
String theory, supersymmetry, unification, and all that

John H. Schwarz*

California Institute of Technology, Pasadena, California 91125

Nathan Seiberg†

Institute for Advanced Study, Princeton, New Jersey 08540

String theory and supersymmetry are theoretical ideas that go beyond the standard model of particle
physics and show promise for unifying all forces. After a brief introduction to supersymmetry, the
authors discuss the prospects for its experimental discovery in the near future. They then show how
the magic of supersymmetry allows us to solve certain quantum field theories exactly, thus leading to
new insights about field theory dynamics related to electric-magnetic duality. The discussion of
superstring theory starts with its perturbation expansion, which exhibits new features including
‘‘stringy geometry.’’ The authors then turn to more recent nonperturbative developments. Using new
dualities, all known superstring theories are unified, and their strong-coupling behavior is clarified. A
central ingredient is the existence of extended objects called branes. [S0034-6861(99)01402-6]
I. INTRODUCTION

The standard model of particle physics (see the article
by Gaillard, Grannis, and Sciulli in this volume) is a
beautiful theory that accounts for all known phenomena
up to energies of order 100 GeV. Its consistency relies
on the intricacies of quantum field theory (see Wilczek’s
article), and its agreement with experiment is spectacu-
lar. However, there are many open problems with the
standard model. In particular, we would like to know
what lies beyond the standard model. What is the phys-
ics at energies above 100 GeV?

One suggestion for physics at nearby energies of order
1 TeV (51000 GeV), which we shall review below, is
supersymmetry. At higher energies the various interac-
tions of the standard model can be unified into a grand
unified theory. Finally, at energies of the order of the
Planck energy, MPc25(c\/G)1/2c2;1019 GeV, the
theory must be modified. This energy scale is deter-
mined on dimensional grounds using Newton’s constant
G , the speed of light c , and Planck’s constant \. It de-
termines the characteristic energy scale of any theory
that incorporates gravitation in a relativistic and
quantum-mechanical setting. At this energy scale the
gravitational interactions become strong and cannot be
neglected. How to combine the elaborate structure of
quantum field theory and the standard model with Ein-
stein’s theory of gravity—general relativity—is one of
the biggest challenges in theoretical physics today.
String theory is the only viable attempt to achieve this!

There are various problems that arise when one at-
tempts to combine general relativity and quantum field
theory. The field theorist would point to the breakdown
of renormalizability—the fact that short-distance singu-
larities become so severe that the usual methods for
dealing with them no longer work. By replacing point-
like particles with one-dimensional extended strings, as
the fundamental objects, superstring theory certainly
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overcomes the problem of perturbative nonrenormaliz-
ability. A relativist might point to a different set of prob-
lems including the issue of how to understand the causal
structure of space-time when the metric has quantum-
mechanical fluctuations. There are also a host of prob-
lems associated with black holes, such as the fundamen-
tal origin of their thermodynamic properties and an
apparent loss of quantum coherence. The latter, if true,
would imply a breakdown in the basic structure of quan-
tum mechanics. The relativist’s set of issues cannot be
addressed properly in a perturbative setup, but recent
discoveries are leading to nonperturbative understand-
ings that should help in addressing them. Most string
theorists expect that the theory will provide satisfying
resolutions of these problems without any revision in the
basic structure of quantum mechanics. Indeed, there are
indications that someday quantum mechanics will be
viewed as an implication of (or at least a necessary in-
gredient of) superstring theory.

String theory arose in the late 1960s in an attempt to
describe strong nuclear forces. In 1971 it was discovered
that the inclusion of fermions requires world-sheet su-
persymmetry. This led to the development of space-time
supersymmetry, which was eventually recognized to be a
generic feature of consistent string theories—hence the
name superstrings. String theory was a quite active sub-
ject for about five years, but it encountered serious the-
oretical difficulties in describing the strong nuclear
forces, and QCD came along as a convincing theory of
the strong interaction. As a result the subject went into
decline and was abandoned by all but a few diehards for
over a decade. In 1974 two of the diehards (Joël Scherk
and John Schwarz) proposed that the problems of string
theory could be turned into virtues if it were used as a
framework for realizing Einstein’s old dream of unifica-
tion, rather than as a theory of hadrons and strong
nuclear forces. In particular, the massless spin-two par-
ticle in the string spectrum, which had no sensible had-
ronic interpretation, was identified as the graviton and
shown to interact at low energies precisely as required
by general relativity. One implication of this change in
viewpoint was that the characteristic size of a string be-
34-6861/99/71(2)/112(9)/$16.80 ©1999 The American Physical Society
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came the Planck length, LP5\/cMP5(\G/c3)1/2

;10233 cm, some 20 orders of magnitude smaller than
previously envisaged. More refined analyses lead to a
string scale LS that is a couple of orders of magnitude
larger than the Planck length. In any case, experiments
at existing accelerators cannot resolve distances shorter
than about 10216 cm, which explains why the point-
particle approximation of ordinary quantum field theo-
ries is so successful.

