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This brief overview is designed to introduce some of the advances that have occurred in our
understanding of phase transitions and critical phenomena. The presentation is organized around
three simple questions: (i) What are the basic phenomena under consideration? (ii) Why do we care?
(iii) What do we actually do? To answer the third question, the author shall briefly review scaling,
universality, and renormalization, three of the many important themes which have served to provide
the framework of much of our current understanding of critical phenomena. The style is that of a
colloquium, not that of a mini-review article. [S0034-6861(99)02902-5]
I. THE FIRST QUESTION: ‘‘WHAT ARE CRITICAL
PHENOMENA?’’

Suppose we have a simple bar magnet. We know it is
a ferromagnet because it is capable of picking up thumb-
tacks, the number of which is called the order parameter
M . As we heat this system, M decreases and eventually,
at a certain critical temperature Tc , it reaches zero: no
more thumbtacks remain! In fact, the transition is re-
markably sharp, since M approaches zero at Tc with in-
finite slope. Such singular behavior is an example of a
‘‘critical phenomenon.’’

Critical phenomena are by no means limited to the
order parameter. For example, the response-functions
constant-field specific heat CH and isothermal suscepti-
bility xT both become infinite at the critical point.

II. THE SECOND QUESTION: ‘‘WHY DO WE CARE?’’

One reason for interest in any field is that, simply put,
we do not fully understand the basic phenomena. For
example, for even the simplest three-dimensional system
we cannot make exact predictions of all the relevant
quantities from any realistic microscopic model at our
disposal. Of the models that can be solved in closed
form, most make the same predictions for behavior near
the critical point as the classical mean-field model, in
which one assumes that each magnetic moment interacts
with all other magnetic moments in the entire system
with equal strength (see, e.g., the review of Domb,
1996). The mean-field model predicts that both M2 and
xT

21 approach zero linearly as T→Tc , and that CH does
not diverge at all. In fact, the mean-field theory cannot
locate the value of Tc to better than typically about
40%.

A second reason for our interest is the striking simi-
larity in behavior near the critical point among systems
that are otherwise quite different in nature. A cel-
ebrated example is the ‘‘lattice-gas’’ analogy between
the behavior of a single-axis ferromagnet and a simple
fluid, near their respective critical points (Lee and Yang,
1952). Even the numerical values of the critical-point
exponents describing the quantitative nature of the sin-
gularities are identical for large groups of apparently di-
verse physical systems.
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A third reason is awe. We wonder how it is that spins
‘‘know’’ to align so suddenly as T→Tc

1 . How can the
spins propagate their correlations so extensively
throughout the entire system that MÞ0 and xT→`?

III. THE THIRD QUESTION: ‘‘WHAT DO WE DO?’’

The answer to this question will occupy the remainder
of this brief overview. The recent past of the field of
critical phenomena has been characterized by several
important conceptual advances, three of which are scal-
ing, universality, and renormalization.

A. Scaling

The scaling hypothesis was independently developed
by several workers, including Widom, Domb and
Hunter, Kadanoff, Patashinskii and Pokrovskii, and
Fisher (authoritative reviews include Fisher, 1967 and
Kadanoff, 1967). The scaling hypothesis has two catego-
ries of predictions, both of which have been remarkably
well verified by a wealth of experimental data on diverse
systems. The first category is a set of relations, called
scaling laws, that serve to relate the various critical-point
exponents. For example, the exponents a , 2b , and g
describing the three functions CH , M2, and xT are re-
lated by the simple scaling law a12b1g52. Here the
exponents are defined by CH;e2a, M2;e2b, and xT
;e2g, where e[(T2Tc)/Tc is the reduced tempera-
ture.

The second category is a sort of data collapse, which is
perhaps best explained in terms of our simple example
of a uniaxial ferromagnet. We may write the equation of
state as a functional relationship of the form M
5M(H ,e), where M is the order parameter and H is the
magnetic field. Since M(H ,e) is a function of two vari-
ables, it can be represented graphically as M vs e for a
sequence of different values of H . The scaling hypoth-
esis predicts that all the curves of this family can be
‘‘collapsed’’ onto a single curve provided one plots not
M vs e but rather a scaled M (M divided by H to some
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power) vs a scaled e (e divided by H to some different
power).

