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The original observation of the phenomenon, or more
precisely the complex of phenomena, known as ‘‘super-
fluidity’’ was made simultaneously in liquid 4-He in 1938
by two groups, Kapitza in Moscow and Allen and Mis-
ener in Cambridge. It had been known for some years
previously that liquid helium (which, until the early
1950s when the light isotope 3-He began to be produced
in experimentally useful quantities from nuclear reac-
tors, was synonymous with liquid 4-He) did not freeze
under its own vapor pressure down to the lowest attain-
able temperatures, and during the early- and mid-1930s
it had become clear that some peculiar things happened
at and below a characteristic temperature (;2.17 K),
which became known as the ‘‘lambda temperature.’’
Stimulated by measurements that seemed to show that
below the lambda temperature the heat flow was not
simply proportional to the temperature gradient, Allen
and Misener, and simultaneously Kapitza, decided to
measure the resistance to the flow of liquid helium
clamped in narrow channels and subjected to a pressure
drop. They found that while the so-called He-I phase,
i.e., helium above the lambda temperature, showed a
behavior that could be described in terms of a conven-
tional viscosity, below the lambda point (in the so-called
He-II phase) the liquid flowed so easily that if the con-
cept of viscosity was applicable at all, it would have to
be at least a factor of 1500 smaller than in the He-I
phase. It was this anomalous behavior for which Kapitza
coined the term ‘‘superfluidity.’’ Actually, as we shall
see below, this ‘‘ability to flow without apparent fric-
tion’’ in the kind of geometry employed in the Moscow
and Oxford experiments, while spectacular, is not the
conceptually simplest manifestation of superfluidity.

Within a few months of the experimental observation
Fritz London came up with a qualitative explanation
that has stood the test of time. The He atom is com-
posed of an even number of elementary particles (2 pro-
tons, 2 neutrons, and 2 electrons) and thus according to
the general precepts of quantum field theory, the many-
body wave function of the system should be symmetric
under the exchange of any two atoms; in technical lan-
guage, the system should obey ‘‘Bose statistics.’’ Four-
teen years earlier Albert Einstein had studied the ther-
modynamic behavior of a gas of noninteracting atoms of
this type, and had shown that below a characteristic tem-
perature, which depends on the mass and density, it
should manifest a peculiar behavior, which is nowadays
known as Bose-Einstein condensation (BEC); a finite
fraction of all the atoms (and at zero temperature, all of
them) should occupy a single one-particle state. At the
time Einstein made this suggestion this behavior was
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widely suspected of being a pathology of the noninter-
acting gas, which would disappear as soon as the inter-
atomic interactions were taken into account. However,
London now resurrected it and, noting that for a nonin-
teracting gas with the mass and density of 4-He, the
BEC phenomenon would occur at 3.3 K, suggested that
this was exactly what was going on at the observed
lambda transition (2.17 K). Very soon thereafter Laszlo
Tisza pushed the idea further by suggesting that the
anomalous flow behavior seen in the He-II phase could
be qualitatively understood in terms of a ‘‘two-fluid’’
model in which the ‘‘condensate’’ (that is, those atoms
which occupy the ‘‘special’’ one-particle state) behaves
completely without friction, while the rest behave quali-
tatively like an ordinary liquid. One striking prediction
that he was able to make on this basis was of a new type
of collective excitation in which the two components—
the condensate and the rest—oscillate out of phase.

