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The swirling motion of fluids that occurs irregularly in space and time is called turbulence. However,
this randomness, apparent from a casual observation, is not without some order. Turbulent flows are
as abundant in nature as life itself, and are pervasive in technology. They are a paradigm for spatially
extended nonlinear dissipative systems in which many length scales are excited simultaneously and
coupled strongly. The phenomenon has been studied extensively in engineering and in diverse fields
such as astrophysics, oceanography, and meteorology. A few aspects of turbulence research in this
century are briefly reviewed, and a partial assessment is made of the present directions.
[S0034-6861(99)03202-X]
I. INTRODUCTORY REMARKS

The fascinating complexity of turbulence has attracted
the attention of naturalists, philosophers, and poets alike
for centuries, and ubiquitous allusions have been made
to the turbulence of agitated minds and disturbed
dreams, of furious rivers and stormy seas. Perhaps the
earliest sketches of turbulent flows, capturing details
with some degree of realism, are those of Leonardo da
Vinci. A serious scientific study has been in progress for
more than a hundred years, but the problem has not yet
yielded to our efforts. As Liepmann (1979) has pointed
out, the outlook, optimism, and progress have waxed
and waned over time.

Few would dispute the importance of turbulence.
Without it, the mixing of air and fuel in an automobile
engine would not occur on useful time scales; the trans-
port and dispersion of heat, pollutants, and momentum
in the atmosphere and the oceans would be far weaker;
in short, life as we know would not be possible on the
earth. Unfortunately, turbulence also has undesirable
consequences: it enhances energy consumption of pipe
lines, aircraft and ships, and automobiles; it is an ele-
ment to be reckoned with in air-travel safety; it distorts
the propagation of electromagnetic signals; and so forth.
A major goal of a turbulence practitioner is the predic-
tion of the effects of turbulence and control them—
suppress or enhance them, as circumstances dictate—in
various applications such as industrial mixers and burn-
ers, nuclear reactors, aircraft and ships, and rocket
nozzles.

Less well appreciated is the intellectual richness of the
subject and the central place it occupies in modern phys-
ics. Looking into the problem, we are immediately faced
with an apparent paradox. Even with the smoothest and
most symmetric boundaries possible, flowing fluids—
except when their speed is very low—assume the irregu-
lar state of turbulence. This feature, though not fully
understood, is now known to bear some connection
with the occurrence of dynamical chaos in nonlinear sys-
tems. Turbulence has constantly challenged and ex-
panded the horizons of modern dynamics, the theory of
differential equations, scaling theory, multifractals,
large-scale computing, fluid mechanical measurement
techniques, and the like.
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Until the 1960s, turbulence was the paradigm system
in which the excitation of many length scales was recog-
nized as important. The powerful notions of scaling and
universality, which matured when renormalization
group theory was applied to critical phenomena, had al-
ready manifested in turbulence a couple of decades ear-
lier. Turbulence and critical phenomenon share the fea-
ture that a continuous range of scales is excited in both;
however, they are different in that the fluctuations in
turbulence are strong and there exists no small param-
eter. Thus, turbulence is a paradigm in non-equilibrium
statistical physics, in which fluctuations and macroscopic
space-time structure coexist. It is an example like no
other of spatially extended dissipative systems.

An excellent case can thus be made that turbulence is
central to flow technology as well as modern statistical
and nonlinear physics. The reader wishing to learn about
the subject should begin with Monin and Yaglom (1971,
1975), and move on, for different specialized perspec-
tives, to the books of Batchelor (1953), Townsend
(1956), Bradshaw (1971), Leslie (1972), Lesieur (1990),
McComb (1990), Chorin (1994), Frisch (1995), and
Holmes et al. (1998). There are many useful review ar-
ticles, each emphasizing a different aspect. Some ex-
amples are Corrsin (1963), Saffman (1968), Roshko
(1976), Cantwell (1981), Narasimha (1983), Hussain
(1983), Frisch and Orszag (1990), Lumley (1990),
Sreenivasan (1991), Nelkin (1994), Siggia (1994), L’vov
and Procaccia (1996), Sreenivasan and Antonia (1997),
Zhou and Speziale (1998), Smith and Woodruff (1998),
and Canuto and Christensen-Dalsgaard (1998). The two
volumes of Monin and Yaglom, covering the subject
only until the early seventies, contain more than 1600
pages. Several hundred papers have appeared on the
subject since then. Discussing this vast subject in any
depth and completeness would be a herculean task. This
article makes no such pretensions; instead, it makes a
few isolated and qualitative observations to suggest the
nature of progress made: slow, multi-faceted, useful,
insightful—but often soft. While the importance of tur-
bulence has long made its study imperative, all the tools
needed for such a complex undertaking are not fully in
place. In this sense, despite its age, turbulence is a fron-
tier subject.
S383/71(2)/383(13)/$17.60 ©1999 The American Physical Society
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II. THE PHENOMENON AND THE GOAL

Water flowing from a slightly open faucet is smooth
and steady, or laminar. As the faucet opens up more, the
flow becomes erratic. Figure 1 illustrates that a seem-
ingly erratic turbulent flow is actually a labyrinth of or-
der and chaos. Swirling flow structures—or patterns—of
various sizes are intertwined with fluid mass of indiffer-
ent shape. Being static, however, the picture does no
justice to the dynamical interaction among the constitu-
ent scales of the flow. Casual observations suggest that

FIG. 1. A turbulent jet of water emerging from a circular ori-
fice into a tank of still water. The fluid from the orifice is made
visible by mixing small amounts of a fluorescing dye and illu-
minating it with a thin light sheet. The picture illustrates swirl-
ing structures of various sizes amidst an avalanche of complex-
ity. The boundary between the turbulent flow and the ambient
is usually rather sharp and convoluted on many scales. The
object of study is often an ensemble average of many such
realizations. Such averages obliterate most of the interesting
aspects seen here, and produce a smooth object that grows
linearly with distance downstream. Even in such smooth ob-
jects, the averages vary along the length and width of the flow,
these variations being a measure of the spatial inhomogeneity
of turbulence. The inhomogeneity is typically stronger along
the smaller dimension (the ‘‘width’’) of the flow. The fluid ve-
locity measured at any point in the flow is an irregular function
of time. The degree of order is not as apparent in time traces
as in spatial cuts, and a range of intermediate scales behaves
like fractional Brownian motion.
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the patterns get stretched, folded and tilted as they
evolve, losing shape by agglomeration or breakup—all
in a manner that does not repeat itself in detail. Unlike
patterns in equilibrium systems, which are associated
with phase transitions, those in fluid flows are intimately
related to transport processes. The patterns in fluid sys-
tems exhibit varying sensitivity to initial and boundary
conditions, and are rich in morphology (see, e.g., Cross
and Hohenberg, 1994).

