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I. EARLY HISTORY

Twentieth-century physics began with Planck’s postu-
late, in 1900, that electromagnetic radiation is not con-
tinuously absorbed or emitted, but comes in quanta of
energy hn , where n is the frequency and h Planck’s con-
stant. Planck got to this postulate in a complicated way,
starting from statistical mechanics. He derived from it
his famous law of the spectral distribution of blackbody
radiation,

n~n!5@ehn/kT21#21, (1)

which has been confirmed by many experiments. It is
also accurately fulfilled by the cosmic background radia-
tion, which is a relic of the big bang and has a tempera-
ture T52.7 K.

Einstein, in 1905, got to the quantum concept more
directly, from the photoelectric effect: electrons can be
extracted from a metal only by light of frequency above
a certain minimum, where

hnmin5w , (2)

with w the ‘‘work function’’ of the metal, i.e., the bind-
ing energy of the (most loosely bound) electron. This
law was later confirmed for x rays releasing electrons
from inner shells.

Niels Bohr, in 1913, applied quantum theory to the
motion of the electron in the hydrogen atom. He found
that the electron could be bound in energy levels of en-
ergy

En52
Ry
n2 , (3)

where n can be any integer. The Rydberg constant is

Ry5
me4

2\2 . (4)

Light can be emitted or absorbed only at frequencies
given by

hn5Em2En , (5)

where m and n are integers. This daring hypothesis ex-
plained the observed spectrum of the hydrogen atom.
The existence of energy levels was later confirmed by
the experiment of J. Franck and G. Hertz. Ernest Ruth-
erford, who had earlier proposed the nuclear atom, de-
clared that now, after Bohr’s theory, he could finally
believe that his proposal was right.

In 1917, Einstein combined his photon theory with
statistical mechanics and found that, in addition to ab-
sorption and spontaneous emission of photons, there
Reviews of Modern Physics, Vol. 71, No. 2, Centenary 1999 0034-6861/
had to be stimulated emission. This result, which at the
time seemed purely theoretical, gave rise in the 1960s to
the invention of the laser, an eminently practical and
useful device.

A. H. Compton, in 1923, got direct evidence for light
quanta: when x rays are scattered by electrons, their fre-
quency is diminished, as if the quantum of energy hn
and momentum hn/c had a collision with the electron in
which momentum and energy were conserved. This
Compton effect finally convinced most physicists of the
reality of light quanta.

Physicists were still confronted with the wave/particle
duality of light quanta on the one hand and the phenom-
ena of interference, which indicated a continuum theory,
on the other. This paradox was not resolved until Dirac
quantized the electromagnetic field in 1927.

Niels Bohr, ever after 1916, was deeply concerned
with the puzzles and paradoxes of quantum theory, and
these formed the subject of discussion among the many
excellent physicists who gathered at his Institute, such as
Kramers, Slater, W. Pauli, and W. Heisenberg. The cor-
respondence principle was formulated, namely, that in
the limit of high quantum numbers classical mechanics
must be valid. The concept of oscillator strength fmn for
the transition from level m to n in an atom was devel-
oped, and dispersion theory was formulated in terms of
oscillator strength.

Pauli formulated the exclusion principle, stating that
only one electron can occupy a given quantum state,
thereby giving a theoretical foundation to the periodic
system of the elements, which Bohr had explained phe-
nomologically in terms of the occupation by electrons of
various quantum orbits.

A great breakthrough was made in 1925 by Heisen-
berg, whose book, Physics and Beyond (Heisenberg,
1971), describes how the idea came to him while he was
on vacation in Heligoland. When he returned home to
Göttingen and explained his ideas to Max Born the lat-
ter told him, ‘‘Heisenberg, what you have found here are
matrices.’’ Heisenberg had never heard of matrices.

Born had already worked in a similar direction with P.
Jordan, and the three of them, Born, Heisenberg, and
Jordan, then jointly wrote a definitive paper on ‘‘matrix
mechanics.’’ They found that the matrices representing
the coordinate of a particle q and its momentum p do
not commute, but satisfy the relation

qp2pq5i\1, (6)

where 1 is a diagonal matrix with the number 1 in each
diagonal element. This is a valid formulation of quantum
mechanics, but it was very difficult to find the matrix
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elements for any but the simplest problems, such as the
harmonic oscillator. The problem of the hydrogen atom
was soon solved by the wizardry of W. Pauli in 1926. The
problem of angular momentum is still best treated by
matrix mechanics, in which the three components of the
angular momentum are represented by noncommuting
matrices.

