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Electric current flow, in transport theory, has usually been viewed as the response to an applied
electric field. Alternatively, current flow can be viewed as a consequence of the injection of carriers at
contacts and their probability of reaching the other end. This approach has proven to be particularly
useful for the small samples made by modern microelectronic techniques. The approach, some of its
results, and related issues are described, but without an attempt to cover all the active subtopics in this
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I. CONDUCTANCE CALCULATED FROM TRANSMISSION

Early quantum theories of electrical conduction were
semiclassical. Electrons were accelerated according to
Bloch’s theorem; this was balanced by back scattering
due to phonons and lattice defects. Cross sections for
scattering, and band structures, were calculated
quantum-mechanically, but the balancing process al-
lowed only for occupation probabilities, not permitting a
totally coherent process. Also, in most instances, scatter-
ers at separate locations were presumed to act incoher-
ently. Totally quantum-mechanical theories stem from
the 1950s, and have diverse sources. Particularly intense
concern with the need for more quantum mechanical
approaches was manifested in Japan, and Kubo’s formu-
lation became the most widely accepted version. Quan-
tum theory, as described by the Schrodinger equation, is
a theory of conservative systems, and does not allow for
dissipation. The Schrodinger equation readily allows us
to calculate polarizability for atoms, molecules, or other
isolated systems that do not permit electrons to enter or
leave. Kubo’s linear-response theory is essentially an ex-
tended theory of polarizability. Some supplementary
handwaving is needed to calculate a dissipative effect
such as conductance, for a sample with boundaries
where electrons enter and leave (Anderson, 1997). After
all, no theory that ignores the interfaces of a sample to
the rest of its circuit can possibly calculate the resistance
of such a sample of limited extent. Modern microelec-
tronics has provided the techniques for fabricating very
small samples. These permit us to study conductance in
cases where the carriers have a totally quantum me-
chanically coherent history within the sample, making it
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essential to take the interfaces into account. Mesoscopic
physics, concerned with samples that are intermediate in
size between the atomic scale and the macroscopic one,
can now demonstrate in manufactured structures much
of the quantum mechanics we associate with atoms and
molecules.

When scattering by a randomly placed set of point
defects was under consideration, it quickly became cus-
tomary in resistance calculations to evaluate the resis-
tance after averaging over an ensemble of all possible
defect placements. This removed the effects of
quantum-mechanically coherent multiple scattering,
which depends on the distance between the scatterers.
This approach also made the unwarranted assumption
that the variation of resistance between ensemble mem-
bers was small. The approach made it impossible to ask
about spatial variations of field and current within the
sample. Unfortunately, as a result, the very existence of
such questions, which distinguish between the ensemble
average and the behavior of a particular sample, was
ignored.

Electron transport theory has typically viewed the
electric field as a cause and the current flow as a re-
sponse. Circuit theory has had a broader approach,
treating voltage sources and current sources on an equal
footing. The approach to be emphasized in the following
discussion is a generalization of the circuit theory alter-
native: Transport is a result of the carrier flow incident
on the sample boundaries. The voltage distribution
within the sample results from the self-consistent pileup
of carriers.

The viewpoint stressed in this short note has been ex-
plained in much more detail in books and review papers.
We can cite only a few: Beenakker and van Houten
(1991), Datta (1995), Ferry and Goodnick (1997), Imry
(1997). There are also many conference proceedings and
special theme volumes related to this subject, e.g., Sohn
et al., 1997; Datta, 1998.

