. In a
mean-field approach S}(T†2T)1/2, where T† is a tem-
perature slightly above the nematic-isotropic transition
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
temperature Tc , indicating a weak first-order phase
transition. Since the liquid-crystal molecules very often
carry a permanent electric dipole moment, the fre-
quency dependence of the dielectric constants follows
Debye’s classical relaxation theory, with values of the
order of 10. Typical relaxation frequencies are around
100 MHz for «' and 1 –10 MHz for « i (de Jeu, 1980;
Vertogen and de Jeu, 1988). At optical frequencies, the
dielectric constants are determined only by the molecu-
lar electronic polarizability and are typically equal to
2.5–3.

The energetically favored state of a nematic phase is a
uniform director field n(r,t)5n0 throughout the sample.
Its distortion costs energy, which can be calculated from
the Oseen-Zöcher-Frank free energy (De Gennes and
Prost, 1993; Chaikin and Lubensky, 1995):

F@n#5
1
2 E d3r@K1~“•n!21K2~n•“3n!2

1K3~n3“3n!22Dx~n•H!2# , (2)

where K1 , K2 , and K3 are the Frank elastic constants
describing, respectively, the free energy associated with
splay, twist, and bend distortions (see Fig. 1). We also
include a magnetic-field term with Dx5x i2x' the an-
isotropy of the magnetic susceptibility. If Dx.0, an
alignment of the director parallel to the field H will be
favored. In Eq. (2) we did not include any surface con-
tributions to the free energy. In particular, the saddle-
splay (K24) and the splay-bend (K13) terms have
been omitted (Nehring and Saupe, 1971; Pergamensh-
chik, 1998). Their optical consequences have been inves-
tigated by Shalaginov (1994).

Even in a uniformly aligned sample, thermally in-
duced fluctuations of the director exist:

n~r,t !5n01dn~r,t !. (3)

They lead to fluctuations in the local dielectric tensor
that scatter light. This is the physical process for which
we want to formulate the theory of multiple light scat-
tering. To do so, we first have to look at light propaga-
tion in a homogeneous uniaxial medium (Sec. II.A). In
Sec. II.B we consider fluctuations of the director, and
finally Sec. II.C introduces the structure factor that will
describe single-light-scattering events.

A. Optics of homogeneous nematic liquid crystals

A nematic liquid crystal is, on average, a homoge-
neous uniaxial medium and therefore birefringent for

FIG. 1. Pure splay, twist, and bend deformations for nematic
liquid crystals.
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light traveling inside. Light propagates through such a
system in two characteristic modes. The ordinary light
ray behaves as in an isotropic system. However, the ex-
traordinary light mode possesses a direction-dependent
index of refraction, its phase and group velocities are
not equal to each other, and the electric-field vector is
not transverse. In the following, we review these facts,
look at the energy density and the Poynting vector, and
introduce some notation for further use. Our review
contains details, since they are important for the under-
standing of radiative transfer in uniaxial systems. It may
also serve as a collection of formulas for people inter-
ested in such systems.

In general, Maxwell’s equations are coupled to the
hydrodynamic equations of the liquid crystal in a com-
plicated way (Liu, 1994). We simplify by considering the
liquid crystal as a macroscopic, local and instantaneous,
linear but anisotropic dielectric medium, as described by
the constitutive equations

Di~r,t !5« ij~r,t !Ej~r,t ! and Bi~r,t !5Hi~r,t !, (4)

where B and H are, respectively, the magnetic induction
and magnetic field. The time dependence in this equa-
tion refers to slow (microsecond) temporal variations of
the director and not to the fast (femtosecond) cycles of
the electromagnetic field. The magnetic permeability is
close to unity in liquid crystals, and its effect can be
totally neglected compared to the induced polarization
described by the dielectric tensor. Light propagation is
then determined by the Helmholtz wave equation for
the electric light field E(r,t):

F2¹2d ij1¹ i¹ j1
1

c0
2

]2

]t2 « ij~r,t !GEj~r,t !50. (5)

To discuss light propagation in a homogeneous nematic,
we shall first ignore fluctuations of the dielectric tensor
and adopt Eq. (1) with the equilibrium Frank director n0
leading to a constant dielectric tensor «0 . In that case
the stationary solutions for the electric field are plane
waves E5ea exp(ika•r)exp(2ivt), with wave vector ka

5kak̂, frequency v, and a polarization vector ea(k̂) that
obeys a generalized eigenvalue equation (Lax and Nel-
son, 1971; Landau, Lifshitz, and Pitaevskii, 1984, Sec. 98;
Boots, 1994; Stark and Lubensky, 1997):

F 12k̂^ k̂2
1

na~ k̂!2
«0Gea~ k̂!50. (6)

For future use we have defined a^ b as a second-rank
tensor with components aibj . In Eq. (6) we introduced
the direction-dependent index of refraction na(k̂)
[c0ka /v . It is to be determined for the three possible
electric-field modes, to be referred to as ordinary (a
5o), extraordinary (a5e), and longitudinal (a5l).
The third solution corresponds to a nonpropagating
mode with nl5` and el(k̂) parallel to the wave vector kl
and will hardly be important for scattering at optical
frequencies. It is sometimes convenient to normalize the
vectors ea(k̂) such that the associated energy density
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
(E•«0E1H•H)/8p , averaged over one cycle, is normal-
ized to one. This requires that ea•«0ea51 (Stark and
Lubensky, 1997). We shall use this convention. How-
ever, at several places in this work it turns out to be
handy to normalize the polarization vectors to ueau51.
We shall denote these cases by êa .

The ordinary solution to the eigenvalue (6), a pure
transverse wave, can be readily checked with the help of
Eq. (1). It possesses an index of refraction, no5A«',
and a polarization vector eo(k̂)5û2 /no , and it is per-
pendicular to both the Frank director n0 and the wave
vector ko , enclosing the angle q (see Fig. 2). The second
solution, for an extraordinary light ray, has its polariza-
tion vectors in the plane spanned by n0 and ke :

ee~ k̂!5ne~ k̂!F2
sin q

« i
n01

cos q

«'

û1~ k̂!G , (7)

where we used the unit vector û1(k̂)[n03û2(k̂) perpen-
dicular to n0 . We notice that generally ee(k̂) possesses a
longitudinal component. The refractive index ne(k̂) is
given by the relation

1

ne
2~ k̂!

5
sin2 q

« i

1
cos2 q

«'

. (8)

The phase velocity for wave propagation in homoge-
neous media is given by vpa5k̂c0 /na . However, in an-
isotropic systems there also exists a group velocity that,
in contrast to isotropic systems, has to be distinguished
carefully from the phase velocity. Let us consider this
difference in more detail. Light modes are characterized
by a dispersion relation v(ka)5c0ka /na for each polar-
ization a, which, at a given frequency v, determines the
wave vector ka[navk̂/c0 . In the case of an extraordi-
nary ray, the wave number ke depends on the direction

FIG. 2. Constant frequency surface for ordinary and extraor-
dinary light rays, seen in the plane spanned by the optical axis
(n0) and the wave vector. The ordinary light ray has a constant
index of refraction A«'. The wave vector ko and the group
velocity vgo are parallel to each other. The extraordinary wave
has an ellipsoidal index of refraction that equals A«' only
along the optical axis; ke and vge enclose an angle de . The
figure corresponds to a positive dielectric anisotropy («a.0)
so that the extraordinary ellipsoid is located outside the ordi-
nary sphere. In diffusing light, ordinary waves therefore have
the minority (see Sec. IV.A.1). The two vectors û1 and û2 ,
characterize the two director modes of wave vector q.
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TABLE I. Material parameters (Stephen and Straley, 1974; Collings, 1997) for three typical liquid
crystals: 5CB, PAA, and MBBA at temperature T .

T @K# «' «a Dx K1 @dyne# K2 @dyne# K3 @dyne# g [cps]

5CB 303 2.38 0.54 0.9631027 4.231027 2.331027 5.331027 81.0
PAA 398 2.45 0.90 1.1831027 4.531027 2.931027 9.531027 5.8
MBBA 298 2.37 0.69 0.9731027 631027 431027 7.531027 77
of propagation. For a given frequency v, the wave vec-
tor ka lies on the constant-frequency surface, which is a
circle of radius A«'v/c0 for the ordinary ray (a5o)
and, as shown in Fig. 2, an ellipse with semiaxes
A«'v/c0 and A« iv/c0 for an extraordinary light wave.
For each polarization, electromagnetic energy is trans-
ported along the direction of the group velocity defined
by

vga5“kva~k!, (9)

hence vga is normal to the constant-frequency surface.
For an ordinary ray, the phase and group velocity are
both equal to k̂c0 /no . However, the group velocity of
an extraordinary wave,

vge5c0ne~ k̂!S cos q

«'

n01
sin q

« i
û1D , (10)

generally encloses a nonzero angle de with the phase
velocity, as illustrated in Fig. 2. This angle is given by

cos de5
1

ne
2~ k̂!

S sin2 q

« i
2 1

cos2 q

«'
2 D 21/2

. (11)

The angle de is also spanned by the electric field E and
the displacement vector D. Furthermore, it can easily be
checked that the norm of the polarization vectors ea
equals ueau5uvgau/c0 .

In a homogeneous medium without absorption, the
Poynting vector and the group velocity must necessarily
be parallel (Landau, Lifshitz, and Pitaevskii, 1984,
Sec. 101, problem 1). Hence the Poynting vector
c0(E3H)/4p gives the direction of energy transport.
For a polarized plane wave the cycle-averaged Poynting
vector equals the group velocity times the cycle-
averaged energy density Wa: Sa5Wavga .

B. Thermal fluctuations of the nematic director

Since we are dealing with finite temperatures, the di-
rector will fluctuate around its equilibrium value, so that
n(r,t)5n01dn(r,t). For small fluctuations we must
have dn(r,t)'n0 since n(r,t) is a unit vector. Let dn(q,t)
be the Fourier transform of dn(r,t). It is customary to
express dn(q,t) in the basis shown in Fig. 2,

dn~q,t !5dn1~q,t !û11dn2~q,t !û2 , (12)

where the amplitudes dnd(q,t), for d51,2, characterize
the two possible orthogonal director modes for a given
direction q̂. In Fig. 2 the vector û1 is parallel to the long
axis of the extraordinary mode and the vector û2 is per-
., Vol. 72, No. 4, October 2000
pendicular to both n0 and û1 . Accordingly, the Frank
free energy given by Eq. (2) takes the form

F@n~r,0!#5
1
2 (

d51

2 E d3q

~2p!3 Kd~q!udnd~q,0!u2 (13)

with ‘‘elastic constants’’

Kd~q!5Kd@q22~q•n0!2#1K3~q•n0!21DxH2. (14)

For q perpendicular to n0 , the director modes are either
splay (d51) or twist (d52) modes. When q is parallel
to n0 , one has two degenerate bend modes. The distor-
tions corresponding to these modes are illustrated in Fig.
1. For a general wave vector q, the modes contain a
combination of bend and either splay or twist deforma-
tions. In Table I we list typical values of the Frank elas-
tic constants for the three calamitic compounds MBBA,
PAA, and 5CB often used for optical experiments. Their
temperature behavior follows the square of the Maier-
Saupe order parameter, Ki}S2 (de Gennes and Prost,
1993).