A major landmark in the history of superfluidity was
the appearance in 1941 of a paper by Lev Landau in
which he developed in a quantitative way the ‘‘two-
fluid’’ description of liquid He-II. (It seems likely that
because of wartime conditions, Landau was unaware of
Tisza’s earlier, more qualitative work.) It is interesting
that in this paper Landau never explicitly introduced the
idea of BEC (indeed, he seems to have been opposed to
it, regarding it as a pathology of the noninteracting gas),
but rather posited, on intuitive grounds, various proper-
ties of the ‘‘ground state’’ of a Bose liquid, which with
hindsight can in fact be seen to be natural consequences
of the BEC phenomenon (see below). This paper marks
the first explicit introduction into condensed-matter
physics of the seminal notion of a ‘‘quasiparticle,’’ that
is, an excitation of the system from the ground state,
which is characterized by a definite energy and momen-
tum, and such that, at least at sufficiently low tempera-
tures, the total energy, momentum, etc., of the system
can be regarded as the sum of that carried by the quasi-
particles. Landau identified the quasiparticles of a Bose
liquid as of two types: quantized sound waves or
phonons, with an energy «, which depends on momen-
tum p as «5cp (c5speed of sound), and ‘‘rotons,’’
which he regarded as corresponding to quantized rota-
tional motion and to which he originally assigned an en-
ergy spectrum «(p)5D1p2/2m (later modified, see be-
low). An immediate prediction of this ansatz was that in
the limit of low temperatures (T!D) the rotons give
negligible contribution to the specific heat, which in this
regime is entirely due to the phonons and is propor-
tional to T3 (just as in an ordinary insulating crystalline
solid).
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To construct a quantitative theory of the flow proper-
ties of He-II, Landau postulated that it consisted of two
components: the ‘‘superfluid’’ component, which he
identified, in an intuitive way, with the part of the liquid
that remained in its ground state, and a ‘‘normal’’ com-
ponent, which corresponded to the quasiparticles. The
superfluid component was conceived as carrying zero
entropy and flowing irrotationally (i.e., its velocity vs
satisfied the condition curl vs50); by contrast, the nor-
mal component behaved like any other viscous liquid.
From these apparently minimal postulates Landau was
able to derive a complete, quantitative theory of two-
fluid hydrodynamics. It made, in particular, three re-
markable predictions: (1) If the liquid (or more pre-
cisely the superfluid component of it) flows relative to
the walls of the vessel containing it at a velocity smaller
than velocity vc (nowadays known as the Landau critical
velocity) given by the minimum value of «(p)/p (usually
this is the speed of sound c), then it may be able to do so
without dissipation; otherwise the flow will be unstable
against creation of quasiparticles. (2) If the boundary
conditions rotate slowly (as, for example, in a rotating
bucket), then only the fraction rn of the liquid which
corresponds to the normal component will rotate with
them; Landau gave a formula for rn in terms of the ex-
citation spectrum. (3) It should be possible (as had also
been suggested by Tisza) to set up an oscillation (nowa-
days known as ‘‘second sound’’) in which the normal
and superfluid components oscillate out of phase; we
now know (though Landau originally did not) that in
liquid helium such a wave corresponds to substantial os-
cillations in temperature but only a very slight variation
in pressure. Predictions (2) and (3) were verified within
a few years in experiments carried out in the Soviet
Union, by Andronikashvili and by Peshkov, respec-
tively; prediction (3), though of fundamental importance
conceptually, proved much more difficult to verify ex-
plicitly, and it is only comparatively recently that a di-
rect measurement of the Landau critical velocity has
been made, with the flow in question being relative not
to the walls of the vessel but to ions moving through it
(arguably the only case to which Landau’s argument ac-
tually applies in its original form without a string of ca-
veats).

While Landau’s two-fluid hydrodynamics provides a
conceptual basis for superfluidity, which still stands
today, it is phenomenological in the sense that both the
properties of the superfluid and the nature of the exci-
tation spectrum are postulated in an intuitive way rather
than being explicitly demonstrated to be a consequence
of the Bose statistics obeyed by the atoms. This lacuna
was partially filled in 1946 in a paper by N. N. Bogoliu-
bov, which may for practical purposes be taken as ush-
ering in the area of research known today as the ‘‘many-
body problem.’’ Bogoliubov considered a dilute gas of
atoms obeying Bose statistics and interacting via an in-
teratomic interaction, which is weakly repulsive. He as-
sumed that such a system, like the completely free Bose
gas, would undergo the phenomenon of BEC, and then,
using a series of controlled approximations, was able to
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show that while the energy spectrum for large momen-
tum p corresponds approximately to the simple excita-
tion of free atoms from the condensate @e(p)5p2/2m# ,
at smaller momenta it has precisely the phonon-like
form e(p)5cp postulated by Landau, where the veloc-
ity of sound c is derived from the bulk compressibility in
the standard way. (However, in Bogoliubov’s work there
is no obvious trace of the second, ‘‘roton’’ branch of the
excitation spectrum postulated by Landau.) This work
was subsequently refined and extended by Lee, Huang,
Yang, Girardeau and others, and actually turns out to be
applicable in more or less its original form to the re-
cently stabilized BEC alkali gases (see below).