It seems obvious that the ease with which carriers
penetrate through a sample should be closely related to
its conductance. But this is a viewpoint that, with the
exception of some highly specialized limiting cases,
found slow acceptance. That the conductance of a single
localized tunneling barrier, with a very small transmis-
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FIG. 1. Two reservoirs on each side of a perfect tube, at dif-
ferent electrochemical potentials u; and w,. P is well inside
reservoir 1; Q is in its entrance.

sion probability, is proportional to that probability was
understood in the early 1930s (Landauer, 1994). In the
case of a simple tunneling barrier it has always been
apparent that the potential drop across the barrier is
localized to the immediate vicinity of the barrier and not
distributed over a region of the order of the mean free
path in the surrounding medium. The implicit accep-
tance of a highly localized voltage drop across a single
barrier did not, however, readily lead to a broader ap-
preciation of spatially inhomogeneous transport fields in
the presence of other types of scattering. The localized
voltage drop across a barrier has been demonstrated
with modern scanning tunneling microscopy (STM)
probing methods (Briner et al., 1996). We return to spa-
tial variations in Sec. II.

Figure 1 shows an ideal conducting channel with no
irregularities or scattering mechanisms along its length.
A long perfect tube is tied to two large reservoirs via
adiabatically tapered nonreflecting connectors. Carriers
approaching a reservoir pass into that reservoir with cer-
tainty. The reservoirs are the electronic equivalent of a
radiative blackbody; the electrons coming out of a res-
ervoir are occupied according to the Fermi distribution
that characterizes the deep interior of that reservoir. As-
sume, initially, that the tube is narrow enough so that
only the lowest of the transverse eigenstates in the chan-
nel has its energy below the Fermi level. That makes the
channel effectively one-dimensional. Take the zero tem-
perature case and let the left reservoir be filled to up to
level wq, higher than that of the right-hand reservoir,
Mo . Then in the range between w; and u, we have fully
occupied states pouring from left to right. Thus the cur-
rent is

J== (1= pp)ev(dnldp), (1.1)

where dn/du is the density of states (allowing for spin
degeneracy) and v is the velocity component along the
tube at the Fermi surface. Now (u;—pu,)=—e(V;
—V,), where V is a voltage and e the magnitude of the
electronic charge. Furthermore dn/du=1/mhv. There-
fore the net current flow is given by —(e/7h)(umy
— ;). The resulting conductance is
G=—"  —mh (1.2)
ViV, . .

This is the conductance of an ideal one-dimensional
conductor. The conditions along the uniform part of the
channel are the same; there is no potential drop there.
The potential drop associated with the resistance speci-
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fied in Eq. (1.2) occurs at the connections to the reser-
voir (Imry, 1986). Consider the left reservoir. Deep in-
side that reservoir there is a thermal equilibrium
population. In the 1D channel only the right-moving
electrons are present. The effective Fermi-level, or ef-
fective electrochemical potential, measures the level to
which electrons are occupied. At point P in Fig. 1, deep
inside the left-hand reservoir, the electron distribution is
that characteristic of thermal equilibrium with the Fermi
level wq. At point Q in Fig. 1, in the tapered part of the
connection, the electron population shows some effect
of the lowered density of electrons which have come out
of the right hand reservoir with electrochemical poten-
tial w,. Thus there is a potential difference between P
and Q. Along the ideal one-dimensional channel the
electron population is equally controlled by both reser-
voirs, and the electrochemical potential there must be
2(m1+ m,). Therefore the voltage drop specified by Eq.
(1.2) is divided equally between the two tapered connec-
tors. The physics we have just discussed is essential.
Conductance can only be calculated after specifying the
location where the potential is determined. The voltage
specification deep inside the reservoir and the geometri-
cal spreading, are essential aspects of the derivation of
Eq. (1.2). Unfortunately, supposed derivations that ig-
nore these geometrical aspects are common in the litera-
ture.

If we insert an obstacle into the channel, which trans-
mits with probability 7, the current will be reduced ac-
cordingly, and we find

G=(eXnh)T. (1.3)

Note that it does not matter whether the 7'in Eq. (1.3) is
determined by a single highly localized barrier or by a
more extended and complex potential profile. Expres-
sions for the conductance with this same current, but
with the potential measured within the narrow channel,
on the two sides of the obstacle, also exist (Sec. 2.2 of
Datta, 1995; Sec. 1.2.1 of Ferry and Goodnick, 1997,
Chap. 5 of Imry, 1997). If, in that case, the potential is
averaged over a region long enough to remove interfer-
ence oscillations, then T in Eq. (1.3) is replaced by
T/(1-T).