II. SUPERSYMMETRY

Supersymmetry is a symmetry relating bosons and fer-
mions, according to which every fermion has a bosonic
superpartner and vice versa. For example, fermionic
quarks are partners of bosonic squarks. By this we mean
that quarks and squarks belong to the same irreducible
representation of the supersymmetry. Similarly, bosonic
gluons (the gauge fields of QCD) are partners of fermi-
onic gluinos. If supersymmetry were an unbroken sym-
metry, particles and their superpartners would have ex-
actly the same mass. Since this is certainly not the case,
supersymmetry must be a broken symmetry (if it is rel-
evant at all). In supersymmetric theories containing
gravity, such as supergravity and superstring theories,
supersymmetry is a gauge symmetry. Specifically, the su-
perpartner of the graviton, called the gravitino, is the
gauge particle for local supersymmetry.

A. Fermionic dimensions of space-time

Another presentation of supersymmetry is based on
the notion of superspace. We do not change the struc-
ture of space-time but we add structure to it. We start
with the usual four coordinates, Xm5t ,x ,y ,z , and add
four odd dimensions, ua (a51, . . . ,4). These odd di-
mensions are fermionic and anticommute:

uaub52ubua .

They are quantum dimensions that have no classical
analog, which makes it difficult to visualize or to under-
stand them intuitively. However, they can be treated
formally.

The fact that the odd directions are anticommuting
has important consequences. Consider a function of su-
perspace,

F~X ,u!5f~X !1uaca~X !1•••1u4F~X !.

Since the square of any u is zero and there are only four
different u’s, the expansion in powers of u terminates at
the fourth order. Therefore a function of superspace
includes only a finite number of functions of X (16
in this case). Hence we can replace any function of
superspace F(X ,u) with the component functions
f(X),c(X), . . . . These include bosons f(X), . . . and
fermions c(X), . . . . This is one way of understanding
the pairing between bosons and fermions.

A supersymmetric theory looks like an ordinary
theory with degrees of freedom and interactions that
satisfy certain symmetry requirements. Indeed, a super-
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symmetric quantum field theory is a special case of a
more generic quantum field theory rather than being a
totally different kind of theory. In this sense, supersym-
metry by itself is not a very radical proposal. However,
the fact that bosons and fermions come in pairs in su-
persymmetric theories has important consequences. In
some loop diagrams, like those in Fig. 1, the bosons and
the fermions cancel each other. This boson-fermion can-
cellation is at the heart of most of the applications of
supersymmetry. If superpartners are present in the TeV
range, this cancellation solves the gauge hierarchy prob-
lem (see below). This cancellation is also one of the un-
derlying reasons for our ability to analyze supersymmet-
ric theories exactly.

B. Supersymmetry in the TeV range

There are several indications (discussed below) that
supersymmetry is realized in the TeV range, so that the
superpartners of the particles of the standard model
have masses of the order of a few TeV or less. This is an
important prediction, because the next generation of ex-
periments at Fermilab and CERN will explore the en-
ergy range where at least some of the superpartners are
expected to be found. Therefore, within a decade or
two, we should know whether supersymmetry exists at
this energy scale. If supersymmetry is indeed discovered
in the TeV range, this will amount to the discovery of
the new odd dimensions and will be a major change in
our view of space and time. It would be a remarkable
success for theoretical physics—predicting such a deep
notion without any experimental input!

1. The gauge hierarchy problem

The gauge hierarchy problem is essentially a problem
of dimensional analysis. Why is the characteristic energy
of the standard model, which is given by the mass of the
W boson MW;100 GeV, so much smaller than the char-
acteristic scale of gravity, the Planck mass MP
;1019 GeV? It should be stressed that in quantum field
theory this problem is not merely an aesthetic problem,
but also a serious technical problem. Even if such a hi-
erarchy is present in some approximation, radiative cor-
rections tend to destroy it. More explicitly, divergent
loop diagrams restore dimensional analysis and move
MW→MP .

The main theoretical motivation for supersymmetry at
the TeV scale is the hierarchy problem. As we men-
tioned, in supersymmetric theories some loop diagrams
vanish—or become less divergent—due to cancellations
between bosons and fermions. In particular the loop dia-
gram restoring dimensional analysis is canceled as in Fig.
1. Therefore, in its simplest form, supersymmetry solves
the technical aspects of the hierarchy problem. More so-

FIG. 1. Boson-fermion cancellation in some loop diagrams.
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phisticated ideas, known as dynamical supersymmetry
breaking, also solve the aesthetic problem.

