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I. INTRODUCTION

Non-Abelian gauge theories are a cornerstone of the
standard model of elementary particle physics. Such
theories (for example, QCD) are often strongly coupled
at long distances, and therefore cannot be studied by the
standard perturbative methods of weakly coupled field
theory. In the last few years important progress has been
made in the study of strongly coupled dynamics in a
class of gauge theories—supersymmetric Yang-Mills
(SYM) theories. New understanding of the constraints
due to supersymmetry, the importance of solitonic ob-
jects, and electric-magnetic, strong-weak coupling dual-
ity has led to many exact results on the vacuum structure
of various supersymmetric field theories.

Despite the fact that supersymmetry (a symmetry re-
lating bosons and fermions) is not present in the stan-
dard model, there are at least three reasons to study
supersymmetric gauge theories:

• It is widely believed that an N51 supersymmetric ex-
tension of the standard model describes physics at en-
ergies not far above those of current accelerators and
is directly relevant to the hierarchy problem and uni-
fication of couplings.

• Supersymmetric gauge theories provide examples of
many phenomena believed to occur in nonsupersym-
metric theories in a more tractable setting. Therefore
they serve as useful toy models for the study of these
phenomena.

• The study of supersymmetric field theories has many
mathematical applications.

Non-Abelian gauge theories also appear in low-
energy approximations to string theory, where super-
symmetry plays an important role. String theory is a
theory of quantum gravity which, moreover, unifies
gravity and gauge fields in a consistent quantum theory.
Traditionally, the theory has been formulated in an ex-
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pansion in a (string) coupling, but many of the outstand-
ing problems in the subject have to do with physics out-
side the weak-coupling domain. String theory has also
been undergoing rapid progress in the last few years,
driven by similar ideas to those mentioned in the gauge-
theory context above.

Some highlights of the progress in gauge and string
theory that are relevant for this review are the following:

(1) Strong-weak coupling duality. The physics of asymp-
totically free gauge theory depends on the energy
scale at which the theory is studied. At high energies
the theory becomes weakly coupled and is well de-
scribed in terms of the fundamental fields in the La-
grangian (such as quarks and gluons). At low ener-
gies the theory is often strongly coupled and can
exhibit several different behaviors (or phases): con-
fining, Higgs, Coulomb, free electric, and free mag-
netic phases.
In the confining phase, the energy of a pair of test
charges separated by a large distance R grows lin-
early with R . Thus such charges cannot be infinitely
separated. In the Higgs phase, the gauge bosons are
massive and the energy of a pair of test charges goes
to a constant at large R . The Coulomb phase is
characterized by potentials that go as 1/R , while the
free electric and magnetic phases have logarithmic
corrections to this behavior. The standard model of
elementary particle physics realizes the confining,
Higgs, and free electric phases; other models that go
beyond the standard model use the other phases as
well.
The determination of the phase structure of non-
Abelian gauge theories is an important problem that
is in general complicated because it involves under-
standing the physics of strongly coupled gauge
theory. In the last few years, this problem has been
solved for many supersymmetric gauge theories.
One of the main advances that led to this progress
was the realization that electric-magnetic, strong-
weak coupling duality is quite generic in field
theory.
In a typical realization of such a duality, one studies
an asymptotically free gauge theory that becomes
more and more strongly coupled as one goes to
lower and lower energies. The extreme low-energy
behavior is then found to be governed by a different
theory, which may be weakly coupled, e.g., because
it is not asymptotically free.
In other interesting situations, the original theory
depends on continuous parameters (exactly mar-
ginal deformations), and the duality relates the
theory at different values of these parameters. An
example of this is the maximally supersymmetric
four-dimensional gauge theory known as N54 SYM
theory. This theory depends on a complex param-
eter t, whose imaginary part is proportional to the
square of the inverse gauge coupling; the real part of
t is a certain u angle. The theory becomes weakly
coupled when Im t˜`. It has been proposed that it
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is invariant under a strong-weak coupling duality t
˜21/t in addition to the semiclassically manifest
symmetry t˜t11. This symmetry is a generaliza-
tion of the well-known symmetry of electrodynam-
ics, which takes EW ˜BW and BW ˜2EW and at the same
time exchanges electric and magnetic charges. In the
last few years convincing evidence has been found
for the validity of this duality symmetry of N54
SYM theory.
Many interesting generalizations to theories with
less supersymmetry have been found. For example,
certain ‘‘finite’’ supersymmetric gauge theories [e.g.,
N52 SYM theory with gauge group SU(Nc) and
Nf52Nc ‘‘flavors’’ of fundamental hypermultiplets]
also appear to have such symmetries. Furthermore,
it has been discovered that different N51 super-
symmetric gauge theories may flow to the same in-
frared fixed point and thus exhibit the same long-
distance behavior. As we change the parameters
defining the different theories, one of the descrip-
tions might become more weakly coupled in the in-
frared while another might become more strongly
coupled. In some cases, this equivalence relates a
strongly coupled interacting gauge theory to an in-
frared free one. Interesting phenomena have also
been shown to occur in other dimensions; in particu-
lar, a large class of previously unsuspected nontrivial
fixed points in five- and six-dimensional field theory
has been found.
String theory has been known for a long time to be
invariant under a large discrete symmetry group
known as T duality. This duality relates weakly
coupled string theories and is valid order by order in
the string coupling expansion. It relates different
spacetime backgrounds in which the string propa-
gates. A simple example of T duality is the equiva-
lence of string propagation on a circle of radii R and
1/R . A perturbative fundamental string state that
carries momentum n/R around the circle is mapped
by T duality to a perturbative fundamental string
state corresponding to a string winding n times
around the dual circle of radius 1/R .
In the last few years it has been convincingly argued
that the perturbative T-duality group is enhanced in
the full string theory to a larger symmetry group,
known as U duality, which relates perturbative
string states to solitons, and connects different string
vacua that were previously thought of as distinct
theories. In certain strong-coupling limits string
theory becomes 11 dimensional and is replaced by
an inherently quantum ‘‘M theory.’’ At low energies
M theory reduces to 11-dimensional supergravity;
the full structure of the quantum theory is not well
understood as of this writing.

(2) Solitonic objects. Gauge theories in the Higgs phase
often have solitonic solutions that carry magnetic
charge. Such monopoles and their dyonic generali-
zations (which carry both electric and magnetic
charge) play an important role in establishing dual-
ity in gauge theory. In supersymmetric gauge theo-
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
ries their importance is partly due to the fact that
they preserve some supersymmetries and therefore
belong to special representations of the supersym-
metry algebra known as ‘‘short’’ multiplets, which
contain fewer states than standard ‘‘long’’ multiplets
of the superalgebra. Particles that preserve part of
the supersymmetry are conventionally referred to as
being ‘‘BPS saturated’’ (for Bogomolny, Prasad, and
Sommerfield). Because of the symmetries, some of
the properties of these solitons can be shown to be
independent of the coupling constants, and thus cer-
tain properties can be computed exactly by weak-
coupling methods. Often, at strong coupling, they
become the light degrees of freedom in terms of
which the long-distance physics should be formu-
lated.
In string theory analogous objects have been found.
These are BPS-saturated p-branes, p-dimensional
objects (with p11-dimensional worldvolumes) that
play an important role in establishing U duality. In
various strong-coupling regions different branes can
become light and/or weakly coupled, and serve as
the degrees of freedom in terms of which the dy-
namics should be formulated. The study of branes
preserving part of the supersymmetry in string
theory led to fascinating connections, some of which
will be reviewed below, between string (or brane)
theory and gauge theory.

(3) Quantum moduli spaces of vacua. Supersymmetric
Yang-Mills (SYM) theories and string theories often
have massless scalar fields with vanishing classical
potential and therefore a manifold of inequivalent
classical vacua Mcl , which is parametrized by con-
stant expectation values of these scalar fields. In the
nonsupersymmetric case quantum effects generi-
cally lift the moduli space Mcl , leaving behind a
finite number of quantum vacua. In supersymmetric
theories the quantum lifting of the classical moduli
space is severely constrained by certain non-
renormalization theorems. The quantum corrections
to the scalar potential can often be described
by a dynamically generated nonperturbative super-
potential,1 which is severely restricted by holomor-
phicity, global symmetries, and large-field behavior.
One often finds an unlifted quantum moduli space
Mq . In many gauge theories the quantum superpo-
tentials have been analyzed and the moduli spaces
Mq have been determined. Partial success has also
been achieved in the analogous problem in string
theory.
Branes have proven useful in relating string dynam-
ics to low-energy phenomena. In certain limits brane
configurations in string theory are well described as
solitonic solutions of low-energy supergravity, in

1There are cases in which the lifting of a classical moduli
space cannot be described by an effective superpotential for
the moduli (Affleck, Dine, and Seiberg, 1984). We thank N.
Seiberg for reminding us of this.
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particular black holes. Interactions between branes
are then mainly due to ‘‘bulk’’ gravity. In other lim-
its gravity decouples and brane dynamics is well de-
scribed by the light modes living on the worldvol-
ume of the branes. Often, these light modes describe
gauge theories in various dimensions with different
kinds of matter. Studying the brane description in
different limits sheds new light on the quantum me-
chanics of black holes, as well as on quantum gauge-
theory dynamics. Most strikingly, both subjects are
seen to be different aspects of a single problem: the
dynamics of branes in string theory.
The fact that embedding gauge theories in string
theory can help analyze strongly coupled low-energy
gauge dynamics is a priori surprising. Standard
renormalization-group (RG) arguments would sug-
gest that at low energies one can integrate out all
fluctuations of the string except the gauge-theory
degrees of freedom, which are governed by SYM
dynamics (gravity also decouples in the low-energy
limit). This would seem to imply that string theory
cannot in principle teach us anything about low-
energy gauge dynamics.
Recent work suggests that, while most of the de-
grees of freedom of string theory are indeed irrel-
evant for understanding low-energy physics, there is
a sector of the theory that is significantly larger than
the gauge theory in question and that should be kept
to understand the low-energy structure. This sector
involves degrees of freedom living on branes and
their internal fluctuations and embedding in space-
time.

We shall see that the reasons for the ‘‘failure’’ of na-
ive intuition here are rather standard in the general
theory of the renormalization group:

(a) In situations where the long-distance theory exhib-
its symmetries, it is advantageous to study RG tra-
jectories along which the symmetries are manifest
(if such trajectories exist). The string embedding of
SYM theory often provides such a trajectory.
Other RG trajectories (e.g., the standard quantum-
field-theory definition of SYM theory in our case)
that describe the same long-distance physics may
be less useful for studying the consequences of
these symmetries, since they are either absent
throughout the RG flow, arising as accidental sym-
metries in the extreme infrared limit, or are hidden
in the variables that are being used.

(b) Embedding apparently unrelated low-energy theo-
ries in a larger high-energy theory can reveal con-
tinuous deformations of one into the other that
proceed through regions in parameter space where
both low-energy descriptions fail.

(c) The embedding in string theory allows one to study
a much wider class of long-distance behaviors than
is possible in asymptotically free gauge theory.
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
In brane theory, gauge theory arises as an effective low-
energy description that is useful in some region in the
moduli space of vacua. Different descriptions are useful
in different regions of moduli space, and in some regions
the extreme IR behavior cannot be given a field-theory
interpretation. The underlying dynamics is always the
same—brane worldvolume dynamics in string theory.
Via the magic of string theory, brane dynamics provides
a uniform and powerful geometrical picture of a diverse
set of gauge-theory phenomena and points to hidden
relations between them.

The purpose of this review is to provide an overview
of some aspects of the rich interplay between brane dy-
namics and supersymmetric gauge theory in different di-
mensions. We have tried to make the presentation rela-
tively self-contained, but the reader should definitely
consult reviews (some of which are listed below) on
string theory, D-branes, string duality, and the recent
progress in supersymmetric gauge theory, for general
background and more detailed discussions of aspects
that are only mentioned in passing below.

A. General references

In the last few years there has been a great deal of
work on subjects relevant to this review. Below we list a
few of the recent original papers and reviews that can
serve as a guide to the literature.

For introductions to supersymmetry (SUSY) field
theory see, for example, Gates et al., 1983 and Wess and
Bagger, 1992. Electric-magnetic strong-weak coupling
duality in four-dimensional gauge theory dates back to
the work of Montonen and Olive (1977). Reviews of the
exact duality in N54 SYM theory and additional refer-
ences to the literature can be found in the work of Olive
(1995), Harvey (1996), and Di Vecchia (1997). Harvey
(1996) also includes a pedagogical introduction to mag-
netic monopoles and other BPS states.

The recent progress in N52 SYM theory started with
the work of Seiberg and Witten (1994a, 1994b). Reviews
include those of Bilal (1996), Di Vecchia (1996), Lerche
(1997), and Alvarez-Gaume and Hasan (1997). The re-
cent progress in N51 SUSY gauge theory was led by
Seiberg’s, who published two of the important original
papers (Seiberg, 1994, 1995a). Some reviews of the work
on N51 supersymmetric theories are those of Amati
et al. (1988), Seiberg, (1995b), Intriligator and Seiberg
(1996a), Giveon (1996), Peskin (1997), and Shifman
(1997).

The standard reference on string theory is Green,
Schwarz, and Witten (1987); for a recent review see Kir-
itsis (1997). Dirichlet branes are described by Polchinski
(1995, 1996) and Polchinski, Chaudhuri, and Johnson
(1996). Solitonic branes are discussed by Callan, Harvey,
and Strominger (1991a, 1991b, 1991c). A comprehensive
review on solitons in string theory is that of Duff, Khuri,
and Lu (1995).

T duality is reviewed by Giveon, Porrati, and
Rabinovici (1994). The nonperturbative dualities and M
theory are discussed by Hull and Townsend (1995), Wit-
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ten (1995a), Schwarz (1995, 1997a), Townsend (1996,
1997), Vafa (1997), and many additional papers. A re-
cent summary for nonexperts is that of Schwarz (1997b).
Finally, reviews on applications of branes to black-hole
physics include, for example, those of Maldacena (1996),
Peet (1998), and Youm (1997).

B. Plan

The plan of this review is as follows. In Sec. II we
introduce the cast of characters—the different 1/2 BPS-
saturated branes in string theory.

We start, in Sec. II.A, by describing the field content
of 10- and 11-dimensional supergravity and, in particu-
lar, the p-form gauge fields to which different branes
couple. In Sec. II.B we describe different branes at weak
string coupling, where they appear as heavy nonpertur-
bative solitons charged under various p-form gauge
fields. This includes Dirichlet branes (D-branes), which
are charged under Ramond-sector gauge fields, and soli-
tonic branes charged under Neveu-Schwarz-sector gauge
fields. We also describe orientifolds, which are nondy-
namical objects (at least at weak string coupling) that
are very useful for applications to gauge theory.

In Sec. II.C we discuss the interpretation of the differ-
ent branes in M theory, the 11-dimensional theory that
is believed to underlie all string vacua as well as 11-
dimensional supergravity. We show how different
branes in string theory descend from the membrane and
five-brane of M theory and discuss the corresponding
superalgebras.

In Sec. II.D we describe the transformation of the
various branes under U duality, the nonperturbative dis-
crete symmetry of compactified string (or M) theory. In
Sec. II.E we initiate the discussion of branes preserving
less than one-half of the supersymmetry, with particular
emphasis on their worldvolume dynamics. We introduce
configurations of branes ending on branes that are cen-
tral to the gauge-theory applications and discuss some of
their properties.

Section III focuses on configurations of parallel Di-
richlet three-branes that realize four-dimensional N54
SYM theory on their worldvolume. We describe the
limit in which the worldvolume gauge theory decouples
from all the complications of string physics and explain
two known features of N54 SYM theory using branes.
The Montonen-Olive electric-magnetic duality symme-
try is seen to be a low-energy manifestation of the
SL(2,Z) self-duality of ten-dimensional type-IIB string
theory; Nahm’s description of multimonopole moduli
space is shown to follow from the realization of mono-
poles as D strings stretched between D3-branes preserv-
ing one-half of the supersymmetry. We also describe the
form of the metric on monopole moduli space and some
properties of the generalization to symplectic and or-
thogonal groups obtained by studying three-branes near
an orientifold three-plane.

In Sec. IV we move on to brane configurations, de-
scribing four-dimensional N52 SYM theory. In particu-
lar, in Sec. IV.C we explain, using a construction of
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branes suspended between branes, the observation by
Seiberg and Witten that the metric on the Coulomb
branch of such theories is given by the period matrix of
an auxiliary Riemann surface S. In the brane picture this
Riemann surface becomes physical and is interpreted as
part of the worldvolume of a five-brane. N52 SYM
theory is obtained in brane theory by studying the
worldvolume theory of the five-brane wrapped around
R3,13S . We also discuss the geometrical realization of
the Higgs branch and various deformations of the
theory.

Section V is devoted to four-dimensional theories
with N51 supersymmetry. We describe the classical and
quantum phase structures of such theories as a function
of the parameters in the Lagrangian and explain
Seiberg’s duality between different theories using
branes. In the brane construction, the quantum moduli
spaces of members of a dual pair provide different pa-
rametrizations of a single space—the moduli space of
the corresponding brane configuration. Each description
is natural in a different region in parameter space.
Seiberg’s duality in brane theory is thus reminiscent of
the well-known correspondence between two-
dimensional sigma models on Calabi-Yau hypersurfaces
in weighted projective spaces and Landau-Ginzburg
models with N5(2,2) supersymmetry (Greene, Vafa,
and Warner, 1989; Kastor, Martinec, and Shenker, 1989;
Martinec, 1989), where the relation between the two de-
scriptions can be established by embedding both in the
larger framework of the (nonconformal) gauged linear
sigma model (Witten, 1993).

In Sec. VI we study three-dimensional theories. In
Sec. VI.A we establish, using brane theory, two results
in N54 SYM theory. One is that the moduli space of
many such theories is identical as a hyper-Kähler mani-
fold to the moduli space of monopoles in a different
gauge theory. The other is ‘‘mirror symmetry,’’ i.e., the
statement that many N54 SUSY gauge theories have
mirror partners such that the Higgs branch of one theory
is the Coulomb branch of its mirror partner and vice
versa. In Sec. VI.B we study N52 SUSY theories. We
describe the quantum moduli space of N52 supersym-
metric QCD using branes and show that the two duali-
ties mentioned above, Seiberg’s duality and mirror sym-
metry, can be extended to this case and teach us new
things both about branes and about gauge theories. We
also discuss the phase structure of four-dimensional N
51 SUSY gauge theory compactified to three dimen-
sions on a circle of radius R .

In Sec. VII we consider two-dimensional theories. We
study 2d N5(4,4) supersymmetric theories and com-
pactifications of N54 supersymmetric models from
three to two dimensions on a circle. We also discuss N
5(2,2) SUSY theories in two dimensions. In Sec. VIII
we study some aspects of five- and six-dimensional theo-
ries, as well as compactifications from five to four di-
mensions on a circle. Finally, in Sec. IX we summarize
the discussion and mention some open problems.



988 A. Giveon and D. Kutasov: Brane dynamics and gauge theory
C. Omissions

In the following we briefly discuss issues that will not
be reviewed extensively:2

• Gauge theories in Calabi-Yau compactifications. An
alternative (but related) way to study low-energy
gauge theory is to compactify string theory to D di-
mensions on a manifold preserving the required
amount of supersymmetry, and take MPlanck˜` to
decouple gravity and massive string modes. This leads
to a low-energy gauge theory, some of whose proper-
ties can be related to the geometry of the internal
space.
In particular, compactifications of the type-II string on
singular Calabi-Yau threefolds—fibrations of asymp-
totically locally Euclidean (ALE) spaces over
CP1—are useful in the study of N52 SYM theories
(Kachru et al., 1996; Klemm et al., 1996); for reviews
see (Klemm, 1997; Lerche, 1997). BPS states are re-
lated to type-IIB three-branes wrapped around
3-cycles which are fibrations of vanishing 2-cycles in
the ALE space. On the base the three-brane is pro-
jected to a self-dual string on a Riemann surface S,
which is the Seiberg-Witten curve. The string tension
is related to the Seiberg-Witten differential l. The ex-
istence of stable BPS states is reduced to a geodesic
problem on S with metric ulu2.
Similarly, to study N51 SYM theories in four dimen-
sions one compactifies F theory (Vafa, 1996) on
Calabi-Yau fourfolds. This ‘‘geometric engineering’’
was initiated by Katz, Klemm, and Vafa (1997; Katz
and Vafa, 1997) and is reviewed by Klemm (1997).

• Probing the geometry of branes with branes. We shall
briefly describe a few (related) examples in which the
geometry near branes can be probed by lighter ob-
jects. In particular, we shall describe the metric felt by
a fundamental string propagating in the background
of solitonic five-branes, and by three-branes near par-
allel seven-branes and orientifold seven-planes. In the
latter case, the geometrical data are translated into
properties of the four-dimensional N52 supersymet-
ric gauge theory on the three-branes. The interplay
between the gauge dynamics on branes and the geom-
etry corresponding to the presence of other branes
was studied by Douglas (1996), Banks, Douglas, and
Seiberg (1996), and Sen (1996) and was generalized in
many directions.
For instance, four-branes can be used to probe the
geometry of parallel eight-branes and orientifold
eight-planes, leading to an interesting connection be-
tween five-dimensional gauge theory and geometry
(Seiberg, 1996b; Douglas, Katz, and Vafa, 1997; Mor-
rison and Seiberg, 1997). Similarly, p-branes (with p
,3) can be used to probe the geometry near parallel
(p14)-branes and orientifold (p14)-planes, leading
to relations between low-dimensional (D,4) gauge
theories and geometry (Seiberg, 1996a; Seiberg and
Witten, 1996; Banks, Seiberg, and Silverstein, 1997;

2This subsection may be skipped on a first reading.
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
Diaconescu and Seiberg, 1997), some of which will be
discussed in this review. Other brane configurations
that were used to study the interplay between geom-
etry and gauge theory appear in articles by Aharony,
Kachru, and Silverstein (1997), Aharony, Sonnen-
schein, et al. (1997); Douglas, Lowe, and Schwarz
(1997), Sen (1997b, 1997c).

• Branes in Calabi-Yau backgrounds. As should be
clear from the last two items, there is a close connec-
tion between brane configurations and nontrivial
string backgrounds. In general one may consider
branes propagating in nontrivial backgrounds, such as
Calabi-Yau compactifications. The branes may live at
points in the internal space or wrap nontrivial cycles
of the manifold.
Such systems have been widely studied (for example,
Bershadsky, Sadov, and Vafa, 1996a; Douglas and Li,
1996; Douglas and Moore, 1996; Ahn, 1998a; Ahn and
Oh, 1997; Ahn, Oh, and Tatar, 1997; Ahn and Tatar,
1997; Bershadsky, Johanson et al., 1997; Blum and In-
triligator, 1997a, 1997b; Hori and Oz, 1997; Intriliga-
tor, 1997; Ooguri and Vafa, 1997; Vafa and Zwiebach,
1997, and references therein). In some limits, they are
related by duality transformations to the webs of
branes in flat space that are extensively discussed be-
low (Ooguri and Vafa, 1996; Kutasov, 1996; Elitzur,
Giveon, and Kutasov, 1997; Ooguri and Vafa, 1997).
For example, a useful duality, which we shall review
below, is the one relating the A-type singularity on
K3 to a configuration of parallel solitonic five-branes.

• Quantum mechanics of systems of D0-branes, D in-
stantons, matrix theory. The quantum mechanics of
D0-branes in type-IIA string theory (in general in the
presence of other branes and orientifolds) has led to
fascinating developments which are outside the scope
of this review (Bachas, Green, and Schwimmer, 1998;
Banks, Seiberg, and Silverstein, 1997; Barbon and
Pasquinucci, 1998a; Douglas et al., 1997; Porrati and
Rozenberg, 1997). Matrix theory was introduced by
Banks et al. (1998); for reviews and additional refer-
ences see Banks (1997); Bigatti and Susskind (1998).
D instantons were studied, for example, by Green and
Gutperle (1997) and Green and Vanhove (1997) and
references therein.

• Nonsupersymmetric theories. It is easy to construct
brane configurations in string theory that do not pre-
serve any supersymmetry. So far, not much has been
learned about nonsupersymmetric gauge theories by
studying such configurations (for reasons that we shall
explain). Recent discussions include those of Barbon
and Pasquinucci, 1998b; Brandhuber, Sonnenschein,
et al., 1997a; Evans and Schwetz, 1998; Gomez, 1997;
Witten, 1997b. Dynamical supersymmetry breaking in
the brane picture has been considered recently by de
Boer et al. (1998).

II. BRANES IN STRING THEORY

In addition to fundamental strings, in terms of which
string theory is usually formulated, the theory contains
other extended p-dimensional objects, known as
p-branes, that play an important role in the dynamics.



989A. Giveon and D. Kutasov: Brane dynamics and gauge theory
These objects can be divided into two broad classes ac-
cording to their properties for weak fundamental string
coupling gs : (1) ‘‘solitonic’’ or Neveu-Schwarz (NS)
branes, whose tension (energy per unit p volume) be-
haves like 1/gs

2 , and (2) Dirichlet or D-branes, whose
tension is proportional to 1/gs (and which are hence
much lighter than NS-branes in the gs˜0 limit).

In this section we describe some properties of the
various branes. In supergravity, these p-branes are
charged under certain massless (p11)-form gauge
fields. We start with a description of the low-energy ef-
fective theory corresponding to type-II strings in 10 di-
mensions as well as 11-dimensional supergravity, the
low-energy limit of M theory. We then describe branes
preserving half of the supersymmetry in weakly coupled
string theory: D-branes, orientifold planes, and solitonic
and Kaluza-Klein five-branes. We present the interpre-
tation of the different branes from the point of view of
the full quantum eleven-dimensional M theory, and
their transformation properties under U duality. We fin-
ish the section with a discussion of webs of branes pre-
serving less supersymmetry.

Our notations are as follows: the (119)-dimensional
spacetime of string theory is labeled by (x0,x1,. . . ,x9).
The tenth spatial dimension of M theory is x10. The cor-
responding Dirac matrices are GM, M50,1,2,.. . ,10.
Type-IIA string theory has (1,1) spacetime supersymme-
try (SUSY); the spacetime supercharges generated by
left- and right-moving worldsheet degrees of freedom
QL , QR have opposite chirality:

G0
¯G9QL51QL ,

G0
¯G9QR52QR . (1)

Type-IIB string theory has (2,0) spacetime SUSY, with
both left- and right-moving supercharges having the
same chirality:

G0
¯G9QL5QL ,

G0
¯G9QR5QR . (2)

Thus type-IIA string theory is nonchiral, while the type-
IIB theory is chiral. We shall focus mainly on type-II
string theories, but (119)-dimensional theories with
(1,0) SUSY can be similarly discussed. Type-I string
theory can be thought of as type-II string theory with
orientifolds and D-branes and is, therefore, a special
case of the discussion below. Heterotic strings do not
have D-branes, but do have NS-branes similar to those
described below.

A. Low-energy supergravity

The spectrum of string theory contains a finite num-
ber of light particles and an infinite tower of massive
excitations with string scale or higher masses. To make
contact with low-energy phenomenology it is convenient
to focus on the dynamics of the light modes. This can be
achieved by integrating out the infinite tower of massive
fluctuations of the string and defining a low-energy ef-
fective action for the light fields. While it has proven
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very difficult to formulate a string field theory, it is often
helpful to think of string theory as an infinite collection
of quantum fields f. Some of these fields are light f l ,
and the rest are heavy fh . Assuming that they are gov-
erned by the classical action S(f l ,fh), the effective ac-
tion for the light fields Seff(fl) can in principle be ob-
tained by integrating out the heavy fields:

eiSeff(f l)5E DfheiS(f l ,fh). (3)

In principle Eq. (3) is exact, but in practice it is far from
clear how to find the action S and how to integrate out
the massive modes of the string. At the same time, the
effective action is mainly of interest at energies much
lower than the masses of the fields fh . To find Seff at
low energies one can study the S matrix of the string in
the low-energy approximation and construct a classical
action that reproduces it. The leading terms in such an
action are typically determined by the symmetries, such
as gauge and diffeomorphism invariance, and supersym-
metry.

Following the above discussion for type-II string
theory leads to the two (911)-dimensional type-II su-
pergravity theories, type-IIA and type-IIB. Ten-
dimensional type-IIA supergravity can be obtained by
dimensional reduction of the unique 11-dimensional su-
pergravity theory, which is of interest in its own right as
the low-energy limit of M theory; thus we start with this
case.

Eleven-dimensional supergravity includes the bosonic
(i.e., commuting) fields GMN , the 11-dimensional met-
ric, and AMNP , a three-index antisymmetric gauge field
(M ,N ,P50,1,.. . ,10). The only fermionic field is the
gravitino, ca

M (a51,.. . ,32). The Lagrangian describing
these fields can be found in the article of Green,
Schwarz, and Witten (1987). One can check that there
are 128 on-shell bosonic and fermionic degrees of free-
dom.

The presence of the three-index gauge field AMNP im-
plies that 11-dimensional supergravity couples naturally
to membranes and to five-branes. For a membrane with
world-volume XM(sa), (a51,2,3), the coupling is (see
Bergshoeff, Sezgin, and Townsend, 1988 for a discussion
of the full supermembrane worldvolume action)

E d3seabcAMNP~X !]aXM]bXN]cXP. (4)

This coupling is the analog of the coupling *dxMAM of a
gauge field to a particle, or of a second-rank antisym-
metric tensor BMN to a string. Just as these couplings
imply that the particle or string carries electric charge or
the charge connected with BMN , Eq. (4) implies that the
membrane of 11-dimensional supergravity is charged
under the three-form gauge field AMNP . The coupling
of 11-dimensional supergravity to five-branes is similar,
with AMNP replaced by its dual ÃMNPQRS defined by

* dA5dÃ .
Type-IIA supergravity is obtained by dimensional re-

duction of 11-dimensional supergravity on a circle. De-
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noting the (119)-dimensional indices by m ,n ,l
50,1,.. . ,9, we find that the fields of 11-dimensional su-
pergravity reduce as follows in this limit. The metric
GMN gives rise to the metric Gmn , a gauge field Am
5Gm ,10 , and a scalar F5G10,10 . The antisymmetric ten-
sor AMNP similarly gives rise to the antisymmetric ten-
sors Amnl and Bmn5Amn ,10 . In the standard Neveu-
Schwarz-Ramond quantization of superstrings (Green,
Schwarz, and Witten, 1987), the fields Gmn , Bmn , and F
originate in the same sector of the string Hilbert space,
the Neveu-Schwarz (or NS) sector, while the gauge
fields Am and Amnl are Ramond-Ramond (RR) sector
fields. The scalar field F is the dilaton; its expectation
value determines the coupling constant of the string
theory. Since the potential for F in type-II string theory
vanishes, the theory can be made arbitrarily weakly
coupled.

Just as in Eq. (4), the existence of the gauge fields
implies that type-II string theory naturally couples to
various p-branes. The existence of Bmn means that the
theory naturally couples to strings [electrically, as in Eq.
(4)] and five-branes (magnetically, via the six-form
gauge field dual to Bmn). Since the gauge field to which
these branes couple is an NS sector field we refer to
these branes as NS-branes. The string charged under
Bmn is simply the fundamental string that is used to de-
fine type-II string theory, while the five-brane is the
NS5-brane studied by Callan, Harvey, and Strominger
(1991a, 1991b, 1991c).

The gauge fields Am and Amnl couple electrically to
zero-branes (particles) and membranes and magnetically
to six-branes and four-branes, respectively. Since the
corresponding gauge fields originate in the RR sector,
these branes are sometimes referred to as Ramond-
branes (or D-branes; see below).

Type-IIB supergravity has (2,0) chiral supersymmetry.
The massless spectrum contains again the NS sector
fields Gmn , Bmn , and F and the associated NS string and
five-brane. The spectrum of RR p-form gauge fields is
different from the type-IIA case. There is an additional
scalar x, which combines with F into a complex coupling
of type-IIB string theory. The antisymmetric tensors one
finds have two and four indices, B̃mn , Amnlr . The exis-
tence of the former implies that the theory can couple to
another set of strings and five-branes, the D string and
D5-brane. The four-form A is self dual * dA5dA ; it
couples to a three-brane.

In what follows we discuss some properties of the
various branes mentioned above. We begin with a de-
scription of their construction and properties in weakly
coupled string theory.

B. Branes in weakly coupled string theory

1. D-branes

In weakly coupled type-II string theory, D-branes are
defined by the property that fundamental strings can
end on them (Polchinski, 1996; Polchinski, Chaudhuri,
and Johnson, 1996). A Dirichlet p-brane (Dp-brane)
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stretched in the (x1,. . . ,xp) hyperplane, located at a
point in (xp11,. . . ,x9), is defined by including in the
theory open strings with Neumann boundary conditions
for (x0,x1,. . . ,xp) and Dirichlet boundary conditions for
(xp11,. . . ,x9) (see Fig. 1).

The Dp-brane is charged under a Ramond-Ramond
(RR) (p11)-form potential of the type-II string. As we
saw, in type-IIA string theory there are such potentials
with even p and, therefore, Dp-branes with p
50,2,4,6,8. Similarly, in type-IIB string theory there are
potentials with odd p and Dp-branes with p
521,1,3,5,7,9. The p521 brane is the D instanton,
while the p59 brane is the D9-brane that fills the whole
(911)-dimensional spacetime and together with the ori-
entifold (to be described below) turns a type-IIB string
into a type-I one. The D7-brane is the ‘‘magnetic dual’’
of the D instanton; the D8-brane together with the ori-
entifold turns a type-IIA string into a type-I8 one.

The tension of a Dp-brane is

Tp5
1

gsls
p11 , (5)

where ls is the fundamental string scale (the tension of
the fundamental string is T51/ls

2). The Dp-brane ten-
sion (5) is equal to its RR charge; D-branes are BPS-
saturated objects preserving half of the thirty-two super-
charges of type-II string theory. More precisely, a
Dp-brane stretched along the (x1,. . . ,xp) hyperplane
preserves supercharges of the form eLQL1eRQR with

eL5G0G1
¯GpeR . (6)

An anti-Dp-brane carries the opposite RR charge and
preserves the other half of the supercharges. Equation
(6) can be thought of as arising from the presence in the
theory of open strings that end on the branes. In the
presence of such open strings the left- and right-moving
supercharges QL , QR(1,2) are not independent; Eq. (6)
describes the reflection of right-to-left movers at the
boundary of the worldsheet, which is confined to the
brane.

FIG. 1. Low-lying states of fundamental strings with both ends
on D-branes: (a) a U(1) gauge field and 92p scalars living on
a single D-brane, or (b) a U(Nc) gauge field and 92p adjoint
scalars on a stack of Nc D-branes.



991A. Giveon and D. Kutasov: Brane dynamics and gauge theory
The low-energy worldvolume theory on an infinite
Dp-brane is a (p11)-dimensional field theory invariant
under sixteen supercharges. It describes the dynamics of
the ground states of open strings both of whose end
points lie on the brane [Fig. 1(a)]. The massless spec-
trum includes a (p11)-dimensional U(1) gauge field
Am(xn), (92p) scalars XI(xm) (I5p11,.. . ,9, m
50,.. . ,p) parametrizing fluctuations of the Dp-brane in
the transverse directions, and fermions required for
supersymmetry.3 The low-energy dynamics can be ob-
tained by dimensional reduction of N51 SYM theory
with gauge group G5U(1) from (911) to (p11) di-
mensions. The bosonic part of the low-energy worldvol-
ume action is

S5
1

gSYM
2 E dp11xS 1

4
FmnFmn1

1

ls
4 ]mXI]mXID . (7)

The U(1) gauge coupling on the brane gSYM is given by

gSYM
2 5gsls

p23. (8)

The gs dependence in Eqs. (5) and (8) follows from the
fact that the kinetic term (7) arises from open-string tree
level (the disk), while the power of the string length ls is
fixed by dimensional analysis.

At high energies, the massless degrees of freedom (7)
interact with an infinite tower of ‘‘open-string’’ states
localized on the brane, and with closed strings in the
(911)-dimensional bulk of spacetime. To study SYM
theory on the brane one needs to decouple the gauge-
theory degrees of freedom from gravity and massive
string modes. To achieve that one can send ls˜0 hold-
ing gSYM fixed. This means (8) gs˜0 for p,3, gs˜` for
p.3. For p53 gSYM is independent of ls and the ls
˜0 limit describes N54 SYM theory in (311) dimen-
sions. Note that for p<3 the above limit leads to a con-
sistent theory on the brane, whose UV behavior is just
that of (p11)-dimensional SYM theory. For p.3, SYM
theory provides a good description in the infrared, but it
must break down at high energies.

Since D-branes are BPS-saturated objects, parallel
branes do not exert forces on each other. The low-
energy worldvolume dynamics on a stack of Nc nearby
parallel Dp-branes [Fig. 1(b)] is a SYM theory with
gauge group U(Nc) and sixteen supercharges, arising
from ground states of open strings whose end points lie
on the branes (Polchinski, 1994; Witten, 1996a). The sca-
lars XI (7) turn into Nc3Nc matrices transforming in
the adjoint representation of the U(Nc) gauge group.
The Nc photons in the Cartan subalgebra of U(Nc) and
the diagonal components of the matrices XI correspond
to open strings both of whose end points lie on the same
brane. The charged gauge bosons and off-diagonal com-
ponents of XI correspond to strings whose end points lie
on different branes. Specifically, the (i ,j), (j ,i) elements

3We shall usually ignore the fermions below. Their properties
can be deduced by imposing supersymmetry.
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of XI, Am arise from the two orientations of a funda-
mental string connecting the ith and jth branes [see Fig.
1(b)].

The generalization of Eq. (7) to the case of Nc parallel
Dp-branes is described by dimensional reduction of N
51 SYM theory with gauge group G5U(Nc) from (9
11) to (p11) dimensions. The bosonic part of the (9
11)-dimensional low-energy Lagrangian,

L5
1

4gSYM
2 Tr FmnFmn; m ,n50,1,.. . ,9,

Fmn5]mAn2]nAm2i@Am ,An# , (9)

gives rise upon dimensional reduction to kinetic terms
for the (p11)-dimensional gauge field Am and adjoint
scalars XI,

Lkin5
1

gSYM
2 TrS 1

4
FmnFmn1

1

ls
4 D mXID mXID (10)

(here D mXI5]mXI2i@Am ,XI# ; Fmn5] [mAn]
2i@Am ,An#), and to a potential for the adjoint scalars
XI,

V;
1

ls
8gSYM

2 (
I ,J

Tr@XI,XJ#2. (11)

Flat directions of the potential (11) corresponding to di-
agonal XI (up to gauge transformations) parametrize
the Coulomb branch of the U(Nc) gauge theory. The
moduli space of vacua is (R92p)Nc/SNc

; it is param-

etrized by the eigenvalues of XW ,

xW i5^XW ii&; i51, .. . ,Nc , (12)

which label the transverse locations of the Nc branes.
The permutation group SNc

acts on xW i as the Weyl group
of SU(Nc). For generic positions of the Nc-branes, the
off-diagonal components of XI as well as the charged
gauge bosons are massive (and the gauge symmetry is
broken, U(Nc)˜U(1)Nc). Their masses are read off
from Eqs. (10)–(12):

mij5
1

ls
2 uxW i2xW ju. (13)

Geometrically Eq. (13) can be thought of as the minimal
energy of a fundamental string stretched between the ith
and jth branes [Fig. 1(b)]. When n of the Nc-branes
coincide, some of the charged particles become massless
(13) and the gauge group is enhanced from U(1)Nc to
U(n)3U(1)Nc2n.

2. Orientifolds

An orientifold p-plane (Op-plane) is a generalization
of a Z2 orbifold fixed plane to nonoriented string theo-
ries (Polchinski, 1996; Polchinski, Chaudhuri, and
Johnson, 1996). It can be thought of as the fixed plane
under a Z2 symmetry which acts on the spacetime coor-
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dinates and reverses the orientation of the string. The
fixed plane of the Z2 transformation4

xI~z , z̄ !↔2xI~ z̄ ,z !; I5p11,.. . ,9 (14)

is an Op-plane extending in the (x1,. . . ,xp) directions
and time.

Like the usual orbifold fixed planes, the orientifold is
not dynamical (at least at weak string coupling). It car-
ries charge under the same RR (p11)-form gauge po-
tential and breaks the same half of the supersymmetry
as a parallel Dp-brane. In the presence of an Op-plane,
the transverse space R92p is replaced by R92p/Z2 . It is
convenient to continue to describe the geometry as
R92p, add a Z2 image for each object lying outside the
fixed plane, and implement an appropriate (anti-) sym-
metrization on the states. Thus D-branes that are out-
side the orientifold plane acquire mirror images (see
Fig. 2). At the fixed plane one can sometimes have a
single D-brane that does not have a Z2 partner and
hence cannot leave the singularity. The RR charge of an
Op-plane QOp is equal (up to a sign) to that of 2p24

Dp-branes (or 2p25 pairs of a Dp-brane and its mirror).
Denoting the RR charge of a Dp-plane by QDp , the
orientifold charge is

QOp562•2p25QDp (15)

(this will be further discussed later). The (anti-) symmet-
ric projection imposed on D-branes by the presence of
an orientifold plane leads to changes in their low-energy
dynamics. On a stack of Nc Dp-branes parallel to an
Op-plane one finds a gauge theory with 16 supercharges
and the following rank @Nc/2# gauge group5 G :

• QOp512•2p25QDp , Nc even: G5Sp(Nc/2).

• QOp522•2p25QDp : G5SO(Nc).

The light matter consists of the ground states of open
strings stretched between different D-branes, giving rise
to a gauge field for the group G and 92p scalars XI in
the adjoint of G . Positive orientifold charge gives rise to
a symmetric projection on the Nc3Nc matrices Am , XI

and therefore a symplectic gauge group (Nc must be
even in that case; as is clear from Eq. (14), for the case
of a symmetric projection it is impossible to have a
D-brane without an image stuck at the orientifold),
while negative orientifold charge leads to an antisym-
metric projection and to orthogonal gauge groups.

Geometrically, (Nc
26Nc)/2 of the Nc

2 oriented strings
stretched between the Nc Dp-branes survive the (anti-)
symmetric projection due to the orientifold. The differ-
ence of Nc between the symmetric and antisymmetric
cases corresponds to strings stretching between a
Dp-brane and its mirror image. These strings transform
to themselves under the combined worldsheet and
spacetime reflection (14); thus they are projected out in
the antisymmetric case and give 23Nc/2 massless modes
in the symmetric case.

4z , z̄ parametrize the string worldsheet; z5exp(t1is).
5Our conventions are Sp(1).SU(2).
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Since branes can only leave the orientifold plane in
pairs, there are @Nc/2# ‘‘dynamical branes’’ that are free
to move. Their locations in the transverse space R92p

parametrize the Coulomb branch of the theory. The
@Nc/2# photons in the Cartan subalgebra of G and the
scalars parametrizing the Coulomb branch correspond
to open strings both of whose end points lie on the same
brane. When n of the @Nc/2# Dp-branes coincide out-
side the orientifold plane the gauge symmetry is en-
hanced from U(1)[Nc/2] to U(n)3U(1)[Nc/2]2n. When
m of the Nc branes coincide with the orientifold plane
the gauge group is enhanced to @SO(m) or Sp(m/2)#
3U(1)[(Nc2m)/2].

For high-dimensional orientifolds and D-branes the
discussion above has to be slightly modified. In particu-
lar, for p>7 the rank of the gauge group G is bounded
since RR flux does not have enough noncompact trans-
verse directions to escape, and therefore the total RR
charge must vanish. The case p59 is further special,
since there are no transverse directions at all and the
reflection (14) acts only on the worldsheet. The require-
ments that the total RR charge vanish and the orienti-
fold charge QO95232 [see Eq. (15)] are in this case
directly related to the fact that the gauge group of ten-
dimensional type-I string theory is SO(32). The p de-
pendence in Eq. (15) will be discussed in Sec. II.D.

3. The solitonic five-brane

The solitonic five-brane (Callan, Harvey, and
Strominger, 1991a, 1991b, 1991c) that exists in weakly
coupled type-II and heterotic string theory, is a BPS-
saturated object which, like the Dirichlet brane, pre-
serves half of the supersymmetry of the theory and has
tension

TNS5
1

gs
2ls

6 . (16)

FIG. 2. An orientifold p-plane with two adjacent parallel
Dp-branes and their mirror images. Fundamental strings
stretched between a D-brane and its image are projected out
for negative orientifold charge. Others come in mirror pairs.
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It couples magnetically to the NS-NS sector Bmn field
and can thus be thought of as a magnetic dual of the
fundamental type-II or heterotic string. Since its tension
is proportional to 1/gs

2 it provides a nontrivial back-
ground for a fundamental string in leading order in gs
(i.e., on the sphere). A fundamental string propagating
in the background of k parallel NS five-branes located at
transverse positions xW i is described by a conformal field
theory with nontrivial GIJ , BIJ , F (metric, antisymmet-
ric tensor, and dilaton) given by

e2(F2F0)511(
j51

k ls
2

uxW 2xW ju2 ,

GIJ5e2(F2F0)dIJ ; Gmn5hmn ,

HIJK52eIJKM]MF . (17)

I ,J ,K ,M label the four directions transverse to the five-
brane; m,n label the (511) longitudinal directions. H is
the field strength of B ; F0 is the value of the dilaton at
infinity, related to the string coupling at infinity gs
5exp F0 . As is clear from Eq. (17), the effective string
coupling exp(F) depends on the distance from the five-
brane, diverging at the core.

An NS five-brane stretched in the (x1,. . . ,x5) hyper-
plane preserves supercharges of the form eLQL
1eRQR , where for the type-IIA five-brane

eL5G0G1G2G3G4G5eL ,

eR5G0G1G2G3G4G5eR , (18)

while for the type-IIB five-brane

eL5G0G1G2G3G4G5eL ,

eR52G0G1G2G3G4G5eR . (19)

Thus the nonchiral type-IIA string theory gives rise to a
chiral five-brane worldvolume theory with (2,0) super-
symmetry in six dimensions, while the chiral type-IIB
theory gives rise to a nonchiral five-brane with (1,1)
worldvolume supersymmetry. Equations (18) and (19)
can be established by a direct analysis of the super-
charges preserved by the background (17). As we shall
see later, string duality relates them to the supercharges
preserved by D-branes (6), and both have a natural ori-
gin in 11 dimensions.

The light fields on the worldvolume of a single type-
IIA NS five-brane correspond to a tensor multiplet of
six-dimensional (2,0) supersymmetry, consisting of a
self-dual Bmn field and five scalars (and the fermions
needed for supersymmetry). On a single type-IIB five-
brane one finds a vector multiplet, i.e., a six-dimensional
gauge field and four scalars (1 fermions).

The four scalars in the vector multiplet on the type-
IIB five-brane, as well as four of the five scalars in the
tensor multiplet on the type-IIA five-brane, describe
fluctuations of the NS-brane in the transverse directions.
The fifth scalar on a type-IIA five-brane lives on a circle
of radius ls and provides a hint of a hidden 11th dimen-
sion of quantum type-IIA string theory (more on this
below).
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The gauge coupling of the vector field on the type-IIB
five-brane is6

gSYM
2 5ls

2. (20)

Since NS-branes are BPS-saturated objects, parallel
branes do not exert forces on each other. The low-
energy worldvolume dynamics on a stack of k parallel
type-IIB NS5-branes is a (511)-dimensional (1,1)
U(k) SYM theory (with 16 supercharges), arising from
the ground states of D strings stretched between differ-
ent NS-branes. It is described by Eqs. (10), (11), and
(20) with p55. As for D-branes, the four scalars in the
vector multiplet are promoted to k3k matrices, whose
diagonal components parametrize the Coulomb branch
of the theory, R4k/Sk .

The low-energy theory describing a stack of k parallel
type-IIA NS5-branes is more exotic. It can be thought of
as a non-Abelian generalization of the free theory of a
tensor multiplet on a single NS5-brane and gives rise to
a nontrivial field theory with (2,0) supersymmetry in (5
11) dimensions (Strominger, 1996; Witten, 1995b;
Seiberg, 1997b). It contains stringlike low-energy excita-
tions corresponding to Dirichlet membranes stretched
between the different NS5-branes. These strings are
charged under the self-dual Bmn fields on the corre-
sponding five-branes and are light when the five-branes
are close to each other. The Coulomb branch of the
(2,0) theory, (R43S1)k/Sk , is parametrized by the ex-
pectation values of the diagonal components of the five
scalars in the tensor multiplet. At the origin of the Cou-
lomb branch, the (2,0) field theory corresponds to a non-
trivial superconformal field theory.

In the limit gs˜0 the dynamics of the full type-II
string theory simplifies and, in particular, all the modes
in the bulk of spacetime (including gravity) decouple.
The dynamics of a type-II string vacuum with k NS five-
branes remains nontrivial in the limit; in the type-IIA
case it is described at low energies by the (2,0) field
theory described above. The theory of k type-IIB five-
branes has (1,1) supersymmetry and reduces at low en-
ergies to the (infrared-free) U(k) SYM theory; at finite
energies it is interacting. Providing a useful description
of the five-brane theory and, in particular, of the low-
energy (2,0) field theory of the type-IIA five-branes re-
mains a major challenge as of this writing.

4. The Kaluza-Klein monopole

Compactified type-II string theory has additional soli-
tonic objects. One that will be particularly useful later is
the Kaluza-Klein monopole, which is a five-brane in ten
dimensions (Duff, Khuri, and Lu, 1995; Townsend,
1997). It is obtained when one of the ten directions, call

6Since the NS five-brane is described by a conformal field
theory on the sphere, one might have expected the gauge cou-
pling to go like gSYM

2 .gs
2ls

2 [in analogy to Eq. (8)]. The form
(20) is obtained by taking into account the fact that the world-
volume gauge field is a Ramond-Ramond field in the five-
brane conformal field theory.
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it r, is compactified on a circle of radius R . The ten-
dimensional graviton gives rise in nine dimensions to a
gauge field Aa5Ga ,r (a50,¯ ,8). The Kaluza-Klein
monopole carries magnetic charge R/ls under this gauge
field. Like the monopole of (311)-dimensional gauge
theory it is localized in three additional directions rW and
is extended in the remaining five.

The tension of the Kaluza-Klein five-brane is

TKK5
R2

gs
2ls

8 . (21)

The factor of 1/gs
2 is due to the fact that, like the Neveu-

Schwarz five-brane, the Kaluza-Klein five-brane ‘‘gets its
tension’’ from the sphere (i.e., it is a ‘‘conventional soli-
ton’’). The other factors in Eq. (21) are the square of the
magnetic charge and a 1/ls

6 due to the fact that this is a
five-brane.

A fundamental string in the background of k parallel
Kaluza-Klein monopoles located at transverse positions
rW i is described by a conformal field theory with the
multi-Taub-NUT metric (B5F5const):

ds25dxmdxm1ds'
2 ,

ds'
2 5UdrW21U21~dr1vW •drW !2 (22)

where xm label the (115)-longitudinal directions,

U511(
j51

k R

2urW2rW ju
, (23)

and wW is the multi-Dirac-monopole vector potential
which satisfies

¹W 3vW 5¹W U . (24)

In the limit R˜` this background becomes an ALE
space with Ak21 singularity. On the other hand, in the
R˜0 limit the multi-Taub-NUT background (22)–(24)
is T dual [in the r direction and in an appropriate sense
(Gregory, Harvey, and Moore, 1997)] to the multi-NS
five-brane solution [Eq. (17); more on T duality later].

C. M-theory interpretation

All the different ten-dimensional string theories can
be thought of as asymptotic expansions around different
vacua of a single quantum theory. This theory, known as
‘‘M theory,’’ is in fact (1110) dimensional at almost all
points in its moduli space of vacua [for a review see, for
example, Schwarz (1997a), Townsend (1997), and refer-
ences therein].

In the flat (1110)-dimensional Minkowski vacuum
the theory reduces at low energies to 11-dimensional su-
pergravity. There is no adjustable dimensionless cou-
pling; the only parameter in the theory is the 11-
dimensional Planck scale lp . Physics is weakly coupled
and well approximated by semiclassical supergravity for
length scales much larger than lp . It is strongly coupled
at scales smaller than lp . The spectrum includes a three-
form potential AMNP (M ,N ,P50,1,.. . ,10) whose elec-
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tric and magnetic charges appear as central extensions in
the 11-dimensional superalgebra,

$Qa ,Qb%5~GMC !abPM1
1
2

~GMNC !abZMN

1
1
5!