The key to the onset of turbulence has long been be-
lieved to be the successive loss of stability that occurs
with ever increasing rapidity as a typical control param-
eter in a flow problem is increased (e.g., Landau and
Lifshitz, 1959). The most familiar control parameter is
the Reynolds number1 Re , which expresses the balance
between the nonlinear and dissipative properties of the
flow. This scenario is thought to be relevant especially
for flows whose vorticity attains a maximum in the inte-
rior, instead of at the boundary. Linear and nonlinear
stability theories have been successful in describing the
initial stages of the transition to turbulence (e.g., Drazin
and Reid, 1981), but the later stages seem quite abrupt
(e.g., Gollub and Swinney 1975), and not amenable to
stability analysis. This abruptness is qualitatively in the
spirit of the modern theory of deterministic chaos
(Ruelle and Takens 1971), and is especially characteris-
tic of boundary layers2 (Emmons, 1951). While this situ-
ation is reminiscent of second-order phase transitions in
condensed matter, it is unclear if the analogy is helpful
in a serious way.

In any case, at high enough Reynolds numbers, non-
linear interactions produce finer and finer scales, and the
scale range in developed turbulence is of O(Re9/4). The
Reynolds number could be several million in the earth’s
atmosphere a few meters above the ground or in the
boundary layer of an aircraft fuselage. Clearly, in such
instances, only a statistical description of turbulence and
the prediction of its consequences—such as increased
mixing, transport, and energy loss—are of practical
value. The discovery of an efficient procedure to do this
is the principal and outstanding challenge of the subject.

The goal just mentioned is no different from that of
statistical thermodynamics. The statistical assumptions
made there possess vast applicability and powerful pre-
dictive capability. Unfortunately, those made in turbu-
lence have enjoyed far less success, even though much
about the behavior of turbulence has been learned in the
process of their application. The era in which the statis-
tical approach was the norm—one in which develop-
ments in turbulence occurred, on the whole, in the con-

1Reynolds number is the dimensionless parameter UL/n ,
where U and L are the characteristic velocity and length scales
of a turbulent flow and n is the fluid viscosity. Depending on
the purpose, different velocity and length scales become rel-
evant.

2The boundary layer is the thin region close to a solid body
moving relative to the fluid. Processes in this thin layer are the
source, among other things, of fluid dynamical resistance and
aerodynamic lift.
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text of fluid dynamics—is called here the ‘‘classical era.’’
Because of the continuing awareness of the limitations
of statistical theories, one has more recently begun to
ask whether this basic approach needs to be augmented
by a different outlook. This outlook has the common
element that it focuses on mechanisms rather than flows,
and is influenced by developments in neighboring fields
such as bifurcations, chaos, multifractals, and modern
field theory. The intent is often to acquire qualitative
understanding of fluid turbulence through model nonlin-
ear equations. This era, which we shall loosely call
‘‘modern,’’ has benefitted tremendously by the availabil-
ity of powerful computers and the qualitative theory of
differential equations (e.g., the study of space-time sin-
gularities).

III. THE CLASSICAL ERA

A. Before Osborne Reynolds

Unlike many other problems in condensed matter
physics, the equations governing turbulence—the
Navier-Stokes equations—have been known for some
150 years. All available evidence suggests that the phe-
nomenon of turbulence is consistent with these equa-
tions, and that the molecular structure makes little dif-
ference (except for their role in prescribing gross
parameters such as the viscosity coefficient). The
Navier-Stokes equations and the use of proper boundary
conditions are the result of the cumulative work of he-
roes such as J. R. d’Alembert, L. Euler, L. M. H. Navier,
A. L. Cauchy, S. D. Poisson, J.-C. B. Saint-Venant, and
G. G. Stokes. Even as the equations were being refined,
controlled experiments were discovering, or rediscover-
ing, that fluid motion occurs in two states—laminar and
turbulent—and that a transition from the former to the
latter occurs in distinctive ways. It was realized that tur-
bulent flows transport heat, matter, and momentum far
better than laminar flows. The concept of ‘‘eddy viscos-
ity,’’ attesting to this enhancement of transport, was dis-
cussed by Saint-Venant and J. Boussinesq. From obser-
vations in water canals, the latter deduced that an
apparent analogy exists between gas molecules and tur-
bulent eddies as they carry and exchange momentum.

B. Contributions of Osborne Reynolds

It was Reynolds (1883, 1894) who heralded a new be-
ginning of the study of turbulence: he visualized laminar
and turbulent motions in pipe flows; identified the crite-
rion for the onset of turbulence in terms of the nondi-
mensional parameter that now bears his name; showed
that the onset is in the form of intensely choatic
‘‘flashes’’ in the midst of otherwise laminar motion; in-
troduced statistical methods by splitting the fluid motion
into mean and fluctuating parts (‘‘Reynolds decomposi-
tion’’); and identified that nonlinear terms in the Navier-
Stokes equations yield additional stresses (‘‘Reynolds
stresses’’ or ‘‘turbulent stresses’’) when the equations
are recast for the mean part. A tour de force indeed!
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Reynolds’ equations for the mean velocity demonstrated
the so-called ‘‘closure problem’’ in turbulence: if one
generates from the Navier-Stokes equations an auxiliary
equation for a low-order moment such as the mean
value, that equation contains higher-order moments, so
that, at any level in the hierarchy of moments, there is
always one unknown more than the available equations.
High-order moments are not related to low-order mo-
ments as (for example) in a Gaussian process. Thus,
even though the Navier-Stokes equations are themselves
closed, some additional assumptions are required to
close the set of auxiliary equations at any finite level.
This feature has defined the framework for much of the
turbulence research that has followed.