2. The supersymmetric standard model

The minimal supersymmetric extension of the stan-
dard model (the MSSM) contains superpartners for all
the particles of the standard model, as we have already
indicated. Some of their coupling constants are deter-
mined by supersymmetry and the known coupling con-
stants of the standard model. Most of the remaining cou-
pling constants and the masses of the superpartners
depend on the details of supersymmetry breaking. These
parameters are known as soft breaking terms. Various
phenomenological considerations already put strong
constraints on these unknown parameters but there is
still a lot of freedom in them. If supersymmetry is dis-
covered, the new parameters will be measured. These
numbers will be extremely interesting as they will give
us a window into physics at higher energies.

The MSSM must contain two electroweak doublets of
Higgs fields. Whereas a single doublet can give mass to
all quarks and charged leptons in the standard model,
the MSSM requires one doublet to give mass to the
charge-2/3 quarks and another to give mass to the
charge-1/3 quarks and charged leptons. Correspond-
ingly, electroweak symmetry breaking by the Higgs
mechanism involves two Higgs fields’ obtaining vacuum
expectation values. The ratio, called tan b, is an impor-
tant phenomenological parameter. In the standard
model the Higgs mass is determined by the Higgs
vacuum expectation value and the strength of Higgs self-
coupling (coefficient of the f4 term in the potential). In
supersymmetry the latter is related to the strength of the
gauge interactions. This leads to a prediction for the
mass of the lightest Higgs boson h in the MSSM. In the
leading semiclassical approximation one can show that
Mh<MZucos 2bu, where MZ;91 GeV is the mass of the
Z boson. Due to the large mass of the top quark, radia-
tive corrections to this bound can be quite important. A
reasonably safe estimate is that Mh<130 GeV, which
should be compared to current experimental lower
bounds of about 80 GeV. The discovery of a relatively
light Higgs boson, which might precede the discovery of
any superparticles, would be encouraging for supersym-
metry. However, it should be pointed out that there are
rather mild extensions of the MSSM in which the upper
bound is significantly higher.

It is useful to assign positive R parity to the known
particles (including the Higgs) of the standard model
and negative R parity to their superpartners. For reason-
able values of the new parameters (including the soft
breaking terms) R parity is a good symmetry. In this
case the lightest supersymmetric particle (called the
LSP) is absolutely stable. It could be an important con-
stituent of the dark matter of the universe.

3. Supersymmetric grand unification

The second motivation for supersymmetry in the
TeV range comes from the idea of gauge unification.
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
Recent experiments have yielded precise determinations
of the strengths of the SU(3)3SU(2)3U(1) gauge
interactions—the analogs of the fine-structure constant
for these interactions. They are usually denoted by a3 ,
a2 , and a1 for the three factors in SU(3)3SU(2)3U(1).
In quantum field theory these values depend on the en-
ergy at which they are measured in a way that depends
on the particle content of the theory. Using the mea-
sured values of the coupling constants and the particle
content of the standard model, one can extrapolate to
higher energies and determine the coupling constants
there. The result is that the three coupling constants do
not meet at the same point. However, when one repeats
this extrapolation with the particles belonging to the
minimal supersymmetric extension of the standard
model, the three gauge-coupling constants meet at a
point, MGUT , as sketched in Fig. 2. At that point the
strengths of the various gauge interactions become equal
and the interactions can be unified into a grand unified
theory. Possible grand unified theories embed the known
SU(3)3SU(2)3U(1) gauge group into SU(5) or SO(10).

How much significance should we assign to this re-
sult? Two lines must meet at a point. Therefore, there
are only two surprises here. The first is that the third line
intersects the same point. The second more qualitative
one is that the unification scale, MGUT , is at a reason-
able value. Its value is consistent with the experimental
bound from proton decay, and it is a couple of orders of
magnitude below the Planck scale, where gravity would
need to be taken into account. One could imagine that
that there are other modifications of the standard model
that achieve the same thing, so this is far from a proof of
supersymmetry, but it is certainly encouraging circum-
stantial evidence. It is an independent indication that
superpartner masses should be around a TeV.

C. Supersymmetric quantum field theories

Quantum field theory is notoriously complicated. It is
a nonlinear system of an infinite number of coupled de-
grees of freedom. Therefore, until recently when the
power of supersymmetry began to be exploited, there
were few exact results for quantum field theories (except
in two dimensions). However, it has been realized re-

FIG. 2. Coupling-constant unification in supersymmetric theo-
ries.
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cently that a large class of physical quantities in many
supersymmetric quantum field theories can be computed
exactly by analytic methods!

The main point is that these theories are very con-
strained. The dependence of some observables on the
parameters of the problem is so constrained that there is
only one solution that satisfies all of the consistency con-
ditions. More technically, because of supersymmetry
some observables vary holomorphically (complex ana-
lytically) with the coupling constants, which are complex
numbers in these theories. Due to Cauchy’s theorem,
such analytic functions are determined in terms of very
few data: the singularities and the asymptotic behavior.
Therefore, if supersymmetry requires an observable to
depend holomorphically on the parameters, and we
know the singularities and the asymptotic behavior, we
can determine the exact answer. The boson-fermion
cancellation, which we mentioned above in the context
of the hierarchy problem, can also be understood as a
consequence of a constraint following from holomorphy.