~GMNPQRC !abYMNPQR, (25)

where GMN¯
are antisymmetrized products of the 32

332 Dirac matrices in 11 dimensions, C is the (real,
antisymmetric) charge-conjugation matrix, ZMN is the
electric charge corresponding to AMNP , and YMNPQR is
the corresponding magnetic charge.7

A solitonic M-theory membrane/five-brane (M2/M5)
carries electric/magnetic charge Z/Y and breaks half of
the 32 supercharges Q (25). An Mp-brane (p52,5)
stretched in the (x1,. . . ,xp) directions preserves the su-
percharges eQ with

G0G1
¯Gpe5e . (26)

Its tension is fixed by supersymmetry to be Tp51/lp
p11 .

Large charge branes can be reliably described by 11-
dimensional supergravity. The metric around a collec-
tion of k Mp-branes located at rW5rW j [where j51,.. . ,k ;
rW ,rW j are (102p)-dimensional vectors] is given by

ds25U21/3dxmdxm1U2/3drW•drW , (27)

where xm are the p11 directions along the brane, and

U511(
j51

k lp
82p

urW2rW ju82p (28)

and there is also a three-index tensor field that we do
not specify.

The ten-dimensional type-IIA vacuum with string
coupling gs can be thought of as a compactification of M
theory on R1,93S1. Denoting the (119)-dimensional
Minkowski space of type-IIA string theory by
(x0,x1,. . . ,x9), and the compact direction by x10, the
compactification radius R10 and lp are related to the
type-IIA parameters gs , ls by

R10

lp
3 5

1

ls
2 , (29)

R105gsls . (30)

Thus the strong-coupling limit of type-IIA string theory
gs˜` (or equivalently R10 /lp˜`) is described by the
(1110)-dimensional Minkowski vacuum of M theory.

Type-IIA branes have a natural interpretation in M
theory:

• A fundamental type-IIA string stretched (say) along
x1 can be thought of as an M2-brane wrapped around
x10 and x1. It is charged under the gauge field Bm1

7In noncompact space, only the charge per unit volume is
finite. Thus Z , Y are best thought of as providing charge den-
sities.
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5A10m1 . Equation (29) is the relation between the
wrapped membrane and string tensions.

• The D0-brane corresponds to a Kaluza-Klein mode of
the graviton carrying momentum 1/R10 along the com-
pact direction. It is electrically charged under Gm ,10 .
Equation (30) relates the masses of the Kaluza-Klein
mode of the graviton and D0-brane.

• The D2-brane corresponds to a ‘‘transverse’’
M2-brane, unwrapped around x10. It is charged under
Amnl . The tension of the M2-brane 1/lp

3 reduces to
Eq. (5) using the relation

lp
35ls

3gs , (31)

which follows from Eqs. (29) and (30).

• The D4-brane corresponds to an M5-brane wrapped
around x10. It is charged under the five-form gauge

field Ã10m1m2¯m5
dual to A (dÃ5* dA). Its tension

(5) is equal to R10 /lp
6 (31).

• The NS5-brane corresponds to a transverse M5-brane
and is thus charged under Ãm1¯m6

. Its tension (16) is

equal to 1/lp
6 .

• The D6-brane is a Kaluza-Klein monopole. It is mag-
netically charged under the gauge field Am5Gm10 .

• The D8-brane is a mysterious object in M theory
whose tension is known to be R10

3 /lp
12 (Elitzur, Giveon,

et al., 1998a).

All this can be summarized by decomposing the repre-
sentations of SO(10,1) appearing in Eq. (25) into rep-
resentations of SO(9,1) and rewriting the supersymme-
try algebra (25) as

$Qa ,Qb%5~CGm!abPm1~CG10!abP10

1~CGmG10!abZm1
1
2

~CGmn!abZmn

1
1
4!

~CGmnrsG10!abYmnrs

1
1
5!

~CGmnrsl!abYmnrsl , (32)

where (911)-dimensional vector indices are denoted by
m,n,r,s,... . The momentum in the 11th direction P10 is
reinterpreted in ten dimensions as zero-brane charge;
the spatial components of Zm are carried by ‘‘fundamen-
tal’’ type-IIA strings. Similarly, Zmn is the D2-brane
charge, Ymnrs is the D4-brane charge, and Ymnrsl is
carried by NS5-branes. The different preserved super-
symmetries Eqs. (6) and (18) combine in 11 dimensions
into the single relation (26). Note that Eq. (32) includes
central charges for p-branes with p<5. Higher branes
(e.g., the D6-brane) are inherently tied to compactifica-
tion; therefore the corresponding central charges have
to be added to Eq. (32) by hand.

We mentioned above that the scalar X10 describing
fluctuations of the type-IIA five-brane in x10 lives on a
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circle of radius ls . From the point of view of compacti-
fied M theory it is clear that the scalar field X10 lives on
a circle of radius proportional to R10 ; the proportional-
ity constant is determined for a canonically normalized
X10 by dimensional analysis to be 1/lp

3 as scalars in 5
11 dimensions have scaling dimension two. Using Eq.
(29) we arrive at the conclusion that the radius of (ca-
nonically normalized) X10 is R10 /lp

351/ls
2 . In the nor-

malization used in Eq. (7), with gSYM5ls (20), X has
dimensions of length and lives on a circle of radius ls .

The metric around an M5-brane transverse to x10

[Eqs. (27) and (28)] goes over to that around the NS5-
brane (17) as R10˜0. To see this, describe an M5-brane
at x1050 on the circle as an infinite stack of parallel
five-branes located at x105nR10 (n50,61,62,.. .). The
harmonic function U (28) is

U511(
n

F lp
2

uxW u21~nR10!
2G 3/2

. (33)

As R10˜0 one can replace the sum by an integral and
Eq. (33) approaches [using Eq. (29)]

U.11ls
2/uxW u2. (34)

The component of the metric G10,105U2/3 (27) is related
to the ten-dimensional dilaton via G10,10[exp(2g)
5exp(4f/3). The string metric G is related to the 11-
dimensional metric G by a rescaling G5G exp g. Per-
forming the rescaling leads to the ten-dimensional form
(17).

Ten-dimensional type-IIB string theory has a complex
coupling,

t5a1
i

gs
, (35)

where a is the expectation value of the massless
Ramond-Ramond scalar. In the 11-dimensional inter-
pretation, the ten-dimensional type-IIB vacuum corre-
sponds to M theory compactified on a two-torus of com-
plex structure t and vanishing area. Naively, the theory
appears to be (118) dimensional in this limit, but in
fact as the size of the torus goes to zero, the wrapping
modes of the M2-brane become light and give rise to
another noncompact direction which we shall label by
xB.

M theory on a finite two-torus corresponds to com-
pactifying xB on a circle of radius RB . In the special
case a50, the M-theory two-torus is rectangular with
sides R9 ,R10 . The mapping of the M-theory parameters
(R9 ,R10 ,lp) to the type-IIB ones (RB ,gs ,ls) is

R10

lp
3 5

1

ls
2 , (36)

R9

lp
3 5

1

gsls
2 , (37)

R9R10

lp
3 5

1
RB

. (38)
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One way to establish Eqs. (36)–(38) is to reinterpret the
different type-IIB branes in M theory:

• A fundamental type-IIB string can be thought of as an
M2-brane wrapped around x10. Equation (36) is the
relation between the membrane and string tensions.

• A D1-brane (D string) that is not wrapped around xB

corresponds to an M2-brane wrapped around x9.
Equation (37) is the relation between the membrane
and D-string tensions. A D string wrapped around xB

corresponds to a Kaluza-Klein mode of the 11-
dimensional supergraviton carrying momentum in the
x10 direction. For example, using Eq. (36) and the re-
lation

1

lp
3 5

RB

gsls
4 , (39)

which follows from Eqs. (36) and (38), we find that
the masses agree: 1/R105RB /gsls

2 .

• A Kaluza-Klein mode of the supergraviton carrying
momentum in the xB direction in type-IIB string
theory corresponds to an M2-brane wrapped around
(x9,x10); Eq. (38) relates the masses of the two.

• A D3-brane unwrapped around xB corresponds to an
M5-brane wrapped on (x9,x10). The tension of the
wrapped M5-brane R9R10 /lp

6 reduces to Eq. (5) using
Eqs. (36) and (37). A D3-brane wrapped around xB

corresponds to an M2-brane.

• A D5-brane wrapped around xB corresponds to an
M5-brane wrapped around x10. The tension of the
wrapped M5-brane R10 /lp

6 reduces to RB /gsls
6 using

Eq. (39). A D5-brane unwrapped around xB corre-
sponds to a Kaluza-Klein monopole charged under
the gauge field Gm ,10 and wrapped around x9.

• The NS5-brane wrapped around xB corresponds to an
M5-brane wrapped on x9. Its tension RB /gs

2ls
6 is equal

to that of the wrapped M5-brane R9 /lp
6 . An NS five-

brane unwrapped around xB corresponds to a Kaluza-
Klein monopole charged under the gauge field Gm ,9
and wrapped around x10.

• The D7-brane wrapped around xB corresponds to a
Kaluza-Klein monopole charged under Gm ,10 . A
D7-brane unwrapped around xB is related to the
M-theory eight-brane which reduces to the D8-brane
of type-IIA string theory.

Orientifolds correspond in M theory to fixed points of
Z2 transformations acting both on space and on the su-
pergravity fields.

D. Duality properties

String (or M) theory has a large moduli space of
vacuaM parametrized by the size and shape of the com-
pact manifold and the string coupling (as well as the
values of other background fields). At generic points in
M the theory is 11 dimensional and inherently quantum
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mechanical, while at certain degenerations it has differ-
ent weakly coupled string expansions.

The space of vacuaM is a nontrivial manifold; in par-
ticular, it has an interesting global structure. Some ap-
parently distinct vacua are identified by the action of a
discrete group known as ‘‘U duality’’ (Hull and
Townsend, 1995). Under this identification different
states of the theory are often mapped into each other; an
example is the BPS-branes discussed above. What looks
like a D-brane in one description may appear to be an
NS-brane in another and may even correspond to an
object of different dimension.

An important subgroup of U duality is T duality,
which takes a weakly coupled vacuum to another weakly
coupled vacuum and is therefore manifest in string per-
turbation theory [for a review see Giveon, Porrati, and
Rabinovici (1994) and references therein]. Consider
type-IIA string theory in (118) noncompact dimen-
sions with the ith coordinate xi living on a circle of
radius Ri . At large Ri the theory becomes
(119)-dimensional type-IIA string theory, while at
small Ri it naively becomes (118) dimensional. How-
ever, winding type-IIA strings with energy nRi /ls

2 be-
come light in the limit, producing a continuous Kaluza-
Klein spectrum and thus the theory becomes ten
dimensional again.

From the discussion of the previous section it is clear
what the new (119)-dimensional theory is. Weakly
coupled type-IIA string theory on a small circle Ri˜0
corresponds to M theory on a vanishing two-torus,
which we saw before is just type-IIB string theory. How
do different states in type-IIA string theory map to their
type-IIB counterparts?

The wrapped type-IIA string is a wrapped M2-brane
[see Eq. (29) and subsequent discussion]; the modes be-
coming light in the Ri˜0 limit correspond to mem-
branes wrapped n times around the shrinking two-torus
labeled by (xi,x10). Comparing their energy nRiR10 /lp

3

to Eq. (38) and using Eqs. (29)–(37) we see that the
type-IIB string one finds lives on a circle of radius

Ri
(B)5

ls
2

Ri
(A) (40)

and has string coupling

gs
(B)5gs

(A)ls /Ri
(A) . (41)

We shall refer to the transformation (40) and (41) as Ti
(T duality in the ith direction).

The different branes of type-IIA string theory trans-
form as follows under Ti :

• As we just saw, a fundamental type-IIA string wound
n times around xi transforms into a fundamental type-
IIB string carrying momentum n/Ri

(B) . An unwound
fundamental type-IIA string carrying momentum
m/Ri

(A) transforms under Ti to a fundamental type-
IIB string wound m times around the ith direction.

• A D0-brane corresponds in M theory to a Kaluza-
Klein graviton carrying momentum 1/R10 . As we saw
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earlier, in type-IIB language this is a D string
wrapped around the ith direction.

• A D2-brane wrapped around xi corresponds in M
theory to a transverse M2-brane wrapped around xi.
We saw earlier that in type-IIB language this is a D
string unwrapped around xi. Similarly, a D2-brane
unwrapped around xi was seen to correspond to an
unwrapped M2-brane and was interpreted in type-IIB
language as a D3-brane wrapped around xi.

• At this point the pattern for Dirichlet branes should
be clear. A type-IIA Dirichlet p-brane wrapped
around xi is transformed under Ti to an unwrapped
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
type-IIB Dirichlet (p21)-brane, while an unwrapped
type-IIA Dirichlet p-brane is transformed to a Dirich-
let (p11)-brane wrapped around xi:

Ti : Dp wrapped on xi↔D~p21 ! at a point on xi.
(42)

• Orientifold planes transform under Ti in the same
way as D-branes [Eq. (42)].

• A wrapped type-IIA Neveu-Schwarz five-brane trans-
forms under Ti to a wrapped type-IIB Neveu-Schwarz
five-brane. An unwrapped type-IIA Neveu-Schwarz
five-brane transforms into the Kaluza-Klein monopole
carrying magnetic charge under Gm ,i :
Ti :H type-IIA NS5 wrapped on xi↔type-IIB NS5 wrapped on xi

NS5 at a point on xi↔Kaluza-Klein monopole charged under Gm ,i .
(43)

As a check, the tensions of the various (wrapped and unwrapped) Dirichlet and solitonic branes (5), (16), and (21)
transform under Eqs. (40) and (41) consistently with the above discussion.

The generalization to T duality in more than one direction Ti1 ,i2 ,.. . ,in
[Ti1

Ti2
¯Tin

is straightforward:

Ti1 ,i2 ,.. . ,in
: ~Ri1

,Ri2
, . . . ,Rin

!↔S ls
2

Ri1

,
ls

2

Ri2

, . . . ,
ls

2

Rin
D , gs↔gs )

a51

n
ls

Ria

; ls↔ls . (44)
For even n it takes type IIA(B) to itself, while for odd n
it exchanges the two.

The discussion above can be used to determine the
charge of the Op-plane given in Eq. (15). Starting with
the type-I theory on Tn, which contains a single
O9-plane and 32 D9-branes wrapped around the Tn,
and performing T duality, Ti1 ,i2 ,.. . ,in

, we find a vacuum
with 2n orientifold p-planes, p592n , one at each fixed
point on Tn/Z2 , as well as 32 Dp-branes. The total
Ramond-Ramond (p11)-form charge of the configura-
tion is zero, which leads to Eq. (15).

Another interesting subgroup of U duality is S duality
of type-IIB string theory in (911) dimensions
(Schwarz, 1995), an SL(2,Z) symmetry that acts by frac-
tional linear transformations with integer coefficients on
t [Eq. (35)]. In the M-theory interpretation of type-IIB
string theory, this SL(2,Z) is the modular group acting
on the complex structure of the two-torus (whose size
goes to zero in the ten-dimensional limit). (For a review
see Schwarz, 1997a and references therein.) We shall
focus on a Z2 transformation SPSL(2,Z), which acts as
t˜21/t ; we shall furthermore restrict our discussion to
the case of vanishing Ramond-Ramond scalar a
(namely, a rectangular M-theory two-torus), in which
case it acts on the coupling (35) as strong-weak coupling
duality: gs˜1/gs . In the M-theory interpretation of
type-IIB string theory discussed in Eqs. (36)–(38) S acts
geometrically by interchanging R9↔R10 . Equations
(36) and (37) imply that the type-IIB parameters gs ,ls
transform as

S : gs↔
1
gs

; ls
2↔ls

2gs . (45)
Another way to arrive at Eq. (45) is to require that as
the string coupling is inverted, the ten-dimensional
Planck length l10

4 5gsls
4 remain fixed. From the discus-

sion following Eq. (38) it is clear that the different type-
IIB branes transform under S as follows:

• The fundamental string is interchanged with the D
string.

• The D3-brane is invariant.

• The NS5-brane is interchanged with the D5-brane.

• The D7-brane transforms into a different seven-
brane.

As a check, the tensions of the various branes [Eqs. (5)
and (16)] transform under Eq. (45) consistently with the
above discussion. The transformations of orientifold
planes under S are more intricate and will be discussed
in the context of particular applications below.

The worldsheet dynamics on both the fundamental
string and the D string is that of a critical type-IIB
string. At weak string coupling the tension of the funda-
mental string is much smaller than that of the D string,
and we can think of the former as ‘‘fundamental’’ and of
the latter as a heavy soliton. At strong coupling, the D
string is the lighter object and it should be used as the
basis for string perturbation theory. Since a type-IIB
string in its ground state preserves half of the supersym-
metry, it can be followed from weak to strong coupling,
and the above picture is indeed reliable.

Under the full SL(2,Z) S-duality group, the two dif-
ferent kinds of strings are members of a multiplet of
(p ,q) strings, with the fundamental string corresponding
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to (p ,q)5(1,0) and the D string corresponding to
(p ,q)5(0,1). Here p measures the charge carried by
the string under the NS-NS Bmn field, while q measures
the charge under the Ramond-Ramond Bmn field. In M
theory the (p ,q) string corresponds to a membrane
wrapped p times around x10 and q times around x9; it is
stable when p ,q are relatively prime. A similar discus-
sion applies to five-branes that carry magnetic charges
under the two Bmn fields and thus form a multiplet of
(p ,q) five-branes. There are also (p ,q) seven-branes
that carry magnetic charge under the complex dilaton t.

In M theory compactified on Td, the SL(2,Z) S du-
alities corresponding to different T2,Td are subgroups
of the geometrical SL(d ,Z) symmetry group of Td. To-
gether with T duality (44) they generate the U-duality
group Ed(d)(Z) of type-II strings on Td21 (Elitzur,
Giveon et al., 1998a).

E. Webs of branes

So far we have discussed brane configurations that
preserve sixteen supercharges. In this section we shall
describe some configurations with lower supersymmetry.

We saw before that a stack of parallel D- or NS-
branes preserves half of the supersymmetry given by Eq.
(6) or Eqs. (18) and (19), respectively. To find the SUSY
preserved by a web of differently oriented D- and/or
NS-branes one needs to impose all the corresponding
conditions8 on the spinors e. The worldvolume dynamics
on such a web of branes is typically rather rich. We shall
next consider it in a few examples.

1. The Dp2D(p14) system

Consider a stack of Nc Dp-branes stretched in the
(x1,. . . ,xp) hyperplane ‘‘parallel’’ to a stack of Nf D(p
14)-branes stretched in (x1,. . . ,xp14) depicted in Fig. 3.
Each stack preserves half of the supersymmetry, and to-
gether they preserve 1/231/251/4 of the 32 super-
charges of type-II string theory. The preserved super-
charges are those that satisfy Eq. (6):

eL5G0G1
¯GpeR5G0G1

¯Gp14eR . (46)

The second equality in Eq. (46) is a constraint on eR ,
eR5GeR with G5Gp11Gp12Gp13Gp14. The matrix G
squares to the identity matrix and is traceless. Thus half
of its 16 eigenvalues are 11 and half are 21. The con-
straint on eR , G51, preserves 8 of the 16 components of
eR . Given eR , the first equality in Eq. (46) fixes eL .
Thus the total number of independent supercharges pre-
served by the configuration is eight.

The light degrees of freedom on each stack of branes
were discussed before. On the Nc Dp-branes there is a
(p11)-dimensional U(Nc) gauge theory coupled to (9
2p) adjoint scalars and some fermions. The adjoint sca-
lars naturally split into (52p) fields corresponding to
fluctuations of the Dp-branes transverse to the

8This analysis is valid for widely separated branes and may
miss bound states.
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(p14)-branes, which together with the gauge field form
the vector multiplet of a theory with eight supercharges,
and the remaining four fields, which form an adjoint hy-
permultiplet.

A similar theory with Nc˜Nf and p˜p14 lives on
the D(p14)-branes. Each of the two theories has 16
supercharges. The supersymmetry of the full theory is
broken down to eight supercharges by additional matter
corresponding to strings stretched between the two
stacks of branes. From the point of view of the
Dp-brane this matter corresponds to Nf flavors in the
fundamental representation of U(Nc). From the point
of view of the D(p14)-brane, they are Nc pointlike (in
the transverse directions) defects in the fundamental of
U(Nf). When the Dp-branes are inside the
D(p14)-branes, they can be thought of as small instan-
tons (Douglas, 1995).

It is important to emphasize that for an observer who
lives on the Dp-brane, the degrees of freedom on the
D(p14)-brane are nondynamical background fields (at
least in infinite volume). For example, the effective
gauge coupling in (p11) dimensions gp11 of the U(Nf)
gauge field on the D(p14)-brane is given by

1

gp11
2 5

Vp11,.. . ,p14

gp15
2 , (47)

where gp15 is the U(Nf) gauge coupling in p15 dimen-
sions and Vp11,.. . ,p14 is the volume of the
D(p14)-brane worldvolume transverse to the
Dp-brane. When this volume is infinite, the kinetic en-
ergy of U(Nf) excitations is infinite as well and they are
frozen at their classical values. The same is true for
other excitations on the D(p14)-brane. Thus from the
point of view of the Dp-brane, the U(Nf) gauge sym-
metry of the D(p14)-brane is a global symmetry and

FIG. 3. The Dp2D(p14) system, consisting of a stack of Nc

Dp-branes parallel to Nf D(p14)-branes. Locations in the
transverse space (xp15,. . . ,x9) are labeled by xW a , mW i , respec-
tively.
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the only dynamical fields that appear due to the pres-
ence of the D(p14)-brane are the Nf flavors corre-
sponding to strings stretched between the Dp-branes
and D(p14)-branes; these modes are localized at the
Dp-brane.

The relative locations in space of the various branes
correspond to moduli and couplings in the Dp-brane
worldvolume theory. Locations of the ‘‘heavy’’ D(p
14)-branes correspond to couplings, while locations of
the ‘‘light’’ Dp-branes are moduli:

• The locations of the D(p14)-branes in the transverse
space (xp15,. . . ,x9) mW i (i51,.. . ,Nf) correspond to
masses for the Nf fundamentals.

• The locations of the Dp-branes in (xp15,. . . ,x9) xW a

(a51,.. . ,Nc) correspond to expectation values of

fields XW in the adjoint of U(Nc) and parametrize the
Coulomb branch of the U(Nc) gauge theory, as in Eq.
(12).

• The locations of the Dp-branes parallel to the D(p
14)-branes [in the (xp11,. . . ,xp14) directions] corre-
spond to expectation values of an adjoint hypermul-
tiplet of U(Nc).

One can think of the Dp-branes as probing the geom-
etry near the D(p14)-brane. For example, the metric
on the Coulomb branch of the U(1) gauge theory with
Nf flavors on a single Dp-brane adjacent to Nf D(p
14)-branes is the background metric of the
D(p14)-branes. This is analogous (and in some cases U
dual) to the situation described in Sec. II.B.3 where we
described the metric felt by a fundamental string propa-
gating in the background of solitonic five-branes.

In general, some of the parameters that one can turn
on in the low-energy field theory may be absent in the
brane configuration. As an example, in the low-energy
U(Nc) gauge theory with eight supercharges one can
add a mass term to the adjoint hypermultiplet and a
Fayet-Iliopoulos coupling, both of which are absent in
the brane configuration. One way to understand this is
to note that theories with 16 supercharges do not have
such couplings. The theory on a stack of isolated
Dp-branes has sixteen supercharges and, while it is bro-
ken down to eight by the presence of the (p14)-branes,
it inherits this property from the theory with more su-
persymmetry.

Similarly, some of the moduli of the low-energy gauge
theory may not correspond to geometrical deformations
in the brane description. In the example above, the
Higgs branch of the U(Nc) gauge theory, corresponding
to nonzero expectation values of the fundamentals, can
be thought of as the moduli space of instantons. Each
Dp-brane embedded in the stack of Nf (p14)-branes
can be thought of as a small (four-dimensional) U(Nf)
instanton which can grow and become a finite-size in-
stanton. The moduli space of Nc instantons in U(Nf) is
the full Higgs branch of the theory; it is not realized
geometrically. For a more detailed discussion see Dou-
glas (1996).
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Clearly, the more of the couplings and moduli of the
gauge theory are represented geometrically, the more
useful the brane configuration is for studying the gauge
theory.

2. More general webs of branes

The system described in the previous subsection can
be generalized in several directions: applying U-duality
transformations, rotating some of the branes relative to
others, adding branes and/or orientifold planes, and con-
sidering configurations of branes ending on branes. In
this and the next subsections we shall describe some of
these possibilities:

• Orientifolds. Starting with the Dp2D(p14) system
we can add an Op-plane, an O(p14)-plane, or both,
without breaking any further supersymmetry. Adding
an Op-plane leads to an SO(Nc) or Sp(Nc/2) gauge
theory9 on the Dp-branes. In gauge theory with eight
supercharges and Nf fundamentals the resulting glo-
bal symmetry is Sp(Nf/2) or SO(Nf), respectively.
Therefore it is clear that an orthogonal orientifold
projection on the p-branes is correlated with a sym-
plectic projection on the (p14)-branes, and vice
versa.
A similar analysis can be performed for the case of an
O(p14)-plane. An example is type-I theory, where
an orthogonal projection on nine-branes due to an
orientifold nine-plane is correlated with a symplectic
projection on five-branes (Gimon and Polchinski,
1996; Witten, 1996b).

• The Dp2D(p12) system. Compactifying the Dp
2D(p14) system of Section II.E.1 and considering
different limits gives rise to configurations with the
same amount of supersymmetry in different dimen-
sions. These can be studied by using T duality. As an
example, compactify xp11 on a circle, T dualize and
then decompactify the resulting dual circle. One finds
a D(p11)2D(p13) system; a stack of Nc D(p
11)-branes whose worldvolume stretches in
(x0,x1,. . . ,xp11) and a stack of Nf D(p13)-branes
whose worldvolume lies in (x0,x1,. . . ,xp,xp12,xp13,
xp14). The two stacks of branes are now partially or-
thogonal, with (p11) of their (p12) and
(p14)-dimensional worldvolumes in common.
Formally, the degrees of freedom in the common di-
mensions (which we shall refer to as ‘‘the intersec-
tion’’) are the same as before; however, one can no
longer talk about a U(Nc) gauge theory on the inter-
section. All matter in the adjoint of U(Nc) is now
classical, as it lives on a ‘‘heavy’’ brane that has one
infinite direction (xp11) transverse to the intersection.
The only dynamical degrees of freedom on the (p
11)-dimensional intersection region are the Nf fun-
damentals of U(Nc) that arise from (p11)2(p13)

9Nf and Nc are even here.
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strings. Of course, recompactifying xp11 restores the
previous physics, and we shall usually implicitly con-
sider this case below.

• The Dp2D(p12)2D(p12)8 system: To reduce the
number of supersymmetries from eight to four we can
add to the previous system another stack of differ-
ently oriented D-branes. A typical configuration con-
sists of a stack of Nc Dp-branes with worldvolume
(x0,x1,. . . ,xp), Nf D(p12)-branes (x0,x1,. . . ,xp21,
xp11,xp12,xp13), and Nf8 D(p12)8-branes
(x0,x1,. . . ,xp21,xp11,xp14,xp15). The gauge group on
the Dp-branes is U(Nc), with the following matter:

(1) Nf fundamental hypermultiplets Q , Q̃ corre-
sponding to strings stretched between the Dp and

D(p12)-branes, and Nf8 fundamentals Q8, Q̃8 corre-
sponding to strings stretched between the Dp and
D(p12)8-branes.
(2) 102p adjoint fields whose expectation values (12)
parametrize the locations of the p-branes and the Wil-
son line of the worldvolume gauge field along the
compact xp direction. These can be split into a com-
plex adjoint field X describing fluctuations of the
Dp-branes in the (xp14,xp15) directions; a complex
adjoint field X8 corresponding to fluctuations in the
(xp12,xp13) directions; a complex adjoint X9 corre-
sponding to fluctuations in the xp11 direction as well
as the gauge field Ap . 42p adjoints parametrize the
Coulomb branch of the gauge theory.

X couples to the Nf flavors Q , and X8 couples to the
Nf8 flavors Q8 via the superpotential

W5Q̃XQ1Q̃8X8Q8. (48)

Geometrically, the couplings (48) are due to the fact
that displacing the Dp-branes in the (xp14,xp15) direc-
tions stretches the p2(p12) strings, thus giving a mass
to the quarks Q , Q̃ , etc.

More generally, the coupling matrix of (X ,X8) and
(Q ,Q8) is governed by the relative angles between the
D(p12) and D(p12)8-branes. Indeed, defining v
5xp121ixp13 and w5xp141ixp15, one can check
(Berkooz, Douglas, and Leigh, 1996) that arbitrary rela-
tive complex rotations of the different (p12)-branes in
v ,w ,

S v
w D˜S cos u sin u

2sin u cos u D S v
w D , (49)

preserve four supercharges like the original Dp2D(p
12)2D(p12)8 system. When the relative angle be-
tween the D(p12) and D(p12)8 branes goes to zero,
the supersymmetry is enhanced to eight supercharges
and one recovers the Dp2D(p12) system described
above.

• The NS-Dp system: Starting with the D3-D5 system
and performing an S-duality transformation we find a
system consisting of Nc D3-branes (x0,x1,x2,x3), and
Nf NS5-branes (x0,x1,x2,x4,x5,x6) preserving eight
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
supercharges. T duality [Eqs. (42) and (43)]—acting
on any number of longitudinal directions of the NS-
brane—may be used to turn this configuration into
other configurations of Dp-branes and NS5-branes.
Other T dualities (which act on one direction trans-
verse to the NS-brane) map the system to configura-
tions of Dp-branes wrapped around nontrivial cycles
of ALE spaces. Similarly to the D-brane case de-
scribed above, different NS-branes can be rotated
with respect to each other, by complex rotations of
the form (49), which preserve four of the eight super-
charges.

3. Branes ending on branes

One of the important things branes can do is end on
other branes. D-branes are defined by the property that
fundamental strings can end on them, and by a chain of
dualities this can be related to many other possibilities.

Consider a fundamental string ending on a D3-brane
(Fig. 4). The D3-brane itself preserves 16 supercharges,
and if we put the open string ending on it in its ground
state it preserves 1/2 of these, namely eight. Performing
S duality we reach a configuration of a D string ending
on the D3-brane. By T duality in (p21) directions
transverse to both branes we are led to a configuration
of a Dp-brane ending on a D(p12)-brane with a @(p
21)11#-dimensional intersection.

For p53, the configuration of a D3-brane ending on a
D5-brane can be mapped by applying S duality to a
D3-brane ending on an NS5-brane. Further T duality
along the five-brane worldvolume maps this to a con-
figuration of a Dp-brane (with any p<6) ending on the
NS5-brane.

In M theory, many of the above configurations are
related to membranes ending on five-branes. This is

FIG. 4. U duality relating a fundamental string that ends on a
D3-brane to other supersymmetric configurations: a Dp-brane
that ends on a D(p12)-brane and a Dp-brane that ends on a
Neveu-Schwarz five-brane.
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most apparent for a D2-brane ending on an NS5-brane
in type-IIA string theory as well as fundamental and D
strings ending on the appropriate five-branes. Others
(e.g., a D4-brane ending on an NS5-brane) can be
thought of as corresponding to a single M5-brane with a
convoluted worldvolume.

The worldvolume theory on a brane that ends on an-
other brane is a truncated version with eight super-
charges of the dynamics on an infinite brane. The light
fields are conveniently described in terms of representa-
tions of d54, N52 supersymmetry with spin <1, hyper-
multiplets, and vector multiplets:

• For a Dp-brane stretched in (x0,x1,. . . ,xp) and ending
(in the xp direction) on a D(p12)-brane stretched in
(x0,x1,. . . ,xp21,xp11,xp12,xp13) and located at xp

50, the (p11)-dimensional dynamics now takes
place on R1,p213R1, where the half line R1 corre-
sponds to xp>0. The three scalars corresponding to
fluctuations of the Dp-brane along the
D(p12)-brane (Xp11,Xp12,Xp13) combine with the
pth component of the Dp-worldvolume gauge field
Ap into a massless hypermultiplet with free boundary
conditions10 at xp50. The scalars describing fluctua-
tions of the Dp-brane perpendicular to the
D(p12)-brane (Xp14,. . . ,X9) satisfy Dirichlet
boundary conditions XI(xp50)50 (I5p14,.. . ,9).
These (62p) scalars are paired by supersymmetry
with the gauge field Am , m50,1,.. . ,p21, into a vector
multiplet. Thus the gauge field satisfies Dirichlet
boundary conditions as well.

• For a Dp-brane stretched in (x0,x1,. . . ,xp21,x6) and
ending (in the x6 direction) on an NS5-brane
stretched in (x0,x1,. . . ,x5), the hypermultiplet con-
tains the scalars (X7,X8,X9) and the sixth component
of the Dp-worldvolume gauge field A6 and satisfies
Dirichlet boundary conditions at x650. The vector
multiplet consisting of the (62p) scalars (Xp, . . . ,X5)
and the components of the gauge field along R1,p21 is
(again, classically) free at the boundary.

Quantum mechanically, we have to take into account
that the end of a brane ending on another brane looks
like a charged object in the worldvolume theory of the
latter. Consider, for example, the case of a fundamental
string ending on a Dp-brane. It can be thought of as
providing a pointlike source for the p-brane worldvol-
ume gauge field, leading to a Coulomb potential (Callan
and Maldacena, 1998; Gibbons, 1998)

A05
Q

rp22 , (50)

where Q is the worldvolume charge of the fundamental
string and r the distance from the charge on the p-brane.
To preserve supersymmetry it is clear from the form of

10We shall soon see that the boundary conditions are modi-
fied quantum mechanically.
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the action (7) that in addition to Eq. (50) one of the
p-brane worldvolume scalar fields must be excited, say,

Xp115
Qls

2

rp22 . (51)

The solution (50) and (51) preserves half of the 16
worldvolume supersymmetries and corresponds to a
fundamental string stretched along xp11 and ending on
the D-brane. We see that the string bends the D-brane:
the location of the brane becomes r dependent [Eq.
(51)], approaching the ‘‘classical’’ value xp1150 at large
r (for p.2). Standard charge quantization implies that
the quantum of charge in the normalization (7) is Q
5gSYM

2 . As r˜0, xp11
˜` ; this corresponds to a fun-

damental string ending on the Dp-brane. Of course, a
priori we only trust the solution (50) and (51) for large r
where the fields and their variations are small. As r˜0
higher-order terms in the Lagrangian, that were
dropped in Eq. (7), become important, e.g., one has to
replace the Maxwell action by the Born-Infeld action. A
detailed discussion of this and related issues appears in
the articles of Hashimoto (1997); Callan and Maldacena
(1998); Gibbons (1998), , Lee, Peet, and Thorlacius
(1998), and Thorlacius (1998).

A similar analysis can be performed in the other cases
mentioned above. The conclusion is that when a brane
ends on another brane, the end of the first brane looks
like a charged object in the worldvolume theory of the
second brane. The latter is bent according to Eq. (51)
with p the codimension of the intersection in the second
brane, and r the p-dimensional distance to the end of
the first brane on the worldvolume of the second.11

The intersecting brane configurations discussed earlier
in this section are intimately related to the configura-
tions of branes ending on branes discussed here. As an
example, when the Dp and D(p12)-branes of the pre-
vious subsection12 meet in the transverse space
(xp14,. . . ,x9), the p-brane can split into two parts, xp

,0 and xp.0, which can then separate along the (p
12)-brane in the (xp11,xp12,xp13) directions. Locally,
one has then a configuration of a p-brane ending on a
(p12)-brane from the right in xp and another one end-
ing on it from the left at a different place, as shown in
Fig. 5.

In the gauge theory on the intersection of the Dp and
NS5-branes this realizes geometrically the Higgs branch
of the theory on the D-brane. This will be discussed in
detail in the applications below.

III. FOUR-DIMENSIONAL THEORIES WITH N54
SUPERSYMMETRY

At low energies the dynamics on the worldvolume of
Nc parallel D3-branes in type-IIB string theory is de-

11This can be shown by U dualizing to a fundamental string
ending on a Dp-brane.

12There we actually considered (p11)- and (p13)-branes;
replace p˜p21 there to get the system discussed here.
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scribed by four-dimensional N54 SYM theory with
gauge group U(Nc). Symplectic and orthogonal groups
can be studied by considering D3-branes near a parallel
O3-plane. The brane description provides a natural in-
terpretation of the strong-weak coupling duality of N
54 SYM theories and leads to a simple geometrical de-
scription of BPS-saturated dyons. In this section we de-
scribe this circle of ideas, starting with the unitary case.

A. Montonen-Olive duality and type-IIB S duality

Four-dimensional N54 supersymmetric gauge theory
with gauge group G can be obtained by dimensionally
reducing N51 SYM theory from (911) to (311) di-
mensions. Supersymmetry (with 16 supercharges) places
strong constraints on the structure. The moduli space of
vacua is 6r dimensional, where r is the rank of G . It is
parametrized by expectation values in the Cartan subal-
gebra of the six adjoint scalars in the N54 multiplet.
Generically in moduli space the gauge symmetry is bro-
ken to U(1)r, but at certain singular subspaces some of
the non-Abelian structure is restored. The classical and
quantum moduli spaces are identical in N54 SYM
theory (in contrast with N52 SYM theory, where the
metric on the Coulomb branch is generally corrected by
quantum effects, and N51 SYM theory, where some or
all of the classical moduli space can be lifted; these cases
will be discussed later). The leading quantum correc-
tions modify certain nonrenormalizable terms with four
derivatives.

The most singular point in the moduli space is the
origin, where the full gauge symmetry is unbroken. The
theory at that point is conformal and the gauge coupling
gSYM is an exactly marginal deformation parametrizing
a line of fixed points. The theory also depends on a pa-
rameter u, which together with gSYM forms a complex
coupling

FIG. 5. A Dp-brane intersecting a D(p12)-brane and split-
ting into two disconnected parts which separate along the
D(p12)-brane.
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t5
u

2p
1

i

gSYM
2 . (52)

The theory at the origin of moduli space is conformal for
all t.

Not all values of t correspond to distinct theories.
Since u is periodic, taking t˜t11 leads to the same
theory. In addition, N54 SYM theory has a less obvious
symmetry, Montonen and Olive’s strong-weak coupling
duality, which takes t˜21/t and exchanges the gauge
algebra G with the dual algebra13 Ĝ (Montonen and Ol-
ive, 1977; see Olive, 1995; Harvey, 1997; Di Vecchia,
1997; and references therein). It also acts as electric-
magnetic duality on the gauge field and thus inter-
changes electric and magnetic charges. Together, the
two symmetries generate an SL(2,Z) duality group,14

which acts on t by fractional linear transformations with
integer coefficients:

t˜
at1b

ct1d
; a ,b ,c ,dPZ , ad2bc51. (53)

We shall consider mainly the case of an SU(2) gauge
group here, in which states carry electric and magnetic
charge under the single Cartan generator and assemble
into multiplets of SL(2,Z) that contain states with elec-
tric and magnetic charges (e ,m), transforming under
SL(2,Z) as

S e
m D˜S a b

c d D S e
m D . (54)

For example, the charged gauge bosons W6 with charge
(61,0) belong to the same multiplet as the magnetic
monopole with charge (0,61) and various dyons.

To study N54 SYM theory with gauge group U(Nc)
using branes, consider Nc parallel D3-branes, whose
worldvolumes stretch in (x0,x1,x2,x3). The U(Nc)

gauge bosons Am
ab̄(xn), m ,n50,1,2,3, a ,b̄51,.. . ,Nc , cor-

respond to the ground states of oriented 323 strings
connecting the ath and bth three-branes [Fig. 1(b)]. The
six scalars X

ab̄
I

(xm) (I54,.. . ,9) in the adjoint represen-
tation of U(Nc) also correspond to 323 strings describ-
ing fluctuations of the three-branes in the transverse di-
rections (x4,x5,x6,x7,x8,x9). Together with the ground-
state fermionic fields they form an N54 gauge
supermultiplet.

The bosonic part of the low-energy Lagrangian is
given by Eqs. (10) and (11), with the U(Nc) gauge cou-
pling given by gSYM

2 5gs [Eq. (8)]. The conventional
SYM scalar fields FI which have dimensions of energy
are related to the scalars XI which appear naturally in
the brane construction via

FI5XI/ls
2. (55)

13sû(Nc)5su(Nc), sô(2r)5so(2r), sô(2r11)5sp(r).
14This was first recognized in lattice models (Cardy and

Rabinovici, 1982) and in string theory (Font et al., 1990).
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The limit in which the theory on the three-brane de-
couples from gravity and the four-dimensional dynamics
becomes exactly that of N54 SYM theory at all energy
scales is ls˜0 with gs , FI held fixed. By the latter it is
meant that the energy scale studied, E , and the scale set
by the expectation values, FI, which typically are com-
parable, must be much smaller than the string scale 1/ls
and the Planck scale 1/lp (which for gs;1 is comparable
to the string scale). In particular, the transverse separa-
tions of the three-branes parametrizing the Coulomb
branch must satisfy dxi!ls ,lp .

In the brane picture, the SL(2,Z) Montonen-Olive
duality can be thought of as a remnant of the SL(2,Z)
S-duality group of type-IIB string theory in the limit ls
˜0. The three-brane is self-dual under S duality. The
complex worldvolume gauge coupling (52) is the expec-
tation value of the complex type-IIB dilaton t [Eq. (35)]
on which S duality acts by fractional linear transforma-
tions [Eq. (53)], and the type-IIB charges (p ,q) that
transform under S duality in an analogous way to Eq.
(54) are related to the SYM charges (e ,m). In what
follows we shall study this correspondence in more de-
tail in the case Nc52.

An N54 SYM gauge theory with gauge group G
5SU(2) is obtained in the brane description by study-
ing the dynamics on two parallel D3-branes (Green and
Gutperle, 1996; Tseytlin, 1996). Actually, the gauge
group in this case is U(2) but the diagonal U(1),U(2)
will play no role in the discussion, as all the fields we
shall discuss are neutral under it; therefore it can be
ignored. The six-dimensional Coulomb branch of the
SU(2) SYM theory is parametrized by the transverse
separation of the two branes xW 22xW 1 , where xW
[(x4,. . . ,x9). Displacing the two three-branes from the
origin by 6xW (keeping their center of mass correspond-
ing to the decoupled U(1) fixed at the origin) is equiva-
lent to turning on a diagonal expectation value for the
adjoint scalar XW :

^XW &5S xW 0

0 2xW D , (56)

which breaks SU(2)˜U(1).
The resulting configuration is depicted in Fig. 6. A

fundamental string stretched between the two
D3-branes corresponds to a charged gauge boson in the
broken SU(2) with mass given by Eq. (13). In the N
54 SYM theory it transforms under electric-magnetic
duality [Eqs. (53) and (54)] into a dyon. In the brane
description S duality takes a fundamental string to a
(p ,q) string; thus we learn that a dyon with electric-
magnetic charge (p ,q) corresponds in the string lan-
guage to a (p ,q) string stretched between the two
D3-branes.

Note that this is consistent with our discussion of
branes ending on branes in Sec. II.E, where we saw that
a fundamental string ending on a D3-brane can be
thought of as an electric charge in the worldvolume
theory on the three-brane [Eq. (50)]. Since S duality acts
on the three-brane as electric-magnetic duality, this im-
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plies that a D string ending on a D3-brane provides a
magnetic source for the three-brane worldvolume gauge
field. The energy of a D string stretched between the
two D3-branes is E52uxW u/gsls

2 or in SYM variables E
52ufW u/gSYM

2 , as expected from gauge theory (the mass
of the monopole is Mmon5MW /gSYM

2 where MW is the
mass of the charged W boson).

B. Nahm’s construction of monopoles from branes

One application of this construction is to the study of
the moduli space of monopoles in gauge theory. To de-
scribe the moduli space of k monopoles Mk one is in-
structed to study a configuration of k parallel D1-branes
stretched between the two parallel D3-branes (Fig. 7),
say in the x6 direction (Diaconescu, 1997). It is easy to
check that the configuration preserves 8 of the 16 super-
charges of the three-brane theory, in agreement with the
fact that the monopoles are half BPS-saturated objects.
The monopole moduli space Mk is the 4k real dimen-
sional space labeled by the locations in (x1,x2,x3) of the
k D strings and the Wilson lines of the k U(1) gauge
fields along the D strings, A6 .

The brane configuration suggests an alternative point
of view on the space Mk . In the D3-brane picture it
describes a moduli space of k monopoles; from the point
of view of the D strings it can be thought of as the
moduli space of vacua of the non-Abelian gauge theory
on the k D strings stretched between the D3-branes!
That theory lives in the 111 dimensions (x0,x6) and,
since the spatial direction x6 is confined to a finite line
segment, it reduces at low energies to supersymmertic
quantum mechanics. Of course, supersymmetric quan-

FIG. 6. U(2) N54 supersymmetric Yang-Mills theory on a
pair of D3-branes broken to U(1)3U(1) by the separation of
the branes. Dyons in supersymmetric Yang-Mills theory, such
as the photon g, the charged gauge boson W , and the magnetic
monopole M , are described by (p ,q) strings ending on the
three-branes.
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tum mechanics does not have a moduli space of vacua,
but there is an approximate Born-Oppenheimer notion
of a space of vacua, which arises after integrating out all
the fast modes of the system. The low-energy dynamics
is described by a sigma model on the moduli spaceMk .

The theory on the D strings has eight supercharges
and the following matter content. The U(k) gauge field
A0 and five adjoint scalars (F4,F5,F7,F8,F9) have Di-
richlet boundary conditions at x656x (the locations of
the two three-branes). The remaining component of the
D-string worldvolume gauge field A6 and the three ad-
joint scalars (F1,F2,F3) have (formally) Neumann
boundary conditions.15

To study the dynamics on the worldvolume of the D
string we can set to zero all the fields that satisfy Dirich-
let boundary conditions, and the gauge field A6 (by a
gauge choice). From the Lagrangian for F1,F2,F3 [Eqs.
(10) and (11)],

L;TrS (
I51

3

]sF
I]sF

I2(
I ,J

@FI,FJ#2D , (57)

where we have denoted x6 by s , it is clear that ground
states satisfy

]sF
I1

1
2

eIJK@FJ,FK#50. (58)

The boundary conditions of the fields FI at the edges of
the interval s56x are interesting. Naively, one would
expect that, at least as long as the k D strings are widely
separated in rW5(x1,x2,x3), we should be able to think
of their locations rW i as the expectation values of the di-
agonal components of the matrix fields FW ii5fW i5rW i /ls

2

[see Eq. (12)]. The off-diagonal components of FW are
massive and could be integrated out in the Born-

15As before, FI5XI/ls
2 [Eq. (55)].

FIG. 7. A point in the moduli space of k SU(2) monopoles
represented by D strings stretched between D3-branes.
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Oppenheimer approximation. This would lead us to de-
duce that the boundary conditions for the matrices FW

are

FW ~s56x !5diag~fW 1 ,. . . ,fW k!. (59)

However, this picture does not make sense for finite
separations of the D strings. We saw [after Eq. (51)] that
the ‘‘classical’’ picture of D strings attached to the three-
branes at k points rW5rW1 ,. . . ,rWk @rW5(x1,x2,x3)# has to be
replaced by a curved three-brane with s5s(fW ), which
approaches the classical location s5x at ufW u˜` , but is
actually described asymptotically by

s.(
i51

k 1

ufW 2fW iu
1x . (60)

Each D string creates a disturbance in the shape of the
three-brane of size

ufW 2fW iu.
1

s2x
, (61)

which diverges16 as s˜x .
Therefore for any finite ufW i2fW ju (as measured in the

middle of the s interval), the different D strings in fact
overlap close to the edges of the s interval. Hence the
off-diagonal components of the matrices FI (I51,2,3)
are light and cannot be integrated out, and one expects
the matrices FI(s˜x) not to commute. The only
boundary conditions for FI that are consistent with Eqs.
(58) and (60) are (for notational simplicity we have set
the center of mass of the k monopoles rW0 to zero)

FI.
TI

s2x
, (62)

where the k3k matrices TI must satisfy Eq. (58):

@TI,TJ#5eIJKTK, (63)

and, therefore, define a k-dimensional representation of
SU(2). The representation TI must furthermore be ir-
reducible; reducible representations correspond to split-
ting the k monopoles into smaller groups that are infi-
nitely far apart.

As a check, we can compute the size of the bound
state:17

R25FIFI.
TITI

~s2x !2 5
~k21 !~k11 !

4~s2x !2 , (64)

i.e., R.k/2(s2x), roughly the size of the k D-string
system, as given by Eq. (60), ufW u.k/(s2x). Clearly a
similar analysis holds at the other boundary of the s
interval, s52x .

16Note that the asymptotic expression (61) becomes more and
more reliable in this regime.

17The k-dimensional representation of SU(2) corresponds to
j5(k21)/2 and has quadratic Casimir TITI5j(j11)5(k
21)(k11)/4.
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Interestingly, we have arrived [Eqs. (58) and (62)] at
Nahm’s description of the moduli space of k SU(2)
monopoles (Nahm, 1980)! The brane realization pro-
vides a new perspective and, in particular, a physical
rationale for the construction. It also makes it easy to
describe generalizations, e.g., to the case of the moduli
space of monopoles in higher-rank groups.

Monopoles in (broken) SU(Nc) gauge theory can be
discussed by considering a configuration of Nc
D3-branes separated in the x6 direction, and ka D
strings stretched in x6 between the ath and the (a
11)st three-brane, a51,.. . ,Nc21. Such configurations
preserve eight supercharges and describe BPS magnetic
monopoles of SU(Nc). The magnetic charge under the
natural Cartan subalgebra is (k1 ,k22k1 ,. . . ,2kNc21).
The moduli space of such monopoles can be described
by using a generalization of the discussion above.

C. Symplectic and orthogonal groups from orientifolds

To study symplectic and orthogonal groups we add an
orientifold three-plane parallel to the Nc three-branes.
As described in Sec. II.B the low-energy worldvolume
dynamics of the O32D3 system is

Sp~Nc/2! ~Nc even!,

N54 SYM in 4d if QO351
1
2

QD3 ,

SO~Nc!, N54 SYM in 4d if QO352
1
2

QD3 .

In this case we can use the correspondence between
gauge theory and brane theory to learn about strong-
coupling properties of orientifold planes, by using the
correspondence between Montonen-Olive duality in
gauge theory and S duality in string theory. From gauge
theory we expect SO(2r) to be self-dual under SL(2,Z)
while SO(2r11) and Sp(r) should be dual to each
other. The SO(2r) case works in the obvious way: the
D3-branes and O3-plane are self-dual under SL(2,Z).
In the non-simply-laced case there is a new element.
Consider a weakly coupled SO(2r11) gauge theory.
The orientifold charge is 2QD3/2; the 6r-dimensional
Coulomb branch corresponds to removing r pairs of
three-branes from the orientifold plane. A single three-
brane that does not have a mirror remains stuck at the
orientifold.

When the gauge coupling becomes large there are two
ways of thinking about the system. We can either con-
tinue thinking about it as a (strongly coupled) SO(2r
11) gauge theory or relate it to a weakly coupled
theory by performing a strong-weak coupling S-duality
transformation. From gauge theory we know that the
result should be a weakly coupled Sp(r) theory, which
is described by an orientifold with charge 1QD3/2.

Thus Montonen-Olive duality of a gauge theory
teaches us that a ‘‘bound state’’ of an O3-plane with
negative Ramond charge and a single D3-brane embed-
ded in it [a configuration with Ramond charge (21/2
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11)QD3] transforms under S duality of type-IIB string
theory into an O3-plane with Ramond charge 1QD3/2
(Elitzur, Giveon, et al., 1998b).

