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The history of superconductivity is reviewed, beginning with its discovery in 1911. Various theoretical
approaches are discussed and are compared with experiment. [S0034-6861(99)01602-5]
I. DISCOVERY AND EARLY HISTORY

Superconductivity was discovered in 1911 by H. Ka-
merlingh Onnes (1911) in Leiden just three years after
he first liquified helium, which made sufficiently low
temperatures available. What he found was that the
electrical resistance of some metals, such as lead, mer-
cury, tin, and aluminum, disappeared completely in a
narrow temperature range at a critical temperature Tc
(typically a few Kelvin) specific to each metal. Twenty-
two years later, Meissner and Ochsenfeld (1933) discov-
ered that these superconductors were perfectly diamag-
netic (the ‘‘Meissner effect’’) as well as perfectly
conducting. These remarkable properties were neatly
described by the phenomenological theory of F. and H.
London (1935). Their model postulated a density of ‘‘su-
perconducting electrons’’ ns per unit volume, whose re-
sponse to electromagnetic fields could be described by

Js52~c/4plL
2 !A (1)

(with a specific ‘‘London gauge’’ choice for the vector
potential). The time derivative of Eq. (1) implies that
the superconducting electrons respond to an electric
field E essentially as Drude free electrons with an infi-
nitely long relaxation time. Combined with the Maxwell
equations, this leads to a frequency-independent skin
depth, called the London penetration depth:

lL5~mc2/4pnse
2!1/2. (2)

The curl of Eq. (1) (with Maxwell’s equations) implies
the static flux expulsion of the Meissner effect, which
cannot be interpreted in a classical way. Since lL was
found experimentally to diverge at Tc roughly as @1
2(T/Tc)4#21/2, ns was presumed to go continuously to
zero at Tc , as in a second-order phase transition.

Ginzburg and Landau (1950) extended the London
phenomenology in a brilliant stroke based on Landau’s
theory of second-order phase transitions. They intro-
duced as an order parameter, a complex ‘‘wave function
of the superconducting electrons,’’ c(r)5uc(r)ueiw(r),
such that ns }uc(r)u2. Their theory reproduced Eq. (1)
in a gauge-invariant form,

J52euc~r!u2vs (3)

where

m* vs5\¹w22eA/c , (3a)

with the effective mass m* usually taken to be 2m .
Moreover, this c(r) was shown to be governed by a non-
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linear differential equation, so that it could vary with
position and field strength, in addition to the tempera-
ture dependence of ns in the London picture. For ex-
ample, it provided a natural description for the interface
between normal and superconducting phases in the pres-
ence of a critical magnetic field Hc . This theory was
later shown by Gor’kov (1959) to be a limiting case of
the BCS (Bardeen, Cooper, and Schrieffer, 1957a,
1957b) theory and remains today as the standard initial
approach to problems with a spatially varying supercon-
ducting state.

Aided by wartime developments in high-frequency
technology, Pippard was able to make very precise mea-
surements of lL to compare with Eq. (2), using param-
eters determined from similar measurements of the skin
depth in the normal state. He found that, even at T
'0, the fitted value of ns was less than the density of
conduction electrons in the normal state, by a ratio that
was larger for low-Tc materials like Al(Tc'1 K) than
for metals like Pb (Tc'7 K). Building on Chambers’
equation for the anomalous skin effect in normal metals,
Pippard (1953) was able to explain this reduced value of
ns by introducing a ‘‘coherence length’’

j05a\nF /kBTc (4)

into the London electrodynamics, where the coefficient
a was of order unity. In a review published in 1956,
shortly before the discovery of the BCS microscopic
theory of superconductivity, Bardeen (1956) was able to
show that just such a ‘‘nonlocal’’ electrodynamics would
be a consequence of an energy gap D in the electronic
spectrum, if the energy gap was proportional to Tc .
And, indeed, when the BCS theory was created, it pre-
dicted the nonlocal electrodynamics, with j0
5\vF /pD(0), in agreement with Pippard’s brilliant
conjecture.