1. Families of vacua

Another property of many supersymmetric theories
that makes them tractable is that they have a family of
inequivalent vacua. To understand this fact we should
contrast it with the situation in a ferromagnet, which has
a continuum of vacua, labeled by the common orienta-
tion of the spins. These vacua are all equivalent; i.e., the
physical observables in one of these vacua are exactly
the same as in any other. The reason is that these vacua
are related by a symmetry. The system must choose one
of them, which leads to spontaneous symmetry breaking.

We now study a situation with inequivalent vacua in
contrast to the ferromagnet. Consider the case in which
degrees of freedom, called x and y , have the potential
V(x ,y) shown in Fig. 3. The vacua of the system corre-
spond to different points along the valley of the poten-
tial, y50 with arbitrary x . However, as we tried to make
clear in the figure, these points are inequivalent—there
is no symmetry that relates them. More explicitly, the
potential is shallow around the origin but becomes steep
for large x . Such accidental degeneracy is usually lifted
by quantum effects. For example, if the system corre-
sponding to the potential in the figure has no fermions,
the zero-point fluctuations around the different vacua

FIG. 3. Typical potential in supersymmetric theories exhibit-
ing ‘‘accidental vacuum degeneracy.’’
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would be different. They would lead to a potential along
the valley, pushing the minimum to the origin. However,
in a supersymmetric theory the zero-point energy of the
fermions exactly cancels that of the bosons, and the de-
generacy is not lifted. The valleys persist in the full
quantum theory. Again, we see the power of the boson-
fermion cancellation. We see that a supersymmetric sys-
tem typically has a continuous family of vacua. This fam-
ily, or manifold, is referred to as a moduli space of
vacua, and the modes of the system corresponding to
motion along the valleys are called moduli.

The analysis of supersymmetric theories is usually
simplified by the presence of these manifolds of vacua.
Asymptotically, far along the flat directions of the po-
tential, the analysis of the system is simple and various
approximation techniques are applicable. Then, by using
the asymptotic behavior along several such flat direc-
tions, as well as the constraints from holomorphy, one
obtains a unique solution. This is a rather unusual situ-
ation in physics. We perform approximate calculations,
which are valid only in some regime, and this gives us
the exact answer. This is a theorist’s heaven—exact re-
sults with approximate methods!

2. Electric-magnetic duality

Once we know how to solve such theories, we can
analyze many examples. The main lesson that has been
learned is the fundamental role played by electric-
magnetic duality. It turns out to be the underlying prin-
ciple controlling the dynamics of these systems.

When faced with a complicated system with many
coupled degrees of freedom it is common in physics to
look for weakly coupled variables that capture most of
the phenomena. For example, in condensed-matter
physics we formulate the problem at short distance in
terms of interacting electrons and nuclei. The desired
solution is the macroscopic behavior of the matter and
its possible phases. It is described by weakly coupled
effective degrees of freedom. Usually they are related in
a complicated, and in most cases unknown, way to the
microscopic variables. Another example is hydrodynam-
ics, where the microscopic degrees of freedom are mol-
ecules and the long-distance variables are properties of a
fluid that are described by partial differential equations.

In one class of supersymmetric field theories, the long-
distance behavior is described by a set of weakly
coupled effective degrees of freedom. These are com-
posites of the elementary degrees of freedom. As the
characteristic length scale becomes longer, the interac-
tions between these effective degrees of freedom be-
come weaker, and the description in terms of them be-
comes more accurate. In other words, the long-distance
theory is a ‘‘trivial’’ theory in terms of the composite
effective degrees of freedom.

In another class of examples there are no variables in
terms of which the long-distance theory is simple—the
theory remains interacting. Because it is scale invariant,
it is at a nontrivial fixed point of the renormalization
group. In these situations there are two (or more) dual
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descriptions of the physics leading to identical results for
the long-distance interacting behavior.

In both classes of examples an explicit relation be-
tween the two sets of variables is not known. However,
there are several reasons to consider these pairs of de-
scriptions as being electric-magnetic duals of one an-
other. The original variables at short distance are re-
ferred to as the electric degrees of freedom and the
other set of long-distance variables as the magnetic ones.
These two dual descriptions of the same theory give us a
way to address strong-coupling problems. When the
electric variables are strongly coupled, they fluctuate
rapidly and their dynamics are complicated (see Table
I). However, then the magnetic degrees of freedom are
weakly coupled. They do not fluctuate rapidly and their
dynamics is simple. In the first class of examples the
magnetic degrees of freedom are the macroscopic ones,
which are free at long distance. They are massless bound
states of the elementary particles. In the second class of
examples there are two valid descriptions of the long-
distance theory: electric and magnetic. Since both of
them are interacting, neither of them gives a ‘‘trivial’’
description of the physics. However, as one of them be-
comes more strongly coupled, the other becomes more
weakly coupled (see Table I).