Erwin Schrödinger in 1926 found a different formula-
tion of quantum mechanics, which turned out to be most
useful for solving concrete problems: A system of n par-
ticles is represented by a wave function in 3n dimen-
sions, which satisfies a partial differential equation, the
‘‘Schrödinger equation.’’ Schrödinger was stimulated by
the work of L. V. de Broglie, who had conceived of
particles as being represented by waves. This concept
was beautifully confirmed in 1926 by the experiment of
Davisson and Germer on electron diffraction by a crys-
tal of nickel.

Schrödinger showed that his wave mechanics was
equivalent to Heisenberg’s matrix mechanics. The ele-
ments of Heisenberg’s matrix could be calculated from
Schrödinger’s wave function. The eigenvalues of Schrö-
dinger’s wave equation gave the energy levels of the sys-
tem.

It was relatively easy to solve the Schrödinger equa-
tion for specific physical systems: Schrödinger solved it
for the hydrogen atom, as well as for the Zeeman and
the Stark effects. For the latter problem, he developed
perturbation theory, useful for an enormous number of
problems.

A third formulation of quantum mechanics was found
by P. A. M. Dirac (1926), while he was still a graduate
student at Cambridge. It is more general than either of
the former ones and has been used widely in the further
development of the field.

In 1926 Born presented his interpretation of Schröd-
inger’s wave function: uc(x1 ,x2 ,. . . ,xn)u2 gives the prob-
ability of finding one particle at x1 , one at x2 , etc.

When a single particle is represented by a wave func-
tion, this can be constructed so as to give maximum
probability of finding the particle at a given position x
and a given momentum p, but neither of them can be
exactly specified. This point was emphasized by Heisen-
berg in his uncertainty principle: classical concepts of
motion can be applied to a particle only to a limited
extent. You cannot describe the orbit of an electron in
the ground state of an atom. The uncertainty principle
has been exploited widely, especially by Niels Bohr.

Pauli, in 1927, amplified the Schrödinger equation by
including the electron spin, which had been discovered
by G. Uhlenbeck and S. Goudsmit in 1925. Pauli’s wave
function has two components, spin up and spin down,
and the spin is represented by a 232 matrix. The matri-
ces representing the components of the spin, sx , sy ,
and sz , do not commute. In addition to their practical
usefulness, they are the simplest operators for demon-
strating the essential difference between classical and
quantum theory.

Dirac, in 1928, showed that spin follows naturally if
the wave equation is extended to satisfy the require-
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ments of special relativity, and if at the same time one
requires that the differential equation be first order in
time. Dirac’s wave function for an electron has four
components, more accurately 232. One factor 2 refers
to spin, the other to the sign of the energy, which in
relativity is given by

E56c~p21m2c2!1/2. (7)

States of negative energy make no physical sense, so
Dirac postulated that nearly all such states are normally
occupied. The few that are empty appear as particles of
positive electric charge.

Dirac first believed that these particles represented
protons. But H. Weyl and J. R. Oppenheimer, indepen-
dently, showed that the positive particles must have the
same mass as electrons. Pauli, in a famous article in the
Handbuch der Physik (Pauli, 1933), considered this pre-
diction of positively charged electrons a fundamental
flaw of the theory. But within a year, in 1933, Carl
Anderson and S. Neddermeyer discovered positrons in
cosmic radiation.

Dirac’s theory not only provided a natural explana-
tion of spin, but also predicted that the interaction of the
spin magnetic moment with the electric field in an atom
is twice the strength that might be naively expected, in
agreement with the observed fine structure of atomic
spectra.

Empirically, particles of zero (or integral) spin obey
Bose-Einstein statistics, and particles of spin 1

2 (or half-
integral), including electron, proton, and neutron, obey
Fermi-Dirac statistics, i.e., they obey the Pauli exclusion
principle. Pauli showed that spin and statistics should
indeed be related in this way.

II. APPLICATIONS

1926, the year when I started graduate work, was a
wonderful time for theoretical physicists. Whatever
problem you tackled with the new tools of quantum me-
chanics could be successfully solved, and hundreds of
problems, from the experimental work of many decades,
were around, asking to be tackled.

A. Atomic physics

The fine structure of the hydrogen spectrum was de-
rived by Dirac. Energy levels depend on the principal
quantum number n and the total angular momentum j,
orbital momentum plus spin. Two states of orbital mo-
mentum l 5j1 1

2 and j2 1
2 are degenerate.