This was the state of our understanding of the electro-
dynamics of classic superconductors in the mid 1950s—a
very satisfactory phenomenology, but no ‘‘explanation’’
in microscopic terms. What was the nature of the super-
conducting state that made it have these remarkable
properties? This question was answered in one stroke by
the classic paper of Bardeen, Cooper, and Schrieffer
(1957a), which is the subject of the next section of this
article.

II. THE BCS MICROSCOPIC THEORY

The discovery of the isotope effect by Maxwell (1950)
and Reynolds et al. (1950), namely, that Tc}M2a where
S3139/71(2)/313(5)/$16.00 ©1999 The American Physical Society



S314 J. R. Schrieffer and M. Tinkham: Superconductivity
M is the ionic mass and a'1/2, gave strong support to
the view that superconductivity is the result of the
electron-phonon interaction. Prior to this discovery,
Fröhlich (1950) had worked out a model based on this
interaction but ran into formal difficulties and the ap-
proach did not describe the properties of a supercon-
ductor. In fact, Shafroth (1958) proved that the Meissner
effect could only be obtained by going beyond perturba-
tion theory in treating the effective interaction between
electrons.

In 1955 Bardeen considered attacking the problem us-
ing the techniques of quantum field theory and invited
Cooper to join the effort since Cooper’s background was
in particle physics. It soon became clear that since the
existing field-theoretic methods were based on perturba-
tion theory, another scheme would have to be devised.

Bardeen stressed the importance of an energy gap in
the excitation spectrum and that superconductivity is
due to a condensation in momentum space of a coherent
superposition of normal-state configurations. A major
difficulty existed in that the correlation energy in the
normal phase is of order 1 eV per electron, while the
energy distinguishing the normal and super phases is of
order 1026 eV per electron. Fortunately, Landau’s
theory of a Fermi liquid provided the necessary basis for
treating the normal-state excitations in one-to-one cor-
respondence with the free-electron gas so that the small
condensation energy between the super and normal
phases could be isolated.

Cooper (1956) studied the problem of two electrons
interacting via an attractive effective potential above a
frozen Fermi sea. He found that the normal state is un-
stable regardless of how weak the attraction is. Bardeen,
Cooper, and Schrieffer (1957a, 1957b) then studied a
reduced Hamiltonian which included interactions in-
volving only paired states,

Hred5(
ks

«knks1(
kk8

Vkk8bk
1bk , (5)

where bk
1 creates an electron pair in (k↑ ,2k↓), and «k

is the normal-state quasiparticle energy measured rela-
tive to the chemical potential.

Bardeen argued on the basis of the uncertainty prin-
ciple that the overlap of pair wave functions is extremely
large because of the large ratio of the Fermi and critical
temperatures. Thus one cannot think of the pairs as
bosons since the Pauli principle plays a crucial role in
the problem.

Schrieffer constructed a variational trial function in
analogy with the Tomonaga (1947) approach to the pion
nucleon problem,

C5)
k

~uk1nkbk
1!u0&, (6)

where uk
21nk

251 for normalization, and the parameters
nk are to be chosen to minimize the energy. This pre-
scription describes pairing in a spin singlet and orbital
s-wave state. One finds that the energy minimization
leads to a self-consistency condition
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Dk52(
k8

Vkk8Dk8/2Ek8 (7)

with

nk
25

1
2 S 12

«k

Ek
D (8)

and

Ek5~«k
21Dk

2 !1/2. (9)

The excitation spectrum based on this state exhibits qua-
siparticles of energy Ek with an energy gap Dk . For k
far above the Fermi surface the excitations are electron-
like, and far below kF they are holelike, while at kF they
are an equal mixture of electron and hole, having charge
zero but spin one-half. This is an example of charge-spin
separation since the charge of an injected electron at the
Fermi surface shifts the mean number of pairs by one-
half with the spin remaining with the quasiparticle.