The predictions of the scaling hypothesis are sup-
ported by a wide range of experimental work, and also
by numerous calculations on model systems such as the
n-vector model. Moreover, the general principles of
scale invariance used here have proved useful in inter-
preting a number of other phenomena, ranging from
elementary-particle physics (Jackiw, 1972) to galaxy
structure (Peebles, 1980).

B. Universality

The second theme goes by the rather pretentious
name ‘‘universality.’’ It was found empirically that one
could form an analog of the Mendeleev table if one par-
titions all critical systems into ‘‘universality classes.’’ The
concept of universality classes of critical behavior was
first clearly put forth by Kadanoff, at the 1970 Enrico
Fermi Summer School, based on earlier work of a large
number of workers including Griffiths, Jasnow and Wor-
tis, Fisher, Stanley, and others.

Consider, e.g., experimental M-H-T data on five di-
verse magnetic materials near their respective critical
points (Fig. 1). The fact that data for each collapse onto
a scaling function supports the scaling hypotheses, while
the fact that the scaling function is the same (apart from
two material-dependent scale factors) for all five diverse
materials is truly remarkable. This apparent universality
of critical behavior motivates the following question:
‘‘Which features of this microscopic interparticle force are
important for determining critical-point exponents and
scaling functions, and which are unimportant?’’

FIG. 1. Experimental MHT data on five different magnetic
materials plotted in scaled form. The five materials are CrBr3 ,
EuO, Ni, YIG, and Pd3Fe. None of these materials is an ide-
alized ferromagnet: CrBr3 has considerable lattice anisotropy,
EuO has significant second-neighbor interactions. Ni is an
itinerant-electron ferromagnet, YIG is a ferrimagnet, and
Pd3Fe is a ferromagnetic alloy. Nonetheless, the data for all
materials collapse onto a single scaling function, which is that
calculated for the d53 Heisenberg model [after Milošević and
Stanley (1976)].
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Two systems with the same values of critical-point ex-
ponents and scaling functions are said to belong to the
same universality class. Thus the fact that the exponents
and scaling functions in Fig. 1 are the same for all five
materials implies they all belong to the same universality
class.

C. Renormalization

The third theme stems from Wilson’s essential idea
that the critical point can be mapped onto a fixed point
of a suitably chosen transformation on the system’s
Hamiltonian (see the recent reviews: Goldenfeld, 1994;
Cardy, 1996; Lesne, 1998). This resulting ‘‘renormaliza-
tion group’’ description has (i) provided a foundation
for understanding the themes of scaling and universality,
(ii) provided a calculational tool permitting one to ob-
tain numerical estimates for the various critical-point ex-
ponents, and (iii) provided us with altogether new con-
cepts not anticipated previously.

One altogether new concept that has emerged from
renormalization is the idea of upper and lower marginal
dimensionalities d1 and d2 (see the review of Als-
Nielsen and Birgeneau, 1977). For d.d1 , the classical
theory provides an adequate description of critical-point
exponents and scaling functions, whereas for d,d1 , the
classical theory breaks down in the immediate vicinity of
the critical point because statistical fluctuations ne-
glected in the classical theory become important. The
case d5d1 must be treated with great care; usually, the
classical theory ‘‘almost’’ holds, and the modifications
take the form of weakly singular corrections.

For d,d2 , fluctuations are so strong that the system
cannot sustain long-range order for any T.0. For d2

,d,d1 , we do not know exactly the properties of sys-
tems (in most cases) except when n approaches infinity,
where n will be introduced below as the spin dimension.
One can, however, develop expansions in terms of the
parameters (d12d), (d2d2), and 1/n (see, e.g., the
reviews of Fisher, 1974; and Brézin and Wadia, 1993).

In the remainder of this brief overview, we shall at-
tempt to define somewhat more precisely the concepts
underlying the three themes of scaling, universality, and
renormalization without sacrificing the stated purpose,
that of a colloquium-level presentation.