The He atom had been an insoluble problem for the
old (1913–1924) quantum theory. Using the Schrödinger
equation, Heisenberg solved it in 1927. He found that
the wave function, depending on the position of the two
electrons C(r1 ,r2), could be symmetric or antisymmet-
ric in r1 and r2 . He postulated that the complete wave
function should be antisymmetric, so a C symmetric in
r1 and r2 should be multiplied by a spin wave function
antisymmetric in s1 and s2 , hence belonging to a singlet
state (parahelium). An antisymmetric spatial wave func-
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tion describes a state with total spin S51, hence a triplet
state (orthohelium). Heisenberg thus obtained a correct
qualitative description of the He spectrum. The ground
state is singlet, but for the excited states, the triplet has
lower energy than the singlet. There is no degeneracy in
orbital angular momentum L.

Heisenberg used a well-designed perturbation theory
and thus got only qualitative results for the energy lev-
els. To get accurate numbers, Hylleraas (in 1928 and
later) used a variational method. The ground-state wave
function is a function of r1 , r2 , and r12 , the distance of
the two electrons from each other. He assumed a ‘‘trial
function’’ depending on these variables and on some pa-
rameters, and then minimized the total energy as a func-
tion of these parameters. The resulting energy was very
accurate. Others improved the accuracy further.

I also was intrigued by Hylleraas’s success and applied
his method to the negative hydrogen ion H2. I showed
that this ion was stable. It is important for the outer
layers of the sun and in the crystal LiH, which is ionic:
Li1 and H2.

For more complicated atoms, the first task was to ob-
tain the structure of the spectrum. J. von Neumann and
E. Wigner applied group theory to this problem, and
could reproduce many features of the spectrum, e.g., the
feature that, for a given electron configuration, the state
of highest total spin S and highest total orbital momen-
tum L has the lowest energy.

In the late 1920’s J. Slater showed that these (and
other) results could be obtained without group theory,
by writing the wave function of the atom as a determi-
nant of the wave functions of the individual electrons.
The determinant form ensured antisymmetry.

To obtain the electron orbitals, D. R. Hartree in 1928
considered each electron as moving in the potential pro-
duced by the nucleus and the charge distribution of all
the other electrons. Fock extended this method to in-
clude the effect of the antisymmetry of the atomic wave
function. Hartree calculated numerically the orbitals in
several atoms, first using his and later Fock’s formula-
tion.

Group theory is important in the structure of crystals,
as had been shown long before quantum mechanics. I
applied group theory in 1929 to the quantum states of an
atom inside a crystal. This theory has also been much
used in the physical chemistry of atoms in solution.

With modern computers, the solution of the Hartree-
Fock system of differential equations has become
straightforward. Once the electron orbitals are known,
the energy levels of the atom can be calculated. Relativ-
ity can be included. The electron density near the
nucleus can be calculated, and hence the hyperfine struc-
ture, isotope effect, and similar effects of the nucleus.

B. Molecules

A good approximation to molecular structure is to
consider the nuclei fixed and calculate the electron wave
function in the field of these fixed nuclei (Born and Op-
penheimer, 1927). The eigenvalue of the electron en-
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ergy, as a function of the position of nuclei, can then be
considered as a potential in which the nuclei move.

Heitler and F. London, in 1927, considered the sim-
plest molecule, H2. They started from the wave function
of two H atoms in the ground state and calculated the
energy perturbation when the nuclei are at a distance R.
If the wave function of the electrons is symmetric with
respect to the position of the nuclei, the energy is lower
than that of two separate H atoms, and they could cal-
culate the binding energy of H2 and the equilibrium dis-
tance R0 of the two nuclei. Both agreed reasonably well
with observation. At distances R,R0 , there is repul-
sion.

If the wave function is antisymmetric in the positions
of the two electrons, there is repulsion at all distances.
For a symmetric wave function, more accurate results
can be obtained by the variational method.

Linus Pauling was able to explain molecular binding
generally, in terms of quantum mechanics, and thereby
helped create theoretical chemistry—see Herschbach
(1999).

An alternative to the Heitler-London theory is the
picture of molecular orbitals: Given the distance R be-
tween two nuclei, one may describe each electron by a
wave function in the field of the nuclei. Since this field
has only cylindrical symmetry, electronic states are de-
scribed by two quantum numbers, the total angular mo-
mentum and its projection along the molecular axis; for
example, ps means a state of total angular momentum 1
and component 0 in the direction of the axis.

