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I. INTRODUCTION

The method by which brain produces mind has for
centuries been discussed in terms of the most complex
engineering and science metaphors of the day. Descartes
described mind in terms of interacting vortices. Psy-
chologists have metaphorized memory in terms of paths
or traces worn in a landscape, a geological record of our
experiences. To McCulloch and Pitts (1943) and von
Neumann (1958), the appropriate metaphor was the
digital computer, then in its infancy. The field of ‘‘neural
networks’’ is the study of the computational properties
and behavior of networks of ‘‘neuronlike’’ elements. It
lies somewhere between a model of neurobiology and a
metaphor for how the brain computes. It is inspired by
two goals: to understand how neurobiology works, and
to understand how to solve problems which neurobiol-
ogy solves rapidly and effortlessly and which are very
hard on present digital machines.

Most physicists will find it obvious that understanding
biology might help in engineering. The obverse
engineering-toward-biological link can be made by test-
ing a circuit of ‘‘model neurons’’ on a difficult real-world
problem such as oral word recognition. If the ‘‘neural
circuit’’ with some particular biological feature is ca-
pable of solving a real problem which circuits without
that feature solve poorly, the plausibility that the bio-
logical feature selected is computationally useful in biol-
ogy is bolstered. If not, then it is more plausible that the
feature can be dispensed with in modeling biology.
These are not strong arguments, but they do provide an
approach to finding out what, of the myriad of details in
neurobiology, is truly important and what is merely true.
The study of a 1950 digital computer, in the spirit of
neurobiology, would have a strong commitment to
studying BaO, then the material of vacuum tube cath-
odes. The study of the digital computer in 1998 would
have a strong commitment to SiO2, the essential insulat-
ing material below each gate. Yet the computing struc-
ture of the two machines could be identical, hidden
amongst the lowest levels of detail. The study of ‘‘artifi-
cial neural networks’’ in the spirit of biology will relate
to aspects of how neurobiology computes in the same
sense that understanding the computer of 1998 relates to
understanding the computer of 1950.

II. BRAIN AS A COMPUTER

A digital machine can be programmed to compare a
present image with a three-dimensional representation
of a person, and thus the problem of recognizing a friend
can be solved by a computation. Similarly, how to drive
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the actuators of a robot for a desired motion is a prob-
lem in classical mechanics that can be solved on a com-
puter. While we may not know how to write efficient
algorithms for these tasks, such examples do illustrate
that what the nervous system does might be described as
computation.

For present purposes, a computer can be viewed as an
input-output device, with input and output signals that
are in the same format (Hopfield, 1994). Thus in a very
simple digital computer, the input is a string of bits (in
time), and the output is another string of bits. A million
axons carry electrochemical pulses from the eye to the
brain. Similar signaling pulses are used to drive the
muscles of the vocal tract. When we look at a person
and say, ‘‘Hello, Jessica,’’ our brain is producing a com-
plicated transformation from one (parallel) input pulse
sequence coming from the eye to another (parallel) out-
put pulse sequence which results in sound waves being
generated. The idea of composition is important in this
definition. The output of one computer can be used as
the input for another computer of the same general
type, for they are compatible signals. Within this defini-
tion, a digital chip is a computer, and large computers
are built as composites of smaller ones. Each neuron is a
simple computer according to this definition, and the
brain is a large composite computer.

III. COMPUTERS AS DYNAMICAL SYSTEMS

The operation of a digital machine is most simply il-
lustrated for batch-mode computation. The computer
has N storage registers, each storing a single binary bit.
The logical state of the machine at a particular time is
specified by a vector 10010110000 . . . of N bits. The
state changes each clock cycle. The transition map, de-
scribing which state follows which, is implicitly built into
the machine by its design. The computer can thus be
described as a dynamical system that changes its discrete
state in discrete time, and the computation is carried out
by following a path in state space.