IV. WHAT IS SCALING?

I offer here a very brief introduction to the spirit and
scope of the scaling approach to phase transitions and
critical phenomena using, for the sake of concreteness, a
simple system: the Ising magnet. Further, we discuss
only the simplest static property, the order parameter,
and the two response functions CH and xT . The rich
subject of dynamic scaling is beyond our scope here
(see, e.g., the authoritative review of Hohenberg and
Halperin, 1977).
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A. The scaling hypothesis

The scaling hypothesis for thermodynamic functions is
made in the form of a statement about one particular
thermodynamic potential, generally chosen to be the
Gibbs potential per spin, G(H ,T)5G(H ,e). One form
of the hypothesis is the statement (see, e.g., Stanley,
1971) that asymptotically close to the critical point,
Gs(H ,e), the singular part of G(H ,e), is a generalized
homogeneous function (GHF). Thus the scaling hypoth-
esis may be expressed as a relatively compact statement
that asymptotically close to the critical point, there exist
two numbers, aH and aT (termed the field and tempera-
ture scaling powers) such that for all positive l ,
Gs(H ,e) obeys the functional equation:

Gs~laHH ,laTe!5lGs~H ,e!. (1)

B. Exponent relations: The scaling laws

The predictions of the scaling hypothesis are simply
the properties of GHFs: (i) Legendre transforms of
GHFs are also GHFs, so all thermodynamic potentials
are GHFs. (ii) Derivatives of GHFs are also GHFs.
Since every thermodynamic function is expressible as
some derivative of some thermodynamic potential, it
follows that the singular part of every thermodynamic
function is asymptotically a GHF.

Two useful facts are worth noting:
(a) The critical-point exponent for any function is sim-

ply given by the ratio of the scaling power of the func-
tion to the scaling power of the path variable along
which the critical point is approached:

arbitrary exponent5
a function

apath
. (2)

Thus one can ‘‘write down by inspection’’ expressions
for any critical-point exponent. Equation (2) holds gen-
erally, and proves useful in practice. For the special case
of a uniaxial ferromagnet, we have

apath5H aH strong path @T5Tc ,H→0# ,

aT weak path @H506,T→Tc
6# .

(3)

From property (ii), it follows that

a function5H 12aH for M̄}~]G/]H !T ,

12aT for S̄}~]G/]T !H .
(4a)

Similarly, from the definitions for the susceptibility
and specific heat, we have

a function5H 122aH for x̄T}~]2G/]H2!T ,

122aT for C̄H}~]2G/]T2!H .
(4b)

(b) Since each critical-point exponent is directly ex-
pressible in terms of aH and aT , it follows that one can
eliminate these two unknown scaling powers from the
expressions for three different exponents, and thereby
obtain a family of equalities called scaling laws.
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To illustrate the utility of facts (a) and (b), we note
from Eqs. (3) and (4b) that

2a85
122aT

aT
, (5a)

b5
12aH

aT
, (5b)

and

2g85
122aH

aT
. (5c)

We thus have three equations and two unknowns. Elimi-
nating aH and aT , we find

a812b1g852, (6)

which is the Rushbrooke inequality a812b1g>2 in
the form of an equality. Defining d through M;Hd, it
follows that

d215
aM

aH
5

12aH

aH
. (7)

Eliminating aH and aT from Eqs. (5a), (5b), and (7), we
obtain the Griffiths equality

a81b~d11 !52. (8)

Similarly, Eqs. (5b), (5c), and (7) give the Widom equal-
ity

g85b~d21 !. (9)

Thus one hallmark of the scaling approach is a family
of three-exponent equalities—called scaling laws—of
which Eqs. (6), (8), and (9) are but examples. In general,
it suffices to determine two exponents since these will in
general fix the scaling powers aH and aT , which in turn
may be used to obtain the exponents for any thermody-
namic function.

C. Equation of state and scaling functions

Next we discuss a second hallmark of the scaling ap-
proach, the equation of state. The scaling hypothesis of
Eq. (1) constrains the form of a thermodynamic poten-
tial, near the critical point, so this constraint must have
implications for quantities derived from that potential,
such as the equation of state.

Consider, for example, the M(H ,T) equation of state
of a uniaxial ferromagnet near the critical point @H
50,T5Tc# . On differentiating Eq. (1) with respect to
H , we find

M~laHH ,laTe!5l12aHM~H ,e!. (10)

Since Eq. (10) is valid for all positive values of l , it must
certainly hold for the particular choice l5H21/aH.
Hence

MH5M~1,eH!5F ~1 !~eH!, (11a)

where
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MH[
M

H ~12aH!/aH
5

M

H1/d
, (11b)

and

eH[
e

HaT /aH
5

e

H1/D (11c)

are termed the scaled magnetization and scaled tempera-
ture, while the function F (1)(x)5M(1,x) defined in Eq.
(11a) is called a scaling function.