Finally, using this electric-magnetic duality we can
find a simple description of complicated phenomena as-
sociated with the phase diagram of the theories. For ex-
ample, as the electric degrees of freedom become
strongly coupled, they can lead to confinement. In the
magnetic variables, this is simply the Higgs phenomenon
(superconductivity), which is easily understood in weak
coupling. The electric-magnetic relations are summa-
rized in Table I:

Apart from the ‘‘practical’’ application to solving
quantum field theories, the fact that a theory can be
described in terms of either electric or magnetic vari-
ables has deep consequences:

(i) For theories belonging to the first class of ex-
amples it is natural to describe the magnetic de-
grees of freedom as composites of the elementary
electric ones. The magnetic particles typically in-
clude massless gauge particles reflecting a new
magnetic gauge symmetry. These massless com-
posite gauge particles are associated with a new
gauge symmetry which is not present in the fun-
damental electric theory. Since this gauge symme-
try is not a symmetry of the original, short-
distance theory, it is generated by the dynamics
rather than being ‘‘put in by hand.’’ We see that,
in this sense, gauge invariance cannot be funda-
mental.

TABLE I. Dual electric and magnetic descriptions.

Electric Magnetic

Coupling strong weak
Fluctuations large small
Phase confinement Higgs
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(ii) For theories of the second class the notion of el-
ementary particle breaks down. There is no invari-
ant way of choosing which degrees of freedom are
elementary and which are composite. The mag-
netic degrees of freedom can be regarded as com-
posites of the electric ones and vice versa.

III. SUPERSTRING THEORY

A. Perturbative string theory

All superstring theories contain a massless scalar field,
called the dilaton f, that belongs to the same supersym-
metry multiplet as the graviton. In the semiclassical ap-
proximation, this field defines a flat direction in the
moduli space of vacua, so that it can take any value f0 .
Remarkably, this determines the string coupling con-
stant gS5ef0, which is a dimensionless parameter on
which one can base a perturbation expansion. The per-
turbation expansions are power-series expansions in
powers of the string coupling constant like those cus-
tomarily used to carry out computations in quantum
field theory.

1. Structure of the string world sheet and the perturbation
expansion

A string’s space-time history is described by functions
Xm(s ,t) that map the string’s two-dimensional world
sheet (s,t) into space-time Xm. There are also other
world-sheet fields that describe other degrees of free-
dom, such as those associated with supersymmetry and
gauge symmetries. Surprisingly, classical string theory
dynamics is described by a conformally invariant 2D
quantum field theory. What distinguishes one-
dimensional strings from higher-dimensional analogs
(discussed later) is the fact that this 2D theory is renor-
malizable. Perturbative quantum string theory can be
formulated by the Feynman sum-over-histories method.
This amounts to associating a genus h Riemann surface
(a closed and orientable two-dimensional surface with h
handles) to a Feynman diagram with h loops. It contains
a factor of gS

2h . For example, the string world sheet in
Fig. 4 has one handle.

The attractive features of this approach are that there
is just one diagram at each order h of the perturbation
expansion and that each diagram represents an elegant
(though complicated) finite-dimensional integral that is

FIG. 4. An example of a string world sheet with two initial
strings, one final string, and a handle.
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ultraviolet finite. In other words, they do not give rise to
the severe short-distance singularities that plague other
attempts to incorporate general relativity in a quantum
field theory. The main drawback of this approach is that
it gives no insight into how to go beyond perturbation
theory.

2. Five superstring theories

In 1984-1985 a series of discoveries convinced many
theorists that superstring theory is a very promising ap-
proach to unification. This period is now sometimes re-
ferred to as the first superstring revolution. Almost over-
night, the subject was transformed from an intellectual
backwater to one of the most active areas of theoretical
physics, which it has remained ever since. By the time
the dust settled, it was clear that there are five different
superstring theories, each requiring ten dimensions
(nine space and one time), and that each has a consistent
perturbation expansion. The five theories are denoted
type I, type IIA, type IIB, E83E8 heterotic (HE, for
short), and SO(32) heterotic (HO, for short). The
type-II theories have two supersymmetries in the ten-
dimensional sense, while the other three have just one.
The type-I theory is special in that it is based on unori-
ented open and closed strings, whereas the other four
are based on oriented closed strings. Type-I strings can
break, whereas the other four are unbreakable. The
type-IIA theory is nonchiral (i.e., it is parity conserving),
and the other four are chiral (parity violating).