The user of the machine has no control over the dy-
namics, which is determined by the state transition map.
The user’s program, data, and a standard initialization
procedure prescribe the starting state of the machine. In
a batch-mode computation, the answer is found when a
stable point of the discrete dynamical system is reached,
a state from which there are no transitions. A particular
subset of the state bits (e.g., the contents of a particular
machine register) will then describe the desired answer.

Batch-mode analog computation can be similarly de-
scribed by using continuous variables and continuous
time. The idea of computation as a process carried out
S4319/71(2)/431(7)/$16.40 ©1999 The American Physical Society
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by a dynamical system in moving from an initial state to
a final state is the same in both cases. In the analog case,
the possible motions in state space describe a flow field
as in Fig. 1, and computation done by moving with this
flow from start to end. (Real ‘‘digital’’ machines contain
only analog components; the digital description is a rep-
resentation in fewer variables which contains the es-
sence of the continuous dynamics.)

IV. DYNAMICAL MODEL OF NEURAL ACTIVITY

The anatomy of a ‘‘typical’’ neuron in a mammalian
brain is sketched in Fig. 2 (Kandel, Schwartz, and Jes-
sell, 1991). It has three major regions: dendrites, a cell
body, and an axon. Each cell is connected by structures
called synapses with approximately 1000 other cells. In-
puts to a cell are made at synapses on its dendrites. The
output of that cell is through synapses made by its axon
onto the dendrites of other cells. The interior of the neu-
ron is surrounded by a membrane of high resistivity and
is filled with a conducting ionic solution. Ion-specific
pumps transport ions across the membrane, maintaining
an electrical potential difference between the inside and
the outside of the cell. Ion-specific channels whose elec-
trical conductivity is voltage dependent and dynamic
play a key role in the evolution of the ‘‘state’’ of a neu-
ron.

A simple ‘‘integrate and fire’’ model captures much of
the mathematics of what a compact nerve cell does
(Junge, 1981). Figure 3 shows the time-dependent volt-
age difference between the inside and the outside of a
simple functioning neuron. The electrical potential is
generally slowly changing, but occasionally there is a ste-
reotype voltage spike of about two milliseconds dura-

FIG. 1. The flow field of a simple analog computer. The stable
points of the flow, marked by x’s, are possible answers. To
initiate the computation, the initial location in state space must
be given. A complex analog computer would have such a flow
field in a very large number of dimensions.
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tion. Such a spike is produced every time the interior
potential of this cell rises above a threshold, u thresh , of
about 53 millivolts. The voltage then resets to a ureset of
about 270 millivolts. This ‘‘action potential’’ spike is
caused by the dynamics of voltage-dependent ionic con-
ductivities in the cell membrane. If an electrical current
is injected into the cell, then except for the action poten-
tials, the interior potential approximately obeys

Cdu/dt52~u2urest!/R1i~ t !, (1)

where R is the resistance of the cell membrane, C the
capacitance of the cell membrane, and urest is the poten-
tial to which the cell tends to drift. If i(t) is a constant
ic , then the cell potential will change in an almost linear

FIG. 2. A sketch of a neuron and its style of interconnections.
Axons may be as long as many centimeters, though most are
on the scale of a millimeter. Typical cell bodies are a few mi-
crons in diameter.
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fashion between urest and u thresh . An action potential
will be generated each time u thresh is reached, resetting u
to ureset similar to what is seen in Fig. 3. The time P
between the equally spaced action potentials when R is
very large is

P5C~u thresh2urest!/ic or firing rate 1/P;ic . (2)

If ic is negative, no action potentials will be produced.
The firing rate 1/P of a more realistic cell is not simply
linear in ic , but asymptotes to a maximum value of
about 500 per second (due to the finite time duration of
action potentials). It may also have a nonzero threshold
current due to leakage currents (of either sign) in the
membrane.