The preceding discussion can easily be generalized to
a channel that involves more than one transverse eigen-
state with energy below the Fermi level (Imry, 1986). In
that case we utilize the transmission matrix ¢ of the scat-
tering obstacle, which specifies the transmitted wave
functions relative to the incident wave, utilizing the
transverse eigenstates of the channel as a basis. This
yields

G= (e nh)Tr(tth). (1.4)

In the particular case where we have N perfectly
transmitting channels this becomes

G=N(e?/mh). (1.5)

One of the earliest and most significant experimental
verifications of this approach came from celebrated
studies of quantum point contacts (QPC). These are nar-
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row two-dimensional channels connecting wide reser-
voirs. The channel width can be controlled by externally
applied gate voltages. As the conducting channel is wid-
ened, the number of transverse eigenstates below the
Fermi level increases. Conductance steps corresponding
to increasing values of N in Eq. (1.5) are clearly ob-
served. The original 1988 experiments were carried out
at Cambridge University and by a Delft-Philips collabo-
ration (van Houten and Beenakker, 1996).

The material of this section has been extended in
many directions; we list only a few. Buttiker (1986) de-
scribes the widely used results when more than two res-
ervoirs are involved. Among a number of very diverse
attempts to describe ac behavior we cite only one (Butt-
iker, 1993). In the ac case, however, the method of ap-
plying excitation to the sample matters. Moving the
Fermi level of reservoirs up and down is one possibility;
applying an electric field through an incident electro-
magnetic field is another. The discussion of systems that
consist of incoherent semiclassical scatterers occurs re-
peatedly; we cite one with device relevance (Datta, As-
sad, and Lundstrom, in Datta (1998)). The extension to
nonvanishing temperatures is contained in many of our
broader citations. Nonlinearity has been treated repeat-
edly. The correction for reservoirs of limited lateral ex-
tent has been described by Landauer (1989). It must be
stressed that the severe restrictions needed for the deri-
vation of Eq. (1.4), i.e., the existence of ideal conducting
tubes on both sides of the sample joined smoothly to the
reservoirs, are only conditions for that particular expres-
sion. Transmission between reservoirs can be calculated
under many other circumstances. Equation (1.4) has
been applied to a wide variety of geometries. Many of
the early experiments emphasized analogies to wave-
guide propagation. Transmission through cavities with
classical chaotic motion has been studied extensively.
Systems with superconducting interfaces and Andreev
reflections have been examined; see Chap. 7 of Imry
(1997). Three-dimensional narrow wires, resulting either
from an STM geometry or from mechanically pulling
wires, to or past their breaking point, have received ex-
tensive attention (Serena and Garcia, 1997).

The preceding discussion assumes that we can ascribe
a transmission coefficient to electrons whose interac-
tions while in the reservoir are neglected. That does not
prevent a Hartree approximation Coulomb interaction
along the conductor. Electron-electron interactions of
almost any kind can exist within a sample, but that still
permits us to discuss the transmission of uncorrelated
electrons through that sample.

Feeding current from reservoirs, with the carriers
coming from each side characterized by a thermal equi-
librium distribution, is only one possible way of driving a
sample. The exact distribution of arriving carriers, both
in real space and in momentum, matters. A sample does
not really have a unique resistance, independent of the
way we attach to it. Wide reservoirs, connected to a nar-
rower sample, and emitting a thermal equilibrium distri-
bution, are a good approximation to many real experi-
mental configurations.
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Equation (1.4) describes conduction as a function of
quantum mechanically coherent transmission. Current
flow in the presence of a limited conductance is a dissi-
pative process. Where are the dissipation and the irre-
versibility (Sec. 2.3 of Datta, 1995)? They are in the res-
ervoirs; carriers returning to them from the sample
eventually suffer inelastic collisions. These inelastic col-
lisions give the carriers, when they later again reach the
transmissive sample, the occupation probability charac-
teristic of the reservoir. The inelastic collisions in the
reservoir also serve to eliminate any phase memory of
the carrier’s earlier history. Thus the sample determines
the size of the conductance, even though the irreversible
process takes place elsewhere. For a narrow conductor,
attached to reservoirs which can serve as effective heat
sinks, this means that the energy is released where it can
easily be carried away and allows surprisingly large cur-
rents. Frank ef al. (1998) pass current through a carbon
nanotube, which would heat it to 20 000 K if the dissipa-
tion occurred along the tube. Such large currents and
the accompanying changes in the wave functions of the
binding electrons may induce temporary atomic dis-
placements (Sec. 14 of Sorbello, 1997).