C. From Reynolds until the 1960s

1. Closure models

Although the closure problem was apparent in Rey-
nolds’ work, its fundamentals seem to have been spelled
out first by Keller and Friedmann (1924). They derived
the general dynamical equations for two-point velocity
moments and showed that the equations for each mo-
ment also contain high-order moments. Since there is no
apparent small parameter in the problem, there is no
rational procedure for closing the system of equations at
any finite level. The moment equations have been closed
by invoking various statistical hypotheses. The simplest
of them is Boussinseq’s pedagogical analogy—already
mentioned—between gas molecules and turbulent ed-
dies. Taylor (1915, 1932), Prandtl (1925), and von
Kármán (1930) postulated various relations between
turbulent stresses and the gradient of mean velocity (the
so-called mixing length models) and closed the equa-
tions. Truncated expansions, cumulant discards, infinite
partial summations, etc., have all been attempted (see,
e.g., Monin and Yaglom, 1975; Narasimha, 1990). An-
other interesting idea (Malkus, 1956) is that the mean
velocity distribution is maintained in a kind of margin-
ally stable state, the turbulence being self-regulated by
the transport it produces.

In a paper less known than it deserves, Kolmogorov
(1942) augmented the mean velocity equation by two
differential equations for turbulent energy and (effec-
tively) the energy dissipation, thus anticipating the so-
called two-equation models of turbulence; this is a com-
mon practice even today in turbulence modeling
(although its development was essentially independent
of Kolmogorov’s original proposal). Other schemes of
varying sophistication and complexity have been devel-
oped (see, e.g., Reynolds, 1976; Lesieur, 1990).

2. Similarity arguments

Given that the equations governing turbulence dy-
namics have been known for so long, the paucity of re-
sults that follow from them exactly is astonishing (for an
exception under certain conditions, see Kolmogorov
1941a). This situation speaks for the complexity of the
equations. Much effort has thus been expended on di-
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mensional and similarity arguments,3 as well as asymp-
totics, to arrive at various scaling relations. This type of
work continues unabated and with varying degrees of
success (see, e.g., Townsend, 1956; Tennekes and Lum-
ley, 1972; Narasimha 1983). For instance, a result from
similarity arguments is that the average growth of tur-
bulent jets, of the sort shown in Fig. 1, is linear with
downstream distance, with the proportionality constant
independent of the detailed initial conditions at the jet
orifice. Likewise, the energy dissipation on the jet axis
away from the orifice depends solely on the ratio Uo

3 /D ,
with the coefficient of proportionality of order unity.
Here, D and Uo are the orifice diameter and the velocity
at its exit, respectively. These (and similar) scaling re-
sults seem to be correct to first order, and so have been
used routinely in practice. However, they are working
approximations at best: the conditions under which simi-
larity arguments hold are not strictly understood, and
the constants of proportionality cannot be extracted
from dynamical equations in any case. One should
therefore not be too surprised if such relations do not
work in every instance (Wygnanski et al., 1986): there is
some reason or another to hesitate about the bedrock
accuracy of almost every such relation used in the litera-
ture. Yet, this should not detract us from appreciating
that such results are extremely useful for solving practi-
cal problems.

An important relation obtained by asymptotic argu-
ments and supplementary assumptions concerns the dis-
tribution of mean velocity in boundary layers, pipes, and
flow between parallel plates (e.g., Millikan, 1939). The
result is that, in an intermediate region not too close to
the surface nor too close to the pipe axis or the bound-
ary layer edge, the mean velocity is proportional to the
logarithm of the distance from the wall. This so-called
log-law has for a long time enjoyed a preeminent status
in turbulence theory (see, however, Sec. III.D). Again,
the additive and proportionality constants in the log-law
are known only from empirical data.

3. Homogeneous and isotropic turbulence

In another important turn of events, a considerable
simplification of the general dynamical problem of tur-
bulence was achieved by Taylor (1935) with the intro-
duction of the concept of homogeneous and isotropic
turbulence, that is, turbulence that is statistically invari-
ant under translation, rotation and reflection of coordi-
nate axes. Experimentally, nearly homogeneous and iso-

3A similarity transformation is an affine transformation that
reduces a set of partial differential equations to an ordinary
differential equation. For a turbulent jet far away from the
orifice, it takes the form that mean velocity distribution pre-
serves its shape when scaled on local velocity and length scales.
By demanding that the coefficients of the resulting ordinary
differential equation be constants, one obtains power-laws for
the variation of these velocity and length scales along the jet
axis. However, only the power-law exponent can be deter-
mined in this way, not prefactors.
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tropic turbulence (see Fig. 2) was developed in the late
1930’s using uniform grids of bars in a wind tunnel (e.g.,
Comte-Bellot and Corrsin 1966). The use of tensors in
isotropic turbulence was introduced by von Kármán
(1937) who also studied the dynamical consequences of
isotropy (von Kármán and Howarth, 1938). Taylor
(1938) derived an equation for turbulent vorticity and,
almost simultaneously, initiated the use of Fourier trans-
form and spectral representation. Since that time, isotro-
pic turbulence has been the testing ground for most of
the analytical theories of turbulence.

4. Local isotropy and universality of small scales:
The Kolmogorov turbulence

The reality is that no turbulent flow is homogeneous
and isotropic. Further, there are many types of
turbulence—depending on boundary conditions, body
forces, and other auxiliary parameters: incompressible,

FIG. 2. This picture depicts homogeneous and isotropic turbu-
lence produced by sweeping a grid of bars at a uniform speed
through a tank of still water. Unlike the jet turbulence of Fig.
1, turbulence here does not have a preferred direction or ori-
entation. On the average, it does not possess significant spatial
inhomogeneities or anisotropies. The strength of the struc-
tures, such as they are, is weak in comparison with such struc-
tures in Fig. 1. Homogeneous and isotropic turbulence offers
considerable theoretical simplifications, and is the object of
many studies.
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compressible, homogeneously sheared, inhomogeneous,
stratified, magnetohydrodynamic, superfluid turbulence,
and so forth. They are all similar in some respects (e.g.,
they are highly dissipative), but also different in some
respects (e.g., the topology of the large structure is dif-
ferent). This situation is somewhat similar to that in
chemistry: while all compounds have the same essential
elements, they are also different from each other. It is
therefore useful to ask whether ‘‘turbulence’’—when di-
vorced from a specific context—has a meaningful exis-
tence at all.

