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Granular matter describes large collections of small grains, under conditions in which the Brownian
motion of the grains is negligible (sizes d.1 micrometer). The grains can exhibit solidlike behavior
and fluidlike behavior, but the description of these states is still controversial. The present discussion
is restricted to static problems, for which the main approach is to describe properly the initial state of
each volume element, when it was deposited from a fluid flow. [S0034-6861(99)02202-3]
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I. POWDERS IN NATURE AND IN INDUSTRY

Granular matter refers to particle systems in which
the size d is larger than one micron. Below one micron,
thermal agitation is important, and Brownian motion
can be seen. Above one micron, thermal agitation is
negligible. We are interested here in many-particle sys-
tems, at zero temperature, occupying a large variety of
metastable states: if we pour sand on a table, it would
like to go to a ground state, with a monolayer of grains
giving the lowest gravitational energy. But in reality the
sand remains as a heap; the shape of the heap and the
stress distribution inside depend critically on how the
heap was made. Hence come many difficulties.

We cited sand as an example: a desert like the Sahara
provides us with a gigantic laboratory model. The grains
are silica (rounded by collisions) of ;100 microns in
size. They form ripples and dunes. These deserts have
fascinated a number of great men—Lawrence and
Thesinger in Arabia, Monod in the western Sahara, and
R. Bagnold in the Libyan desert. Bagnold knew physics
and fluid mechanics: he had very much the style of G. I.
Taylor. He made precise observations in the desert, then
returned to England, built a cheap but efficient wind
tunnel (with plywood, etc.), and determined with it the
basic laws for the transport of sand. His book Physics of
Blown Sand and Sand Dunes, published in 1941, remains
a basic reference sixty years later (Bagnold, 1941). We
shall give an ‘‘idealized summary’’ of his views in Sec.
III.
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Of course, there are many other important granular
systems in nature: snow is an obvious example; but snow
is frightfully complex, because water can show up in all
its natural states, and the resulting phase transitions im-
ply deep macroscopic consequences. In the present text,
we shall try to concentrate on dry systems. This may be
sand, but it may also be mustard seed (the latter being
very convenient for certain nuclear resonance studies).

Many industrial products are powders:

• ‘‘clinkers’’ (the starting point of cement) are com-
plex mixtures of silicoaluminates, calcium silicates,
etc.

• ‘‘builders’’ are an important part of a commercial
detergent: they are based on inorganic particles such
as calcium carbonate.

• most pharmaceutical products are derived from
powders, obtained by precipitation, crystallization,
or prilling (prilling is based on a molten thread of
material, which breaks into droplets via the Ray-
leigh instability; the droplets then reach a cool re-
gion where they freeze, giving grains with a very-
well-defined size).

If we measure it by tons, the material most manipu-
lated by man is water; the second-most-manipulated is
granular matter. But in our supposedly sophisticated
20th century, the manipulation of powders still involves
some very clumsy and/or dangerous operations.

(1) Milling is slow, inefficient, and generates a very
broad distribution of final sizes.

(2) The smaller-size component of these distributions
is often toxic.

(3) Many powders, when dispersed in air, achieve a
composition that is ideal for strong detonations. Certain
workshops or silos explode unexpectedly. One of the
main reasons for this is electrostatic: many grains, when
manipulated, hit each other or hit a wall, generating tri-
boelectric charges, which ultimately end up in sparks. To
understand this, a new type of mass spectrometry is now
set up, in which the particles are grains rather than mol-
ecules. The grains are studied after a sequence of wall
collisions; here, the interest is more in the charge than in
the weight.

(4) When feeding, for instance, a glass furnace with a
mixture of oxides, one finds that the corresponding flow
of oxide in the hoppers can lead to segregation—thus
creating dangerous inhomogeneities in the final glass:
the manipulation of mixtures is delicate.
34-6861/99/71(2)/374(9)/$16.80 ©1999 The American Physical Society
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Certain other operations are quite successful, al-
though their basic principles are only partly understood:
for instance, by injecting a gas at the bottom of a large
column filled with catalytic particles, one can transform
them into a fluidized bed. This is crucial for many pro-
cesses, such as the production of polyethylene. But the
dynamics of these beds is still not fully understood.