Monopoles in broken SO/Sp gauge theory are de-
scribed as before by D strings stretched between differ-
ent D3-branes. Consider, for example, the rank-one
case Nc52. For positive orientifold charge the gauge
group is Sp(1).SU(2) and the moduli space of k
SU(2) monopoles that we have discussed previously can
be studied by analyzing the worldvolume theory of k D
strings connecting the single ‘‘physical’’ D3-brane to its
mirror image. The gauge group U(k) is replaced by
SO(k), and the matrices FI (55) and A6 now become
symmetric k3k matrices. The discussion of Eqs. (57)–
(63) can presumably be repeated, although this has not
been done in the literature.

For negative orientifold charge the gauge group is
SO(2).U(1) and one does not expect nonsingular
monopoles to exist. This means that D strings cannot
connect the single physical D3-brane to its mirror im-
age. This is related by S duality to the fact, discussed in
Sec. II.B.2, that for negative orientifold charge the
ground states of fundamental strings stretched between
the D3-brane and its image are projected out.

D. The metric on the moduli space of well-separated
monopoles

The explicit form of the moduli space metric for k
well-separated monopoles in SU(2) gauge theory is
known. Setting gs51, 2uxW u51 [Eq. (56)], and denoting
the locations of the monopoles in (x1,x2,x3) by rW i and
the Wilson lines A6 by u i, so that the 4k-dimensional
monopole moduli space is labeled by (rW i,u i), it is (Gib-
bons and Manton, 1995)

ds25gijdrW i
•drW j1~g21! ijd ũ id ũ j, (65)

where

gjj512(
iÞj

1
rij

; ~no sum over j !

gij5
1
rij

; iÞj ,

d ũ i5du i1WW ik•drWk,

WW jj52(
iÞj

wW ij ; ~no sum over j !

WW ij5wW ij ; ~ iÞj !. (66)

Here rij5urW i2rW ju and wW ij is the vector potential of a
Dirac monopole located at the point rW i evaluated at the
point rW j [Eq. (24)].

In the brane language, one can think of the metric of
Eqs. (65) and (66) as the perturbative metric on the
‘‘Coulomb branch’’ of the U(k) gauge theory on the D
strings. Classically, gjj51, gij50 (for iÞj). The correc-
tions proportional to 1/rij in Eq. (66) arise at one loop
and can be naturally interpreted as due to the
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asymptotic curving of the three-branes by the D strings
[Eq. (51)]. For example, the diagonal components gjj
can be thought of as describing the motion of the jth D
string in the background of the other k21 strings that
curve the two three-branes such that the rW-dependent
distance between them (for large urWu) is

dx6512(
iÞj

1
urW2rW iu

. (67)

From the point of view of the D-string theory one can
interpret Eq. (67) as an rW-dependent gauge coupling. As
we shall see in Sec. IV, for systems with eight super-
charges the metric g is related to the gauge coupling by
supersymmetry. This explains the relation between Eq.
(67) and the first line of Eq. (66).

Due to (4,4) supersymmetry, there are no further per-
turbative corrections to the metric beyond one loop.
Nonperturbatively, Eq. (66) cannot be exact, since the
diagonal components of the metric are not positive defi-
nite. In the brane language, the formula for the curving
of the branes, Eq. (67), is only valid asymptotically for
large urWu while, for urW2rW iu˜0, x6 is clearly modified. In-
stead of diverging, the two three-branes effectively
‘‘meet in the middle’’ of the x6 interval. Thus Eq. (67)
must be modified.

One can think of the nonperturbative corrections to
the metric (66) as due to Euclidean fundamental strings
stretched between the two D3-branes and two adjacent
D strings (see Fig. 8). The action of such an instanton is
proportional to its area,

S52uxW udr/ls
252ufW udr5Mwdr , (68)

where 2fW is the Higgs expectation value in the broken
SU(2) gauge theory and dr is the separation between
adjacent monopoles. The corresponding nonperturba-
tive corrections go like exp(2S);exp(2MWdr) where

FIG. 8. Nonperturbative corrections to the metric on moduli
space, due to Euclidean fundamental strings stretched between
the three-branes and adjacent D strings.
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MW is the mass of the charged W boson. This is consis-
tent with the fact that the size of the magnetic monopole
in broken SU(2) gauge theory is MW

21 , much larger
than its Compton wavelength Mmon

21 5gSYM
2 MW

21 for
weak coupling gSYM .

Note that the instanton effects (68) are nonperturba-
tive in ls

25a8, but they survive in the classical string
limit gs˜0. Thus they can be thought of as worldsheet
instanton corrections to the metric (66).

IV. FOUR-DIMENSIONAL THEORIES WITH N52
SUPERSYMMETRY

A. Field-theory results

The N52 supersymmetry algebra contains eight su-
percharges transforming as two copies of the 21 2̄ of
spin(1,3). All N52 theories have a global SU(2)R sym-
metry which acts on the two supercharges. Scale-
invariant theories have in addition a U(1)R symmetry
under which the chiral supercharges have charges 61.

To study N52 supersymmetric gauge theory with
gauge group G one is interested in two kinds of multip-
lets. The vector multiplet contains a gauge field Am , two
Weyl fermions la , ca , and a complex scalar f, all in the
adjoint representation of G . The fermions l, c trans-
form in the 2 of SU(2)R ; Am and f are singlets. Under
N51 supersymmetry the vector multiplet decomposes
into a vector superfield18

V52usmūAm2i ū2~ul!1iu2~ ūl̄ !1
1
2

u2ū2D (69)

with the gauge covariant field strength

Wa5D̄2~e2VD ae22V! (70)

and a chiral superfield

F5f1&uc1u2F . (71)

In N51 superspace, the low-energy Lagrangian describ-
ing the vector multiplet is

Lvec5Im TrFtS E d4uF†e22VF1E d2uWaWa D G ,
(72)

where the trace runs over the group G and t is the com-
plex coupling (52). The Lagrangian (72) is invariant un-
der the U(1)R symmetry F˜e2ibF(e2ibu), which is a
consequence of its (classical) conformal invariance. Thus
F has R charge two.

In components, the bosonic part of the Lagrangian
Lvec includes kinetic terms for the fields (10) and a po-
tential for the adjoint scalars f, f† analogous to Eq.
(11),

V;Tr@f†,f#2. (73)

18We use the notations of (Wess and Bagger, 1992), except
for replacing vm by Am .
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N52 SUSY gauge theories in four dimensions can be
obtained from N51 SUSY theories in six dimensions by
dimensional reduction, i.e., dropping the dependence of
all fields on two of the coordinates, say (x4,x5). The
adjoint chiral superfield in the vector multiplet F [Eq.
(71)] corresponds to A4 , A5 ; the potential (73) arises
from the commutator terms in the action (9).

The second multiplet of interest is the hypermultiplet,
which in N51 notation consists of two chiral superfields
Q , Q̃ in a representation R of the gauge group (and thus
contains 2dimR complex scalars and Weyl fermions).
The scalar components of Q , Q̃ transform as a doublet
under SU(2)R and carry no charge under U(1)R ; the
fermions are SU(2)R singlets and carry U(1)R charge
one. The low-energy Lagrangian describing the hyper-
multiplet is (in N51 superspace)

Lhyper5E d4u~Q†e22VQ1Q̃†e22VQ̃ !

1E d2uQ̃FQ1c.c., (74)

where V5VaTa, a51,.. . ,dimG , and Ta are generators
of G in the representation R .

The theory described by Eqs. (72) and (74) has a Cou-
lomb branch corresponding to matrices f satisfying Eq.
(73) @f ,f†#50. It is parametrized by r5rankG complex
moduli corresponding to f in the Cartan subalgebra of
G , f5( i51

r f iT
i. The gauge group is generically broken

to U(1)r and the low-energy dynamics is that of r U(1)
vector multiplets. N52 supersymmetry ensures that the
moduli space of vacua is not lifted by quantum effects
but the metric on it is in general modified. The general
form of the action consistent with N52 supersymmetry
is (Sierra and Townsend, 1983; de Witt et al., 1984;
Gates, 1984; Seiberg, 1988)

Lvec5Im TrF E d4u
]F~F!

]F i
F̄ i

1
1
2 E d2u

]2F~F!

]F i]F j
Wa

i Wj
aG . (75)

F is a holomorphic function of the moduli known as the
prepotential. It determines the low-energy U(1)r gauge
coupling matrix t ij :

t ij5
]2F

]f i]f j
(76)

and the metric on the moduli space

ds25Im t ijdf idf̄ j . (77)

Comparing with Eq. (72) we see that, classically, the
prepotential is quadratic,

F05
1
2

tclF iF
i. (78)
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After adding the one-loop corrections,19 it takes the
form

F15
i

4p (
aW .0

~aW •FW !2 log
~aW •FW !2

L2 , (79)

where the sum runs over positive roots of the Lie alge-
bra of G . The logarithm breaks U(1)R and is related
through the multiplet of anomalies to the one-loop beta
function. Higher-order perturbative corrections are ab-
sent due to a nonrenormalization theorem, but nonper-
turbatively Eq. (79) receives a series of instanton correc-
tions that fall off algebraically at large F but are crucial
for the structure at small F.

Seiberg and Witten showed that the prepotential F
can be computed exactly and, in fact, its second deriva-
tive t ij (76) is the period matrix of a Riemann surface
(Seiberg and Witten, 1994a). The moduli space of vacua
of the N52 SYM theory is thus parametrized by the
complex structure of an auxiliary two-dimensional Rie-
mann surface whose physical role seems mysterious.
One of our main goals in this section will be to elucidate
the meaning of this surface by embedding the problem
in string theory.

The prepotential is also important for determining the
mass of BPS-saturated states in the theory. From the
supersymmetry algebra, one can deduce that the mass of
BPS-saturated states with electric charge (e1 ,. . . ,er) and
magnetic charge (m1,. . . ,mr) under the r unbroken
U(1) gauge fields is

M5&uZu; Z5f ie i1f i
Dmi, (80)

where Z is the central charge and

f i
D5

]F
]f i . (81)

In general, N52 SYM theories also have Higgs
branches in which the rank of the unbroken gauge group
is decreased. The full phase structure is in general rather
rich (see Argyres, Plesser, and Seiberg, 1996; Argyres,
Plesser, and Shapere, 1997 for a more detailed discus-
sion). In the remainder of this section we shall describe
it in a few examples using branes.

B. Three-branes near seven-branes

As a first example of four-dimensional N52 SYM
theory on branes we consider the low-energy worldvol-
ume theory on three-branes in the presence of seven-
branes and an orientifold seven-plane in type-IIB string
theory (Banks, Douglas, and Seiberg, 1996). This can be
thought of as a special case of the Dp2D(p14) system
of Sec. II with a few special features due to the fact that
p1457 is sufficiently large. In particular, the Ramond-
Ramond flux of (117)-dimensional objects does not
have enough noncompact transverse directions to es-

19For simplicity, we give only the result for gauge theory
without matter.
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cape. Therefore we should consider configurations with
vanishing total Ramond-Ramond charge. In this section
we study a particular configuration of this sort.

Consider an O7-plane with worldvolume in the
(x0,x1,. . . ,x7) directions, at a point in the (x8,x9) plane.
Its Ramond-Ramond charge QO7 is from Eq. (15),
QO7528QD7 . To cancel this charge we can add Nf
54 D7-branes and their four mirror images (a total of 8
D7-branes with charge QD7 each) parallel to the orien-
tifold seven-plane. When the D7-branes coincide with
the orientifold plane there is an SO(8) gauge symmetry
on their (117)-dimensional worldvolume. When they
are separated from the orientifold this symmetry is ge-
nerically broken to U(1)4. In a complex parametriza-
tion of the (x8,x9) plane,

w[x81ix9, (82)

we can choose the location of the orientifold plane to be

w~O7 !50. (83)

The locations of the four D7-branes and their mirror
partners in the (x8,x9) plane will be denoted by mi and
2mi , respectively.

In addition, we place a D3-brane and its mirror image
at20 w and 2w , respectively. As explained in Sec. II, the
low-energy (113)-dimensional worldvolume dynamics
on the three-branes is an Sp(1).SU(2) gauge theory
with eight supercharges, namely, an N52 supersymmet-
ric gauge theory in four dimensions. The neutral gauge
boson Wm

3 corresponds to the ground state of an open
string both of whose ends terminate on the three-brane.
The charged gauge bosons Wm

6 correspond to the
ground states of strings stretched between the D3-brane
and its mirror image. The D7-branes are heavy objects;
thus from the point of view of (113)-dimensional phys-
ics, their SO(8) gauge symmetry is ‘‘frozen,’’ i.e., the
corresponding gauge coupling vanishes. Moduli in the
seven-brane theory give rise to parameters in the (1
13)-dimensional Lagrangian.

The location of the three-brane in the (x8,x9) plane
corresponds to the expectation value of the complex chi-
ral field in the adjoint of SU(2):

Fab~xm![Xab
8 1iXab

9 ; a ,b51,2; TrF50, (84)

which belongs to the SU(2) vector multiplet (71). It can
be diagonalized to

^F&5S w 0

0 2w D . (85)

When w50, the minimal length of strings stretched be-
tween the D3-branes vanishes and the charged gauge
bosons are massless. When wÞ0, Eq. (85) breaks SU(2)
to U(1). Correspondingly, the strings stretched from the
three-brane to its mirror image have minimal length
2uwu—the mass of W6 (in string units).

20The location of the three-brane in the directions along the
O7/D7 is not important for what follows.
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The D7-branes give rise to Nf54 fundamental hyper-
multiplets (Qi,Q̃i). Their locations mi are the bare com-
plex masses of quarks. Analyzing configurations of
strings stretched between the D3- and D7-branes we
see that at tree level the superpotential is just that ex-
pected on the basis of N52 supersymmetry:

W5(
i51

4

~QiFQ̃i2miQ
iQ̃i!. (86)

The effective masses of the quarks mi2w and mi1w
are the locations of the four D7-branes and their mirror
images, respectively, relative to the D3-brane. The
SO(8) gauge symmetry on the worldvolume of the
D7-branes turns into a global symmetry of the four-
dimensional gauge theory on the three-branes. It is bro-
ken when miÞ0.

As in the N54 SYM case discussed in the previous
section, the complex gauge coupling of the N52 SYM
theory on the three-brane corresponds to the complex
dilaton (35) of type-IIB string theory. The D7-branes
and O7-plane carry charge under the complex dilaton
field. Thus it is nontrivial in their presence and, in par-
ticular, when we go once around a D7-brane, t has a
monodromy: t˜t11. Far from the D7-branes located
at w5mi and from the O7-plane located at w50 we
expect t to behave as

t~w !5t01
1

2pi F(i51

4

„log~w2mi!1log~w1mi!…

28 log wG (87)

since there is charge 11 at each w56mi and charge
28 at w50.

Note that one can use the above analysis to under-
stand the identification of the complex dilaton of type-
IIB string theory [Eq. (87)] with the gauge coupling of
the theory on the D3-brane. The metric on the (x8,x9)
plane implied by Eq. (87) can be interpreted either as
the metric induced by the O7-plane and D7-branes or
as the metric on the Coulomb branch of the N52 SYM
theory on the worldvolume of the three-brane. In the
first interpretation this metric is determined by the com-
plex coupling of type-IIB string theory; in the second, it
is related by Eqs. (76) and (77) to the complex gauge
coupling t. This establishes the relation between the two
t’s.

The complex coupling t is gauge invariant; this is
made manifest by rewriting Eq. (87) as

t~u !5t01
1

2pi F(i51

4

log~u2mi
2!24 log uG , (88)

where u is the gauge-invariant modulus:

u5
1
2

TrF25w2. (89)

The semiclassical result (88) corresponds in gauge
theory to the one-loop corrected prepotential [Eq. (79)].
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As in the brane picture, semiclassically, the SU(2)
gauge symmetry is restored at the origin u50 where W6

become massless, while quarks (Qi,Q̃i) become mass-
less when u5mi

2 . The appearance of new massless
states is the reason for the singularities at u50,mi

2 in Eq.
(88). The coefficient 4 in front of log u is due to the fact
that W6 carry twice the electric charge of a quark, and
the relative sign between the two logs in Eq. (88) is due
to the fact that the W6 belong to a vector multiplet
whose contribution to the beta function has an opposite
sign to that of a hypermultiplet.

The one-loop result (88) is not corrected perturba-
tively, but it cannot be exact, since it does not satisfy
Im t>0 everywhere in the u plane; for small u , Im t be-
comes large and negative. Therefore we expect that
strong-coupling effects will modify the solution for finite
u (Seiberg and Witten, 1994a, 1994b; Sen, 1996). Indeed,
as discussed in Sec. IV.A, in the N52 SYM analysis one
finds that instanton corrections modify Eq. (88). The ex-
act effective coupling is a modular parameter t(u) of a
torus described by the elliptic curve

y25x31f~u ,t0!x1g~u ,t0!, (90)

where x ,y ,uPCP1, f(u) is a polynomial of degree 2,
g(u) is a polynomial of degree 3 in the gauge-invariant
modulus u , and exp(ipt0)[L is the ‘‘QCD scale’’ of the
theory. In the semiclassical limit, namely, for large Im t0
and uuu@uLu2, the exact t(u) can be rewritten as Eq.
(88). Strong-coupling dynamics splits the singularity at
the origin into two singularities at u56L2 correspond-
ing to a monopole or dyon’s becoming massless.

The full nonperturbative description of the type-IIB
vacuum discussed above involves three-branes in F
theory on K3 (Vafa, 1996)—a compactification of the
type-IIB string on CP1 labeled by the coordinate u ,
with a nontrivial complex dilaton describing a two-torus
with modular parameter t(u) for each point on CP1.
This elliptically fibered surface is given by the algebraic
Eq. (90).

In the F-theory description the three-brane moves in
the background of six seven-branes located at the singu-
larities of the curve (90). In the weak string-coupling
limit four of these branes can be regarded as (1,0) seven-
branes, namely, conventional D-branes, while the other
two are a (0,1) seven-brane and a (2,1) seven-brane re-
lated to a D7-brane by SL(2,Z) S-duality transforma-
tions. The (1,0) seven-branes are free to move in the u
plane, while the (0,1) and (2,1) seven-branes are stuck at
u56L2. As gs˜0 these branes approach each other
and are described at weak coupling by an O7-plane.
BPS-saturated states with electric and magnetic charges
(e ,m)5(p ,q) in the four-dimensional N52 SYM
theory on the three-brane can be described by (p ,q)
strings stretched between the (p ,q) seven-branes and
the D3-brane (Sen, 1997a).

C. Branes suspended between branes

The fact that branes can end on other branes was de-
duced in Sec. II.E.3 by starting from a fundamental
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string ending on a D-brane and applying U duality. Fol-
lowing the same logic we can deduce that branes can be
suspended between other branes by starting with a con-
figuration of fundamental strings stretched between two
D-branes and applying a chain of duality transforma-
tions. As in Sec. II.E.3, one can get in this way
Dp-branes stretched between two D(p12) or NS5-
branes. The special case of D strings stretched between
two D3-branes was used in Sec. III to describe BPS-
saturated ’t Hooft–Polyakov monopoles of a broken
SU(2) gauge theory.

In this section we shall study similar configurations
with eight supercharges describing (311)-dimensional
physics and use them to learn about N52 SYM theory.
The starting point of our discussion will be brane con-
figurations in type-IIA string theory consisting of solito-
nic (Neveu-Schwarz) five-branes, D4-branes, and
D6-branes as well as orientifold planes O4 and O6 par-
allel to the D-branes. Using Eqs. (6), (18), and (19) it is
not difficult to check that any combination of two or
more of the following objects:

NS5: ~x0,x1,x2,x3,x4,x5!,

D4/O4: ~x0,x1,x2,x3,x6!,

D6/O6: ~x0,x1,x2,x3,x7,x8,x9!, (91)

preserves eight of the 32 supercharges of type-IIA string
theory [Eq. (2)]. In Eq. (91) we specified the directions
in which each of the branes is stretched.

The Lorentz group SO(1,9) is broken by the presence
of the branes to

SO~1,9!˜SO~1,3!3SO~2 !3SO~3 !, (92)

where the SO(1,3) factor acts on (x0,x1,x2,x3), the
SO(2) on (x4,x5), and the SO(3) on (x7,x8,x9). We
shall be interested in physics in the (113)-dimensional
spacetime common to all the branes labeled by
(x0,x1,x2,x3); thus we interpret the SO(1,3) factor in
Eq. (92) as Lorentz symmetry and the SO(2), SO(3)
factors as global symmetries. Due to the ten-
dimensional origin of these global symmetries, the su-
percharges transform as doublets under SO(3) and are
charged under SO(2). Thus these are R symmetries. In
fact, the SO(3) can be identified with the global
SU(2)R of N52 SYM theory described in Sec. IV.A,
while the SO(2) can be identified with the U(1)R sym-
metry.

To study situations with interesting
(113)-dimensional physics some of the branes must be
made finite. We next turn to a discussion of some spe-
cific configurations and their physics (Elitzur, Giveon,
and Kutasov, 1997; Hanany and Witten, 1997). We start
with a description of the ‘‘classical’’ type-IIA string pic-
ture in a few cases involving unitary, symplectic, and
orthogonal groups with matter in the fundamental rep-
resentation of the gauge group, as well as a few more
complicated examples, and then study quantum effects.

1. Unitary gauge groups

Consider two infinite NS5-branes oriented as in Eq.
(91), separated by a distance L6 in the x6 direction and
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located at the same point in (x7,x8,x9). We can stretch
between them in the x6 direction Nc D4-branes oriented
as in Eq. (91); see Fig. 9.

To analyze the low-energy physics corresponding to
this configuration it is important to distinguish between
three kinds of excitations of the vacuum: (1) modes that
live in the ten-dimensional bulk of spacetime; (2) modes
that live on the two NS5-branes; (3) modes that live on
the four-branes. For an observer living in the 113 di-
mensions (x0,x1,x2,x3) the first two sets of excitations
appear at low energies and in the weak string-coupling
limit to be frozen at their classical values by an argu-
ment similar to that given around Eq. (47). Essentially,
since they correspond to higher-dimensional excitations,
any long-wavelength fluctuations away from the classical
values of these fields are suppressed by infinite-volume
factors.

Excitations attached to the Nc four-branes do not
have this property. Despite living in one higher dimen-
sion (x6), they are dynamical in 113 dimensions since
the four-branes are finite in x6. Thus excitations of the
four-branes can be thought of as fields living in the (1
14)-dimensional space R1,33I where I is a finite inter-
val (of length L6). As in Kaluza-Klein theory, for dis-
tance scales much larger than L6 their physics looks (1
13) dimensional. Depending on the boundary condi-
tions at the ends of the interval, the different fields do or
do not give rise to light fields in 113 dimensions.

The analysis of the boundary conditions can be done
using the results of Sec. II.E.3. The light excitations on a
stack of Nc infinite D4-branes [Eq. (91)] are a five-
dimensional U(Nc) gauge field Am , m50,1,2,3,6 and
five scalars in the adjoint of U(Nc) corresponding to
transverse fluctuations of the four-branes,
(X4,X5,X7,X8,X9). As we saw in Sec. II.E.3, when the
Nc four-branes end on five-branes, (X7,X8,X9) as well
as A6 satisfy Dirichlet boundary conditions on both ends
of the interval I . Therefore they give rise in 113 dimen-

FIG. 9. Nc D4-branes stretched between NS5-branes describ-
ing N52 supersymmetric Yang-Mills theory with G5U(Nc).
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sions to states with masses of order 1/L6 , which are in-
visible in the low-energy limit of interest, E!1/L6 . The
remaining light degrees of freedom, the U(Nc) gauge
field Am , m50,1,2,3 and the adjoint scalars (X4,X5) sat-
isfy free boundary conditions on I and, therefore, con-
tribute a U(Nc) vector multiplet.

Thus we conclude that the light excitations of the
brane configuration above describe an N52 SUSY
gauge theory with gauge group U(Nc) and no matter.21

The gauge coupling of the (411)-dimensional gauge
theory on Nc four-branes is given by standard D-brane
techniques [Eq. (8)] to be gD4

2 5gsls . Upon Kaluza-
Klein reduction on a line segment of length L6 we find a
(311)-dimensional gauge theory with coupling

1
g2 5

L6

gsls
. (93)

It is interesting to ask in what regime the brane configu-
ration is well approximated by an N52 SUSY
(311)-dimensional gauge theory. There are several is-
sues that need to be addressed in this regard. First, the
physics on the four-branes looks (311)-dimensional
only at distances much larger than L6 . At shorter dis-
tances Kaluza-Klein excitations on the four-branes,
whose typical energy is 1/L6 , begin to play a role and
the dynamics becomes (411) dimensional. Further-
more, in general there are couplings of the light fields on
the four-branes to light fields living on the NS5-branes,
to massive excited states of the 424 strings living on the
four-branes, and to fields living in the bulk of spacetime,
such as gravitons. These couplings are small in the limit
gs˜0 and at distances much larger than ls .

Thus to study gauge-theory dynamics we are led to
consider the brane configuration above in the limit

gs˜0, L6 /ls˜0 (94)

with the ratio corresponding to g (93) held fixed. If the
gauge coupling at some scale L satisfying L@ls@L6 is
small but finite, at larger distances the dynamics of the
brane configuration will be governed by gauge theory,
with the other effects mentioned above providing small
corrections.

21This theory can be thought of as a reduction of N51 SYM
theory in 115 dimensions down to 113 dimensions. In the
brane description this process of dimensional reduction is de-
scribed by compactification, followed by T duality and subse-
quent decompactification of (x4,x5). The six-dimensional ver-
sion of the theory is obtained by replacing the four-branes in
Eq. (91) by six-branes stretched along (x4,x5). This enhances
the unbroken Lorentz symmetry [Eq. (92)] to SO(1,5)
3SO(3), which is indeed the global symmetry of N51 SYM
theory in 115 dimensions. The SO(3) corresponds to the
SU(2)R symmetry of (115)-dimensional N51 SYM theory,
under which the two supercharges in the 4 of spin(1,5) trans-
form as a doublet. Upon reduction to 113 dimensions another
global SO(2) symmetry appears [Eq. (92)]. As we shall see
later, the consistency constraints in six dimensions are more
restrictive than in 4d ; thus only some of the consistent models
in 4d can be lifted to 6d .
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The classical gauge-theory limit is obtained when, in
addition to sending L6 and gs to zero, we also send the
combination (93) to zero. The theory simplifies in this
limit, since when g50 we can ignore the effects of the
ends of the four-branes on the NS5-branes. In this sec-
tion we discuss this classical limit; later we shall describe
the modifications that take place when quantum effects
are turned on.

Classical U(Nc) N52 SYM theory in 311 dimen-
sions has an Nc-(complex)-dimensional moduli space of
vacua parametrized by diagonal expectation values of
the complex adjoint scalar F that belongs to the vector
multiplet. At a generic point in the moduli space, U(Nc)
is broken to U(1)Nc and the charged gauge bosons are
massive.

In the brane description, the complex adjoint field F
[Eq. (71)] can be thought of as describing fluctuations of
the four-branes along the five-branes, X[Fls

25X4

1iX5. Turning on an expectation value for F corre-
sponds to translations of the Nc four-branes in x4, x5.
For generic positions of the four-branes along the five-
branes, the 424 strings connecting different four-branes
[corresponding to vector multiplets charged under a pair
of U(1)’s] have finite length and, therefore, describe
massive states. Note also that F has the correct global
charges. Turning on an expectation value for F breaks
the SO(2) symmetry [Eq. (92)]. Thus F carries charge
(which is two if we normalize the charge of the super-
charges to one) under U(1)R . Similarly, it is clear that it
transforms as a singlet under SO(3).SU(2)R ; both
facts are in agreement with the field-theory discussion of
Sec. IV.A.

To have a consistent four-dimensional interpretation
of the Coulomb branch we have to require that in the
limit (94) the Higgs expectation value ^F& remain well
below the Kaluza-Klein scale 1/L6 . This means that the
typical separation between the four-branes in the
(x4,x5) plane dx must satisfy dx!ls

2/L6 . One should
also require that dx be less than ls ,L6 to decouple mas-
sive string modes on the four-branes. The resulting hier-
archy of scales in the gauge theory limit (94) is

dx!L6!ls!
ls

2

L6
. (95)

To add matter in the fundamental representation of
the gauge group we can proceed in one of a number of
related ways. One is to add semi-infinite four-branes at-
tached to one of the NS5-branes. For example, one can
add Nf four-branes ending on the left NS5-brane from
the left, extending to x6

˜2` , as shown in Fig. 10. Add-
ing the semi-infinite four-branes gives rise to Nf hyper-
multiplets in the fundamental representation of U(Nc)
corresponding to strings stretched between the Nc sus-
pended four-branes and the Nf semi-infinite ones. The
locations at which these semi-infinite four-branes attach
to the five-brane in the (x4,x5) plane are Nf complex
numbers m1 ,. . . ,mNf

, which can be thought of as the
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masses of the quarks.22 Note that these locations corre-
spond to expectation values of scalar fields living on the
worldvolume of the semi-infinite four-branes. As before,
since these four-branes are ‘‘heavy’’ objects, they are
frozen at their classical values and give rise to couplings
rather than moduli in the four-dimensional low-energy
theory.

A generic point in the Coulomb branch is param-
etrized by the Nc complex numbers a1,. . . ,aNc corre-
sponding to the locations in the (x4,x5) plane of the
suspended D4-branes. From gauge theory we know that
due to the superpotential (86) (with the sum running
over all Nf flavors), which is required by N52 super-
symmetry, the mass of the quark Qa

i corresponding to
the ith flavor and the ath color is mi

a5umi2aau. In the
brane picture, the mass mi

a is given by the minimal en-
ergy of a fundamental string stretched between the ath
suspended brane and the ith semi-infinite one. Just like
the adjoint field F, the mass parameters mi (86) carry
U(1)R charge two. Turning on masses breaks U(1)R (as
well as conformal invariance).

While the above way of introducing fundamental mat-
ter is appropriate for describing the Coulomb branch of
U(Nc) gauge theory with Nf flavors, it does not provide
a geometric description of the Higgs branches. Recall
that the gauge theory in question has a number of
branches of the moduli space of vacua along which some
of the quarks Q , Q̃ get expectation values and the rank
of the unbroken gauge group decreases. For Nf>2Nc
the gauge group can be completely Higgsed and the
complex dimension of the corresponding branch of
moduli space is 2NcNf22Nc

2 .

22Up to a factor of ls
2, which is needed to fix the dimensions;

we shall usually set ls51 from now on.

FIG. 10. Nc ‘‘color four-branes’’ stretched between NS5-
branes in the presence of Nf semi-infinite ‘‘flavor four-branes,’’
describing N52 supersymmetric Yang-Mills theory with G
5U(Nc) and Nf fundamental hypermultiplets.
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To recover the Higgs branches it is convenient to gen-
eralize the above construction of matter in the manner
shown in Fig. 11. Replace the semi-infinite D4-branes to
the left of the NS5-branes by finite D4-branes, each end-
ing on a different D6-brane, oriented as in Eq. (91).
This opens up the possibility of having additional dy-
namical degrees of freedom living on these four-branes.

For generic masses $mi%, which can now be thought of
as positions of the Nf D6-branes in the (x4,x5) plane
and points in the Coulomb branch $aa%, there are no
new massless states of this kind. Indeed, all potentially
light fields living on a four-brane stretched between an
NS5-brane and a D6-brane have Dirichlet boundary
conditions on one or both boundaries and hence do not
lead to massless degrees of freedom. That is consistent
with the absence of Higgs branches of N52 SYM theory
when all the masses mi are distinct.

When two or more masses coincide, say m15m2 , we
expect from gauge theory to be able to enter a Higgs
branch by turning on an expectation value to quarks Q ,
Q̃ . Furthermore, to enter the Higgs branch one needs to
go to a particular point in the Coulomb branch for which
for some 1<a<Nc , m1

a5m2
a50. To reproduce this in

the brane description one notes that when two masses
mi coincide, two D6-branes are at the same position in
the (x4,x5) plane. In general they are still separate in
the x6 direction and each is connected to the same NS5-
brane by a D4-brane. Thus the four-brane connecting
the ‘‘far’’ D6-brane to the NS5-brane meets in space
and intersects the ‘‘near’’ D6-brane. From our discus-
sion of brane intersections in Sec. II.E.3 one might con-
clude at this point that this four-brane can break into
two pieces, one stretched between the NS5-brane and
the near D6-brane and the other between the two
D6-branes. While the first piece would as before give

FIG. 11. Replacement of the semi-infinite flavor D4-branes of
Fig. 10 by D4-branes ending on D6-branes, which allows one
to explore the full phase structure of the theory.
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rise to no massless degrees of freedom in 311 dimen-
sions, the second one would give rise to a neutral (under
the gauge group) massless hypermultiplet. The scalars in
the hypermultiplet would correspond to displacements
of the D4-brane along the D6-branes in the (x7,x8,x9)
directions, and the compact component of the gauge
field A6 . This would provide a candidate for a brane
realization of the phase transition from the Coulomb to
the Higgs phase.

However, the picture we got so far is inconsistent with
gauge theory. The process described above appears to
be possible for any values of the Coulomb moduli; in
gauge theory we have to tune to a particular point in the
Coulomb branch in order to be able to enter the Higgs
branch. This and many related puzzles are resolved by
noting (Hanany and Witten, 1997) that the following ‘‘s
rule’’ holds in brane dynamics: A configuration in which
an NS five-brane and a D six-brane are connected by
more than one D4-brane is not supersymmetric. The s
rule, which is illustrated in Fig. 12, is a phenomenologi-
cal rule of brane dynamics that has been recently dis-
cussed from various points of view for example, by
Ooguri and Vafa, 1997; Bachas and Green, 1998; Ba-
chas, Green, and Schwimmer, 1998; Hori, Ooguri, and
Oz, 1998. It seems to have to do with the fact that two or
more four-branes connecting a given NS five-brane to a
given D six-brane are necessarily on top of each
other—a rather singular situation. In particular, Bachas
and Green (1997); see also Bachas, Green, and Schiwm-
mer (1998) related it by U duality to Pauli’s exclusion
principle.

The s rule explains why the process described above is
forbidden, but the comparison to the gauge-theory pic-
ture suggests a way out. If in addition to having two
D6-branes coincide in the (x4,x5) plane we also go to a
point in the Coulomb branch where one of the Nc

FIG. 12. Supersymmetric and nonsupersymmetric configura-
tions: (a) A supersymmetric configuration containing an NS5-
brane connected to a D6-brane by a single D4-brane. (b) A
nonsupersymmetric configuration in which the two are con-
nected by two D4-branes.
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D4-branes suspended between the NS-branes is at the
same value of (x4,x5) as well, the above phase transition
becomes possible (Fig. 13).

All we have to do is first reconnect the D4-brane
stretched between the left NS5-brane and the far
D6-brane, combining it with the coincident D4-brane
suspended between the NS-branes such that it now con-
nects the right NS5-brane to the far D6. Now there is no
conflict with the s rule in breaking the resulting
stretched D4 into two pieces as described above. As
expected in the Higgs mechanism, in the process we re-
place a massless U(1) vector multiplet corresponding to
a D4-brane stretched between two NS5-branes by a
massless neutral hypermultiplet Q̃Q corresponding to a
D4-brane stretched between adjacent (in x6)
D6-branes. The expectation value ^Q̃Q& is param-
etrized by the location of this D4-brane along the D6-
branes in (x7,x8,x9) and the Wilson line of A6 . This is
consistent with the expected transformation of Q , Q̃ un-
der SU(2)R3U(1)R : they are not charged under
U(1)R and transform as a doublet under SU(2)R . Thus
the ‘‘mesons’’ Q̃Q transform as 2325311.

Thus we learn that the Higgs mechanism is described
in brane theory as the reconnection (or breaking) of
D4-branes stretched between NS5-branes which give
rise to vector multiplets that are replaced by hypermul-
tiplets stretched between D6-branes and/or NS5-branes
consistently with the s rule. Performing all such break-
ings in the general case of Nc colors and Nf flavors gives
rise to the correct (classical) phase structure of N52
SYM theory.

As an example, to compute the dimension of the
maximally Higgsed branch (where the gauge symmetry
is completely broken) for Nf>2Nc we proceed as fol-
lows [see Fig. 14(a)]:

• Set all the masses equal to each other, i.e., bring all Nf
D6-branes to the same point in (x4,x5), say the ori-
gin. They are still at different positions in x6.

• Reconnect the D4-brane stretching between the left
NS5-brane and the leftmost D6-brane to stretch be-

FIG. 13. The transition from Coulomb (a) to Higgs (b) branch.
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tween the right NS5 and the leftmost D6, by going to
the point in the Coulomb branch where one of the Nc
‘‘color’’ D4’s is at the origin in the (x4,x5) plane as
well.

• Break the resulting D4 into Nf pieces stretching be-
tween the right NS5 and the rightmost D6 and the
different adjacent D6’s. This leads to Nf21 massless
hypermultiplets corresponding to fluctuations of the
Nf21 segments of the D4 stretched between the
D6’s. The expectation values of these are 2(Nf21)
complex moduli.

• By bringing in another color D4, reconnect the ‘‘sec-
ond longest’’ D4 stretching between the left NS5 and
the next-to-leftmost D6 to the right NS5. Repeat the
breaking procedure. The s rule applied to the right
NS5 implies that there are now Nf23 massless hyper-
multiplets and hence 2(Nf23) complex moduli.

• Continuing this process gives rise to

(
i51

Nc

@Nf2~2i21 !#5NfNc2Nc
2 (96)

massless hypermultiplets and to a 2(NfNc2Nc
2)

complex-dimensional Higgs moduli space, in agree-
ment with gauge-theory expectations.

A peculiar feature of the above analysis is the (lack
of) role of the parameters describing the positions along
the x6 axis of the Nf D6-branes providing the flavors.
There are no parameters in the low-energy N52 super-
symmetric QCD corresponding to changing these pa-

FIG. 14. The fully Higgsed branch of moduli space for Nf

55, Nc52; the two equivalent descriptions are related by a
series of Hanany-Witten transitions.
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rameters and thus they are irrelevant (in the RG sense).
Indeed, the physics of the brane configuration is inde-
pendent of the locations of the D6-branes, at least when
they are all to the left (or equivalently all to the right) of
the two NS5-branes.

It is interesting to ask what happens if we try to vary
the x6 positions of the D6-branes, bringing some or all
of them inside the interval between the two NS-branes.
Because of the way the different branes are oriented
[Eq. (91)], the D6 and NS5-branes cannot avoid each
other, and when their x6 values coincide they actually
meet in space. What takes place when they switch posi-
tions is known as the Hanany-Witten (HW) transition
(Hanany and Witten, 1997). The D4-brane connecting
the D6 and NS5 becomes very short as they approach
each other and disappears when they cross. Conversely,
if the D6 and NS5 that approach each other do not have
a D4-brane connecting them, one is created when they
exchange positions (Fig. 15).

The Hanany-Witten transition is an interesting effect
of brane dynamics which is related by U duality to simi-
lar transitions for other branes; it has been investigated
from several perspectives (for example, by Bachas, Dou-
glas, and Green, 1997; Danielsson, Ferretti, and Kle-
banov, 1997; de Alwis, 1997; Ooguri and Vafa, 1997;
Bergman, Gaberdiel, and Lifschytz, 1998a, 1998b; Ho
and Wu, 1998; Nakatsu et al., 1998b; Ohta, Shimizu, and
Zhou, 1998; Yoshida, 1998). Heuristically, it is related to
conservation of a certain magnetic charge that can be
measured on each brane known as the ‘‘linking num-
ber.’’ The total charge measured on each brane is

LB5
1
2

~r2l !1L2R . (97)

For an NS5-brane, r and l are the numbers of
D6-branes to its right and left, respectively, while R and
L are the numbers of D4-branes ending on the NS5-
brane from the right and left, respectively. Similarly, for

FIG. 15. The Hanany-Witten transition, in which a four-brane
is created when an NS5-brane and a D6-brane cross in x6 and
exchange positions.
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a D6-brane r and l are the numbers of NS5-branes to its
right and left, and R and L are as above. Right and left
here refer to locations along the x6 axis.

As an example, for a D6-brane connected to an NS5-
brane on its right (in x6) by a D4-brane the linking
number is LD6521/2. For the NS5-brane the linking
number is LNS5511/2. If we try to move the D6-brane
past the NS5-brane, the D4 connecting them disappears.
The new configuration includes a D6 with a discon-
nected NS5 on its left; the linking numbers are seen
from Eq. (97) to be unchanged.

Taking the Hanany-Witten transition into account we
can analyze what happens when the D6-branes are
translated in the x6 direction and placed in the interval
between the two NS-branes. All the D4-branes that ini-
tially connected the D6-branes to an NS5-brane disap-
pear, and we end up with a configuration of two NS-
branes at different values of x6 connected to each other
by Nc four-branes, with Nf six-branes located between
them in x6 [see Fig. 14(b)].

Remarkably, the resulting brane configuration de-
scribes the same low-energy physics! This is a priori sur-
prising since one would in general expect a phase tran-
sition to occur as the two branes cross; indeed, we shall
see that such transitions occur when the crossing branes
are parallel. It is not well understood why there is no
phase transition when nonparallel branes cross.

In any case, in the present setup the quarks Q , Q̃ that
corresponded to 424 strings before are now due to 4
26 strings stretched between the Nc suspended four-
branes and the Nf six-branes. The locations of the six-
branes in the (x4,x5) plane still correspond to their
masses, and the Higgs branch of the moduli space is
described by breaking D4-branes stretched between the
two NS5-branes on the Nf D6-branes. Taking into ac-
count the s rule, it is easy to see that the dimension of
the Higgs branch is as described above in Eq. (96).

The N52 SYM theory under consideration has gauge
group U(Nc).SU(Nc)3U(1). Thus one can turn on
Fayet-Iliopoulos couplings for the U(1). In N51 super-
space they are an N51 Fayet-Iliopoulos D term, and a
linear superpotential for the adjoint chiral superfield in
the vector multiplet:

LFI5Tr S r3E d4uV1r1E d2uF1r2E d2ūF̄ D . (98)

Here r3 is real, while r1* 5r2 . The three Fayet-
Iliopoulos couplings r3 ,r6 transform as the 3 of SU(2)R
and are neutral under U(1)R . For Nf>Nc the D terms
break the gauge group completely and force the system
into the Higgs branch. For smaller Nf there is no super-
symmetric vacuum.

In the brane language, the Fayet-Iliopoulos couplings
correspond to the relative position of the two NS5-
branes in the (x7,x8,x9) directions (Fig. 16); note that
these parameters have the correct transformation prop-
erties under SO(3).SU(2)R . From the geometry and
Eq. (91) it is clear that only when the two NS5-branes
are at the same value of (x7,x8,x9) can the D4-branes
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stretch between them without breaking supersymmetry.
For nonzero D terms all the D4-branes must break on
D6-branes. This corresponds to complete Higgsing of
the gauge group; it is consistent with the s rule for Nf
>Nc ; for smaller Nf there is no supersymmetric
vacuum.

2. Orthogonal and symplectic groups

In this section we discuss configurations of branes
near orientifold planes. As we saw before, adding orien-
tifold four- and six- (O4 and O6) planes as in Eq. (91)
does not lead to the breaking of any further supersym-
metry or global symmetry [Eq. (92)]. In the simplest
cases one finds N52 SYM theories with orthogonal and
symplectic gauge groups and matter in the fundamental
representation. We next discuss in turn the two cases of
an O6-plane parallel to the D6-branes and of an
O4-plane parallel to the D4-branes.

a. Orientifold six-planes

Consider a configuration in which an NS5-brane is
placed at a distance L6 from an orientifold six-plane [all
objects here and below are oriented as in Eq. (91)]. We
would like to stretch D4-branes between the NS5-brane
and the orientifold plane (a useful way to think about
these is as D4-branes stretched between the NS5-brane
and its mirror image with respect to the orientifold). As
discussed in Sec. II.B, there are actually two different
kinds of O6-planes, with positive and negative charge.

The first question we have to address is whether we
can stretch D4-branes between the NS5-brane and its
image in this situation without breaking supersymmetry.
One might worry that such four-branes are projected
out by the orientifold projection for one of the two pos-

FIG. 16. Fayet-Iliopoulos D terms in the N52 supersymmet-
ric Yang-Mills theory, corresponding to relative displacements
of the two NS5-branes in (x7,x8,x9). For nonzero D terms, all
color D4-branes must break, and the theory is forced into the
Higgs phase.
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sible choices of the orientifold charge. For example, we
shall see later that it is impossible to stretch a BPS-
saturated D4-brane between a D6-brane parallel to an
O62 plane and its image, and this will have important
consequences for the low-energy gauge theory. We next
show that for the case of NS5-branes there is no such
obstruction.

U duality relates the configuration we have to a more
familiar one.23 Specifically, we perform a T-duality
transformation (44) T123 which takes the type-IIA string
theory to a type-IIB one, followed by an S-duality trans-
formation S [Eq. (45)] on the resulting type-IIB string.
T123 maps the NS5-brane to itself, the O6-plane to an
O3-plane (x0,x7,x8,x9), and the Nc D4-branes to Nc D
strings stretched in x6 between the two five-branes. The
subsequent S-duality transformation acts differently for
positive and negative orientifold charge.

For negative orientifold charge, we saw in Sec. III that
the O3-plane transforms under S to itself. Thus after
performing the transformation we end up with a
D5-brane and its image near an O32 plane. The origi-
nal D4-branes connecting the NS5-brane to its image
turn now into fundamental type-IIB strings connecting
the D5-brane to its image with respect to the O3-plane.
The low-energy theory on the D5-brane is in this case
an SO(2) gauge theory; the configuration is T dual to
well-studied systems such as D strings inside an
O9-plane or D0-branes near an O8-plane. Translations
of the D-brane and its image away from the orientifold
plane (in the x6 direction) are described by an antisym-
metric tensor of SO(2), i.e., a singlet.

The original question, whether one can stretch a
D4-brane between the NS5-brane and its mirror, is
translated in the U-dual configuration into the question
whether one can stretch a BPS-saturated string between
the D5-brane and its image. Such a string would corre-
spond to a state charged under the SO(2) gauge sym-
metry on the D5-brane, which goes to zero mass as the
D5-brane approaches its image. It is well known that
such states exist; they correspond to fields describing
fluctuations of the D-brane along the orientifold plane,
in this case in the (x7,x8,x9) directions. Such fluctua-
tions are described by a symmetric tensor of SO(2)
which includes a pair of states charged under SO(2);
these states are described by BPS fundamental strings
stretched between the D5-branes. They are U-dual to
D4-branes connecting the NS5-brane to its image in the
original configuration. In particular, the latter is clearly
possible.

For positive orientifold charge we use the fact—
explained in Sec. III—that S duality takes an O31 plane
to an O32 plane with a single D3-brane (without a mir-
ror partner) embedded in it. The resulting system of a
D5-brane near an O32 plane with a D3-brane is similar
to that studied in the previous paragraphs. The

23Below we freely compactify and decompactify different di-
mensions. This should not affect the conclusions as to whether
various brane configurations are allowed.
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D3-brane gives rise to additional matter which plays no
role in the discussion. Clearly the rest of the analysis can
be repeated as above, with the same conclusions—it is
possible to stretch D4-branes between an NS5-brane
and its image with respect to an O6-plane of either sign.

We shall next describe the classical gauge theories
corresponding to the two choices of the sign of the ori-
entifold charge, starting with the case of positive O6
charge (Fig. 17), which leads to an orthogonal projection
on the D4-branes. The case of O62 , which leads to a
symplectic gauge group, will be considered later.

The gauge group on Nc D4-branes connecting an
NS5-brane to its mirror image with respect to an O61

plane is SO(Nc). Nf D6-branes parallel to the
O6-plane located between the NS5-brane and the orien-
tifold give Nf hypermultiplets in the fundamental (Nc)
representation of SO(Nc), arising as usual from 4 –6
strings. In N51 SUSY notation there are 2Nf chiral
multiplets Qi, i51,.. . ,2Nf , which are paired to make Nf
hypermultiplets. The global flavor symmetry of this
gauge theory is Sp(Nf), in agreement with the projec-
tion imposed by the positive charge O6-plane on the
D6-branes.

The Coulomb branch of the N52 SUSY gauge theory
is parametrized by the locations of the D4-branes along
the five-brane in the (x4,x5) plane. Entering the Cou-
lomb branch involves removing the ends of the four-
branes from the orientifold plane [which is located at a
particular point in the (x4,x5) plane]. Since the four-
branes can only leave the orientifold plane in pairs, the
dimension of the Coulomb branch is @Nc/2# , in agree-
ment with the gauge-theory description.

FIG. 17. Branches of moduli space of SO(2) gauge theory
with Nf53 charged hypermultiplets: (a) the Coulomb branch;
(b) the fully Higgsed branch.
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Higgs branches of the gauge theory are parametrized
by all possible breakings of four-branes on six-branes.
As for the unitary case there are many different
branches; as a check that we get the right structure, con-
sider the fully Higgsed branch which exists when the
number of flavors is sufficiently large. From gauge
theory we expect its dimension to be 2NcNf2Nc(Nc
21). The brane analysis gives

dim MH5(
i51

Nc

2~Nf112i !52NfNc2Nc~Nc21 !

5@2NfNc2Nc~Nc11 !#12Nc . (99)

The number in the square brackets is the number of
moduli corresponding to segments that do not touch the
orientifold, and the additional 2Nc is the number of
moduli coming from the segments of the four-branes
connecting the D6-brane closest to the orientifold to its
mirror image. These segments transform to themselves
under the orientifold projection and thus are dynamical
for positive orientifold charge. An example is given in
Fig. 17(b).

The 2Nc moduli coming from four-branes connecting
a D6-brane to its image have a natural interpretation in
the theory on the D6-branes. At low energies this is an
Sp(1) gauge theory with sixteen supercharges, and the
D4-branes stretched between the D6 and its mirror can
be thought of as Sp(1) monopoles, as in Sec. III. From
this point of view the above 2Nc moduli parametrize the
space of Nc Sp(1) monopoles.

Thus the total dimension of moduli space agrees with
the gauge-theory result. It is easy to similarly check the
agreement with gauge theory of the maximally Higgsed
branch for small Nf , as well as the structure of the
mixed Higgs-Coulomb branches.

For negative charge of the O6-plane, the configura-
tion of Fig. 18 describes an Sp(Nc/2) gauge theory with
Nf hypermultiplets in the fundamental (Nc) representa-
tion. Qualitatively, most of the analysis is the same as
above, but the results are clearly somewhat different.
For example, the dimension of the fully Higgsed branch
is in this case 2NfNc2Nc(Nc11), smaller by 2Nc than
the SO case discussed above.

From the point of view of the brane construction, the
Higgs branch is different because it is no longer possible
to connect a D6-brane to its mirror image by a
D4-brane. Such four-branes are projected out when the
O6-plane has negative charge. As in Sec. III, this is also
clear if we interpret these four-branes as magnetic
monopoles in the six-brane theory. In this case the
theory on the D6-brane adjacent to the orientifold and
its image has gauge group SO(2), and there are no non-
singular monopoles.

Therefore the pattern of breaking of the D4-branes
on D6-branes near the orientifold is modified. The re-
sult is depicted in Fig. 18(b). We have to stop the usual
pattern (99) when we get to the last two D6-branes be-
fore the orientifold, and there we must perform the
breaking as indicated in Fig. 18(b). Thus compared with
Eq. (99) we lose 2Nc moduli. Overall, the brane Higgs
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branch is 2NfNc2Nc(Nc11) dimensional, in agree-
ment with the gauge-theory analysis. One can again
check that the full classical phase structure of the
Sp(Nc/2) gauge theory is similarly reproduced.

Further discussion of gauge theories on brane configu-
rations in the presence of orientifold six-planes appears
in the work of Elitzur, Giveon, et al. (1997, 1998b),
Landsteiner and Lopez (1998).

b. Orientifold four-planes

In this case we suspend Nc four-branes between a pair
of NS5-branes stuck on an orientifold four-plane at dif-
ferent locations in x6 (Fig. 19). 2Nf D6-branes placed
between the NS-branes (in x6) provide Nf fundamental
hypermultiplets. All the branes are as usual oriented as
in Eq. (91). Despite much recent work (Ahn and Oh,
1997, Brandhuber, Sonnenschein, et al., 1997b; Elitzur,
Giveon, et al., 1997; Evans, Johnson, and Shaper, 1997;
Forste, Ghoshal, and Panda, 1997; Johnson, 1997; Ahn,
Oh, and Tatar, 1998a, 1998b; Lykken, Poppitz, and
Trivedi, 1998b; Tatar, 1998; Terashima, 1998; de Boer
et al., 1998), such configurations are not well understood
in brane theory, and the discussion below should be
viewed as conjectural. The new element in this case, and
presumably the origin of the difficulties, is the fact that
when an NS5- or D6-brane intersects an O4-plane, say
at x650, it splits it into disconnected components corre-
sponding to x6.0 and x6,0. This leads to rather exotic
behavior, some aspects of which will be described below.