Action potentials will be taken to be d functions, last-
ing a negligible time. They propagate at constant veloc-
ity along axons. When an action potential arrives at a
synaptic terminal, it releases a neurotransmitter which
activates specific ionic conductivity channels in the
postsynaptic dendrite to which it makes contact (Kan-
del, Schwartz, and Jessell, 1991). This short conductivity
pulse can be modeled by

s~ t !50 t,t0

5skj exp@2~ t2t0!/t# t.t0 . (3)

The maximum conductivity of the postsynaptic mem-
brane in response to the action potential is s. The ion-
specific current which flows is equal to the chemical po-
tential difference V ion times s(t). Thus at a synapse
from cell j to cell k, an action potential arriving on axon
j at time t0 results in a current

ikj~ t !50 t,t0

5Skj exp@2~ t2t0!/t# t.t0 (4)

flows into the cell k. The parameter Skj5V ionskj can
take either sign. Define the instantaneous firing rate of
neuron k, which generates action potentials at times tn

k ,
as

fk~ t !5(
n

d~ t2tn
k!. (5)

By differentiation and substitution

FIG. 3. The internal potential of a neuron, driven with a con-
stant current, as a function of time. In response to a steady
current, many neurons (those which do not adapt) generate
stereotype action potentials at a regular rate.
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
dik /dt52ik /t1(
j

Skj* f j~ t !

1 another term if a sensory cell. (6)

This equation, though exact, is awkward to deal with
because the times at which the action potentials occur
are only implicitly given.

The usual approximation relies on there being many
contributions to the sum in Eq. (6) during a reasonable
time interval due to the high connectivity. It should then
be permissible to ignore the spiky nature of fj(t), re-
placing it by a convolution with a smoothing function. In
addition, the functional form of V(ic) is presumed to
hold when ic is slowly varying in time. What results is
like Eq. (6), but with f j(t) now a smooth function given
by f j(t)5V@ i j(t)5Vj(t)# :

dik /dt52ik /t1(
j

Skj* V@ i j~ t !#

1Ik ~ last term only if a sensory cell!.

(7)

The main effect of the approximation, which assumes no
strong correlations between spikes of different neurons,
is to neglect shot noise. (Electrical circuits using continu-
ous variables are based on a similar approximation.)
While equations of this structure are in common use,
they have somewhat evolved, and do not have a sharp
original reference.

V. THE DYNAMICS OF SYNAPSES

The second dynamical equation for neuronal dynam-
ics describes the changes in the synaptic connections. In
neurobiology, a synapse can modify its strength or its
temporary behavior in the following ways:

(1) As a result of the activity of its presynaptic neu-
ron, independent of the activity of the postsynaptic neu-
ron.

(2) As a result of the activity of its postsynaptic neu-
ron, independent of the activity of the presynaptic neu-
ron.

(3) As a result of the coordinated activity of the pre-
and postsynaptic neurons.

(4) As a result of the regional release of a neuro-
modulator. Neuromodulators also can modulate pro-
cesses 1, 2, and 3.

The most interesting of these is (3) in which the synapse
strength Skj changes as a result of the roughly simulta-
neous activity of cells k and j. This kind of change is
needed to represent information about the association
between two events. A synapse whose change algorithm
involves only the simultaneous activity of the pre- and
postsynaptic neurons and no other detailed information
is now called a Hebbian synapse (Hebb, 1949). A simple
version of such dynamics (using firing rates rather than
detailed times of individual action potentials) might be
written
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dSkj /dt5a* ik* f j~ t !2decay terms. (8)

Decay terms, perhaps involving ik and f(i j), are essen-
tial to forget old information. A nonlinearity or control
process is important to keep synapse strength from in-
creasing without bound. The learning rate a might also
be varied by neuromodulator molecules which control
the overall learning process. The details of synaptic
modification biophysics are not completely established,
and Eq. (8) is only qualitative. A somewhat better ap-
proximation replaces a by a kernel over time and in-
volves a more complicated form in i and f. Long-term
potentiation (LTP) is the most significant paradigm of
neurobiological synapse modification (Kandel,
Schwartz, and Jessell, 1991). Synapse change rules of a
Hebbian type have been found to reproduce results of a
variety of experiments on the development of the eye
dominance and orientation selectivity of cells in the vi-
sual cortex of the cat (Bear, Cooper, and Ebner, 1987).