We see, at this level, the importance of fundamental
research in granular matter. This was appreciated very
early in mechanical and chemical engineering; physicists
have joined in more recently. For them, granular matter
is a new type of condensed matter, as fundamental as a
liquid or a solid and showing in fact two states: one flu-
idlike, one solidlike. But there is as yet no consensus on
the description of these two states! Granular matter, in
1998, is at the level of solid-state physics in 1930.

There are some excellent reviews (e.g., Jaeger et al.,
1996) but very few textbooks—apart from Bagnold
(1941) and Brown and Richards (1970). The most recent
one is (at the moment) published only in French (Du-
ran, 1997).

In the present short survey, we shall talk only about
the statics of heaps and silos. The dynamics will be pre-
sented elsewhere.

II. PREPARING A GRANULAR SAMPLE

‘‘We fill a glass column with sand.’’ This innocent
statement hides many subtleties. Did we fill it from a jet
of sand near the axis, or did we sprinkle the sand over
the whole section? Did we shake the object after filling?

A first, obvious problem is compaction. Bernal (1964)
and Scott (1962) measured the average density of con-
tainers filled with ball bearings. They were in fact con-
cerned with models for amorphous systems at the
atomic level, but their results are of wider utility. Com-
puter simulations (Finney, 1970) indicate that the maxi-
mum volume fraction achieved in a random packing of
spheres is frp50.64—significantly smaller than the face-
centered-cubic (or hexagonal) compact packing fmax
50.74. Compaction is favored by the weight of the
grains themselves. Immersing the grains in a fluid of
matched density (Onoda et al., 1990), one can study
weaker compactions and more or less reach the connec-
tivity limit or, as it is called, the random loose-stacked
limit, which for spheres is around fmin50.56.

When a powder is gently shaken, it densifies. In fact, a
useful method for characterization of a new granular
material is based on tapping a vertical column (see, for
instance, Selig and Ladd, 1973). Powders that compact
fast are expected to flow easily, while powders that com-
pact slowly, more or less refuse to flow. Fundamental
studies on the compaction of noncohesive grains have
been performed by the Chicago group (Knight et al.,
1995; Nowak et al., 1998). The density plots fn (after n
taps) depend on the amplitude of the taps. At small am-
plitudes, they follow a logarithmic law:

fn5
a

ln~n !1b
. (1)
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Many frustrated, frozen systems are expected to show
similar forms of creep (Coniglio and Hermann, 1996;
Nicodemi et al., 1997). The simplest interpretation of
Eq. (1) is based on free-volume models (Knight et al.,
1995; Boutreux et al., 1997), which are familiar from the
physics of glasses. The case of strong tapping is more
complex (Nowak et al., 1998), but some relevant simula-
tions and modelizations have been performed (Barker
and Mehta, 1991, 1992, 1993).

Even if we do not perform any tapping, we must
specify how the grains were brought in: there is a critical
moment, where the grains stop and adopt a frozen con-
formation. For instance, if we build a heap of sand from
an axial jet falling on the center, we create avalanches
from the center towards the edges; the freezing process
takes place via grains that roll and stop.

The distinction between rolling and frozen grains is
crucial. It is reminiscent of a phase transition. If we ac-
cept it, we may describe the later evolution of the frozen
phrase by a displacement field ;u(x ,y ,z ,t). This is de-
fined by the following gedanken experiment. We focus
our attention on one rolling grain and watch when it
stops, at a certain point x,y,z. This will define the origin
of its displacements. Later, with other grains added and
loading the system, our grain will move by an amount
;u(x ,y ,z ,t). Its position will thus depend on the whole
history of loading. The resulting displacement field is
continuous. Inside the frozen phase, we may define de-
formations ¹u . We may also define a (coarse-grained
average) stress field sab and relate it by some empirical
relation to the deformations.

This procedure is essentially what has been used in
mechanics departments: see, for instance, the review by
Biarez and Gourves (1989). But the precise definition of
;u is not always stated, and thus the very notion of a
displacement field has been questioned by a number of
physicists (for a recent summary, see Cates et al., 1998a,
1998b).