Enter Kolmogorov (1941b) and his revolutionary pos-
tulate that small scales of turbulence are statistically
isotropic—no matter how the turbulence is produced.
This postulate,4 coupled with Kolmogorov’s other
hypothesis—known for short in the jargon as K41—has
allowed several detailed predictions to be made with re-
gard to the scaling properties of ‘‘small-scale’’ turbu-
lence. The spirit of K41, a major fore-runner for which
are Richardson’s (1922) qualitative ideas of self-similar
distribution of turbulent eddies, is to assume that the
‘‘small’’ scales of turbulence are universal, even though
the ‘‘large’’ scales are specific to a given flow—or class
of flows with the same boundary conditions. While a full
understanding of a turbulent flow requires attention to
large as well as small scales (whose mix varies from flow
to flow), K41 presupposes that the small scales can be
understoood independent of the specifics that determine
the large scales. In particular, towards the upper end of
the small-scale range (the so-called inertial subrange),
K41 shows that the energy spectral density f(k) varies
with the wave number k according to f(k)5ck«2/3k25/3.
Here « is the rate at which energy is dissipated by the
low end of the small scales, and ck is an unknown but
universal constant. Embedded in K41 is the notion that
the large scales—at which the energy is injected—
transfer it to the small scales—where it is dissipated—
through a series of steps, each of which is dissipationless
and involves the interaction of only neighboring scales
(instead of all possible triads of wave numbers allowed
by the Navier-Stokes equations). The transfer is sup-
posed to occur with ever-increasing rapidity as one ap-
proaches increasingly smaller scales. This process of en-
ergy transfer, which is at best a good abstraction of a
more complex reality, is picturesquely known as energy
cascade (Onsager, 1945). Besides Onsager, the other
early workers who independently contributed to the un-
derstanding of the inertial subrange are von Weizsäcker
(1948) and Heisenberg (1948). It is worth stressing that
K41 makes no direct connection to the Navier-Stokes
equations.

4A second important postulate, already mentioned in the spe-
cific context of the turbulent jet, is that the rate of energy
dissipation at high Reynolds numbers far away from solid
boundaries—although mediated by fluid viscosity—is indepen-
dent of it. Experiments support the postulate on balance, but
the evidence leaves much to be desired.
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We shall not discuss here Kolmogorov’s form for the
dissipative scales, but refer to Monin and Yaglom (1975)
and Frisch (1995). We shall also say nothing about the
consequences of K41 for turbulent diffusion except to
note that Richardson’s (1926) law for the diffusion of
particle pairs can be recovered from its application.

A first-order verification of K41 in a tidal channel at
very high Reynolds numbers (Grant et al. 1962) is a
milestone in the history of turbulence. This rough ex-
perimental confirmation and its alluring simplicity have
made K41 a staple of turbulence research. However, we
shall presently see that K41 is not correct in detail.

5. Experimental tools

Until the late 1920s, the types of turbulence measure-
ments that could be made were limited to time-average
properties such as mean velocity and pressures differ-
ences. It was not possible to measure fluctuations faith-
fully because of the demands of spatial and temporal
resolution: the spatial resolution required is O(Re29/4)
and the temporal resolution O(Re21/2). The technique
commonly used for the study of turbulent characteristics
was the visualization of flow by injecting a dye or a
tracer. This type of work led to valuable insights in the
hands of stalwarts such as Prandtl (see Prandtl and
Tietjens, 1934). Since the 1950’s, which is when thermal
anemometry came into being in a robust form, the tech-
nique has been the workhorse of turbulence research.
Briefly, a fine wire of low thermal capacity is heated to a
certain temperature above the ambient, and the change
in resistance encountered by it, as a fluid with fluctuating
velocity flows around it, is measured. This change is re-
lated to the flow velocity through a calibration. Late in
the period being considered here, optical techniques
such as laser Doppler velocimetry began to make in-
roads, but hotwires are still the probes of choice in a
number of situations.

D. A brief assessment of the classical era

As already mentioned, the statistical principles used
for closing the moment equations have enjoyed only
transient success. The eddy viscosity and mixing length
principles, despite the initial triumphs (see Schlichting,
1956), proved to be flawed (though this has not pre-
vented their use—with varying levels of discernment).
Similarly, some closure models (e.g., the so-called qua-
sinormal approximation) often violate the realizability
condition, namely the positivity of probabilities (or
other related results that follow). Kraichnan (1959, and
later) has emphasized the need for dealing with this is-
sue directly, and devised models that ensure realizabil-
ity. These models have certain consistency properties
that conventional closure schemes may not. Realizability
constraints have now become a standard test in turbu-
lence modeling (Speziale, 1991), especially in modern
computing efforts. Further, the general scaling results
such as for the overall growth of turbulent flows and
energy dissipation (see Sec. III.C.2) seem to drive rough
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experimental suuport, but reveal many open problems
upon close scrutiny. Even the log-law, long regarded as a
crowning achievement in turbulence, has been ques-
tioned vigorously in recent years (Barenblatt et al.,
1997). The issue on hand is not simply whether the log-
law or an alternative power-law fits the data better. At
stake is the validity of the underlying principles of simi-
larity that each argument employs.

The lack of successful closure models on the one
hand, and the apparent success of K41 in describing low-
order statistics of the small-scale on the other, have led
to an excessive tendency to regard turbulence as a
single, unified phenomenon. This development has not
always been healthy.

One cannot escape the feeling that much of the work
has a tentative character to it. This is not the norm in
mechanics or other branches of classical physics.