The tacit assumption is often made that synapse
change is involved in learning and development, and
that the dynamics of neural activity is what performs a
computation. However, the dynamics of synapse modifi-
cation should not be ignored as a possible tool for doing
computation.

VI. PROGRAMMING LANGUAGES FOR ARTIFICIAL
NEURAL NETWORKS (ANN)

Let batch-mode computation, simple (point) attractor
dynamics, and fixed connections be our initial ‘‘neural
network’’ computing paradigm. The connections need to
be chosen so that for any input (‘‘data’’) the network
activity will go to a stable state, and so that the state
achieved from a given input is the desired ‘‘answer.’’ Is
there a programming language?

The simplest approaches to this issue involve estab-
lishing an overall architecture or ‘‘anatomy’’ for the net-
work which guarantees going to a stable state. Within
this given architecture, the connections can be arbi-
trarily chosen. ‘‘Programming’’ involves the ‘‘inverse
problem’’ of finding the set of connections for which the
dynamics will carry out the desired task.

A. Feed-forward networks

The simplest two styles of networks for computation
are shown in Fig. 4. The feed-forward network is math-
ematically like a set of connected nonlinear amplifiers
without feedback paths, and is trivially stable.

This fact allows us to evaluate how much computation
must be done to find the stable point. It is:

(1 multiply11 add) (number of connections)

1(number of ‘‘neurons’’) (1 look-up).

This evaluation requires no dynamics and involves a
trivial amount of computation. How is it then that feed-
forward ANN’s, which have almost no computing
power, are very useful even when implemented ineffi-
ciently on digital machines? The answer is that their util-
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ity comes chiefly from the immense computational work
necessary to find an appropriate set of connections for a
problem which is implicitly described by a large data
base. The resulting network is a compact representation
of the data, which allows it to be used with much less
computational effort than would otherwise be necessary.

The output of the network is merely a function of its
input. In this case the problem of finding the best set of
connections reduces to finding the set of connections
that minimizes output error.

When the inputs of all amplifiers are connected by a
network to the external inputs and the outputs of the
same amplifiers are used as the desired outputs, a feed-
forward network is said to have ‘‘no hidden units.’’ If the
amplifiers have a continuous input-output relation, a
best set of connections can be found by starting with a
random set of connections and doing gradient descent
on the error function. For most problems, the terrain is
relatively smooth, and there is little difficulty of being
trapped in poor local minima by doing gradient descent.
When the input-output relation is a step function, as it
was chosen to be in the perceptron (Rosenblatt, 1962),
the problem is somewhat more difficult, but satisfactory
algorithms can still be found. An interesting ‘‘statistical
mechanics’’ of their capabilities in random problems has
been described (Gardiner, 1988).

Unfortunately, networks with a single layer of weights

FIG. 4. Two extreme forms of neural networks with good sta-
bility properties but very different complexities of dynamics
and learning. The feedback network can be proved stable if it
has symmetric connections. Scaling of variables generates a
broad class of networks which are equivalent to symmetric net-
works, and surprisingly, the feed-forward network can be ob-
tained from a symmetric network by scaling.



S435J. J. Hopfield: Brain, neural networks, and computation
are severely limited in the functions they can represent.
The detailed description of that limitation by Minsky
and Pappert (1969) and ‘‘our view that the extension [to
multiple layers] is sterile’’ had a great deal to do with
destroying a budding perceptron enthusiasm in the
1960s. It was even then clear that networks with hidden
units are much more powerful, but the ‘‘failure to pro-
duce an interesting learning theorem for the multilay-
ered machine’’ was chilling.