C. Solid state

In a metal, the electrons are (reasonably) free to
move between atoms. In 1927 Arnold Sommerfeld
showed that the concept of free electron obeying the
Pauli principle could explain many properties of metals,
such as the relation between electric and thermal con-
ductivity.

One phenomenon in solid-state physics, superconduc-
tivity, defied theorists for a long time. Many wrong theo-
ries were published. Finally, the problem was solved by
John Bardeen, Leon Cooper, and Robert Schrieffer.
Pairs of electrons are traveling together, at a consider-
able distance from each other, and are interacting
strongly with lattice vibrations [see Schrieffer and
Tinkham (1999)].

D. Collisions

The old (pre-1925) quantum theory could not treat
collisions. In quantum mechanics the problem was
solved by Born. If a particle of momentum p1 collides
with a system C1 , excites that system to a state C2 , and
thereby gets scattered to a momentum p2 , then in first
approximation the probability of this process is propor-
tional to the absolute square of the matrix element,

M5E exp@ i~p12p2!•r/\#C1C2* Vdt , (8)
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where V is the interaction potential between particle
and system, and the integration goes over the coordi-
nates of the particle and all the components of the sys-
tem. More accurate prescriptions were also given by
Born.

There is an extensive literature on the subject. Nearly
all physics beyond spectroscopy depends on the analysis
of collisions see Datz et al. (1999).

E. Radiation and electrodynamics

The paradox of radiation’s being both quanta and
waves is elucidated by second quantization. Expanding
the electromagnetic field in a Fourier series,

F~r,t !5( ak exp i~k•r2vt !, (9)

one can consider the amplitudes ak as dynamic vari-
ables, with a conjugate variable ak

† . They are quantized,
using the commutation relation

akak
†2ak

†ak51. (10)

The energy of each normal mode is \v(n1 1
2 ).

Emission and absorption of light is straightforward.
The width of the spectral line corresponding to the tran-
sition of an atomic system from state m to state n was
shown by E. Wigner and V. Weisskopf to be

Dv5
1
2

~gm1gn!, (11)

where gm is the rate of decay of state m (reciprocal of its
lifetime) due to spontaneous emission of radiation.

Heisenberg and Pauli (1929, 1930) set out to construct
a theory of quantum electrodynamics, quantizing the
electric field at a given position rm . Their theory is self-
consistent, but it had the unfortunate feature that the
electron’s self-energy, i.e., its interaction with its own
electromagnetic field, turned out to be infinite.

E. Fermi (1932) greatly simplified the theory by con-
sidering the Fourier components of the field, rather than
the field at a given point. But the self-energy remained
infinite. This problem was only solved after World War
II. The key was the recognition, primarily due to Kram-
ers, that the self-energy is necessarily included in the
mass of the electron and cannot be separately measured.
The only observable quantity is then a possible change
of that self-energy when the electron is subject to exter-
nal forces, as in an atom.

J. Schwinger (1948) and R. Feynman (1948), in differ-
ent ways, then constructed relativistically covariant, and
finite, theories of quantum electrodynamics. Schwinger
deepened the existing theory while Feynman invented a
completely novel technique which at the same time sim-
plified the technique of doing actual calculations.
S. Tomonaga had earlier (1943) found a formulation
similar to Schwinger’s. F. J. Dyson (1949) showed the
equivalence of Schwinger and Feynman’s approaches
and then showed that the results of the theory are finite
in any order of a5e2/\c . Nevertheless the perturbation
series diverges, and infinities will appear in order exp
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(2\c/e2). An excellent account of the development of
quantum electrodynamics has been given by Schweber
(1994).

It was very fortunate that, just before Schwinger and
Feynman, experiments were performed that showed the
intricate effects of the self-interaction of the electron.
One was the discovery, by P. Kusch and H. M. Foley
(1948) that the magnetic moment of the electron is
slightly (by about 1 part in 1000) greater than predicted
by Dirac’s theory. The other was the observation by W.
Lamb and R. Retherford (1947) that the 2s and the
2p1/2 states of the H atom do not coincide, 2s having an
energy higher by the very small amount of about 1000
megaHertz (the total binding energy being of the order
of 109 megaHertz).

All these matters were discussed at the famous Shel-
ter Island Conference in 1947 (Schweber, 1994). Lamb,
Kusch, and I. I. Rabi presented experimental results,
Kramers his interpretation of the self-energy, and Feyn-
man and Schwinger were greatly stimulated by the con-
ference. So was I, and I was able within a week to cal-
culate an approximate value of the Lamb shift.