Quasielastic light-scattering experiments in nematics
(Orsay Liquid Crystal Group, 1969) measure the
time-dependent director autocorrelation function
(Chandrasekhar, 1977; de Gennes and Prost, 1993)

^dnd~q,t !dnd* ~q,0!&5
kBT

Kd~q!
expF2

Kd~q!

hd~q!
tG . (15)

The first factor in this expression results from the appli-
cation of the equipartition theorem,2 stating that each
director mode must have an average thermal energy
kBT/2. The second factor reflects the hydrodynamic
temporal decay of the director modes. The relaxation
rate is given by the ratio of elastic—Kd(q)—and
viscous—hd(q)—forces. To arrive at this result, one has
to analyze the Leslie-Erickson equations (Forster et al.,
1971; Chandrasekhar, 1977; de Gennes and Prost, 1993).
They comprise the Navier-Stokes equations for the fluid
motion of a uniaxial medium and dynamical equations
for the director. The viscosity hd(q)5g2m(q) is a com-
bination of several Leslie viscosities that appear in these
equations. The most important contribution to hd(q)
comes from the rotational viscosity g, which quantifies
the viscous forces hindering the rotation of the director.
Typical values are listed in Table I. For wave numbers

2Because we use a continuum of q vectors the equipartition
theorem gives ^dnd(q,0)dnd* (q8,0)&5@kBT/Kd(q)#d(q
2q8). Then we set ^dnd(q,0)dnd* (q,0)&[*d3q8/
(2p)3^dnd(q,0)dnd* (q8,0)&.



1022 B. van Tiggelen and H. Stark: Nematic liquid crystals and radiative transfer
q5105 cm21 of visible light, the relaxation times tc
5g/Kq2 typically vary from 1 to 10 ms. Since both g and
Ki scale as S2 (de Gennes and Prost, 1993), the relax-
ation times are nearly temperature independent. The
term m(q) contains further viscosities that not only gov-
ern the viscous flow of the fluid but also couple the flow
to the director motion. In Eq. (15) we have neglected a
second fast mode, whose character is predominantly that
of velocity diffusion familiar from isotropic fluids. Its
characteristic frequency (h/r)q2 (where r'1 g/cm3 is
the mass density) is much greater than (K/g)q2 since
h/r;1021 cm2/sec largely exceeds K/g;1025

21026 cm2/sec.
The spatial autocorrelation functions

^dnd(R,0)dnd(0,0)& of the two components perpendicu-
lar to the equilibrium director n0 , follow from Eq. (15)
after a Fourier transformation. In the one-constant ap-
proximation (K15K25K3[K) it reads

^dnd~R,0!dnd~0,0!&5
«a

2

4p

L

R
e2R/j, (16)

where the magnetic coherence length

j5A K

DxH2 (17)

gives the length scale over which director fluctuations
are correlated. For typical magnetic fields of 1 T and
Dx51027 (in SI units, 1 Pa/T2) we obtain a coherence
length of 123 mm. The length L5kBT/K is of the or-
der of the molecular dimension a'1 nm (de Gennes and
Prost, 1993). Thus, at micron length scales where light
scattering takes place, thermal correlations seem to be
‘‘weak,’’ although their long-range nature may turn out
to be otherwise. Note that Eq. (16) is valid on length
scales much larger than the molecular dimension a'L
'1 nm.

C. Single light scattering from director fluctuations

Director fluctuations induce fluctuations d«(r,t) of
the dielectric tensor, which follow from Eq. (1) to first
order in dn(r,t):

d«~r,t !5«a@dn~r,t ! ^ n01n0 ^ dn~r,t !# . (18)

In the following we consider a scattering event in which
an incoming electric-field mode with polarization a,
electric polarization vector ea(k̂in), and wave vector kin

a

5vnak̂in /c0 is scattered from one single thermal fluc-
tuation into a scattering channel with polarization b, po-
larization vector eb(k̂out), and wave vector kout

b

5vnbk̂out /c0 . The weakness of the thermal fluctuations
seems to guarantee the validity of the Born approxima-
tion for the scattered field. In that case the scattered
electric field is proportional to the Fourier component of
d«(r,t) projected on the initial and final polarization,

d«ab~q,t !5eb~ k̂out!•d«~q,t !•ea~ k̂in!, (19)
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where q5kout2kin denotes the scattering vector. The
normalization of the polarization vectors ea(k̂) has been
chosen such that they correspond to unit energy density,
as was discussed in Sec. I.A. In (quasielastic) experi-
ments one probes the (temporal) autocorrelation func-
tion of the scattered electric field. In single scattering
this autocorrelation function is proportional to the ma-
trix element

B~ak̂in→bk̂out ,t !5
v4

c0
4 ^d«ab~qs ,t !d«ab* ~qs,0!&. (20)

We call B(ak̂in→bk̂out ,t) the dynamic structure factor
because it contains information about both elastic and
dynamic properties of the director modes. Using d«(r,t)
from Eq. (18) and the director autocorrelation function
of Eq. (15), we obtain

B~ak̂in→bk̂out ,t !5«a
2kBT

v4

c0
4 (

d51

2 N~a ,b ,d!

Kd~qs!

3expF2
Kd~qs!

hd~qs!
tG (21)

with a geometry factor

N~a ,b ,d!5@~n0•eb!~ ûd•ea!1~ ûd•eb!~n0•ea!#2.
(22)

From the last equation it is possible to deduce the al-
lowed scattering events. We infer that no ordinary-to-
ordinary transitions are possible since N(O ,O ,d)50 as
eo is always perpendicular to n0 . Such a scattering may
nevertheless be produced by fluctuations in the isotropic
part of the dielectric tensor which, however, are much
smaller than the director-induced scattering, and so we
shall ignore it. Furthermore, Eq. (22) allows no forward
scattering along the director. Notice also that—again
adopting Kd ,hd}S2 and «a}S—the matrix element
B(... ,t) depends weakly on the nematic order param-
eter S . Hence (quasielastic) single light scattering is
nearly independent of temperature T (the front factor
kBT changes only slightly within the nematic phase).
Such independence has indeed been observed (Chan-
drasekhar, 1977).

In the Born approximation under consideration, the
structure factor is directly related to the differential scat-
tering cross section giving the scattered energy per unit
of time, unit solid angle element, and unit incident in-
tensity in a medium of volume V (Langevin, 1974;
Langevin and Bouchiat, 1975):

ds

dVk
b ~ak̂in→bk̂out!

5
V

~4p!2 na~ k̂in!cos daB~ak̂in→bk̂out!nb
3 ~ k̂out!.

(23)

We have used here the solid-angle element dVk
b associ-

ated with the outgoing wave vector. For extraordinary
light, it differs from the solid-angle element dVR

b associ-
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FIG. 3. Polar plots of the normalized phase functions (5differential cross section normalized to total cross section) for different
polarization transitions as a function of the outgoing wave vector kout . The incident wave vector kin has been kept constant in the
direction indicated together with the optical axis n in the figure on the lower right. The phase function depends on the polar angles
of kin and kout with the optical axis and on the azimuthal angle between the projections of the two wave vectors in the plane
perpendicular to the optical axis. In the polar plot, the azimuthal angle has been integrated over, explaining the vertical mirror
symmetry. The O-O phase function is identically equal to zero. The parameters correspond to the liquid crystal compound 5CB
and a magnetic coherence length j55 mm.
ated with the Poynting vector, being more relevant ex-
perimentally. The exact relation is discussed by Stark
et al. (1997). In Fig. 3 we show polar plots of the phase
function [defined as the differential cross section (23)
normalized by the total cross section for a given incident
direction, and thus a dimensionless number] for differ-
ent polarization transitions. They will be important in
the discussion of multiple scattering.

III. LIGHT DIFFUSION AND HIDDEN CONSEQUENCES OF
ROTATIONAL SYMMETRY

In this section we want to look more closely at the link
between single scattering and multiple scattering and to
apply this knowledge to nematic liquid crystals. Radia-
tive transfer is an old subject that goes back to the end
of the last century, when astrophysicists (Schuster, 1905;
see also Chandrasekhar, 1960) formulated the equation
of radiative transfer. This equation describes in a phe-
nomenological way how transport of particles takes
place inside an inhomogeneous medium. In the equation
of radiative transfer, light is thought of as made up of
classical particles without phase. Despite its phenom-
enological nature, the algebraic structure is quite com-
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plex, and its numerical solution is, even in a simple case,
not straightforward (van de Hulst, 1980). The equation
of radiative transfer models light transfer at length and
time scales much larger than the wavelength and the
period of light.

The equation can be derived microscopically (Sheng,
1995) by summing up the so-called ladder diagrams (see
Fig. 6 below). It is an equation that can be solved for the
so-called specific intensity, the intensity of light traveling
in direction k and being modulated in space and time. In
Eq. (25) we shall define it rigorously as the Wigner dis-
tribution of the complex electric-field amplitude. We re-
mark that the radiative transfer equation correctly de-
scribes single scattering when applied to thin samples.
Its most severe restriction is the assumption of suffi-
ciently weak scattering. The last criterion implies that
the mean free path should be much longer than the
wavelength.

The equation of radiative transfer has been used in
nematic liquid crystals to study the first low orders of
scattering (Romanov and Shalaginov, 1988). The analy-
sis quickly becomes cumbersome and technical. Fortu-
nately, the equation admits a dramatic simplification in
the regime where multiple scattering dominates. It turns
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into a simple and familiar diffusion equation. The physi-
cal picture behind this simplification is a classical ran-
dom walk of a ‘‘photon’’ from one scatterer to another.

There are three reasons why the diffusion approxima-
tion has become so popular. Experimentally, the diffu-
sion approximation seems so far to be valid on scales all
the way down to one mean free path (Li et al., 1993).
Theoretically, it gives ugly but closed-form formulas for
transmission and reflection even for anisotropic scatter-
ing of vector waves in more sophisticated geometries (Li
et al., 1993). Finally, the diffusion approximation allows
physicists to study multiple light scattering in a regime
where the equation of radiative transfer does not apply.
It is believed to be a genuine hydrodynamic limit of rig-
orous transport theory, including new aspects of inter-
ference, polarization, and scattering that are not con-
tained in the equation of radiative transfer (see Fig. 4).
The diffusion equation contains all information that has
been left over after many scattering events in a very
compact way.

In the diffusion approximation, the local energy cur-
rent density J(r,t) and the local energy density r(r,t) at
time t are related by ‘‘Fick’s law,’’

Ji~r,t !52Dij] jr~r,t !. (24)

The second-rank tensor Dij is the diffusion tensor. It is
instructive to discuss the restrictions imposed by all
kinds of symmetry operations. Equation (24) can easily
be checked on parity symmetry, where the current den-
sity and the gradient change sign. Time-reversal symme-
try has been broken, but this symmetry is no longer a
fundamental one once we deal with ensemble-averaged
observables, as in Eq. (24). It is well known in transport
theory that ensemble averaging destroys time-reversal
symmetry (Grabert, 1982).