For the analog feed-forward ANN with hidden units,
the problem of finding the best fit to a desired input-
output relation is relatively simple since the output can
be explicitly written in terms of the inputs and connec-
tions. Gradient descent on the error surface in ‘‘weight
space’’ can be carried out, beginning from small random
initial connections, to find a locally optimal solution to
the problem. This elegant simple point was noted by
Werbos (1974), but had no impact at the time, and was
independently rediscovered at least twice in the 1980s. A
variety of more complex ways to find good sets of con-
nections have since been explored.

Why was the Werbos suggestion not followed up and
subsequently lost? Several factors were involved. First,
the landscape of the function on which gradient descent
is being done is very rugged; local minima abound, and
whether a useful network can be found is a computa-
tional issue, not a question which can be demonstrated
from mathematics. There was little understanding of
such landscapes at the time. Worse, the demonstrations
that such a simple procedure would actually work con-
sumed an immense amount of computer cycles even in
its time (1983-5) and would have been impossibly costly
on the computers of 1973. Artificial intelligence was still
in full bloom, and no one that was interested in pattern
recognition would waste machine cycles on searches in
spaces having hundreds of dimensions (parameters)
when sheer logic and rules seemed all that was neces-
sary.

And finally, the procedure looks absurd. Consider as a
physicist, being told to fit a 200-parameter, highly non-
linear model to 500 data points. (And sometimes, the
authors would be fitting 200 parameters to 150 data
points!) We were all brought up on the Wignerism ‘‘if
you give me two free parameters, I can describe an el-
ephant. If you give me three, I can make him viggle his
tail.’’ We all knew that the parameters would be mean-
ingless. And so they are. Two tries from initially differ-
ent random starting sets of connections usually wind up
with entirely different parameters. For most problems,
the connection strengths seem to have little meaning.
What is useful in this case, however, is not the connec-
tion strengths, but the quality of fit to the data. The situ-
ation is entirely different from the usual scientific ‘‘fits’’
to data, normally designed chiefly to derive meaningful
parameters.

Feed-forward networks with hidden units have been suc-
cessfully applied to evaluating loan applications, pap
smear classification, optical character recognition, pro-
tein folding prediction, adjusting telescope mirrors, and
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playing backgammon. The nature of the features must
be carefully chosen. The choice of network size and
structure is important to success (Bishop, 1995) particu-
larly when generalization is the important aspect of the
problem (i.e., responding appropriately to a new input
pattern that is not one on which the network was
trained).

B. Feedback networks

There is immense feedback in brain connectivity. For
example, axons carry signals from the retina to the LGN
(lateral geniculate nucleus). Axons originating in the
LGN carry signals to cortical processing area V1. But
there are more axons carrying signals from V1 back to
LGN than in the ‘‘forward’’ direction. The axons from
LGN make synapses on cells in layer IV of area V1.
However, most of the synaptic inputs within layer IV
come from other cells within V1. Such facts lead to
strong interest in neural circuits with feedback.

The style of feedback circuit whose mathematics is
most simply understood has symmetric connection, i.e.,
Skj5Sjk . In this case, there is a Lyapunov or ‘‘energy’’
function for Eq. (8), and the quantity f i

E52 1
2 ( SijViVj2( IiVi11/t( E V21~f8!df8 (9)

always decreases in time (Hopfield, 1982, 1994). The dy-
namics then is described by a flow to an attractor where
the motion ceases.

In the high-gain limit, where the input-output rela-
tionship is a step between two asymptotic values, the
system has a direct relationship to physics. It can be
stated most simply when the asymptotic values are
scaled to 121. The stable points of the dynamic system
then have each Vi5121, and the stable states of the
dynamical system are the stable points of an Ising mag-
net with exchange parameters Jij5Sij .

The existence of this energy function provides a pro-
gramming tool (Hopfield and Tank, 1985; Takefuji,
1991). Many difficult computational problems can be
posed as optimization problems. If the quantity to be
optimized can be mapped onto the form Eq. (8), it de-
fines the connections and the ‘‘program’’ to solve the
optimization problem.