Il. SPATIAL VARIATION, CONDUCTANCE
FLUCTUATIONS, LOCALIZATION

We have already emphasized that ensemble members
differ and that transport fields are spatially inhomoge-
neous. Spatial variations of current and field exist for
two reasons. First of all geometry and preparation can
impose obvious patterns in space, as in a transistor or
scanning tunneling microscope. But a random arrange-
ment of point scatterers can also provide inhomogeneity
with easy and hard paths through the sample. Why are
spatial variations of interest? Calculating conductance
from Eq. (1.4) does not require an understanding of the
spatial variations within the sample. But spatial varia-
tions are vital in other contexts. We can actually probe
spatial distributions (Briner et al., 1996; Eriksson et al.,
1996). The notion, common in the middle 1980s, that
transport could only be examined by very invasive extra
conducting leads has been replaced by the awareness
that there is a growing set of minimally disturbing
probes, including, for example, electro-optic effects.
Spatial variations also matter in nonlinear transport. In
that case the transport field itself is part of the field that
determines transmission through the sample, and a self-
consistent analysis invoking Poisson’s equation is
needed. Datta et al. (1997), in an analysis of conduction
through an organic molecule caught in an STM configu-
ration, illustrate this. Spatial variations matter in high-
frequency behavior. In that case there can be capacitive
shorting across the resistively hard parts of the sample.
Spatial variations matter for electromigration (Sorbello,
1997). Electromigration is the motion of lattice defects
induced by electron transport. The moving defects
probe their local environment, not a volume average. In
that analysis care must be taken to include the spatial
variation induced by that defect.
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We have alluded to the localized voltage drop across a
planar barrier. If, instead, we introduce a point scatterer,
in the presence of a constant current flow, we can also
expect an increase in transport field related to the de-
fect’s location. In fact, a planar barrier can be built from
an array of point defects, and the two cases must show
related behavior. In the planar case the localized voltage
drop arises from the pileup of incident electrons on one
side of the barrier and their removal from the other side,
allowing for self-consistent screening of these piled-up
charges. A similar pileup at a point defect will generate
a dipole field, called the residual resistivity dipole
(RRD), which has been studied for over four decades
(Sorbello, 1997; Zwerger, 1997; also see Ref. 19 of Lan-
dauer’s introductory chapter in Serena and Garcia,
1997). A volume with incoherent point scatterers will
generate a set of dipole fields, one dipole per scatterer.
The resulting space-average field is that given by other
elementary semiclassical theories; there is no new result
for the resistivity. We have only emphasized the strong
spatial variation of the transport field. The current flow
pattern is also spatially nonuniform (Zwerger, 1997),
representing the fact that the incident carrier flux, scat-
tered by a localized defect, has to be carried around that
defect much as a current has to be carried around a
macroscopic cavity.

A review should not be confined to progress, but can
also list questions. The spatial variation of the field in
the presence of randomly placed point scatterers, pro-
viding coherent multiple scattering, is not understood. A
set of dipole fields can still be expected, but the size of
each dipole can no longer depend only on the scattering
action of a particular defect. The striking nonuniformity
of the potential drop along a coherent disordered one-
dimensional array has been demonstrated (Maschke and
Schreiber, 1994).