3. Compactification of extra dimensions

To have a chance of being realistic, the six extra space
dimensions must somehow curl up into a tiny geometri-
cal space as in Kaluza-Klein theory. The linear size of
this space is presumably comparable to the string scale
LS . Since space-time geometry is determined dynami-
cally (as in general relativity), only geometries that sat-
isfy the dynamical equations are allowed. Among such
solutions, one class stands out: The E83E8 heterotic
(HE) string theory, compactified on a particular kind of
six-dimensional space, called a Calabi-Yau manifold, has
many qualitative features at low energies that resemble
the supersymmetric extension of the standard model of
elementary particles. In particular, the low-mass fermi-
ons occur in suitable representations of a plausible uni-
fying gauge group. Moreover, they occur in families
whose number is controlled by the topology of the
Calabi-Yau manifold. These successes have been
achieved in a perturbative framework and are necessar-
ily qualitative at best, since nonperturbative phenomena
are essential to an understanding of supersymmetry
breaking and other important details.

4. T duality and stringy geometry

The basic idea of T duality can be illustrated by con-
sidering a compact spatial dimension consisting of a
circle of radius R . In this case there are two kinds of
excitations to consider. The first, which is not unique to
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string theory, is due to the quantization of the momen-
tum along the circle. These Kaluza-Klein excitations
contribute (n/R)2 to the energy squared, where n is an
integer. The second kind are winding-mode excitations,
which arise due to a closed string’s being wound m times
around the circular dimension. They are unique to string
theory, though there are higher-dimensional analogs.
When one lets T5(2pLS

2)21 denote the fundamental
string tension (energy per unit length), the contribution
of a winding mode to the energy squared is (2pRmT)2.
T duality exchanges these two kinds of excitations by
mapping m↔n and R↔LS

2 /R . This is part of an exact
map between a T-dual pair of theories A and B.

We see that the underlying geometry is ambiguous—
there is no way to tell the difference between a compac-
tification on a circle of radius R and a compactification
on a circle of radius LS

2 /R . This ambiguity is clearly re-
lated to the fact that the objects used to probe the circle
are extended objects—strings—which can wind around
the circle.

One implication of this ambiguity is that usual geo-
metric concepts break down at short distances, and clas-
sical geometry is replaced by stringy geometry, which is
described mathematically by 2D conformal field theory.
It also suggests a generalization of the Heisenberg un-
certainty principle according to which the best possible
spatial resolution Dx is bounded below not only by the
reciprocal of the momentum spread, Dp , but also by the
string size, which grows with energy. This is the best one
can do using fundamental strings as probes. However,
by probing with certain nonperturbative objects called
D-branes, which we shall discuss later, it is sometimes
possible (but not in the case of the circle discussed
above) to do better.

A closely related phenomenon is that of mirror sym-
metry. In the example of the circle above the topology
was not changed by T duality. Only the size was trans-
formed. In more complicated compactifications, such as
those on Calabi-Yau manifolds, there is even an ambi-
guity in the underlying topology—there is no way to tell
on which of two mirror pairs of Calabi-Yau manifolds
the theory is compactified. This ambiguity can be useful
because it is sometimes easier to perform some calcula-
tions with one Calabi-Yau manifold than with its mirror
manifold. Then, using mirror symmetry, we can infer
what the answers are for different compactifications.

Two pairs of ten-dimensional superstring theories are
T dual when compactified on a circle: the type-IIA and
IIB theories and the HE and HO theories. The two
edges of Fig. 5 labeled T connect vacua related by T
duality. For example, if the IIA theory is compactified
on a circle of radius RA , leaving nine noncompact di-
mensions, this is equivalent to compactifying the IIB
theory on a circle of radius RB5LS

2 /RA . The T duality
relating the two heterotic theories, HE and HO, is es-
sentially the same, though there are additional technical
details in this case.

Another relation between theories is the following. A
compactification of the type-I theory on a circle of ra-
dius RI turns out to be related to a certain compactifi-
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cation of the type-IIA theory on a line interval I with
size proportional to LS

2 /RI . The line interval can be
thought of as a circle with some identification of points
I5S1/V . Therefore we can say that the type-I theory on
a circle of radius RI is obtained from the type IIA on a
circle of radius LS

2 /RI by acting with V. Since by T du-
ality the IIA theory on a circle of radius LS

2 /RI is the
same as the IIB theory on a circle of radius RI , we
conclude that upon compactification on a circle type I is
obtained from IIB by the action of V. By taking RI to
infinity we ensure that this relation is also true in ten
dimensions. This is the reason for the edge denoted by V
in Fig. 5.

These dualities reduce the number of (apparently)
distinct superstring theories from five to three, or if we
also use V to two. The point is that the two members of
each pair are continuously connected by varying the
compactification radius from zero to infinity. Like the
string coupling constant, the compactification radius
arises as the value of a scalar field. Therefore varying
this radius is a motion in the moduli space of quantum
vacua rather than a change in the parameters of the
theory.