The trivial generalization of the Ising system to finite
temperature generates a statistical mechanics. However,
a ‘‘learning rule’’ can then be found for this system, even
in the presence of hidden units. This was the first suc-
cessful learning rule used for networks with hidden units
(Hinton and Sejnowski, 1983). Because it is computa-
tionally intensive, practical applications have chiefly
used analog ‘‘neurons’’ and the faster ‘‘back-
propagation’’ learning rule when applicable. The rela-
tionship with statistical mechanics and entropic informa-
tion measures, however, give the Boltzmann machine
continuing interest.
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Associative memories are thought of as a set of linked
features f1, f2, etc. The activity of a particular neuron
signifies the presence of the feature represented by that
neuron. A memory is a state in which the cells repre-
senting the features of that memory are simultaneously
active. The relationship between features is symmetric
in that each implies the other and is expressed in a sym-
metric network. An elegant analysis of the capacity of
such memories for random patterns is related to the spin
glass (Amit, 1989).

Many nonsymmetric networks can be mapped onto
networks with related Lyaupanov functions. Thus, while
symmetric networks are exceptional in biology, the
study of networks with Lyapunov functions is a useful
approach to understanding biological networks. Line at-
tractors have been used in connection with keeping the
eye gaze stable at any set position (Seung, 1996).

Networks which have feedback may oscillate. The ol-
factory bulb is an example of a circuit with a strong
excitatory-inhibitory feedback loop. In mammals, the ol-
factory bulb bursts into 30–50 Hz oscillations with every
sniff (Freeman and Skarda, 1985).

VII. DEVELOPMENT AND SYNAPSE PLASTICITY

For simple animals such as the C. elegans (a round
worm) the nervous system is essentially determined.
Each genetically identical C. elegans has the same num-
ber of nerve cells, each cell identifiable in morphology
and position. The synaptic connections between such
‘‘identical’’ animals are 90% identical. Mammals, at the
other end of the spectrum, have identifiable cell types,
identifiable brain structures and regions, but no cells in
1:1 correspondence between different individuals. The
‘‘wiring’’ between cells clearly has rules, and also a
strong random element arising from development. How,
then, can we have the system of fine-tuned connections
between neurons which produces visual acuity sharper
than the size of a retinal photoreceptor, or coordinates
the two eyes so that we have stereoscopic vision? The
answer to this puzzle lies in the synapses change due to
coordinated activity during development. Coordinated
activity of neurons arises from the correlated nature of
the visual world and is carried through to higher level
neurons. The importance of neuronal activity patterns
and external input is dramatically illustrated in depth
perception. If a ‘‘wandering eye’’ through muscular mis-
coordination, is corrected in the first six months, a child
develops normal binocular stereopsis. Corrected after
two years, the two eyes are used in a coordinate fashion
and seem completely normal, but the child will never
develop stereoscopic vision.

When multiple input patterns are present, the dynam-
ics generates a cellular competition for the representa-
tion of these patterns. The idealized mathematics is that
of a symmetry breaking. Once symmetry is broken, the
competition continues to refine the connections (Linsker
1986). This mathematics was originally used to describe
the development of connections between the retina and
the optic tectum of the frog. It describes well the gen-
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eration of orientation-selective cells in the cat visual cor-
tex. A hierarchy of such symmetry breakings has been
used to describe the selectivity of cells in the mammalian
visual pathway. This analysis is simple only in cases
where the details of the biology have been maximally
suppressed, but such models are slowly being given
more detailed connections to biology (Miller, 1994).

There is an ongoing debate in such areas about ‘‘in-
structionism’’ versus ‘‘selectionism,’’ and on the role of
genetics versus environmental influences. ‘‘Nature’’ ver-
sus ‘‘nurture’’ has been an issue in psychology and brain
science for decades and is seen at its most elementary
level in trying to understand how the functional wiring
of an adult brain is generated.