FIG. 4. Schematic diagram showing the different regimes in
the transport theory of waves. On the horizontal axis is a typi-
cal parameter quantifying the amount of disorder in the sys-
tem. The vertical axis represents the length scale of observa-
tion. It can be seen that the diffusion approximation covers a
regime beyond the equation of radiative transfer. It breaks
down at small length scales, roughly when the scale is compa-
rable to the mean free path (the oblique dashed line), or at
very large disorder where Anderson localization sets in. In the
regime labeled ‘‘Weak Localization,’’ interference effects are
important.
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Rotational symmetry has been generally assumed in
textbooks since it applies to typical media like milk,
sugar, paint, and fog. In that case one necessarily arrives
at an isotropic diffusion tensor: Dij5Dd ij . Only one co-
efficient D remains, the diffusion constant. Up until
about four years ago, no optical experiment ever needed
to abandon this assertion of rotational symmetry. Today,
anisotropic light diffusion is known not only in oriented
nematic liquid crystals (Kao et al., 1997) but also in light
propagation in magnetic fields (Rikken and van
Tiggelen, 1996; Sparenberg, Rikken, and van Tiggelen,
1997). Nematic liquid crystals are special because rota-
tional symmetry is broken but translational symmetry
is—statistically speaking—kept intact, allowing hope-
fully the definition (24) of a constant diffusion tensor
once the liquid becomes larger than a mean free path.

In principle, the observable quantity in diffuse trans-
port is the time-dependent specific intensity at some
place r inside or outside the medium, signifying the local
current of energy per unit surface, per unit solid angle in
the direction k. It will of course also depend on the fre-
quency v of the light. Because we want to study polar-
ization, we shall introduce a second-rank tensor
F ij ,k(r,t) of the electric field components Ei .3 We de-
fine it as the q-Fourier transform and V-Laplace trans-
form of the field-field correlation function

F ij ,p,v~q,V![^Ei~p1q/2,v1V/2!Ej*

3~p2q/2,v2V/2!& . (25)

Mathematically this is recognized as a Wigner distribu-
tion. The microscopic variables v and p are associated
with the fast oscillations of the wave packet in space and
time. On the other hand, the macroscopic variables V
and q determine the propagation of the wave envelope,
which is always orders of magnitude slower. This decou-
pling of frequencies is called the slowly varying wave
approximation; a typical wave packet is shown in Fig. 5.

The equation of radiative transfer is a balance equa-
tion for F ij ,k(r,t), in the same way that the Boltzmann
equation is a balance equation for the phase-space dis-
tribution f(r,v,t) of classical particles. A difference be-
tween the two is that in normal Boltzmann theory the
collisions take place among the particles, so that the col-
lision term is bilinear in f(v). In the radiative transfer
equation, ‘‘photons’’ collide with fixed scattering centers
and the collision term is linear in F ij ,k . The aim of dif-
fusion theory is to express F ij ,k(r,t) in terms of only the
energy density r and the total current density J, related
by Eq. (24). In terms of F ij ,kv(r,t), Maxwell’s equations
imply that

r~r,t !5E d3p

~2p!3 « ikFki ,pv~r,t ! (26)

3The usual description in terms of four Stokes variables (van
de Hulst, 1980) is inconvenient in the birefringent media that
we envisage.
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Jn~r,t !5
c0

2

2v E d3p

~2p!3 ~2pnd ik2pkdni2pidnk!

3Fki ,pv~r,t !. (27)

The expression for the current density Jn follows from
the Poynting vector, c0(E3H)/4p , together with one
Maxwell equation to eliminate the magnetic field H.
Apart from polarization indices, both expressions look
very much like the corresponding equations for number
and current density in Boltzmann theory.4 It is antici-
pated that the momentum integrals pick up contribu-
tions only very near the constant-frequency shells
ve/o(p)5v in phase space where light propagation takes
place.

In the case of rotational symmetry it is relatively easy
to anticipate the relation between both macroscopic ob-
servables when light has reached the diffusion regime.
The field-field correlation function depends on the en-
ergy density and current density as

F ij ,k~r,t !;~d ij2k̂ ik̂ j!d~v/vp2k !

3@vEr~r,t !13k̂nJn~r,t !1¯# . (28)

4For a nonrelativistic particle with velocity v, momentum di-
vided by energy equals mv/mc0

2, whereas for a ‘‘photon’’ this
amounts to \p/\v . This suggests an analogy between the pho-
ton wave vector p and the velocity v. To make the analogy,
replace p by (v/c0

2)v. The expression for the current density Jn
becomes similar to *d3v f(v)v in classical Boltzmann theory.

FIG. 5. Visualization of a typical wave packet obeying the
slowly varying envelope approximation, either in time or in
space. When this figure represents the pulse as a function of
time, the rapid internal oscillations are denoted by the optical
frequency v, whereas the slowly varying envelope is character-
ized by a much smaller frequency V. Similarly, in real space,
oscillations of the order of the optical wavelength are denoted
by the wave number k, and the smooth variation of the pulse
itself by the much smaller wave number q. The wave equation
relates the rapid parameters v and k by means of a dispersion
law, defining a wave velocity, whereas the diffusion equation
relates the slow parameters V and q by means of a diffusion
constant.
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The Dirac delta distribution and the tensor in front
make sure that only ‘‘on-shell’’ transverse photons
propagate (i.e., frequency and wave number are related
by the phase velocity vp), as is physically required in
isotropic media. The choice of current and energy den-
sity is such that Eq. (28) is consistent with definitions
(26) and (27). The rest simply follows from rotational
symmetry, leaving the tensor Dij5Dd ij in Eq. (24) and a
scalar velocity vE as arbitrary parameters to be obtained
from a microscopic theory. The latter is only equal to
the group velocity of the medium if the fluctuations in
the dielectric tensor are small (van Tiggelen and La-
gendijk, 1993). It is apparent from Eq. (28) that the ra-
diation is unpolarized and a lot of information has been
lost by multiple scattering. By inserting Eq. (24) into the
angular expansion (28) we obtain

F ij ,k~r,t !;vE~d ij2k̂ ik̂ j!d~v/vp2k !

3@r~r,t !2l* k̂n]nr~r,t !# . (29)

This relation defines a length scale l* called the trans-
port mean free path and relates it to the diffusion con-
stant D according to the classical relation

D5
1
3

vEl* . (30)

Equation (29) contains the start of a spatial Taylor ex-
pansion of r(r2l* ĥ ,t). This implies Fk(r,t);vEr(r
2l* k̂,t), i.e., the specific intensity is proportional to the
energy density at a distance l* along the line of sight
(Browers and Deeming, 1984). This notion is very useful
in interpreting the spectroscopy of the solar atmosphere,
in particular because l* depends on wavelength. Thus
photons at different wavelengths originate from differ-
ent depths and hence from regions with different tem-
peratures.

The standard way to solve for the angular profile of
the radiation emerging from a slab geometry is to add
boundary conditions to the diffusion equation for the
energy density r (Ishimaru, 1978). With respect to the
direction u of the net current J, the angular profile is
expected to be of the form A1B cos u. For an arbitrarily
polarized plane wave incident on a slab geometry with
thickness L , one finds the universal angular transmission
profile

T~u ,L !5
l*

L S 1
2

1
3
4

cos u D , (31)

independent of the precise phase function and polariza-
tion properties of the scatterers. Unfortunately, the dif-
fuse angular profile does not contain any explicit infor-
mation about the angular profile of one single scattering.
All information is implicitly contained in the length l* .
The equation of radiative transfer relates it to the extinc-
tion length l according to

l* 5
l

12^cos us&
[gl . (32)
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Here ^cos us& is the average cosine of the scattering angle
and clearly depends on the phase function. The dimen-
sionless quantity g has been introduced to make the con-
nection later with the generalization of Eq. (32) to nem-
atic liquid crystals. The transport velocity and the
transport mean free path provide us with the only infor-
mation left in the diffuse regime in rotationally isotropic
media. For cos u.0, i.e., emergent radiation, Eq. (31)
agrees to within a few percent with the exact solution of
the equation of radiative transfer, for an arbitrary single-
scattering function (see Fig. 11.2 of van de Hulst, 1980).
The failure of the diffusion approximation is only appar-
ent from the negative intensities it predicts when cos u
,0, that is, for light sent back into the medium from
transmission. But these directions are hardly ever mea-
sured, and this failure poses no interpretational prob-
lems.

IV. ANISOTROPIC LIGHT DIFFUSION IN NEMATICS

The spontaneously broken rotational symmetry in liq-
uid crystals not only leads to birefringence in light
propagation, but also implies the existence of hydrody-
namic Goldstone modes (Forster, 1975), which we intro-
duced earlier as director modes. Broken rotational sym-
metry will affect multiple scattering in several ways. Its
most direct impact is upon the light propagation be-
tween two scattering events. Two modes of propagation
with different group velocity and orthogonal polariza-
tion vectors determine the energy flow. In addition, bro-
ken rotational symmetry leads to three different elastic
constants for the director fluctuations, which will—via
the structure function in Eq. (20)—affect light scatter-
ing. Finally, director fluctuations are normal to the aver-
age director, leading to an anisotropy in the scattering
function. The broken rotational symmetry is also re-
sponsible for the hydrodynamic nature of the director
fluctuations (Chaikin and Lubensky, 1995), making their
spatial correlations long range, as is apparent from Eq.
(16). In general, multiple scattering of light close to
phase transitions is an unexplored feature of radiative
transfer.

It is our final aim to understand and to predict quali-
tatively and quantitatively all aspects of diffuse light in
oriented nematics. In particular, we wish to relate these
properties to the ‘‘amount of broken rotational symme-
try,’’ quantified by the Maier-Saupe order parameter of
the nematic phase. Because of the complexity of both
the liquid crystal and the equation of radiative transfer,
the much simpler diffusion approximation is a particu-
larly attractive regime, although work has been done us-
ing the equation of radiative transfer in the small-angle
approximation (Romanov and Shalaginov, 1988).

A. ‘‘Back-of-the-envelope’’ calculations

To obtain an order of magnitude for the diffusion con-
stant of light in nematic liquid crystals, it is tempting to
first ignore the orientational order of the liquid and to
adopt a fully isotropic structure function, B(q)
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5(v/c0)4«a
2kT/K(q211/j2), which we refer to as the

back-of-the-envelope model. The estimates obtained in
this way will be given a subscript S to distinguish them
from the rigorous calculation.