One way to study what happens when an NS5-brane
intersects an O4-plane is to start with a pair of such
five-branes (i.e., a five-brane and its mirror image) near

FIG. 18. Branches of moduli space of Sp(1) gauge theory with
Nf53 charged hypermultiplets: (a) the Coulomb branch; (b)
the fully Higgsed branch.
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the orientifold in (x7,x8,x9), and study the transition in
which the pair approaches each other and the orientifold
and then splits along the orientifold (in x6). This process
is described in Fig. 20.

A closer look reveals that when the charge of the ori-
entifold is negative, it is in fact impossible to separate

FIG. 19. Four-branes stretched between NS5-branes that are
stuck on an O4-plane in the presence of D6-branes. This con-
figuration provides an alternative description of the N52 su-
persymmetric Yang-Mills theory with orthogonal and symplec-
tic gauge groups.

FIG. 20. Sign flipping of orientifold change. (a) An NS5-brane
and its mirror image approach an O41-plane and separate
along it (in x6). The portion of the orientifold between the
five-branes flips sign in the process, and a pair of D4-branes
stretch between the five-branes. (b) When an NS5-brane and
its image approach an O42-plane with two adjacent
D4-branes, the reverse of (a) happens.
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the two NS5-branes along the orientifold. The low-
energy worldvolume theory on a pair of NS5-branes
near an O42 plane [more precisely on the
(113)-dimensional spacetime (x0,x1,x2,x3)] has gauge
group Sp(1), and the displacement of the five-branes in
the x6 direction is described by an antisymmetric tensor
of Sp(1), i.e., a singlet. Since it is impossible to Higgs
Sp(1) using a singlet, it is impossible to separate the two
NS5-branes on the O42 plane.

For positive orientifold charge the separation of Fig.
20(a) is attainable. NS5-branes near an O41 plane are
described by an SO(2) gauge theory. The motions in
the x6 direction are described by a symmetric tensor of
SO(2), which includes a pair of charged scalars. Giving
an expectation value to the symmetric tensor completely
breaks the SO(2) symmetry and corresponds to displac-
ing the two five-branes relative to each other on the
O41 plane.

What happens when an NS5-brane and its image ap-
proach an O41 plane and, after getting stuck on it, sepa-
rate in the x6 direction? Each of the five-branes divides
the orientifold into two disconnected parts. One can
show that the parts of the orientifold on different sides
of the five-brane must carry opposite Ramond-Ramond
charge. This was first shown by Evans, Johnson, and
Shapere (1997) by comparing to gauge theory (see be-
low); a worldsheet explanation of this effect was given in
Elitzur, Giveon, et al. (1998b). Since far from the five-
branes the orientifold charge must (by locality) be posi-
tive, between the five-branes it is negative. Furthermore,
the total Ramond-Ramond charge must be continuous
across each five-brane, since otherwise the net charge
would curve the five-brane according to Eq. (51) and, in
particular, change its shape at infinity, again violating
locality. Therefore one expects to find two D4-branes
stretched between the five-branes.

Similarly, when a pair of NS5-branes approaches a
negatively charged O4-plane with two D4-branes em-
bedded in it, it can split into two five-branes at different
values of x6 and gives rise to the configuration depicted
in Fig. 20(b). Both possibilities are useful for describing
gauge theories using branes.

Once we understand the behavior of NS5-branes near
O4-planes, that of D6-branes is in principle determined
by U duality. In particular, it appears that bringing pairs
of D6-branes close to an O41 plane and separating
them in x6 splits the orientifold into components with
alternating positive and negative charges. This might at
first sight seem surprising, but it is related by U duality
to the behavior of NS5-branes intersecting O4-planes.
Compactifying x3 one can use T duality to map a
D6-brane intersecting an O4-plane to a D5-brane
stretched in (x0,x1,x2,x7,x8,x9) intersecting an
O3-plane stretched in (x0,x1,x2,x6) and again cutting it
into two disconnected pieces. This system can be ana-
lyzed by using S duality, and properties of NS5-branes.

Indeed, if we replace the D5-brane by an NS5-brane,
we arrive at a system similar to that of Fig. 20, with the
O4-plane replaced by an O3-plane. The three-
dimensional analog of the transition described in that
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
figure is the following: a pair of NS5-branes approach an
O31 plane and separate in x6 on it. The segment of the
O3-plane between the five-branes flips sign and there is
a single D3-brane embedded in it to make the total
Ramond-Ramond charge continuous.

S duality applied to this configuration gives rise (using
the results of Sec. III) to a configuration with two
D5-branes intersecting an O3-plane and dividing it into
three segments. The leftmost and rightmost parts of the
orientifold have negative charge and a D3-brane em-
bedded in them, while the segment between the
D5-branes has positive Ramond-Ramond charge. Thus
we conclude that the Ramond-Ramond charge of the
O3-plane jumps as we cross a D5-brane. Since the state-
ment is true for any finite radius of x3, R , it is also true
as R˜` . Therefore we conclude that the RR charge of
the O4-plane jumps as it crosses a D6-brane.

We shall also need to understand the generalization of
the s rule to D4-branes stretched between an NS5-brane
and a D6-brane both of which are stuck on an
O4-plane. A natural guess is the following. The usual s
rule forbids configurations where two or more
D4-branes are forced to be right on top of each other. In
the presence of an O4-plane, it is natural to expect that
if a part of the O4-plane between an NS5-brane and a
D6-brane has negative charge and no D4-branes, one
can connect the two branes by a pair of D4-branes. If
the part of the orientifold between the two branes has
positive charge, or negative charge with two D4-branes
embedded in it (or any combination of these), one can-
not stretch any further four-branes between them.

We are now finally ready to turn to applications.
When the charge of the segment of the orientifold be-
tween the five-branes is negative, the brane configura-
tion of Fig. 19 describes an SO(Nc) gauge theory (we
assume that Nc is even for now). To describe matter we
add D6-branes. Note that when all the D4-branes are
stretched between the NS5-branes (in the Coulomb
branch), the D6-branes sit in pairs that cannot be sepa-
rated further, as discussed above. The number of
D6-branes must be even; we took it to be 2Nf , which
corresponds to Nf hypermultiplets in the (Nc) of
SO(Nc). The (Nc/2)-dimensional Coulomb branch is
described as usual by displacing the D4-branes along
the NS5-branes in pairs away from the orientifold plane.
The Higgs branch is obtained by studying all possible
breakings of the D4-branes on D6-branes. Taking into
account the s rule in the presence of an O4-plane ex-
plained above leads to the splitting pattern of Fig. 21(a).

The resulting dimension of the fully Higgsed branch
(for Nf.Nc) is

dimMH52 (
i51

Nc/2

@2Nf2~4i23 !#52NfNc2Nc~Nc21 !

(100)

in agreement with the gauge-theory analysis. It is in-
structive to verify that one also gets the correct pattern
of breaking and vacuum structure for low numbers of
flavors where the gauge group cannot be completely
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Higgsed. We leave this as an exercise for the reader.
One outcome of this exercise is a description of the case
of odd Nc , which can be obtained from even Nc by
Higgsing one hypermultiplet and breaking SO(Nc)
˜SO(Nc21).

Sp(Nc/2) gauge theory with Nf fundamental hyper-
multiplets is described by the configuration of Fig. 19
with positive Ramond-Ramond charge between the five-
branes and negative outside. The charge reversal
changes the counting (100) in precisely the right way to
reproduce the appropriate gauge-theory results. We il-
lustrate the structure of the fully Higgsed branch in Fig.
21(b).

3. Some generalizations

Once the physics of the basic brane constructions has
been understood one can generalize them in many dif-
ferent directions. One obvious example is to increase the
number of NS5-branes. Consider, for example, a chain
of n11 five-branes labeled from 0 to n , with the (a
21)st and ath five-brane connected by ka D4-branes.
In addition, let da D6-branes be localized at points be-
tween the (a21)st and ath NS5-branes (see Fig. 22 for
an example).

The gauge group is in this case G5Pa51
n U(ka). The

matter hypermultiplets are the following: 4 –4 strings
connecting the ka four-branes in the ath interval to the
ka11 four-branes in the (a11)st interval (a51,.. . ,n
21) give rise to (bifundamental) hypermultiplets trans-

FIG. 21. The fully Higgsed branches of the N52 supersym-
metric Yang-Mills theory with (a) G5SO(2) and Nf52
charged hypermultiplets; (b) G5Sp(1) and Nf52 fundamen-
tal hypermultiplets. The orientifold charge flips sign, as indi-
cated at the bottom, whenever one crosses a D6-brane or NS5-
brane.
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forming in the (ka ,k̄a11) of U(ka)3U(ka11). In addi-
tion we have db hypermultiplets in the fundamental rep-
resentation of U(kb) (b51,.. . ,n). We leave the analysis
of the moduli space of vacua and the space of deforma-
tions to the reader.

If we add to the previous configuration an orientifold
four-plane the gauge group becomes an alternating
SO/Sp one. For example, for even n (an odd number of
NS5-branes) and negative Ramond-Ramond charge of
the segment of the O4-plane between the first and sec-
ond NS5-brane, the gauge group is G5SO(k1)
3Sp(k2/2)3SO(k3)3¯3Sp(kn/2) with bifundamen-
tal matter charged under adjacent factors of the gauge
group.

Brane configurations corresponding to theories with
such product gauge groups have been considered in the
literature (Brandhuber, Sonnenschein et al., 1997a;
Landsteiner, Lopez, and Lowe, 1997; Giveon and Pelc,
1998; Erlich, Naqvi, and Randall, 1998; Tatar, 1998).

Another example is a generalization of the configura-
tion involving an orientifold six-plane that we discussed
previously in the context of orthogonal and symplectic
gauge groups. Consider a configuration in which one
NS5-brane is placed at a distance L6 from the O6-plane
as before, and another NS5-brane is placed so that it
intersects the orientifold plane. Nc D4-branes are
stretched between the two five-branes and Nf
D6-branes parallel to the O6-plane are placed between
the two NS5-branes (Fig. 23).

The gauge theory describing this configuration has G
5U(Nc) and a matter hypermultiplet Z in the symmet-
ric or antisymmetric representation of G (depending on
the sign of the orientifold), as well as the usual Nf fun-
damental hypermultiplets (Landsteiner and Lopez,
1997). The two-index tensor hypermultiplet corresponds
to 4 –4 strings stretched from one side of the orientifold
to the other side, across the stuck NS5-brane.

FIG. 22. A theory with a product gauge group and matter in
the bifundamental of adjacent factors of the gauge group (as
well as fundamental matter of individual factors).
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4. Quantum effects: I

So far in this section we have described the classical
brane configurations and the corresponding classical
gauge-theory dynamics. For finite g [Eq. (93)] there are
important qualitative new effects, which are the subject
of this section.

We shall first discuss these effects in the context of
U(Nc) gauge theory following Witten (1997a). The
gauge theory was shown earlier to be described by a
system of two NS5-branes in type-IIA string theory with
Nc D4-branes stretched between them (see Fig. 9). In
the next section we shall comment on the generalization
to some of the other cases mentioned above.

For finite gs , the type-IIA string theory becomes
eleven dimensional at short distances. The radius of the
eleventh dimension x10 is proportional to gs , R105lsgs
[Eq. (30)]. Furthermore, as we saw in Sec. II.C, the
D4-brane can be thought of as an M theory five-brane
wrapped around x10. Thus D4-branes stretched between
NS5-branes are reinterpreted in M theory on R103S1 as
describing a single five-brane with a curved worldvol-
ume. Since all type-IIA branes are extended in the 1
13 dimensions (x0,x1,x2,x3) and are located at a point
in (x7,x8,x9), the worldvolume of the M-theory five-
brane is R1,33S where S is a two-dimensional surface
embedded in the four-dimensional space Q5R33S1 la-
beled by (x4,x5,x6,x10).

It is convenient to parametrize the space Q using the
natural complex coordinates

s5x61ix10,

v5x41ix5. (101)

In the classical type-IIA string limit, the NS5-branes of
Eq. (91) are described by s5constant, while the
D4-branes correspond to v5constant. If we place the
two NS5-branes at s5s1 ,s2 and the Nc four-branes
stretched between them at v5v1 ,v2 ,. . . ,vNc

, the ‘‘classi-

FIG. 23. A theory with G5U(Nc) (Nc56 in this case), one
hypermultiplet in the (anti-) symmetric representation, and
Nf53 fundamentals.
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cal’’ surface Scl is described by (s2s1)(s2s2)Pa51
Nc (v

2va)50, with Re(s1)<Re(s)<Re(s2). Scl is a singular
surface with different components which meet at the sin-
gular points s5si , v5va (i51,2; a51,.. . ,Nc).

As we shall see shortly, for finite R10 and at generic
points in moduli space the singularities in S are elimi-
nated. To determine the shape of the smooth surface S
we next consider its large-v asymptotics. Classically, we
see at large v the two NS5-branes at fixed s5s1 ,s2 .
However, we know from the discussion of Sec. II.E.3
that the ends of the four-branes on the five-brane look
like charges.24 More precisely, qL four-branes ending on
the five-brane from the left at v5a1 ,. . . ,aqL

, and qR

four-branes ending on it from the right at v
5b1 ,. . . ,bqR

curve it asymptotically according to Eq.
(51), which in this case is

x65lsgs(
i51

qL

loguv2aiu2lsgs(
i51

qR

loguv2biu. (102)

The fact that the coefficient of the log is proportional to
gs can be understood at weak coupling as a consequence
of properties of the NS5-brane. Equations (16) and (20)
imply that the supersymmetric Yang-Mills coupling of
the theory on the five-brane (reduced to 211 dimen-
sions) has no gs dependence, while the kinetic term of
X6 is proportional to 1/gs

2 . Thus the BPS-saturated so-
lution describing a four-brane ending on the five-brane
has gauge field A.Q loguvu with the charge quantum Q
independent of gs , and X6.Qgs loguvu. The factor of ls
in Eq. (102) is required by dimensional analysis.

At strong coupling Eq. (102) can be alternatively de-
rived by identifying lsgs with R10 , the only scale in the
problem. The weak-coupling and strong-coupling argu-
ments must agree because the BPS property of the state
in question allows one to freely interpolate holomorphic
properties between the weak- and strong-coupling re-
gimes (and, as we shall see, Eq. (102) is closely related
to a holomorphic quantity).

Note that the fact that the end of a four-brane on a
five-brane looks like a codimension-two charged object
implies that unlike the case p.2 in Eq. (51) one cannot,
in general, define quantum mechanically ‘‘the location
of the NS5-brane’’ by measuring x6 at uvu˜` , since the
effects of the four-branes in Eq. (102) are not small for
large v . x6 approaches a well-defined value, which can
then be interpreted as the location of the five-brane only
when the total charge on the five-brane vanishes, qL
5qR .

The scalar field x6 is related by N52 supersymmetry
to x10; together the two form a complex scalar field s

24The theory on the type-IIA five-brane is not a gauge theory,
but rather a mysterious non-Abelian theory of self-dual Bmn

fields. However, the ends of four-branes on the five-branes are
codimension-two objects and therefore the relevant theory is
the five-brane theory compactified down to 211 dimensions,
which is a gauge theory, to which the discussion of Sec. II.E.3
can be applied.
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[Eq. (101)] that belongs to the vector multiplet of N
52 supersymmetry in the (311)-dimensional space-
time. For consistency with supersymmetry, Eq. (102)
must be generalized to a holomorphic equation for s in
Eq. (101),

s5R10(
i51

qL

log~v2ai!2R10(
i51

qR

log~v2bi!. (103)

The real part of this equation is Eq. (102); the imaginary
part implies that x10 jumps by 62pR10 when we circle ai
or bi in the complex v plane. Thus the ends of four-
branes on the five-branes look like vortices. Since x10 is
compact, it will be convenient for later purposes to de-
fine

t5expS 2
s

R10
D (104)

in terms of which Eq. (103) takes the form

t5
P i51

qR ~v2bi!

P j51
qL ~v2aj!

. (105)

We are now ready to determine the full shape of the
surface S and thus the embedding of the five-brane cor-
responding to the classical brane configuration realizing
pure N52 SYM theory (Fig. 9) in the eleven-
dimensional spacetime. Supersymmetry requires S to be
given by a holomorphic curve in the two-complex-
dimensional space labeled by t ,v . It can be described by
a holomorphic equation F(t ,v)50 for some function F .
When we view this as a function of t for large v we
expect to see two branches corresponding to the two
‘‘NS5-branes’’ at Eq. (105): t1.vNc and t2.v2Nc.
Therefore the curve should be described by setting to
zero a second-order polynomial in t ,

F~ t ,v !5A~v !t21B~v !t1C~v !50, (106)

where A , B , and C are polynomials of degree Nc in v ,
so that for fixed t there will be Nc solutions for v corre-
sponding to the ‘‘D4-branes’’ stretched between the
five-branes.

As we approach a zero of C(v), a solution of the
quadratic Eq. (106) goes to t50, i.e., in Eq. (104) x6

5` . Thus zeros of C(v) correspond to locations of
semi-infinite four-branes stretching to the right of the
rightmost NS5-brane. Similarly, A(v) describes semi-
infinite four-branes stretching to x652` from the left
NS5-brane. In the N52 gauge-theory application semi-
infinite four-branes give rise to fundamental matter and
as a first step we are not interested in them. Thus we
set25

A~v !5C~v !51. (107)

B(v) is taken to be the most general polynomial of
degree Nc which can, by rescaling and shifting v , be
brought to the form

25We set the QCD scale L51 here. Restoring dimensions,
since v and t1/Nc scale like energy, if we set A(v)51 then
C(v)5L2Nc.
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B~v !5vNc1u2vNc221u3vNc23
¯1uNc

, (108)

where u2 ,. . . ,uNc
are complex constants parametrizing

the polynomial B . The curve (106) with the choice of
Eqs. (107) and (108) of A , B , and C has the right struc-
ture: for fixed t it has Nc roots v i corresponding to the
Nc ‘‘four-branes.’’ Note that while classically there
should only be such solutions for t between the NS5-
branes, because of the bending Eq. (105) there are in
fact Nc solutions for v for any tÞ0. Similarly, for all v
there are two solutions for t , which for large v behave
like

t6.v6Nc, (109)

in agreement with the general structure expected from
Eq. (105).

To recapitulate, as in the classical case where there is
a one-to-one correspondence between configurations of
D4-branes stretched between NS5-branes and vacua of
classical N52 SYM theory, quantum mechanically there
is a one-to-one correspondence between vacua of quan-
tum N52 SYM theory and supersymmetric configura-
tions of an M5-brane with worldvolume R3,13S , with S
described by Eqs. (106)–(108). Roots of the polynomial
B in Eq. (108) correspond to ‘‘the locations of the
D4-branes’’ and label different points in the quantum
Coulomb branch of the N52 SYM theory.

It is interesting that there are only Nc21 independent
roots, labeled by the moduli $ui%. This appears to be in
contradiction with the fact that there are Nc massless
vector multiplets living on the four-branes for generic
values of the moduli $ui% corresponding to the unbroken
U(1)Nc,U(Nc). In fact, the number of vector multip-
lets is Nc21, in agreement with Eq. (108). The
U(1),U(Nc) has vanishing coupling and is ‘‘frozen.’’

This can be understood semiclassically by evaluating
the kinetic term of the U(1). The Nc ‘‘four-branes’’
ending on an NS5-brane from the left (say) bend it ac-
cording to Eq. (103). Here ai are the moduli, and to
probe their dynamics one should allow them to slowly
vary as a function of (x0,x1,x2,x3). The kinetic energy
of the five-brane behaves for such slowly varying con-
figurations as

S.E d4xE d2vu]msu2

.R10
2 E d4xE d2vU(

i
]mai

1

v2ai
U2

. (110)

At large v , where Eq. (110) is expected to be accurate,
we find

S.R10
2 E d2v

uvu2 E d4xU(
i

]maiU2

. (111)

The logarithmically divergent v integral (111) leads to a
vanishing coupling for the U(1),U(Nc):

1

g1
2 .R10

2 E d2v
uvu2 ˜` . (112)
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Interestingly, Eqs. (106)–(108) describe the Seiberg-
Witten curve for SU(Nc) gauge theory with no matter!
In gauge theory, the low-energy coupling matrix t ij (76)
is the period matrix of the corresponding Riemann sur-
face. This is also the case in the five-brane construction.
The worldvolume theory of a flat five-brane includes a
self-dual Bmn field (H5dB5* dB). Upon compactifica-
tion on S, B gives rise to g Abelian vector multiplets in
311 dimensions, with g the genus of the Riemann sur-
face S. In our case, the surface S can be thought of as
describing two sheets (the ‘‘five-branes’’) connected by
Nc tubes (the ‘‘four-branes’’), and hence it has genus g
5Nc21. The coupling matrix of the resulting U(1)Nc21

gauge theory is the period matrix of S (Verlinde, 1995).
Howe, Lambert, and West (1998) have offered an-

other derivation of the relation between the period ma-
trix of the Riemann surface around which the five-brane
is wrapped and the coupling matrix of the Abelian gauge
theory on the brane that emphasizes the role of the sca-
lar fields living on the brane.

To summarize, the brane analysis agrees with Seiberg-
Witten theory. It offers a rationale as to why the low-
energy gauge-coupling matrix and metric on moduli
space of N52 SYM theory are described by a period
matrix of a Riemann surface. The natural context for
studying SW theory appears to be as a compactification
of the (2,0) field theory of an M5-brane (the low-energy
limit of the theory of M5- or type-IIA NS5-branes) on
the Riemann surface S.

At this point we should like to comment briefly on the
foregoing discussion.

a. Global symmetry, conformal invariance, and the shape
of the five-brane

As we discussed in Sec. IV.A, classical N52 SYM
theory has at the origin of moduli space a global sym-
metry SU(2)R3U(1)R . The SU(2)R symmetry is part
of N52 supersymmetry; the U(1)R reflects the classical
conformal invariance of the theory and is broken at one
loop by the chiral anomaly to Z2Nc

.
In the brane description, the U(1)R symmetry is real-

ized as the SO(2) rotation group of the v plane, which
acts as v˜v exp(ia). The classical configuration of Nc
D4-branes—all at v50—stretched between the two
NS5-branes (say, at s50) is invariant under this SO(2)
symmetry. The brane analog of one-loop effects is the
leading quantum correction, which is the asymptotic
bending [Eq. (103)]. It breaks the U(1)R symmetry by
curving the left and right five-branes26 to

sL52NcR10 log v ,

sR51NcR10 log v . (113)

This configuration is no longer invariant under

v˜v exp~ ia!. (114)

26For large v it makes sense to talk about the left and right
five-branes although they are connected at small v .
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Under Eq. (114)

sL˜sL2NcR10ia ,

sR˜sR1NcR10ia . (115)

For generic a Eq. (115) is clearly not a symmetry; how-
ever, there are residual discrete symmetry transforma-
tions corresponding to a52pn/2Nc due to the fact that
Im s5x10 lives on a circle of radius R10 . Thus a Z2Nc

subgroup of U(1)R remains unbroken, in agreement
with the gauge-theory analysis.

b. Adding flavors

It is easy to add fundamental hypermultiplets to the
discussion. As we have noted above, to describe the
Coulomb branch of a model with Nf fundamentals of
SU(Nc) we can add Nf semi-infinite four-branes, say to
the right of the NS5-branes. These are described by
turning on C(v) in Eq. (106):

C~v !5)
i51

Nf

~v2mi!. (116)

Here mi are the locations of the semi-infinite four-
branes in the v plane that, as we have seen, correspond
to the masses of the fundamental ‘‘quarks.’’ Thus N52
supersymmetric QCD with G5SU(Nc) and Nf funda-
mentals is described by the Riemann surface

t21B~v !t1C~v !50 (117)

with B(v) given by Eq. (108) and C(v) by Eq. (116).
This agrees with the gauge-theory results of Argyres,
Plesser, and Shapere (1995) and Hanany and Oz (1995).

c. SU(Nc) versus U(Nc)

We have argued that the brane configuration of Fig. 9,
which classically describes a U(Nc) gauge theory, in fact
corresponds quantum mechanically to a SU(Nc) one;
the coupling of the extra U(1) factor vanishes. This ob-
servation appears to be in contradiction with the fact
that the moduli and deformations of the brane configu-
ration discussed above seem to be those of a U(Nc)
theory. This issue remains unresolved as of this writing;
below we explain the specific puzzles.

We saw previously that the moduli space of brane
configurations seems to match the classical Higgs branch
of U(Nc) gauge theory with Nf hypermultiplets. If the
gauge group is SU(Nc), the complex dimension of the
Higgs branch is 2NfNc22(Nc

221) and the brane count
is missing two complex moduli. By itself, this need not
be a serious difficulty; we saw previously examples
where some or all of the field-theory moduli were not
seen in the brane analysis. Unfortunately, the mismatch
in the structure of the Higgs branch is related to a more
serious difficulty having to do with the field-theory inter-
pretation of certain deformations of the brane configu-
ration.

In the classical discussion we interpreted the relative
location of the two NS5-branes in (x7,x8,x9) as a Fayet-
Iliopoulos D term for the U(1),U(Nc) [Eq. (98)]. If
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the gauge group is SU(Nc), we have to modify that in-
terpretation, as the theory no longer has a Fayet-
Iliopoulos coupling. The question is whether in the
quantum theory the parameters corresponding to a rela-
tive displacement of the two asymptotic parts of the
M5-brane in (x7,x8,x9) are moduli in the
(311)-dimensional field theory on the brane, or
whether—like the U(1) vector multiplet—they are de-
coupled. There seem to be two logical possibilities, each
of which has its own difficulties (Giveon and Pelc, 1998).

An argument similar to that outlined in Eqs. (110)–
(112) would suggest that these parameters are frozen
and correspond to couplings in the (311)-dimensional
gauge theory. The kinetic energy of the scalar fields XI,
I57,8,9, seems to diverge [assuming an asymptotically
flat metric on the five-brane, as we have for X6(xm), Eq.
(110)] as

Lkin.E d2v~]mXI!2. (118)

Thus the kinetic energy of the fields XI is infinite and we
must find a coupling in the Lagrangian of SU(Nc) gauge
theory that has the same effect on the vacuum structure
as a Fayet-Iliopoulos D term [Eq. (98)]. It is not known
(to us) how to write such a coupling. In order for such a
coupling to exist, the U(1) factor would have to be un-
frozen, and the estimate of the kinetic energy (110)–
(112) would have to be invalid.

Alternatively, one might imagine that the parameters
corresponding to (x7,x8,x9) are in fact moduli in the
gauge theory. This would apparently be consistent with
gauge theory; these moduli would provide three of the
four missing moduli parametrizing the baryonic branch
of the theory. However, for this interpretation to be
valid we have to come up with a mechanism for render-
ing the naively divergent kinetic energy [Eq. (118)] finite
[without spoiling Eq. (110)]. This sounds even more im-
plausible than the first scenario, as one has to cancel a
more divergent kinetic energy. It is not clear to us what
is the resolution of this problem.

d. Nf>2Nc

For Nf52Nc , at the origin of the Coulomb branch
and for vanishing quark masses, the curve (117) is

t21avNct1bv2Nc50 (119)

or equivalently

t65l6vNc (120)

with l6 the two solutions of

l21al1b50. (121)

The U(1)R symmetry

v˜eiav ,

t˜eiNcat (122)

is unbroken. Thus the theory at the origin is an interact-
ing non-trivial N52 superconformal field theory. This is
consistent with the fact that the curve (120) is singular at
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t5v50—a hallmark of a nontrivial superconformal field
theory. The ratio w5l1l2 /(l12l2)2 is invariant un-
der rescaling of t , v and can be thought of as parametriz-
ing the coupling constant of the theory. For weak cou-
pling, w.0, one has w5exp(2pit) (t is the complex
gauge coupling), but more generally, due to duality, t is
a many-valued function of w .

For Nf.2Nc the description (117) seems to break
down. Both solutions for t behave at large v as t
;vNf/2, while Eq. (103) (in the presence of Nf semi-
infinite ‘‘four-branes’’ stretching to x6

˜`) predicts t1
;vNc, t2;vNf2Nc. Not coincidentally, in this case the
gauge theory is not asymptotically free and must be em-
bedded in a bigger theory to make it well defined in the
ultraviolet. And, in any case, it is free in the infrared. It
is in fact possible to modify Eq. (117) to accommodate
these cases (see Witten, 1997a, for details).

e. BPS-saturated states

The five-brane description of N52 SYM theory can
also be used to study massive BPS-saturated states. Ex-
amples of such states in supersymmetric Yang-Mills
theory include charged gauge-boson vector multiplets
and magnetic monopole hypermultiplets. In the classical
type-IIA limit, massive gauge bosons are described by
fundamental strings stretched between different four-
branes. For finite R10 these fundamental strings are re-
interpreted as membranes wrapped around x10. Thus
charged W bosons are described in M theory by
minimal-area membranes ending on the five-brane.
Clearly, the topology of the resulting membrane is cylin-
drical.

Monopoles are described in the type-IIA limit by
D2-branes stretched between the two NS5-branes and
two adjacent D4-branes, as in Fig. 8. In M theory they
correspond to membranes with the topology of a disk
ending on the five-brane.

There are other BPS-saturated states such as quarks
and various dyons, all of which are described in M
theory by membranes ending on the five-brane. Mem-
branes with the topology of a cylinder always seem to
give rise to vector multiplets, while those with the topol-
ogy of a disk give hypermultiplets. We shall not describe
the corresponding membranes in detail here, referring
the reader instead to Mikhailov (1998) and Henningson
and Yi (1998).

f. Compact Coulomb branches and finite N52 models

The fact that the gauge coupling of the U(1),U(Nc)
vanishes is related to the infinite area of the v-plane [Eq.
(112)]. One might wonder what would happen if we
compactified (x4,x5) on a two-torus.

Already classically we see that in this situation the
Coulomb branch of the theory, labeled by locations of
D4-branes stretched between five-branes, becomes com-
pact. Quantum mechanically we see that since Eq. (103)
is a solution of a two-dimensional Laplace equation
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]v] v̄s5R10(
i51

qL

d2~v2ai!2R10(
i51

qR

d2~v2bi! (123)

on a compact surface, the total charge on each five-
brane must vanish: qL5qR . This means that there must
be Nc semi-infinite four-branes attached to each five-
brane and the total number of flavors must thus be Nf
52Nc . The solution of Eq. (123) that generalizes Eq.
(103) to the case of a two-torus is (q5qL5qR)

s5R10(
i51

q

@ log x~v2aiur!2log x~v2biur!# , (124)

where r is the modular parameter (complex structure)
of the v-plane torus (v;v11, v;v1r), and

x~zur!5
u1~zur!

u18~0ur!
, (125)

where log x is related to the propagator of a two-
dimensional scalar field on a torus with modulus r (see
Green, Schwarz, and Witten, 1987, for notation and ref-
erences). Note that x itself is not well defined on the
torus; its periodicity properties are

x~z11ur!52x~zur!,

x~z1rur!52e2ipr22ipzx~zur!. (126)

However, we only require that the curve built using x
should exhibit periodicity. To construct this curve, we
start with the infinite-volume curve (106) describing this
situation,27

t2)
i51

Nc

~v2mi
(1)!1t)

i51

Nc

~v2v i!1)
i51

Nc

~v2mi
(2)!50, (127)

and replace each (v2ai) by x(v2aiur). This gives

t2)
i51

Nc

x~v2mi
(1)ur!1t)

i51

Nc

x~v2v iur!1)
i51

Nc

x~v2mi
(2)ur!

50. (128)

Using Eq. (126) and the fact that the moduli v i and
masses mi satisfy the relations

S i51
Nc ~v i2mi

(1)!5const,

S i51
Nc ~v i2mi

(2)!5const (129)

we find that the curve (128) indeed has the right period-
icity properties.

At first sight the generalization of N52 SYM theory
with the compact Coulomb branch seems mysterious,
but in fact it can be thought of as the moduli space of
vacua of a six-dimensional ‘‘gauge theory’’ compactified
on a two-torus. Indeed, if v parametrizes a two-torus T2,
we can T-dualize our classical configuration of

27Recall that v i are moduli parametrizing the Coulomb
branch of the theory, while mi

(1) , mi
(2) are masses of flavors

corresponding to semi-infinite four-branes extending to the left
and right, respectively.
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D4-branes ending on NS5-branes and, using the results
of Sec. II, reach a configuration of D6-branes wrapped
around the dual torus T̃2 and ending on the NS5-branes
in the x6 direction.

From the six-dimensional point of view it is clear that
we must require Nf52Nc , since the only configuration
consistent with Ramond-Ramond charge conservation
involves in this case Nc infinite D6-branes extending to
infinity in x6 and intersecting the two NS5-branes. Wil-
son lines around the T̃2 give rise to the parameters m ,v
[Eq. (128)]. From the gauge-theory point of view, Nf
52Nc is necessary due to the requirement of cancella-
tion of six-dimensional chiral anomalies.

The curve (128) exhibits an SL(2,Z) duality symme-
try corresponding to modular transformations r˜(ar
1b)/(cr1d) under which

xS z

cr1d u ar1b

cr1d D5
h exp@ ipcz2/cr1d#

cr1d
x~zur!, (130)

where h is an eight-root of unity. This SL(2,Z) symme-
try provides a geometric realization of the duality sym-
metry of finite N52 SYM models (which are anomaly
free in 6d and thus can be lifted to 6d). Note that the
area of the v-plane torus does not appear in Eq. (128).
This is essentially because v has been rescaled to absorb
a factor of the area. The four-dimensional limit of Eq.
(128) is obtained by taking v!1,r where x(vur) reduces
to v .

g. SQCD versus MQCD

As we discussed before, the limit that one needs to
take to study decoupled gauge dynamics on the five-
brane is R10 ,L6˜0 holding R10 /L65gSYM

2 fixed. In this
limit the five-brane becomes singular although its com-
plex structure (117) is regular. To fully understand
gauge dynamics in this limit one needs to study the five-
brane theory in the type-IIA limit.

Witten has suggested studying the theory in the oppo-
site limit, R10 ,L6˜` , R10 /L6 fixed, observing that in
that limit Eq. (117) describes a large smooth five-brane
and thus can be accurately studied by using low-energy
M theory, i.e., eleven-dimensional supergravity (the
five-brane dynamics in this limit is sometimes referred to
in the literature as ‘‘MQCD’’).

For holomorphic properties of the vacuum, such as
the low-energy gauge couplings and metric on moduli
space Eqs. (75)–(77), the two limits must agree due to
supersymmetry. However, nonholomorphic low-energy
features are quite different in the two limits. In particu-
lar, in the MQCD limit the five-brane dynamics is no
longer effectively four dimensional, and there is large
mixing between gauge degrees of freedom and other ex-
citations. Thus it is misleading to refer to the M theory
limit as QCD (M or otherwise).

The situation is similar to the well-known worldsheet
duality in open-plus-closed string theory. The physics
can be viewed either in the open string channel (where
light states are typically gauge fields) or as due to closed
string exchange (gravitons, dilatons, etc.). Worldsheet
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duality implies that the two representations must agree,
but one may be simpler than the other. In some situa-
tions the open string representation is dominated by the
massless sector, but then in the closed string channel one
needs to sum over exchanges of arbitrarily heavy string
states. In such cases, the relevant physics is that of gauge
theory.

In other cases, the closed string channel is dominated
by exchange of massless modes such as gravitons, but
then the open string calculation receives contributions
from arbitrarily heavy states and there is no simple
gauge-theory interpretation of the physics.

The only known cases (with the possible exception of
discrete light-cone quantization matrix theory—
reviewed by Banks, 1998, and Bigatti and Susskind,
1998—whose status is unclear as of this writing) where
there is a simple interpretation in both the open and
closed string channels involve quantities protected by
supersymmetry.

In our case, the analog of the closed string channel is
the eleven-dimensional ‘‘MQCD’’ limit R10 ,L6˜`
where physics is dominated by gravity, while the analog
of the open string channel is the type-IIA limit R10 ,L6
˜0. Low-energy features that are not protected by su-
persymmetry need not agree in the two limits (except
perhaps in certain large-N limits). Supersymmetric
QCD (SQCD) corresponds to the latter.

h. Nontrivial infrared fixed points

At generic points in the Coulomb branch, the infrared
dynamics of N52 SYM theory is described by r mass-
less photons whose coupling matrix is the period matrix
of the Riemann surface S. At points where additional
matter goes to zero mass, the infrared dynamics
changes, and in many cases describes a nontrivial super-
conrformal field theory (Argyres and Douglas, 1995; Ar-
gyres et al., 1996). These situations correspond to degen-
erate Riemann surfaces S.

Whenever that happens, the supergravity description
breaks down, even if R10 and L6 are large. Thus eleven-
dimensional supergravity provides a useful description
of the five-brane wrapped on S only sufficiently far from
any points in moduli space where the infrared behavior
changes; in particular, it cannot be used to study (be-
yond the BPS sector) the nontrivial superconformal field
theories discussed by Argyres and Douglas (1995) and
Argyres et al. (1996).

5. Quantum effects: II

The analysis of the previous section can be easily gen-
eralized to the chain of five-branes connected by four-
branes mentioned above (Witten, 1997a). Specifically,
consider the type-IIA configuration of n11 NS5-branes
labeled by a50,1,.. . ,n , with ka D4-branes connecting
the (a21)st and ath five-branes (Fig. 22). For simplic-
ity, we assume that there are no semi-infinite four-
branes at the edges.
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Classically we saw that the gauge group was
Pa51

n U(ka), but the n U(1) factors are frozen as be-
fore. Thus the gauge group is

G5 )
a51

n

SU~ka! (131)

with matter in the bifundamental representation
(ka ,k̄a11) of adjacent factors of the gauge group. We
shall further assume that all factors in Eq. (131) are as-
ymptotically free:

2ka2~ka111ka21!>0, ;a . (132)

Following the logic of our previous discussion we expect
the Riemann surface S to be described in this case by
the holomorphic equation

F~ t ,v !5tn111Pk1
~v !tn1Pk2

~v !tn211¯

1Pkn
~v !t1150. (133)

The fact that Eq. (133) is a polynomial of degree n11 in
t ensures that there are n11 solutions for t correspond-
ing to the n11 NS5-branes. The v independence of the
coefficients of tn11 and 1 implies the absence of semi-
infinite four-branes. The degrees of the polynomials in v
Pka

5cavka1¯ are determined by the fact that when
one rewrites

F~ t ,v !5 )
a50

n

„t2ta~v !… (134)

the locations of the n11 five-branes ta(v) must behave
for large v as Eqs. (103)–(105):

ta~v !;vka112ka (135)

(where k05kn1150); to check that this leads to Eq.
(133) one has to use Eq. (132). The roots of Pka

(v)
correspond to the positions of the ka four-branes con-
necting the (a21)st and ath five-branes.

As we have seen in the classical brane construction,
semi-infinite four-branes provide a convenient tool for
describing the Coulomb branch of SQCD with funda-
mental matter, but to study the full moduli space of
vacua (in particular, to see the Higgs branches) it is nec-
essary to introduce D6-branes. Our next task is to un-
derstand models with six-branes at finite R10 /L6 .

Recall that the D6-brane corresponds in M theory to
a Kaluza-Klein monopole magnetically charged under
Gm10 . The (hyper-Kähler) metric around a collection of
Kaluza-Klein monopoles is the multi-Taub-NUT metric
(22)–(24). We do not actually need the metric around a
Kaluza-Klein monopole, but only its complex structure.
The hyper-Kähler manifold (22)–(24) in fact admits
three independent complex structures, any of which is
suitable for our purposes.

The typical situation we shall be interested in is one
where there are Nf Kaluza-Klein monopoles at v
5m1 ,. . . ,mNf

. One of the complex structures of the cor-
responding multi-Taub-NUT space can be described by
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embedding it in a three-complex-dimensional space with
coordinates y ,z ,v . It is given by

yz5)
i51

Nf

~v2mi!. (136)

When all the Kaluza-Klein monopoles coincide, Eq.
(136) approaches an ANf21 singularity yz5vNf. The
symmetry y˜ly , z˜l21z of Eq. (136) corresponds to
t˜lt . Thus one can think of y as corresponding to t
(with z fixed) or of z as corresponding to t21 (with y
fixed).

Note that the complex structure (136) is insensitive to
the x6 location of the Nf Kaluza-Klein monopoles. That
information resides in the Kähler class of the metric
(22)–(24), which does depend on x6. Thus even when
different mi in Eq. (136) coincide, the corresponding
ANf21 singularity may still be resolved by separating the
centers of the monopoles in x6.

Consider as an example the N52 SQCD with gauge
group G5SU(Nc) and Nf flavors, realized classically as
Nf D6-branes situated between the two NS5-branes in
the x6 direction (Fig. 14). At finite L6 /R10 we need
again to find the shape of an M5-brane, except now it
lives not in Q5R33S1, but rather in Q̃5resolved
ANf21 multi-Taub-NUT space [Eq. (136)].

We can again describe the five-brane by a curve of the
form

A~v !y21B~v !y1C~v !50 (137)

with some polynomials A ,B ,C . As before, A(v)51,
since otherwise y (and therefore t) diverges at roots of
A(v). Rewriting Eq. (137) in terms of z5P(v2mi)/y
and requiring that there be no singularities of z for finite
v (these too would correspond to semi-infinite four-
branes) one finds that C5aP(v2mi) (see Witten,
1997a for a more detailed analysis). Finally, B(v) in Eq.
(137) is a polynomial of degree Nc as before in Eq.
(108).

Thus we recover the solution found before using semi-
infinite four-branes. The fact that the result (137) is in-
dependent of the x6 position of the D6-branes is consis-
tent with our discussion in Sec. IV.C.1, where this was
deduced as a consequence of the Hanany-Witten transi-
tion.

The description of N52 SQCD with six-branes
(Kaluza-Klein monopoles) can be used to describe the
Higgs branch of the theory as well. We refer the reader
to Witten (1997a) for a detailed discussion of this.

Finally, N52 gauge theories on Nc four-branes in the
presence of six-branes and orientifold planes can be
lifted to M theory and used to derive the curves and
describe the Higgs branches of SO(Nc) and Sp(Nc/2)
theories as well as many product groups (Brandhuber,
Sonnenschein, et al. (1997b); Fayyazuddin and Spalinski,
1997a; Landsteiner, Lopez, and Lowe, 1997; Nakatsu
et al., 1997; Landsteiner and Lopez, 1998 Nakatsu, Ohta,
and Yokono, 1998a; Erlich, Naqvi, and Randall, 1998).
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V. FOUR-DIMENSIONAL THEORIES WITH N51
SUPERSYMMETRY

In this section we turn our attention to four-
dimensional N51 supersymmetric gauge theories which
typically have the richest dynamics among the different
supersymmetric Yang-Mills theories and are the closest
to phenomenology.

As we saw in the previous sections, N54 supersym-
metric gauge theory has the simplest dynamics and
phase structure. The theory is specified by the choice of
a gauge group; all matter is in the adjoint representation.
The vacuum structure consists of a Coulomb branch
with singularities corresponding to points of enhanced
unbroken gauge symmetry. The most singular point is
the origin of moduli space, which corresponds to a non-
trivial conformal field theory parametrized by the ex-
actly marginal gauge coupling g . The form of the effec-
tive action up to two derivatives is completely
determined by the symmetry structure; in particular, the
metric on the Coulomb branch is flat. The leading terms
that receive quantum corrections are certain nonrenor-
malizable (5irrelevant) four-derivative terms, and these
corrections can be controlled since they receive contri-
butions only from BPS-saturated states. The most inter-
esting feature of the dynamics of N54 SYM theory is
the discrete identification of theories on the line of fixed
points labeled by g provided by Montonen-Olive duality
(which acts as g↔1/g). Another interesting phenom-
enon is the appearance of nontrivial infrared fixed
points of the renormalization group at which electrically
and magnetically charged particles become massless at
the same time.

In the N52 SYM case there are some new features.
Theories are now labeled by the choice of a gauge group
and a set of matter representations. Nontrivial quantum
corrections to the two derivative terms in the vector
multiplet action lead to a modification of the metric on
the Coulomb branch, described by Seiberg and Witten.
In addition, Higgs branches appear in which the rank of
the gauge group is reduced; as we saw before, N52
theories typically have a rather rich phase structure.

N51 dynamics generally leads to yet another host of
new phenomena (see Amati et al., 1988; Seiberg, 1995b;
Giveon, 1996; Intriligator and Seiberg, 1996a; Peskin,
1997; Shifman, 1997, and references therein). It is now
possible to write a classical (tree-level) superpotential.
Furthermore, the superpotential can in general receive
quantum corrections that modify the potential of the
light fields. At the same time these corrections are often
under control since they are holomorphic, taking the
form of a superpotential on the classical moduli space.
The effect of the quantum superpotential may be to lift
a part of the classical moduli space, change its topology,
or in some cases break supersymmetry completely, a
possibility with obvious phenomenological appeal. N
51 SYM theories may also have a chiral matter content
and exhibit confinement, possibilities that do not exist in
N>2 theories and that are clearly desirable in a realistic
theory. Another interesting phenomenon is the infrared
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equivalence between different N51 SUSY gauge theo-
ries discovered by Seiberg. It provides a generalization
of Montonen-Olive duality to theories with a nontrivial
beta function. As we discuss below, despite the running
of the coupling there is a sense in which Seiberg’s dual-
ity can be sometimes thought of as a strong-weak cou-
pling duality, and in many cases it allows one to analyze
the strongly coupled dynamics of N51 SYM theories.

In this section we shall describe N51 SYM theories
using branes (Elitzur, Giveon, and Kutasov, 1997). We
shall see that just as in theories with more supersymme-
try, embedding N51 SYM theory in brane theory pro-
vides a useful qualitative and quantitative guide for
studying the classical and quantum vacuum structure of
these theories. In particular, brane dynamics can be used
to understand Seiberg’s infrared duality and a host of
other interesting strong-coupling effects. We start with a
brief summary of some field-theory results (for more de-
tails see the reviews cited above and references therein)
and then move on to the brane description.

A. Field-theory results

Pure N51 SYM theory with a simple gauge group G
describes a vector multiplet V (69) transforming in the
adjoint representation of G . The classical theory has a
single vacuum and a U(1)R symmetry, discussed in Sec.
IV.A. As in the N52 case, the existence of the classical
R symmetry is related to the classical superconformal
invariance of pure N51 SYM theory.

Quantum mechanically, the theory develops a b func-
tion that breaks conformal invariance. Accordingly, the
U(1)R symmetry is broken by the gaugino condensate:

^~Trll!C2&;~NcL
3!C2 (138)

to a discrete subgroup Z2C2
. L is the dynamically gen-

erated QCD scale and C2 is the second Casimir in the
adjoint representation; e.g., C25Nc for G5SU(Nc),
C25Nc22 for G5SO(Nc), C25Nc12 for G
5Sp(Nc/2). The theory has C2 vacua corresponding to
different values of the condensate consistent with Eq.
(138):

^Trll&5const3NcL
3e2pik/C2; k50,1,2,.. . ,C221,

(139)

which spontaneously breaks the discrete chiral symme-
try Z2C2

˜Z2 . Each of the C2 vacua contributes 1 to the
Witten index, Tr(2)F5C2 . It is useful to note for fu-
ture use that Eqs. (138) and (139) are equivalent to a
constant nonperturbative superpotential

Weff5const3Nc
2L3. (140)

Matter is described by chiral multiplets Qf in repre-
sentations Rf of G . The classical potential for the scalars
in the multiplets (which will be denoted by Qf as well)
includes a ‘‘D term’’ contribution [the analog of Eq.
(73)]:

VD~Q !5(
a

S (
f

Qf
†Tf

aQfD 2

, (141)
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where a51,.. . ,dim G runs over the generators of the
gauge group; f labels different ‘‘flavors’’ or representa-
tions; and Tf

a are the generators of G in the representa-
tion Rf . The only other contribution to the scalar poten-
tial comes from the superpotential,

E d2uW~Q !1E d2ūW* ~Q†!, (142)

which leads after performing the u integrals to a poten-
tial

VW~Q !;(
f

U ]W

]Qf
U2

. (143)

Classically there are often flat directions in field space
along which the potential vanishes. They correspond
through Eqs. (141) and (143) to solutions of VD5VW
50, i.e.,

(
f

Qf
†Tf

aQf5
]W

]Qf
50. (144)

When the superpotential vanishes, one can show that
the space of solutions of VD50 [Eq. (144)] is param-
etrized by holomorphic gauge-invariant combinations of
the matter fields Qf . When WÞ0 one has to mod out28

that space by the second constraint in Eq. (144).
Quantum corrections in general modify the superpo-

tential (142) and consequently lift some or all of the
classical moduli space. Because W is a holomorphic
function of Q , in many cases the form of the quantum
superpotential can be determined exactly. The quantum
corrections to the Kähler potential are in general more
complicated and are not under control. Fortunately, to
study the vacuum structure it is not important what the
Kähler potential is precisely, as long as it is nonsingular
(and supersymmetry is not broken). Thus below we shall
usually ignore the Kähler potential, assuming it is nons-
ingular in the variables we shall be using. Usually, there
is some circumstantial evidence that this is the case
(which we shall not review).

In the following we shall discuss a few examples, start-
ing with N51 SQCD—an SU(Nc) SYM theory with Nf

flavors Qi,Q̃i , i51, . . . ,Nf , in the fundamental and an-
tifundamental representations, respectively. In the ab-
sence of a superpotential, the classical global symmetry
of the theory is

SU~Nf!L3SU~Nf!R3U~1 !B3U~1 !a3U~1 !x . (145)

The two SU(Nf) factors rotate the quarks Qi,Q̃i , re-
spectively; U(1)B is a vectorlike symmetry, which as-
signs charge 11(21) to Q(Q̃). U(1)a and U(1)x are R
symmetries under which the gaugino is assigned charge
one, and the quarks Q ,Q̃ have charge 0 or 1. Only one

28In string theory, the operation of modding out by a symme-
try consists of removing all states that are not invariant under
the symmetry and, in some cases, adding so-called ‘‘twisted
states,’’ required for consistency (Green, Schwarz, and Witten,
1987).
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combination of the two R symmetries is anomaly
free—we shall refer to it as U(1)R . The anomaly-free
global symmetry of N51 SQCD (with vanishing super-
potential) is

SU~Nf!L3SU~Nf!R3U~1 !B3U~1 !R . (146)

The U(1)R charge of the quarks is

R~Q !5R~Q̃ !512Nc /Nf . (147)

The U(1)R symmetry (147) plays an important role in
analyzing the strongly coupled quantum dynamics of
SQCD. At long distances the theory flows to a fixed
point in which N51 supersymmetry is enhanced to N
51 superconformal symmetry. The U(1)R symmetry
(147) becomes part of the superconformal algebra in the
infrared. This is important because the superconformal
algebra implies that for chiral operators the scaling di-
mension at the infrared fixed point D is related to their
R charge Q via the relation D53Q/2. The fact that the
symmetry (147) is a good symmetry throughout the RG
trajectory allows one to compute ‘‘critical exponents’’ at
a nontrivial IR fixed point by calculating charges of op-
erators at the free UV fixed point.

1. Classical N51 supersymmetric QCD

For Nf,Nc massless flavors of quarks the moduli
space of vacua is Nf

2 dimensional. It is labeled by the
gauge-invariant meson fields

Mj
i[QiQ̃j , i ,j51, . . . ,Nf . (148)

The gauge group can be maximally broken to SU(Nc
2Nf). As a check, the quarks have 2NcNf complex
components, out of which Nc

22(Nc2Nf)
2 are eaten by

the Higgs mechanism, leaving Nf
2 massless degrees of

freedom Mj
i . In various subspaces of the classical

moduli space, part or all of the broken gauge symmetry
is restored, and the classical moduli space is singular—
one has to add additional degrees of freedom corre-
sponding to massless quarks and gluons to describe the
low-energy dynamics.