Since the spectrum exhibits a gap, it follows as
Bardeen had argued, that the theory predicts a Meissner
effect. The electrodynamics is nonlocal, involving a co-
herence length of a form [Eq. (4)] proposed by Pippard
(1953).

The theory predicts a second-order phase transition at
a temperature given by

kBTc'\v̄0e21/N~0 !V, (10)

with the gap vanishing at Tc as (Tc2T)1/2. Here \v̄0 is
the mean phonon energy and V is the pair interaction.
For weak-coupling superconductors, the ratio of the
zero-temperature gap 2D(0) and the transition tempera-
ture is predicted to be 3.52.

Magnetic flux trapped in a superconducting ring is
predicted to be in units of F05hc/2e , reflecting the fact
that the condensate is formed by electron pairs. This was
observed experimentally by Deaver and Fairbank (1961)
and by Doll and Näbauer (1961).

Gor’kov (1958) suggested the quantum field formula-
tion of the BCS theory by making use of Dk as the ‘‘off-
diagonal’’ long-range order parameter. By including spa-
tial variation of the gap function D(r), he succeeded
(Gor’kov, 1959) in deriving the Ginzburg-Landau phe-
nomenological theory from the BCS theory.

Strong-coupling effects were explained by Eliashberg
(1960) by extending the Gor’kov equations to include
retardation effects in the pairing interaction and damp-
ing of the quasiparticles arising from phonon emission.

Shortly after the pairing theory was advanced, it was
proposed (Bohr et al., 1958) that the theory also de-
scribed many features of atomic nuclei, such as the even
vs odd effects on adding one nucleon to the nucleus.
Moreover, the deviation of the moment of inertia from
the rigid moment is the analog of the Meissner effect.
3He is another Fermi liquid, which was discovered by
Osheroff et al. (1972) to undergo a transition to a super-
fluid state in which the pairing is in a spin-triplet state
with orbital angular momentum one.
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III. EXPERIMENTAL CONFIRMATION OF THE BCS
ENERGY GAP AND COHERENCE FACTORS

The BCS theory described a radically new vision of
the nature of the superconducting state, which had
eluded theorists for 46 years. Yet it was accepted by the
great majority of physicists almost immediately. Why
was that? For one thing, its predictions of the low-
frequency electrodynamics essentially reproduced the
results of the London and Pippard phenomenological
theories, which were known to describe in detail the ex-
perimental data for the penetration depth. More deci-
sive support for the new theory was provided by other
experiments, which tested new predictions of the theory
that went well beyond the general two-fluid models
which had been available earlier.

One such prediction was the existence of an energy
gap 2D(T) for the creation of a pair of quasiparticle
excitations. For weak-coupling superconductors, the
theory predicted that 2D53.52 kTc at T50, falling con-
tinuously to zero at the second-order transition to the
normal state at Tc . Such an energy gap was consistent
with the exponential temperature dependence found in
the latest specific-heat measurements (Corak et al.,
1954). It was supported more decisively by spectroscopic
microwave absorption measurements (Biondi et al.,
1956) and spectroscopic far-infrared transmission ex-
periments (Glover and Tinkham, 1956), the latter ex-
tending to frequencies well above the energy gap even at
T50. This allowed a quantitative test of the predictions
of the BCS theory for the frequency-dependent complex
conductivity s1(v) – is2(v) near the energy-gap fre-
quency in the superconducting state. After the gap width
was scaled up from 3.52 to ;4.2kTc for lead, which is
not a weak-coupling superconductor, the transmission
curve T(v) predicted by the theoretical s1(v) – is2(v)
was in excellent agreement with the experimental data,
including the size and shape of a nontrivial peak in
transmission near the energy-gap frequency, where both
s1(v) and s2(v) are relatively small. In an elegant ex-
periment, Hebel and Slichter (1957) observed a coher-
ence peak in the NMR spectrum that probed details of
the paired state and its excitations, in agreement with
the BCS theory. The energy gap D(T) in the supercon-
ducting density of states was subsequently measured di-
rectly in an important pioneering experiment by Giaever
(1960a, 1960b). in which he measured the minimum en-
ergy in eV required to insert an electron into a super-
conductor by a tunneling process.