From Eq. (23), we recall that the single-scattering dif-
ferential cross section for a small volume is basically
proportional to B(k2k8) and the volume V itself
(Berne and Pecora, 1976),

ds

dV
~k→k8!5

V

~4p!2 B~k2k8!. (33)

Given an incident flow I in of photons per unit time and
per unit surface, the total loss of energy per unit time is
given by the angular integral of this expression, called
the total scattering cross section s. Hence the loss per
unit surface is

DI52
s

A
I in52

s

V
DzI in , (34)

where we have written V5A3Dz . This formula sug-
gests that the incident intensity decays as exp(2z/ls),
with the scattering mean free path or extinction length
given by

1
lS

5E dVk8

~4p!2 B~k2k8!. (35)

Upon doing the integral, we find for our simplified stuc-
ture function

lS5
4pKc0

2«

«a
2v2kT ln~114v2j2«/c0

2!
. (36)

For typical values (j is several mm in a magnetic field of
1 T) this gives the value lS'0.1 mm. This value is much
larger than the correlation length j so that the conven-
tional and popular picture of a sequence of single-
scattering events seems to apply. As a matter of fact, the
inequality lS@j can be verified even close to the (dis-
continuous) nematic-isotropic phase transition. The rea-
son is that lS depends weakly on the order parameter,
whereas j;AS . Only in a magnetic field as small as
1022 T (100 G) would the magnetic correlation length be
of the order of 0.1 mm and become comparable to the
extinction length. In the hypothetical case of vanishing
magnetic field, the extinction length lS goes to zero loga-
rithmically in H . In this regime, the weak-scattering ap-
proximation apparently breaks down due to the long-
range nature of the director fluctuations.

One can explicitly show that the amount of energy
scattered by one director fluctuation of volume j3 rela-
tive to the incoming light energy equals j/4lS . This
means that the weak-scattering approximation breaks
down for j'lS . Equivalently, to assure the weak-
scattering approximation one must have j!lS , which
then suggests the picture of subsequent scattering from
different director modes. To understand light scattering
in a nematic with j'lS , one has to go beyond the weak-
scattering approximation. At the same time, one loses
the familiar picture that light is scattered from different
director modes at different places.
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Due to long-range correlations, most of the scattering
contained in lS is in the forward direction. According to
radiative transport theory, the length relevant in diffu-
sion is the transport mean free path (32), which gives
more weight to forward scattering than to backscatter-
ing. One finds

lS* 5
8pc0

2K«

«a
2v2kT

, (37)

weakly dependent on H as long as j>1 mm. We obtain
the much larger value of 1–5 mm, a length that corre-
sponds to the transport mean free path of very dilute
colloidal suspensions. A very convenient property of the
length lS* is that it is not expected to be very sensitive to
changes in the nematic order parameter, since as a rule
of thumb K;S2 and «a;S (Chandrasekhar, 1977).

1. Equipartition of polarization in the diffuse regime

The model discussed above suffers badly from the ne-
glect of broken rotational symmetry and its impact on
polarization. Nevertheless, the following ‘‘educated
guess’’ can be made to estimate one aspect of broken
rotational symmetry. For a given frequency v, the diffu-
sion process tends to equipartition the electromagnetic
energy among all microstates in the phase space of wave
vectors allowed by the dispersion law v(k). The spectral
function counts the electromagnetic energy density in a
phase-space cell (r,p). In an infinite medium this density
is on average independent of the space variable r. For
weak disorder it reads

r ij
n ~v ,p!5 ê i

n~p!ê j
n~p!d@v2vn~p!# . (38)

Here ên denotes the normalized polarization vector of
polarization mode n . If the disorder increases, the dis-
persion law vn(k) will achieve an uncertainty inversely
proportional to the mean free time tn'ln/vn between
two scattering events. By an exact sum rule (Mahan,
1981), the sum over all polarizations together with the
integral over all frequencies of r ij

n (v ,p) must be a con-
stant independent of p and independent of statistical pa-
rameters like temperature or density of scatterers.
Equation (38) obeys this sum rule, and since the polar-
ization has unit norm, this constant equals unity.

The total number of microstates (per unit volume) for
polarization mode n5e/o becomes

re ,o~v!5E d3p

~2p!3 Tr re/o~v ,p!5
1

8p3 E d2Se ,o

uvge ,ou
.

(39)

Here d2Se ,o is the surface element in k space for both
constant-frequency surfaces (Ashcroft and Mermin,
1976). The integration can be performed, and the result
is simply

re

ro
5

« i

«'

. (40)

Despite the heuristic argument, this result is an exact
outcome of transport theory (Stark and Lubensky, 1996;
van Tiggelen, Maynard, and Heiderich, 1996). It gener-
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ally holds when modes with different velocities are com-
bined in a diffusion process. For that reason it applies
for elastic waves in solid media (Weaver, 1982) and was
recently observed in earthquake seismograms (Camp-
illo, Margerin, and Shapiro, 1999). It can be seen that for
negative anisotropies («a,0) ordinary waves dominate,
whereas for «a.0 extraordinary waves are in the major-
ity. These results hold regardless of the exact selection
rules for polarization transitions during the scattering
process. This conclusion will be important in under-
standing the outcome of detailed calculations qualita-
tively.

2. Dynamic correlations

In Sec. II.C we reviewed the dynamics of director fluc-
tuations in nematic liquid crystals. In the past this was
studied extensively using the quasielastic light-scattering
technique (Orsay Liquid Crystal Group, 1969; Chan-
drasekhar, 1977), which consists of measuring the small
frequency shift of the (singly) scattered light due to the
dynamics of the director modes. Measurements in the
time domain have also been employed (see, for ex-
ample, Mertelj and Copic, 1997). The dynamic time cor-
relation function has been described in Eq. (15) and
shows the competition of elastic and viscous forces. The
typical time scale is given by g/Kq2, with K a typical
value for the elastic constants, q5kout2kin the scattering
vector, and g the Leslie rotational viscosity coefficient.
In near forward scattering q!v/c , and the relaxation
time is much larger than 10 mm, even of the order of
milliseconds.

During the last 10 years, quasielastic light-scattering
experiments have been generalized to multiple scatter-
ing in colloidal suspensions. Multiple scattering from n
scatterers makes a measurement typically An times
more sensitive for phase shifts that occur due to the mo-
tion of the scatterers. As a result, one can study very
small time scales, much smaller than the one in single
scattering. Work by Maret and Wolf (1987) demon-
strated the utility of this so-called diffusing wave spec-
troscopy to monitor all sorts of hydrodynamic processes
with many potential applications (Weitz and Pine, 1992;
Boas, Campell, and Yodh, 1995).

Diffusing wave spectroscopy has recently been ap-
plied to aligned nematic liquid crystals (Kao et al., 1997;
Stark et al., 1997) in both reflection and transmission.
Detailed theoretical analyses have been made, incorpo-
rating polarization, different elastic modes, and all Le-
slie viscosities (Stark and Lubensky, 1996; Kao et al.,
1997; Stark and Lubensky, 1997; van Tiggelen, Heider-
ich, and Maynard, 1997). To simplify the analyses, we
neglect all these complications and adopt the following
time correlation function:

B~q,t !5
v4

c0
4

«a
2kBT

Kq2 expS 2
Kq2t

g D , (41)

which replaces Eq. (21). It ignores polarization, aniso-
tropic elasticity, anisotropic viscous effects, and finite
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spatial correlations due to a magnetic field. What will
change in multiple scattering when this explicit time de-
pendence is considered?

Nothing, of course. Light moves much faster than the
motion of the fluctuation and every photon sees a frozen
director configuration while traveling through the me-
dium. The time dependence of the medium generates a
complete ensemble average every few microseconds. To
resolve dynamics, one should look not at the average
intensity but rather at the time-dependent correlation
function ^I(0)I(t)& either in reflection or in transmis-
sion. Assuming Gaussian statistics, this correlation di-
rectly relates to the electric-field autocorrelation func-
tion, according to

^I~0 !I~ t !&5^I&21u^E~0 !E* ~ t !&u2. (42)

This equation calls for a theory for ^E(0)E* (t)&, which
differs only slightly from the basic observable F in Eq.
(25), since it involves fields measured at different times.
In fact, in a rare case one has direct access to the field
correlation function (Kao, Yodh, and Pine, 1993).

As soon as one considers the correlator
^E(t)E* (t8)&, the scattering cross section to be used
should be B(q,t2t8). The fields E(t) and E(t8) both
travel through a frozen medium, but this medium has
changed in between the measurements. The time differ-
ence t2t8 is imposed by the measurement and can be
chosen much smaller than the typical hydrodynamic re-
laxation time of the director correlations. For single
scattering, there would be no substantial decay in the
temporal electric-field correlations. However, because of
the cumulative effect of all the scattering events along
one light path, there is a relevant dephasing of the fields,
which leads to a decay of the temporal electric-field cor-
relations with which a dephasing length can be associ-
ated. Using Eq. (35), this dephasing length lf can be
calculated as

1
lf~ t !

5E dVk8

~4p!2 @B~k2k8,0!2B~k2k8,t !# . (43)

The integration can be done for our simple model (41).
For times t,tc[c0

2g/4Kv2« (where tc is the relaxation
time of a director mode with wave number q52v/c),
i.e., less than a few microseconds, the exponential can be
expanded and the result is

1
lf~ t !

5
«a

2v4kBT

4pgc0
4 3t . (44)

This is the standard result also obtained from more so-
phisticated calculations (Stark and Lubensky, 1997; van
Tiggelen, Heiderich, and Maynard, 1997). Note that the
dephasing is independent of the elastic constant K . For
times beyond tc , it can be seen that B(t)→0 so that,
using Eq. (43) we find that lf(t) converges to the extinc-
tion length lS , which equals a fraction of a millimeter.
Before the time tc , the dephasing time is much larger.

As long as the dephasing length is large compared to
the transport mean free path (t!tc), it can be built into
standard diffusion theory as a small perturbation (Ishi-
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maru, 1978). The diffusion equation for F(r,t)
[^E(r,0)E* (r,t)& can be written as

F2
1
3

vElS* ~ t !¹21
vE

lf~ t !GF~r,t !5source, (45)

i.e., a conventional diffusion equation with time-
dependent diffusion constant vElS* (t)/3 and time-
dependent absorption rate vE /lf(t) for the field corre-
lations. The time-dependent transport mean free path is
usually not considered but should, strictly speaking, be
obtained from B(q,t) and not B(q,0). Using Eq. (32),

1

lS* ~ t !
5E dVk8

~4p!2 ~12cos u!B~k2k8,t !

5lS* ~0 !
12exp~2t/tc!

t/tc
, (46)

with lS* (0) given by Eq. (37). This implies that at times
beyond tc the transport mean free path relevant for time
correlation is enlarged by a factor t/tc . The consider-
ation of a time-dependent mean free path starts to be
relevant at times comparable to tc .

The solution of the diffusion equation in transmission
through a slab with thickness L is well known to be

F~Trans,t !5^T~0 !&
L/Lf

sinh~L/Lf!
, (47)

where a new dephasing length Lf is introduced by Lf

5Al* lf/3. It can be interpreted as an absorption length
for the time correlations of diffusing light. We empha-
size that Lf is not an absorption length. It just shows up
as if it were an absorption length in the diffusion. Our
simple model gives Lf

21;At at times short compared to
tc . Equation (47) holds when la@ls , which is equivalent
to t!tc . As long as L,Lf , this means that
ln F(Trans,t);2t/tT , going over into ln F;ln(t/tT)
2At/tT as L.Lf at longer times, both of course subject
to the constraint t,tc . This is plainly true, since the
typical diffusing wave spectroscopy time in transmission
is tT'(l* /L)2tc!tc . In reflection from a semi-infinite
medium, one finds F(Ref,t);exp(2At/tR) (Pine et al.,
1990). Note that the typical time tR in reflection is much
greater than tT . It is actually comparable to tc . This
means that the concept of a ‘‘time-dependent transport
mean free path,’’ as discussed above, might not be to-
tally irrelevant in reflection. Diffusing wave spectros-
copy has been successfully applied to the study of dy-
namic director fluctuations in the compound 5CB (Kao
et al., 1997; Stark et al., 1997).