An array of randomly placed point scatterers, acting
incoherently, will allow for some variation in transmis-
sion depending on the carrier’s path. In the presence of
coherence this variation is sensitive not only to density
fluctuations among the obstacles, but also to the exact
relative phasing of scattered waves. At one extreme the
random placement includes ensemble members that give
a periodic, or almost periodic, arrangement and cause
the electron to see an allowed band, giving excellent
transmission. But the ensemble will also include mem-
bers that in all or part of space simulate a forbidden gap,
yielding exponentially small transmission. The relative
phasing of scattered waves can be altered not only by
changing atomic placement, but also by changing param-
eters, such as the Fermi energy or a magnetic field. The
resulting variations of conductance have been widely ob-
served (Washburn and Webb, 1992; Sec. 5.2 of Ferry and
Goodnick, 1997) and are called universal conductance
fluctuations (UCF). Relative phasing of waves, taking
alternative paths, also plays a critical role in the ob-
served oscillations in the conductance in a solid-state
analog of the Aharonov-Bohm effect (Washburn and
Webb, 1992).
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Consider a one-dimensional ensemble of a fixed num-
ber of identical localized scatterers, allowing for all pos-
sible relative phases between adjacent scatterers at the
Fermi wavelength. (The total length of the chains cannot
be held fixed.) This is a particularly simple case of dis-
order. As already stated, this includes ensemble mem-
bers that, over portions of the chain, simulate a forbid-
den band, resulting in an exponential decay of the wave
function. (The forbidden band can be associated with a
superlattice formed from the scatterers and in any case
represents only a physically suggestive way of pointing
to constructive interference in the buildup of reflec-
tions.) For an electron incident, say from the left, there
will be no regions providing a compensating exponential
increase to the right. An ensemble average of the result-
ing resistance, rather than conductance, weights the
high-resistance ensemble members and can be shown to
increase exponentially with the number of obstacles
(Sec. 5.3 of Imry, 1997). The problem of treating such a
highly dispersive ensemble (Azbel, 1983) was solved by
Anderson et al. (1980), who emphasized In(1+g '),
where g=G mfi/e?, which behaves like a typical exten-
sive quantity. The ensemble average of this quantity is
proportional to the number of obstacles, and this quan-
tity also has a mean-squared deviation which scales lin-
early with length. The exponential decay, with length, of
transmission through a disordered array is a particularly
simple example of localization; electrons cannot propa-
gate as effectively as classical diffusion would suggest. In
two or three dimensions a carrier can detour around a
poorly transmissive region. As a result localization in
higher dimensions is not as pronounced and is more
complex.

Equation (1.4) tells us that the conductance can be
considered to be a sum of contributions over the eigen-
values of #t". These represent, effectively, channels that
transmit independently. The relative phase of what is
incident in different channels does not matter. The
variation of transmission, which would depend on the
exact choice of path in a semiclassical discussion, is now
represented by the distribution of eigenvalues of ¢¢7. For
a sample long enough so that conduction is controlled by
many random elastic-scattering events, producing diffu-
sive carrier motion, but not long enough to exhibit local-
ization, this distribution is bimodal (Beenakker, 1997).
Most eigenvalues are very small, corresponding to chan-
nels that transmit very poorly. There is, however, a clus-
ter of highly conducting channels, which transmit most
of the current. Oakeshott and MacKinnon (1994) have
modeled the striking nonuniformity of current flow,
showing filamentary behavior, in a disordered block.
This is a demonstration of the fact that the bimodal dis-
tribution is related to the distribution in real space. The
bimodal distribution, the strong variation between en-
semble members, and the geometrical nonuniformity
have also been persistent themes in the work of Pendry
(e.g., Pendry et al., 1992), who stresses the importance of
necklaces i.e., chains of sites that permit tunneling from
one to the next, in the limit where localization matters.