The present author’s belief is that ;u is well defined,
provided that there is a sharp distinction between fluid
particles and frozen particles.1 We shall come back to
this discussion later in Sec. III.

Another important point is the role of boundary con-
ditions, on the frozen piece:

(a) At the free surface: a heap, for instance, shrinks
under its own weight, and this renormalizes the relation
between deformations and displacements.

(b) At the interface between the grains and a solid
wall, the normal displacements must, of course, be con-
tinuous. The delicate part is the description of friction,
i.e., of tangential stresses s t at the surface. The natural
scheme is as follows:

(i) If the tangential component of ;u(;ut) has
grown monotonically and is large enough, the re-
action s t from the wall is opposed to ;ut . For a
cohesionless interface, we may write the classical

1This may exclude certain complex problems such as tapping.
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relation (Amontons’ law; see, for instance,
Bowden and Tabor, 1973)
st5mfsn ,
where sn is the normal stress and m f is a friction
coefficient. We call this regime ‘‘fully mobilized
friction.’’

(ii) If the tangential displacement u;utu is smaller
than a certain microscopic length D, the friction is
only partly mobilized. We call D the ‘‘anchoring
length’’ (de Gennes, 1997). It is usually related to
the size of microscopic roughness. For macro-
scopic solids in contact, D is of order one micron.

(iii) If we reverse the displacements (as may happen in
experiments where weight and thermal expan-
sions are in conflict) the friction force will reverse
fully, only if we move backwards by more than
2D.

Thus the state of friction may be influenced by minute
displacements of the grains (of order D) with respect to
the container walls. In a recent experiment on columns
(Vanel et al., 1998), the apparent weight at the bottom
was found to vary cyclically between day and night: as
pointed out by the authors, this is probably due to ther-
mal expansion, inducing some (very small) relative dis-
placements between the grains and the lateral walls, and
changing drastically the mobilization of friction.

To summarize: the definition of an initial state, in an
experiment on granular matter, requires great care.
Many theories and some experiments suffer from a lack
of precise definitions.

III. MACROSCOPIC STRESS FIELDS

A. The general problem

For more than a hundred years, departments of ap-
plied mechanics, geotechnical engineering, and chemical
engineering have analyzed the static distribution of
stresses in granular samples. What is usually done is to
determine the relations between stress and strain on
model samples, using the so-called triaxial tests. Then,
these data are integrated into the problem at hand, with
the material divided into finite elements (see, for in-
stance, Schofield and Wroth, 1968).

In a number of cases, the problem can be simplified,
assuming that the sample has not experienced any dan-
gerous stress since the moment when the grains ‘‘froze’’
together: this leads to a quasielastic description, which is
simple. I shall try to make these statements more con-
crete by choosing one example: a silo filled with grain.

B. The Janssen picture for a silo

The filled silo is shown in Fig. 1. The central observa-
tion is that stresses, measured with gauges at the bottom,
are generally much smaller than the hydrostatic pressure
rgH which we would have in a liquid (here r is the
density, g is the gravitational acceleration, and H is the
column height). A first modelization for this was given
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
long ago by Janssen and Vereins (1895) and Lord Ray-
leigh (1906a, 1906b, 1906c, 1906d).

(a) Janssen assumes that the horizontal stresses in the
granular medium (sxx ,syy) are proportional to the ver-
tical stresses:

sxx5syy5kjszz52kjp~z !, (2)

where kj is a phenomenological coefficient and p
52szz is a pressure.

(b) An important item is the friction between the
grains and the vertical walls. The walls endure a stress
srz . The equilibrium condition for a horizontal slice of
grain (area pR2, height dz) gives

2rg1
]p

]z
5

2
R

srzu
r5R

, (3)

where r is a radical coordinate and z is measured posi-
tive towards the bottom.

Janssen assumes that, everywhere on the walls, the
friction force has reached its maximum allowed value—
given by the celebrated law of L. da Vinci and Amon-
tons (Bowden and Tabor, 1973):

srz52m fsrr52m fkjp , (4)

where m f is the coefficient of friction between grains and
wall.