In Fig. 1, the scaled magnetization MH is plotted
against the scaled temperature eH , and the entire family
of M(H5const,T) curves ‘‘collapse’’ onto a single func-
tion. This scaling function F (1)(H)5M(1,eH) evidently
is the magnetization function in fixed nonzero magnetic
field.

V. WHAT IS UNIVERSALITY?

Empirically, one finds that all systems in nature be-
long to one of a comparatively small number of such
universality classes. Two specific microscopic interaction
Hamiltonians appear almost sufficient to encompass the
universality classes necessary for static critical phenom-
ena.

The first of these is the Q-state Potts model (Potts,
1952; Wu, 1982). One assumes that each spin i can be in
one of Q possible discrete orientations z i (z i
51,2, . . . ,Q). If two neighboring spins i and j are in the
same orientation, then they contribute an amount 2J to
the total energy of a configuration. If i and j are in dif-
ferent orientations, they contribute nothing. Thus the
interaction Hamiltonian is [Fig. 2(a)]

H~d ,s !52J(̂
ij&

d~z i ,z j!, (12a)

where d(z i ,z j)51 if z i5z j , and is zero otherwise. The
angular brackets in Eq. (12a) indicate that the summa-
tion is over all pairs of nearest-neighbor sites ^ij&. The
interaction energy of a pair of neighboring parallel spins
is 2J , so that if J.0, the system should order ferromag-
netically at T50.

The second such model is the n-vector model (Stan-
ley, 1968), characterized by spins capable of taking on a
continuum of states [Fig. 2(b)]. The Hamiltonian for the
n-vector model is

H~d ,n !52J(̂
ij&

SW i•SW j . (12b)

Here, the spin SW i[(Si1 ,Si2 , . . . ,Sin) is an
n-dimensional unit vector with (a51

n Sia
2 51, and SW i inter-

acts isotropically with spin SW j localized on site j . Two
parameters in the n-vector model are the system dimen-
sionality d and the spin dimensionality n. The parameter
n is sometimes called the order-parameter symmetry
number; both d and n determine the universality class of
a system for static exponents.
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Both the Potts and n-vector hierarchies are generali-
zation of the simple Ising model of a uniaxial ferromag-
net. This is indicated schematically in Fig. 2(c), in which
the Potts hierarchy is depicted as a north-south ‘‘Metro
line,’’ while the n-vector hierarchy appears as an east-
west line. The various stops along the respective Metro
lines are labeled by the appropriate value of s and n .
The two Metro lines have a correspondence at the Ising
model, where Q52 and n51.

Along the north-south Metro line (the Q-state hierar-
chy), Kasteleyn and Fortuin showed that the limit Q
51 reduces to the random percolation problem, which
may be relevant to the onset of gelation (Stauffer and
Aharony, 1992; Bunde and Havlin, 1996). Stephen dem-
onstrated that the limit Q50 corresponds to a type of
treelike percolation, while Aharony and Müller showed
that the case Q53 has been demonstrated to be of rel-
evance in interpreting experimental data on structural
phase transitions and on absorbed monolayer systems.

The east-west Metro line, though newer, has probably
been studied more extensively than the north-south line;
hence we shall discuss the east-west line first. For n51,
the spins Si are one-dimensional unit vectors which take
on the values 61. Equation (12b), H(d ,1), is the Ising
Hamiltonian, which has proved extremely useful in in-
terpreting the properties of the liquid-gas critical point
(Levelt Sengers et al., 1977). This case also corresponds
to the uniaxial ferromagnet introduced previously.

FIG. 2. Schematic illustrations of the possible orientations of
the spins in (a) the s-state Potts model, and (b) the n-vector
model. Note that the two models coincide when Q52 and n
51. (c) North-south and east-west ‘‘Metro lines.’’
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Other values of n correspond to other systems of in-
terest. For example, the case n52 describes a set of
isotropically interacting classical spins whose motion is
confined to a plane. The Hamiltonian H(d ,2) is some-
times called the plane-rotator model or the XY model.
It is relevant to the description of a magnet with an easy
plane of anisotropy such that the moments prefer to lie
in a given plane. The case n52 is also useful in inter-
preting experimental data on the l-transition in 4He.