After extensive calculations, the Lamb shift could be
reproduced within the accuracy of theory and experi-
ment. The Lamb shift was also observed in He1, and
calculated for the 1s electron in Pb. In the latter atom,
its contribution is several Rydberg units.

The ‘‘anomalous’’ magnetic moment of the electron
was measured in ingenious experiments by H. Dehmelt
and collaborators. They achieved fabulous accuracy,
viz., for the ratio of the anomalous to the Dirac mo-
ments

a51 159 652 188 ~4 !310212, (12)

where the 4 in parenthesis gives the probable error of
the last quoted figure. T. Kinoshita and his students have
evaluated the quantum electrodynamic (QED) theory
with equal accuracy, and deduced from Eq. (12) the
fine-structure constant

a215\c/e25137.036 000. (13)

At least three other, independent methods confirm this
value of the fine-structure constant, albeit with less pre-
cision. See also Hughes and Kinoshita (1999).

III. INTERPRETATION

Schrödinger believed at first that his wave function
gives directly the continuous distribution of the electron
charge at a given time. Bohr opposed this idea vigor-
ously.

Guided by his thinking about quantum-mechanical
collision theory (see Sec. II.D.) Born proposed that the
absolute square of the wave function gives the probabil-
ity of finding the electron, or other particle or particles,
at a given position. This interpretation has been gener-
ally accepted.

For a free particle, a wave function (wave packet)
may be constructed that puts the main probability near a
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position x0 and near a momentum p0 . But there is the
uncertainty principle: position and momentum cannot
be simultaneously determined accurately, their uncer-
tainties are related by

DxDp>
1
2

\ . (14)

The uncertainty principle says only this: that the con-
cepts of classical mechanics cannot be directly applied in
the atomic realm. This should not be surprising because
the classical concepts were derived by studying the mo-
tion of objects weighing grams or kilograms, moving
over distances of meters. There is no reason why they
should still be valid for objects weighing 10224 g or less,
moving over distances of 1028 cm or less.

The uncertainty principle has profoundly misled the
lay public: they believe that everything in quantum
theory is fuzzy and uncertain. Exactly the reverse is true.
Only quantum theory can explain why atoms exist at all.
In a classical description, the electrons hopelessly fall
into the nucleus, emitting radiation in the process. With
quantum theory, and only with quantum theory, we can
understand and explain why chemistry exists—and, due
to chemistry, biology.

(A small detail: in the old quantum theory, we had to
speak of the electron ‘‘jumping’’ from one quantum
state to another when the atom emits light. In quantum
mechanics, the orbit is sufficiently fuzzy that no jump is
needed: the electron can move continuously in space; at
worst it may change its velocity.)

Perhaps more radical than the uncertainty principle is
the fact that you cannot predict the result of a collision
but merely the probability of various possible results.
From a practical point of view, this is not very different
from statistical mechanics, where we also only consider
probabilities. But of course, in quantum mechanics the
result is unpredictable in principle.

Several prominent physicists found it difficult to ac-
cept the uncertainty principle and related probability
predictions, among them de Broglie, Einstein, and
Schrödinger. De Broglie tried to argue that there should
be a deterministic theory behind quantum mechanics.
Einstein forever thought up new examples that might
contradict the uncertainty principle and confronted
Bohr with them; Bohr often had to think for hours be-
fore he could prove Einstein wrong.

Consider a composite object that disintegrates into
A1B . The total momentum PA1PB and its coordinate
separation xA2xB can be measured and specified simul-
taneously. For simplicity let us assume that PA1PB is
zero, and that xA2xB is a large distance. If in this state
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the momentum of A is measured and found to be PA ,
we know that the momentum of B is definitely 2PA .
We may then measure xB and it seems that we know
both PB and xB , in apparent conflict with the uncer-
tainty principle. The resolution is this: the measurement
of xB imparts a momentum to B (as in a g-ray micro-
scope) and thus destroys the previous knowledge of PB ,
so the two measurements have no predictive value.

Nowadays these peculiar quantum correlations are of-
ten discussed in terms of an ‘‘entangled’’ spin-zero state
of a composite object AB, composed of two spin-one-
half particles, or two oppositely polarized photons
(Bohm and Aharonov). Bell showed that the quantum-
mechanical correlations between two such separable sys-
tems, A and B, cannot be explained by any mechanism
involving hidden variables. Quantum correlations be-
tween separated parts A and B of a composite system
have been demonstrated by some beautiful experiments
(e.g., Aspect et al.). The current status of these issues is
further discussed by Mandel (1999) and Zeilinger
(1999), in this volume.
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