B. Rigorous transport theory

The final aim of transport theory is to calculate the
relation between the incident intensity and the thermo-
dynamically ensemble-averaged outgoing intensity,
starting from the wave equation underlying the scatter-
ing processes in a random medium. In the present case
of light propagation in liquid crystals, we deal with the
Maxwell equations, and we have already analyzed single
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scattering, which is supposed to be an essential building
block in multiple scattering.

The observable quantity F ik ,p
out (r,t) was defined earlier

in Eq. (25). It is most convenient first to assume full
translational symmetry and then to add boundaries
later. Since we neglect any nonlinear response, the rela-
tion between incident and outgoing light must be linear.
Upon Fourier transforming space variables and Laplace
transforming time variables, this relation can be written
as

F ik ,p
out ~q,V!5E d3p8

~2p!3 Lijkl ,pp8~q,V!F jl ,p8
in

~q,V!.

(48)

In real space this would take the form of a space/time
convolution. In Fig. 6 we explain the conventions in the
diagrammatic presentation of the tensor Lijkl ,pp8 .

1. Reciprocity and flux conservation

Before getting into more precise calculations, it is in-
structive to discuss the basic properties of the tensor L.
We have stated already that time-reversal symmetry is
destroyed by ensemble averaging. However, reciprocity
should still be intact. The reciprocity principle guaran-
tees the existence of an equivalence principle between
detector and source (Born and Wolf, 1975; van de Hulst,
1980). Expressed algebraically, this reads

Lijkl ,pp8~q,V!5Ljilk ,2p82p~2q,V!. (49)

A second important property of the tensor L is a general
result of transport theory. In the presence of energy or
particle conservation, a transport quantity like Lijkl is
expected to exhibit hydrodynamic behavior (Forster,
1975). The hydrodynamic regime is characterized by the
so-called Kubo limit V→0 and q→0, i.e., long time and
length scales. In particular, one has

FIG. 6. Diagrammatic Feynman representation of the opera-
tor L , defined in Eq. (50), relating incoming and outgoing in-
tensity and polarization. The bottom line denotes the propaga-
tion of the complex conjugated electric field, and therefore it is
directed in the opposite direction. Open circles denote a ther-
mal fluctuation d«. The bold horizontal lines represent the
Dyson Green’s function, which gives the scattered field from
one thermal fluctuation to the other. Dashed vertical lines con-
nect correlated fluctuations.
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Lijkl ,p,p8~q,V!→ wki~p,q!wjl~p8,q!

2iV1q•D•q1O~V2,q3!
. (50)

It is not difficult to see that in real space this equation
implies a diffusion equation for the photon density
r(r,t), obtained from the second-rank tensor F ij

out(r,t)
by means of Eq. (26). The symmetric numerator of Eq.
(50) is imposed by the reciprocity principle (49). More
formally, it is possible to consider the second-rank ten-
sor wjl(p,q) as the eigenfunction of the fourth-rank ten-
sor Lijkl ,p,p8(q,V), corresponding to the hydrodynamic
eigenvalue 1/(2iV1q•D•q) (Barabanenkov and Ozrin,
1995; Barabanenkov, Zurk, and Barabanenkov, 1995).
Eigenfunctions are usually needed in one order lower
than the order of perturbation considered for the eigen-
value. For that reason wjl(p,q) is independent of V and
contains at most a bilinear form (p,q). A linear factor q
corresponds in real space to a space gradient, and this
brings us to a rigorous foundation for Eq. (29), but now
generalized to arbitrary complex systems. The replace-
ment of L by its hydrodynamic limit at all length and
time scales is the diffusion approximation. In isotropic
systems, the second-rank tensor wki(p,q) must be pro-
portional to d ik@A1B(p•q)# , which brings us back to
Eq. (28). In the presence of a homogeneous magnetic
field B, a magneto-optical contribution of the form
det(B,p,q)d ik is allowed by symmetry and induces a
photon Hall effect (Lacoste and van Tiggelen, 1999). In
nematic liquid crystals the three independent vectors n0 ,
eo(p), and ee(p) are available to construct the tensor
wki(p,q).

2. Dyson’s equation in nematics

To describe light propagation in random media, the
first quantity to consider is the Green’s function for the
electric field. It is a second-rank tensor describing the
propagation of the field from one place to another,

G~v ,r,r8!5K rU 1

v2«~x!/c0
22p21p^ p1i0 Ur8L . (51)

The dielectric tensor « has a random component, over
which we shall perform an ensemble average, and an
anisotropic deterministic component, both according to
Eqs. (1) and (3). In the nematic phase, ensemble aver-
aging over thermal fluctuations of the director restores
translational symmetry. It is thus convenient to consider
the Fourier transform of the ensemble average
^G(v ,r,r8&),

G~v ,p!5
1

v2«0 /c0
22p21p^ p1S~v ,p!

, (52)

in which the average thermal fluctuations are contained
in the Dyson self-energy S; due to broken rotational
symmetry S explicitly depends on the direction of the
wave vector p with respect to the optical axis. The weak-
ness of thermal fluctuations guarantees the validity of
the Born approximation for this object, as known from
conventional perturbation theory (Frisch, 1968),
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S ik~v ,p!5E d3p8

~2p!3 Bijkl~p2p8!Gjl~v ,p8!. (53)

A diagrammatic representation of this dominant term to
the self-energy is shown in Fig. 7. The structure function
Bijkl(q) associated with the thermal fluctuations was in-
troduced earlier in Eq. (20), and in the previous section
we argued that only the static version is needed here.
Since the fluctuations are weak, the three eigenvectors
that diagonalize G will still be to a good approximation
the electric polarization vectors ee ,o ,l of the host me-
dium, introduced in Sec. II.A. However, the three cor-
responding indices of refraction na will have changed,
achieving both a real and an imaginary part. The longi-
tudinal mode is not relevant to our discussion. For the
two propagating modes, the extinction length can be de-
fined as

le/o~ p̂!5
ke/o

2Im Se/o~ p̂!
, (54)

in terms of the matrix element Se/o(p̂)
[ êe/o(p̂)•S(v ,ke/o)• êe/o(p̂). This matrix element can
easily be evaluated numerically (Val’kov and Romanov,
1986; Heiderich, Maynard, and van Tiggelen, 1997). The
above definition of extinction length is the microscopic
foundation of the heuristic reasoning that led us earlier
to Eq. (35). The Dyson Green’s function is the math-
ematical object that corresponds to the remnant of the
incident field, sometimes called the ‘‘coherent beam.’’

The Green’s function now takes the form of a dyadic,

G~v ,p!5
êo~ p̂! ^ êo~ p̂!

ko
22p21iko /lo~ p̂!

1
êe~ p̂! ^ êe~ p̂!

cos2 de@ke
2~ p̂!2p2#1ike~ p̂!/le~ p̂!

1longitudinal, (55)

where êo ,e denotes unit polarization vectors. In Fig. 8 we

FIG. 7. Diagrammatic Feynman representation of the self-
energy S and the irreducible vertex U, defined in Eqs. (55) and
(59). Feynman diagrams are usually depicted in momentum
representation. The ‘‘dangling’’ lines denote incoming or out-
going plane waves whose momentum labels and polarization
indices have been added. The open circles indicate two scat-
tering events from a director fluctuation mode with wave vec-
tor p2p8, correlated by the structure function B. The symbol
G is the Green’s tensor representing the propagation of light in
between two director fluctuations. Note the transfer of mo-
mentum from light to matter, with momentum conservation at
each point. Iteration of the Bethe-Salpeter equation (58) using
the vertex U shown here generates the ladder diagrams shown
in Fig. 7.
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show the imaginary part of the self-energy for both po-
larizations. We took the optical and hydrodynamical val-
ues known for the nematic 5CB (see Table I). It can be
seen that both depend on the angle of propagation. For
the ordinary waves this perhaps surprising result (recall
that these modes have an isotropic dispersion law) is due
to the inhibition of direct ordinary-ordinary O-O scat-
tering, which requires an intermediate and anisotropic
extraordinary wave excitation. In Fig. 9 we show the
imaginary part of the self-energies for the hypothetical
case in which «a→0 and K15K25K3 , i.e., no kinemati-
cal or elastic anisotropy at all. This figure demonstrates
the sole impact of the intrinsic anisotropy of the director
fluctuations on the extinction length. It is a hypothetical
case since «a50 also implies that le5lo5` . It can be
deduced that the extinction length for ordinary waves is
smallest in all directions. This is a result of the absence
of O-O scattering. Furthermore, for both polarizations,
the mean free path is largest along the optical axis. First,
this is due to the fact that no forward scattering is al-
lowed along the optical axis, as stated earlier. Second,
light modes traveling along the director are always ordi-
nary and can therefore only be scattered into extraordi-
nary (E) waves.

3. Bethe-Salpeter equation in nematics

The Dyson Green’s function describes the propaga-
tion of the ensemble-averaged field in the presence of
scattering. To understand the impact of scattering on the

FIG. 8. Imaginary part of the self-energy (in units of
«a

2v3kBT/8pK3c0
3«' , per unit area) for extraordinary waves

(ee , dashed) and ordinary waves (oo , solid) as a function of
the angle between the wave vector and the optical axis. This
quantity is inversely proportional to the extinction length. The
parameters chosen are consistent with the nematic liquid crys-
tal 5CB, shown in Table I, and a magnetic coherence length
j55 mm. Along the optical axis (cos561) both polarizations
degenerate and the self-energies coincide. The graph is sym-
metric about cos50 because of the mirror symmetry with re-
spect to planes perpendicular to the optical axis.
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ensemble-averaged intensity, one needs to consider the
product of two Green’s functions. Similar to the Dyson
equation (52) defining the self-energy, one can write an
equation for the two-photon Green’s function, thereby
introducing a new object. This equation is called the
Bethe-Salpeter equation. Formally it reads (Barabanen-
kov and Ozrin, 1995; Barabanenkov, Zurk, and Bara-
banenkov, 1995; Sheng, 1995; van Rossum and Nieuwen-
huizen, 1999)

^G1 ^ G2* &5^G1& ^ ^G2* &1^G1&

^ ^G2* &•U12•^G1 ^ G2* &. (56)

The labels 1 and 2 usually correspond to different
nearby frequencies and wave vectors, similar to the basic
observable F ijkl introduced in Eq. (48). They can also
correspond to two different times of measurement, as is
customary in diffusing wave spectroscopy techniques for
probing time correlations in wave diffusion (Maret,
1997). The new object U that has been introduced—
called the irreducible vertex—is a fourth-rank tensor. Its
advantage is that it has much in common with what one
would call a ‘‘differential cross section’’ in the equation
of radiative transfer. The ensemble-averaged two-
photon Green’s function ^GijGlk* & is basically equal to
the tensor Lijkl defined in Eq. (48). It enables us to cal-
culate specific intensities anywhere at any time, given a
source.