While Bogoliubov’s results were extremely suggestive,
they referred to a dilute system, which is rather far from
real-life liquid He-II (where the atoms are so closely
packed as to be sampling both the attractive and the
repulsive parts of the van der Waals interaction virtually
all of the time). Thus a number of attempts were made
to treat the realistic helium problem by variational or
related methods; a particularly successful attack on the
problem was made in 1956 by Feynman and Cohen on
the basis of Feynman’s earlier work. Among other
things, this work predicted that the excitation spectrum
of real liquid He-II should go over from the ‘‘phonon-
like’’ behavior e(p)5cp at small momenta predicted by
Bogoliubov to a ‘‘roton-like’’ form e(p)5D1(p
2p0)2/2m , at larger values of the momentum. (This re-
vision of his original hypothesis had actually been ad-
vanced a few years earlier by Landau himself, on the
basis of experimental measurements of the temperature-
dependence of the second-sound velocity.) Actually, in
the early 1950s the use of reactor sources permitted for
the first time experiments on the scattering of neutrons
from various materials including liquid 4-He. The neu-
trons essentially measure the energy distribution of a
particular kind of excitation, namely the density fluctua-
tions, which have given momentum p; what is seen is
that for a given p the energy is indeed approximately
unique (so that the ‘‘quasiparticle’’ hypothesis indeed
seems to be valid), and furthermore, that the spectrum
has exactly the general form predicted by the Landau-
Feynman-Cohen ansatz.

Rather than reviewing further in historical sequence
the important advances made throughout the 50s, 60s,
and 70s in the study of superfluid 4-He, it may be useful
at this point to stand back and try to give a brief over-
view of our current understanding of the subject, bring-
ing in the relevant experiments to illustrate them as we
go. This understanding is, in some sense, a coherent
amalgam of the ideas of London on the one hand, and
Landau on the other, as refined and amplified by many
subsequent workers. It should be remarked that these
ideas developed in parallel with similar considerations
concerning superconductivity, and indeed from a mod-
ern point of view superconductivity is nothing but super-
fluidity occurring in a charged system (or vice
versa)—an idea which was extensively exploited by Fritz
London in his 1950 two-volume book Superfluids, which
covers both subjects.
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The fundamental assumption that underlies the mod-
ern theory of superfluidity in a simple Bose system such
as liquid 4-He is that the superfluid phase is character-
ized by what one might call ‘‘generalized BEC.’’ By this
I mean the following: we assume that at any given time
t it is possible to find a complete orthonormal basis
(which may itself depend on time) of single-particle
states such that one and only one of these states is occu-
pied by a finite fraction of all the particles, while the
number of particles in any other single-particle state is
of order 1 or less. (In technical language: at any given
time the one-particle density matrix has exactly one ei-
genvalue N0 which is of order N, while all the other
eigenvalues are of order unity or less.) The correspond-
ing single-particle wave function x0(r ,t) is then called
the ‘‘condensate wave function,’’ and the N0 particles
occupying it, the ‘‘condensate.’’ It is not necessary that
the number N0 be equal to the total number of particles
N in the system, even at zero temperature, and indeed it
seems almost certain that in real-life liquid 4-He, the T
50 condensate fraction N0 /N is only in the region of
10% (see below).

Just why this state of affairs should be realized is quite
a subtle question. First, why should there be macro-
scopic @O(N)# occupation of any single-particle state?
The only case for which a totally rigorous argument can
be given (at least to my knowledge) is the one originally
considered by Einstein, namely a completely noninter-
acting gas in thermal equilibrium. While it can be shown
that a calculation that starts from the BEC state of the
noninteracting gas and does perturbation theory in the
interatomic interactions leads to a finite value (generally
less than 100%) of the condensate fraction in thermal
equilibrium, there is no general proof that an arbitrary
system of Bose particles must show BEC at T50, and
indeed the existence of the solid phase of 4-He is a clear
counterexample to this hypothesis. Whether the crystal-
line solid and the Bose-condensed liquid exhaust the
possible T50 phases of such a system is, as far as I
know, an open question. For nonequilibrium states the
situation is even less clear.