Accepting Eqs. (2) and (4), and incorporating them
into Eq. (3), Janssen arrives at

]p

]z
1

2m f

R
kjp5rg . (5)

This introduces a characteristic length

l5
R

2m fkj
(6)

and leads to pressure profiles of the form

p~z !5p`@12expk~2z/l!# , (7)

FIG. 1. A silo filled with granular material: the material falls
slightly under its own weight, by an amount u. The width of the
silo has been exaggerated to display the expected profile of u
in a quasielastic model.
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with p`5rgl . Near the free surface (z,l) the pressure
is hydrostatic (p;rgz). But at larger depths (z.l) p
→p` : all the weight is carried by the walls.

C. Critique of the Janssen model

This picture is simple and does give the gross features
of stress distributions in silos. But the two assumptions
are open to some doubt.

(a) If we take an (excellent) book describing the prob-
lem as seen from the point of view of the mechanics
department (Nedermann, 1992), we find that Eq. (1) is
criticized: a constitutive relation of this sort might be
acceptable if x,y,z were the principal axes of the stress
tensor, but in fact, in the Janssen model, we also need
nonvanishing off-diagonal components sxz ,syz .

(b) For the contact with the wall, it is entirely arbi-
trary to assume full mobilization of the friction, as in Eq.
(4). In fact, any value srz /srr below threshold would be
acceptable. Some tutorial examples of this condition and
of its mechanical consequences are presented in Duran’s
book (1997). I discussed some related ambiguities in a
recent note (de Gennes, 1997) emphasizing the role of
the anchoring length.

D. Quasielastic model

When a granular sample is prepared, we start from
grains in motion, and each grain freezes at a certain mo-
ment. This defines our reference state: (i) the origin of
the grain displacements is the freezing point; (ii) the ref-
erence density (for defining deformations) is the density
achieved immediately upon freezing.

If we fill a silo from the center, we have continuous
avalanches running towards the walls, which stop and
leave us with a certain slope.

Recent theoretical studies on avalanches (Boutreux
et al., 1998) suggest that this final slope, in a ‘‘closed-
cell’’ geometry like the silo, should always be below
critical: we do not expect to be close to an instability in
shear, and the material is under compression every-
where. In situations like this, we may try to describe the
granular medium as a quasielastic medium. The use of
‘‘quasi’’ must be explained at this point.

When we have a granular system in a certain state of
compaction, it will show a resistance to compression,
measured by a macroscopic bulk modulus K. But the
forces are mediated by small contact regions between
two adjacent grains, and the contact areas increase with
pressure. The result is that K(p) increases with p. For
spheroidal objects and purely Hertzian contacts, one
would expect K;p1/3, while most experiments are closer
to K;p1/2 (Duffy and Mindlin, 1957). Various interpre-
tations of the p1/2 law have been proposed (Goddard
et al., 1990; de Gennes, 1996).

Evesque and the present author (1998) recently used
the quasielastic picture to describe displacements and
stresses in a silo. The displacements are vertical and cor-
respond to a slight collapse of the column under its own
weight. They increase during filling: their description in-
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
volves the whole sample history. (The displacements are
also slightly smaller near the walls than in the center.
This creates the shear stresses that worried Neder-
mann.)

The result is a Janssen relation of the form of Eq. (2),
with a value of kj that depends only on the Poisson ratio
sp of the material:

kj5
sp

12sp
. (8)

Although the elastic moduli do depend on pressure, it
may be that sp and kj are pressure independent. Then
the Janssen pressure profile should hold, provided that
mobilization of the wall friction is complete. For long
columns (H@l) the maximum displacement is achieved
at mid-height and is

uuumax5
l2

lc
, (9)

where lc5E/rg is what we call the compaction length
(E5the Young modulus; r5the density). Mobilization
is indeed complete if uuumax@D (the anchoring length),
or equivalently l.H* , where

H* 5~Dlc!1/2. (10)

In this formula, D is very small, but lc is very large.
Typical values of H* depend on E, but may be centime-
tric. Thus, if the quasielastic model makes sense, the
Janssen picture should hold for silos (l>meters,l
.H* ) but not necessarily for laboratory columns (l
>1 cm).