IV. THE MODERN ERA

A. Large-scale coherent structures

Even casual observations of turbulent flows reveal
well-organized motions on scales comparable to the flow
width (see the splendid collection of pictures by Van
Dyke, 1982); indeed, experimentally measured correla-
tion functions had occasionally pointed to the existence
of organized large scales (Liepmann, 1952; Favre et al.,
1962). Yet, this aspect was not the central theme of tur-
bulence research in the classical era. On hindsight, many
aspects contributed to this neglect: the realization that
statistical description was inevitable, preoccupation with
isotropic turbulence where the spatial organization is
minimal, the absence of historical precedents of physical
systems in which order and chaos coexist, and so forth.
The important role of large-scale organized motions for
transport processes has since been emphasized (Kline
et al., 1967; Brown and Roshko, 1974; Head and Ban-
dyopadhyay, 1981), leading to a resurgence of interest in
them.

It is a nontrivial matter that the large scales can main-
tain their coherence in the presence of a superimposed
incoherent activity. The origin of the large structure has
often been sought in terms of the instability of the (hy-
pothetical) mean velocity distribution, or something
even simpler, but there are conspicuous gaps in the ar-
guments employed. It is worth recalling that compli-
cated, nonlinear, systems with many degrees of freedom
do sometimes develop organized structures such as soli-
tons (Zabusky and Kruskal, 1965). If solitons have any-
thing to do with coherent structures in turbulence, that
connection remains obscure.

Taking for granted the importance of the large scales,
the question is how to identify them objectively. An ex-
perimentally useful tool is the so-called conditional av-
eraging (e.g., Kovasznay et al., 1970), in which one aver-
ages over preselected members of an ensemble. Suitable
wavelets have sometime been used as templates for the
large scale. The difficult question is how to describe
them analytically and construct usefully approximate dy-
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namical systems, preferably of low dimensions. This is
not a simple task, but some success has been attained in
special cases via the so-called Karhunen-Lóeve proce-
dure (e.g., Sirovich, 1987; Holmes et al., 1998).

A hope in the work on coherent structures has been
that they could lead to efficient methods for predicting
overall features of turbulent flows. The verdict on this
effort is still unclear (e.g., Hussain, 1983). Another quest
has been to control, or manage, turbulent flows via
large-scale coherent structures. The verdict on this line
of inquiry is mixed (e.g., Gad-el-Hak et al., 1998).

B. Small-scale turbulence: Repercussions of Kolmogorov’s
‘‘refinement’’

It has been hinted already that Kolmogorov’s argu-
ments of local isotropy and small-scale universality have
pervaded all aspects of turbulence research (e.g., Monin
and Yaglom, 1975; Frisch, 1995). Deeper exploration has
revealed that strong departures from the K41 universal-
ity exist, and that they are due to less benign interactions
between large and small scales than was visualized in
K41. Following a remark of Landau (see Frisch, 1995),
Kolmogorov (1962) himself provided a ‘‘refinement’’ of
his earlier hypotheses. In reality, this refinement is a vi-
tal revision (Kraichnan, 1974), and its repercussions are
being felt even today (e.g., Chorin, 1994; Stolovitzky and
Sreenivasan, 1994). One of its manifestations is that the
various scaling exponents characterizing small-scale sta-
tistics are anomalous (that is, the exponent for each or-
der of the moment has to be determined individually in
a nontrivial manner, and cannot be guessed from dimen-
sional arguments). Although the anomaly is still
essentially an empirical fact, and its existence has yet
to be established beyond blemish due to various experi-
mental ambiguities,5 it seems unlikely that we will return
to K41 universality. Even the nature of anomaly seems
to depend on the particular class of flows. However,
these subtle differences might arise from finite Reynolds
number effects, large-scale anisotropies, and so forth;
without quantitative ability to calculate these effects,
one will always have lingering doubts about the true na-
ture of anomaly and of scaling itself (e.g., Barenblatt

5There are several of them. First, measured time traces of
turbulent quantities are interpreted as spatial cuts by assuming
that turbulence gets convected by the mean velocity without
distortion. This is the so-called Taylor’s hypothesis. Second,
one cannot often measure the quantity of theoretical interest
in its entirety, but only a part of it. The practice of replacing
one quantity by a similar one is called surrogacy. Surrogacy is
often a necessary evil in turbulence work, and makes the in-
terpretation of measurements ambiguous (e.g., Chen et al.,
1993). Finally, the scaling region depends on some power of
the Reynolds number, and also on the nature of large-scale
forcing. The scaling range available in most accessible flows—
especially in numerical simulations where the first two issues
are not relevant—is small because the Reynolds numbers are
not large enough.
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and Goldenfeld, 1995). These issues are being constantly
investigated with increasing precision (e.g., Anselmet
et al., 1983; Benzi et al., 1993; L’vov and Procaccia, 1995;
Arneodo et al., 1996; Cao et al., 1996; Tabeling et al.,
1996; Sreenivasan and Dhruva, 1998).

The anomaly of scaling exponents is related to small-
scale intermittency. Roughly speaking, intermittency
means that extreme events are far more probable than
can be expected from Gaussian statistics and that the
probability density functions of increasingly smaller
scales are increasingly non-Gaussian (Fig. 3). This is a
statistical consequence of uneven spatial distribution of
the small-scale (Fig. 4), and can be modeled by multi-
fractals (Mandelbrot, 1974; Parisi and Frisch, 1985; Me-
neveau and Sreenivasan, 1991). Most nonlinear systems

FIG. 3. The probability density functions, of differences of
velocity fluctuations, obtained in atmospheric turbulence
about 30 m above the ground. The ordinate is logarithmic in
the main figure and linear in the inset. Each curve is for a
different separation distance (using Taylor’s hypothesis). The
separation distance is transverse to the direction of the velocity
component. The smallest separation distance (about 2.5 mm) is
only five times the Kolmogorov scale h , denoting the smallest
scale of fluctuations, while the largest (about 50 m) is compa-
rable to the height of the measurement point. For small sepa-
ration distances, very large excursions (even as large as 25
standard deviations) occur with nontrivial frequency; they are
far more frequent than is given by a Gaussian distribution
(shown by the full line), which is approached only for large
separation distances. Extended tails over a wide range of scales
is related to the phenomenon of small-scale intermittency (that
is, uneven distribution in space of the small scales). These
probability density functions are nonskewed. If the separation
distance is in the direction of the velocity component mea-
sured, the probability density functions possess a definite
skewness, as shown by Kolmogorov (1941a). This skewness is
related to the energy transfer from large to small scales. In
contrast to velocity increments, velocity fluctuations them-
selves have a nearly Gaussian character at this height above
the ground. The shape of the probability density function de-
pends on the flow and the spatial position in an inhomoge-
neous flow. For isotropic and homogeneous turbulence, it is
marginally sub-Gaussian for high fluctuation amplitudes.
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are intermittent in time, space, or both, and the study of
intermittency in turbulence is useful in a broad range of
circumstances (e.g., Halsey et al., 1986).