S310 Imry and Landauer: Conductance viewed as transmission

lll. ELECTRON INTERACTIONS

Both the thermodynamics and the transport proper-
ties of independent electrons propagating in a finite sys-
tem with random scatterers are relatively well under-
stood. It is also well known that for the infinite
homogeneous electron gas the Hartree term for the in-
teractions cancels the ionic background. The remaining
exchange-correlation contributions still play an impor-
tant role, especially in soluble 1D models (Emery, 1979),
but a noninteracting model allows considerable progress
in most higher-dimensional situations. A partial justifi-
cation for this, with modified parameters, is provided by
the Landau Fermi-liquid picture. In this description, the
low-energy excitations of the interacting system are Fer-
mion quasiparticles with a renormalized dispersion rela-
tion and a finite lifetime due to collisions. This is valid as
long as the quasiparticle width is much smaller than its
excitation energy, which is the case for homogenous sys-
tems at low enough excitation energies. However, when
strong inhomogeneities exist, a rich variety of new phe-
nomena opens up. Here we briefly consider the effects
of disorder and finite size.

Disorder turns out to enhance the effects of the inter-
actions, as explained by Altshuler and Aronov (1985).
This enhancement is not only in the Hartree term, but
also in greatly modified exchange and correlation contri-
butions. These effects become very strong for low di-
mensions or strong disorder.

Singular behavior was found in the single-particle
density of states (DOS) near the Fermi energy. For dis-
ordered 3D systems, the magnitude of this singularity
(Altshuler and Aronov, 1985) is determined by the ratio
of Fermi wavelength to mean free path. That is small for
weak disorder, but increases markedly for stronger dis-
order. The situation is much more interesting for effec-
tively 2D thin films and 1D narrow wires. There, when
carried to low excitation energies, these corrections di-
verge, respectively, like the log and the inverse square
root of E— E . Thus a more complete treatment, which
is still lacking, is needed. These ‘‘zero-bias” DOS cor-
rections should be ubiquitous. They have been observed
experimentally and agree semiquantitatively with the
theory, as long as they are not too large. Direct
interaction-induced corrections to the conductivity in
the metallic regime were also predicted by Altshuler and
Aronov and confirmed by numerous experiments. The
2D case, realized in semiconductor heterojunctions and
in thin metal films, is of special interest. The theory for
noninteracting electrons (Abrahams et al.,, 1979) pre-
dicts an insulating behavior as the temperature 7—0.
The effect of electron-electron interactions is hard to
treat fully. The calculations by Finkelstein (1983) show a
window of possible metallic behavior characterized by a
strong sensitivity to a parallel magnetic field. Several ex-
perimental studies suggest a similar metallic behavior in
2D (Lubkin, 1997), whose origin is still under debate.

Schmid (1974) found the interaction-induced lifetime
broadening strongly enhanced by the disorder, varying
in 3D as (E— Ef)>? at 7=0 instead of the usual ballistic
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(E— E[)? Landau result. These changes are stronger in
1D and 2D, where the expressions obtained for the
disorder-dominated e-e scattering rate diverge at nonva-
nishing 7. However, physically meaningful scattering
rates are finite. For example, Altshuler efal (1982)
found that the rate of dephasing of the relative phase
between two different paths is regular and goes as 7
(with a small logarithmic prefactor) and 7%* in 2D and
1D respectively. These results are crucial for numerous
mesoscopic interference situations and agree quantita-
tively with experiments at temperatures that are not too
low.

A particular case of strong inhomogeneity occurs
when the electrons are confined to a small spatial range,
such as a lattice site or a small grain or ““quantum dot”
(a two-dimensionally confined region of electrons). The
deviation from charge neutrality is accompanied by an
energy cost e2/2C, where C is an effective capacitance.
This energy, when it is large compared to the thermal
energy, can prohibit double electronic occupancy for a
hydrogenic impurity or exclude the electron transfer
into or through a quantum dot. The latter phenomenon
has been dubbed ‘‘the Coulomb blockade,” and it is rel-
evant to many experimental situations, including the op-
timistically named single-electron transistor (Chap. 4 of
Ferry and Goodnick, 1997). Most interestingly, the cor-
relation embodied by this strong inhibition of electrons
to populate certain locations often results in subtle and
dramatic phenomena. Those include a Fermi-edge singu-
larity and the Kondo effect, both appearing (like the
Altshuler-Aronov singularities) at low energies, near the
Fermi level.