For Nf>Nc new gauge-invariant fields appear in ad-
dition to Eq. (148), the baryon fields:

Bi1i2¯iNc5ea1a2¯aNcQa1

i1 Qa2

i2
¯Q

aNc

iNc . (149)

There are (Nc

Nf ) baryon fields. In particular, for Nf5Nc

there is a unique baryon field B ,

B5e i1¯iNc
Qi1

¯QiNc. (150)

This structure is doubled since there are also fields B̃
constructed out of the antifundamentals Q̃ in an analo-
gous way to Eqs. (149) and (150).

Since for Nf>Nc the gauge group can be completely
broken by the Higgs mechanism, the complex dimension
of the classical moduli space is 2NcNf2(Nc

221). That
means that there are many constraints relating the
baryon and meson fields. For example, for Nf5Nc the
constraint is
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det M2BB̃50, (151)

which gives the correct dimension of moduli space Nc
2

12215Nc
211. As before, the manifold (151) describ-

ing the classical moduli space is singular, with additional
massless fields (gluons and quarks) coming down to zero
mass when B, B̃ and/or det M go to zero.

For general Nf.Nc the classical moduli space of
vacua is rather complicated. The full set of classical con-
straints among the mesons and baryons for general
Nf ,Nc has not been written down.

2. Quantum N51 supersymmetric QCD

For Nf,Nc the classical picture of an Nf
2-dimensional

moduli space labeled by the mesons Mj
i , with singulari-

ties corresponding to enhanced unbroken gauge symme-
try, is drastically modified due to the fact that the theory
generates a nonperturbative superpotential for M . The
unique superpotential (up to an overall scheme-
dependent constant) that is compatible with the symme-
tries is

Weff5~Nc2Nf!S L3Nc2Nf

det M D 1/~Nc2Nf!

(152)

where L is the dynamically generated QCD scale. It has
been shown that the superpotential (152) is indeed gen-
erated by gaugino condensation in the unbroken gauge
group SU(Nc2Nf) for Nf<Nc22 and by instantons for
Nf5Nc21.

Using Eq. (143) we see that Weff gives rise to a poten-
tial with no minimum at a finite value of the fields. Thus
the quantum theory exhibits runaway behavior to M
˜` . Adding masses to all the quarks,

W5Weff2mi
jQiQ̃j , (153)

where the rank of the mass matrix is Nf , stabilizes the
runaway behavior and gives rise to the Nc vacua of pure
N51, SU(Nc) supersymmetric Yang-Mills theory men-
tioned above. To see this, one integrates out the massive
fields Mj

i , which leads to a superpotential

Weff5const3~L3Nc2Nf det m !1/Nc. (154)

Using the scale-matching relation between the high-
energy theory with Nf flavors, LNc ,Nf

, and the low-
energy theory with no flavors, LNc,0 ,

LNc,0
3Nc 5LNc ,Nf

3Nc2Nf det m (155)

leads to the pure SYM superpotential (140).
For Nf5Nc the superpotential (152) is singular. One

finds that Weff50, but there are still important quantum
effects. In particular, the classical constraint (151) is
modified to

det M2BB̃5L2Nc. (156)

Thus in this case quantum effects smooth the singulari-
ties in the classical moduli space; in particular, there is
no point in moduli space where quarks and gluons go to
zero mass and the physics is well described by the me-
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sons and baryons subject to the constraint (156). This
means that color is confined. Note also that since the
point M5B5B̃50 is not part of the quantum moduli
space, there is no point where the full chiral anomaly-
free global symmetry (146) is unbroken. Thus in this
case SQCD is confining and breaks chiral symmetry.
The moduli space (156) can be thought of as the moduli
space of vacua of a sigma model for a set of fields Mj

i ,
B , B̃ and l with the superpotential

Weff5l~det M2BB̃2L2Nc!. (157)

Here l is a Lagrange multiplier field, which is massive
and hence does not appear in the low-energy dynamics.
Integrating it out leads to Eq. (156).

For Nf5Nc11 the baryons (149) can be dualized to
fields with one flavor index, Bi5e ii1¯iNc

Bi1¯iNc. Classi-

cally, the low-energy degrees of freedom Mj
i ,Bi ,B̃i sat-

isfy the constraints

det M~M21! i
j2BiB̃

j5Mj
iBi5Mj

iB̃j50. (158)

Quantum mechanically, the classical constraint is lifted
and the mesons and baryons can be thought of as inde-
pendent fields, governed by the superpotential

Weff52
det M2Mj

iBiB̃
j

L2Nc21 . (159)

The vacuum equations ]MWeff5]BWeff5]B̃Weff50 give
the classical constraints (158).

It is at first sight surprising that the quantum meson
and baryon fields satisfy the classical constraints (158)
only as equations of motion, when in the classical limit
they are ‘‘Bianchi identities.’’ Two comments are useful
to clarify the situation. First, the classical limit corre-
sponds here to L˜0; in that case the path integral is
dominated by configurations satisfying the constraints
(158). Second, the situation is analogous to what hap-
pens under electric-magnetic duality. In the electric vari-
ables, ]mFmn50 is an equation of motion while ]mF̃mn

50 is a Bianchi identity, while in the magnetic variables
the roles are reversed. In fact, as we shall discuss later,
the situation here is not only analogous but identical to
this example. The relation between N51 SQCD with
Nf5Nc11 and the s model (159) is a special case of a
non-Abelian generalization of electric-magnetic duality,
which indeed exchanges Bianchi identities and equa-
tions of motion.

The resulting quantum moduli space for Nf5Nc11 is
identical to the classical one. In particular, it has the
same singularity structure, but the interpretation of the
singularities is different. While in the classical theory the
singularities are due to massless quarks and gluons, in
the quantum one they are due to massless mesons and
baryons. The theory again confines, but this time the
point M5B5B̃50 is in the moduli space and chiral
symmetry is unbroken there. It is not difficult to see that
adding a mass to one or more of the flavors (153) gives
rise to the results (156) and (152), respectively.
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For Nf.Nc11 there is no known description of the
quantum moduli space in terms of a s model for the
gauge-invariant degrees of freedom M ,B . Attempts to
write superpotentials consistent with the symmetries
typically lead to singularities, suggesting the presence of
additional light degrees of freedom. For Nf>3Nc it is
clear what the relevant degrees of freedom are. In that
case the theory is not asymptotically free and at low
energies the quarks and gluons are free (up to logarith-
mic corrections), much as they are in QED. We refer to
the theory as being in a free electric phase, since electri-
cally charged sources have a QED-like potential V(R)
;1/R log R in this case.

For Nf,3Nc the theory is asymptotically free. If Nf is
very close to 3Nc (a possibility that exists, for example,
if Nc ,Nf are large) there is a weakly coupled infrared
fixed point that can be studied perturbatively and de-
scribes interacting quarks and gluons. Electrically
charged sources have a potential V(R);a* /R , and we
say that the theory is in a non-Abelian Coulomb phase.
As Nf is decreased, the infrared coupling a* increases,
and perturbation theory breaks down. For most values
of Nf in the region Nc11,Nf,3Nc the theory is
strongly coupled and it is not clear what is the infrared
dynamics.

The degrees of freedom needed to describe low-
energy N51 SQCD in this range were uncovered by
Seiberg, who has shown that there is another gauge
theory—with a different high-energy behavior—that
flows to the same infrared fixed point as SQCD. Specifi-
cally, he discovered Seiberg’s duality.

The following two theories flow at long distances to
the same fixed point:

(1) ‘‘Electric’’ SQCD, with gauge group Ge5SU(Nc)
and Nf flavors of quarks Qi,Q̃i .

(2) ‘‘Magnetic’’ SQCD, with gauge group Gm5SU(Nf
2Nc), Nf magnetic quarks qi , q̃ i and a gauge sin-
glet ‘‘magnetic meson’’ chiral superfield Mj

i , which
couples to the magnetic quarks via the superpoten-
tial

Wmag5Mj
iqiq̃

j. (160)

The singlet mesons Mj
i are the magnetic analogs of the

composite mesons QiQ̃j of the electric theory. Other
operators can be mapped as well, but it is not under-
stood in the context of gauge theory how to perform
directly a transformation from the electric to the mag-
netic path integral. In particular, the magnetic quarks
and gluons must be rather nonlocal functions of their
electric counterparts. For example, the mapping of the
baryons (149) implies that (suppressing flavor indices)
qNf2Nc;QNc.

Seiberg’s duality allows one to study the low-energy
dynamics of the electric theory in the regime Nc11
,Nf,3Nc by passing to the magnetic variables. The
magnetic SU(Nf2Nc) gauge theory is not asymptoti-
cally free when Nf,3Nc/2; in this regime, Seiberg’s du-
ality predicts that the strongly interacting electric
SU(Nc) gauge theory is in fact free in the appropriate
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variables. Since the weakly coupled variables in this case
are the dual, magnetic variables, we refer to the electric
theory as being in a free magnetic phase.

For Nf.3Nc/2 the magnetic theory is asymptotically
free, but as in the electric case, when Nf is sufficiently
close to 3Nc/2 it describes weakly interacting magnetic
quarks and gluons (as well as the fields M) in the IR. As
we increase Nf , the coupling in the IR increases. We see
that the electric and magnetic descriptions provide
complementary pictures of the non-Abelian Coulomb
phase. As Nf increases, the electric description becomes
more weakly coupled (and thus more useful) while the
magnetic one becomes more strongly coupled and vice
versa.

The original SQCD examples constructed by Seiberg
were generalized in a few different directions, and many
additional examples of the basic phenomenon have been
found. There is in general no proof of Seiberg’s duality
in the context of gauge theory but there is a great deal of
evidence supporting it. There are three kinds of inde-
pendent tests:

• Members of a dual pair have the same global symme-
tries and the ’t Hooft anomaly matching conditions
for these symmetries are satisfied.

• The two theories have the same moduli spaces of
vacua, obtained by giving expectation values to the
first components of chiral superfields.

• The equivalence is preserved under deformations of
the theories by the F components of chiral operators.
In particular, the moduli spaces and chiral rings agree
as a function of these deformations.

It is important to stress that in every one of these tests
the classical theories are different and only the quantum
theories become equivalent. For example, in SQCD the
electric theory does not develop a quantum superpoten-
tial (for Nf.Nc11), while in the magnetic theory the
classical superpotential (160) is corrected quantum me-
chanically to

Wquantum;
1
m

Mqq̃1L~3Nc2Nf!/~Nc2Nf!

3~det M !1/~Nf2Nc!, (161)

where m is some fixed scale.
There is also a crucial difference in the interpretation

of the deformations of the two theories. Often, when
one theory is Higgsed and becomes weaker, its dual is
confining and becomes stronger. This is one reason for
interpreting the relation between these theories as
electric-magnetic duality.

3. Supersymmetric QCD with an adjoint superfield

An interesting generalization of N51 SQCD is ob-
tained by adding to the theory a chiral superfield F in
the adjoint representation. The theory without a classi-
cal superpotential is very interesting (Kutasov, Schwim-
mer, and Seiberg, 1996). Unfortunately, not much is
known about its long-distance behavior. It is known that
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the quantum moduli space is identical to the classical
one. The only singularities are at points where classically
the unbroken gauge symmetry is enhanced. The most
singular point in moduli space is the origin. It is ex-
pected that the theory at the origin is in a non-Abelian
Coulomb phase for all Nf>1 (for Nf50 it actually has
N52 supersymmetry and is equivalent to pure N52
SYM theory, described in Sec. IV). As we saw before,
the physical interpretation of the singularities in the
quantum theory may be different from the classical one.

While the infrared physics at the origin of moduli
space is mysterious, some perturbations of the theory by
tree-level superpotentials lead to theories whose low-
energy behavior is understood. If we add the superpo-
tential

W5l(
i51

Nf

Q̃iFQi (162)

we get a theory that can be analyzed easily. When the
Yukawa coupling l is one we recover the N52 SUSY
theory discussed in Sec. IV. The moduli space of the
theory has a Coulomb branch which has only massless
photons at generic points. At special singular points on
the moduli space there are more massless particles:
massless monopoles, dyons, massless gluons and quarks,
and even points with interacting N52 superconformal
field theories. More quantitatively, this branch of the
moduli space is described by the hyperelliptic curves dis-
cussed in Sec. IV.

It is easy to extend the curve away from the N52
limit (Elitzur et al., 1995; Hanany and Oz, 1995). Using
the symmetries of the theory this is achieved by replac-
ing factors of L2Nc2Nf in the curve by lNfL2Nc2Nf.
Therefore, as l˜0, all the features of the Coulomb
branch approach the origin; this is clearly a singular limit
which is not easy to describe from this point of view.

Another deformation that simplifies the dynamics in-
volves turning on a polynomial superpotential for F.
When F is massive,

W5m Tr F21l(
i51

Nf

Q̃iFQi, (163)

we can integrate it out and obtain a superpotential for
the quarks of the form

W;
l2

m
Q̃iQ

jQ̃jQ
i. (164)

In the limit m˜` the quartic superpotential (164) dis-
appears and we recover the SU(Nc) theory with Nf fla-
vors considered above.

An interesting deformation corresponds to the pure
polynomial superpotential

Wel5(
i50

k si

k112i
Tr Fk112i. (165)

At first sight the fact that the high-order polynomial ap-
pearing in Eq. (165) can have any effect on the physics is
surprising. Indeed, the presence of these nonrenormaliz-
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able interactions seems irrelevant for the long-distance
behavior of the theory, which is our main interest. Nev-
ertheless, these operators have in general strong effects
on the infrared dynamics. They are examples of opera-
tors that in the general theory of the renormalization
group are known as dangerously irrelevant.

It was shown by Kutasov (1995), Kutasov and
Schwimmer (1995), and Kutasov, Schwimmer, and
Seiberg (1996) that in the presence of the superpotential
(165) there is a simple dual description. The magnetic
theory has gauge group SU(kNf2Nc) with Nf magnetic
quarks q ,q̃ , an adjoint field w, and k gauge singlet mag-
netic meson fields Mj , j51, . . . ,k , which correspond to
the composite operators

~Mj! l
i5Q̃lF

j21Qi. (166)

The magnetic theory has a superpotential

Wmag52(
l

t l

k112l
Trwk112l

1 (
l50

k21

t l(
j51

k2l

Mjq̃wk2j2lq , (167)

where $t i% are coordinates on the space of magnetic
theories, related to the $si% by a known coordinate trans-
formation on theory space.

When all the $si% except for s0 vanish, the same is true
for the magnetic couplings $t i%, and the duality relates in
general nontrivial strongly coupled gauge theories with
Wel;TrFk11, and Wmag;Trwk11. When the $si% are
generic, the k solutions of W8(x)50 for both the elec-
tric and magnetic theories are distinct and both theories
have a rather rich vacuum structure. If we place ri eigen-
values of F in the ith minimum of the bosonic potential
corresponding to Eq. (165), the theory describes at low
energies k decoupled SQCD systems with gauge group
SU(ri), Nf flavors of quarks, and gauged baryon num-
ber. The total gauge group is broken as

SU~Nc!˜SU~r1!3SU~r2!¯3SU~rk!3U~1 !k21.
(168)

A similar story holds for the magnetic theory; the
electric-magnetic duality between Eqs. (165) and (167)
reduces in such vacua to k decoupled versions of the
original SQCD duality due to Seiberg. More generally, a
matrix version of singularity theory is useful in the
analysis of the theory (Kutasov, Schwimmer, and
Seiberg, 1996).

B. Branes suspended between nonparallel branes

In Sec. IV.C we discussed configurations of NS5, D4,
and D6-branes [Eq. (91)] that preserve eight super-
charges and are useful for describing four-dimensional
N52 SUSY gauge theories. To describe N51 SYM
theory, we should like to break four supercharges by
changing the orientation of some of the branes in the
configuration. This problem was encountered and dis-
cussed in Sec. II.E.2. We saw there that performing com-
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plex rotations such as that given by Eq. (49) leads to
configurations depending on continuous parameters,
which preserve the same four supercharges for all values
of the parameters. In this section we shall use this basic
idea to study N51 SYM theory using branes (Elitzur,
Giveon, and Kutasov, 1997; Elitzur et al., 1997).

Starting with the brane configuration describing N
52 SQCD with G5SU(Nc) and Nf fundamental hy-
permultiplets (Fig. 11), we can apply complex rotations
of the general form (49) to one or both of the NS5-
branes, or one or more of the D6-branes, such that N
51 supersymmetry is preserved. Of course, only the
relative orientation in the (v ,w) plane of all these ob-
jects is meaningful. Recall that NS5-branes are located
at some particular value of w and are stretched in the
(xm,v) directions, where m50,1,2,3 and

v5x41ix5,

w5x81ix9, (169)

while D6-branes are located at a particular value of v
and are stretched in (xm,w) (as well as x7).

If we rotate (say) the rightmost NS5-brane in Fig. 11
by the angle u (Barbon, 1997) (v ,w)˜(vu ,wu) [Eq.
(49)], where

vu5v cos u1w sin u ,

wu52v sin u1w cos u , (170)

then the resulting five-brane, which we may refer to as
the ‘‘NS5u-brane,’’ is located at wu50, or

wu50⇒ w5v tan u[m~u!v . (171)

Obviously, one can also apply rotations of the (x8,x9)
plane, w˜eiww [or rotations of the (x4,x5) plane, v
˜e2iwv]. Therefore, generically, m is complex,

m~u ,w!5eiw tan u (172)

(we shall usually ignore this possible w dependence).
u50 corresponds to the original NS-brane:

NS50[NS5. For u5p/2, the rotated brane is stretched
in w and it is located at v50. Since this object will be
particularly useful below we give it a name, the
‘‘NS58-brane’’: NS5p/2[NS58. Its worldvolume is

NS58: ~x0,x1,x2,x3,x8,x9!. (173)

Note that to be able to rotate one of the NS5-branes
relative to the other we need to locate all the D4-branes
stretched between them in Fig. 11 at v5w50, i.e., ap-
proach the origin of the Coulomb branch. The field de-
scribing fluctuations of the four-branes along the five-
branes, the chiral multiplet in the adjoint representation
of SU(Nc) that belongs to the vector multiplet of N
52 supersymmetry, gets a u-dependent mass due to the
rotation. Thus the effect of the rotation on the low-
energy field theory on the D4-branes can be param-
etrized by the superpotential

W;m~u!F21(
i51

Nf

Q̃iFQi, (174)
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which is a special case of the theory discussed in Eq.
(163).

The mass of the adjoint chiral superfield m(u) in Eq.
(174) clearly breaks N52 supersymmetry to N51. The
resulting low-energy theory is N51 SQCD with a super-
potential for the quarks (164) obtained by integrating
out the massive adjoint field F. At least on a qualitative
level, the mass m in Eq. (174) is related to the geometri-
cal complex rotation parameter given in Eq. (171). In-
deed, both vanish for u50 (the N52 SUSY configura-
tion), while when u˜p/2 we shall see later that the mass
m must go to infinity and we recover SQCD with vanish-
ing superpotential (164).

What happens when we rotate both NS5-branes of the
N52 configuration of Fig. 11 by the same angle u? In
the absence of D6-branes (i.e., for Nf50) the answer is
nothing, since there is a symmetry between v and w , so
the low-energy theory is pure N52 SYM theory for all
u. In the presence of D6-branes, the relative orientation
between the NS5 and D6-branes changes, and it is natu-
ral to expect that the Yukawa coupling necessary for
N52 supersymmetry will change with u,

W5l~u!(
i51

Nf

Q̃iFQi. (175)

This is the model discussed after Eq. (162). The massless
adjoint chiral superfield F is now associated with fluc-
tuations along the vu (170) directions. The locations of
D4-branes along the NS5u-branes correspond to the ex-
pectation values ^F& and parametrize the Coulomb
branch. The quarks are massive on the Coulomb branch;
their mass l(u)^F& is due in the brane description to
open 4–6 strings whose minimal length is ^F&cos u. We
thus learn that the Yukawa coupling l depends on the
angle u via

l~u!5cos u . (176)

Here u50 corresponds to l51, the N52 configuration,
while for u5p/2 (i.e., after rotating the NS5-branes to
NS58-branes) the superpotential vanishes.

To recapitulate, the dictionary between the deforma-
tions of the N52 SUSY brane configuration that pre-
serve N51 supersymmetry and their manifestations in
the low-energy theory on the four-branes is as follows.
Keeping one of the NS5-branes and all the D6-branes
fixed and rotating the remaining NS5-brane corresponds
to changing the mass of the adjoint chiral superfield F
(174). Rotating both NS5-branes relative to the
D6-branes, keeping the two five-branes and all the six-
branes parallel among themselves, corresponds to
changing the value of the Yukawa coupling between F
and the quarks (175).

The most general configuration of this sort corre-
sponds to rotating all Nf12 objects (the Nf D6-branes
and the two NS5-branes) by arbitrary angles u i all of
which are different. Since this configuration breaks the
SU(Nf) symmetry between the D6-branes, to describe
it one needs to vary individually the different Yukawa
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
interaction terms of the different flavors. We shall next
study a few examples that will hopefully make the gen-
eral case clear.

Our first example is N51 SQCD. The main goals are
to describe the classical and quantum moduli space of
vacua and explain Seiberg’s N51 duality using branes
(Elitzur, Giveon, and Kutasov, 1997; Elitzur et al., 1997).
To this end, we explain in the next two sections the
brane realization of the classical electric and magnetic
SQCD theories. The study of quantum corrections is
postponed to the next section.

1. Classical supersymmetric QCD: The electric theory

Consider a configuration of Nc D4-branes stretched
between an NS5-brane and an NS58-brane along the x6

direction. The NS5- and NS58-branes are separated by a
distance L6 in the x6 direction, with x6(NS5)
,x6(NS58). In addition, there are Nf D6-branes to the
left of the NS5-brane, each of which is connected to the
NS5-brane by a D4-brane [see Fig. 24(a)]. The branes
involved are extended in the directions given in Eqs.
(91) and (173). We call this brane configuration the
‘‘electric theory.’’

An equivalent configuration, which is related to the
previous one by a series of Hanany-Witten transitions
(see Sec. IV.C.1), consists of Nc D4-branes stretched
between an NS5-brane and an NS58-brane along the x6

direction, with Nf D6-branes at values of x6 that are
between those corresponding to the positions of the
NS5- and NS58-branes [Fig. 24(b)].

This brane configuration describes classically N51
SQCD with gauge group G5U(Nc), Nf flavors of chiral
superfields in the fundamental and antifundamental rep-
resentations, and vanishing superpotential. Quantum
mechanically, the U(1) factor in U(Nc) will have van-
ishing gauge coupling and decouple; we shall discuss the
quantum case in the next section. The gauge-theory limit
corresponds again to L6 ,ls ,gs˜0 with fixed gauge cou-
pling (93)–(95).

It is instructive to relate the supersymmetric deforma-
tions of the gauge theory to parameters defining the
brane configuration, using the dictionary established in
the previous sections:

• Moduli space of vacua. The structure of the moduli
space of the gauge theory was discussed in Sec. V.A.
For Nf,Nc , the U(Nc) gauge symmetry can be bro-
ken to U(Nc2Nf). The complex dimension of the
moduli space of vacua is

Nf,Nc : dimMH52NcNf2@Nc
22~Nc2Nf!

2#5Nf
2.

(177)
For Nf>Nc the gauge symmetry can be completely bro-
ken, and the complex dimension of the moduli space is

Nf>Nc : dimMH52NcNf2Nc
2. (178)

In the brane description, Higgsing corresponds to split-
ting four-branes on six-branes. Consider, for example,
the case Nf>Nc (the case Nf,Nc is similar). A generic
point in moduli space is described as follows (Fig. 25).
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The first D4-brane is broken into Nf11 segments con-
necting the NS5-brane to the first (i.e., leftmost)
D6-brane, the first D6-brane to the second, etc., with
the last segment connecting the rightmost D6-brane to
the NS58-brane. The second D4-brane can now only be
broken into Nf segments, because of the s rule (see Sec.
IV.C.1): the first segment must stretch between the NS5-
brane and the second D6-brane, with the rest of the
breaking pattern as before. We saw in Sec. IV.C.1 that a
D4-brane stretched between two D6-branes has two
complex massless degrees of freedom. Similarly, it is
geometrically obvious that a D4-brane stretched be-
tween a D6-brane and an NS58-brane has one complex
massless degree of freedom, corresponding to motions

FIG. 24. Two descriptions of N51 supersymmetric QCD with
G5U(Nc) and Nf fundamentals (Nf5Nc53), related by a
series of Hanany-Witten transitions.
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in w . Moreover, one does not expect an analog of the s
rule (see Sec. IV.C.1) for D4-branes stretched between
an NS58-brane and a D6-brane, for example, because
two such four-branes can be separated in the (x8,x9)
directions, which are common to both kinds of branes.

Therefore the dimension of moduli space is

Nf>Nc : dimMH5(
l51

Nc

@2~Nf2l !11#52NfNc2Nc
2

(179)

in agreement with the gauge-theory result (178).

• Mass deformations. In gauge theory we can turn on a
mass matrix for the (s)quarks, by adding a superpo-
tential

W52mi
jQiQ̃j (180)

with m an arbitrary Nf3Nf matrix of complex numbers.
In the brane description, masses correspond to relative
displacement of the D6- and D4-branes (or equivalently
the D6- and NS58-branes) in the (x4,x5) directions. The
configuration can be thought of as realizing a superpo-
tential of the form (180), with the mass matrix m satis-
fying the constraint

@m ,m†#50. (181)

Thus we can diagonalize m ,m† simultaneously; the loca-
tions of the D6-branes in the v-plane are the eigenval-
ues of m .

The brane configuration describes only a subset of the
possible deformations of the gauge theory. We have al-
ready encountered such situations before; they are
rather standard in string theory. In this context the con-
straint (181) can be ‘‘explained’’ by noting that it ap-
pears as a consistency condition in N52 supersymmetric

FIG. 25. The fully Higgsed branch of N51 supersymmetric
QCD with G5U(3) and Nf55 fundamentals.
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gauge theories. Our theory is clearly not N52 super-
symmetric; nevertheless, it is not surprising that the con-
dition (181) arises, since one can think of m as the ex-
pectation value of a superfield in the adjoint of the
U(Nf) gauge group on the D6-branes. The theory on
the infinite six-branes is invariant under sixteen super-
charges in the bulk of the worldvolume, and while it is
broken by the presence of the other branes, it inherits
Eq. (181) from the theory with more supersymmetry.

• x6(D6)—A phase transition. One important differ-
ence between the N52 configurations considered in
Sec. IV and the present discussion is that it is no longer
true that the low-energy physics is completely indepen-
dent of the positions of the D6-branes in x6. If we move
one or more of the D6-branes of Fig. 24(a) towards the
NS5-brane, as the two branes cross there is no change in
the low-energy physics; this is guaranteed by the
Hanany-Witten transition. If all the D6-branes move to
the other side of the NS5-brane we arrive at the configu-
ration of Fig. 24(b), which describes the same low-
energy physics as Fig. 24(a) (as for the N52 case).

When the D6-branes are displaced towards the
NS58-brane and eventually pass it, the physics changes.
No branes can be created in the transition, because the
D6- and NS58-branes can avoid each other in space by
going around each other in the (x4,x5,x6) directions.
Therefore every time a D6-brane moves out of the in-
terval between the two NS-branes by passing the
NS58-brane, the theory loses one light flavor of U(Nc).

There is an interesting lesson here. Brane dynamics
apparently have the property that when D- and NS-
branes that are not parallel cross each other, there is no
change in the low-energy physics, while crossing of par-
allel branes leads in general to phase transitions.

• Fayet-Iliopoulos D term. In the gauge theory it is
possible to turn on a D term for U(1),U(Nc):

LFI5rE d4u Tr V . (182)

Note that—unlike the N52 SUSY case (98)—here the
D term is a single real number r . For 0,Nf,Nc adding
Eq. (182) breaks supersymmetry. For Nf>Nc there are
supersymmetric vacua in which the gauge symmetry is
completely broken and the system is forced into a Higgs
phase. In the brane description, the role of the Fayet-
Iliopoulos D term is played by the relative displacement
of the NS5- and NS58-branes in the x7 direction (Fig.
26). Clearly, when the two are at different values of x7,
a four-brane stretched between them breaks supersym-
metry. To preserve supersymmetry, all such four-branes
must break on D6-branes, which as we saw above is
only possible for Nf>Nc because of the s rule. Once all
four-branes have been split, there is no obstruction to
moving the NS5- and NS58-branes to different locations
in x7. At generic points in the Higgs phase, nothing spe-
cial happens when the D term is turned off. In the brane
construction the reason is that once all Nc D4-branes
have been broken on D6-branes in a generic way, noth-
ing special happens when the relative displacement of
the two five-branes in x7 vanishes.
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• Global symmetries. Classical supersymmetric QCD
with gauge group SU(Nc) and Nf quarks has the global
symmetry (145); quantum effects break it to Eq. (146).
The anomaly is a quantum effect that is not expected to
be visible in the classical brane construction (we shall
exhibit it in the brane description in Sec. V.C).

In our case, the (classical) gauge symmetry is U(Nc)
.SU(Nc)3U(1), with the extra U(1) factor in the
gauge group corresponding to gauging baryon number
U(1)B . The brane configuration has a manifest (vector)
SU(Nf) symmetry, which is a gauge symmetry on the
D6-branes and a global symmetry on the D4-branes.
The other (axial) SU(Nf) symmetry is generically not
an exact symmetry of the brane configuration of Fig.
24(b) and arises as an effective symmetry when we take
the infrared limit. In the general spirit of brane theory—
trying to realize as much as possible of the symmetry
structure of the low-energy theory throughout the RG
flow—one might wonder whether it is possible to realize
it too as an exact symmetry of the brane vacuum.

This is indeed the case, as shown by Aharony and
Hanany (1997), Brodie and Hanany (1997), and Hanany
and Zaffaroni (1998a). The main idea is the following.
We saw before that the positions of the D6-branes in x6

are not visible in the low-energy theory, but of course
their values influence the high-energy structure. One
may thus hope that the full chiral symmetry may be re-
stored for some particular value of these parameters.
When the D6-branes are placed at the same value of x6

as the NS58-brane (Fig. 27) the full chiral symmetry is
restored (Brodie and Hanany, 1997).

FIG. 26. Displacement of the five-branes in x7 corresponding
to a Fayet-Iliopoulos D term in the worldvolume gauge
theory.
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To see that this is geometrically plausible, note that
when that happens, the NS58-brane located at (say) x7

50 cuts each D6-brane into two disconnected halves,
the x7.0 and x7,0 parts.29 The situation is very similar
to that encountered in Sec. IV.C.4 when we discussed
compact Coulomb branches. Using our analysis there, it
is clear that there are now two separate SU(Nf) symme-
tries acting on the two disconnected groups of Nf six-
branes. Just as in Sec. IV.C.4, despite the fact that the
two groups of six-branes are independent, we cannot re-
move one of them from the configuration. From the
brane theory point of view this is due to the fact that, as
discussed in Sec. IV.C.4, this would lead to nonconser-
vation of charge. From the point of view of the gauge
theory on the four-branes the reason is that the resulting
four-dimensional gauge theory, with only fundamentals
and no antifundamentals, would be anomalous.

The symmetries U(1)x , U(1)a [Eq. (145)] are also
realized in the brane picture. They correspond to rota-
tions in the (x4,x5) and (x8,x9) planes, U(1)45 , U(1)89 .
These rotations are R symmetries because the four pre-
served supercharges of the brane configuration of Fig. 24
are spinors of the Spin(9, 1) Lorentz group in ten dimen-
sions and therefore are charged under both U(1)45 and
U(1)89 . From the discussion of the mass deformations
and Higgs moduli space above, it is clear that the mass
parameters (180) are charged under U(1)45 , while the
quarks Q , Q̃ are charged under U(1)89 . If we assign
U(1)453U(1)89 charges (1, 1) to the superspace coordi-
nates ua , the quarks Q and Q̃ have charges (0, 1), while
the mass parameters m in (180) have charges (2, 0).

29Note that this does not happen when the D6-branes inter-
sect an NS5-brane. This is consistent with the fact that in the
N52 SUSY configurations we do not expect a chiral enhance-
ment of the global symmetry.

FIG. 27. Enhancement of the global symmetry at finite ener-
gies from SU(Nf) to SU(Nf)3SU(Nf), as a result of placing
the D6-branes on the NS58-brane.
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With these assignments, the mass term (180) is invariant
under both global symmetries.30

2. Classical supersymmetric QCD: The magnetic theory

The ‘‘magnetic’’ brane configuration—the reason for
the name will become clear soon—contains Nc
D4-branes connecting the NS58-brane to an NS5-brane
on its right (we shall refer to these as ‘‘color four-
branes’’) and Nf D4-branes connecting the NS58-brane
to Nf D6-branes on its left, which we shall refer to as
‘‘flavor four-branes.’’ The configuration is depicted in
Fig. 28. As usual, all the branes involved are stretched in
the directions given in Eqs. (91) and (173). We shall
consider the case Nf>Nc in what follows.

This configuration describes SQCD with ‘‘magnetic
gauge group’’ Gm5U(Nc) (with the gauge bosons com-
ing as before from 4–4 strings connecting different color
four-branes), Nf flavors of ‘‘magnetic quarks’’ qi , q̃ i

(4–4 strings connecting the Nc color four-branes with
the Nf flavor four-branes). In addition to the N51
SQCD matter content there are now Nf

2 chiral super-
fields that are singlets under the gauge group Gm , aris-
ing from 4–4 strings connecting different-flavor four-
branes. Denoting these ‘‘magnetic meson’’ fields by Mj

i

(i ,j51,.. . ,Nf), we see that the standard coupling of
three open strings gives rise to a superpotential connect-
ing the magnetic mesons and the magnetic quarks,

Wmag5Mj
iqiq̃

j. (183)

This is precisely the ‘‘magnetic theory’’ discussed in Sec.
V.A.

The analysis of moduli space and deformations of this
model are similar to the electric theory, with a few dif-
ferences due to the existence of the superpotential (183).

30The discussion of global charges is somewhat oversimpli-
fied. A more precise description of the transformation proper-
ties of gauge-invariant observables requires a detailed map-
ping of the brane and gauge-theory degrees of freedom.

FIG. 28. The magnetic brane configuration.
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Consider first mass deformations. In gauge theory we
can add a mass term to the magnetic quarks by modify-
ing the superpotential to

Wmag5Mj
iqiq̃

j1dMj
iqiq̃

j. (184)

The mass parameters dM can be absorbed in the expec-
tation value of the magnetic meson Mj

i and can be
thought of as parametrizing a moduli space of vacua.
The Nf

2 resulting parameters are described in the brane
language by splitting the Nf flavor four-branes on the
D6-branes in the most general way consistent with the
geometry [Fig. 29(a)]. This results in a total of Nf

2 mass-
less modes corresponding to the Nf

2 components of M :
Nf of them describe fluctuations in the (x8,x9) plane of
four-branes stretched between the NS58-brane and the
rightmost D6-brane, and the remaining ( l51

Nf212l
5Nf(Nf21) parametrize fluctuations in (x6,x7,x8,x9)
of the four-branes connecting different six-branes.

Another interesting deformation of the magnetic
gauge theory corresponds to adding a linear term in M
to the magnetic superpotential:

Wmag5Mj
i~qiq̃

j2mi
j!. (185)

Integrating out the massive field M we find that in the
presence of the ‘‘mass parameters’’ mi

j the gauge group
is broken; thus the parameters m play the role of Higgs
expectation values. In the brane description, these de-
formations correspond to a process in which color four-
branes are aligned with flavor four-branes and recon-
nected to stretch between the NS5-brane and a
D6-brane [see Fig. 29(b)]. If m has rank n(<Nc), n
such four-branes are reconnected. The D6-branes on
which the reconnected four-branes end can then be
moved in the (x4,x5) directions, taking the four-branes

FIG. 29. Magnetic moduli space: (a) The Nf
2-dimensional clas-

sical magnetic moduli space corresponding to unbroken gauge
symmetry and arbitrary expectation values for the singlet me-
son M . (b) The brane description of adding a linear superpo-
tential W52mM . The eigenvalues of m correspond to loca-
tions of D6-branes in the v plane.
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with them and breaking the U(Nc) gauge group to
U(Nc2n). The brane description realizes only a subset
of the possible ‘‘mass matrices’’ m , namely, those which
satisfy Eq. (181) (the reason is similar to the one de-
scribed there). We shall soon see that this analogy is not
coincidental.

Another deformation of the magnetic gauge theory
and of the corresponding brane configuration, which will
play a role in the sequel, is switching on a Fayet-
Iliopoulos D term for the U(1) subgroup of U(Nc).
Again, in the brane construction this corresponds to a
relative displacement of the NS5- and NS58-branes in
the x7 direction (Fig. 30). To preserve supersymmetry,
all Nc color four-branes have to be reconnected to Nc of
the Nf flavor four-branes, leading to a situation in which
Nc four-branes stretch between the NS5-brane and Nc
different six-branes and Nf2Nc four-branes stretch be-
tween the NS58-brane and the remaining six-branes [Fig.
29(b)]. Once this occurs, the two five-branes can be
separated in x7.

Unlike the electric theory, here there is a jump in the
dimension of the classical moduli space of the theory as
we vary the D term. For nonvanishing D term there are
only Nf2Nc four-branes that give rise to moduli (the
other Nc are frozen because of the s rule), and the
moduli space is easily checked to be Nf

22Nc
2 dimen-

sional. When the D term vanishes, the previously frozen
four-branes can be reconnected to yield the original con-
figuration, with unbroken U(Nc), and we gain access to
the full (Nf

2)-dimensional moduli space of Fig. 29(a).
We shall see in Sec. V.C that quantum mechanically this
classical jump in the structure of the moduli space dis-
appears.

FIG. 30. The brane description of the Fayet-Iliopoulos D term
in the magnetic theory: (a) r50; (b) r,0.
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The magnetic brane configuration is invariant under
the same global symmetries as the electric theory de-
scribed above by Eq. (145). The charge assignments un-
der the U(1)453U(1)89 symmetry are as follows: the
magnetic quarks q , q̃ have charges (1, 0), the mass pa-
rameters m have charges (2, 0), the magnetic meson M
has charges (0, 2), and the superspace coordinates ua
have charges (1, 1).

3. Seiberg’s duality in the classical brane picture

We have now constructed using branes two N51 su-
persymmetric gauge theories, the electric and magnetic
theories discussed in the previous two sections. Seiberg
has shown that the electric gauge theory with gauge
group U(Nc) and the magnetic theory with gauge group
U(Nf2Nc) are equivalent in the extreme infrared31

(i.e., they flow to the same infrared fixed point) (Seiberg,
1995a). Seiberg’s duality is a quantum symmetry, but it
has classical consequences in situations where the gauge
symmetry is completely broken and there is no strong
infrared dynamics. In such situations Seiberg’s duality
reduces to a classical equivalence of moduli spaces and
their deformations.

In this section we show using brane theory that the
moduli spaces of vacua of the electric and magnetic
theories with gauge groups U(Nc) and U(Nf2Nc) co-
incide. They provide different parametrizations of the
moduli space of vacua of the appropriate brane configu-
ration. This explains the classical part of Seiberg’s dual-
ity. As one approaches the root of the Higgs branch,
nontrivial quantum dynamics appears, and we have to
face the resulting strong-coupling problem. This will be
addressed in Sec. V.C.

Start, for example, with the electric theory with gauge
group U(Nc) [the configuration of Fig. 24(a)]. Now en-
ter the Higgs phase by connecting the Nc original four-
branes stretched between the NS5- and NS58-branes to
Nc of the Nf four-branes stretched between the NS5-
brane and the six-branes; we then further reconnect the
resulting four-branes in the most general way consistent
with the rules described in Secs. IV.C.1 and V.B.1. The
resulting moduli space is 2NfNc2Nc

2 dimensional, as de-
scribed in Sec. V.B.1. Note that, generically, there are
now Nf2Nc D4-branes attached to the NS5-branes, and
Nc D4-branes connected to the NS58-brane (the other
ends of all these four-branes lie on different D6-branes).

Once we are in the Higgs phase, we can freely move
the NS5-brane relative to the NS58-brane and, in par-
ticular, the two branes can pass each other in the x6

direction without ever meeting in space. This can be
achieved by taking the NS5-brane around the
NS58-brane in the x7 direction, i.e., turning on a Fayet-
Iliopoulos D term in the worldvolume gauge theory (the

31Seiberg actually considered the SU(Nc) and SU(Nf2Nc)
theories (see Sec. V.A), but the statement for U(Nc) and
U(Nf2Nc) follows from his results by gauging baryon num-
ber.
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process is described in Fig. 31). At a generic point in the
Higgs branch of the electric theory, turning on such a D
term is a completely smooth procedure; this is particu-
larly clear from the brane description, where in the ab-
sence of D4-branes connecting the NS5-brane to the
NS58-brane, the relative displacement of the two in the

FIG. 31. Continuous connection of electric and magnetic
brane configurations. Starting with the electric configuration
(a), one can turn on a Fayet-Iliopoulos D term (b), exchange
the five-branes in x6 (c), and switch off the D term, arriving at
the magnetic configuration (d).
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x7 direction can be varied freely.
After exchanging the NS5- and NS58-branes, we can

interpret the brane configuration we find as describing
the Higgs phase of another gauge theory. To find out
what that theory is, we approach the root of the Higgs
branch by aligning the Nf2Nc D4-branes emanating
from the NS5-brane with the NS58-brane, and the Nc
D4-branes emanating from the NS58-brane with
D4-branes stretched between D6-branes.

We then reconnect the D4-branes to obtain a configu-
ration consisting of Nf2Nc D4-branes connecting the
NS58-brane to an NS5-brane that is to the right of it; the
NS58-brane is further connected by Nf D4-branes to the
Nf D6-branes that are to the left of it [see Fig. 31(d)].
This is the magnetic SQCD of Sec. V.B.2, with gauge
group U(Nf2Nc).

To summarize, we have shown that the moduli space
of vacua of the electric SQCD theory with (completely
broken) gauge group U(Nc) and Nf flavors of quarks,
and the moduli space of vacua of the magnetic SQCD
model with (broken) gauge group U(Nf2Nc), can be
thought of as providing different descriptions of a single
moduli space of supersymmetric brane configurations.
One can smoothly interpolate between them by varying
the scale L (related to the displacement of the NS5- and
NS58-branes in x6), keeping the Fayet-Iliopoulos D
term fixed but nonzero. Since the only role of L in the
low-energy theory is to normalize the operators (Kuta-
sov, Schwimmer, and Seiberg, 1996), theories with dif-
ferent values of L are equivalent. The electric and mag-
netic theories will thus share all features, such as the
structure of the chiral ring (which can be thought of as
the ring of functions on moduli space), that are indepen-
dent of the interpolation parameter L.

The above smooth interpolation relies on the fact that
the gauge symmetry is completely broken due to the
presence of the Fayet-Iliopoulos D term. As mentioned
above, it is not surprising that duality appears classically
in this situation since there is no strong infrared gauge
dynamics.

The next step is to analyze what happens as the gauge
symmetry is restored when the D term goes to zero and
we approach the origin of moduli space. Classically, we
find a disagreement. In the electric theory, we saw in
Sec. V.B.1 that nothing special happens when the gauge
symmetry is restored. New massless degrees of freedom
appear, but there are no new branches of the moduli
space that we gain access to.

In the magnetic theory the situation is different. When
we set the Fayet-Iliopoulos D term to zero, we saw in
Sec. V.B.2 that a large moduli space of previously inac-
cessible vacua became available. While the electric
theory has a (2NfNc2Nc

2)-dimensional smooth moduli
space, the classical magnetic theory experiences a jump
in the dimension of its moduli space from 2NfNc2Nc

2

for nonvanishing Fayet-Iliopoulos D term to Nf
2 when

the D term is zero. However, in the magnetic theory
when the D term vanishes the U(Nf2Nc) gauge sym-
metry is restored, and to understand what really hap-
pens we must study the quantum dynamics. We shall
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discuss this in Sec. V.C, where we shall see that quantum
mechanically the jump in the magnetic moduli space dis-
appears, and the quantum moduli spaces of the electric
and magnetic theories agree.

It is instructive to map the deformations of the classi-
cal electric theory onto those of the classical magnetic
one. Turning on masses (180) in the electric theory cor-
responds to moving the D6-branes away from the
D4-branes (or equivalently from the NS58-brane) in the
(x4,x5) directions. As discussed in Sec. V.B.2, in the
magnetic description, the electric mass parameters cor-
respond to Higgs expectation values (185).

Turning on expectation values to the electric quarks,
which was described in the brane language in Sec. V.B.1,
corresponds on the magnetic side to varying the expec-
tation value of the magnetic meson M (184). This gives
masses to the magnetic quarks.

The transmutation of masses into Higgs expectation
values and vice versa observed in the brane construction
is one of the hallmarks of Seiberg’s duality.

4. Other rotated N52 configurations

The brane configurations corresponding to electric
and magnetic SQCD were obtained above by rotating
branes in the N52 SUSY configuration studied in Sec.
IV. Before moving on to the study of quantum dynamics
of these theories we should like to discuss a few addi-
tional theories that can be realized using such rotations.

a. U(Nc) with adjoint, Nf flavors, and W50

Starting with the N52 SUSY brane configuration of
Fig. 14, rotate the two NS5-branes as in Eqs. (170) and
(172), keeping them parallel to each other. As discussed
above [Eq. (175)], the angle of rotation determines the
Yukawa coupling; in particular, when the two NS5-
branes are rotated into NS58-branes [Fig. 32(a)] the
Yukawa coupling disappears. The resulting theory has
gauge group U(Nc), the matter content necessary for
N52 supersymmetry, i.e., an adjoint chiral multiplet F

and Nf fundamentals Qi, Q̃i , but the superpotential W
5Q̃FQ required by N52 supersymmetry in 4d is ab-
sent here; instead, W50. This is a model discussed in
Sec. V.A.3.

Fluctuations of the Nc four-branes along the
NS58-branes parametrize the Coulomb branch of the
model. Displacements of the Nf D6-branes relative to
the NS58-branes in the (x4,x5) directions give masses m
to the fundamental multiplets Q , Q̃ :

W52(
i51

Nf

miQ̃iQ
i. (186)

The relative position of the two NS58-branes in the
(x4,x5) directions is not an independent parameter; it
can be compensated for by a change in the positions of
the D6-branes in the (x4,x5) plane (i.e., the masses of
the fundamentals) and an overall rotation of the con-
figuration. The relative displacement of the two
NS58-branes in the x7 direction plays the role of a Fayet-
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Iliopoulos D term (182). Complete Higgsing is possible
for all Nf>1; the (complex) dimension of the Higgs
branch is

dimMH52NfNc1Nc
22Nc

252NfNc . (187)

The first two terms on the left-hand side are the num-
bers of components in the fundamental and adjoint chi-
ral multiplets, and the negative term accounts for de-
grees of freedom eaten up by the Higgs mechanism.

The brane configuration provides a simple picture of
the moduli space of vacua. As usual, complete Higgsing
corresponds to breaking all Nc four-branes on various
D6-branes, as indicated in Fig. 32(b). We find that the
dimension of moduli space of brane configurations with
completely broken U(Nc) gauge symmetry is

dimMH5Nc@2~Nf21 !1111#52NcNf (188)

in agreement with the gauge-theory analysis (187).

b. Mixed electric-magnetic theories

A straightforward generalization of the electric and
magnetic SQCD brane configurations is a configuration
that includes both ‘‘electric’’ and ‘‘magnetic’’ quarks.
Consider the configuration of Fig. 33; an NS5-brane con-
nected by Nc D4-branes to an NS58-brane that is to its
right (in x6). To the left of the NS5-brane we put Nf
D6-branes, each of which is connected by a four-brane
to the NS5-brane. As before, these represent Nf quarks
Q ,Q̃ . To the right of the NS58-brane we put Nf8

FIG. 32. U(Nc) with adjoint: (a) N51 supersymmetric Yang-
Mills theory with G5U(Nc), Nf fundamentals, and an adjoint
superfield with vanishing superpotential; (b) the fully Higgsed
branch of moduli space.
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D6-branes, each of which is connected to the
NS58-brane by a four-brane. These represent Nf8 quarks
Q8,Q̃8 and Nf8

2 complex scalars M8 with a tree-level
superpotential W5M8Q8Q̃8. The supersymmetric
Yang-Mills theory thus obtained is a ‘‘mixed electric-
magnetic’’ SU(Nc) gauge theory with Nf ‘‘electric’’
quarks and Nf8 ‘‘magnetic’’ quarks coupled to ‘‘magnetic
mesons.’’

The discussion of Seiberg’s duality can be repeated
for such theories. Interchanging the two NS-branes in x6

gives rise to an SU(Nf1Nf82Nc) theory with Nf mag-
netic quarks q ,q̃ coupled to Nf

2 complex scalars M via
Mqq̃ , and Nf8 electric quarks q8,q̃8. Of course, the dual
theory is also a mixed electric-magnetic theory in which
the roles of electric and magnetic quarks are inter-
changed. In the particular case Nf850 the original theory
is the electric theory studied in Sec. V.B.1, while its dual
is the magnetic theory as considered in Sec. V.B.3.

c. D68-branes

Another interesting deformation of the N52 SUSY
configuration involves rotating some of the D6-branes
as well. Restricting our attention to ninety-degree rota-
tions, for simplicity, we should like to consider, in addi-
tion to the objects studied above, rotated six-branes that
are located at w50 and stretched in v . We shall refer to
these as D68-branes:

D68: ~x0,x1,x2,x3,x4,x5,x7!. (189)

To study brane configurations including both D6- and
D68-branes one has to keep in mind the following inter-
esting feature of brane dynamics.

Consider a configuration in which a pair of D4-branes
connect a D6-brane to a D68-brane. Naively the con-
figuration preserves four supercharges and there are two
complex moduli describing the locations of the two
D4-branes along the six-branes (in x7) together with the
compact component of the gauge field A6 .

However, there is a superpotential due to Euclidean
fundamental strings stretched between the D4- and
D6-branes, as indicated in Fig. 34. If the distance be-
tween the six-branes is dl6 and the separation between
the four-branes is dl7 , the superpotential due to these
Euclidean strings is of order exp(2dl6dl7 /ls

2). This effect
is nonperturbative in ls but does not go to zero in the

FIG. 33. A ‘‘mixed electric-magnetic’’ theory, in which some
of the fundamentals couple to singlet mesons and some do not.
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limit gs˜0—it is a worldsheet instanton effect. In par-
ticular, it does not vanish in the classical gauge-theory
limit discussed above and leads to long-range repulsive
interactions between the four-branes. It is closely re-
lated to the nonperturbative effects discussed in Sec. III
in systems with twice as much supersymmetry, where
they contribute to the metric on moduli space [see Eq.
(68)].

We thus arrive at the following classical rule of brane
dynamics: There is a long-range repulsive interaction be-
tween D4-branes stretched between a D6-brane and a
D68-brane. This repulsion does not go to zero in the clas-
sical limit gs˜0.

Taking this rule into account allows one to understand
configurations including both D6- and D68-branes. The
resulting physics depends on the ordering of the six-
branes along the x6 axis. When a D6-brane passes a
D68-brane there is a phase transition; this can be seen
by U duality, which can be used to map this system to an
NS58-brane and a D6-brane; as we saw before, the phys-
ics certainly changes when we exchange those. We shall
next consider the physics for a particular ordering of the
branes; the generalization to other cases is straightfor-
ward.

Consider the configuration of Fig. 35. In addition to
the usual Nc D4-branes stretched between NS5 and
NS58-branes, which give rise to a U(Nc) gauge group,
we have Nf D6-branes located next to the NS58-brane
and Nf8 D68-branes located next to the NS5-brane,
which give rise to Nf1Nf8 flavors. Clearly the theory
does not have a massless adjoint field as there is no Cou-
lomb branch, and by placing the D6-branes on top of
the NS58-brane and the D68-branes on top of the NS5-
brane we deduce that the symmetry of the theory is at
least SU(Nf)3SU(Nf)3SU(Nf8)3SU(Nf8), which
does not allow a superpotential.