It is not our purpose to give the detailed theory here,
and we should like to refer the interested reader to pub-
lished material (Frisch, 1968; Sheng, 1995; Lagendijk
and van Tiggelen, 1996; POAN Research Group, 1998).

FIG. 9. As in Fig. 8 (with the same units for the self-energy),
but now for the hypothetical case is which «a50 and all elastic
constants are the same. The anisotropy is now due only to the
thermal fluctuations perpendicular to the optical axis, and not
to birefringence or elasticity. This case is purely academic in
the sense that the unit for the self-energies defined in the pre-
vious figure vanishes, but it shows the impact of the anisotropic
director fluctuations on the angular dependence of the extinc-
tion mean free path, without being modified by anisotropic
elasticity and uniaxial birefringence.
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An old and difficult problem—even for simple
systems—is how and under what conditions one can
transform the Bethe-Salpeter equation into the familiar
equation of radiative transfer (Papanicolaou and Burr-
idge, 1975). If we forget about technical details, the ra-
diative transfer equation follows from Bethe-Salpeter in
the weak-scattering approximation. A more specific
problem for complex media like those with broken rota-
tional symmetry is the calculation of the diffusion as-
ymptotics, as was made explicit in Eq. (50). For isotropic
systems this last problem has basically been solved.

In nematic liquid crystals the easy part is the choice of
the vertex tensor U. Since scattering is very weak, the
Born approximation for scattering from ‘‘one thermal
fluctuation’’ is going to be the building block for mul-
tiple scattering. Translating to momentum space (Fig. 6),
we have

Uijkl~k1 ,k2 ,k3 ,k4!

→d~k12k22k31k4!

3
v4

c0
4 ^d« ik~k12k2!d« jl~k32k4!& . (57)

The Dirac delta function ensures that momentum is con-
served. It is a natural consequence of translational sym-
metry of the ensemble-averaged random medium.

The basic technique in diffusion theory is to find the
eigenvalue closest to zero of the Bethe-Salpeter equa-
tion (Barabanenkov and Ozrin, 1991; Barabanenkov
and Ozrin, 1995; Stark and Lubensky, 1997; van
Tiggelen, Heiderich, and Maynard, 1997). The actual
calculation for a nematic has been carried out using nu-
merical iteration (van Tiggelen, Maynard, and Heider-
ich, 1996) and using spherical harmonic expansion
(Stark and Lubensky, 1996), with numerically identical
results. At infinite length scales—that is, q50 in Eq.
(48)—this hydrodynamic eigenvalue must be exactly
zero because of energy conservation laws (Mahan,
1981).

An exact result of transport theory is that the eigen-
function associated with this eigenvalue is the so-called
spectral function r ij

n (v ,p) of the system,

F ij ,p~q50 !} (
n5e ,o

r ij
n ~v ,p!. (58)

This function was been introduced earlier in Eq. (38) for
a nematic liquid crystal. Now being a second-rank ten-
sor, it must be the generalization of the term r in Eq.
(29). Equation (58) expresses the effect of diffusion to
drive the system toward equipartition of energy over
phase space. As was put forth heuristically in Eq. (40),
this process is subject to a constant-frequency constraint.

Second-order Rayleigh-Schrödinger perturbation
theory in q transforms the eigenvalue zero into the bi-
linear form Dijqiqj , where Dij can be identified with the
diffusion tensor. The latter turns out to be given by a
vector generalization of the Kubo-Greenwood formula
(Barabanenkov and Ozrin, 1991), known for electrons in
disordered semiconductors (Mahan, 1981) and in that
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case often obtained by linear response theory. At the
same time, the eigenfunction associated with the diffuse
mode achieves a perturbational bilinear form Gnmknqm ,
which provides the generalization of the term kn]n in
Eq. (29). The actual calculation of the tensors Dij and
G ij is facilitated by the following controlled approxima-
tions:

(1) Interference between E and O waves can be ne-
glected. In multiple scattering this holds true when
the dephasing of O and E modes between two suc-
cessive collisions is large, i.e., ukE2kOul@1, with k
the wave number. This criterion easily follows since
the distance of the two excitations in Eq. (58) in
phase space is ukE2kOu, whereas their typical size is
of the order of 1/l . The present criterion guarantees
that the two excitations do not overlap in phase
space. Because the extinction length l is so much
larger than the wavelength (roughly 100 mm), this
inequality is obeyed even near the nematic-isotropic
phase transition. This transition is weakly first order
so that a finite-order parameter (and thus a finite
value for kE2kO) remains near Tc . Note that
around the optical axis the two excitations always
overlap. The volume of overlap in phase space is
small compared to the total hemisphere and is
therefore negligible for multiple scattering.

(2) The correlation length j of the director fluctuations
is less than the mean free path. Most nematic liquid
crystals are placed in a magnetic field (typically 1 T)
to get them aligned, and this inequality (j'5 mm,
l'0.1 mm) is well satisfied.

The first approximation in particular makes nematic liq-
uid crystals very attractive as a multiple-scattering me-
dium. It implies that the two polarization modes are un-
aware of each other during propagation and only couple
during the scattering from a thermal fluctuation. More-
over, since such scatterings prohibit OO transitions, any
O wave must change abruptly into an E wave after each
scattering event. In isotropic media, on the other hand,
two opposite polarizations are degenerate and any inter-
mediate (elliptical) polarization can be formed. The sec-
ond approximation implies that multiple light scattering
in a nematic liquid crystal can actually be envisaged as a
sequence of single-scattering events, as is true in milk
and fog. When j.l this familiar picture will be lost, and
the theory becomes more involved (van Tiggelen,
Heiderich, and Maynard, 1997). We stress that the sec-
ond criterion emphasizes weak scattering, which simpli-
fies the numerical evaluation of the diffusion constants,
and that it is not a criterion for the existence of diffu-
sion.

The two approximations simplify the the Kubo for-
mula for the diffusion tensor enormously. What remains
is a relatively simple expression for the diffusion tensor
involving a wave-number integral over the E and O
constant-frequency surfaces, familiar from the theory of
electron-impurity scattering in the solid state. One final
subtlety remains. In conventional isotropic media the
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
transport mean free path l* (appearing in the diffusion
constant) and the extinction length l (determining the
exponential decay of the coherent signal) are related by
Eq. (32). They differ in the weight of their forward scat-
tering (cos u51). For a nematic liquid crystal this factor
is definitely going to be important since the scattering
function is proportional to 1/(kin2kout)

2. Moreover, it is
not necessarily a number, but depends on polarization.
The final Kubo formula for the diffusion tensor reads
(van Tiggelen, Heiderich, and Maynard, 1997)

q•D•q5
1

~2p!3r~v! (
n5e ,o

E d2Sn

uvgnu
ln~kn!

3~vgn•q!gn~ k̂n ,q!, (59a)

with the associated eigenfunction [see Eq. (50)]

wij
n ~k,q!5r ij

n ~v ,kn!@11iln~kn!gn~ k̂n ,q!# . (59b)

In this equation, d2Sn denotes the surface element on
the frequency surface n and vgn the group velocity of
mode n , being the normal vector of the constant-
frequency surface Sn ; ln(kn) is the extinction length for
the polarization n in the direction kn (Val’kov and Ro-
manov, 1986; Kuz’min, Romanov, and Zubkov, 1994;
Heiderich, Maynard, and van Tiggelen, 1997), given ex-
plicitly by Eq. (54). The factor r(v) stands for the num-
ber of microstates per unit volume defined in Eq. (39).

The bilinear form gn(kn ,q) is the generalization of
the scalar number g in Eq. (32). It can be calculated
from the phase functions and the polarization selection
rules (van Tiggelen, Heiderich, and Maynard, 1997). In
Fig. 3 we showed the phase functions associated with the
three allowed polarization transitions. The large forward
scattering gives gn an often large positive value, as was
already obvious from the scalar relation (32). The
uniaxiality and the special selection rules for O-O scat-
tering in a nematic liquid crystal lead to

gn~k,q!5An~q!~k•q!1
1
2

Bn~q!~n0•k!~n0•q!

2~k•en!~q•en!. (60)

This involves four even functions of the angle q between
wave vector and optical axis, rather than one simple sca-
lar number g . Broken rotational symmetry leaves a con-
siderable fingerprint in the multiple-scattering process.

In an alternative method for the calculation of the
diffusion constants one expands the eigenfunction wij ,
discussed earlier, in modified spherical harmonics Ym

l .
The great advantage of this method is that it provides
simple perturbational expressions that have been
checked to apply with satisfying accuracy. In this
method, the hydrodynamic eigenvalue 2iV1q•D•q
with the two diffusion constants D i and D' is deter-
mined perturbatively. This can be done within the
Green’s-function formalism (Stark and Lubensky, 1996,
1997) by using the equation of radiative transfer (Stark,
1998) or by directly summing up the different light paths
(Stark et al., 1997). Due to the uniaxial symmetry of the
nematic phase, D i and D' are related to the azimuthal



1033B. van Tiggelen and H. Stark: Nematic liquid crystals and radiative transfer
quantum numbers m50 and m561, respectively. The
special choice of the modified spherical harmonics estab-
lishes a sequence of approximations labeled by odd-
angular-momentum quantum numbers l . Stark and
Lubensky (1997) showed that l51 spherical harmonics
already give a very good approximation for D i and D' .
Addition of the l53 basis functions generally results in
changes of less than 1%. For l51, we give the explicit
formulas for D i and D' (Stark et al., 1997; Stark, 1998),
which can easily be programmed on a personal com-
puter,

D i5
8p

9

c0

no
2n3

3
B ee

i
1B oo

i
22B eo

i

B ee
i B oo

i
2~B eo

i
!2

, (61)

D'5
8p

9

c0

no
2n3

3
B ee

' 1B oo
' «' /« i22B eo

' A«' /« i

B ee
' B oo

' 2~B eo
' !2

,

(62)

where we have introduced the ‘‘parallel’’ matrix ele-
ments [with unit one over length, and by Eq. (35) typi-
cally equal to the inverse mean free path 1/lS],

B ee
i

5E
21

1
dCekE

21

1
dCeqE

0

2p dwkq

2p

3~Cek
2 2CekCeq!B~ek̂→eq̂!