An even trickier question is why, given that macro-
scopic occupation occurs, it occurs only in a single one-
particle state. A relatively straightforward argument
shows that, at least within the Hartree-Fock approxima-
tion, macroscopic occupation of more than one state is
always energetically unfavorable provided the effective
low-energy interaction is repulsive, as is believed to be
the case for 4-He. For the case of an attractive interac-
tion the problem is complicated by the fact that in the
thermodynamic limit, as usually understood, (N→` ,V
→` ;N/V→const) the system is unstable against a col-
lapse in real space; for the finite geometries which are of
interest in the case of the alkali gases, the issue is, at this
time, controversial. Also, even in the repulsive case, it is
not entirely obvious that one can exclude ‘‘multiple con-
densates’’ in certain nonequilibrium conditions.

Given that BEC occurs in the sense defined above,
i.e., that at any given time there exists one and only one
single-particle state x0(r ,t) that is macroscopically occu-
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
pied, the conceptual basis for superfluidity is quite
simple. We write x0(r ,t)5ux0(r ,t)exp if(r,t), and define
the superfluid velocity vs(r ,t) by the prescription

vs~r ,t ![
\

m
¹f~r ,t !. (1)

This immediately leads to the result ¹3vs50, i.e., the
‘‘superfluid’’ flow is irrotational. Moreover, we observe
that no ‘‘ignorance’’ is associated with the single state
x0 , and thus the entropy must be carried entirely by the
‘‘normal’’ component, i.e., the particles occupying
single-particle states other than x0 . (Obviously, this ar-
gument can be made more precise.) These two observa-
tions provide the basis for Landau’s phenomenological
two-fluid hydrodynamics. However, it should be empha-
sized that the ‘‘superfluid density’’ rs , which occurs in
the latter is, in general, not simply given by N0 /V ,
where N0 is the number of particles condensed into x0 ;
indeed, in the case of liquid 4-He, it is believed that as
T→0, rs tends to the total density N/V , while N0 re-
mains only about 10% of N.

For a simply connected region of space in which ux0u is
everywhere nonzero, the application of Stokes’ theorem
to the curl of Eq. (1) leads at once to the conclusion that
the integral of vs around any closed curve is zero. A
more interesting application of Eq. (1) is to the case in
which there is a line, or more generally, a region infinite
in one dimension, on which ux0(r ,t)u vanishes. This may
happen either because the liquid is physically excluded
from this region, as in the example considered below, or
because, while atoms are present in the region in ques-
tion, the particular single-particle state into which BEC
has taken place happens to have a nodal line there. In
either case we can consider the integral of Eq. (1)
around a circuit that encloses the one-dimensional re-
gion in question, while we are no longer entitled to use
Stokes’ theorem to conclude that this integral is zero,
the fact that the phase of the wave function x0 must be
single-valued modulo 2p leads to the Onsager-Feynman
quantization condition

R vs•dl5nh/m . (2)

In a region of space which is, from a purely geometri-
cal point of view, simply connected, Eq. (2) can be sat-
isfied by a ‘‘vortex,’’ that is, a pattern of flow in which
vs;1/r , where r is the perpendicular distance from the
‘‘core’’; the singularity which formally appears at the
core is physically irrelevant because by hypothesis ux0u
vanishes there and thus vs is not defined. The statics and
dynamics of vortices is, of course, a subject that has been
extensively studied in classical hydrodynamics; but in
that case the circulation, while independent of path, can
take any value and, in addition, vortices tend to be
stable only under nonequilibrium conditions. By con-
trast, in a superfluid system the circulation is quantized
according to Eq. (2) (it is actually found that the only
values of n of interest are n561, since vortices with
higher values of n are unstable against decay into these),
and in addition, for reasons we shall see, vortices can be
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metastable, even under equilibrium conditions, for es-
sentially astronomical times.