VIII. ACTION POTENTIAL TIMING

The detailed timing in a train of action potentials car-
ries information beyond that described by the short-
term firing rate. When several presynaptic neurons fire
action potentials simultaneously, the event can have a
saliency for driving a cell that would not occur if the
events were more spread out in time. These facts suggest
that for some neural computations, Eq. (7) may lose the
essence of Eq. (6). Theoretically, information can be en-
coded in action potential timing and computed effi-
ciently and rapidly (Hopfield, 1995).

Direct observations also suggest the importance of ac-
tion potential timing. Experiments in cats indicate that
the synchrony of action potentials between different
cells might represent the ‘‘objectness’’ of an extended
visual object (Gray and Singer, 1989). Synchronization
effects are seen in insect olfaction (Stopfer et al., 1997).
Azimuthal sound localization by birds effectively in-
volves coincidences between action potentials arriving
via right- and left-ear pathways. A neuron in rat hippoc-
ampus which is firing at a low rate carries information
about the spatial location of the rat in its phase of firing
with respect to the theta rhythm (Burgess, O’Keefe, and
Recce, 1993). Action potentials in low-firing-rate frontal
cortex seem to have unusual temporal correlation. Ac-
tion potentials propagate back into some dendrites of
pyramidal cells, and their synapses have implicit infor-
mation both from when the presynaptic cell fired and
when the postsynaptic cell fired, potentially important in
a synapse-change process.

IX. THE FUTURE

The field now known as ‘‘computational neurobiol-
ogy’’ has been based on an explosion in our knowledge
of the electrical signals of cells during significant pro-
cessing events and on its relationship to theory including
understanding simple neural circuits, the attractor model
of neural computation, the role of activity in develop-
ment, and the information-theoretic view of neural cod-
ing. The short-term future will exploit the new ways to
visualize neural activity, involving multi-electrode re-
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cording, optical signals from cells (voltage-dependent
dyes, ion-binding fluorophores, and intrinsic signals)
functional magnetic resonance imaging, magnetoen-
cephalography, patch clamp techniques, confocal mi-
croscopy, and microelectrode arrays. Molecular biology
tools have now also begun to be significant for compu-
tational neurobiology. On the modeling side it will in-
volve understanding more of the computational power
of biological systems by using additional biological fea-
tures.

The study of silicon very large scale integrated circuits
(VLSI’s) for analog ‘‘neural’’ circuits (Mead, 1989) has
yielded one relevant general principle. When the physics
of a device can be used in an algorithm, the device is
highly effective in computation compared to its effec-
tiveness in general purpose use. Evolution will have ex-
ploited the biophysical molecular and circuit devices
available. For any particular behavior, some facts of
neurobiology will be very significant because they are
used in the algorithm, and others will be able to be sub-
sumed in a model which is far simpler than the actual
biophysics of the system. It is important to make such
separations, for neurobiology is so filled with details that
we will never understand the neurobiological basis of
perception, cognition, and psychology merely by accu-
mulating facts and doing ever more detailed simulations.
Linear systems are simple to characterize completely.
Computational systems are highly nonlinear, and a com-
plete characterization by brute force requires a number
of experiments which grows exponentially with the size
of the system. When only a limited number of experi-
ments is performed, the behavior of the system is not
fully characterized, and to a considerable extent the ex-
perimental design builds in the answers that will be
found. For working at higher computational levels, ex-
periments on anaesthetized animals, or in highly simpli-
fied, overlearned artificial situations, are not going to be
enough. Nor will the characterization of the behavior of
a very small number of cells during a behavior be ad-
equate to understand how or why the behavior is being
generated. Thus it will be necessary to build a better
bridge between lower animals, which can be more com-
pletely studied, and higher animals, whose rich mental
behavior is the ultimate goal of computational neurobi-
ology.
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