The theory is therefore N51 SQCD with gauge group
U(Nc), Nf1Nf8 flavors of quarks, and W50, which we
have analyzed before. The analysis of the moduli space

FIG. 34. D4-branes stretched between D6- and D68-branes:
The repulsive interaction between them is due to Euclidean
fundamental strings stretched between the various branes.
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gives the right structure; we leave the details to the
reader. To get the correct structure it is important to use
the rule stated above, which implies here that configura-
tions are unstable in which multiple D4-branes connect
a given D6- and D68-brane.

C. Quantum effects

In this section we study quantum effects in N51 SYM
theory using brane theory. We describe the quantum
moduli space of vacua and complete the demonstration
of Seiberg’s duality. We start by following a similar
route to that taken in Sec. IV and studying the form of
the M-theory five-brane describing the brane configura-
tion at finite R10 /L6 , first semiclassically and then ex-
actly. Then we present a qualitative picture of the
moduli space as resulting from certain quantum interac-
tions between branes analogous to the classical interac-
tions encountered in the last section.

1. Semiclassical description

At finite gauge coupling g [Eq. (93)] we should inter-
pret our brane configurations as describing five-branes
and six-branes in M theory with finite R10 /L6
5lsgs /L6 . Recall the definitions

s5x61ix10,

v5x41ix5,

w5x81ix9. (190)

Classically, i.e., ignoring the size of the x10 circle, the
D4-brane is located at v5w50 and is extended in s , the
NS5-brane is at s5w50 and is extended in v , while the
NS58-brane is at v50, s5L6 and is extended in w .

FIG. 35. N51 supersymmetric QCD with vanishing superpo-
tential described by a configuration with both D6- and
D68-branes.
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Quantum mechanically, the four-branes and five-
branes merge into a single five-brane in M theory, as
described in the N52 case in Sec. IV. The vacuum con-
figuration of the five-brane is described by a curve S
embedded in the space R53S1 (190). As before, for
large v and w we can think of the shape of the resulting
M5-brane in terms of the original NS5- and
NS58-branes, appropriately deformed by the four-branes
ending on them [Eq. (103)]. The structure for large v
and w is the brane analog of one-loop corrections to
classical physics in gauge theory. In this section we shall
describe these effects (Elitzur, Giveon, et al., 1997).

Consider the classical electric configuration of Fig.
24(a). According to Eq. (103), far from the origin this
configuration is deformed as follows. For large v (and
small w), the shape of the M5-brane is that of the de-
formed NS5-brane,

s55~Nf2Nc!R10 ln v , (191)

while for large w (and small v) it looks like the de-
formed NS58-brane,

s585NcR10 ln w . (192)

The two asymptotic regions join in a way that will be
discussed later at small v and w .

As explained in Sec. IV.C.4, this bending causes,
among other things, the freezing of the U(1),U(Nc).
Therefore quantum mechanically we are dealing with an
SU(Nc) gauge theory.

In Sec. V.A we saw that the classical electric SQCD is
invariant under two U(1) R symmetries (145). In gauge
theory only one combination of the two is preserved
quantum mechanically; the other is broken by the chiral
anomaly or, equivalently, instantons (see Sec. V.A). We
shall next examine this effect in brane theory.

The two classical R symmetries correspond in the
brane construction to rotations of the (x4,x5) plane, v
˜eiav , and the (x8,x9) plane, w˜eibw . The semiclas-
sical configuration, Eqs. (191) and (192), breaks both
symmetries. Re s5 and Re s58 are invariant under U(1)45
and U(1)89 , but Im s5 and Im s58 are not invariant. Over-
all shifts of Im s can be compensated for by a translation
in x10. Hence any combination of U(1)45 and U(1)89
which preserves the relative location of the NS5- and
NS58-branes in x10 is a symmetry. The (semiclassically)
unbroken R symmetry is, therefore, the one which pre-
serves

s52s585R10 log~w2NcvNf2Nc!. (193)

It is not difficult to check that if (by definition) the R
charge of u under this symmetry is one, that of Q , Q̃ is
R(Q)5R(Q̃)512Nc /Nf , in agreement with the gauge
theory answer (147). Of course, so far all we have
checked is that this symmetry is conserved semiclassi-
cally. In field theory there is no contribution to the
anomaly beyond one loop; brane dynamics reflects this,
and one can check that the exact form of the five-brane
preserves the symmetry as well.

One can tell the same story for the brane construction
describing magnetic SQCD. The classical R symmetry
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corresponds again to U(1)453U(1)89 . The charge as-
signments of the various fields (q , q̃ , M) agree with
those found in gauge theory (see Sec. V.A) and with the
electric configuration. Quantum mechanically the five-
branes are deformed due to the presence of the four-
branes; Eqs. (191) and (192), which were found for the
electric configuration, are valid for the magnetic one as
well. In brane theory this is a consequence of the fact
that the two configurations are related by the smooth
transition discussed earlier. In gauge theory it is one of
the checks of Seiberg’s duality.

The foregoing discussion may be used to provide a
heuristic explanation of a certain scale-matching relation
between the electric and magnetic theories used in
gauge-theory studies of Seiberg’s duality. We can think
of the electric coupling (s52s58)/R10 [Eq. (193)] as de-
scribing the electric QCD scale Le :

Le
3Nc2Nf5m3Nc2Nfe2(s52s58)/R10

5m3Nc2NfwNcvNc2Nf, (194)

where m is some fixed scale. If we start with a large and
negative Re(s52s58) the QCD scale Le is large. Exchang-
ing the branes as discussed above leads to a theory with
Re(s52s58).0 and, therefore, small Le . In this situation
we can continue thinking about the theory as the electric
theory with a small Le ; alternatively, we can switch to
the magnetic point of view and define the magnetic
QCD scale Lm :

Lm
3N̄c2Nf5m3N̄c2Nfe1(s52s58)/R10, (195)

where N̄c[Nf2Nc . Equations (194) and (195) lead to
the scale-matching relation

Le
3Nc2NfLm

3N̄c2Nf5mNf, (196)

which has been argued to hold in gauge theory, with m a
constant related to the coefficient of the magnetic super-
potential (161) (Kutasov, Schwimmer, and Seiberg,
1996). Equation (196) emphasizes the strong-weak cou-
pling aspect of Seiberg’s duality, since if Le becomes
small (thus making the electric theory weakly coupled)
Lm is large, and vice versa.

2. Exact results

So far we have focused on the large v and w forms of
the M5-brane into which the type-IIA five-branes and
four-branes merge for finite R10 /L6 . Following the logic
of Sec. IV we next derive its exact form.

We start with the case of pure supersymmetric Yang-
Mills theory with G5SU(Nc) and no matter, described
by the brane configuration of Fig. 24 (without six-
branes). We can proceed as in the N52 case studied in
Sec. IV. The worldvolume of the M5-brane is R3,13S ,
where the complex curve S is now embedded in the
three-complex-dimensional space Q.R53S1 param-
etrized by (v ,w ,s). The shape of the curve S can be
determined by using the symmetries and singularity
structure (Hori, Ooguri, and Oz, 1997; Witten, 1997b).
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Defining the variable t as in Eq. (104), we know that
as v˜` on S (the region corresponding to the NS5-
brane), t diverges [Eq. (191)] as t.vNc, while w goes to
zero. Similarly, as w˜` [the NS58-brane (192)], t
.w2Nc while v˜0. More generally, t should be a func-
tion of v that does not have poles or zeros except at v
50 (which is w5`) and v5` . The unique solution to
all the constraints, up to an undetermined constant z, is

vNc5t ,

wNc5zNct21,

vw5z . (197)

One way of arriving at the curve (197), which also helps
us to understand the role of the parameter z, is to start
with the N52 SUSY configuration described in Sec. IV
and rotate one of the NS5-branes as described in Sec.
V.B (Hori, Ooguri, and Oz, 1997; Witten, 1997b).

The N52, SU(Nc) brane configuration is given by
the curve (106)–(108)

t21B~v ,uk!t1LN52
2Nc 50, (198)

where we have restored the dependence on the QCD
scale LN52 . We should like to find the curve corre-
sponding to a configuration in which the right NS5-
brane has been rotated as in Eqs. (170)–(172), which
corresponds to turning on a (complex) mass m to the
adjoint field (174), breaking N52 supersymmetry to N
51. In order to ‘‘rotate the NS5-brane’’ we must con-
sider configurations in which the genus-(Nc21) curve
(198) degenerates to a genus-zero one. In gauge theory
this is the statement that the adjoint mass lifts the Cou-
lomb branch, except for isolated points. In the classical
type-IIA limit there is one such point, where all the
D4-branes are placed together, corresponding to the
origin of the Coulomb branch. For finite R10 /L6 there
are Nc points where the curve (198) is completely de-
generate. These points are related by the discrete unbro-
ken Z2Nc

subgroup of U(1)45 whose action on v , t was
described in Sec. IV.C.4 [after Eq. (115)]. It acts on the
QCD scale as

LN52
2

˜e2pi/NcLN52
2 . (199)

At one of these degenerate points the curve takes the
form

v5t1/Nc1LN52
2 t21/Nc. (200)

Rotating the right NS5-brane from w50 to w5mv im-
plies that at large t we should like for the curve to ap-
proach vNc5t and for w to be small, while for t˜0 we
want it to approach w5mv with large v , w (correspond-
ing to the NSu-brane). This is achieved by supplementing
Eq. (200) by

w5mLN52
2 t21/Nc. (201)

To make contact with Eq. (197) we should like to take
the adjoint mass m˜` . Scale matching between the
high-energy theory with the adjoint field and the low-
energy theory obtained by integrating it out,
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LN51
3 5

m

Nc
LN52

2 , (202)

implies that at the same time we have to take LN52
˜0 holding the N51 SYM scale (202) fixed. Rewriting
Eqs. (200) and (201) in terms of LN51 ,

v5t1/Nc1
Nc

m
LN51

3 t1/Nc,

w5NcLN51
3 t21/Nc (203)

and dropping the term proportional to m21 in the first
equation of Eq. (203) leads to the curve (197) with32

z5NcL
3. (204)

We saw earlier that pure N51 SYM theory with G
5SU(Nc) has a U(1)R symmetry that is broken at one
loop to Z2Nc

by the chiral anomaly and is further spon-
taneously broken nonperturbatively to Z2 , giving rise to
Nc vacua with different values of the gaugino conden-
sate, Eqs. (138) and (139). This pattern of breaking of
the chiral U(1)R symmetry has a direct analog in the
brane language. In the previous section we saw that the
brane analog of the one-loop effect of the anomaly is the
asymptotic curving of the branes for large v and w . Thus
studying the five-brane of Eq. (197) semiclassically is
tantamount to having access to its large v , w asymptot-
ics, described by the first two equations in Eq. (197), but
not to the shape of the five-brane for small v and w ,
which is described by the last equation in Eq. (197).

It is therefore interesting that z appears in the first
two equations only in the combination zNc, while the
third equation depends on z itself. This means that five-
branes of Eq. (197) related by the ZNc

transformation

z˜e2pi/Ncz (205)

look the same asymptotically (or semiclassically) but dif-
fer in their detailed shape. Each of the Nc possible val-
ues of z in Eq. (205) corresponds to a different five-
brane and, therefore, to a different vacuum of the
quantum theory. The ZNc

symmetry relating them is
spontaneously broken. One can think of z as the gaugino
condensate (139) (Hori, Ooguri, and Oz, 1997; Brandhu-
ber, Itzhaki, et al., 1997a).

In addition to the ZNc
symmetry mentioned above,

which acts on v , w , and t as

v˜v ,

w˜e2pi/Ncw ,

t˜t (206)

and which—as explained above—is a symmetry of the
first two equations in Eq. (197) but does not leave the
third one invariant [or in other words has to be com-
bined with Eq. (205) to become a symmetry], there are
two more global symmetries. One is a U(1) R symmetry
discussed near Eq. (193),

32We also rename LN51˜L .-
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v˜eidv ,

w˜e2idw ,

t˜eiNcdt . (207)

As anticipated there, this symmetry, which is preserved
semiclassically, is an exact symmetry of the brane con-
figuration. For Nf.0 it corresponds to a symmetry of
the low-energy supersymmetric Yang-Mills theory, be-
coming part of the N51 superconformal algebra in the
infrared. In the case considered here, in the absence of
matter (Nf50), the SYM fields do not carry charge un-
der this symmetry. It is possible that this U(1) symmetry
is still part of the N51 superconformal algebra in the
infrared, but pure SYM theory has a mass gap and does
not contribute to the extreme infrared conformal field
theory. If the brane configuration is to describe SYM
physics at low but nonzero energies, any states charged
under Eq. (207) must decouple from SYM physics.

There is also a Z2 symmetry corresponding to ex-
changing v and w ,

v˜w ,

w˜v ,

t˜zNct21. (208)

This symmetry reverses the orientation of 4–4 strings
stretched between different four-branes and therefore
acts as charge conjugation. The fact that it is an exact
symmetry of the vacuum is in agreement with gauge
theory.

Having understood chiral symmetry breaking in the
brane language we next turn to confinement (Witten,
1997b). Pure N51 SYM theory is expected to have the
property that if one introduces a heavy quark and anti-
quark into the system, the energy of the pair will grow
with their separation as if the two were connected by a
string with tension L2. This ‘‘QCD string’’ can thus end
on external quarks, but in the absence of quarks it is
stable. Since Nc fundamentals of SU(Nc) can combine
into a singlet, QCD strings can annihilate in groups of
Nc . It is expected that large-Nc QCD can be reformu-
lated in terms of weakly coupled QCD strings. Estab-
lishing the existence and studying the properties of
QCD strings is one of the major challenges in QCD.

In brane theory it is natural to identify the QCD
string with an M2-brane ending on the M5-brane [Eq.
(197)]. We are searching for a membrane that looks like
a string to a four-dimensional observer and that is also a
string in the space Q labeled by (v ,w ,t). We can de-
scribe the string in Q by an open curve C parametrized
by 0<s<1, such that both of its end points (the points
with s50,1) are in S. It turns out that the right curve for
describing a QCD string is

t5t05const,

v5t0
1/Nce2pis/Nc,

vw5z . (209)
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The string in spacetime obtained by wrapping a mem-
brane around the curve C has the following properties:

(1) Groups of Nc (but not fewer) strings can annihilate.
(2) The QCD string can end on an external quark.
(3) For a particular choice of t0 , C has minimal length.

The fact that QCD strings annihilate in groups of Nc can
be seen by aligning strings described by curves Cj of the
form (209) with 2(j21)p<2ps<2jp (j51,.. . ,Nc).
The Nc strings form a long closed string in Q that can
detach from the five-brane and shrink to a point. At the
same time, the strings corresponding to different Cj are
all equivalent as they can be mapped into each other by
continuously varying the phase of t0 , t0˜t0 exp(2pia)
with 0<a<1.

To minimize the length of C one notes that t is con-
stant along it, while v and w change by amounts of order
t0

1/Nc/Nc and zt0
21/Nc/Nc , respectively, (for large Nc).

The length is minimized for t0;zNc/2; it is of order lC
;z1/2/Nc . The tension of the QCD string is obtained by
multiplying lC by the tension of the M2-brane 1/lp

3 . Re-
storing dimensions in Eq. (204), z5Nclp

6L3/R10 , we find
that the tension of the QCD string is

T;S L3

R10Nc
D 1/2

. (210)

In SYM physics one expects the tension of the QCD
string to be of order T;L2. Comparing to Eq. (210) we
see that for agreement with SYM theory we must choose

R10;
1

NcL
. (211)

For such values of R10 there is no decoupling of the
four-dimensional SYM physics from Kaluza-Klein exci-
tations carrying momentum in the x10 direction. One
might think that, due to Eq. (211), at least for large Nc ,
the Kaluza-Klein scale would be much higher than the
QCD scale L. Unfortunately, since the Riemann surface
S winds Nc times around the x10 direction, the Kaluza-
Klein modes see an effective radius NcR10 and have en-
ergies of order L. Thus decoupling fails even in the
large-Nc limit.

From the discussion in previous sections it is clear
what went wrong. The QCD string is not a BPS-
saturated object and therefore its tension is not pro-
tected by the usual nonrenormalization theorems. The
estimate (210) of its tension is semiclassical in nature
and is valid when the supergravity approximation for
describing membranes and five-branes is applicable. We
are discovering that in this regime the system does not
describe decoupled SYM physics. The regime corre-
sponding to SYM theory is described by Eqs. (93)–(95);
in that regime it is not clear at present how to study
properties of the QCD string, such as the tension, but
there is no reason for the formula (210) to be valid. It is
known (de Boer et al., 1998a) that other nonholomor-
phic SYM features, such as the Kähler potential for me-
sons and baryons, depend sensitively on R10 , L6 , and
there is no reason to expect that the tension of QCD
strings is any different.
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In addition to QCD strings, one can construct using
branes domain walls separating regions in space corre-
sponding to different vacua (different values of z). A
domain wall occurs as x3

˜2` , when the configuration
approaches one value of z while as x3

˜` it approaches
another. The resulting M5-brane interpolates between
the two solutions (197). It is known in gauge theory that
such domain walls are BPS saturated and their tension is
the difference between the values of the superpotential
(140) between the different vacua. At large Nc it thus
goes like TD.NcL

3.
Unlike the QCD string, the tension of the BPS-

saturated domain wall (or membrane) can be exactly
calculated using branes. Witten has shown that the ten-
sion of the domain wall goes at large Nc like TD
.R10uzu/lp

6 , which, using the form of z and R10 discussed
above, agrees with the gauge-theory analysis. Witten
furthermore pointed out that the domain wall behaves
in large-Nc gauge theory like a Dirichlet two-brane in
string theory; its tension goes like Nc , which is the in-
verse QCD string coupling, and the QCD string can end
on it, just as the fundamental string can end on a
D-brane.

The above discussion can be generalized by adding Nf
fundamental chiral multiplets of SU(Nc) with masses
mi , i51,.. . ,Nf . We saw that these can be described by
adding Nf semi-infinite four-branes to the left of the
NS5-brane at v5mi . The corresponding Riemann sur-
face S takes the form (Brandhuber, Itzhaki et al., 1997a;
Witten, 1997b; Hori, Ooguri, and Oz, 1998)

vNc5t)
i51

Nf S 12
v

mi
D ,

vw5z , (212)

where

zNc5L3Nc2Nf)
i51

Nf

mi . (213)

For large mi the configuration (212) is essentially the
same as Eq. (197) and one can think of the quarks with
masses mi as static sources.

Quarks are confined in this system, and one expects
the energy of a state with a quark and antiquark sepa-
rated by a large distance dx@L21 to grow like Tdx
where T is the tension of the QCD string. Classically,
the quark and antiquark are described by fundamental
strings connecting a flavor four-brane to the stack of
color four-branes. Quantum mechanically these funda-
mental strings turn into membranes, and the only stable
configuration has them connected by a long QCD string;
thus its energy is indeed proportional to the separation
of the two quarks, as expected from gauge theory.

To study theories with massless quarks we have to
take the limit mi˜0 in Eq. (213). This was discussed by
Hori, Ooguri, and Oz (1998). For 0,Nf,Nc massless
flavors, the curve one finds in the limit is singular—it is
infinitely elongated in the x6 direction, and therefore the
corresponding brane configuration does not describe a
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four-dimensional field theory. This is consistent with the
field-theory analysis: the gauge theory has no vacuum
due to the nonperturbative superpotential (152).

For Nf>Nc the supersymmetric Yang-Mills theories
under consideration have quantum moduli spaces of
vacua that were described in Sec. V.A. To study them
one needs to replace the semi-infinite four-branes by
four-branes ending on six-branes, described as in Sec. IV
by an M5-brane in the background of a resolved ANf21

multi-Taub-NUT space. It is then possible, by rotating
the N52 SYM curves with matter studied in Sec. IV, to
describe the roots of different branches of the moduli
space. As an example, the root of the baryonic branch,
which exists for all Nf>Nc , is (formally) described by
the factorized curve

SL : t5vNc2Nf, w50,

SR : t5L3Nc2Nfw2Nc, v50. (214)

It can be shown that deformations of the curve (214)
leads to a @2NcNf2(Nc

221)#-complex-dimensional
space parametrizing the Higgs branch of the theory, in
agreement with field-theory results (with the caveat dis-
cussed in Sec. IV.C.4 that one complex modulus appears
to be a parameter in the brane description).

It should be emphasized that just as in Sec. IV, when
one approaches a singular point in moduli (or param-
eter) space where the infrared behavior changes, such as
Eq. (214), the five-brane degenerates and the supergrav-
ity approximation breaks down, even if overall the five-
brane (i.e., L6 , R10) is large. Thus one cannot use su-
pergravity to study most aspects of the nontrivial
superconformal field theory at the origin of moduli
space for Nf>Nc .

What is done in practice is to resolve the singularity
by turning on a superpotential for the quarks that lifts
all the flat directions, or study the theory in its fully
Higgsed branch. As is standard in gauge theory
(Seiberg, 1994), by computing the expectation values of
chiral fields as a function of the deformation parameters
one can recover the superpotential at the origin of
moduli space.

Further study of confinement and extended objects
in M-theory QCD appear in several recent works
(Fayyazuddin and Spalinski, 1997b; Nam, Oh, and Sin,
1997; Volovich, 1997; Ahn, 1998b; Ahn, Oh, and Tatar,
1998c; Hanany, Strassler, and Zaffaroni, 1998). The du-
ality trajectory of Sec. V.B.3 in M theory has been de-
scribed by Csaki and Skiba (1997); Furukawa (1997);
Schmaltz and Sundrum (1998)).

3. Brane interactions

So far we have discussed the vacuum structure of N
51 SQCD by using properties of the M theory five-
brane. We saw that many features of the quantum
vacuum structure can be understood using five-branes.
In particular, M-theory techniques provide a very natu-
ral description of the Coulomb branch of various N
51,2 SUSY gauge theories. They are also very useful for
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describing isolated vacua with a mass gap, such as those
of SQCD with massive quarks, and for studying proper-
ties of BPS saturated states in such vacua.

There are also some drawbacks. One is that the de-
scription in terms of large and smooth five-branes is in-
applicable in the supersymmetric Yang-Mills limit (93)–
(95), where the five-brane in fact degenerates, and at the
same time most quantities that one might be interested
in calculating in SYM theory depend strongly on R10
and L6 . Also, the long-distance behavior at the origin of
moduli space is described by singular five-branes for
which the supergravity description is not valid. If one
considers only the vacuum structure, the global structure
of moduli space requires a rather involved description in
the M-theory language even for SQCD, which makes it
difficult to extract physical consequences and study
more complicated situations.

One may also want a more uniform description of the
physics in different dimensions. We shall discuss later
three-dimensional analogs of the theories studied in this
section, which correspond to brane configurations in
type-IIB string theory, where the M-theory construction
is inapplicable. It is one of the remarkable features of
brane dynamics that rather different dynamical systems,
such as three- and four-dimensional gauge theories, are
described by closely related brane configurations. It is
difficult to believe that when the dynamics of branes is
eventually understood, the story will be drastically dif-
ferent in different dimensions.

To really solve QCD using webs of branes one needs
a much better understanding of the theory on four-
branes stretched between five-branes in the appropriate
scaling limit. Already for a stack of flat parallel NS five-
branes, the worldvolume dynamics is not understood
(see Aharony, Berkooz et al., 1998; Aharony, Berkooz,
and Seiberg, 1998; Ganor and Sethi, 1998 and references
therein for recent work on this problem). It is even less
clear what happens when one suspends four-branes be-
tween the five-branes and studies the system in the limit
of Eqs. (93)–(95).

In the absence of understanding of the theory on the
five-brane one may proceed as follows (Elitzur, Giveon,
et al., 1997). The quantum vacuum structure of different
brane configurations can be thought of as a consequence
of interactions between different branes. For theories
with eight supercharges such interactions modify the
metric on moduli space, while for systems with four su-
percharges they give rise to forces between different
branes that sometimes lift some or all of the classical
moduli space.

When the interacting branes are nearby, one expects
the resulting forces to be rather complicated, and a more
detailed understanding of five-brane dynamics is neces-
sary. For widely separated branes, i.e., far from the ori-
gin of moduli space, the interactions should simplify.
The purpose of this section is to describe the quantum
moduli space of vacua of SQCD with G5SU(Nc) and
Nf fundamentals by postulating certain long-range inter-
actions between different branes. In the next section we
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shall show that these interactions also explain the
vacuum structure of N52 SUSY gauge theories in three
dimensions.

Of course, these interactions are not derived from
‘‘first principles’’ but rather guessed by comparison with
the gauge-theory results, so on the level of the present
discussion they do not necessarily have much predictive
power. However, as usual in brane theory, the interac-
tions are local in the sense that they do not depend on
the global structure of the configuration in which the
branes are embedded. Therefore once the local rules are
formulated one can use them in more complicated situ-
ations, and even different dimensions, to learn more
about gauge dynamics. And, of course, once one is con-
vinced that these rules are valid, they teach us about
brane dynamics as well and need to be eventually repro-
duced by the theory of the five-branes.

The quantum rule of brane dynamics that we shall
postulate is (see Fig. 36) as follows: There is a long-range
interaction between a D4-brane stretched between an
NS5- and an NS58-brane, and any other D4-brane end-
ing on one of the five-branes. It is repulsive if the
D4-branes are on the same side of the five-brane and
attractive if they are on different sides.

Comments:

(1) U duality relates the above rule to many other cases.
For example, the classical interaction between
D4-branes stretched between D6- and

FIG. 36. Widely separated four-branes in configurations with
N51 supersymmetry, acting as charged particles: (a) branes
that end on opposite sides of a Neveu-Schwarz five-brane at-
tract each other, while (b) those that end on the same side
have a repulsive long-range interaction.
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D68-branes—discussed in Sec. V.B.4—is related to
it by compactifying (say) x3 and applying the
U-duality transformation U5T3ST3 . U relates
quantum interactions to classical ones in this case
because it involves a strong-weak coupling duality
transformation (S). As another example, in the next
section we shall discuss the consequences of the
above quantum interactions for systems related to
the current setup by applying T3 (i.e., D3-branes
ending on NS5- and NS58-branes). In the rest of this
section we use the quantum interactions to describe
the moduli space of vacua of SQCD.

(2) The quantum rules are useful in describing situa-
tions where the different branes that interact are
widely separated. They provide a qualitative picture
of the quantum moduli space and can be used to
understand the semiclassical corrections to the su-
perpotential. One can thus see using the quantum
rules when runoff to infinity in moduli space will
occur; in situations with unlifted quantum moduli
spaces, the quantum rules allow one to study the
structure of the moduli space far from the origin.
The origin of moduli space and, in general, situa-
tions where the branes are close to each other need
to be studied by different techniques.

We start with electric SQCD described by the brane
configuration of Fig. 24. For Nf50 the system contains
Nc D4-branes stretched between an NS5- and an
NS58-brane. The quantum rule formulated above cannot
be applied to this case. The D4-branes repel each other
but are restricted by the geometry to lie on top of each
other, and the vacuum structure is determined by short-
distance properties of the brane system. In the previous
section we saw that the M-theory analysis gave a good
description of the vacuum structure for this case.

For 1<Nf<Nc21 massless flavors, the system devel-
ops an instability that can be understood using the quan-
tum rule. Describing the flavors by D6-branes intersect-
ing the D4-branes [Fig. 24(b)], there is now the
possibility for D4-branes to break on the D6-branes,
and the segments of the broken D4-branes connecting
the NS58-brane to the nearest D6-brane are repelled
from the remaining color D4-branes, which are still
stretched between the NS5- and NS58-branes. Since the
repulsion is presumed to be long range, these segments
run off to w˜` , and there is no stable vacuum at a
finite value of the moduli.

For Nf>Nc the situation changes. Now there do exist
stable configurations of the branes with no repulsive in-
teractions. They correspond to breaking all Nc color
four-branes on D6-branes, which effectively screens the
repulsive interactions and gives rise to a quantum
moduli space that looks qualitatively the same as the
classical one. Interesting effects occurring near the ori-
gin of the quantum moduli space, such as the quantum
modification (156) for Nf5Nc , again correspond to a
regime where the brane interactions are not well under-
stood and have to be studied by different techniques.
One consequence of this discussion is that the dimension
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of the quantum moduli space of electric SQCD is seen in
brane theory to be 2NfNc2Nc

2 (presumably 11 to ac-
count for the difference between SU(Nc) and U(Nc) as
discussed above), just like that of the classical theory.

A similar analysis can be performed for the magnetic
configuration of Fig. 28 with gauge group G5SU(N̄c)
and Nf flavors. As before, we restrict ourselves to the
case Nf>N̄c . We saw before that the classical moduli
space is Nf

2 dimensional, corresponding to giving expec-
tation values to the components of the magnetic meson
field M (183), without breaking the gauge group. We
also saw that turning on a Fayet-Iliopoulos D term (182)
changes the form of the moduli space discontinuously.
In particular, for rÞ0 the moduli space is Nf

22N̄c
2 di-

mensional.
Quantum mechanically the discontinuity in the struc-

ture of the moduli space is eliminated. The N̄c color
four-branes are attracted to the Nf flavor four-branes.
Hence N̄c of the Nf flavor four-branes align with the
color four-branes and reconnect, giving rise to N̄c four-
branes stretched between the NS5-brane and N̄c differ-
ent six-branes (in agreement with the s rule). The re-
maining Nf2N̄c flavor four-branes are easily seen to
give rise to an (Nf

22N̄c
2)-dimensional moduli space (see

Fig. 37). Furthermore, as is obvious from Fig. 37, the
part of the classical moduli space that remains unlifted
in the quantum theory is precisely the part that is
smoothly connected to the structure at the nonzero
Fayet-Iliopoulos D term r [or to the baryonic branch of
moduli space, if the gauge group is really SU(N̄c) and r
describes the baryonic branch].

In gauge theory, the lifting of a part of the classical
moduli space in the quantum magnetic theory follows
from the fact that the classical magnetic superpotential

FIG. 37. Quantum brane interactions lifting a part of the mag-
netic moduli space of Fig. 29, leaving an unlifted
(Nf

22N̄c
2)-dimensional quantum moduli space.
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(183) is corrected quantum mechanically33 to Eq. (161).
The second term in Eq. (161) is due to the fact that
when M gets an expectation value, the magnetic quarks
become massive due to the classical coupling (183), and
a superpotential of the form (154) with Nc˜N̄c is gen-
erated.

It is not difficult to show that the moduli space corre-
sponding to Eq. (161) is the same as the quantum
moduli space of brane configurations (Fig. 37). Thus we
have the result that the quantum brane interactions de-
scribed above can reproduce the consequences of non-
perturbative superpotentials of SYM theory.

4. Quantum N51 duality and phase transitions

After understanding the form of the quantum moduli
spaces of vacua of the electric and magnetic theories we
can complete the demonstration of Seiberg’s duality us-
ing branes. We saw before that classically the moduli
spaces of the electric and magnetic theories agree for
nonzero r in Eq. (182), but there is a discrepancy be-
tween the structures for r50. We have now seen that
quantum mechanically the discrepancy disappears. The
electric moduli space is not modified quantum mechani-
cally, while in the magnetic theory quantum effects lift
part of the classical moduli space, leaving behind pre-
cisely the subspace that connects smoothly to the elec-
tric theory via the construction of Sec. V.B.3. This com-
pletes the proof of the equivalence of the quantum
moduli spaces of the electric and magnetic theories and,
therefore, also of the corresponding chiral rings.

In gauge theory one distinguishes between two no-
tions of N51 duality. The weaker version is the state-
ment that members of a dual pair share the same quan-
tum chiral ring and moduli space of vacua, as a function
of all possible deformations. In Seiberg’s original work
this statement was proven for supersymmetric QCD,
and we have now rederived it using branes. The stronger
version of Seiberg’s duality asserts that the full infrared
limits of the electric and magnetic theories coincide. In
field theory, no proof of this assertion has been given,
but it is believed to be correct. One may ask whether the
embedding of the problem in brane theory helps to
settle the issue.

To show the equivalence of the (in general) nontrivial
infrared theories at the origin of the electric and mag-
netic moduli spaces, one would like to continuously in-
terpolate between them while staying at the origin of
moduli space and only varying L, or x6. In the process
we pass through a region where the NS5- and
NS58-branes cross. We shall next discuss this region.

In fact, one can ask more generally, what happens to
the low-energy physics on webs of branes as some of the
branes (which are in general connected by other branes
to each other) meet in space and exchange places. We

33Equation (161) corresponds to N̄c5Nf2Nc , the value rel-
evant for N51 duality.
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
have discussed a few examples of such transitions at
various points in the review. Let us summarize the re-
sults.

The low-energy physics is smooth when nonparallel
Neveu-Schwarz branes connected by four-branes cross
(in which case the smoothness of the transition is
equivalent to the strong version of Seiberg’s duality),
and when nonparallel NS and D-branes cross (the
Hanany-Witten transition of Fig. 15). When parallel NS
five-branes connected by four-branes cross, the transi-
tion relates N52 SYM theories with different-rank
gauge groups, e.g., U(Nc) and U(Nf2Nc). By construc-
tion, these theories have the same fully Higgsed branch
but in general different mixed and Coulomb branches,
and even different numbers of massless fields. Thus in
that case there is a phase transition. Similarly, when par-
allel D- and NS-branes cross, there is a phase transition.
For example, we saw that as a D6-brane passes an
NS58-brane, we lose or gain a light-matter multiplet.

In both of the above cases, phase transitions occur in
situations where a configuration containing parallel co-
incident branes is deformed in different directions. An
interesting example that superficially shows a different
behavior is configurations with rotated six-branes D6u ,
discussed in Sec. V.B.4, where the low-energy physics
depends on the order in which different nonparallel six-
branes appear along the x6 axis (different orders corre-
sponding to different superpotentials). A closer look re-
veals that, in fact, this example follows the same pattern
as the others. When all branes (the two NS-branes and
Nf six-branes) are nonparallel, there is in fact no phase
transition as different six-branes cross. It is only when
some of the six-branes are parallel to other six-branes or
to one or more of the NS five-branes, as in the configu-
ration of Fig. 35, that changing the order of the six-
branes influences the low-energy dynamics.

For the case in which some of the six-branes become
parallel, it is easy to understand the mechanism for the
phase transition. Imagine first placing all Nf six-branes
at the same value of x6. In this case, fundamental strings
connecting different six-branes give rise to massless
fields which we shall collectively denote by A . Quarks Q
are as usual described by 4–6 strings. The standard three
open-string coupling gives rise to cubic superpotentials
of the form W5Q̃AQ . As we displace the six-branes
relative to each other in x6 the fields A become massive,
and integrating them out gives rise to quartic superpo-
tentials for the quarks, of the general form W
;(Q̃Q)2. It is rather easy to see that in the generic case,
when no branes are parallel, the superpotential gener-
ated this way is the most general one, and the low-
energy theory is insensitive to the precise coefficients.
When some of the six-branes are parallel, different de-
formations give superpotentials with inequivalent long-
distance behaviors.

The lesson from this example is the following. When
branes meet in space, additional degrees of freedom in
the theory in general become massless. If these degrees
of freedom couple to the gauge theory on the four-
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branes, it is possible that different deformations of the
singular point in which branes touch produce different
low-energy behaviors. Otherwise the transition is
smooth.

What happens in the other cases described above?
When two parallel NS-branes approach each other, de-
grees of freedom corresponding to membranes stretched
between them go to zero mass and eventually become
tensionless BPS-saturated strings trapped in the five-
brane(s). The usual three-membrane vertex in eleven di-
mensions implies that these tensionless strings interact
with the degrees of freedom describing the gauge theory
on the four-branes and, therefore, it is not surprising as
in the previous case to find that different deformations
of the system correspond to different phases.

When two nonparallel five-branes, NSu1
and NSu2

with
u1Þu2 , approach each other in x6, membranes
stretched between the two five-branes do not lead to
BPS-saturated strings inside the five-brane. Hence there
is no mechanism for a phase transition to occur as the
two five-branes are exchanged.

It is important to emphasize that the above argument
does not prove full infrared equivalence of members of a
Seiberg dual pair. The fact that membranes stretched
between nonparallel Neveu-Schwarz five-branes are not
BPS saturated provides another proof of the fact that
the vacuum structure is smooth. To rule out a change in
the full infrared conformal field theory, one needs to
understand the interactions of all the light non-BPS
modes of a membrane stretched between the NSu1

and
NSu2

five-branes with the gauge-theory degrees of free-
dom. This is beyond the reach of available methods.

D. Generalizations

Branes can be used to study the dynamics of a wide
variety of N51 supersymmetric gauge theories with dif-
ferent matter contents and superpotentials. In this sec-
tion we briefly describe a few constructions that have
appeared in the recent literature. In situations where a
good brane description exists, it leads to new insights
both on gauge theory and on brane dynamics. Therefore
it is important to enlarge the class of models that can be
described this way. This may also provide clues towards
the formulation of the five-brane theory.

1. Product groups

In Sec. IV.C.3 we discussed N52 SUSY theories with
product gauge groups G5Pa51

n SU(ka), by considering
n11 parallel NS5-branes connected by four-branes. N
51 configurations of this sort are obtained by perform-
ing relative rotations (170) of the five-branes.

As an example, consider the configuration of Fig.
38(a), which was studied by Brodie and Hanany (1997)
and Giveon and Pelc (1998). Three NS five-branes de-
noted by NS5L , NS5, and NS5R are ordered in the x6

direction such that the NS5L-brane is the leftmost while
the NS5R-brane is the rightmost. We can choose to ori-
ent the (middle) NS5-brane as in Eq. (91) and rotate the
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other two relative to it by (uL ,wL) and (uR ,wR) [see
Eq. (172)]. NL or NR D4-branes are stretched in the x6

direction between the NS5L- and NS5-branes or be-
tween the NS5- and NS5R-branes.

The theory on the four-branes is an SU(NL)
3SU(NR) gauge theory with two chiral multiplets in
the adjoint of the respective gauge groups FL ,FR , and
bifundamentals F ,F̃ in the (NL ,N̄R),(N̄L ,NR). The
classical superpotential is

W5mL Tr FL
2 1mR Tr FR

2 1Tr F̃FLF1Tr FFRF̃ , (215)

where [see Eq. (172)]

mL5eiwL tan uL , mR5eiwR tan uR . (216)

Integrating out the massive adjoints we obtain (for ge-
neric rotation angles)

W;Tr~FF̃ !2. (217)

We can add fundamental quarks to the theory by adding
to the configuration six-branes and/or semi-infinite four-
branes.

A qualitative identification between the parameters
and moduli of the field theory on the four-branes and
the parameters determining the brane configuration can
be made along the lines of this section. The quantum
vacuum structure can be studied by starting with the N
52 curve (133) and rotating it, following the logic of the
discussion of Sec. V.C for a simple group. This was done
by Giveon and Pelc (1998).

It is straightforward to find Seiberg dual configura-
tions by interchanging the order of the NS-branes, a pro-
cedure that is expected to preserve the long-distance

FIG. 38. An N51 SUSY theory with G5U(NL)3U(NR)
and matter in the bifundamental and fundamental representa-
tions. The bifundamental has (a) a quartic or (b) higher-order
polynomial superpotential.
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physics as long as the five-branes being exchanged are
not parallel [which is the case for generic uL , uR in Eq.
(216)]. In particular, if we start in the ‘‘electric’’ configu-
ration of Fig. 38(a) with nL and nR flavors of SU(NL)
and SU(NR), respectively, exchanging the NS5L- and
NS5R-branes leads (Brodie and Hanany, 1997) to a mag-
netic theory with G5SU(nL12nR2NR)3SU(nR
12nL2NL) and the same number of flavors, in agree-
ment with the field-theory results (Intriligator, Leigh,
and Strassler, 1995).

2. Landau-Ginzburg superpotentials

Brane configurations containing D4-branes ending on
a stack of parallel NS five-branes are interesting since
the theory on the five-branes is in this case nontrivial in
the IR [it is the (2,0) theory discussed before], and it is
interesting to see how this is reflected in the structure of
the theory on the four-branes.

Consider (Elitzur, Giveon, and Kutasov, 1997; Elitzur,
Giveon, et al., 1997), as an example, a configuration of k
coincident NS5-branes connected by Nc D4-branes to
k8 coincident NS58-branes, with Nf D6-branes located
between the NS5- and NS58-branes [see Fig. 39(a)]. N
51 SQCD corresponds to the case k5k851. The classi-
cal low-energy theory on the four-branes is in this case
N51 SYM theory with gauge group U(Nc), Nf funda-
mental flavors Qi, Q̃i , and two adjoint superfields F,
F8. The classical superpotential is

W5
s0

k11
Tr Fk111

s08

k811
Tr F8k8111Tr@F ,F8#2

1Q̃iF8Qi. (218)

Here F and F8 can be thought of as describing fluctua-
tions of the four-branes in the w and v directions, re-
spectively. They are massless, but the superpotential
(218) implies that there is a polynomial potential for the

FIG. 39. Two dual models: (a) a theory with G5U(Nc), two
adjoint superfields with polynomial superpotentials, and fun-
damentals; (b) the Seiberg dual model with Ḡ5kNf2Nc .
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corresponding fluctuations, allowing only infinitesimal
deviations from the vacuum at F5F850. The couplings
s0 , s08 should be thought of as very large: s0 ,s08˜` . This
can be deduced, for example, on the basis of the trans-
formation properties of Eq. (218) under the R symme-
tries U(1)45 and U(1)89 .

To see that the configuration of branes constructed
above indeed describes a gauge theory with the stated
matter content and, in particular, to see the origin of the
adjoint fields F, F8 one matches the deformations of the
brane configuration with those of the gauge theory
(218). Consider first the case k851 for which F8 is mas-
sive and can be integrated out. For large s08 this amounts
to putting F850 in Eq. (218).

An interesting deformation of the brane configuration
of Fig. 39(a) corresponds to displacing the k NS5-branes
in the (x8,x9) plane to k different points wj , j
51,.. . ,k . Since the NS58-brane is extended in w , this
gives rise to many possible supersymmetric configura-
tions, labeled by sets of non-negative integers (r1 ,. . . ,rk)
with ( jr j5Nc , which specify the number of four-branes
stretched between the jth NS5-brane and the
NS58-brane (Fig. 40).

When all the $wj% are distinct, the low-energy physics
described by the configuration of Fig. 40 corresponds to
k decoupled SQCD theories with gauge groups U(ri)
and Nf flavors of quarks. As we approach the origin of
parameter space, wj50, the full U(Nc) gauge group is
restored.

To translate the above discussion to the language of
gauge theory on the four-brane, one notes that in dis-
placing the NS5-branes in w , the four-branes attached to

FIG. 40. Displacement of the k NS5-branes in w , giving rise to
a rich vacuum structure labeled by the numbers of D4-branes
attached to the different NS5-branes, rj .
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them are displaced as well. The locations of the four-
branes in w correspond to the expectation value of an
adjoint of U(Nc), F, describing fluctuations of the four-
branes in (x8,x9). In a vacuum labeled by (r1 ,. . . ,rk) the
expectation value of F is ^F&5diag(w1

r1 ,...,wk
rk). Further-

more, in the brane construction the $wj% correspond to
locations of heavy objects (the five-branes) and thus
they are expected to appear as parameters rather than
moduli in the gauge-theory description.

The gauge theory that achieves all of the above is the
one described by Eq. (218). Generic $wj% correspond to
a polynomial superpotential for F,

W5(
j50

k sj

k112j
Tr Fk112j. (219)

For generic $sj% the superpotential has k distinct minima
$wj% related to the parameters in the superpotential via
the relation

W8~x !5(
j50

k

sjx
k2j[s0)

j51

k

~x2wj!. (220)

The integers (r1 ,. . . ,rk) introduced above are the num-
bers of eigenvalues of the matrix F residing in the dif-
ferent minima of the potential V5uW8(x)u2. Thus the
set of $rj% and $wj% determines the expectation value of
the adjoint field F, in agreement with the brane picture.
When all $wj% are distinct the adjoint field is massive,
the gauge group is broken,

U~Nc!˜U~r1!3U~r2!3¯3U~rk!, (221)

and the theory splits in the infrared into k decoupled
copies of SQCD with gauge groups $U(ri)% and Nf fla-
vors of quarks. The brane description makes this struc-
ture manifest.

For k8.1, the above discussion can be repeated for
the parameters corresponding to the locations of the k8
NS58-branes in the v plane. These k8 complex numbers
can be thought of as parametrizing the extrema of a
polynomial superpotential in F8 of order k811, in com-
plete analogy to Eqs. (219) and (220). The only new
element is that when we displace the k8 NS58-branes in
the v directions, leaving the Nf D6-branes fixed, we
make the quarks Q , Q̃ massive with masses of order
^F8&. This is the origin of the Yukawa coupling in the
superpotential [the last term on the right-hand side of
Eq. (218)]. One can also consider situations in which
both NS5- and NS58-branes are displaced in the w and v
directions, respectively, and study the moduli space of
vacua of the theory (218) for general k and k8.

A Seiberg dual of the system (218) can be obtained by
interchanging the NS5- and NS58-branes in x6 [Fig.
39(b)]. For k>1, k851 one derives this way (Elitzur,
Giveon, and Kutasov, 1997) the dual description (167)
obtained in field theory by Kutasov (1995) and Kutasov
and Schwimmer (1995). For k51, k8.1 one finds a per-
turbation of this duality that was discussed in field
theory by Aharony, Sonnenschein, and Yankielowic
(1995). For general k , k8 the brane construction predicts
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a new duality that was not previously known in field
theory (Elitzur, Giveon, et al., 1997).

Quantum mechanically, the type-IIA configuration of
Fig. 39(a) is again replaced by a smooth M5-brane. For
k51 and general k8 this five-brane was obtained by de
Boer and Oz (1997) by rotating an N52 SUSY configu-
ration. It was shown that monopole and meson expecta-
tion values computed from M theory match the results
obtained in field theory via confining phase superpoten-
tials (Elitzur, Forge, et al., 1996).

More generally, one may consider chains of stacks of
coincident five-branes, separated in the x6 direction as
before and rotated with respect to each other. An ex-
ample that was discussed by Brodie and Hanany (1997)
and that is depicted in Fig. 38(b) involves an NS5-brane
connected to k NS5L-branes on its left by NL four-
branes, and to k NS5R-branes on its right by NR four-
branes. nL and nR six-branes are located to the left and
the right of the NS5-brane, respectively.

For generic orientations uL , uR , this brane configura-
tion corresponds to an SU(NL)3SU(NR) gauge theory
with nL (nR) fundamental quarks of SU(NL)
„SU(NR)… and bifundamentals F ,F̃ , with the classical
superpotential

W;~FF̃ !k11. (222)

The dual configuration is obtained by interchanging the
NS5uL

- and NS5uR
-branes. The magnetic gauge group is

SU@(k11)(nL1nR)2nL2NR#3SU@(k11)(nL1nR)
2nR2NL# , in agreement with field theory (Intriligator,
Leigh, and Strassler, 1995). The case k51 was discussed
after Eq. (217).

Finally, note that configurations containing coincident
NS five-branes provide an example of a phenomenon
mentioned above: different deformations of the configu-
ration describe different low-energy theories. For ex-
ample, the configuration of k coincident NS5-branes
connected by four-branes to an NS58-brane (Fig. 39) can
be deformed in two different directions. Separating the
five-branes in w we find a theory that is well described
by the gauge theory with an adjoint superfield F and a
polynomial superpotential (218) described in this sec-
tion. On the other hand, separating the NS5-branes in x6

leads to a low-energy description in terms of a product
group of the general sort described in the previous sec-
tion. The two configurations are clearly inequivalent and
are continuously connected through a transition which
involves crossing parallel NS5-branes. We conclude that,
as in the other examples mentioned above, a phase tran-
sition occurs when the NS5-branes coincide. This transi-
tion is apparently related to the nontrivial conformal
field theory on k.1 five-branes; to understand the na-
ture of the transition a better understanding of the (2,0)
theory on k parallel five-branes will probably be re-
quired.

3. Orthogonal and symplectic gauge groups from orientifolds

Just as for N52 SUSY configurations, many new
theories are obtained by adding an orientifold plane. In
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this section we list a few examples of such theories and
mention some of their properties. We start with an
O6-plane and then move on to an O4-plane.

a. Orientifold six-plane

The simplest configurations to consider are again ro-
tated N52 ones. Starting with the configuration of Fig.
17 and rotating the NS5-brane by a generic angle u, to
an NSu-brane34 gives a mass to the adjoint chiral multip-
let. The resulting configuration has N51 supersymmetry
and light matter in the fundamental representation of
the gauge group, which we recall is SO(Nc) for positive
orientifold charge and Sp(Nc/2) for negative charge. If
we leave the D6-branes parallel to the orientifold, we
find a theory with a quartic superpotential for the
quarks. To switch off the superpotential we rotate the
D6-branes as well until they are parallel to the
NSu-brane (and their mirrors are parallel to the mirror
NS2u-brane; see Fig. 41).

The moduli space of vacua can be studied by combin-
ing the discussion of orientifolds in theories with N52
supersymmetry (Sec. IV.C.2) and the results of this sec-
tion on the reduction to N51. We leave the details to
the reader.

One can also analyze Seiberg’s duality for these sys-
tems by exchanging five-branes and orientifolds in x6. In
the absence of orientifolds a quick way to find the dual is
to exchange the branes while requiring conservation of
the linking number (97). The linking number for five-
branes near an orientifold six-plane is also given by Eq.
(97) with the understanding that an O66 plane contrib-
utes to LNS like 62 D6-branes. Using this, it is not
difficult to show that the electric configuration of Fig. 41
is connected by duality to a magnetic one with gauge
group SO(N̄c) with N̄c5Nf2Nc14 for O61 , and
Sp(N̄c/2) with N̄c5Nf2Nc24 for O62 .

34The mirror image of the NS-brane is necessarily rotated by
the angle 2u and becomes an NS2u-brane.

FIG. 41. N51 supersymmetric QCD with orthogonal and
symplectic groups, realized using rotated Neveu-Schwarz five-
branes near an orientifold six-plane.
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If the rotation angle u above is tuned to u5p/2, the
five-brane and its mirror image turn into NS58-branes
and become parallel to the orientifold. The resulting
SYM theory on the four-branes is an SO(Nc) gauge
theory with 2Nf chiral superfields in the vector repre-
sentation, a chiral superfield S in the symmetric repre-
sentation, and W50. Motions of D4-branes along the
NS58-brane (in w) correspond to expectation values of
S which parametrize an Nc-dimensional moduli space
along which SO(Nc) is generically completely broken.
Reversing the charge of the orientifold replaces
SO(Nc)˜Sp(Nc/2) and S˜A , with A a chiral multip-
let in the antisymmetric tensor representation of
Sp(Nc/2).

The last two models are direct analogs of the SU(Nc)
theory with an adjoint, fundamentals, and W50, dis-
cussed in Sec. V.B.4, with the symmetric of an orthogo-
nal group (S) or antisymmetric of a symplectic group
(A) playing the role of the adjoint field F. As in the
SU(Nc) theory, one can turn on a polynomial superpo-
tential for the (anti-) symmetric tensor. For example, for
the case of an SO(Nc) gauge group this is obtained by
studying the following configuration: k coincident
NS5u-branes to the left (in x6) of an O61 plane, con-
nected to their mirror images (which are k coincident
NS52u-branes) by Nc four-branes, with Nf six-branes
parallel to the NS5u-branes placed between the five-
branes and the orientifold. The SYM theory on the four-
branes is an SO(Nc) gauge theory with 2Nf vectors, a
symmetric flavor S , and

W;Tr Sk11. (223)

The magnetic theory in the brane picture is obtained by
interchanging the k five-branes with their mirror images
while preserving the linking number (97) (Elitzur, Gi-
veon, et al., 1997). The magnetic theory has Gm
5SO@k(2Nf14)2Nc# , 2Nf magnetic quarks, magnetic
mesons, and an appropriate superpotential, in agree-
ment with field theory (Intriligator, Leigh, and Strassler,
1995).

b. Orientifold four-plane

As for the N52 SUSY case discussed in Sec. IV.C.2,
the situation is less well understood than that for
O6-planes, so we shall be brief.

The basic configuration that describes N51 SQCD
with an orthogonal or symplectic gauge group and mat-
ter in the fundamental representation includes Nc four-
branes stretched between an NS5- and an NS58-brane,
with D6-branes between them; all objects are stuck on
an O4-plane, although the D6- and D4-branes could
leave it in pairs (see Fig. 42). As discussed in Sec.
IV.C.2, the charge of the orientifold flips sign each time
it passes through an NS five-brane. If the charge be-
tween the NS5- and NS58-branes is positive, the gauge
group is Sp(Nc/2); negative charge corresponds to
SO(Nc). The moduli space of vacua can be analyzed as
in Sec. IV.C.2; we shall not describe the details here.
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The fully Higgsed branch for both signs of the orienti-
fold plane is illustrated in Fig. 43.