The most interesting application of Eq. (2), and the
most clear-cut definition of the various phenomena
which together constitute what we call superfluidity, oc-
curs in a literally multiply connected geometry, let us say
for definiteness the annular region between two concen-
tric cylinders. In the following I consider such a geom-
etry, with the mean radius of the annulus denoted R and
its thickness d taken small compared to R; I neglect cor-
rections of relative order d/R . The superfluid velocity
vs(rt) is not itself a directly observable quantity, and in
practice we are interested in the value of the mass cur-
rent J(rt). With Landau we argue that in (stable or
metastable) equilibrium this quantity should be given by
an expression of the form

J~r ,t !5rsvs~rt !1rnvn~rt !, (3)

where the ‘‘superfluid’’ and ‘‘normal’’ densities rs and
rn[r2rs are functions only of temperature, and where
the ‘‘normal velocity’’ vn(rt) is assumed to behave just
like the velocity field of a normal (nonsuperfluid) liquid;
in particular, in equilibrium vn should be zero in the
frame of reference in which the walls of the vessel are at
rest. In the following I mean by the scalar quantities v ,
vs , and J, the tangential (circumferential) components
of the respective vectors.

Consider two different thought-experiments, in each
of which the cylinders are rotated synchronously with
angular velocity omega; we note from Eq. (2) that a
natural unit in which to measure omega is the angular
velocity corresponding to n51, that is vc5\/mR2. In
the first experiment, we start with the liquid above the
lambda-temperature Tl , rotate the cylinders with some
small angular velocity v and wait for thermal equilib-
rium to be established. Since for T.Tl the helium be-
haves like any other (‘‘normal’’) liquid, e.g., H2O, we
see that in the rotating equilibrium the fluid velocity will
be simply vR and the total angular momentum Iclv ,
where the classical moment of inertia Icl is just NmR2.
Now, while continuing to rotate the container, we cool
the liquid through Tl . Below Tl , the ‘‘superfluid frac-
tion’’ is finite and moves, according to Eq. (3), with the
superfluid velocity vs . However, vs is constrained by the
quantization condition and in general cannot be taken
equal to vR . In fact, a simple statistical-mechanical ar-
gument shows that the lowest free energy is obtained
when n takes the value closest to v/vs ; for v!vc this is
obviously zero. Consequently, in Eq. (3) the superfluid
component no longer contributes to the circulating cur-
rent. Meanwhile, the quantity vn is still given by vR ,
and consequently the total angular momentum is re-
duced by a factor rn(T)/r . Thus by ramping the tem-
perature up and down below Tl , the angular momen-
tum can be reversibly increased or decreased; in
particular, for T→0 it tends to zero in the laboratory
frame (or more accurately in frame of the fixed stars)
even though the vessel is still rotating. At larger values
of v(.vc/2) the superfluid will contribute to the angu-
lar momentum an amount ;nvc , where n is the nearest
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integer to v/vc ; thus for v50.75vc , for example, the
apparent velocity of the liquid may exceed that of the
container. This remarkable effect, which turns out to be
a close analog of the Meissner effect in superconductors,
was originally predicted by F. London and eventually
observed (in effect) by Hess and Fairbank in 1967; it is
essential to appreciate that it is a manifestation of the
equilibrium behavior of the system and has nothing to
do with long relaxation times.

A second experiment, which is at first sight, closely
related to the above but is conceptually quite different,
goes as follows: we again start above Tl, but now with
the liquid rotating at a much higher angular velocity v
@vc , so that, as above, velocity v is vR . We next cool,
still rotating, through Tl; according to the prescription
given above, the superfluid component will take the
quantized value of circulation which makes n closest to
v/vc ; but since v/vc is very large this means that the
fractional change is proportional to vc /v and in practice
unobservably small, and the angular momentum is to all
intents and purposes Iclv . Finally, still keeping the tem-
perature below Tl, we stop the rotation of the container.
What happens?