B. Nonperturbative string theory

The second superstring revolution (1994-??) has
brought nonperturbative string physics within reach.
The key discoveries were various dualities, which show
that what was viewed previously as five distinct super-
string theories is in fact five different perturbative ex-
pansions of a single underlying theory about five differ-
ent points in the moduli space of consistent vacua! It is
now clear that there is a unique theory, though it allows
many different vacua. A sixth special vacuum involves
an 11-dimensional Minkowski space-time. Another les-
son we have learned is that, nonperturbatively, objects
of more than one dimension (membranes and higher p-
branes) play a central role. In most respects they appear
to be on an equal footing with strings, but there is one
big exception: a perturbation expansion cannot be based
on p-branes with p.1.

FIG. 5. The M theory moduli space.
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A schematic representation of the relationship be-
tween the five superstring vacua in 10D and the 11D
vacuum is given in Fig. 5. The idea is that there is some
large moduli space of consistent vacua of a single under-
lying theory—here denoted by M. The six limiting
points, represented as circles, are special in the sense
that they are the ones with (super) Poincaré invariance
in ten or eleven dimensions. The letters on the edges
refer to the type of duality relating a pair of limiting
points. The numbers 16 or 32 refer to the number of
unbroken supersymmetries. In 10D the minimal spinor
has 16 real components, so the conserved supersymme-
try charges (or supercharges) correspond to just one
spinor in three cases (type I, HE, and HO). Type-II su-
perstrings have two such spinorial supercharges. In 11D
the minimal spinor has 32 real components.

1. S duality

Suppose now that a pair of theories (A and B) are S
dual. This means that if fA(gS) denotes any physical ob-
servable of theory A, where gS is the coupling constant,
then there is a corresponding physical observable fB(gS)
in theory B such that fA(gS)5fB(1/gS). This duality re-
lates one theory at weak coupling to the other at strong
coupling. It generalizes the electric-magnetic duality of
certain field theories, discussed in Sec. II.C.2. S duality
relates the type-I theory to the HO theory and the IIB
theory to itself. This determines the strong-coupling be-
havior of these three theories in terms of weakly
coupled theories. Varying the strength of the string cou-
pling also corresponds to a motion in the moduli space
of vacua.

The edge connecting the HO vacuum and the type-I
vacuum is labeled by S in Fig. 5, since these two vacua
are related by S duality. It had been known for a long
time that the two theories had the same gauge symmetry
[SO(32)] and the same kind of supersymmetry, but it
was unclear how they could be equivalent, because
type-I strings and heterotic strings are very different. It
is now understood that SO(32) heterotic strings appear
as nonperturbative excitations in the type-I description.

2. M theory and the eleventh dimension

The understanding of how the remaining two super-
string theories, type IIA and HE, behave at strong cou-
pling came as quite a surprise. In each case there is an
11th dimension whose size R becomes large at strong
string coupling gS . In the IIA case the 11th dimension is
a circle, whereas in the HE case it is a line interval. The
strong-coupling limit of either of these theories gives an
11-dimensional Minkowski space-time. The 11-
dimensional description of the underlying theory is
called M theory.1

The 11D vacuum, including 11D supergravity, is char-
acterized by a single scale—the 11D Planck scale LP . It

1The letter M could stand for a variety of things such as
magic, mystery, meta, mother, or membrane.
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is proportional to G1/9, where G is the 11D Newton con-
stant. The connection to type-IIA theory is obtained by
taking one of the ten spatial dimensions to be a circle
(S1 in the diagram) of radius R . As we pointed out ear-
lier, the type-IIA string theory in 10D has a dimension-
less coupling constant gS , given by the value of the di-
laton field, and a length scale LS . The relationship
between the parameters of the 11D and IIA descriptions
is given by

LP
3 5RLS

2 , (1)

R5LSgS . (2)

Numerical factors (such as 2p) are not important for
present purposes and have been dropped. The signifi-
cance of these equations will emerge later. However,
one point can be made immediately. The conventional
perturbative analysis of the IIA theory is an expansion
in powers of gS with LS fixed. The second relation im-
plies that this is an expansion about R50, which ac-
counts for the fact that the 11D interpretation was not
evident in studies of perturbative string theory. The ra-
dius R is a modulus—the value of a massless scalar field
with a flat potential. One gets from the IIA point to the
11D point by continuing this value from zero to infinity.
This is the meaning of the edge of Fig. 5 labeled S1.

The relationship between the HE vacuum and 11D is
very similar. The difference is that the compact spatial
dimension is a line interval (denoted I in Fig. 5) instead
of a circle. The same relations in Eqs. (1) and (2) apply
in this case. This compactification leads to an 11D space-
time that is a slab with two parallel 10D faces. One set of
E8 gauge fields is confined to each face, whereas the
gravitational fields reside in the bulk. One of the impor-
tant discoveries in the first superstring revolution was a
mechanism that cancels quantum-mechanical anomalies
in the Yang-Mills and Lorentz gauge symmetries. This
mechanism works only for SO(32) and E83E8 gauge
groups. There is a nice generalization of this 10D
anomaly cancellation mechanism to the setting of 11 di-
mensions with a 10D boundary. It works only for E8
gauge groups!