1
«'

« i
E

21

1
dCekE

21

1
dCoqE

0

2p dwkq

2p

3Cek
2 B~ek̂→oq̂!,

B oo
i

5
«'

« i
E

21

1
dCokE

21

1
dCeqE

0

2p dwkq

2p

3Cok
2 B~ok̂→eq̂!,

B eo
i

52E
21

1
dCekE

21

1
dCoqE

0

2p dwkq

2p

3CekCoqB~ek̂→oq̂!. (63)

The unit vector k̂ is determined by its polar angle qk and
its azimuthal angle wk in the frame with the director as
the z axis. We abbreviated Cok[cos qk for the ordinary
waves, and Cek5ne(k̂)cos qk /no for the extraordinary
waves. In both cases the modified spherical harmonics
Cnk ranges between 21 and 1. To carry out the integra-
tion above, the structure function B(ak̂→bq̂) must be
expressed in terms of Cak (see Appendix C of Stark and
Lubensky, 1997). Due to the uniaxial symmetry of the
nematic phase, one azimuthal integration can be trivially
extracted, leaving a second one over wqk[wq2wk that
can actually be handled analytically (Stark and Luben-
sky, 1997). We recall that the azimuthal average of the
structure function B was displayed earlier in Fig. 3.

The ‘‘perpendicular’’ matrix elements B' can be cal-
culated similarly, by making replacements in the
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integrands Ce/ok
2 →(12Ce/ok

2 )/2 and Ce/okCe/oq

→A12Ce/ok
2 A12Ce/oq

2 (cos wqk)/2. Again, one azimuthal
integration has been carried out (Stark and Lubensky,
1997). The cube of the refractive indices n35 1

2 «'
1/2(« i

1«') has been averaged over both constant frequency
surfaces.

4. Qualitative discussions

Figure 10 shows the four functions AE , AO , BE , and
BO defined in Eq. (60), calculated for the liquid crystal
5CB. This calculation relies on a ‘‘two-constant approxi-
mation’’ that adopts equal Frank elastic constants for
splay (K1) and twist (K2) distortion. For K3 /K1,252.3
the theoretical prediction is D i /D'51.51. For the ac-
tual values K3 /K252.3 and K3 /K151.27 of 5CB one
finds the value D i /D'51.45 (Stark and Lubensky, 1996,
1997). These values are consistent with the experimental
result 1.6060.25 (Kao et al., 1997). The enhanced diffu-
sion along the optical axis is caused by both the positive
dielectric anisotropy (see below) and the relatively large
bend elastic constant. The absolute value of the
diffusion constant is expressed as D i ,'5d i ,'
38pc0

3K1A«'/3kT«a
2v2 where the unit comes from the

‘‘back-of-the-envelope’’ result in Eq. (32).5 For 5CB the

5The mean free path units l B* used by van Tiggelen, Heider-
ich, and Maynard (1997) and l0* used by Stark and Lubensky
(1997) differ by the factor 9K3/8K1 . This unit depends weakly
on order parameter.

FIG. 10. Numerical solution for the four functions in Eq. (60)
as a function of (the cosine of) the angle with respect to the
optical axis. These four functions generalize the factor (1
2^cos u&)21, which distinguishes extinction and transport mean
free path in an isotropic medium. We choose «a /«'50.228,
equal elastic constants for splay and twist distortions, but a
larger bend elastic constant K3 /K252.3. The correlation
length amounts j51.8 mm. These values correspond roughly
to the liquid crystal compound 5CB. The diffusion anisotropy
is calculated to be D i /D'51.51.
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value d i51.7 is obtained, leading to D i

51.53109 cm2/sec. The reported experimental value is
0.73109 cm2/sec (Kao et al., 1997; Stark et al., 1997). It
was determined by matching the average transmission of
a liquid-crystal cell to the transmission of a colloidal sus-
pension with known l* .

In Fig. 11 we show the anisotropy D i /D' of the dif-
fusion constants parallel and perpendicular to the opti-
cal axis as a function of the dielectric anisotropy «a of
the host medium. A convenient property of this ratio is
that «a5« i2«' is the only parameter really sensitive to
the order parameter of the nematic phase (the depen-
dency of the elastic constants Ki;S2 cancels). As a re-
sult this graph gives a good impression of what is pre-
dicted for the anisotropy in diffusion as the Maier-Saupe
order parameter changes.

Since most people know that the diffusion constant is
a product of velocity and mean free path, an often posed
question is which one is more important for the diffuse
anisotropy. As we mentioned earlier, three sources exist
for anisotropy in diffusion: the birefringence of the host
medium, the director fluctuations that only occur per-
pendicular to the optical axis, and the anisotropic free
energy of the nematic liquid crystal. Only the first one
addresses the velocity, whereas all three affect the mean
free path.

The influence of elasticity has been discussed in great
detail by Stark and Lubensky (1997). One finds that
both D i and D' increase with increasing Frank elastic

FIG. 11. Diffusion anisotropy as a function of the uniaxial
dielectric anisotropy. The middle solid line corresponds to the
calculation of van Tiggelen, Maynard, and Heiderich (1996)
for an isotropic free energy; the other two assume equal
strength of play and twist distortion, but a different bend
strength. The fine dashed line through the center represents
the kinematic anisotropy predicted by Eq. (64). The 1 symbols
denote calculations by Stark and Lubensky (1997) based on a
more accurate formula than Eq. (63) since l<3 spherical har-
monics were included. The three parallel dashed lines denote
the Taylor expansion given in Eq. (123) of Stark and Lubensky
(1997). It was derived from the approximate formula (63). The
correlation length is fixed at 5 mm but a change would hardly
affect the figure.
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
constants since the light scattering from the director
fluctuations decreases. There is an asymmetry between
splay and twist distortions. Both diffusion constants de-
crease more strongly with increasing K2 /K3 . Figure 12
shows the anisotropy (D i2D')/D' as a function of
K1 /K3 and K2 /K3 . It grows when the elastic constants
are reduced, showing that D' is more affected by splay
and twist distortions than is D i . The asymmetry be-
tween splay and twist is clearly visible. The figure covers
the range of thermotropic calamitic nematics where
K1 /K3,1 and K2 /K3,1.

The sole impact of birefringence can be revealed by
ignoring both the angular dependence of the self-energy
in Eq. (54) and the scattering phase functions. This
implies that An51 and Bn50 so that gn(kn ,q)
→(v/c0)(vgn•q)/uvgnu2, with vgn the group velocity of
polarization mode n . This approximation transforms the
Kubo formula for the diffusion tensor into a ‘‘cheap but
popular’’ formula often encountered in solid-state
books, where it is used to estimate the influence of band
structure on electron conductivity without bothering
about the phase function of the impurities [see, for ex-
ample, Eq. (13.25) of Ashcroft and Mermin, 1976]. The
simplification makes the anisotropy in diffusion equal to
the kinematic anisotropy associated with the birefrin-
gence,

Dij} (
n5e ,o

E d2Sn

uvgnu ~ v̂gn! i~ v̂gn! jS (
n5e ,o

E d2Sn

uvgnu D 21

[
1
3

pd ij1~12p !n0in0j . (64)

The surface element dSn /uvgnu counts the local number
density of modes in phase space, as specified earlier in
Eq. (39). The second equality defines the variable 0,p
,1 quantifying the effective dimensionality: p51 indi-
cates an isotropic 3D system, whereas p50 would imply
a 1D system along the optical axis n0 . Equation (64)
would give D i /D'52213/p . The fine dashed line in
Fig. 11 shows that this approximation captures the trend
of the exact calculation quite well. The other two
mechanisms for the anisotropy—selection rules and
elasticity—cause this curve to shift along the vertical
axis. Pure kinematic anisotropy is likely to persist if the
scattering is caused by isotropic point scatterers, and not

FIG. 12. Relative anisotropy (D i2D')/D' as a function of
K1 /K3 and K2 /K3 for «a50.
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by thermal director fluctuations. For this reason this ap-
proximation may apply to so-called filled monodomain
nematics, i.e., oriented nematic liquid crystals containing
dispersed colloidal particles (Kreuzer, Tschudi, and Ei-
denshink, 1992; Bellini et al., 1998). However, a clear
experiment would require the director field around the
particles to be only weakly perturbed, to reduce light
scattering from the nonuniform director field. This can
be achieved by weak anchoring of the director at the
surface of the particle and by applying a magnetic field.

The kinematic approximation of Eq. (64) obviously
fails to capture the strong dependence of the anisotropy
in diffusion on the elastic constants, which come in only
via the phase function. This limitation is evident for the
compound 5CB where Eq. (64) would give D i /D'

51.07 (experiment: 1.660.2), clearly underestimating
the impact of anisotropic elastic constants. Even for
elastic isotropy K15K25K3 , the approximation fails to
provide the nontrivial value D i /D'51.056 as «a'0
(Stark and Lubensky, 1996; van Tiggelen, Maynard, and
Heiderich, 1996). The somewhat larger diffusion along
the optical axis is explained by the fact that the extinc-
tion length is largest along the optical axis, as is evident
from Fig. 9. This anisotropy in the scattering would be
compensated for by a negative birefringence «a /«'5
20.15, for which the diffusion would be isotropic. It
would be interesting to observe this effect in discotic
nematics, which possess a negative «a . The three paral-
lel dashed lines in Fig. 11 confirm the good quantitative
agreement between the different approaches followed
by van Tiggelen, Maynard, and Heiderich (1996) and
Stark and Lubensky (1996).

The overall tendency in Fig. 11 can be understood in
the following way. In Eqs. (39) and (40) we calculated
the total number of photons E or O . For positive dielec-
tric anisotropies (« i.«'), the extraordinary waves E
dominate the energy. Their constant-frequency surface
is flattened along the optical axis, and as a result most of
them propagate with the larger component of the group
velocity along the optical axis n0 , suggesting that D i

.D' . For very negative dielectric anisotropy, ordinary
waves O dominate, and the diffusion anisotropy is sup-
pressed since the group velocity of O waves is isotropic.
This simplified argument does not acknowledge the in-
hibition of direct O-O scattering, which requires an
intermediate—and hence anisotropic—E wave, but it
explains why, for large negative anisotropies, the diffu-
sion tensor becomes nearly isotropic.

The anisotropy in diffusion, as well as the absolute
values of the diffusion constants, are influenced very
little by the correlation length j (Stark and Lubensky,
1997). This can be verified easily in the back-of-the-
envelope model, where j comes in only logarithmically.
Only when j>l (corresponding to a magnetic field of
less than 100 gauss) would significant modifications start
to appear, since our second approximation would be vio-
lated. This value is so small that we can safely extrapo-
late the theory towards zero magnetic field. Figure 13
shows the dependence of the diffusion tensor on the
magnetic field.
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C. Diffuse transmission from a nematic cell

The eigenfunction corresponding to the eigenvalue
with long-range diffusion provides all information at
long length scales. The diffusion approximation consists
of using this eigenfunction at all length scales. Obviously
this is an approximation for length scales comparable to,
say, the transport mean free path. Yet because of its
simplicity this approximation is widely used and gives
surprisingly accurate fits to experiments (Li et al., 1993).

In real space, the macroscopic wave vector q becomes
a space gradient. After Fourier transformation of the
hydrodynamic eigenfunction wij(p,q) in Eq. (59b), the
specific intensity tensor becomes

F ij ,p~r!} (
n5e ,o

r ij
n ~v ,p!3$r~r!2ln~p!gn~ p̂,“ !r~r!%.