It should be strongly emphasized that in contrast to
the ‘‘Hess-Fairbank’’ experiment discussed above, the
present problem does not concern the nature of the
thermodynamic equilibrium state under the new (final)
conditions; the latter rather obviously corresponds to
zero circulating current. Rather, the question concerns
the degree of metastability of the circulating-current
state. In practice we find that when we stop the rotation,
the contribution of the normal component to Eq. (3)
rapidly relaxes to zero, but the superfluid contribution
persists for a time, which, except under very special con-
ditions, is effectively infinite, and moreover can be re-
versibly increased or decreased by sweeping the tem-
perature up and down (but never allowing it to exceed
Tl). In other words, the system preserves the value of
the superfluid circulation [Eq. (2)] that it originally had,
even though it is clearly not the equilibrium one. This is
the phenomenon of metastable superflow, which should
be carefully distinguished from the (equilibrium) Hess-
Fairbank effect. Unfortunately, the term ‘‘persistent cur-
rents,’’ frequently used in the literature, is ambiguous
and tends to confuse these two conceptually very differ-
ent effects. It is amusing that the phenomenon of ‘‘fric-
tionless flow’’ originally discovered by Kapitza, Allen,
and Misener may, depending on the parameters, be a
manifestation of either of these effects.

Unlike the Hess-Fairbank effect, which can be under-
stood at least qualitatively in terms of the behavior of a
single atom under the same conditions, a viable expla-
nation of the phenomenon of metastable superflow re-
quires explicit consideration of the effects of the inter-
atomic interactions; indeed, it is believed that a
noninteracting Bose gas, even in the BEC state, would
not display this behavior. Crudely speaking, the argu-
ment goes as follows: to go continuously from a state
in which a macroscopic number N0 of atoms occupies
the state corresponding to a finite value of n, say n0 , in
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Eq. (2) to one in which the same N0 atoms occupy the
state n50, we must do one of two things: either we
scatter particles one by one out of the state n5n0 and
into n50, thereby creating, at intermediate times, a
state in which two single-particle states are simulta-
neously macroscopically occupied, or we keep N0 par-
ticles in a single one-particle wave function but modify
the latter so as to go continuously from xn0

at t52` to
x0 at t51` . Provided there is no extra ‘‘internal’’ quan-
tum number and the low-energy effective interatomic in-
teraction is repulsive (as is the case for 4-He), it is
straightforward to show that for not too large values of
n0 both of these ‘‘paths’’ involve surmounting a free-
energy barrier, which except for T extremely close to
Tl , is so enormous that the chance of doing so is negli-
gible even on astronomical timescales. When T is ex-
tremely close to Tl, this energy barrier (which scales as
rs and hence vanishes in the limit T→Tl) becomes sur-
mountable with difficulty, and indeed it is found experi-
mentally that there is a measurable relaxation of super-
flow in this regime.

Thus a theory based on Eqs. (1)–(3) and the consid-
erations of the last paragraph can account not only
qualitatively but, as it turns out, quantitatively for the
main phenomena of superfluidity in 4-He. (In addition,
it predicts other characteristic phenomena, such as the
Josephson effect, which have been searched for and
found, but there is no space to discuss this topic here.)
However, there is one feature of this whole scenario that
might leave one with a feeling of slight disquiet: in the
sixty years since London’s original proposal, while there
has been almost universal belief that the key to super-
fluidity is indeed the onset of BEC at the lambda-
temperature it has proved very difficult, if not impos-
sible, to verify the existence of the latter phenomenon
directly. The main evidence for it comes from high-
energy neutron scattering and, very recently, from the
spectrum of atoms evaporated from the surface of the
liquid, and while both are certainly consistent with the
existence of a condensate fraction of approximately
10%, neither can be said to establish it beyond all pos-
sible doubt.