E. Stress distribution in a heap

Below a heap of sand, the distribution of normal pres-
sures on the floor is not easy to guess. In some cases, the
pressure is not a maximum at the center point! This has
led to a vast number of physical conjectures, describing
‘‘arches’’ in the structure (Bouchaud et al., 1995; Ed-
wards and Mounfield, 1996). In their most recent form
(Wittmer et al., 1997), what is assumed is that, in a heap,
the principal axes of the stress are fixed by the deposi-
tion procedure. Near the free surface, following the pio-
neering work of Coulomb, it is usually assumed that (for
a material of zero cohesion) the shear and normal com-
ponents of the stress (t and sn) are related by the con-
dition

t5snm i5sn tan umax , (11)

where m i is an interval friction coefficient and tan umax is
the resulting slope. Equation (11) should hold for a dry
system with no cohesion between grains. In a two-
dimensional geometry, this corresponds to a principal
axis that is at an angle 2umax from the horizontal (Ned-
ermann, 1992). The assumption of Wittmer et al. is that
this orientation is retained in the left-hand side of the
heap (plus a mirror symmetry for the right-hand side).
Once this is accepted, the equilibrium conditions incor-
porating gravity naturally lead to a ‘‘channeling of
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forces’’ along the principal axis, and to a distribution of
loads on the bottom that has two peaks. More generally,
in the description of Bouchaud et al., the transmission of
stresses is described by hyperbolic equations, leading to
certain preferred directions. In the classical approach
from continuum mechanics, the transmission is ruled by
elliptic equations. In the first picture, the entire heap is
pictured as being in some sort of critical state. In the
second picture, we are far from criticality, and the heap
is not dramatically different from a conventional solid—
although the sample history is important for a clear defi-
nition of deformations.

The ‘‘critical’’ view has been challenged by S. Savage
(1997a, 1997b) and by J. D. Goddard (1998). Savage
gives a detailed review of the experimental and theoret-
ical literature. He makes the following claims:

(a) for two-dimensional heaps (‘‘wedges’’) with a rigid
support plane, there is no dip in the experiments.

(b) if the support is (very slightly) deformable, the
stress field changes deeply, and a dip occurs. This is an-
other example of the role of minute displacements,
which was already emphasized in Sec. III.E.

(c) for the 3D case (‘‘cones’’), the results are ex-
tremely sensitive to the details of the deposition proce-
dure.

The most recent data on cones are by Brockbank et al.
(1997). They use an accurate optical measurement of the
local load under a conical heap of steel balls. The balls
in the bottom layer deform the support, which is made
of a transparent rubber film (;2 mm in thickness) lying
over a glass surface. They do find a dip with steel, and
also with glass heads of diameter 0.18 mm. But, when
going to larger glass beads (;0.6 mm), the dip disap-
pears!

Savage also describes finite element calculations,
where one imposes the Mohr-Coulomb conditions (to
which we come back in Sec. III) at the free surface of a
wedge. If we had assumed a quasielastic description in-
side, we would have found an inconsistency: there is a
region, just below the surface, which becomes unstable
towards shear and slippage. Thus Savage uses Mohr-
Coulomb conditions in a finite sheet near the surface,
plus elastic laws in the inner part. With a rigid support
he finds no dip, but with a deformable support he gets a
dip.

The Savage methodology is similar in spirit to the
quasielastic method although the details of the boundary
conditions could possibly be altered. For instance, there
may exist an extra simplification—which I already an-
nounced in connection with the silos. If we look at the
formation of the heap, we find that the slope angle upon
deposition should be slightly lower than the critical
angle umax . Thus our system is prepared under noncriti-
cal conditions: all of the sample may then be described
as quasielastic. This, in fact, should not produce very
different results from those of Savage.

But there is a certain doubt, formulated by M. Cates
and others: if the grains were glued together by micro-
scopic glue patches at the contact point, indeed we
might define displacements and deformations and use
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
the Savage picture. But there is no glue! Certain grains
might then be under tension (even if we are under a
global compressive load): mechanical integrity is not
granted!

In reply to this, the present author proposes three ob-
servations, which tend to support the classical view from
mechanics.