A particularly distinctive prediction of the BCS theory
is the existence of coherence factors in the transition
probabilities which distinguish processes, like ultrasonic
absorption, that are even under time reversal from
those, like nuclear relaxation, that are odd. This differ-
ence in coherence factors was predicted to cause the
ultrasonic attenuation to drop very sharply on cooling
through Tc , as confirmed by Morse (1959), while the
nuclear relaxation rate was predicted to rise to a maxi-
mum above the normal-state value just below Tc , be-
fore dropping exponentially at lower temperatures, as
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was confirmed by Hebel and Slichter (1957). Since both
of these processes depend on the density of quasiparti-
cles, which correspond to the ‘‘normal electrons’’ of a
two-fluid picture, the fact that the nuclear relaxation
rate goes up while the ultrasonic attenuation rate goes
down on cooling below Tc is inexplicable without the
coherence factors, which are a unique and specific fea-
ture of the BCS theory.

IV. TYPE-II SUPERCONDUCTORS

In 1957, the same year as the BCS theory, Abrikosov
(1957) also published a ground-breaking paper, based
on the Ginzburg-Landau theory, in which he explored
theoretically what would happen if the inequality l,j
typical of superconductors like tin and lead were re-
versed. He found that when the ratio k5l/j exceeded
1/& , the magnetic properties were completely different
from the classic superconductors; he called these high-k
materials ‘‘type-II superconductors.’’ Instead of showing
a first-order transition from superconducting flux exclu-
sion (Meissner effect) to the normal state at a critical
field Hc like the classic, or type-I, superconductors,
type-II superconductors above a lower critical field Hcl
were predicted to allow magnetic flux to penetrate in a
regular array of quantum units of F05hc/2e , each flux
tube being confined by a circulating vortex of current.
These materials were predicted to remain superconduct-
ing until a second-order transition at an upper critical
field Hc25F0/2pj25&kHc.Hc . (Here Hc is the ther-
modynamic critical field such that Hc

2/8p equals the
free-energy difference between superconducting and
normal states of the metal.) Since for ‘‘dirty’’ metals,
with short mean free path l , the BCS theory shows that
j2'j0l 'l \vF /kTc , this Hc2 can be very high
(.105 Oe) if l is small and/or Tc is high. These type-II
materials thus made possible the fabrication of high-field
superconducting magnets, which play an important role
both in the laboratory and in large-scale applications of
superconductivity.

Superconducting materials research was rejuvenated
by the discovery by Bednorz and Müller (1986) of new
classes of oxide-based high-temperature superconduct-
ors, some of which have Tc in excess of 100 K and ex-
tremely high values of Hc2 . The detailed origin of su-
perconductivity in these materials is still unclear, but
there is considerable evidence indicating that the pairing
has a predominantly d-wave symmetry as opposed to the
s-wave symmetry of conventional BCS superconductiv-
ity. This field remains one of vigorous research activity
at the time of this writing.

V. THE JOSEPHSON EFFECT

In 1962, Josephson (1962) made the remarkable pre-
diction that a zero-voltage supercurrent of magnitude

Is5Ic sin~Dw! (11)

should flow between two superconducting electrodes
separated by a thin tunnel barrier. Here Dw is the differ-
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ence in the phase of the Ginzburg-Landau c in the two
electrodes. Although it was startling at the time, in ret-
rospect this relation is now recognized as a general prop-
erty of ‘‘weak links’’ between superconductors, and it
can be derived as a discrete form of Eq. (3) for a short
superconducting constriction. Josephson also predicted
that if a voltage difference V were maintained across the
junction, the phase difference would evolve as

d~Dw!/dt52eV/\ . (12)

Thus the current would be ac current of amplitude Ic
and frequency

f52eV/h , (12a)

consistent with the Planck-Einstein relation E5hf relat-
ing frequency to the energy change associated with
transfer of a Cooper pair from one electrode to the
other. This fundamental relation is now used to define
the standard volt in terms of a precise frequency.