For the case n53, the spins are isotropically interact-
ing unit vectors free to point anywhere in three-
dimensional space. Indeed, H(d ,3) is the classical
Heisenberg model, which has been used for some time
to interpret the properties of many isotropic magnetic
materials near their critical points.

Two particular ‘‘Metro stops’’ are more difficult to see
yet nevertheless have played important roles in the de-
velopment of current understanding of phase transitions
and critical phenomena. The first of these is the limiting
case n→` , which Stanley showed (in a paper reprinted
as Chapter 1 of Brézin and Wadia, 1993) corresponds to
the Berlin-Kac spherical model of magnetism, and is in
the same universality class as the ideal Bose gas. The
second limiting case n50 de Gennes showed has the
same statistics of a d-dimensional self-avoiding random
walk, which in turn models a system of dilute polymer
molecules (see, e.g., de Gennes, 1979 and references
therein). The case n522 corresponds, as Balian and
Toulouse demonstrated, to random walks, while Muka-
mel and co-workers showed that the cases n54,6,8, . . .
may correspond to certain antiferromagnetic orderings.

VI. WHAT IS RENORMALIZATION?

This is the second most-often-asked question. In one
sense this question is easier to answer than ‘‘what is scal-
ing,’’ because to some degree renormalization concepts
lead to a well-defined prescription for obtaining numeri-
cal values of critical exponents, unlike the scaling hy-
pothesis which leads only to relations among exponents.
Answering the question can involve considerable math-
ematics, so we concentrate here not on momentum-
space renormalization but rather on the simpler position
space. Instead of treating thermal phenomena we treat a
different class of critical phenomena, the purely geomet-
ric connectivity phenomena generally called ‘‘percola-
tion.’’ The example we give requires such simple math-
ematics that one could imagine that renormalization
could have been invented by the Greek geometers.

A. The percolation problem

We begin by defining the percolation problem. This is
a phase-transition model that was formulated only in
comparatively recent times. Recent reviews describing
the wealth of current research on percolation include
Stauffer and Aharony (1992), and Bunde and Havlin
(1996).

Suppose a fraction p of the sites of an infinite
d-dimensional lattice are occupied. For p small, most of
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the occupied sites are surrounded by vacant neighboring
sites. However as p increases, many of the neighboring
sites become occupied, and the sites are said to form
clusters (sites i and j belong to the same cluster if there
exists a path joining nearest-neighbor pairs of occupied
sites leading from site i to site j). One can describe the
clusters by various functions, such as their characteristic
linear dimension j(p). As p increases, j(p) increases
monotonically, and at a critical value of p—denoted
pc—it diverges:

j~p !;up2pcu2n. (13)

For p>pc there appears, in addition to the finite clus-
ters, a cluster that is infinite in extent.

The number pc is referred to as the connectivity
threshold because of the fact that for p,pc the connec-
tivity is not sufficient to give rise to an infinite cluster,
while for p.pc it is. Indeed, we shall see that the role of
e[(T2Tc)/Tc is played by (pc2p)/pc . The numerical
value of pc depends upon both the dimensionality d of
the lattice and on the lattice type; however percolation
exponents depend only on d .

B. Kadanoff cells and the renormalization transformation

Percolation functions can be calculated in closed form
for d51 by Reynolds and co-workers (see, e.g, the re-
view Stanley, 1982). In particular, one finds that pc51,
and that n51. It is instructive to illustrate some aspects
of the position-space renormalization approach on this
exactly-soluble system (Stanley, 1982). The treatment
presented below is intended to illustrate—in terms of a
simple example—some of the features of the position-
space renormalization approach.

The starting point of our illustrative example is the
Kadanoff-cell transformation (Kadanoff, 1967). This is
illustrated for one-dimensional percolation in Fig. 3(a),
which shows bd-site Kadanoff cells with b52 and d
51. Just as each site in the lattice is described by a pa-
rameter p , its probability of being occupied, so each cell
is described by a parameter p8, which we may regard as
being the ‘‘cell occupation probability’’ [Fig. 3(b)]. The
essential step in the renormalization-group approach is
the construction of a functional relation between the
original parameter p and the ‘‘renormalized’’ parameter
p8,

p85Rb~p !. (14)

The function Rb(p) is termed a renormalization trans-
formation.