Taken together, a major thrust of theoretical efforts
has been the understanding of intermittency, multifrac-
tality, and the anomaly of scaling exponents. Many

FIG. 4. Planar cuts of the three-dimensional fields of (a) en-
ergy dissipation and (b) squared vorticity in a box of homoge-
neous and isotropic turbulence. The data are obtained by solv-
ing the Navier-Stokes equations on a computer. Not
uncommon are amplitudes much larger than the mean; these
large events become stronger with increasing Reynolds num-
ber. Such quantities are not governed by the central limit theo-
rem. The statistics of large deviations are relevant here, as in
many other broad contexts of modern interest. Kolmogorov
(1962) proposed log-normal distribution to model energy dis-
sipation (and, by inference, squared vorticity), but there seems
to be a general agreement that lognormality is in principle
incorrect (e.g., Mandelbrot, 1974; Narasimha, 1990; Novikov,
1990; Frisch 1995). Both these quantities have been modeled
successfully by multifractals (Meneveau and Sreenivasan,
1991). A promising alternative is the log-Poisson model (She
and Leveque, 1994).
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pedagogically illuminating models have been invented
(see Sreenivasan and Antonia, 1997, for a summary),
and a few rigorous inequalities are known (e.g., Con-
stantin and Fefferman, 1994).

C. Some recent efforts

1. Theoretical issues

As a guide to further discussion, it is helpful to recall
the mathematical problems associated with the Navier-
Stokes equations. First, as already emphasized, there is
no obvious small parameter on which to base a system-
atic perturbation theory. Second, the equations are non-
linear. The effects include energy redistribution among
the constituent scales, as well as the so-called sweeping
effect, which represents the manner in which the small
scales are swept by the large. Third, the equations are
dissipative even when the fluid viscosity is infinitesimally
small (Re → `). Fourth, there are dominant nonlocal
effects arising from pressure.

The desire to understand qualitative aspects of each
of these effects has led to different approaches. For in-
stance, the inadequacy of perturbation methods have led
to the exploration of nonperturbative alternatives. (An
incomplete list of references in this regard, not necessar-
ily alike in philosophy or detail, are Kraichnan, 1959;
Martin et al., 1973; Forster et al., 1977; Yakhot and
Orszag, 1986; McComb, 1990; Avellaneda and Majda,
1994; Eyink, 1994; Mou and Weichman, 1995; L’vov and
Procaccia, 1996.) To understand nonlinear effects in
forced systems, researchers have explored various alter-
natives such as Burgers equation with stochastic forcing
(e.g., Cheklov and Yakhot, 1995; Polyakov, 1995), and
shell models (e.g., Jensen et al., 1992) or their variants
(Grossmann and Lohse, 1994).6 Some attention has been
paid to possible depletion of nonlinearity in parts of the
real space (e.g., Frisch and Orszag, 1990). For passive
scalars, the anomaly of scaling exponents is being ex-
plored via the rapidly-varying-velocity model for passive
scalars (e.g., Kraichnan, 1994; Frisch et al., 1998). The
interest in the small viscosity limit in the problem has
led to serious studies of the singularities of the govern-
ing equations (Caferelli et al., 1982), especially of the
inviscid counterpart—namely, the Euler equations (see,
e.g., Beale et al., 1989). The multifractal analysis of dis-
sipation fits in this broad picture. There is substantial
interest in the physics of vortex dynamics (e.g., Saffman,
1992), particularly vortex reconnections (e.g., Kida and
Takaoka, 1994). It is not always clear how centrally
these studies bear on developed turbulence.

6Burger’s equation is the one-dimensional version of the
Navier-Stokes equation, but without the pressure term; it pos-
sesses no chaotic solutions without forcing. Shell models are
severe truncations of the Navier-Stokes equations, retaining
only a few representative Fourier modes in any wave-number
band. Only nearest, or the next nearest, couplings are allowed.
The models retain several symmetry properties of the Navier-
Stokes equations.
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2. Advanced experimental methods

Traditional turbulence measurements are made at a
single spatial position or at a few positions as functions
of time, and yield time traces of velocity, temperature,
or other quantities. These are treated as spatial cuts
through the flow by invoking Taylor’s hypothesis, whose
limitations are not fully understood (Lumley, 1965). A
major accomplishment in recent years is the direct mea-
surement of spatio-temporal fields of turbulence, obviat-
ing the need for this plausible but uncertain assumption.
The techniques are typically the laser-induced fluores-
cence for passive scalars (e.g., Dahm et al., 1991) and
particle image velocimetry for flow velocity (e.g.,
Adrian, 1991). Unfortunately, available technology re-
stricts true spatio-temporal measurements to low Rey-
nolds numbers.