All the above refers to our best-known superfluid, liq-
uid 4-He below the lambda-temperature. However, that
is not the end of the story. In 1972 it was discovered that
the light isotope of helium, 3-He (which is also liquid
under its own vapor pressure down to the lowest tem-
peratures) possesses, below the much lower temperature
of 3 mK, not one but three anomalous phases, each of
which appears to display most of the properties ex-
pected of a superfluid, so that these new phases are usu-
ally referred to collectively as ‘‘superfluid 3-He.’’ In this
case, since the 3-He atom obeys Fermi rather than Bose
statistics, the mechanism of superfluidity cannot be
simple BEC as in 4-He. Rather, it is believed that, just as
in metallic superconductors, the fermions pair up to
form ‘‘Cooper pairs’’—a sort of giant diatomic quasi-
molecule whose characteristic ‘‘radius’’ is very much
larger than the typical interatomic distance—and that
these molecules, being composed of two fermions, effec-
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
tively obey Bose statistics and can thus undergo BEC.
However, it should be emphasized that, at least within
the context of the traditional theory, the formation of
the Cooper pairs and the process of BEC are not two
independent phenomena, rather they occur simulta-
neously and are intimately connected. A microscopic
theory that is a generalization of the BCS theory of su-
perconductivity can be constructed for these new
phases, and in fact, over the last 25 years has had a
remarkable degree of quantitative as well as qualitative
success in explaining their properties, to the extent that
we can now claim an understanding of these materials
which is more quantitative than that which we at present
have of the apparently simpler system 4-He.

Although not all the phenomena that accompany the
onset of superfluidity in 4-He have been explicitly dem-
onstrated in the low-temperature phases of 3-He, the
general pattern is sufficiently similar that there is a fair
degree of confidence that the underlying scenario is par-
allel in the two cases, with the role of the condensate
wave function in 4-He being played by the center-of-
mass wave function of the Cooper pairs in 3-He. How-
ever, there is one very important difference: as well as
their center-of-mass degree of freedom, the pairs in
3-He turn out to have also internal degrees of
freedom; if one thinks of them as like diatomic mol-
ecules, they turn out, crudely speaking, to possess total
spin S51 and also ‘‘intrinsic’’ orbital angular momen-
tum L51, and the corresponding vectors can be ori-
ented, prima facie, in arbitrary directions. (By contrast,
the Cooper pairs in traditional superconductors have L
5S50 and thus do not possess any interesting internal
degrees of freedom.) A crucial aspect of BEC in such a
system is that the ‘‘condensed’’ pairs should not only all
possess the same center-of-mass wave function, they
should also all behave identically as regards their internal
degrees of freedom.

Now, one might at first sight think that the arguments
given regarding the Hess-Fairbank effect and the meta-
stability of superflow which, prima facie, refer only to
the center-of-mass behavior, would be qualitatively un-
affected by the presence or absence of internal degrees
of freedom. This is indeed so with regard to the Hess-
Fairbank effect, and in one of the three phases (the B
phase) it is also true in the context of metastability of
superflow. However, with regard to the other two
phases, the situation is more intriguing: it turns out that
the nature of the internal degree of freedom in these
phases is such that once it is taken into account, at least
within the simplest approximation, the argument that
any attempt to deform the condensate wave function so
as to pass continuously from n5n0 to n50 no longer
holds, so that within such an approximation superflow is
no longer stable for unu.1. (For n561, for a subtle rea-
son, it is still metastable) In real life superflow does ap-
pear to be metastable in all the new phases, but both the
experimental and the theoretical situation is consider-
ably more complicated than in 4-He.

Finally, it may be remarked that there now exists a
third electrically neutral laboratory system, which is gen-
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erally expected to show behavior characteristic of a su-
perfluid, namely various monatomic alkali gases (87-Rb,
23-Na, 7-Li, and also, very recently, 1-H) at ultralow
temperatures. These atoms possess an odd number of
electrons, thus an even total number of fermions, and so
should obey Bose statistics, and under appropriately ex-
treme conditions, display the phenomenon of BEC and
the resulting superfluid behavior. However, because of
the nature of the ‘‘confinement’’ of these systems (usu-
ally by magnetic or laser traps) the situation with regard
to BEC and superfluidity is reversed with respect to
4-He: The onset of BEC should be spectacular in the
form of a dramatic change in the density profile, while
that of superfluidity should be much more subtle and
difficult to observe. Indeed, since June 1995 many ex-
periments have seen such a change of profile, or closely
related effects, in these systems at mK or nK tempera-
tures, and their low-temperature states universally be-
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lieved to exhibit BEC; but, at least at this time, the evi-
dence for superfluidity is still quite circumstantial.
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