The transformation Rb(p) is particularly simple for
one-dimension percolation. Since the percolation
threshold is a connectivity phase transition, it is reason-
able to say that a cell is ‘‘occupied’’ only if all the sites in
the cell are occupied (for if a single site were empty,
then the connectivity would be lost). If the probability of
a single site being occupied is p , then the probability of
all b sites in the cell being occupied is pb. Hence
Rb(p)5pb, and Eq. (14) becomes
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p85pb. (15)

C. Fixed points of the renormalization transformation

The actual choice of the function Rb(p) varies, of
course, from one problem to the other. However the
remaining steps to be followed after selecting a suitable
Rb(p) are essentially the same for all problems. First,
we note [Fig. 3(c)] that on carrying out the renormaliza-
tion transformation, the new correlation length j8(p8) is
smaller than the original correlation length j(p) by a
factor of b :

j8~p8!5b21j~p !. (16)

Next we consider the effect of carrying out successive
Kadanoff-cell transformations with our one-dimensional
example. Suppose the system starts out at an initial pa-
rameter value p5p050.9, as shown schematically in Fig.
4. After a single renormalization transformation, the
value of p becomes p085Rb(p0)50.81 by Eq. (15). The
transformed system is farther from the critical point, and

FIG. 3. The Kadanoff-cell transformation applied to the ex-
ample of one-dimensional percolation. The site level in (a) is
characterized by a single parameter p—the probability of a site
being occupied. The cell level in (b) is characterized by the
parameter p8—the probability of a cell being occupied. The
relation between the two parameters, p and p8, is given by the
renormalization transformation R(p) of Eqs. (14) and (15).
Also shown are successive Kadanoff-cell transformations. Af-
ter each transformation, the correlation length j(p) is halved.
The corresponding value of occupation probability is reduced
to p85pb5p2, thus taking the system ‘‘farther away’’ from the
critical point p5pc51. Occupied sites and cells are shown
solid, while empty sites and cells are open.
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hence j8(p8) is smaller—just as we noted in Fig. 3(c). If
we now perform a renormalization transformation on
the transformed system, we have p095Rb@Rb(p0)#
5(p08)250.64. The doubly-transformed system is now
farther still from the critical point.

Thus the effect of successive Kadanoff-cell transfor-
mations for the example at hand is to take the system
away from its critical point. An important exception to
this statement is the following: if a system is initially at
its critical point (e.g., if p05pc51), then j5` and
hence j8, by Eq. (16), is also infinite. A necessary but
not sufficient condition that this occur is for p8 to equal
p . The values of p for which p85p are termed the fixed
points p* of the transformation Rb(p),

Rb~p* !5p* . (17)

Thus, by obtaining all the fixed points of a given renor-
malization transformation Rb(p), we should be able to
obtain the critical point. For the example of one-
dimension percolation, Rb(p)5pb and there are two
fixed points. One is p* 50 and the other is p* 51. In-
deed, we recognize the critical point, pc51, as one of the
two fixed points.

Now if the system is initially at a value p5p0 , which
is close to the p* 51 fixed point, then under the renor-
malization transformation it is carried to a value of p08 ,
which is farther from that fixed point. We may say a
fixed point is unstable for the ‘‘relevant’’ scaling field u
5(p2pc). Conversely, if p0 is close to the p* 50 fixed
point, then it is carried to a value p08 that is still closer to
that fixed point; we term such a fixed point stable. Thus
for the example at hand, there is one unstable fixed
point, p* 51, and one stable fixed point, p* 50.