An experimental goal is to produce high Reynolds
number turbulence and measure all the desired proper-
ties with adequate resolution in space and time. To ob-
tain high Re , one may use the high speeds of fluid (but
one is then limited by compressibility effects for gases
and cavitation problems for liquids), a large-scale appa-
ratus (which is limited by cost and available space), or
use fluids of low viscosity (such as air at very high pres-
sures or cryogenic fluids such as He I). For He I, the
exquisite control on viscosity allows one to obtain, in an
apparatus of a fixed size, a large range of Reynolds
numbers than is possible by varying flow speed alone.
This advantage has been exploited adroitly in a few in-
stances (e.g., Castaing et al., 1989; Tabeling et al., 1996).
In these instances, one has been forced to limit oneself
to single-point data; the challenge is to develop instru-
mentation for obtaining spatial data, especially resolving
small scales (for an account of some progress, see, e.g.,
Donnelly, 1991).7

3. Computational efforts

Another major advance is the use of powerful com-
puters to solve Navier-Stokes equations exactly to pro-
duce turbulent solutions (e.g., Chorin, 1967; Orszag and
Patterson, 1972). These are called direct numerical simu-
lations (DNS). The DNS data are in some respects su-
perior to experimental data because one can study ex-
perimentally inaccessible quantities such as tensorial
invariants or pressure fluctuations at an interior point in
the flow. The DNS data have allowed us to visualize
details of small-scale vorticity and other similar features.
For instance, they show that intense vorticity is often
concentrated in tubes8 (She et al., 1990; Jimenez et al.,
1993); see Fig. 5. Yet, available computer memory and

7For a fixed Re , a far smaller apparatus suffices when He is
used instead of say, air, which makes the smallest scale that
much smaller: recall that the ratio of the smallest scale to the
flow apparatus is O(Re23/4).

8Experimental demonstration that vortex tubes can often be
as long as the large-scale of turbulence can be found in Bonn
et al. (1993).
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FIG. 5. (Color) Demonstration that vorticity at large amplitudes, say greater than 3 standard deviations, organizes itself in the
form of tubes (shown in yellow), even though the turbulence is globally homogeneous and isotropic. Large-amplitude dissipation
(shown in red) is not as organized, and seems to surround regions of high vorticity. Smaller amplitudes do not possess such
structure even for vorticity. In principle, the multifractal description of the spiky signals of Fig. 4 is capable of discerning geometric
structures such as sheets and tubes, but no particular shape plays a central role in that description. The dynamical reason for this
organization of large-amplitude vorticity is unclear. The ubiquitous presence of vortex tubes raises a number of interesting
questions, some of which are mentioned in the text. At present, elementary properties of these tubes, such as their mean length
and scaling of their thickness with Reynolds number, have not been quantified satisfactorily; nor has their dynamical significance.
speed limit calculations to Reynolds numbers of the or-
der of a few thousand. This limit is at present slightly
better than the experimental range (see previous subsec-
tion).

It thus becomes necessary to adopt different strategies
for computing high-Reynolds-number flows (e.g., Le-
onard, 1985; Lesieur and Metais, 1996; Moin, 1996; Moin
and Kim, 1997). A fruitful avenue is the so-called Large
Eddy Simulation method, in which one resolves what is
possible, and suitably models the unresolved part. The
modeling schemes vary in nature from an a priori pre-
scription of the properties of the unresolved scales to
computing their effect as part of the calculation scheme
itself; the latter makes use of the known scaling proper-
ties of small-scale motion such as the locality of wave-
number interaction or spectral-scale similarity. As a
computational tool for practical applications, the Large
Eddy Simulation method has much promise. Increasing
its versatility and adaptability near a solid surface is a
major area of current research.
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We shall not remark here at length on engineering
models of turbulence. They range from modified mixing
length theories to those based on supplementary differ-
ential equations (e.g., Reynolds, 1976; Lumley, 1990; Le-
sieur, 1990) to the adaptation of the renormalization
group methods (e.g., Yakhot and Orszag, 1986). These
models cleverly exploit symmetries, conservation prop-
erties, realizability constraints, and other general prin-
ciples to make headway in practical problem solving.
Their short-term importance cannot be exaggerated.

V. PROSPECTS FOR THE NEAR FUTURE

It is useful to reiterate that turbulence research spans
a wide spectrum from practical applications to funda-
mental physics. At one end of this spectrum are prob-
lems such as the prediction of fluctuating pressure field
on the skin of an aircraft wing, or the hydrodynamic
noise emitted by a submarine. Interactions with com-
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plexities such as combustion, rotation, and stratification
pose a plethora of further questions: for instance, what is
the amount of heat transported by the outer convective
motion in the Sun? These problems involve nonlinearly
complex interactions of the many parts of which they are
composed, and so will necessarily remain too specific to
expect general solutions. A sensible goal in such in-
stances will always be to obtain reliable working ap-
proximations.

At the other end of the spectrum are deep physics
issues arising from the nonperturbative nature of the
turbulence problem. How may one understand precisely
this many-scale problem with strong coupling among its
constituent scales? It is natural to seek clues to this
question in the analytic structure of the Navier-Stokes
equations, but this task has so far proved hopelessly dif-
ficult. Therefore, one often seeks guidance via simpler
problems of the same class, even if some essential ele-
ments are lost along the way.

Between the two ends is a wide middle, consisting of a
study of carefully chosen idealized configurations. Typi-
cal problems follow: How much mixing occurs between
two parallel streams in a well-conditioned flow appara-
tus? What is the net force exerted on a flat plate parallel
to a smooth stream? What is the best way to param-
etrize the flow near smooth boundaries where viscosity
affects all scales of turbulence? Such problems are ap-
proached by several complementary methods, but their
broad content is the splitting of the overall motion into
large and small scales—the former may well be the
mean motion—and mastering the latter by combining
phenomenology with aspects of universality. A sensible
goal here is to put this practice on firmer physical prin-
ciples.

Since these physical principles are still unclear, the
task has an iterative character to it; thus, each genera-
tion of students of the subject has lived through them in
different forms and made incremental progress. Progress
has demanded that this grand problem (often hailed as
the last such problem in classical physics) be split into
various sub-problems—some closer to basic physics and
some to working practice. Some in either variety may
ultimately prove inessential to the overall purpose, but
there can be no room for impatience or prejudice.