(i) Shear tests: under compressive load (in conditions
without fracture) the stress strain relations are clearly
history dependent, but do not display (as far as we can
tell) any singular power laws.

(ii) Lack of criticality: if we examine the local density
in a horizontal bed of sand, or the volume fraction f as
a function of depth, we find that f is nearly constant and
significantly larger than the critical value fmin men-
tioned in Sec. II.2 For these practical f values (as we
shall see in Sec. IV) the few indications available on
correlation lengths j suggest that j is not large (at most
of order 5 to 10 grain diameters). The singularities
linked with arches, with tensile microcracks, should thus
be confined to very small scales Dx,j .

(iii) Texture: One of the features that the physicists
really wanted to incorporate is the possible importance
of an internal texture. If we look at the contacts
(1,2, . . . i , . . .p) of a grain in the structure, we can form
two characteristic tensors: one is purely geometrical and
defines preferred directions of contact. It is

Qab5i( xa
~ i !xb

~ i !, (12)

where xa are the distances measured from the center of
gravity of the grain. Qab is also called the ‘‘fabric ten-
sor’’ (Oda, 1972, 1993; Oda and Sudoo, 1989). It is re-
lated to the ‘‘ellipsoid of contacts’’ introduced by Biarez
and Wiendick (1963). The other tensor is the static
stress:

sab5
1
2

i( ~xa
~ i !Fb

~ i !1xbFa
~ i !!, (13)

where ;Fi is the force transmitted at contact (i). There
is no reason for the axes of these two tensors to coin-
cide. For instance, in an ideal hexagonal crystal, one ma-
jor axis of the Q tensor is the hexagonal axis, while the
stresses can have any set of principal axes. In the heap
problem, I am personally inclined to believe that the
deposition process freezes a certain structure for the Q
tensor, but not for the stress tensor. However, this is still
open to discussion! Recent arguments defending the op-
posite viewpoint have been given by Cates et al. (1998b).

The presence of a nontrivial Q tensor (or ‘‘texture’’)
can modify the quasielastic model: instead of using an
isotropic medium, we may need an anisotropic medium.
In its simplest version, we would assume that the coarse-
grained average Qab had two degenerate eigenvalues
and a third eigenvalue, along a certain unit vector (the

2Note that although f is nearly constant, in a bed of sand
elastic moduli increase dramatically with depth. This is the ba-
sis of the ‘‘quasielastic’’ model.
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director) ;n(;r). Thus a complete discussion of static
problems (in the absence of strong shear bands) would
involve an extra field ;n defined by the construction of
the sample. This refinement may modify the load distri-
bution under a heap. But, conceptually, it is, in my opin-
ion, minor. Texture effects should not alter deeply the
quasielastic picture.

F. Strong deformations

Sophisticated tools have been designed for measuring
the yield stress ty of granular materials in simple shear
(Jenike, 1961; for a review, see for instance Brown and
Richards, 1970). There is an elastic response at low
shears, followed by yield at a certain value of the stress
ty :

ty5C1mpn , (14)

where pn is the normal pressure. The constant C repre-
sents adhesive interactions between grains, and m is a
friction coefficient. An important feature of these
strongly sheared systems—emphasized long ago by Rey-
nolds (1885) is dilatancy: when the material was origi-
nally rather compact and is forced to yield, it increases
in volume. This can be qualitatively understood by
thinking of two compact layers of spheres sliding over
each other.

In some cases, these strong deformations, with dila-
tancy, are present over large volumes. In other cases,
they may be concentrated on slip bands (see, for in-
stance, Desrues, 1991; Tillemans and Herrmann, 1995).
For instance, if we remove sand with a bulldozer, slip
bands will start from the bottom edge of the moving
plate. Sometimes, the size of these slip bands is large
and depends on the imposed boundary conditions (on
the sharpness of the plate edge). But there seems to be a
minimal thickness for a slip band: for spheroidal grains,
without cohesion, it may be of order 5 to 10 grain diam-
eters. We shall come back to this thickness when dis-
cussing microscopic properties.