We often indicate the results of successive renormal-
ization transformations schematically by means of a
simple flow diagram, as is shown in Fig. 4(b). The arrows
in the flow diagram indicate the effect of successive
renormalization on the system’s parameters. Note that
the ‘‘flow’’ under successive transformations is from the
unstable fixed point toward the stable fixed point. In the
example treated here, there is only one parameter p and

FIG. 4. Generic idea of a flow diagram, illustrated here for the
pedagogical example of one dimension. (a) Two curves, p8
5p and p85R2(p)5p2. The fixed points p* 50,1 are given by
the intersection of these two curves; the ‘‘thermal’’ scaling
power aT is related to the slope of Rb(p) at the unstable fixed
point p* 51. Also shown is the effect of successive Kadanoff-
cell transformations, Eq. (15), on a system whose initial value
of the parameter p is p050.9. This information is capsulized in
the one-dimensional flow diagram of part (b), which illustrates
the result of Eq. (16)—that each renormalization serves to
halve the correlation length j .
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hence the flow diagram is one dimensional; in general,
there can be many parameters, and the flow diagram is
multidimensional.

D. Calculations of the ‘‘thermal’’ scaling power

We can also obtain numerical values for the scaling
powers once we have a renormalization transformation.
The ‘‘thermal’’ scaling power can be calculated for the
basic reason that knowledge of Rb(p) near p* provides
information on how j(p) behaves for p near p* . Per-
haps the simplest and most straightforward fashion of
demonstrating this fact is to expand Rb(p) about p
5p* :

Rb~p !5Rb~p* !1lT~b !~p2p* !1O~p2p* !2. (18)

Here we use the symbol lT(b) to denote the first de-
rivative of the renormalization function evaluated at the
fixed point p* . From Eq. (15), we find

lT~b !5S dRb

dp D
p5p*

5b . (19)

If we now substitute Eqs. (14) and Eq. (17) into (18),
and if we neglect terms of order (p2p* )2, then we ob-
tain simply

p82p* 5lT~b !~p2p* !. (20)

Equation (20) expresses the deviation of p8 from the
fixed point in the transformed system in terms of the
deviation of p from the fixed-point value in the original
system.

As we noted above, the effect of the renormalization
transformation on j(p) is given by Eq. (16). If we regard
Eq. (16) as a functional equation valid for all values of
p , p8, and b , then we can set b51 and conclude that

j8~p !5j~p !, (21)

where the equality p85p follows from Eqs. (19) and
(20). Thus j8 and j are the same functions, so that if
j(p) has a power-law dependence near the critical
point—given by Eq. (13)—then it follows from Eq. (21)
that

j8~p8!5up82pcu2n. (22a)

Substituting Eqs. (13) and (22a) into Eq. (16), we have

up82pcu2n;b21up2pcu2n. (22b)

Since pc is the value of p at which j diverges, we set
p* 5pc in Eq. (20). Hence

up82pcu2n5@lT~b !#2nup2pcu2n. (22c)

Comparing Eqs. (22b) and (22c), we can express n in
terms of the scale change b and the ‘‘derivative’’ lT(b),

n5
ln b

ln lT~b !
. (22d)

The argument thus far is valid generally. Returning to
the example of one-dimensional percolation, we note
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from Eq. (19) that lT(b)5b . Hence from Eq. (22d) n
51, which is the exact result.

The renormalization approach to critical phenomena
leads to scaling (see, e.g., the discussion in Nelson and
Fisher, 1975 and Fisher, 1998). As a result of scaling,
knowledge of n is sufficient to determine the value of
aT , the ‘‘thermal’’ scaling power for the weak direction,
since

aT5
1

dn
. (23a)

It is becoming customary to normalize scaling powers by
a factor of d , the system dimensionality. Thus one de-
fines yT[daT and finds from Eqs. (22d) and (23a) that

yT5
ln lT~b !

ln b
. (23b)

VII. DO WE UNDERSTAND THE CRITICAL POINT?

About half of the physicists I know feel the critical
point is not understood, while the other half seem to feel
that it is. It all depends on what we mean by the word
‘‘understood.’’ For some, the term means that one can
solve a model in closed form and calculate all the expo-
nents. Then the situation is like Schubert’s unfinished
symphony—albeit perhaps not finished, it is nonetheless
very beautiful. And, like Schubert’s symphony, what is
not finished will never be since even the ‘‘simple’’ Ising
model is believed hopelessly insoluble except for the
case of d51,2. Even the d52 case is hopeless to solve in
nonzero magnetic field, so do not expect exact calcula-
tions of scaling functions and all the field-dependent ex-
ponents. In three dimensions, no models are solved in
closed form, with a few notable exceptions such as the
n→` limit of the n-vector model, and some initial terms
for the 1/n expansion (Brézin and Wadia, 1993).