To analyze the smooth transition that corresponds in
brane dynamics to Seiberg’s duality we need to under-
stand how to compute linking numbers in the presence
of the O4-plane. Again, Eq. (97) is essentially correct as
long as we take into account the contributions of the
O4-plane. An O46 plane contributes like 61
D4-branes. Using this result, one can verify that
Seiberg’s duality is reproduced in this system (Elitzur,
Giveon, and Kutasov, 1997; Elitzur, Giveon, et al., 1997;
Evans, Johnson, and Shapere, 1997).

One can also study generalizations, e.g., replacing the
single NS5-brane by 2k11 five-branes leads to orthogo-
nal and symplectic gauge theories with a massless ad-
joint field, with the polynomial superpotential W
;Tr F2(k11). Placing a sequence of NSu-branes with dif-
ferent u5u i along the orientifold leads to theories with
product gauge groups of the form SO(k1)3Sp(k2/2)
3SO(k3)3¯ (Tatar, 1998).

4. Unitary gauge groups with two-index tensors

N51 supersymmetric Yang-Mills theories with an
SU(Nc) gauge group and chiral superfields in the (anti-)
symmetric tensor representation can be constructed by
starting with an N52 configuration of branes near an
O6-plane—mentioned at the end of Sec. IV.C.3—and
applying to it all the operations described in other cases.
It is again sufficient to describe the theory for one sign
of the orientifold charge (we shall choose the case of
positive sign). To get the theory corresponding to the
other sign, one simply replaces symmetric tensors by an-
tisymmetric ones, or vice versa.

Consider an NS5-brane that is stuck on an O61 plane.
An NS58-brane located to the left of the orientifold (in
x6) is connected to the NS5-brane by Nc four-branes. As
usual, we place Nf six-branes between the five-branes.

FIG. 42. Branes near an O4-plane providing an alternative
description of N51 supersymmetric Yang-Mills theories with
orthogonal and symplectic gauge groups.
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The theory on the four-branes is classically a U(Nc)
gauge theory with Nf fundamental flavors, two symmet-
ric flavors S , S̃ , and W50. The analysis of the brane
moduli space is easily seen to reproduce that of the pro-
posed gauge theory. In particular, motions of the
D4-branes in w , away from the NS5-brane, parametrize
the Nc-dimensional moduli space of the theory along
which S , S̃ get expectation values and the gauge group is
typically completely broken. When all the four-branes
meet at a point in the w plane that is not the position of
the NS5-brane, an SO(Nc) gauge symmetry is restored
and one recovers the theory with G5SO(Nc), a sym-
metric tensor, fundamentals, and W50, described in the
previous section. Turning on the Fayet-Iliopoulos D
term in the U(Nc) theory [or entering the baryonic
branch of the moduli space of the SU(Nc) one] has a
similar effect.

Rotating the external NS58-brane to an NS5u-brane,
and at the same time rotating the D6-branes so that they
are parallel to the NS5u-branes, leads to a theory with
the same matter content as before, but now with a clas-
sical superpotential for the symmetric tensor,

FIG. 43. The fully Higgsed branch of moduli space corre-
sponding to (a) G5SO(4) and Nf58 fundamentals; (b) G
5Sp(2) and Nf58 fundamentals.
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W;
1
m

Tr~SS̃ !2. (224)

The previous case corresponds to m5` . Rearranging
the branes leads to a dual configuration with gauge
group Gm5SU(3Nf142Nc) and matter that can be
easily analyzed as above. The resulting theory agrees
with the field-theory analysis (Intriligator, Leigh, and
Strassler, 1995).

If there are k coincident NS5u-branes outside the ori-
entifold, one finds a similar theory but with Eq. (224)
replaced by

W;Tr~SS̃ !k11. (225)

Brane rearrangement leads to the Seiberg dual gauge
group SU@(2k11)Nf14k2Nc# , again in agreement
with field theory.

5. Chiral models

Generic N51 SYM theories are chiral. Such theories
are interesting both because of their relevance to phe-
nomenology and because of their rich dynamics. Their
exploration using branes is in its infancy. Here we dis-
cuss a few families of brane configurations in the pres-
ence of orientifolds and orbifolds leading to chiral mod-
els that have appeared in the recent literature.

The first family was studied by Brunner et al. (1998),
and Elitzur, Giveon, et al. (1998b), Landsteiner, Lopez,
and Lowe (1998). The brane configuration shown in Fig.
44 involves an NS58-brane that is embedded in an
O6-plane, say at x750. The NS58-brane divides the

FIG. 44. A chiral brane configuration in which an NS58-brane
is stuck at an O6-plane and is connected to an NSu-brane out-
side of the orientifold.
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O6-plane into two disconnected regions, corresponding
to positive and negative x7. As we saw before, in this
situation the Ramond-Ramond charge of the orientifold
jumps, from 14 to 24, as we cross the NS58-brane. The
part of the orientifold with negative charge (which we
shall take to correspond to x7,0) has furthermore eight
semi-infinite D6-branes embedded in it. The presence of
these D6-branes is required for charge conservation or,
equivalently, vanishing of the six-dimensional anomaly.

In addition to the eight semi-infinite D6-branes, we
can place on the orientifold any number of parallel infi-
nite D6-branes extending all the way from x752` to
x75` . We shall denote the number of such D6-branes
by 2Nf .

Then, an NSu five-brane35 located at a distance L6 in
the x6 direction from the NS58-brane, but at the same
value of x7, is connected to the NS58-brane by Nc
D4-branes stretched in x6. Nc must be even for consis-
tency. The mirror image of the NSu five-brane, which is
an NS2u five-brane, is necessarily also connected to the
NS58-brane.

We can also place any number of D6-branes oriented
at arbitrary angles u i [Eq. (49)] between the NSu five-
brane and the orientifold (in x6). We shall mainly dis-
cuss the case where such branes are absent, but it is easy
to incorporate them.

We shall next describe the gauge theory described by
the above brane configuration. Before studying the gen-
eral case we describe the structure for u50 (when the
external NS6u five-branes are NS5-branes), and u5p/2
(when they are NS58-branes). We shall only state the
result, referring the reader to Elitzur, Giveon, et al.
(1998b) for further discussion and derivations.

a. The case u50

The theory on the D4-branes has classical gauge
group U(Nc) with a symmetric tensor S̃ , an antisymmet-
ric tensor A , 2Nf18 quarks Q in the fundamental rep-
resentation, and 2Nf quarks Q̃ in the antifundamental
representation. The superpotential is

W5QS̃Q1Q̃AQ̃ . (226)

Fundamental chiral multiplets of the gauge group come
from 4–6 strings connecting the D4-branes to
D6-branes ending on the NS58-brane from below (in
x7), while antifundamentals arise from D6-branes end-
ing on the NS58-brane from above. The global symme-
try of the system is determined by the gauge symmetry
on the D6-branes, Sp(Nf)3SO(2Nf18). The superpo-
tential (226) is the unique one consistent with this sym-
metry.

The theory is chiral and potentially anomalous as
there are eight more fundamental than antifundamental
chiral multiplets. The superpotential (226) implies that
the symmetric tensor S̃ is in fact a symmetric bar (i.e., a

35An NSu five-brane is an NS5-brane rotated as in Eq. (49) by
the angle u.
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symmetric tensor with two antifundamental indices).
Thus the total anomaly (2Nf18)22Nf1(Nc24)2(Nc
14) vanishes, as one would expect for a consistent
vacuum of string theory.

As a further check on the identification of the brane
configuration and the chiral gauge theory one can ana-
lyze the moduli space of vacua as a function of various
parameters one can add to the Lagrangian. An example
is the Fayet-Iliopoulos D term, which from the brane
point of view corresponds to displacements in x7 of the
NS5-brane relative to the NS58-brane. In the gauge
theory, adding to the Lagrangian a Fayet-Iliopoulos D
term for the U(1) vectormultiplet Tr V , r*d4u Tr V ,
modifies the D-flatness vacuum conditions:

AA†2S̃S̃†1QQ†2Q̃Q̃†52r . (227)

Setting the quarks Q , Q̃ to zero we see that, when r is
positive, S gets an expectation value which breaks
U(Nc)˜SO(Nc). Due to the superpotential (226), the
2Nf18 chiral multiplets Qi as well as S̃ become massive
and one is left with the N52 spectrum and interactions
for gauge group SO(Nc), with the antisymmetric tensor
A playing the role of the adjoint of SO(Nc). All of this
is easily read off from the brane configuration. In par-
ticular, the fact that the 2Nf18 quarks Qi are massive is
due to the finite length (proportional to r) of the corre-
sponding 4–6 strings.

Similarly, for negative r Eq. (227) implies that A gets
an expectation value, breaking U(Nc) to Sp(Nc/2). The
quarks Q̃ get a mass and we end up with an N52 gauge
theory with G5Sp(Nc/2) and 2Nf18 light quarks.

b. The case u5p/2

In this case the external five-brane and its mirror im-
age are NS58-branes. In addition to the matter discussed
for the previous case there is now an adjoint field F
parametrizing fluctuations of the four-branes in the w
plane. The classical superpotential is

W5Tr S̃FA1QS̃Q1Q̃AQ̃ . (228)

As a check on the gauge theory we can again study the
D-term perturbation corresponding to relative displace-
ment in x7 of the NS58-branes. For positive r we now
find an SO(Nc) gauge theory with 2Nf fundamental chi-
ral multiplets, a symmetric tensor, and vanishing super-
potential. This can be understood by analyzing the
D-flatness conditions (227) in the presence of the super-
potential (228). As before, the symmetric tensor S̃ gets
an expectation value, which for unbroken SO(Nc) must
be proportional to the identity matrix. The first term in
the superpotential (228) then gives rise to the mass term
W;FA . Since A is antisymmetric, this term gives a
mass to the antisymmetric part of F (as well as to A).
The symmetric part of F becomes the symmetric tensor
mentioned above. Clearly, it does not couple to the 2Nf
fundamental chiral multiplets. In the brane description
the fact that fluctuations of the four-branes in w are
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
described by a symmetric tensor is a direct consequence
of the action of the orientifold projection (Gimon and
Polchinski, 1996).

c. The general case

For generic rotation angle u [Eq. (49)] the adjoint
field F discussed in the previous point is massive. Its
mass m(u) varies smoothly between zero at u5p/2 and `
for u50. The superpotential describing this system is

W5QS̃Q1Q̃AQ̃1FAS̃1m~u!F2. (229)

For nonzero m we can integrate F out and find the su-
perpotential,

W5QS̃Q1Q̃AQ̃1
1

m~u!
~AS̃ !2, (230)

for the remaining degrees of freedom. When u˜0, m
˜` , and Eq. (230) approaches Eq. (226). When u
5p/2, the mass m vanishes and it is inconsistent to inte-
grate F out.

For generic u none of the NS five-branes in the con-
figuration are parallel, and one can interchange them to
find a dual magnetic theory. The magnetic gauge group
one finds is U(2Nf142Nc). A careful field-theory
analysis leads to the same conclusion (Elitzur, Giveon,
et al., 1998b).

A second family of chiral models was studied by
Lykken, Poppitz, and Trivedi (1998a). It has a gauge
group that is a product of unitary groups with matter in
the bifundamental of different pairs. It is obtained from
brane configurations in Zn orbifold backgrounds in the
following way. Start with nNc four-branes stretched be-
tween two NS5-branes. The low-energy theory on the
four-branes is an N52 SYM theory with gauge group
G5SU(nNc). We now mod out by the Zn symmetry
(see footnote 28) acting on v and w as

~v ,w !˜„v exp~2pi/n !,w exp~22pi/n !…. (231)

Orbifolding breaks half of the supercharges and leads to
an N51 SUSY gauge theory with gauge group
SU(Nc)13SU(Nc)23SU(Nc)33¯3SU(Nc)n with
matter fields Fi , i51, . . . ,n , in the bifundamental
(Nc ,N̄c) of SU(Nc) i3SU(Nc) i11 [where SU(Nc)n11
[SU(Nc)1]. This theory is chiral for n.2. The curve
describing its moduli space was obtained by Lykken,
Poppitz, and Trivedi (1997a).

An interesting variant of this theory is obtained by
stretching nNC D4-branes between an NS5-brane and n
rotated five-branes located at

v5mw , v5me4pi/nw , v5me8pi/nw , ¯

v5me @4~n21 !pi#/nw (232)

[of course these five-branes are identified after orbifold-
ing by Eq. (231), and so really describe a single five-
brane on R4/Zn]. After modding out by the Zn group
[Eq. (231)] one finds a gauge theory that is similar to
that described above, but with a tree-level superpoten-
tial
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W5m Tr F1¯Fn . (233)

This superpotential lifts the moduli space, in agreement
with the brane picture in which for mÞ0 the four-branes
are stuck at v5w50. Adding nNf six-branes and inter-
changing the NS5-brane with the n rotated five-branes
leads to a magnetic SU(Nf2Nc)n dual gauge theory.

A third class of models was also studied by Lykken,
Poppitz, and Trivedi (1998b). It corresponds to webs of
branes in the presence of orientifold planes and orbifold
fixed points. As an example, one can start with the con-
figuration of Fig. 19, that was shown in Sec. IV.C.2 to
describe SO or Sp theories with N52 supersymmetry
(depending on the sign of the orientifold charge), and
then mods out by the Z3 symmetry (231) with n53. The
resulting gauge group is either SO(N14)3SU(N) or
Sp(M)3SU(2M14), with matter in the following rep-
resentations. For the first case (an SO3SU gauge
group) there is an antisymmetric tensor field A in the
1
2N(N21) of SU(N) [it is a singlet under SO(N14)], a
field Q̄ in the bifundamental (N14,N̄) of SO(N14)
3SU(N), and fundamentals of both groups, whose
number is partly constrained by anomaly cancellation.
The second case [an Sp(M)3SU(2M14) gauge group]
is related to the first one by replacing the antisymmetric
tensor A by a symmetric one S but is otherwise similar.

The theories obtained this way have a vanishing su-
perpotential. Rotating one of the NS5-branes in a way
compatible with both the Z2 orientifold projection and
the Z3 orbifold one, as in Eq. (232) (with n53), leads to
the appearance of a superpotential of the form W
;(Q̄AQ̄)2 or W;(Q̄SQ̄)2 for the two cases. In the
presence of a superpotential one can study N51 duality,
recovering results first obtained in field theory by Intrili-
gator, Leigh, and Strassler (1995).

VI. THREE-DIMENSIONAL THEORIES

So far in this review we have focused on brane con-
figurations realizing four-dimensional physics. However,
it is clear that the framework naturally describes field-
theory dynamics in different dimensions. In the remain-
der of the review we shall study some brane configura-
tions describing field theories in two, three, five, and six
dimensions.

We shall see that these theories exhibit many interest-
ing phenomena which can be studied using branes.
Apart from the intrinsic interest in strongly coupled dy-
namics of various field theories in different dimensions
and its realization in string theory, the main reason for
including this discussion here is that it adds to the ‘‘big
picture’’ and, in particular, emphasizes the generality
and importance of universality and hidden relations be-
tween different theories.

(1) ‘‘Universality.’’ One of the interesting features of
the four-dimensional analysis was the fact that un-
derstanding a few local properties of branes allowed
the study of a wide variety of models with various
matter contents and numbers of supersymmetries.
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These were obtained by combining branes in differ-
ent ways in a sort of flat-space ‘‘geometric engineer-
ing.’’ We shall in fact see that this universality may
allow one to understand36 in a uniform way theories
in different dimensions. This should be contrasted
with the situation in field theory where the physics is
described in terms of perturbations of weakly
coupled fixed points, whose nature depends strongly
on the dimensionality.

(2) Hidden relations between different theories. In Sec.
III we saw how viewing a brane configuration from
different points of view provides a relation between
gauge theories in different dimensions with different
amounts of supersymmetry. In that case, a relation
between four-dimensional N54 SYM theory and
two-dimensional N5(4,4) SYM theory provided an
explanation of Nahm’s construction of multimono-
pole moduli space. In this and the next two sections
we shall see that this is an example of a much more
general phenomenon.

In this section we discuss three-dimensional field theo-
ries, starting with the case of eight supercharges (N54
supersymmetry), followed by four supercharges (N52
supersymmetry). In the next two sections we discuss
five-, six-, and two-dimensional theories. The presenta-
tion is more condensed than in the four-dimensional
case above. We only explain the basic phenomena in the
simplest examples, referring the reader to the original
papers for more extensive discussion.

A. N54 supersymmetry

The main purpose of this subsection is to describe the
explanation using branes of two interesting field-theory
phenomena:

(1) The Coulomb branch of a three-dimensional N54
SUSY gauge theory is often identical to the moduli
space of monopoles in a different gauge theory.

(2) Three-dimensional N54 SUSY gauge theories of-
ten have ‘‘mirror partners’’ such that the Higgs
branch of one theory is the Coulomb branch of its
mirror partner and vice versa.

To study three-dimensional gauge dynamics we con-
sider, following Hanany and Witten (1997), configura-
tions of D3-branes suspended between NS5-branes in
the presence of D5-branes. Using Eqs. (6), (18), and
(19) it is not difficult to check that any combination of
two or more of the following objects,

NS5: ~x0,x1,x2,x3,x4,x5!,

D3: ~x0,x1,x2,x6!,

D5: ~x0,x1,x2,x7,x8,x9!, (234)

in type-IIB string theory preserves 8 of the 32 super-
charges and gives rise to an N54 SUSY theory in the

36This program is not complete as of this writing; we shall
mention some open problems in the discussion section.
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(112)-dimensional spacetime common to all branes
(x0,x1,x2). One can think of the branes (234) as ob-
tained from Eq. (91) by performing T duality in x3.

As a first example, consider a configuration containing
k D3-branes stretched between two NS5-branes sepa-
rated by a distance L6 in x6. As discussed at length
above, the low-energy theory on the three-branes is a
three-dimensional N54 SUSY gauge theory with gauge
group G5U(k) and no additional light matter. The
three-dimensional gauge coupling is

1
g2 5

L6

gs
. (235)

Motions of the k three-branes along the NS5-branes in
(x3,x4,x5) together with the duals of the k photons, cor-
responding to the Cartan subalgebra of G , parametrize
the 4k-dimensional Coulomb branch of the N54 SUSY
gauge theory Mk . Relative displacements of the two
NS5-branes in (x7,x8,x9) are interpreted as in Eq. (98)
as Fayet-Iliopoulos D terms. Note that the theory under
consideration here can be thought of as a dimensional
reduction of four-dimensional N52 SYM theory or six-
dimensional N51 SYM theory, in both cases without
hypermultiplets, and thus much of the discussion of Sec.
IV.C.1 applies to it. The R symmetry, which is SU(2)R
in six dimensions and SU(2)R3U(1) in four dimen-
sions, is enhanced by the reduction to three dimensions
to SU(2)R3SU(2)R8 , where SU(2)R8 acts as an
SO(3) rotation symmetry on (x3,x4,x5).

From the point of view of the theory on the five-
branes, the 4k-dimensional moduli space of BPS-
saturated deformations of the brane configuration Mk
has a rather different interpretation. The situation is
very similar to that discussed in Sec. III. The worldvol-
ume theory on the five-branes is a gauge theory with
N5(1,1) supersymmetry (16 supercharges) and gauge
group G5U(2), broken down to U(1)3U(1) by an
expectation value of one of the worldvolume scalars on
the type-IIB five-brane discussed in Sec. II. This expec-
tation value is proportional to the separation of the five-
branes L6 .

The massive SU(2) gauge bosons correspond to D
strings connecting the two NS5-branes. D3-branes
stretched between the NS5-branes are magnetic SU(2)
monopoles charged with respect to the unbroken
U(1),SU(2) [the other U(1) corresponding to joint
motion of the five-branes does not play a role and will
be ignored below]. In compact space they are U dual to
D strings stretched between D3-branes, which were
shown in Sec. III to describe monopoles in a broken
SU(2) gauge theory. The 4k-dimensional moduli space
of brane configurationsMk is, from the point of view of
the five-brane theory, the moduli space of k monopoles.

Thus we learn that the two spaces in question—the
Coulomb branch of N54 SUSY U(k) gauge theory in
211 dimensions and the moduli space of k monopoles
in SU(2) gauge theory broken to U(1)—are closely re-
lated; both are equivalent to the moduli space of SUSY
brane configurations of Fig. 9. The U(1),U(k) corre-
sponding to the center of mass of the k monopole sys-
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tem gives rise to a trivial R33S1 part of the moduli
space. The space of vacua of the remaining SU(k)
gauge theory corresponds to the moduli space of cen-
tered monopoles.

A closer inspection reveals that the two spaces related
above are actually not identical; rather they provide de-
scriptions of the moduli space of brane configurations in
two different limits, which we describe next.

As we saw before, to study gauge physics using branes
one needs to consider a limit in which gravity and mas-
sive string modes decouple. The relevant limit in this
case is

L6 ,ls ,gs˜0 (236)

with L6 /gs (235) held fixed.
From the point of view of the theory on the three-

brane, the typical energy scale is set by the Higgs expec-
tation values parametrizing the Coulomb branch. These
are related using Eq. (7) to the relative displacements of
the three-branes along the five-branes dx by ^f&
;dx/ls

2 . Thus the typical distances between the three-
branes in the gauge-theory limit are

dx;S ls
2gs

L6
2 D L6 . (237)

To have a reliable (211)-dimensional picture one
would like to require dx!L6 , i.e.,

Y[S ls

L6
D 2

gs!1. (238)

The parameter Y is clearly arbitrary in the limit (236)
and when it satisfies Eqs. (236) and (238) the brane con-
figuration is well described by (211)-dimensional field
theory.

The scale (237) is natural from the point of view of the
five-brane theory as well. The (massive) charged W
bosons correspond to D strings stretched between the
two NS5-branes. Their mass is

MW5
L6

gsls
2 . (239)

The magnetic monopoles are much heavier. The gauge
coupling of the (511)-dimensional five-brane theory is
[Eq. (20)] gSYM

2 5ls
2 ; thus the effective coupling in the

(113)-dimensional spacetime (x0,x3,x4,x5) is

1
g2 5

V12

ls
2 , (240)

where V12 is the volume of the (x1,x2) plane which is
eventually taken to infinity. Magnetic monopoles have
mass

Mmon.
MW

g2 5
L6V12

gsls
4 (241)

in agreement with their interpretation as D3-branes
stretched between the NS5-branes. Recall that the size
of a magnetic monopole is .MW

21 , much larger than its
Compton wavelength Mmon

21 for weak coupling.
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Thus we see that the scale dx (237) is nothing but the
Compton wavelength of a charged W boson [Eq. (239)]
or, equivalently, the size of a magnetic monopole. The
five-dimensional description as the moduli space of
monopoles is appropriate when the scale of SU(2)
breaking MW [Eq. (239)] is much smaller than the scale
of Kaluza-Klein excitations of the strings and three-
branes stretched between five-branes 1/L6 . Requiring
MW!1/L6 leads to the constraint

Y@1 (242)

on the parameter Y defined in Eq. (238). This is the
opposite limit from that in which the
(211)-dimensional picture is valid [Eq. (238)].

We see that, rather than being identical, the three-
and five-dimensional descriptions of the brane configu-
ration are appropriate in different limits. As Y˜0 the
description of the space of vacua as the Coulomb branch
of a three-dimensional SU(k) gauge theory becomes
better and better, while as Y˜` the five-dimensional
description becomes the appropriate one.

The dependence of the metric on Y has not been ana-
lyzed. Presumably, as in other cases considered in previ-
ous sections, supersymmetry ensures that the metric on
Mk does not depend on Y and, therefore, its form for
large Y (where it is interpreted as the metric on the
moduli space of k monopoles) and for small Y [where it
is thought of as the metric on the Coulomb branch of a
d5211, N54 SUSY SU(k) gauge theory] must coin-
cide. It would be interesting to make this more precise.

The relation between monopoles and vacua of (2
11)-dimensional field theories can be generalized in
many directions. To study monopoles in higher-rank
gauge theories we can consider, as in Sec. IV.C.3, chains
of NS5-branes connected by D3-branes. For example,
the configuration of Fig. 22 with the D4-branes [Eq.
(91)] replaced by D3-branes [Eq. (234)] and no
D5-branes (db50) describes monopoles in broken
U(n11) gauge theory. The monopoles carry charges
under the n unbroken U(1)’s in SU(n11). In a natural
basis the magnetic charge of the configuration is
(k1 ,k22k1 ,k32k2 ,. . . ,kn2kn21 ,2kn).

From the point of view of the three-branes the con-
figuration describes a 211 gauge theory with gauge
group G5U(k1)3U(k2)3¯3U(kn) with hypermul-
tiplets transforming in the bifundamental representation
of adjacent factors in the gauge group, (ka ,k̄a11) of
U(ka)3U(ka11) (a51,.. . ,n21). The moduli space of
vacua of this gauge theory is identical to the space of
monopoles in broken SU(n11) gauge theory as dis-
cussed above.

The second field-theory phenomenon that we should
like to understand using branes is mirror symmetry (In-
triligator and Seiberg, 1996b), which has been studied in
string theory and M theory (Gomez, 1996; de Boer et al.,
1997a, 1997b; Hanany and Witten, 1997; Porrati and
Zaffaroni, 1997). As pointed out by Hanany and Witten,
this symmetry is a manifestation of the S duality of the
underlying (911)-dimensional type-IIB string theory.
We shall next illustrate the general idea in an example.
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N54 supersymmetric gauge theory with Ge5U(Nc)
and Nf hypermultiplets in the fundamental representa-
tion of the gauge group can be studied as in Sec. IV. We
consider Nc D3-branes stretched between two NS5-
branes, in the presence of Nf D5-branes placed between
the NS5-branes. All branes are oriented as in Eq. (234).

This theory has, like its four-dimensional N52 SUSY
analog, a rich phase structure of mixed Higgs-Coulomb
phases, which can be studied classically as in Sec. IV.

Under S duality,37 the NS5-branes are exchanged with
the D5-branes while the D3-branes remain invariant.
The original configuration is replaced by one in which
Nc D3-branes are stretched between two D5-branes
with Nf NS5-branes located between the two D5-branes
(see Fig. 45).

This is a configuration that should by now be familar.
To exhibit the gauge group we have to reconnect three-
branes stretched between the two D5-branes into pieces
connecting D5-branes and NS5-branes, and other pieces
connecting different NS5-branes. In doing that one has
to take into account the s rule, which implies that the Nc
three-branes attached to say the left D5-brane have to
end on different NS5-branes. Thus if we break the first
three-brane on the leftmost NS5-brane we have to break
the second on the second leftmost, etc. A similar con-
straint has to be taken into account on the right
D5-brane.

The maximal gauge symmetry one can obtain depends

37S duality here corresponds to inverting the coupling and
exchanging (x3,x4,x5)↔(x7,x8,x9).

FIG. 45. S duality of type-IIB string theory implying mirror
symmetry of the three-dimensional N54 supersymmetric
Yang-Mills theory on D3-branes.
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on Nf , Nc . The analysis is simplest for Nf>2Nc and we
shall describe only this case here. The generalization to
Nf,2Nc is simple.

Breaking the Nc three-branes on the NS5-branes in
the most general way consistent with the s rule leads in
this case to a magnetic gauge theory with Gm
5U(1)3U(2)3¯U(Nc21)3U(Nc)Nf22Nc113U(Nc
21)3¯U(2)3U(1). To see the hypermultiplets, it is
convenient to move the left D5-brane past the leftmost
Nc NS5-branes (to which it is connected) and similarly
for the right D5-brane.

The hypermultiplets can now be read off from the
brane configuration [Fig. 45(c)]. They transform under
Gm as (1,2) % (2,3̄) %¯% (k21,k̄) % k % (k ,k̄) %¯

% (k ,k̄) % k % (k ,k21) %¯% (3,2) % (2,1).
The original electric brane configuration at a certain

gs must, by S duality, describe identical physics to the
magnetic one at g̃ s51/gs [but the same value of l10

5lsgs
1/4 ; see after Eq. (45)]. In the low-energy limit E

!1/l10 the electric configuration reduces to the electric
gauge theory with gauge group Ge , while the magnetic
one reduces to the magnetic gauge theory with gauge
group Gm (and the specified matter). Thus the two theo-
ries are clearly closely related.

However, as before, to go from one to the other, one
has to tune a parameter describing the brane configura-
tion to rather different values. In the electric theory the
energy scale we want to hold fixed as we take l10˜0 is
set by the three-dimensional gauge coupling (235). To
ignore Kaluza-Klein excitations on the three-branes, we
must require gs /L6!1/L6 , i.e., gs!1. Similarly, in the
magnetic theory we must have g̃ s!1 to be able to ignore
Kaluza-Klein excitations.

When gs is small, there exists an energy scale for
which all the complications of string theory can be ne-
glected and the running gauge coupling of the electric
gauge theory is still very small, so that we are in the
vicinity of the ultraviolet fixed point of the gauge theory.
The physics of the brane configuration below this energy
is well described by gauge theory. Similarly, the mag-
netic gauge theory provides a good description of the
low-energy behavior of the brane configuration for large
gs (or small g̃ s).

To relate the two gauge theories we must go to strong
coupling gs.1. In this regime the brane configuration is
still described in the infrared by the same fixed point,
but there is no longer an energy range in which it is well
approximated by the full RG trajectory of either the
electric or the magnetic gauge theories. The Kaluza-
Klein excitations of the three-branes modify the RG
flow at energies above 1/L6.g2, and one would expect
the correspondence between the two gauge theories to
break down.

In effect, the brane construction provides a deforma-
tion of the RG trajectories of both the electric and mag-
netic gauge theories that flow to the same IR fixed point,
but with different UV behavior. In particular, the three-
dimensional dynamics is embedded in a four-
dimensional setting; the fourth (compact) dimension de-
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couples in the extreme infrared but cannot be ignored at
finite energies or for large Higgs expectation values.
Thus the brane construction shows that the low-energy
behavior of the electric and magnetic theories is identi-
cal in the strong-coupling limit g˜` ; equivalently, it
shows that the infrared limits of the two models coincide
for Higgs expectation values ^f&!g2.

In gauge theory, mirror symmetry maps the Coulomb
branch of the electric theory to the Higgs branch of the
magnetic one and vice versa. It also exchanges mass per-
turbations with Fayet-Iliopoulos D terms. All this is
manifest in the brane construction. As should be famil-
iar by now, the Coulomb branch is described by motions
of three-branes suspended between NS5-branes, while
the Higgs branch corresponds to motions of three-
branes stretched between D5-branes. Since under S du-
ality NS5-branes are exchanged with D5-branes, the
Coulomb branch is exchanged with the Higgs branch. In
the example discussed in detail above, it is not difficult
to check that the (complex) dimensions of the electric
Coulomb and Higgs branches are Nc and 2Nc(Nf
2Nc), respectively, while in the magnetic theory they
are reversed.

Similarly, since masses correspond in the brane lan-
guage to relative displacements of D5-branes and Fayet-
Iliopoulos D terms are described by relative displace-
ments of NS5-branes, S duality permutes the two.

B. N52 supersymmetry

In this section we shall study three-dimensional N
52 SQCD. We start with a summary of field-theoretic
results followed by the brane description.

1. Field theory

Consider N52 SQCD with gauge group G5U(Nc)
and Nf flavors of chiral multiplets Qi,Q̃i(i51,.. . ,Nf) in
the fundamental representation of G . This theory can
be obtained from N51 SQCD in four dimensions by
dropping the dependence of all fields on x3. The vector
multiplet (69) gives rise upon reduction to three dimen-
sions to a gauge field, a real scalar field in the adjoint
representation of G ,X[A3 , and fermions. The chiral
multiplets (Q ,Q̃) reduce in an obvious way. The four-
dimensional gauge interaction (74) leads in three dimen-
sions to a potential for the bosonic components of Q ,Q̃ :

V;(
i

uXQiu21uXQ̃iu2. (243)

More generally, one can compactify x3 on a circle of
radius R and interpolate smoothly between four-
dimensional (R˜`) and three-dimensional (R˜0)
physics. The three- and four-dimensional gauge cou-
plings are related (classically) by 1/g3

25R/g4
2. Below, we

describe the vacuum structure of the theory as a func-
tion of R .

The classical theory has an Nc-complex-dimensional
Coulomb branch. At generic points in the classical Cou-
lomb branch the light degrees of freedom are the Nc
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photons and scalars in the Cartan subalgebra of
U(Nc),Am

ii and Xii(i51,.. . ,Nc). Dualizing the photons,

]mg ii5emn
l ]nAl

ii , (244)

gives rise to a second set of scalar fields g ii that together
with Xii form Nc complex chiral superfields whose
bosonic components are

F j5Xjj1ig jj. (245)

The expectation values of F j parametrize the classical
Coulomb branch.

In the three-dimensional limit R50 the scalars F j live
on a cylinder R3S1. Xjj are noncompact, while g jj live
on a circle of radius g3

2. For finite R , F j live on a torus
since then Re Fj also live on a circle of radius 1/R . In the
four-dimensional limit R˜` , holding the four-
dimensional gauge coupling fixed, the torus shrinks to
zero size and the Coulomb branch disappears. The
quarks are generically massive on the Coulomb branch
[Eq. (243)].

For Nf>Nc the theory has a
(2NcNf2Nc

2)-dimensional Higgs branch with com-
pletely broken gauge symmetry (whose structure is the
same as in four dimensions and, in particular, indepen-
dent of R). There are also mixed Higgs-Coulomb
branches corresponding to partially broken gauge sym-
metry.

In addition to the complex mass terms, described by a
quadratic superpotential W5mQ̃Q , upon compactifica-
tion to three dimensions one can write a ‘‘real-mass’’
term for the quarks,

E d4uQ†emruūQ . (246)

We have encountered these real-mass terms before, in
the previous section, where we saw that the mass param-
eters in brane configurations describing three-
dimensional N54 SUSY gauge theories have three
components, and in Eq. (243), which describes a real-
mass term for the quarks proportional to ^X&.

Quantum mechanically, the gauge coupling is a rel-
evant (5super-renormalizable) perturbation and thus
the theory is strongly coupled in the infrared. Most or all
of the Coulomb branch, and in some cases part of the
Higgs branch, are typically lifted by strong-coupling
quantum effects. We next turn to a brief description of
these effects as a function of Nf . More detailed discus-
sions may be found in articles by Affleck, Harvey, and
Witten (1982); Aharony, Hanany, et al. (1997); and de
Boer, Hori, and Oz (1997).

a. Nf50

The dynamics of U(1),U(Nc) is trivial in this case
since there are no fields charged under it. It gives a de-
coupled factor R3S1 in the quantum moduli space cor-
responding to (1/Nc)SF j (245). The SU(Nc) dynamics
is nontrivial. A nonperturbative superpotential is gener-
ated by instantons, which in three dimensions are the
familiar monopoles of broken SU(Nc) gauge theory. By
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using the symmetries of the gauge theory and the results
of Veneziano and Yankielowicz (1982) and Affleck,
Dine, and Seiberg (1984, 1985; for a review see Intriliga-
tor and Seiberg, 1996a and references therein) for Nc
52 one can compute this superpotential exactly.

Any point in the Coulomb branch can be mapped by a
Weyl transformation to the Weyl chamber X11>X22

>¯>XNcNc. In this wedge the natural variables are38

Yj5expS F j2F j11

g3
2 D ; j51,.. . ,Nc21 (247)

and one can show that the exact superpotential is

W5 (
j51

Nc21 1
Yj

. (248)

This theory has no stable vacuum. The superpotential
(248) tends to push the moduli F i away from each other
to infinity.

When the radius R of compactification from four to
three dimensions is nonzero the analysis is modified.
The exact superpotential for finite R is

W5 (
j51

Nc21 1
Yj

1h )
j51

Nc21

Yj (249)

where h is related to the four-dimensional QCD scale
L4 :

h;expS 2
1

Rg3
2D;expS 2

1

g4
2D;L4

3Nc2Nf. (250)

As R˜0 at fixed g3 , h˜0, while in the four-
dimensional limit (R˜`) h turns into an appropriate
power of the QCD scale [Eq. (250)].

The superpotential (249) is stable. Vacua satisfy ] jW
50, which leads to

ZNchNc2151; Z[ )
i51

Nc21

Yi . (251)

Thus for all RÞ0 there are Nc vacua corresponding to
different phases of Z . As R˜0, the vacua (251) recede
to infinity. Since h remains finite as R˜` , the Nc solu-
tions persist in the four-dimensional limit.

As we add light fundamentals Q ,Q̃ , the vacuum struc-
ture becomes more intricate due to the appearance of
Higgs branches and additional parameters such as real
and complex masses and Fayet-Iliopoulos D terms. As
in four dimensions, classically there is already a differ-
ence between Nf>Nc and Nf,Nc massless
fundamentals—in the former case the gauge group can
be broken completely, while in the latter the maximal
breaking is U(Nc)˜U(Nc2Nf). We next turn to the
quantum structure in the two cases.

38More precisely, the relation below is valid far from the
edges of the wedge and for R50; in general there are correc-
tions to the relation between Yj and F j.
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b. Nf<Nc

The theory with Nf5Nc and vanishing real masses at
finite R is described at low energies by a sigma model
for Nc

212 chiral superfields V6 ,M
ĩ
i
, with the superpo-

tential

W5V1V2~det M1h!. (252)

M should be thought of as representing the meson field
M

ĩ
i
5QiQ̃ ĩ , V6 parametrize the Coulomb branch, and h

is given by Eq. (250). Note that most of the classical
Nc-complex-dimensional Coulomb branch is lifted in the
quantum theory; its only remnants are V6 . The descrip-
tion (252) is arrived at by a combination of holomor-
phicity arguments, analysis of low Nc , and inspired
guesswork which we shall not review here (see Aharony,
Hanany, et al., 1997).

Varying Eq. (252) with respect to the fields V6 , M
gives rise to the equations of motion

V6~det M1h!50; V1V2~det M !~M21! i
ĩ50. (253)

Consider first the three-dimensional case (R5h50).
There are three branches of moduli space:

(1) V15V250; M arbitrary.
(2) V1V250; M has rank at most Nc21.
(3) V1 , V2 arbitrary; M has rank at most Nc22.

The first branch can be thought of as a Higgs branch,
while the last two are mixed Higgs-Coulomb branches.
The three branches meet on a complex hyperplane on
which the rank of M is Nc22 and V15V250.

The understanding of the theory with Nf5Nc allows
us to study models with any Nf<Nc by adding masses to
some of the flavors and integrating them out. When we
add a complex quark mass term W52mM to Eq. (252),
the following structure emerges. If the rank of m is one,
we find in the IR a theory with Nf215Nc21 massless
flavors. Integrating out the massive flavor we find a
moduli space of vacua with

V1V2 det M51, (254)

where M is the (Nf21)3(Nf21) matrix of classically
massless mesons. Equation (254) implies that the classi-
cally separate Coulomb and Higgs branches merge
quantum mechanically into one smooth moduli space. If
the rank of m is larger than one, we find a superpoten-
tial with a runaway behavior. For example, if we add
two nonvanishing masses,

W5V1V2 det M2m1
1M1

12m2
2M2

2, (255)

we find, after integrating out the massive mesons
M1

i ,Mj
1 ,M2

i ,Mj
2 ,

W52
m1

1m2
2

V1V2 det M
, (256)

where, again, M represents the (Nf22)2 classically
massless mesons. Clearly, the superpotential (256) does
not have a minimum at finite values of the fields; there is
no stable vacuum.
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For a mass matrix m of rank Nf ,

W5V1V2 det M2mi
ĩM

ĩ
i
, (257)

we make contact with the case Nf50. Integrating out
the massive meson fields M gives rise to the superpoten-
tial

W52~Nf21 !S det m

V1V2
D 1/~Nf21 !

. (258)

This superpotential can be obtained from Eq. (248) by
integrating out the Yj keeping Z [Eq. (251)], and iden-
tifying it with Z5V1V2 .

When the radius of the circle is not strictly zero (h
Þ0), the analysis of Eq. (253) changes somewhat. There
are now only two branches:

(1) V15V250; M arbitrary.

(2) V1V250; det M52h .

In particular, there is no analog of the third branch of
the three-dimensional problem. The two branches meet
on a complex hyperplane on which det M52h and V1

5V250. The structure for all hÞ0 agrees with the
four-dimensional analysis of Sec. V.

If we add to Eq. (252) a complex mass term W
52mM with a mass matrix m whose rank is smaller
than Nf , the vacuum is destabilized (including the case
of a mass matrix of rank one where previously there was
a stable vacuum). If the rank of m is Nf , so that the
low-energy theory is pure U(Nc) SYM theory, there are
Nc(5Nf) isolated vacua which run off to infinity as the
radius of the circle R goes to zero [there is also a decou-
pled moduli space for the U(1) piece of the gauge
group]. All this can be seen by adding to Eq. (258) the
term proportional to Z, hV1V25hZ , and looking for
extrema of the superpotential

W52~Nf21 !Z2 1/Nf211hZ . (259)

We next turn to the dependence of long-distance
physics on the real masses of the quarks. As we saw
before, real-mass terms are described by D terms (246);
therefore the effective low-energy superpotential (252)
is independent of these terms.

The effect of the real masses is to make some of the
low-energy degrees of freedom in Eq. (252) massive. To
see this, consider weakly gauging the (vector) SU(Nf)

flavor symmetry of Eq. (252). The real-mass matrix mi
ĩ

corresponds to the expectation values of the scalars in
the SU(Nf) vector multiplet. A term analogous to Eq.
(243) in the Lagrangian of the SU(Nf) theory will make
some of the components of M massive. For a diagonal
mass matrix

~mr!5diag~m1 ,m2 ,. . . ,mNf
! (260)

the off-diagonal components M
ĩ
i

get a mass proportional
to umi2m ĩ u. When all the real masses mi are different,
the low-energy limit is described by a sigma model for
the Nf12 fields V1 ,V2 ,M1

1 ,M2
2 ,. . . ,MNf

Nf with the super-

potential [compare with Eq. (252)]
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W5V1V2~M1
1M2

2
¯MNf

Nf1h!. (261)

More generally, if

~m !5diag~m1
n1 ,m2

n2 , . . . ,mk
nk!, (262)

where $ni% are the degeneracies of mi and S ini5Nf , the
low-energy limit includes V6 and k matrices Mi whose
size is ni3ni (i51,.. . ,k). The corresponding superpo-
tential is

W5V1V2~det M1 det M2¯det Mk1h!. (263)

The moduli space corresponding to Eq. (263) is rather
complicated in general. We have discussed the case of
equal real masses k51 before. We shall next describe
the other extreme case, k5Nf , leaving the general
analysis to the reader.

In the three-dimensional limit h˜0, Eq. (261) de-
scribes (2

Nf12) branches in each of which two of the Nf

12 fields $V6 ,Mi
i% vanish. For nonzero R (or h), there

are three branches:

(1) V650; Mi
i arbitrary.

(2) V150, V2Þ0; P i51
Nf Mi

i5h .

(3) V250, V1Þ0; P i51
Nf Mi

i5h .

c. Nf.Nc

In this case, there is no (known) description of the
low-energy physics in terms of a sigma model without
gauge fields. For vanishing real masses, instanton correc-
tions again lift all but a two-dimensional subspace of the
Coulomb branch, which can be parametrized, as before,
by two chiral superfields V6 . The Higgs branch is simi-
lar to that of the four-dimensional theory; it is param-
etrized by the meson fields M

ĩ
i
5QiQ̃ ĩ subject to classi-

cal compositeness constraints (such that only 2NfNc
2Nc

2 of the Nf
2 components of M are independent). An

attempt to write a superpotential for V1 ,V2 and M
ĩ
i

using holomorphicity and global symmetries leads in this
case to

W5~V1V2 det M !1/~Nf2Nc11 !, (264)

which is singular at the origin, clearly indicating that ad-
ditional degrees of freedom that have been ignored be-
come massless there.

For nonvanishing real masses the phase structure be-
comes quite intricate and has not been analyzed using
gauge-theory methods. We shall see later using brane
techniques that when all the real masses are different
there are (Nc

2Nf2Nc12), Nc-dimensional mixed Higgs-

Coulomb branches intersecting on lower-dimensional
manifolds.

There are at least two other theories that have the
same infrared limit as N52 SQCD. One is the ‘‘mirror,’’
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
which, like N54 SYM theory, is easiest to describe us-
ing branes (de Boer, Hori, Oz, and Yin, 1997; Elitzur,
Giveon, and Kutasov, 1997); we shall do this later. The
other is the ‘‘Seiberg dual’’ (Aharony, 1997; Karch,
1997), which we shall also describe using branes below.
This is a gauge theory with Gm5U(Nf2Nc), Nf flavors
of magnetic quarks qi , q̃ ĩ , and singlet fields M

ĩ
i
, V6

which couple to the magnetic gauge theory via the su-
perpotential

W5M
ĩ
i
qiq̃

ĩ1V1Ṽ21V2Ṽ1 , (265)

where Ṽ6 are the effective fields parametrizing the un-
lifted quantum Coulomb branch of the magnetic gauge
theory.

It should be emphasized that the three-dimensional
‘‘Seiberg duality’’ is different from its four-dimensional
analog in at least two respects. The first is that it is not
really a strong-weak coupling duality. In three dimen-
sions both the electric and the magnetic descriptions are
strongly coupled [with the exception of the case Nf
5Nc.1, where the superpotential (252) is dangerously
irrelevant and, therefore, the sigma model is weakly
coupled in the IR, at least at the origin of moduli space].
Thus it is less useful as a tool to study strong-coupling
dynamics.

The second is that the magnetic theory is not well
formulated throughout its RG trajectory. In particular,
the fields Ṽ6 are effective low-energy degrees of free-
dom that emerge after taking into account nonperturba-
tive gauge dynamics. They are ill defined in the high-
energy limit in which the magnetic theory is
(asymptotically) free.

Of course, the equivalence of the electric and mag-
netic theories is expected to hold only in the IR, so this
is not necessarily a problem for the duality hypothesis.
However, it does seem to suggest that the three-
dimensional Seiberg duality is a low-energy manifesta-
tion of a relation between different theories that reduce
to low-energy supersymmetric Yang-Mills theory in the
IR but have quite different high-energy properties. We
shall next argue that the relevant theories are theories
on branes.

2. Brane theory

To study four-dimensional N51 SQCD compactified
on a circle of radius R using branes (Elitzur, Giveon,
et al., 1997) we can simply compactify the corresponding
type-IIA configuration (i.e., take x3;x312pR in Fig.
24). At large R we recover the results of Sec. V. For
small R it is convenient to perform a T duality on the x3

circle; this transforms type IIA to type IIB and turns
D4-branes wrapped around x3 into D3-branes at points
on the dual circle of radius

R35
ls

2

R
. (266)
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The NS5 and NS58-branes transform to themselves,
while the D6-branes turn into D5-branes at points in
(x3,x4,x5,x6). We shall mostly use the type-IIB lan-
guage to describe the physics.

The type-IIB brane configuration corresponding to
three-dimensional N52 SQCD is depicted in Fig. 46.
The classical analysis of deformations and moduli mir-
rors closely the discussion of Sec. V. Compactification to
three dimensions gives rise to a new branch of moduli
space—the Coulomb branch, and new parameters in the
Lagrangian—the real masses. The former correspond in
the brane language to locations in x3 of D3-branes
stretched between the NS5- and NS58-branes. The latter
are given by the positions in x3 of the Nf D5-branes.

Note that due to Eq. (266), as R3˜` we recover the
three-dimensional N52 SQCD theory with h50, which
was discussed in the previous section, while the four-
dimensional limit corresponds to R3˜0. The three-
dimensional gauge coupling is given in type-IIB lan-
guage by Eq. (235), 1/g3

25L6 /gs . The four-dimensional
gauge coupling is related to it by 1/g3

25R/g4
2 or, using

Eq. (266),

1

g4
2 5

L6R3

gsls
2 . (267)

The gauge-theory limit corresponds to Eq. (236). To get
a three-dimensional theory further requires R3˜` with
L6 /gs held fixed; the four-dimensional limit is R3˜0
with g4 in Eq. (267) held fixed. The instanton effects
which give rise to the term proportional to exp(21/g4

2)
in Eq. (249) arise from Euclidean D strings that are

FIG. 46. The brane realization of mirror symmetry in three-
dimensional N52 supersymmetric Yang-Mills theory.
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stretched between the NS5- and NS58-branes and are
wrapped around the x3 circle.

As discussed in the previous section, the infrared dy-
namics of the gauge theory in question has at least two
alternative descriptions, the mirror and the Seiberg dual.
Both are easy to understand using branes. To construct
the mirror, we apply an S duality transformation to the
electric configuration; the result is described in Fig.
46(b). The NS5- and NS58-branes are exchanged with
D5- and D58-branes, while D3-branes are invariant.
The mirror brane configuration is very similar to that
found for N54 SQCD in Sec. VI.A. The only difference
is that one of the two D5-branes has been rotated into a
D58-brane. N52 mirror symmetry was suggested by
Elitzur, Giveon, and Kutasov (1997) and further investi-
gated by de Boer, Hori, Oz, and Yin (1997).

To find the gauge symmetry of the mirror theory we
break the three-branes on the NS5-branes in the most
general way [Fig. 46(b)]. This leads to the gauge group
U(1)3U(2)3¯3U(Nc21)3U(Nc)Nf2Nc. There is
still matter in bifundamental representations of adjacent
factors of the gauge group, and since D3-branes
stretched between NS5-branes actually preserve N54
supersymmetry, there are also chiral multiplets trans-
forming in the adjoint of each factor. The D3-branes
stretched between the D58-brane and the closest NS5-
brane give rise as usual to Nc scalars Ma , which couple
via a cubic superpotential to Nc fundamentals of the
‘‘last’’ U(Nc) factor. The analysis of the magnetic theory
involves no new elements; details are given by de Boer,
Hori, Oz, and Yin (1997).

The Seiberg dual is obtained as usual by exchanging
five-branes in x6. Since the two Neveu-Schwarz five-
branes are not parallel, we expect the transition to be
smooth and the resulting theory to be equivalent in the
infrared to the original one. The magnetic brane con-
figuration one is led to is in fact very similar to that
obtained in the four-dimensional case, with D4- and
D6-branes replaced by D3- and D5-branes. In particu-
lar, classically it seems to correspond to a Gm5U(Nf
2Nc) gauge theory with magnetic quarks and Nf

2 singlet
mesons M with the superpotential W5Mqq̃ . Compar-
ing to the gauge-theory result [Eq. (265)], we seem to be
missing the two fields V6 and their couplings to the
gauge degrees of freedom.

What saves the day is the fact that the equivalence
between the electric and magnetic theories is expected
to be a quantum feature, while our analysis of the mag-
netic brane configuration so far has been purely classi-
cal. Thus our next task is to study the quantum vacuum
structure corresponding to the electric and magnetic
brane configurations. We shall first describe the struc-
ture for the electric theory and, in particular, reproduce
the gauge-theory results of the previous section. We
shall then turn to the magnetic theory and show that in
fact the fields V6 are secretly present in the three-
dimensional analog of Fig. 28 (but are not geometrical,
like the adjoint field with a polynomial superpotential
discussed in Sec. V). We shall also see evidence of the
superpotential (265).
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The tool we shall use to analyze the vacuum structure
is the quantum brane interaction rules described in Sec.
V.C.3. As explained there, these rules allow one to ana-
lyze the moduli space for widely separated branes. The
behavior for branes that are close to each other has to
be addressed by other means. Unfortunately, the
M-theory analysis is inapplicable for type-IIB configura-
tions and there are at present no known alternatives.

Consider the electric configuration of Fig. 46(a) with
Nf50. The Nc three-branes stretched between the NS
five-branes repel each other; therefore the classical
Nc-dimensional Coulomb branch is lifted. The repulsive
potential between pairs of adjacent three-branes can be
thought of in this case as due to Euclidean D strings
stretched between the NS5- and NS58-branes and be-
tween the D3-branes (as in Fig. 34). They correspond to
instantons in the low-energy three-dimensional gauge
theory. Since there are two fermionic zero modes in the
presence of these instantons, they lead to a superpoten-
tial on the classical Coulomb branch.