IV. MICROSCOPIC FEATURES

A. Correlation lengths

We have talked about macroscopic stresses s ij : they
must represent some coarse-grained averages over a cer-
tain volume. The implicit assumption here is that, in-
deed, a granular medium can be considered as homoge-
neous at large scales. This is not obvious: if we were
talking about noncompacted material, with a density
close to the lower limit fmin50.56, we might have a
structure of weakly connected clusters (similar to perco-
lation clusters). Exactly at threshold (f5fmin) a struc-
ture like this would probably be self-similar and not ho-
mogeneous at all. However, in real life, we always
operate on systems with f.fmin , and we can expect
that, at scales larger than a certain correlation length
j(f), our system may be treated as homogeneous.
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Various experiments (Liu et al., 1995) and simulations
(Moreau, 1994; Ouageni and Roux, 1995; Zhuang et al.,
1995; Radjai et al., 1996) have investigated the local dis-
tribution of forces between grains. The central conclu-
sion is that there are force channels, which build up a
certain mesh with a characteristic size j. For spherical
objects and f values in the usual range, this j is some-
what larger than the grain diameter d (j/d;5 to 10).

The network is obviously sensitive to variations in size
among the grains. This ‘‘polydispersity’’ is always
present and plays an important role in the actual value
of j.

It may well be that the minimum thickness of a slip
band (as introduced in Sec. III.F) is equal (within coef-
ficients) to the correlation length j. Thus we have at
least two empirical ways of estimating j for a given sys-
tem.

B. Fluctuations of the local load

It is also of interest to probe the local distribution of
forces on all grains in contact with a supporting (hori-
zontal) plate. This has been done in experiments by the
Chicago group (Liu et al., 1995; Mueth et al., 1998), to-
gether with some simulations. Their trick is to lay the
granular sample on a sequence carbon paper/white
paper/solid plate. There is an empirical relation between
the size of the dots printed by each grain on the white
paper, and the force (w) with which it presses the
ground. What Liu et al. found was a distribution of w, of
the form

p~w !5
w2

2w̄3 e22w/w̄. (15)

Liu et al. (1995) constructed a simple model for this
statistical behavior, ignoring the vector character of the
forces. They stipulated that each grain receive a load (w)
from three neighbors above it:

w5q1w11q2w21q3w3 , (16)

where w1 ,w2 ,w3 are the loads on the ‘‘parents,’’ and
q1 ,q2 ,q3 are three coupling factors statistically distrib-
uted between 0 and 1, and independent. Conversely,
each parent sends some of its weight on to three ‘‘chil-
dren’’ with fractions q18 ,q28 ,q38 , and these fractions sat-
isfy the sum rule Sq1851. But apart from this constraint,
all the qs8 are independent.

The law (15) can be understood as follows:
(a) for w@w̄ , we must have q1 ,q2 ,q3;1, and we can

then factorize p(w);p(w1)p(w2)p(w3), with w5w1
1w21w3 . As pointed out by T. Witten, this condition is
similar to the problem of a Boltzmann distribution of
energies in thermal physics, and the solution is exponen-
tial p(w);exp(2aw).

(b) for w!w̄ , the weights carried by the three parents
are much larger than w, and the probability p(w) is es-
sentially proportional to the phase space available in
(q1 ,q2 ,q3) where the qs are linked by Eq. (16). This
corresponds to a triangle of edges, (w1/w ,0,0),
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(0,w/w2,0), (0,0,w/w3) in the (q1 ,q2 ,q3) space, with
an area ;w2. (However, on the experimental side, the
more recent data of Mueth et al. (1998) give a different
law!)

To summarize: (i) the fluctuations of w are compa-
rable to the average (w̄); (ii) the tail of the distribution
at large w is exponential. The probabilities q1 , for very
small loads (w→0), are still open to discussion.

A subsidiary question is: what are the correlations
^w(;x)w(;y)& between grains at different locations
(x,y) on the ground? The natural guess is that the range
of these correlations is the correlation length j.

Of course, the model should be refined by introducing
the vector character of the forces. The vectorial features
are crucial when the average load is variable from point
to point on the bottom plate. Consider, for instance, a
horizontal slab of grains, with a thickness H and a very
large aspect ratio. Impose a weak localized force F
downwards, at the center of the upper surface (x5y
50; see Fig. 2).