3. p-branes and D-branes

In addition to the strings the theory turns out to con-
tain other objects, called p-branes. A p-brane is an ex-
tended object in space with p spatial dimensions. (The
term p-brane originates from the word membrane,
which describes a 2-brane.) For example, the 11D M
theory turns out to contain two basic kinds of p-branes
with p52 and p55, called the M2-brane and the M5-
brane. A simpler example of a brane is readily under-
stood in the type-IIA theory when it is viewed as a com-
pactification of the 11D theory on a circle. Eleven-
dimensional particles with momentum around the circle
appear as massive particles in 10D, whose masses are
proportional to 1/R . Since they are point particles, they
are referred to as 0-branes. Using Eq. (2), we find 1/R
51/LSgS , and we see that in the perturbative string re-
gion, where gS!1, these 0-branes are much heavier
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than the ordinary string states whose masses are of order
1/LS . The type-IIA string in ten dimensions can be
identified as the M2-brane wrapping the compact circle.

These p-branes are crucial in the various dualities dis-
cussed above—since they are states in the theory, they
should be mapped correctly under T and S dualities.
This is particularly interesting for S duality, which maps
the fundamental string of one theory to a heavy 1-brane
of the other. For example, the heterotic string is such a
heavy 1-brane in the weakly coupled type-I theory. We
therefore see that the notion of an elementary (or fun-
damental) string is ill defined. The string that appears
fundamental at one boundary of Fig. 5 is a heavy brane
at another boundary and vice versa. We have already
encountered a similar phenomenon in our discussion of
electric-magnetic duality in field theory, where there was
an ambiguity in the notion of elementary objects.

A special class of p-branes is called Dirichlet p-branes
(or D-branes for short). The name derives from the
boundary conditions assigned to the ends of open
strings. The usual open strings of the type-I theory have
Neumann boundary conditions at their ends. More gen-
erally, in type-II theories, one can consider an open
string with boundary conditions at the end given by s
50:

]Xm

]s
50, m50,1, . . . ,p ,

Xm5X0
m , m5p11, . . . ,9,

and similar boundary conditions at the other end. The
interpretation of these equations is that strings end on a
p-dimensional object in space—a D-brane. The descrip-
tion of D-branes as a place where open strings can end
leads to a simple picture of their dynamics. For weak
string coupling this enables the use of perturbation
theory to study nonperturbative phenomena!

D-branes have found many interesting applications.
One of the most remarkable of these concerns the study
of black holes. Specifically, D-brane techniques can be
used to count the quantum microstates associated with
classical black-hole configurations and to show that in
suitable limits the entropy (defined by S5log N, where
N is the number of quantum states the system can be in)
agrees with the Bekenstein–Hawking prediction: 1/4 the
area of the event horizon. For further details, see the
article by Horowitz and Teukolsky in this volume.

D-branes also led to new insights and new results in
quantum field theory, arising from the realization that
the open strings which end on D-branes are described at
low energies by a local quantum field theory ‘‘living’’ on
the brane. The dynamics of quantum field theories on
different branes must be compatible with the various
dualities. One can use this observation to test the duali-
ties. Alternatively, assuming the various string dualities
and the consistency of the theory, one can easily derive
known results in quantum field theory from a new per-
spective as well as many new results.

IV. CONCLUSION

During the last 30 years the structure of string theory
has been explored both in perturbation theory and non-
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perturbatively with enormous success. A beautiful and
consistent picture has emerged. The theory has also mo-
tivated many other developments, such as supersymme-
try, which are interesting in their own right. Many of the
techniques that have been used to obtain exact solutions
of field theories were motivated by string theory. Simi-
larly, many applications to mathematics have been dis-
covered, mostly in the areas of topology and geometry.
The rich structure and the many applications are viewed
by many people as indications that we are on the right
track. However, the main reason to be interested in
string theory is that it is the only known candidate for a
consistent quantum theory of gravity.

There are two main open problems in string theory.
The first is that the underlying conceptual principles of
the theory—the analog of curved space-time and general
covariance for gravity—are not yet understood. Unlike
other fields, string theory is not yet a mature field with a
stable framework. Instead, the properties of the theory
are being discovered with the hope that eventually they
will lead to an understanding of the principles and the
framework. The various revolutions that the field has
undergone in recent years have completely changed our
perspective on the theory. It is likely that there will be a
few other revolutions and our perspective will change
again. Indeed, fascinating connections to large-N gauge
theories are currently being explored, which appear to
be very promising. In any case, the field is developing
very rapidly and it is clear that an article about string
theory for the next centenary volume will look quite
different from this one.

The second problem, which is no less important, is
that we should like to make contact with experiment.
We need to find unambiguous experimental confirma-
tion of the theory. Supersymmetry would be a good
start.
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