In the presence of a magnetic field, Dw in these ex-
pressions must be generalized to a gauge-invariant phase
difference, consistent with the general expression (3a).
The resulting sensitivity of the Josephson current to
magnetic fields stems from the fact that a single quan-
tum of flux F05hc/2e enclosed in a superconducting
circuit shifts Dw by a full 2p. This has made possible the
development of SQUID (Superconducting QUantum
Interference Device) magnetometers of extreme sensi-
tivity ;1026 F0 , which are approaching the ultimate
limit set by the quantum-mechanical uncertainty prin-
ciple.

VI. PHASE AND NUMBER VARIABLES

In its canonical form (6), the BCS ground-state wave
function is a superposition of states with many different
numbers of pairs in a grand canonical ensemble. In re-
ality, because the electrons carry a charge, there is a
Coulomb energy (dN)2Ec associated with any imbal-
ance (dN) between the number of electrons and the
number of positive nuclear charges in the sample. Here
Ec5e2/2C is the charging energy associated with a
single electronic net charge on a system with self-
capacitance C. Since the capacitance scales with physical
size, Ec is small for macroscopic superconductors, and
this energy term can usually be neglected. However, in
mesoscopic superconductors Ec can become the domi-
nant energy term, and the electron number must be pre-
cisely fixed in the ground state of the system. As pointed
out by Anderson (1967), this can be accomplished by
associating a Ginzburg-Landau-like phase variable with
each pair in the BCS ground state and then projecting
out the part with a definite number of pairs. More ex-
plicitly, if we generalize Eq. (6) to the form

Cw5)
k

~uk1nkeiwbk
1!u0&, (13)

where uk and vk are taken to be real, then we can obtain
an eigenfunction containing N electrons (N/2 pairs) by
writing
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CN5E
0

2p

e2iNw/2Cwdw . (14)

This Fourier transform relation between eigenfunctions
of phase and number has the same form as that between
eigenfunctions of position and momentum for a particle.
Accordingly, it also implies an uncertainty relation be-
tween phase and number of the form

DNDw>1. (15)

In dealing with macroscopic superconductors, for ex-
ample in the Josephson effect, it is more appropriate to
use eigenfunctions of the form of Eq. (13), in which the
phase variable w is well defined and identified with the
phase variable in the Ginzburg-Landau equations. How-
ever, for describing small isolated superconducting par-
ticles, the CN of Eq. (14) is more appropriate.

An interesting illustration of the use of superconduct-
ing eigenstates of number rather than of phase is offered
by the superconducting single-electron tunneling transis-
tor. This device consists of a nanoscale superconducting
island connected to two leads by high-resistance, low-
capacitance tunnel junctions and capacitively coupled to
a gate electrode. If the tunnel resistance is greater than
RQ;h/e2, the number of electrons on the island is a
good quantum number, and if the capacitance is small
enough that Ec5e2/2C@kT , a unique choice of elec-
tron number is energetically favored. If one measures
the current through the device for a fixed small-bias
voltage between the leads while sweeping the charge
CgVg induced by a voltage Vg on the gate, one finds
periodic current peaks spaced 2e apart in gate charge
(Tuominen et al., 1992). These peaks occur at values of
Vg at which states with successive integer numbers of
pairs on the island are degenerate, allowing pairs to be
transferred without an energy barrier. This phenomenon
provides a rather direct demonstration of the paired na-
ture of the superconducting ground state.

In conclusion, we point out that the above discussion
is necessarily incomplete, due to length limitations. In-
stead of attempting a brief review of the entire field, we
have focused on the development of the pairing theory,
together with some key points in the prehistory and later
consequences of the theory.
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