(a) The scalar model of (Liu et al., 1995) would give
an average load profile on the bottom plate with a peak
at the center and a width Dx;Dy;AdH (where d is the
grain diameter).

(b) With a tensorial stress field and a quasielastic
model, we expect Dx;Dy;H .

(c) With ‘‘singular’’ models that predict transmission
of the weight only in special directions (e.g., Bouchaud
et al., 1995), the load would be concentrated in a ring,
and disorder would make this ring slightly diffuse.

V. CONCLUDING REMARKS

The science of granular materials started with out-
standing pioneers: Coulomb, Reynolds, Bagnold . . . . In
recent years, it has benefited from the impact of very
novel techniques—e.g., nuclear imaging of grains at rest

FIG. 2. A crucial experiment, which to the author’s knowledge
has not yet been performed in a completely conclusive way. A
bed of sand is deposited uniformly on a large flat surface and
fills a height H. A small local force F is applied vertically at
one point of the top surface. What are the resulting extra loads
on the bottom plate? (a) In the ‘‘elliptic’’ models, used in soil
mechanics, the load is spread over a region of size ;H . (b) In
the ‘‘hyperbolic’’ models of Bouchaud et al. the load is distrib-
uted over an annulus.
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or in motion (Nakagawa et al., 1993). A strong stimulus
has also come from computer simulations—which have
not been adequately described in the present text, be-
cause of the author’s inexperience. It is clear that virtual
experiments with controlled, simplified interactions be-
tween grains can have a major impact. A review of the
tools, and of certain difficulties, can be found in Duran
(1997). Recent advances are described in the proceed-
ings of the Cargèse Workshop (Hermann, 1997).

However, in spite of these powerful tools, and even
for the simplest ‘‘dry’’ systems, the statistical physics of
grains is still in its infancy. Some basic notions may
emerge: (a) the sharp distinction between a fluid phase
and a frozen phase, with the resulting possibility of de-
fining a displacement field to describe the evolution of
the frozen phase; (b) a displacement field containing a
memory of all the sample history; (c) the possibility of
describing surface flows with equations coupling the two
phases and reduced to a simplicity reminiscent of the
Landau-Ginsburg picture of phase transitions.

But we are still left with strong disputes, and large
sectors of unraveled complexity.

Two fundamentally different pictures of the static be-
havior of heaps are facing each other: one represents the
material as a deformable solid, the other assumes a com-
pletely singular state of matter, with stress fields trans-
mitted along special directions and with microscopic in-
stabilities (earthquakes) occurring all the time (see, for
instance, Miller et al., 1996).

We have to know more! Here are some examples:
(a) The problem raised in Fig. 2: if we press gently at

the free surface of a large, flat bed of sand, are the
stresses below widely spread (as expected from a quasi-
elastic solid) or are they localized on a cone (as expected
in ‘‘singular’’ models)? The word ‘‘gently’’ is important
here: if we go to strong, local loads, we shall of course,
generate shear bands.

(b) Acoustic propagation in a granular bed: it is
mainly controlled by the (nonlinear) quasielastic fea-
tures plus mild effects of disorder. Or is it qualitatively
different, because a sound wave, even at small ampli-
tudes, starts some sort of earthquake?

(c) Decompaction: if we open the bottom of a vertical
column, we see pieces of solidlike matter which separate
from each other. Can we think of this as propagation of
fractures in a quasielastic solid, or is it completely differ-
ent?

(d) Similarly, when we perform a sequence of taps on
a column, as mentioned in Sec. II, should we visualize
the grains during the tap as a solid with microcracks or
as a liquid (if the amplitudes are high enough)?

We mentioned some current uncertainties for the
solid phase. There are uncertainties of comparable mag-
nitude for the fluid phases. Think, for instance, of fluid-
ized beds: an intelligent literature (describing both
transport and macroscopic instabilities) has been built
up, but we are still looking for a unified vision. The link
between mechanics, tribology, statistical physics, surface
chemistry, . . . remains to be built.
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