If we relax our standards of rigor and consider the
scaling hypothesis, then we can make some concrete
predictions for all dimensions, but not for the exponent
values or the threshold values. While not rigorous, the
various ‘‘handwaving’’ arguments to justify scaling and
renormalization are sufficient to convince a reasonable
person—but not a stubborn one (to paraphrase the
critical-phenomena pioneer Marc Kac). But even the
handwaving arguments do not explain why in some sys-
tems scaling holds for only 1–2 % away from the critical
point and in other systems it holds for 30–40 % away.
Moreover, no modern theory makes exact predictions
for experimentally interesting critical parameters such as
Tc , which varies from one material to the next by as
much as six orders of magnitude.

Despite this ‘‘unfinished’’ situation, the conceptual
framework of critical phenomena is increasingly finding
application in other fields, ranging from chemistry and
biology on the one hand to econophysics (Mantegna and
Stanley, 1999) and even liquid water (Stanley et al.,
1997; Mishima and Stanley, 1998). Why is this? One pos-
sible answer concerns the way in which correlations
spread throughout a system comprised of subunits. Like
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the economy, ‘‘everything depends on everything else.’’
But how can these interdependencies give rise not to
exponential functions, but rather to the power laws char-
acteristic of critical phenomena?

The paradox is simply stated. The probability that a
spin at the origin 0 is aligned with a spin a distance r
away, (11^s0sr&)/2, is unity only at T50. For T.0,
our intuition tells us that the spin correlation function
C(r)[^s0sr&2^s0&^sr& must decay exponentially with
r—for the same reason that the value of money stored in
a mattress decays exponentially with time (each year it
loses a constant fraction of its worth). Thus we might
expect that C(r);e2r/j, where j , the correlation length,
is the characteristic length scale above which the corre-
lation function is negligibly small. Experiments and also
calculations on mathematical models confirm that corre-
lations do indeed decay exponentially, but if the system
is at its critical point, then the rapid exponential decay
magically turns into a long-range power-law decay of the
form C(r);1/rd221h.

So then how can correlations actually propagate an
infinite distance, without requiring a series of amplifica-
tion stations all along the way? We can understand such
‘‘infinite-range propagation’’ as arising from the huge
multiplicity of interaction paths that connect two spins if
d.1 (if d51, there is no multipicity of interaction paths,
and spins order only at T50). Enumeration algorithms
take into account exactly the contributions of such inter-
action paths of length l —up to a maximum length that
depends on the strength of the computer used. Remark-
ably accurate quantitative results are obtained if this hi-
erarchy of exact results for successive finite values of l
is then extrapolated to l 5` .

For any T.Tc , the correlation between two spins
along each of the interaction paths that connect them
decreases exponentially with the length of the path. On
the other hand, the number of such interaction paths
increases exponentially, with a characteristic length that
is temperature independent, depending primarily on the
lattice dimension. This exponential increase is multiplied
by a ‘‘gently decaying’’ power law that is negligible ex-
cept for one special circumstance which we will come to.

Consider a fixed temperature T1 far above the critical
point, so that j is small, and consider two spins sepa-
rated by a distance r which is larger than j . The expo-
nentially decaying correlations along each interaction
path connecting these two spins is so severe that it can-
not be overcome by the exponentially growing number
of interaction paths between the two spins. Hence at T1
the exponential decrease in correlation along each path
wins the competition between the two exponentials, and
we anticipate that ^s0sr& falls off exponentially with the
distance r . Consider now the same two spins at a fixed
temperature T2 far below the critical point. Now the
exponentially decaying correlation along each interac-
tion path connecting these two spins is insufficiently se-
vere to overcome the exponentially growing number of
interaction paths between the two spins. Thus at T2 the
exponential increase in the number of interaction paths
wins the competition. Clearly there must exist some in-
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termediate temperature in between T1 and T2 where the
the two exponentials just balance, and this temperature
is the critical temperature Tc . Right at the critical point,
the gently decaying power-law correction factor in the
number of interaction paths, previously negligible,
emerges as the victor in this stand-off between the two
warring exponential effects. As a result, two spins are
well correlated even at arbitrarily large separation.
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