The Fermi-edge singularity is well known from x-ray
absorption in metals. The attraction between the core
hole left by the photoexcitation and the conduction elec-
trons causes the absorption to diverge at its edge.
Matveev and Larkin (1992) suggested that an analogous
effect should exist for tunneling through a resonant im-
purity (or a quantum dot) state in a small tunnel junc-
tion. The hole left in that state by an electron tunneling
out plays the same role as the above core hole. The
interaction between this hole and the conduction elec-
trons increases the transmission amplitude near E . The
logarithmic divergence near threshold obtained from the
simplest low-order perturbation theory is replaced in the
full theory by a power-law singularity. Geim et al. (1994)
observed this effect in impurity-assisted tunneling
through small resonant tunneling diodes.

Another interesting near-Fermi-level structure is the
Kondo resonance, due to the repulsion between the two
opposite-spin electrons on the same impurity (or quan-
tum dot) state and their hybridization with the conduc-
tion electrons. Again, for a quantum dot connected to
two electrodes via tunnel junctions, this leads to a reso-
nance in the zero-bias transmission. The splitting of this
peak by a bias and its magnetic-field dependence were
predicted by Meir etal (1993). Very recently
(Goldhaber-Gordon et al., 1998) this effect was ob-
served with a high-quality quantum dot.
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IV. ELECTRON COHERENCE; PERSISTENT CURRENTS;
OTHER FEATURES

It was pointed out in Sec. I that, in the absence of
inelastic scattering in an intervening sample, the conduc-
tance between reservoirs is determined by the elastic
scattering in that sample. In this case the ultimate source
of irreversibility is in the inelastic scattering in the res-
ervoirs. What happens if we eliminate the reservoirs and
their inelastic scattering? We can do that by tying the
leads to the sample to each other and creating a loop,
considering the response of this quantum-mechanical
system to an external magnetic flux through the ring.
This will be done later in this section.

Inelastic scattering of the electron by other degrees of
freedom of the ring acts like distributed coupling to ex-
ternal reservoirs. Inelastic scattering causes the electron
waves to lose phase coherence; effects due to the inter-
ference between electron waves following alternative
paths are eliminated (Chap. 3 of Imry, 1997; Chap. 6 of
Ferry and Goodnick, 1997). Because the eigenstates of a
closed system are determined by periodicity and bound-
ary conditions, the energy levels of a bounded system
with some inelastic scattering are no longer sharp and
gradually lose their dependence on the periodicity con-
dition when the inelastic scattering increases. For our
ring, once the inelastic-scattering length exceeds the cir-
cumference of the ring, the waves can respond to the
total set of boundary conditions. The ensuing flux sensi-
tivity of the energy levels and their associated ‘“‘persis-
tent currents’” are discussed below. The significant dif-
ference between the effects of elastic and inelastic
scattering has been highlighted by recent research in dis-
ordered and mesoscopic systems. Equilibrium and trans-
port experiments have determined the length the elec-
tron can propagate without losing phase coherence,
often in good agreement with theory.

That the 7 electrons on a benzene-type ring molecule
have a large orbital magnetic response has been known
for more than half a century. The explanation in terms
of “‘ring currents” was advanced by Pauling in 1936. Or-
dinary metals exhibit a small but measurable orbital dia-
magnetism, a purely quantum-mechanical phenomenon.
However, the prediction that a metallic ring structure in
the usual mesoscopic size range can support an equilib-
rium circulating current in response to an external flux
was greeted with skepticism 15 years ago. This applied
particularly to the diffusive regime with repeated elastic
defect scattering for a carrier traversing the ring. When
most of the flux is through the ring’s opening, rather
than the conductor, the response is periodic in the flux,
with period ®,="h/e. This follows because such a flux ®
causes a phase change of 27®/® in the phase of the
eigenstates, upon taking an electron around the ring.
Therefore the energy levels depend periodically on the
flux. This leads to a dependence of the thermodynamic
potential on the flux and hence, by thermodynamics, to
an equilibrium current. Contrary to classical intuition,
elastic scattering alone does not cause current decay.

Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999

S311

There are now a number of experiments confirming
the existence of persistent currents in single mesoscopic
rings and also in rather large ensembles of rings, as sum-
marized in Chap. 4, Sec. 2 of Imry (1997). In the latter
case, the experiment measures the persistent current av-
eraged over many rings. These rings differ through vary-
ing realizations of the random impurity potentials; an
averaging over these differing realizations is effectively
performed. The results of the single-ring experiments
agree roughly with the theory for noninteracting elec-
trons, and it can be shown (see p. 75 of Imry, 1997) that
the interactions do not change the order of magnitude of
the single-ring, sample-specific current. The situation is
very different for the ensemble-averaged current. The
periodicity in the flux was experimentally found to be
h/2e, rather than h/e, in accordance with the theory for
the ensemble-averaged persistent current for noninter-
acting electrons. However, these theories underestimate
the magnitude of the measured current by more than
two orders of magnitude. Introducing electron-electron
interactions perturbatively gives a result with the re-
quired period h/(2e), but still smaller than the experi-
ment by a factor of 5 to 10. This clearly goes in the right
direction, but there is still no definitive understanding of
the magnitude of the measured ensemble-averaged per-
sistent currents.

An interesting case in which persistent normal cur-
rents may exist on the millimeter length scale is pro-
vided by recent experiments on the magnetic response
in a proximity-effect system. Very-low-temperature
measurements of that response for a superconducting
cylinder with a normal-metal coating (Mota et al., 1994),
revealed an unexpected strong paramagnetic moment in
addition to the usual Meissner effect induced by the su-
perconductor in the proximity layer. This paramagnetic
moment is comparable to a diamagnetic moment. Whis-
pering gallery modes of the normal electrons, bouncing
around the outer perimeter of the normal layer, qualita-
tively and speculatively explain this magnetic moment as
due to unusually large normal persistent currents flow-
ing near that surface (Bruder and Imry, 1998).

Our subject has many more facets than we can dis-
cuss, or even list, in this short paper. We allude to only
one subtopic. Noise measurements have developed into
a surprisingly accurate probing method. Noise is more
sensitive than the dc conductance to electron correla-
tions. Schoelkopf et al. (1997) have studied the fre-
quency dependence of noise in a current-carrying metal-
lic conductor, with enough elastic scattering to give
diffusive carrier motion, and find remarkable agreement
with the simplest independent-electron models. Rezni-
kov et al., in Datta (1998), discuss recent measurements
at the Weizmann Institute and by a CEA/Saclay-CNRS/
Bagneux collaboration, using shot-noise measurements
to demonstrate the effective e/3 charge of the tunneling
entity in a fractional-quantum-Hall-effect experiment.

Many alternative views of quantum transport have
been developed, e.g., the Keldysh formulation, adapt-
able to inelastic processes as treated in Chap. 8 of Datta
(1995). Especially powerful is a block-scaling picture
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due to Thouless (p. 21 of Imry, 1997), which generalized
1D localization to finite cross-section wires. Later it was
broadened into an intuitive and successful theory at
higher dimension (Abrahams et al., 1979).

Only the most settled aspects of electron-electron in-
teraction have been discussed, slighting a number of
fashionable efforts. The approach emphasized in this pa-
per should permit some generalization to the case in
which carrier interactions in the reservoir are critical.
For a given potential difference between two reservoirs
there is a maximum current that can be passed through a
smooth and long laterally constricted connection. [The
lateral dimension(s) of the connecting pipe can be less
than the range of the electron interactions.] In the pres-
ence of irregularities only a portion of that maximum
will pass.
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