(65)

The spectral function r ij
n (v ,p) was defined in Eq. (38).

This is the desired generalization of Eq. (29) to a nem-
atic liquid crystal. Upon solving the diffusion equation
for a slab of thickness L , one can find the polarization
and current at any point in the medium. For a
continuous-wave point source and a slab, which is infi-
nitely extended perpendicular to the slab normal, the
equal-intensity lines in transmission are ellipses with as-
pect ratio x/y5ADxx /Dyy.

In Fig. 14 we show a calculation for the angular trans-
mission coefficient of a nematic cell, given plane-wave
illumination, and adopting the parameters known for
5CB. It is confirmed that the emergent radiation devi-
ates from the universal law (31) in isotropic media and is
polarized since, at any angle, more E than O photons
emerge. So far, no experiments have been performed to
verify these statements and, in particular, to verify the
validity of the diffusion approximation as it comes to its
nontrivial predictions for polarization and angular trans-
mission profiles in anisotropic media.

FIG. 13. Reduced diffusion constants D̃ i , D̃' (i.e., normalized
to the numerical value 3pc0

3K3A«'/(kBT«a
2v2), and relative

anisotropy (D i2D')/D' as a function of magnetic field. The
material parameters correspond to the liquid crystal com-
pound 5CB. The diffusion constants increase with the mag-
netic field since the light scattering from director fluctuations
decreases with H . The relative anisotropy is hardly affected by
the field.
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The total transmission coefficient, summed over po-
larization and angle, can easily be obtained from Eq.
(65) and the Kubo formula (59a). If the z axis is chosen
to be the normal of the slab, the result is

T~L !5
4Dzz /vE

L14Dzz /vE
, (66)

where we have introduced the diffusion constant Dzz
5 ẑ•D• ẑ for diffusion along the slab normal. It is physi-
cally plausible that the transmission T is proportional to
Dzz . It is also plausible that T is inversely proportional
to the length L of the slab: this is just the familiar Ohm’s
law, saying that the resistance is proportional to the
length L . However, T being a number between 0 and 1,
Dzz must for dimensional reasons be divided by some
‘‘transport’’ velocity vE , similar to Eq. (28), but which is
here a priori not evident due to birefringence. The dif-
fusion approximation (65) gives

vE~n0• ẑ!52 (
n5e ,o

E d2Sn
1

uvgnu ~vn• ẑ!S (
n5e ,o

E d2Sn
1

uvgnu D 21

5H c0 /A«' zin0 :homeotropic cell

c0@A« i1A«'#/@« i1«'# z'n0 :planar cell.
(67)

The first equality involves a weighted average of the
normal component of the group velocity over both fre-
quency surfaces d2Sn

1 . The 1 indicates that the integra-
tion takes place over the part where this normal compo-
nent points towards transmission. This result is a
consequence of the two-stream model on which the dif-

FIG. 14. Theoretical prediction for the angular transmission
profiles T(u) of diffuse extraordinary (solid) and ordinary
(dashed) light from a slab filled with the liquid crystal com-
pound 5CB, according to the diffusion approximation. The
angle u corresponds to the angle of the wave vector with re-
spect to the slab normal (and not that of the group velocity,
which would be different for different polarizations). The nem-
atic director is chosen normal to the slab, i.e., at u50. The
dotted line shows the universal law 0.510.75 cos u for isotropic
media. No birefringent refraction has been treated at the in-
terface.
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fusion approximation relies, making a difference only
between photons propagating to the left or to the right.
In the second equality the integration is carried out for
two specific geometries. The fact that the transport ve-
locity depends on the orientation of the optical axis can
be seen as the manifestation of birefringence in light
diffusion. This leads to the interesting and perhaps un-
expected prediction that

T'

T i
Þ

D'

D i
. (68)

There is an ambiguity in the definition of the transport
mean free path in a nematic liquid crystal. It is plausible
to define two transport mean free paths according to
D'5 1

3 vE(')l'* and D i5
1
3 vE(i)l i* . Equation (66) then

would take the form of Ohm’s classical law T(i ,')
54l i ,'* /3L , which makes the transport mean free paths
directly accessible by experiment. This has so far not
been done.

V. CONCLUSIONS AND FUTURE PROSPECTS

This review has aimed to sum up the theoretical state
of the art in describing diffuse light in nematics. These
systems constitute a concrete example in which radiative
transfer can be studied under complex conditions. In iso-
tropic systems radiative transfer is very well studied,
both theoretically and experimentally. Diffusion ap-
proximations, numerical methods like adding-doubling
methods (de Haan, Bosma, and Hovenier, 1987), and
Monte-Carlo simulations (van Albada and Lagendijk,
1987; Martinez and Maynard, 1994; Heiderich, Maynard,
and van Tiggelen, 1997; Kao et al., 1997; Stark et al.,
1997; Margerin et al., 1998) have covered the whole re-
gime from single scattering to infinite scattering and
have studied most novel aspects, such as polarization,
coherent backscattering, and correlation functions. Re-
cent studies have concentrated on very dense systems
that can no longer be described by ordinary radiative
transfer theory.

More and more attention has been focused on com-
plex aspects of wave diffusion. Among other complex
systems, aligned nematic liquid crystals constitute a new
challenge for radiative transfer. The interest of these
systems lies in their orientational anisotropy, which can
be controlled externally and which is quantified by the
Maier-Saupe order parameter S . The disadvantage is
the weakness of their thermal fluctuations, whose orien-
tational anisotropy has several nontrivial consequences
for multiple light scattering, such as the anisotropy of
the diffusion tensor of the light, the angular distribution
of the transmitted light, and the equipartition of differ-
ent polarizations in the diffuse regime. Recent
experiments—either stationary or time resolved—have
confirmed the existence of anisotropic diffusion (Kao
et al., 1997; Wiersma et al., 1999).

Diffusing wave spectroscopy (Maret, 1997) is a tech-
nique to investigate dynamical processes of the medium
by measuring the time autocorrelation function of the
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intensity of multiply scattered light. This technique
probes, for example, the motion of scatterers on time
scales much smaller than in quasielastic light scattering.
It requires a good understanding of multiple light scat-
tering and has been applied to all sorts of soft matter
such as colloids, foams, emulsions, and recently nematic
liquid crystals (Maret, 1997).

Several open problems exist that have so far received
little attention. First, it was shown that multiple scatter-
ing in an aligned nematic tends to equipartition the en-
ergy of extraordinary and ordinary waves in a rather
nontrivial way, but independent of the precise selection
rules in scattering. The equipartition law was predicted
first for multiple scattering of elastic waves (Weaver,
1982), which also possess two independent modes of
propagation. An experimental verification of this law
would not only be direct evidence for the diffusion ap-
proximation, it would also confirm a very specific feature
of radiative transfer involving two independent modes
that mix by scattering. Such a measurement must in-
volve a detection of energy density rather than one of
specific intensity, as is common in optical experiments.

Second, coherent backscattering experiments have al-
ready been undertaken in monodomain nematic liquid
crystals (Vithana, Asfaw, and Johnson, 1993), following
earlier experiments in much stronger scattering nonori-
ented liquid crystals (Vlasov et al., 1988). This phenom-
enon involves an interference effect in multiple scatter-
ing that is intimately related to reciprocity (van Tiggelen
and Maynard, 1997). In principle, coherent backscatter-
ing experiments should reveal the anisotropy in diffu-
sion, but the large mean free path (1 mm) of the light
has made this feature so far impossible to observe. Co-
herent backscattering in oriented nematics has been
considered numerically (Heiderich, Maynard, and van
Tiggelen, 1997). A complete analytical treatment of this
effect in nematic liquid crystals has never been under-
taken, and only exists for anisotropic scatterers
(Kuz’min, Romanov, and Zubkov, 1996) and for aniso-
tropic light propagation in magnetic fields (van Tiggelen,
Maynard, and Nieuwenhuizen, 1996). An analytic treat-
ment should reveal how the angular anisotropy of the
line shape in coherent backscattering is affected by the
optical anisotropy of the nematic, which enters in both
the diffusion anisotropy and the boundary conditions. In
isotropic media, the angular width of coherent back-
scattering is given by Du'1/kl* , with l* the transport
mean free path and k the wave number. In aligned nem-
atics one could speculate that for each given orientation
of the optical axis, two lengths exist that replace the
transport mean free path l* in the backscattering cone
of an isotropic system, that is, one for each diagonal
polarization channel EE and OO . No coherent back-
scattering is expected in the crossed-channel EO be-
cause different modes have different group velocities
(Vithana, Asfaw, and Johnson, 1993).

Finally, diffusing wave spectroscopy shows great
promise for the study of nematic liquid crystals. Down
to the experimental resolution of 431028 s, no devia-
tion of the director dynamics from the Leslie-Erickson
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theory has been observed (Kao et al., 1997). It would be
interesting to study systems with higher viscosities like
polymer liquid crystals and to look for a deviation from
hydrodynamic theory. Such deviations, which have been
observed in colloidal suspensions (Weitz et al., 1989;
Kao et al., 1993), could provide precious information on
the statistical physics that governs director fluctuations.

Future research on radiative transfer will also concen-
trate on more strongly scattering anisotropic materials,
for which the approach in this review is relevant. A
wealth of materials exist that scatter light strongly and
anisotropically, such as porous media filled with nemat-
ics (Bellini and Clark, 1996), polymer dispersed liquid
crystals (Doane et al., 1986; Drzaic, 1995), focal conic
textures in cholesterics (Yang, Chien, and Fung, 1996),
and the Blue Phase III (Kutnjak et al., 1995; Lubensky
and Stark, 1996; Singh et al., 1997; Englart et al., 1998).
The last two materials are especially appealing because
they are chiral and possess an intrinsic periodic structure
from which light is scattered. The scattering cross sec-
tion heavily depends on the circular polarization of light.
It was found recently that the Blue Phase III constitutes
an isotropic phase with strong chiral fluctuations.

Polymer dispersed liquid crystals (PDLC’s) have
rather dramatic light-scattering properties, which can be
switched from on opaque to a clear state by an exter-
nally applied electric field. Scattering from PDLC films
has been investigated mostly in the anomalous diffrac-
tion and Rayleigh-Gans approximation (Žumer and
Doane, 1986; Kelly and Palffy-Muhoray, 1994; Drzaic,
1995; Cox et al., 1998). A complete understanding of this
transition can only be obtained from the equation of
radiative transfer, which covers the whole regime from
single to multiple scattering. Applications to lyotropic
and polymeric liquid crystals and to liquid crystalline
colloids could also be of interest. Filled nematics are
nematic liquid crystals doped with isotropic scatterers
(Kreuzer, Tschudi, and Eidenschink, 1992). In an ideal
situation, i.e., particles dispersed in a uniformly aligned
nematic, the only source of anisotropic light diffusion is
the host medium, and not scattering from director fluc-
tuations, which is negligible compared to the scattering
from particles. However, a clear experiment requires the
director field around the particles to be undistorted, in
order to exclude light scattering from the nonuniform
director field. This might be achieved by weak anchoring
of the director at the surface of the particle and by ap-
plying a magnetic field.
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