Listing all useful sub-problems without trivializing
them is itself a challenge. We will unfortunately not rise
to the occasion here, but list a few illustrative ones—
making no effort to describe the progress being made.
With respect to small scales, one interesting question is
the dynamical importance of the highly anisotropic vor-
tex tubes, and whether their existence is consistent with
the universal (albeit anomalous) scaling presumed to ex-
ist in high-Reynolds-number turbulence (Moffatt, 1994;
Moffatt et al., 1994): What is the connection between
scaling (which emphasizes the sameness at various
scales) and structure (which becomes better defined and
topologically more anisotropic at larger fluctuation am-
plitudes)? In some problems of condensed matter
physics—for example, anisotropic ferromagnets near the
critical point—the critical indices are oblivious to the
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magnitude of anisotropy. However, this is not always the
case. As Mandelbrot (1982) has emphasized in several
contexts, this type of question necessarily forces the
marriage of geometry with analysis (for some progress,
see, Constantin, 1994); a particular case of this bigger
picture is the stochastic geometry of turbulent/
nonturbulent interfaces and of isoscalar surfaces (e.g.,
Constantin et al., 1991). A second question is the under-
standing of the effect of finite Reynolds number and of
finite shear and anisotropy, comparable in scope, say, to
that of finite-size effects in typical scaling problems in
critical phenomena. This is a crucial undertaking for all
issues related to scaling. Third, shifting focus from scal-
ing exponents to scaling functions, and from the tails of
probability density functions to the entire distribution,
would be a useful relief. Fourth, a study of objects more
complex than two-point structure functions would be
highly informative (e.g., L’vov and Procaccia, 1996;
Chertkov et al., 1998). Fifth, while the overall flux of
energy from the large to the small scale is unidirectional
on the average, the instantaneous flux is in both direc-
tions; is the overall average flux a small difference be-
tween the forward and reverse fluxes, or only a small
fraction of the average? The answer to this question
changes our perception of the degree of non-equilibrium
present in the energy cascade, and influences the devel-
opment of sound Large Eddy Simulation models. Sixth,
one may usefully focus attention on other problems
where violations of the K41 universality are first-order
in importance—e.g., the problem of passive admixtures
(Sreenivasan, 1991; Shraiman and Siggia, 1995), of pres-
sure, and of acceleration statistics (e.g., Nelkin, 1994).
As far as the large structures are concerned, the out-
standing question is the determination of their origin,
topology, frequency, and relation to small scales (e.g.,
Roshko, 1976; Hussain, 1983). Finally, an overarching
issue is the abstraction of the small-scale influence on
the small scales.

Some degree of progress has occurred on all these
fronts, and has accelerated in recent years. Much of it is
due to a powerful combination of experimental meth-
ods, computer simulations, and analytical advances in
neighboring fields. Our hope lies in this synergism,
whose importance cannot be exaggerated. It is trite but
true to say that advancing experimental methods will
imporve our understanding of turbulence significantly.
(Recall the motto of Kamerlingh Onnes, the father of
low temperature physics: ‘‘through measurement to
knowledge’’.) In this regard, the key lies in measure-
ments at high Reynolds numbers. How high a Reynolds
number is ‘‘high enough’’ depends on the context and
purpose. Yet, without a proper knowledge of Reynolds-
number-scaling, one can be lured into false certainty by
focusing exclusively on low Reynolds numbers. Pres-
ently, one obtains high-Reynolds-number small-scale
data either in atmospheric flows or specialized facilities.
Among the latter are facilities meant for testing large-
scale aeronautical and navy vehicles, or those that use
helium (e.g., Castaing et al., 1989; Tabeling et al., 1996),
or use compressed air at very high pressures (Zagarola
and Smits, 1996). Atmospheric flows are not controlled
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and stationary over long intervals of time, and only a
few probes can be used at a given time. Among the spe-
cialized facilities, the large ones are very expensive to
operate and, to a first approximation, unavailable for
basic research. The smaller specialized flows allow, be-
cause of instrumentation limitations, only a small num-
ber of quantities to be measured with limited resolution.
These shortcomings have been alleviated to some de-
gree by computer simulation of the equations of motion,
and a great deal can indeed be learned by combining
such simulations at moderate Reynolds numbers with
experiments at high Reynolds numbers. It is clear that
the next generation of simulations, now already in
progress, will produce data at high enough Reynolds
numbers to begin to close the existing gap.

VI. CONCLUDING REMARKS

From Osborne Reynolds at the turn of the last cen-
tury to the present day, much qualitative understanding
has been acquired about various aspects of turbulence.
This progress has been undoubtedly useful in practice,
despite large gaps that exist in our understanding. As a
problem in physics or mechanics—contrasted, for ex-
ample, against the rigor with which potential theory is
understood—the problem is still in its infancy.

It has already been remarked that viewing turbulence
as one grand problem may be debilitating. The large and
diverse clientele it enjoys—such as astrophysicists, atmo-
spheric physicists, aeronautical, mechanical, and chemi-
cal engineers—has different needs and approaches the
problem with correspondingly different emphases. This
makes it difficult to mount a focused frontal attack on a
single aspect of the problem. It is therefore intriguing to
ask: how may one recognize that the ‘‘turbulence prob-
lem’’ has been solved? It would be a great advance for
an engineer to determine from fluid equations the pres-
sure needed to push a certain volume of fluid through a
circular tube. Even if this particular problem, or another
like it, were to be solved, might it be deemed too special
unless the effort paved the way for attacking similar
problems?

There are two possible scenarios. Our computing
abilities may improve so much that any conceivable tur-
bulent problem can be ‘‘computed away’’ with adequate
accuracy, so the problem disappears in the face of this
formidable weaponry. One may still fret that computing
is not understanding, but the issue assumes a more be-
nign complexion. The other scenario—which is common
in physics—is that a particular special problem that is
sufficiently realistic and close enough to turbulence, will
be solved in detail and understood fully. After all, no
one can compute the detailed structure of the nitrogen
atom from quantum mechanics, yet there is full confi-
dence in the fundamentals of that subject. Unfortu-
nately, the appropriate ‘‘hydrogen atom’’ or the ‘‘Ising
model’’ for turbulence remains elusive.

In summary, there is a well-developed body of knowl-
edge in turbulence that is generally self-consistent and
useful for problem solving. However, there are lingering
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uncertainties at almost all levels. Extrapolating from ex-
perience so far, future progress will take a zigzag path,
and further order will be slow to emerge. What is clear is
that progress will depend on controlled measurements
and computer simulations at high Reynolds numbers,
and the ability to see in them the answers to the right
theoretical questions. There is ground for optimism, and
a meaningful interaction among theory, experiment, and
computations must be able to take us far. It is a matter
of time and persistence.
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von Kármán, T., 1937, J. Aeronaut. Sci. 4, 131.
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