In the three-dimensional theory [with R35` , or h
50 in Eq. (250)], the long-range repulsion between
three-branes leads to runaway behavior, since there is
no stable vacuum with the three-branes at finite dis-
tances; this is in agreement with the gauge-theory analy-
sis of the superpotential (248). For finite R3 (or h) the
three-branes arrange around the x3 circle at equal spac-
ings, maximizing the distances between them and lead-
ing to an isolated vacuum. The fact that there are Nc
vacua (251) has to do with the dual of the three-
dimensional gauge field [Eqs. (244) and (245)] and is not
expected to be seen geometrically in the current setup.
As R3˜` the vacua run off to infinity, and we recover
the previous results.

In the presence of massless quarks, in the brane de-
scription there are D5-branes in the system that can
‘‘screen’’ the interactions between the three-branes. This
screening can be seen directly by studying Euclidean D
strings stretched between D3-branes. If the worldsheet
of such a D string intersects a D5-brane, two additional
zero modes appear and the contribution to the super-
protential vanishes.

For 1<Nf<Nc22 massless flavors we saw before that
the gauge theory is unstable and exhibits a runaway su-
perpotential [given by Eq. (256) for Nf5Nc22]. In the
brane picture we have Nc three-branes stretched be-
tween NS5- and NS58-branes, and Nc22 D5-branes lo-
cated at the same value of x3 (we consider only the case
of vanishing real masses for now) between the NS5- and
NS58-branes.

Due to the repulsion between unscreened three-
branes stretched between NS5- and NS58-branes, Nc
22 of the Nc three-branes must break on different
D5-branes. The s rule implies that once this has oc-
curred, no additional three-branes attached to the NS5-
brane can break on these D5-branes. We are left with
two unbroken three-branes, one on each side of the
D5-branes (in x3). These three-branes repel each other,
as well as the pieces of the broken three-branes
stretched between the NS58-brane and the D5-brane
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
closest to it. There is no screening in this situation, since
all Nc22 D5-branes are connected to the NS5-brane;
hence they can be removed by moving them past the
NS5-brane in x6, using the Hanany-Witten transition.
The system is unstable, and some or all of the three-
branes mentioned above must run away to infinity.

This is in agreement with the gauge-theory analysis of
the superpotential (256). One can think of V6 as the
positions in x3 of the two three-branes stretched be-
tween NS5- and NS58-branes mentioned above (as
usual, together with the dual of the three-dimensional
gauge field). The potential obtained from Eq. (256) in-
deed suggests a repulsion between the different three-
branes.

It is clear that the arguments above continue to hold
when the radius of the circle on which the three-branes
live is finite. While the two three-branes stretched be-
tween the NS5- and NS58-branes can no longer run
away to infinity in the x3 direction, those connecting the
NS58-brane to a D5-brane (representing components of
M) can, and there is still no stable vacuum. This is in
agreement with gauge theory; adding the term W
5hV1V2 to Eq. (256) and integrating out V6 leads to a
superpotential of the form W;(det M)21/2.

The above discussion can be repeated with the same
conclusions for all 1<Nf<Nc22.

For Nf5Nc21 the gauge-theory answer is different;
there is still no vacuum in the four-dimensional case h
Þ0, while in three dimensions there is a quantum
moduli space of vacua with V1V2 det M51. In brane
theory there are now Nc21 D5-branes, and the interac-
tion between the D three-branes stretched between
NS5- and NS58-branes can be screened. Indeed, con-
sider a situation in which Nc22 of the Nc three-branes
stretched between NS5- and NS58-branes break on
D5-branes. This leaves two three-branes and one
D5-brane that is not connected to the NS5-brane. If
R35` (i.e., h50), the single D5-brane can screen the
repulsion between the two three-branes. If the three-
brane is at x350, then using the rules of Sec. V.C.3 we
deduce that any configuration where one of the three-
branes is at x3.0 while the other is at x3,0 is stable.
The locations in x3 of the two three-branes give the two
moduli V6 . Thus the brane picture correctly predicts
the existence of the quantum moduli space and its di-
mension. The precise shape of the moduli space (the
relation V1V2 det M51) is a feature of nearby branes
and thus is expected to be more difficult to see; never-
theless, it is clear that due to the repulsion there is no
vacuum when either V1 or V2 vanish.

If the radius of the fourth dimension R is not zero,
there is a qualitative change in the physics. Since R3 is
now finite, the two three-branes stretched between NS5
and NS58-branes are no longer screened by the
D5-brane—they interact through the other side of the
circle. Thus one of them has to break on the remaining
D5-brane, and one remains unbroken because of the s
rule. The repulsion between that three-brane and the
three-branes stretched between the NS58-brane and a



1064 A. Giveon and D. Kutasov: Brane dynamics and gauge theory
D5-brane which is no longer screened leads to vacuum
destabilization, in agreement with the gauge-theory
analysis.

For Nf5Nc (and vanishing real masses) the brane-
theory analysis is similar to the previous cases, and the
conclusions are again in agreement with gauge theory.
For R35` one finds three phases corresponding to a
pure Higgs phase in which there are no three-branes
stretched between NS5- and NS58-branes, and two
mixed Higgs-Coulomb phases in which there are one or
two three-branes stretched between the NS5- and
NS58-branes; the locations of the three-branes in x3 are
parametrized by V6 . When there are two unbroken
three-branes, they must be separated in x3 by the
D5-branes, which provide the necessary screening.

For finite R3 , the structure is similar, except for the
absence of the branch with two unbroken three-branes,
which is lifted by the same mechanism as that described
in the case Nf5Nc21 above. Nf.Nc works in the same
way as in the four-dimensional case described earlier.

So far we have discussed the electric theory with van-
ishing (more generally equal) real masses for the quarks.
Turning on real masses gives rise to a rich phase struc-
ture of mixed Higgs-Coulomb branches. We have seen
an example in the theory with Nf5Nc . The three-
dimensional theory with h50 and vanishing real masses,
which is equivalent in the infrared to the sigma model
[Eq. (252)], has three branches described after Eq.
(253). When all the real masses are different, the corre-
sponding sigma model [Eq. (261)] has (Nf11)(Nf
12)/2 Nf-dimensional branches intersecting on lower-
dimensional manifolds. For Nf.Nc the problem has not
been analyzed in gauge theory.

Branes provide a simple way of studying the phase
structure. As an example we shall describe it for the case
of arbitrary Nf>Nc with all Nf real masses different.
The generalization to cases in which some of the real
masses coincide is straightforward.

The brane configuration includes in this case Nf
D5-branes at different values of x3. The Nc D3-branes
can either stretch between the NS5- and NS58-branes or
split into two components on D5-branes. Different
branches of moduli space correspond to different ways
of distributing D3-branes between the two options, in
such a way that there are no unscreened interactions.

Stability implies that any two D3-branes stretched be-
tween the NS5- and NS58-branes must be separated (in
x3) by a D5-brane that screens the repulsive interaction
between them. Similarly, a D3-brane stretched between
the NS5- and NS58-branes and a second one that is bro-
ken into two components on a D5-brane must be sepa-
rated by such a D5-brane.

To describe the different branches of the quantum
moduli space of vacua we have to place the Nc
D3-branes in such a way that there are no repulsive
interactions. Each three-brane can either be placed be-
tween two D5-branes or on top of one. There are there-
fore Nf1(Nf11)52Nf11 possible locations for
D3-branes corresponding to the Nf D5-branes and the
Nf11 spaces between and around them. The quantum
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interactions between branes mean that one cannot place
two three-branes at adjacent locations. The number of
branches is, therefore, the number of ways to distribute
Nc identical objects between 2Nf11 slots, with at most
one object per slot and no two objects sitting in adjacent
slots. It is not difficult to show that this number is

S n
k D ; n[2Nf2Nc12, k[Nc . (268)

We next turn to the magnetic brane configuration. Na-
ively one expects it to describe a U(N̄c) gauge theory
with Nf fundamentals q ,q̃ , a magnetic meson M , and
the standard superpotential

W5Mq̃q . (269)

To see whether this is in fact correct, we shall study the
resulting theory for the special case N̄c5Nf and com-
pare the vacuum structure of the gauge theory to that of
the brane configuration, which is described by a three-
dimensional analog of Fig. 28. We shall furthermore dis-
cuss only the three dimensional limit h50. Classically,
the two definitely agree. The theory has an
(Nf

21Nf)-dimensional moduli space of vacua; in the
brane language it corresponds to independent motions
of the color branes along the Neveu-Schwarz five-branes
and to breaking of flavor three-branes on different
D5-branes. In gauge theory it is parametrized by expec-
tation values of M and the F j [Eq. (245)]. Quantum
mechanically, one finds a discrepancy, which we describe
next.

Before turning on the Yukawa superpotential (269),
we can describe the low-energy dynamics of the gauge
theory in question by the sigma model (252) for the
fields M̃[q̃q and Ṽ6 which parametrize the potentially
unlifted Coulomb branch of the theory. Coupling the
‘‘magnetic quarks’’ q ,q̃ to the singlet meson M leads to
a low-energy sigma model with the superpotential

W5Ṽ1Ṽ2 det M̃1MM̃ . (270)

Varying with respect to M sets M̃50. Therefore we con-
clude that the quantum gauge theory in question has a
two-complex-dimensional moduli space of vacua param-
etrized by arbitrary expectation values of the fields Ṽ6 .

On the other hand, the brane configuration has a
unique vacuum at the origin where all N̄c5Nf three-
branes are aligned and can be thought of as stretching
between the NS5-brane and the Nf D5-branes. This is
the only stable configuration, taking into account the re-
pulsive interactions between color three-branes and the
attractive interactions between color and flavor three-
branes.

We conclude that the gauge theory leading to the low-
energy sigma model [Eq. (270)] cannot provide a full
description of the physics of the brane configuration of
Fig. 28. Elitzur, Giveon, et al., 1997 propose that the
magnetic brane configuration is in fact described by the
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above gauge theory, but there are two more fields V6

that are singlets under the U(N̄c) gauge group and that
contribute the term

WV5V1Ṽ21V2Ṽ1 (271)

to the low-energy superpotential. Combining Eq. (270)
with Eq. (271) clearly gives the right quantum vacuum
structure for N̄c5Nf and also more generally. Note that
the term (271) is just what has been seen to be needed in
gauge theory to generalize Seiberg’s duality to three di-
mensions [Eq. (265)]! In particular, it can be used to
make sense of the dual theory, which as we discussed in
the previous section is not really well defined as a local
quantum field theory. We see that the high-energy
theory that underlies Eq. (265) is best thought of as the
theory on the web of branes described by the three-
dimensional Fig. 28.

The fields V6 and their interactions (271) are not seen
geometrically in the brane configuration. This makes it
more difficult in general to compare the vacuum struc-
ture of three-dimensional Seiberg duals. Nevertheless, in
all cases that have been checked, no disagreement has
been found, supporting the proposed duality. Some tests
of the equivalence of the theories with vanishing real
masses have been made by Aharony (1997). We have
further checked the other extreme case of Nf different
real masses in a few examples and find agreement. For
Nf5Nc the magnetic theory can be shown to reduce to
the sigma model (252), or when all the real masses are
different, Eq. (261). As we have seen above, the mag-
netic moduli space has in this case (Nf12)(Nf11)/2
branches, in agreement with the electric theory [Eq.
(268)].

For Nf5Nc11, the magnetic theory reduces in the
infrared to a U(1) gauge theory with Nf flavors and the
superpotential (265). By using the results of Aharony,
Hanany, et al. (1997) one can check that the phase struc-
ture of the magnetic theory is again in agreement with
Eq. (268). It would be interesting to check agreement
for arbitrary Nf.Nc .

VII. TWO-DIMENSIONAL THEORIES

A. Field-theory results

Two-dimensional gauge theories with N5(4,4) super-
symmetry can be obtained by the dimensional reduction
of six-dimensional N5(1,0) theories (or four-
dimensional N52 theories). The (115)-dimensional
Lorentz symmetry is broken to SO(1,1)3spin(4) and
the latter combines with the R symmetry to a spin(4)
3SU(2)R global symmetry group.

As in four-dimensional N52 theories, two-
dimensional (4,4) gauge theories have two massless rep-
resentations: a hypermultiplet and a vector multiplet
(also called a twisted multiplet). In terms of an N
5(2,2) superalgebra the hypermultiplets decompose
into two chiral multiplets [see, for example, Witten, 1993
for a review of two-dimensional N5(2,2) theories]. The
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scalars in these multiplets parametrize a ‘‘Higgs
branch’’39 which is a Hyper-Kähler manifold. The vector
multiplet decomposes into a chiral multiplet and a
twisted chiral multiplet. The scalars in these superfields
parametrize the ‘‘Coulomb branch,’’ which is character-
ized by a generalized Kähler potential determining the
metric and torsion on target space (Gates, Hull, and
Roček, 1984).

Next we consider U(1) gauge theories with Nf ‘‘elec-
tron’’ hypermultiplets. The Coulomb branch is param-
etrized by the expectation values fW PR4 of the four sca-
lars in the twisted multiplet. Classically, the metric on
the Coulomb branch is flat. Quantum mechanically, the
metric receives a contribution whose form is fixed by
hyper-Kähler geometry and whose normalization can be
determined by an explicit one-loop computation. In the
massless case the metric is (Roček, Schoutens, and
Sevrin, 1991)

ds25S 1

g2
2 1

Nf

fW 2D dfW 2, (272)

where g2 is the 2d gauge coupling. The coefficient in
front of dfW 2 is the effective gauge coupling.

Turning on bare masses mW i , i51, . . . ,Nf , to the hy-
permultiplets the metric becomes

ds25S 1

g2
2 1(

i51

Nf 1

ufW 2mW iu2D dfW 2. (273)

One notes that this is precisely the form of the metric of
a 2d conformal field theory describing the propagation
of a string near Nf parallel NS five-branes (17). We shall
see in the next section that this is not an accident. More-
over, the torsion H5dB on the Coulomb branch is also
given by Eq. (17).

As in previous sections, it will also be interesting to
consider a compactification, in this case from three to
two dimensions on a circle of radius R . The Coulomb
branch is four dimensional and is parametrized by the
expectation values of the three scalars in the vector mul-
tiplet, rW PR3, and the scalar s dual to the 3d gauge field;
s lives on a circle, s;s11/R . The metric on the Cou-
lomb branch now takes the form (Diaconescu and
Seiberg, 1997)

ds252pRS 1

g3
2 1(

i51

Nf 1
urW 2mW iu

3H 1
2

1 (
n51

`

e22pRnurW 2mW iu cos@2pRn~s2s i!#J D
3~drW 21ds2!. (274)

The coefficient in front of drW 21ds2 is the effective
gauge coupling of a 3d theory compactified to 2d on SR

1

39One should keep in mind that there is no moduli space in
two dimensions and we thus work in the Born-Oppenheimer
approximation.
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and g3 is the three-dimensional coupling constant, which
is related to the two-dimensional coupling constant by
standard dimensional reduction:

1

g2
2 5

2pR

g3
2 . (275)

When R˜0 the metric Eq. (274) approaches Eq.
(273) with fW [(rW ,s). For large compactification radius,
R@1/urW u, the effective gauge coupling becomes

1

g2
2 1pR(

i51

Nf 1
urW 2mW iu

. (276)

This is similar to the metric (23) on an ALE space with
a resolved ANf21 singularity, which appeared when we
discussed the metric felt by a string in the presence of Nf
parallel Kaluza-Klein monopoles. Again, as we shall dis-
cuss later, this is not an accident.

For SU(2).Sp(1) gauge group with Nf ‘‘quark’’ hy-
permultiplets, the metric on the Coulomb branch of the
two-dimensional (4,4) theory is (Diaconescu and
Seiberg, 1997)

ds25S 1

g2
2 1(

i51

Nf H 1

ufW 2mW iu2
1

1

ufW 1mW iu2J 2
2

fW 2D dfW 2.

(277)

This metric is related to an asymptotically locally Eu-
clidean (ALE) space with a resolved DNf

singularity for
reasons that we shall point out later.

Next we turn to N5(2,2) supersymmetric gauge theo-
ries in two dimensions. (2,2) superconformal field theo-
ries in 2d were studied, in particular, in the context of
standard perturbative string compactifications since they
lead to spacetime supersymmetric vacua. Here we shall
only touch upon a small class of (2,2) theories.

Two-dimensional N5(2,2) theories can be obtained
by dimensional reduction of four-dimensional N51 su-
persymmetric theories. Since anomaly constraints are
milder in 2d , generic chiral, anomalous 4d gauge theo-
ries typically lead to consistent 2d theories. Therefore
we may consider gauged linear sigma models like a
U(Nc) gauge theory with n quarks Q in the fundamen-
tal representation Nc and ñ antiquarks Q̃ in the antifun-
damental N̄c , where n is not necessarily equal to ñ (for
a recent review and further references on such theories
see Hanany and Hori, 1998). When ñ50 and Nc51 this
is the CPn21 model. When ñ50 and Nc.1 this theory
is called the ‘‘Grassmanian model.’’ The space of its
classical vacua is the complex Grassmanian manifold
G(Nc ,n). The dynamics of vacua of the sigma model
with target space G(Nc ,n) is described by the
U(Nc)/U(Nc) gauged Wess-Zumino-Witten model with
the level k of SU(Nc) being

k5n2Nc . (278)

In this case there is a ‘‘level-rank duality’’ (see Nakan-
ishi and Tsuchiya, 1992, and references therein) which
exchanges
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Nc↔k . (279)

This duality is the statement that the space of conformal
blocks of an SU(Nc) WZW model at level k is identical
to the one of SU(k) at level Nc and, therefore, the to-
pological theory U(Nc)/U(Nc) at level k is equivalent
to the theory U(k)/U(k) at level Nc .

B. Brane theory I: (4,4) theories

Two-dimensional unitary gauge theories with (4,4) su-
persymmetry appear on D strings near D5-branes. In
particular, the low-energy theory on a D1-brane
stretched in (x0,x1) near Nf parallel D5-branes
stretched in (x0,x1,x2,x3,x4,x5) is a U(1) gauge theory
with Nf flavors. The metric on the Coulomb branch of
the theory—parametrized by the location of the
D1-brane in the four directions transverse to the
D5-branes ls

2fW 5(x6,x7,x8,x9)—should be equal to the
background metric of a D string in the presence of Nf

parallel D5-branes located at ls
2mW i , i51, . . . ,Nf . This

type-IIB system is S dual to a fundamental string in the
presence of Nf parallel NS five-branes. This explains the
relation between the metric (273) (and torsion) on the
Coulomb branch and those of a string propagating in the
background of solitonic five-branes [Eq. (17)].

Three-dimensional gauge theories with eight super-
charges compactified to two dimensions on SR

1 can be
studied on D2-branes stretched in (x0,x1,x6) near Nf
D6-branes stretched in (x0,x1,x2,x3,x4,x5,x6), both
wrapping a circle of radius R in the x6 direction. Con-
sider a single D2-brane. T6 duality (42) maps it to a
D1-brane near Nf D5-branes at points on a transverse
circle of radius

R65ls
2/R . (280)

The background metric of a five-brane transverse to a
circle in the x6 direction and located, say, at
(x6,x7,x8,x9)50 can be obtained by considering an in-
finite array of five-branes separated by a distance 2pR6 .
It gives rise to an H-monopole background with metric
and torsion given by (Gauntlett, Harvey, and Liu, 1993)

GIJ5e2(F2F0)dIJ ; I ,J ,K ,M56,7,8,9,

HIJK52eIJKM]MF ,

e2(F2F0)215 (
n52`

` ls
2

xW 21~x622pR6n !2

5
ls

2

2R6x

sinh~x/R6!

cosh~x/R6!2cos~x6/R6!

5
ls

2

2R6x H 11 (
n51

`

e2nx/R6 cos~nx6/R6!J ,

(281)

where x5uxW u, xW 5(x7,x8,x9). From Eqs. (280) and (281)
we see that the metric on the Coulomb branch (274) is
precisely the metric of Nf H monopoles located at
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(xi
6 ,xW i)52pls

2(s i ,mW i), i51, . . . ,Nf . We thus see again
how the geometry is probed by D-branes.

In the limit R6˜` we obtain a system of Nf five-
branes in noncompact space which was discussed above.
This is compatible with the fact that in this limit (281)
behaves like 1/fW 2, where fW 5(x6,xW )/2pls

2 .
On the other hand, in the limit R˜` we get on the

D2-brane a (112)-dimensional N52 SUSY U(1)
gauge theory with Nf flavors. The background metric of
the D6-branes should be related to the metric on the
Coulomb branch of that gauge theory. As discussed in
Sec. II, D6-branes are Kaluza-Klein monopoles in M
theory, and they are described by the same metric as
Kaluza-Klein monopoles in type-IIA string theory. A
Kaluza-Klein monopole with charge R/ls (Taub-NUT)
is related by T duality (in an appropriate sense) to an H
monopole (281) for any value of R (Gregory, Harvey,
and Moore, 1997). In particular, when R˜` Eq. (281)
behaves like R/urW u, where rW 5xW /2pls

2 , which is compat-
ible with a Coulomb branch with effective coupling
(276). Metrics similar to these showed up already in
other (related) situations in this review, such as in Secs.
III.D and VI.A.

A (4,4) SUSY gauge theory in two dimensions with
gauge group Sp(1).SU(2) can be obtained on a
D1-brane (and its mirror image) near an orientifold
five-plane parallel to Nf D5-branes (and their Nf mirror
images). On a transverse circle of radius R6 it describes
a compactification from three to two dimensions on a
circle of radius R (280). T duality in this transverse di-
rection gives instead an O6-plane parallel to 2Nf
D6-branes, whose background metric is related to an
ALE space with resolved DNf

singularity (Seiberg,
1996a; Seiberg and Witten 1996; Sen, 1997d). T dualiz-
ing back to the original system (and taking R6˜`) gives
rise to the metric (277) in agreement with 2d field
theory.

An alternative way to study (4,4) 2d theories on
branes is to allow branes to end on branes, as in previ-
ous sections. A typical configuration involves Nc
D2-branes stretched between two NS5-branes, with Nf
D4-branes located between them (or, equivalently by a
Hanany-Witten transition, Nf D4-branes to the left of
the left NS-brane or to the right of the right NS-brane,
each connected to the NS-brane by a single D2-brane).
This configuration is T dual to configurations preserving
eight supercharges which were studied in previous sec-
tions (Figs. 11 and 14). The branes involved here have
worldvolumes

NS5: ~x0,x1,x2,x3,x4,x5!,

D2: ~x0,x1,x6!,

D4: ~x0,x1,x7,x8,x9!. (282)

The low-energy theory on the D2-branes is a U(Nc)
gauge theory with Nf quark flavors and classical gauge
coupling:

1

g2
2 5

L6ls

gs
, (283)
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where L6 is the distance between the two NS-branes in
x6 (as before, we consider the limit gs ,ls˜0 such that g2
is held fixed). The locations of the D2-branes along the
NS-branes rWa5(xa

2 ,xa
3 ,xa

4 ,xa
5), a51, . . . ,Nc , param-

etrize the Coulomb branch of the theory. The locations
of the D4-branes rW i5(xi

2 ,xi
3 ,xi

4 ,xi
5), i51, . . . ,Nf , are

the bare masses of quark hypermultiplets. Higgsing cor-
responds to breaking D2-branes on D4-branes, and the
relative motion of the two NS-branes in (x7,x8,x9) cor-
responds to a Fayet-Iliopoulos D term.

When rWa5rW i50, the brane configuration is invariant
under rotations in (x2,x3,x4,x5) and (x7,x8,x9). These
spin(4)2345 and SU(2)789 rotations, respectively, are as-
sociated with the global R symmetries of the (4,4) gauge
theory.

The interpretation of the torsion on the Coulomb
branch in the brane picture is the following (Brodie
1997). A D2-brane ending on an NS five-brane looks
like a string in the (2,0) six-dimensional theory on the
five-brane. Strings in six dimensions couple to the self-
dual two-form B , which is identified with the 2d B field.
Each fundamental hypermultiplet corresponds to a
D2-brane ending on an NS-brane and contributes to the
torsion.

Quantum mechanically, the NS-branes bend due to
Coulomb-like interactions in four dimensions [Eq. (51)].
For simplicity, we consider the U(1) theory: a single
D2-brane located at rW . As in previous sections, the re-
sulting effective gauge coupling is given by the distance
between the NS-branes in x6 as a function of rW ,rW i :

x6ls

gs
5

1

geff
2 5

1

g2
2 1(

i51

Nf ls
4

urW2rW iu2 . (284)

This is indeed the exact effective coupling in field theory
(273) with fW [rW/ls

2 , mW i[rW i /ls
2 .

As usual, the type-IIA configuration at finite gs is
equivalent to M theory on a compact circle of radius
R105gsls . The relative location of the ‘‘NS five-branes’’
in x10 corresponds to a ‘‘u angle.’’ This u parameter to-
gether with the Fayet-Iliopoulos D term—the relative
position of the five-branes in (x7,x8,x9,x10)—combines
into a ‘‘quaternionic Kähler form.’’

In M theory, the SU(2)R symmetry is enhanced to a
spin(4)7,8,9,10 . Indeed, Witten (1997c) argues that this
should happen in field theory. It thus seems from the
brane picture that quantum mechanically there is a
‘‘mirror symmetry’’ interchanging masses with the
Fayet-Iliopoulos D term and theta parameters, and the
Coulomb branch with the Higgs branch. For more de-
tails we refer the reader to Brodie (1997).

Brane configurations giving rise to three-dimensional
gauge theories compactified to two dimensions on a
circle of radius R can be studied using the above con-
figurations by compactifying x2 on a circle of radius R2
5ls

2/R (or their T2-dual versions). In particular, the NS
five-branes now bend due to Coulomb-like forces in R3

3S1. The solution to the Laplace equation in this case
gives rise to a distance in x6 that is compatible with the
field-theory effective gauge coupling given in Eq. (274).
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Finally, we may add to the configurations above an
orientifold two-plane (four-plane) parallel to the
D2-branes (D4-branes) and obtain symplectic or or-
thogonal gauge groups in two dimensions. For example,
considering two D2-branes stretched between the NS5-
branes in the presence of an O2-plane, together with
2Nf D4-branes, gives rise to either an SO(2).U(1) or
an Sp(1).SU(2) gauge theory, depending on the sign
of the orientifold charge. The sign flip of the orientifold
charge and the Coulomb-like interactions associated
with D2-branes, their mirror images, and the O2-plane,
give rise to a bending of the NS5-branes, which is in
agreement with the field-theory results (273) and (277):

x6ls

gs
5

1

geff
2 5

1

g2
2 1(

i51

Nf H ls
4

urW2rW iu2 1
ls

4

urW1rW iu2J
2

~111 !~111 !ls
4

u2rWu2 6
~1/211/2!ls

4

urWu2 . (285)

The second term on the right-hand side of Eq. (285) is
due to the Nf flavors and their Nf mirror images, the
third term is due to a D2-brane at rW having its mirror
image at 2rW , and the last term is due to the
O2-plane—the ‘‘6’’ corresponding to orthogonal or
symplectic projections, respectively. Obviously, this dis-
cussion can be generalized to other dimensions and to
compactifications from high to lower dimensions per-
forming the analysis with an orientifold charge and
Coulomb-like interactions in the appropriate
dimension.40

Brane configurations corresponding to two-
dimensional (4,4) gauge theories were also considered
by Alishahiha (1998) and Ito and Maru (1998).

C. Brane theory II: (2,2) theories

We may now rotate branes in the configurations of the
previous section and get at low-energy two-dimensional
N5(2,2) supersymmetric gauge theories on the
D2-branes. As an example, we shall examine a configu-
ration of an NS5-brane connected to an NS58-brane by
Nc D2-branes in the presence of Nf D4-branes. The
worldvolumes of the various objects are given in Eqs.
(173) and (282).

A new ingredient that appears in such a brane con-
figuration is the possibility of putting a D4-brane at the
same x6 location as the NS58-brane, then breaking it
and separating the two semi-infinite pieces along the
NS58-brane in the s direction:

s[x21ix3. (286)

One may break all the Nf D4-branes on the NS58-brane
and take part of the semi-infinite D4-branes to infinity.
One then obtains a configuration in which, say, n semi-
infinite D4-branes—stretched in x7.0—are located at

40This was done explicitly in an unpublished work (A. Giveon
and M. Roček, 1997)
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s i , i51, . . . ,n , along the NS58-brane, and ñ semi-
infinite D4-branes—stretched in x7,0—are located at
s ĩ , ĩ 51, . . . ,ñ (see Fig. 47).

The low-energy theory on the D2-branes is a two-
dimensional (2,2), U(Nc) gauge theory with n quarks
and ñ antiquarks. There is a manifest chiral flavor sym-
metry U(n)3U(ñ) which is broken for generic values
of s i , s ĩ . One can check that the classical moduli space
of vacua and deformations of the brane configuration
(almost) agree with a field-theory analysis (Hanany and
Hori, 1997).

In M theory, the NS5-brane and D4-branes ending on
the NS58-brane turn into two disconnected M5-branes.
The type-IIA D2-branes turn into M2-branes connect-
ing these M5-branes. The dynamics of such open mem-
branes stretched between two five-branes is not com-
pletely understood; nevertheless, chiral features of the
quantum (2,2) theories can be studied in this way. We
refer the reader to Hanany and Hori (1998) for details.

We should remark that the Coulomb-like interactions
associated with the D4-branes ending on the
NS58-brane give rise to terms that are logarithmic in s
and that contribute to the quantum low-energy 2d effec-
tive superpotential. Logarithmic effective superpoten-
tials are indeed familiar in such two-dimensional (2,2)
theories (namely, in gauged linear sigma models). Other
relations between the parameter space of (2,2) theories
in two dimensions and the moduli space of N52 four-
dimensional theories—associated with the D4-branes
ending on the NS58-brane—are discussed by Hanany
and Hori (1998).

Finally, let us consider a duality trajectory interchang-
ing the NS5- and NS58-brane in the x6 direction. The
details of this process can be worked out along the lines
of previous sections [up to an ambiguity which is re-
solved quantum mechanically in M theory (Hanany and
Hori, 1998)]. Here we shall only state the result in the
case ñ50, namely, for a G(Nc ,n) model (see Sec.
VII.A). The duality trajectory takes an electric U(Nc)
theory with n quarks to a magnetic U(n2Nc) theory
with n quarks, i.e.,

FIG. 47. D4-branes oriented as explained in the text, splitting
into two disconnected components and separating along a
Neveu-Schwarz five-brane in (x2,x3).



1069A. Giveon and D. Kutasov: Brane dynamics and gauge theory
G~Nc ,n !↔G~n2Nc ,n !, (287)

providing a brane realization of the level-rank duality
(278) and (279), discussed in Sec. VII.A.

VIII. FIVE- AND SIX-DIMENSIONAL THEORIES

A. Five-dimensional field-theory results

N51 supersymmetric gauge theories in five dimen-
sions have eight supercharges and an SU(2)R global
symmetry. The two possible multiplets in the theory are
the vector multiplet in the adjoint of the gauge group
G—containing a vector field, a real scalar f, and
fermions—and the hypermultiplet in a representation Rf
of G—containing four real scalars and fermions. The
Coulomb branch is parametrized by the scalar compo-
nents of the vector multiplet f i, i51, . . . , rank G , in the
Cartan subalgebra of G .

The low-energy theory is determined by the prepoten-
tial F(f), which is required to be at most cubic due to
5d gauge invariance (Seiberg, 1996b). The exact quan-
tum prepotential is given by (Intriligator, Morrison, and
Seiberg, 1997).

F5
1

2g0
2 f if i1

ccl

6
dijkf if jfk

1
1
12 S (

a
ua if

iu32(
f

(
wPRf

uwif
i1mfu3D . (288)

Here g0 is the bare coupling of the gauge theory and
dijk is the third-rank symmetric tensor: dabc
5Tr(Ta$Tb ,Tc%)/2. The first sum in Eq. (288) is over
the roots of G and the second sum is over the weights of
the representation Rf of G ; mf are the (real) masses of
the hypermultiplets in Rf . ccl is a quantized parameter
of the theory, related to a 5d Chern-Simons term. In
terms of F the effective gauge coupling is

S 1
g2D

ij

5
]2F

]f i]f j . (289)

From now on we discuss simple groups G with Nf
hypermultiplets in the fundamental representations of
G , as follows:

• G5SU(Nc) (Nc.2): The Coulomb branch of the
moduli space is given by f5diag(a1 , . . . ,aNc

) with ( i51
Nc

ai50. The prepotential in this case is

F5
1

2g0
2 (

i51

Nc

ai
21

1
12 S 2(

i,j

Nc

uai2aju3

12ccl(
i51

Nc

ai
32(

f51

Nf

(
i51

Nc

uai1mfu3D . (290)

The conditions on Nc , Nf , and ccl in Eq. (288) are

ccl1
1
2

NfPZ (291)
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SU~Nc!: Nf12ucclu<2Nc . (292)

• G5SU(2): This case is somewhat special. There are
two pure gauge theories labeled by a Z2-valued theta
angle, since p4@SU(2)#5Z2 . ccl is irrelevant since
dijk50 in Eq. (288), and the number of flavors al-
lowed is Nf<7.

• G5SO(Nc) „Sp(Nc/2)…: In this case ccl50 and

SO~Nc!„Sp~Nc/2!…, Nf<Nc24~Nf<Nc14 !.
(293)

The inequalities in Eqs. (292) and (293) are necessary
conditions to have nontrivial fixed points, which one
can use to define the 5d gauge theory.

In five dimensions there are no instanton corrections
to the metric and therefore the exact results considered
above are obtained already at one loop. However, com-
pactifying the theory gives rise to nonperturbative cor-
rections. Supersymmetric 5d gauge theories compacti-
fied to four dimensions on a circle have been studied by
Ganor (1997); Ganor, Morrison, and Seiberg (1998);
Nekrasov (1998); and Nekrasov and Lawrence (1998).
The perturbative contributions to F from Kaluza-Klein
modes were found, and were shown to obtain the cor-
rect behavior in the five- and four-dimensional limits.
Nonperturbative corrections to F are conjectured to be
related to spectral curves of relativistic Toda systems.

B. Webs of five-branes and five-dimensional theories

We begin by considering a D5-brane ending (classi-
cally) on an NS5-brane (Aharony and Hanany, 1997).
Recall (Sec. II.D) that type-IIB five-branes sit in a (p ,q)
multiplet of the SL(2,Z) S-duality group, where the
NS5-brane is a (0,1) five-brane while the D5-brane is a
(1,0) five-brane. We choose the worldvolumes of these
five-branes to be

NS5~0,1!: ~x0,x1,x2,x3,x4,x5!,

D5~1,0!: ~x0,x1,x2,x3,x4,x6!. (294)

Classically, we may let the D5-brane end on the NS
five-brane, say from the left in x6. Such a configuration
is allowed—as discussed in Sec. II.E.3—and it is T dual
to situations where D4- or D3-branes are ending on NS
five-branes as in previous sections. Therefore this con-
figuration preserves eight supercharges.

Quantum mechanically the NS five-brane bends. Its
bending is due to the fact that the D5-brane ending on
the NS five-brane looks like an electric charge in one
dimension. This causes a linear Coulomb-like interac-
tion [see Eq. (51)], which leads to the bending of the
NS5-brane in the (x5,x6) plane into the location

x65
gs

2
~ ux5u1x5!. (295)

Here and below we set a50 in the complex type-IIB
string coupling t (35), for simplicity. Moreover, without
loss of generality, we chose the intersection of the five-
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branes to be located at the origin (x5,x6)50 and the
extension of the NS5-brane to be as in Eq. (294) when
x5,0.

While we started classically from a semi-infinite five-
brane ending on an infinite five-brane, what we have
obtained instead—quantum mechanically—is an inter-
section of three semi-infinite five-branes (Fig. 48). All
five-branes share the same 114 directions
(x0,x1,x2,x3,x4) and are real straight lines in the (x5,x6)
plane. In the example above we have three semi-infinite
five-branes meeting at the origin. The semi-infinite five-
brane located at x650 and stretched along x5,0 is the
NS5-brane. The semi-infinite five-brane located at x5

50 and stretched along x6,0 is the D5-brane. The
third semi-infinite five-brane is located (295) at x6

5gsx
5, x5,x6.0.

Which is the five-brane located at x65gsx
5? Clearly,

it is a (1,1) five-brane! Charge conservation does not
really allow a D5-brane to end on an NS5-brane. In-
stead, at the intersection point the (1,0) and (0,1) five-
branes merge together to form a (1,1) five-brane. In or-
der for this ‘‘new’’ (1,1) five-brane not to break
supersymmetry any further, it must merge from the in-
tersection point at an angle, as described above in Eq.
(295).

In the same way general vertices of (p ,q) five-branes
are permitted provided that (p ,q) charge is preserved.
To write down a charge conservation condition we have
to pick up an orientation for the five-branes. If we fix the
orientation of all n five-branes in the direction towards
the vertex the charge conservation reads

(
i51

n

pi5(
i51

n

qi50. (296)

Moreover, requiring the vertex to preserve eight super-
charges implies that the (p ,q) five-brane is stretched
along the semi-infinite line in the (x5,x6) plane located
at

qx65gspx5. (297)

This condition is equivalent to the zero Coulomb-like
force condition required for the stability of the vertex.

We can easily extend the discussion above to a situa-

FIG. 48. The classical configuration of a D5-brane ending on a
Neveu-Schwarz five-brane, replaced for finite gs by a vertex in
which (1,0) and (0,1) five-branes merge into a (1,1) five-brane.
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
tion in which nL D5-branes end on a five-brane from
the left and nR D5-branes end on the five-brane from
the right. Let ai , i51, . . . ,nL be the x5 locations of the
D5-branes from the left and bj , j51, . . . ,nR the loca-
tions of the D5-branes from the right. The bending of
the five-brane—generalizing Eq. (295)—is

x65
gs

2 S (
i51

nL

ux52aiu2(
j51

nR

ux52bju1~nL2nR!x5D .

(298)
This equation has the interpretation of a five-brane that
is an NS5-brane at large negative x5, and it changes its
charge and angle in (x5,x6) in places where a D5-brane
ends on it. The change of charge and angles is dictated
by the conditions (296) and (297).

The presence of such (p ,q) five-branes breaks the
(119)-dimensional Lorentz group of the ten-
dimensional type-IIB string to

SO~1,9!˜SO~1,4!3SO~3 !789 . (299)

The SO(1,4) is the five-dimensional Lorentz symmetry
preserved in the (x0,x1,x2,x3,x4) directions—common
to all five-branes—while SO(3)789 is the three-
dimensional rotation symmetry preserved in the
(x7,x8,x9) directions—transverse to all five-branes. The
double cover of this group will be identified with the
five-dimensional R symmetry: SU(2)789[SU(2)R .

To study five-dimensional gauge theories on type-IIB
five-branes we need to describe webs of (p ,q) five-
branes in which some of the branes are finite in one
direction, say in x6. A web of five-branes includes verti-
ces (where five-branes intersect), legs (the segments of
five-branes), and faces. In each vertex charge conserva-
tion is obtained and the zero-force condition (297) is
applied to fix the appropriate angles. In what follows we
shall not specify the orientation choices for the legs,
which should be understood from the charge assign-
ments given in each case.

For example, we study webs describing an SU(Nc)
gauge theory. Consider Nc parallel D5-branes—with
worldvolume as in Eq. (294)—stretched between two
other five-branes separated in the x6 direction, which we
choose to be (pL ,qL) and (pR ,qR) five-branes for large
negative values of x5. The left and right five-branes are
broken into segments between x552` and the lower
(in x5) D5-brane, between D5-branes, and between the
upper D5-brane and x55` .

In other words, we consider a web with Nc horizontal
internal legs (stretched in the x6 direction), which are
connected to each other by Nc21 internal legs on the
left (in x6) and Nc21 internal legs connecting them on
the right. In addition, there are four external legs, two
from above (in x5) and two from below. The lower left
and right legs have charges (pL ,qL) and (pR ,qR), re-
spectively.

Charge conservation (296) implies that the left and
right internal legs between the ath and a11st
D5-branes have charges (pL2a ,qL) and (pR1a ,qR),
respectively. This means that for large positive values of
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x5 the left and right five-branes will have charges (pL
2Nc ,qL) and (pR1Nc ,qR), respectively. The different
left and right five-brane segments are oriented in differ-
ent directions in the (x5,x6) plane, in accordance with
the zero-force conditions in each vertex [Eq. (297)],
separately. The precise bending of the left and right five-
branes can be obtained by using an appropriate version
of Eq. (298).

As we saw in the four- and three-dimensional cases, to
study the gauge physics using branes we need to con-
sider a limit in which gravity and massive string modes
decouple. The relevant limit in this case is Lmax ,ls ,gs
˜0, where Lmax is the largest length of an internal leg.
If the gauge coupling at some scale L satisfying L@ls
@Lmax is finite, at larger distances gravity decouples,
massive Kaluza-Klein modes can be integrated out, and
the dynamics on the brane configuration is governed by
gauge theory.

At low energy the theory on the D5-branes is a pure
N51 supersymmetric SU(Nc) gauge theory in 114 di-
mensions. Deformations of the web that do not change
the asymptotic locations of the external legs correspond
to moduli in the field theory. Such locations ai , i
51, . . . ,Nc of the D5-branes along the x5 direction pa-
rametrize the Coulomb branch of the theory.

When gs˜0 the configuration tends to Nc parallel
D5-branes stretched between two parallel five-branes,
and the classical gauge group is U(Nc) with gauge cou-
pling

1

g0
2 5

L6

gsls
2 . (300)

Here L6 is the distance between the left and right five-
branes. To keep g0 finite we need to take L6˜0 such
that the ratio L6 /gsls

2 is finite. The Nc values of ai are
independent and parametrize the Coulomb branch of
U(Nc).

For finite gs quantum effects cause the five-branes to
bend—as described above—and ‘‘freeze’’ the U(1) fac-
tor, as in the four-dimensional theories considered in
Secs. IV and V. One of the Nc independent classical
motions of the Nc D5-branes is indeed frozen—once the
left and right five-branes bend ( i51

Nc ai50 is required to
keep the asymptotic locations of external legs fixed—
leaving a total of Nc21 real motions parametrizing the
Coulomb branch of SU(Nc), as in Eq. (290).

The asymptotic positions of the external legs are asso-
ciated with the gauge coupling. The classical gauge cou-
pling 1/g0

2 can be obtained geometrically as follows. We
set ai50, that is, we deform the D5-branes to a position
where they are coincident without changing the loca-
tions of the external legs. Then the length of the
D5-branes L6 is related to g0 by Eq. (300)—now with
nonzero gs and L6 . For general ai , L6 is still the dis-
tance between the point where the (‘‘imaginary’’) con-
tinuation of the left external legs meet and the point
where the continuation of right external legs meet (see
Fig. 49).
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The semiclassical SU(Nc) gauge coupling (which in
this case is exact) is related to the ‘‘size’’ of the brane
configuration in x6 as in the four- and three-dimensional
cases (see Secs. IV, V, and VI). Indeed, it is linear in ai ,
as predicted by the bending (297) and (298), and in
agreement with the field-theory result obtained from
Eqs. (289) and (290), with Nf50.

Not every charge assignment is allowed to be given to
the external legs while still describing an SU(Nc) gauge
theory on the D5-branes. In this respect, two questions
are interesting:

(1) What is the gauge-theory meaning of the charges
(pL ,qL) and (pR ,qR) on the external legs?

(2) Which values of (pL ,qL) and (pR ,qR) are permit-
ted?

The answer to question (2) is clear. The permitted
values (pL ,qL) and (pR ,qR) are such that the external
legs do not cross each other. If the external legs do cross
each other, the brane configuration has more crossings
of five-branes than those required to describe the Cou-
lomb branch of N51, SU(Nc) gauge theory in five di-
mensions.

To find the independent ‘‘legal’’ SU(Nc) webs—
obeying all the above conditions—and their moduli, it is
convenient to describe a web by its dual grid diagram.
The grid has points, lines, and polygons, which are dual
to the faces, legs, and vertices of the web. One can show
(Aharony, Hanany, and Kol, 1998) that for Nc.2 there
are 2Nc11 inequivalent webs. Indeed, this is precisely
the number of allowed values of ccl as obtained from the
conditions (291) and (292) for Nf50: ccl52Nc ,2Nc
11, . . . ,Nc21,Nc . This answers question (1): the 2Nc
11 different legal webs are in one-to-one correspon-
dence with the different allowed values of ccl .

Each different allowed (pL ,qL), (pR ,qR) corre-
sponds to a different allowed ccl . The web correspond-
ing to 2ccl is obtained from the web corresponding to
ccl by the use of SL(2,Z) S duality together with a
rotation—a Z2 reflection. Indeed, in field theory there is
a Z2 symmetry of the spectrum under the reflection ccl
˜2ccl . In particular, the configuration corresponding
to ccl50 is the web invariant under reflection, while
configurations corresponding to ucclu5Nc are the two

FIG. 49. A five-dimensional SU(2) gauge theory described
using five-branes.
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webs with parallel external legs. In the latter case an
equality holds in the field-theory constraint (292).41

The Nc52 case is special. Here one finds three inde-
pendent, apparently legal, webs (Fig. 50). Each web has
(generically) four vertices, four external legs, and four
internal legs forming a single face. One of the webs has
two parallel external legs. It is claimed, however, that in
this case parallel external legs do not correspond to a
web describing an SU(2) gauge theory. The remaining
two webs—one with a rectangular face and the other
with a right-angle trapeze—correspond to the two
SU(2) gauge theories found in field theory, as discussed
in Sec. VIII.A.

We see that the webs and grids are useful in classify-
ing five-dimensional N51, SU(Nc) gauge theories. We
refer the reader to Aharony, Hanany, and Kol (1998) for
a detailed description of the classification of 5d theories
using grids.

In the webs above each vertex had three intersecting
legs. However, displacing the D5-branes in x5 and/or
changing the locations of external legs may lead to situ-

41Webs with parallel external legs seem to be inconsistent as
5d theories and perhaps should not be considered; when two
external legs are parallel a string corresponding to either a
gauge boson or an instanton (see below) can ‘‘leak’’ out of the
web (Aharony, Hanany, and Kol, 1998).

FIG. 50. The three possible configurations corresponding to
SU(2) gauge theories. Only the first two appear to give rise to
nontrivial fixed points.
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ations where faces shrink to zero size, thus forming ver-
tices with more than three intersecting legs. For in-
stance, the SU(2) diagrams can be deformed to a single
vertex with four legs (see Fig. 51). In particular, the
gauge coupling in such configurations tends to infinity,
and we describe a strong-coupling fixed point of the
theory.

The webs of five-branes may thus be useful in classi-
fying five-dimensional N51 superconformal fixed
points. Such attempts have been initiated (Aharony and
Hanany, 1997; Aharony, Hanany, and Kol, 1998). In-
deed, many configurations corresponding to known 5d
superconformal field theories (SCFT) were identified, as
well as webs that lead to new SCFT’s.

To add Nf fundamental flavors we allow the inclusion
of a total of Nf semi-infinite D5-branes, NL of which are
connected to the left of the left five-brane and NR of
which are connected to the right of the right five-brane
(NL1NR5Nf).42 The locations mf , f51, . . . ,Nf of the
semi-infinite D five-branes in the x5 directions param-
etrize the Nf real masses of quarks. Of course, these
additional D5-branes affect the bending of the left and
right five-branes [see Eq. (298)]. In particular, for large
positive values of x5 the left and right five-branes will
have charges (pL1NL2Nc ,qL) and (pR1Nc
2NR ,qR), respectively.

As before, SU(Nc) legal configurations are those in
which the left and right five-branes do not cross each
other. As a result, the number of inequivalent webs de-
scribing SU(Nc) with Nf flavors and obeying all the re-
quired conditions is indeed the one indicated by the
field-theory conditions (291) and (292). Allowed values
of ccl are in one-to-one correspondence with such in-
equivalent legal webs.

Again, the gauge coupling related to the brane
configuration—along the lines of the four- and three-
dimensional discussion—is in agreement with the field-

42Alternatively, we could add D7-branes stretched in
(x0,x1,x2,x3,x4,x7,x8,x9). But seven-branes affect the
asymptotic behavior of spacetime and we shall not consider
them here. Without D7-branes we shall not be able to see the
complete structure of the Higgs branches of the theory geo-
metrically. Some Higgsing can be obtained, however, by de-
forming a subweb in the (x7,x8,x9) directions corresponding,
classically, to a Fayet-Iliopoulos D term. This is possible when
a configuration is reducible, that is, when it can be considered
to consist of two independent webs. This may happen at the
roots of the Higgs branches.

FIG. 51. Nontrivial fixed points described by vertices with
more than three external legs.
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theory result obtained from Eqs. (289) and (290) for
general Nc , Nf , mf , and ccl . This can be seen by using
the relation between the bending (298) and the gauge
coupling as discussed in Secs. IV, V, and VI.

In addition to classifications and the study of the
structure of moduli space, more aspects of five-
dimensional gauge theories can also be considered in the
brane configurations. In particular, there are BPS-
saturated monopole strings, which arise from D3-branes
stretched along faces in the brane configuration, and
instantons—BPS-saturated particles in five
dimensions—corresponding to D strings parallel to (or
inside) the D5-branes and ending on the left and right
five-branes. Moreover, one can stretch (p ,q) string webs
ending on the five-branes.43 These and other BPS states
can be studied in the brane configurations considered
above; we refer the reader to the literature (Aharony,
Hanany, and Kol, 1998; Kol and Rahmfeld, 1998) for
details.

C. Compactifying from five to four dimensions

In this section we compactify the five-dimensional
gauge theory with spacetime (x0,x1,x2,x3,x4) to four di-
mensions (x0,x1,x2,x3) on a circle of radius R . In the
type-IIB brane configuration of the previous section this
is also obtained by compactifying x4 on a radius R circle.

The semiclassical results of the previous section are
no longer exact for R,` . To study the exact nonpertur-
bative corrections in the brane configuration we lift the
web into an M-theory curve (an M5-brane) (Brandhu-
ber, Itzhaki, et al., 1997b; Kol, 1997; Aharony, Hanany,
and Kol, 1998). For that purpose, we need to identify the
type-IIB parameters gs , ls , and R in terms of the
M-theory parameters lp and Ri , i51, . . . ,10.

To do that we first perform a T duality in the x4 di-
rection T4 which takes the compactified type-IIB string
to a type-IIA string compactified on a circle of radius R4
(see Sec. II.D),

T4 : R˜R45
ls

2

R
, (301)

and string coupling

gA5
gsls

R
. (302)

Moreover, as explained in Sec. II.C, the D5- and
NS5-branes with worldvolumes as in Eq. (294) trans-
form under T4 to the type-IIA D4- and NS5-branes,
respectively, with worldvolumes

NS5: ~x0,x1,x2,x3,x4,x5!,

D4: ~x0,x1,x2,x3,x6!. (303)

43Webs of (p ,q) strings can also be stretched between
D3-branes; in the context of Sec. III they describe 1/4 BPS
states in 4-d , N54 SYM theory (Bergman, 1998).
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Therefore a web describing SU(Nc) with Nf flavors,
namely, Nc finite and Nf semi-infinite D5-branes—as
considered in the end of the previous section—
transforms into a type-IIA configuration in which Nc
four-branes are stretched between two NS five-branes
while NL semi-infinite four-branes are connected to the
left of the left five-brane and NR semi-infinite four-
branes are connected to the right of the right five-brane,
NL1NR5Nf . In the following we shall usually take
NL50, NR5Nf .

Equivalently, for finite gA [Eq. (302)] we have M
theory compactified on a rectangular two-torus in the x4

and x10 directions with sizes R4 and R10 , respectively,
where

R105lsgA (304)

and with an 11-dimensional Planck scale

lp
35R10ls

2. (305)

As explained in Sec. II.C [and as can be rederived from
Eqs. (301)–(305)], the type-IIB compactification radius
and string coupling are related to the M-theory param-
eters via

R5
lp

3

R4R10
(306)

and

gs5
R10

R4
. (307)

The ten-dimensional type-IIB limit is obtained by taking
R4R10˜0 while keeping gs (307) fixed. Indeed, Eq.
(306) implies that in this limit R˜` and we recover the
five-dimensional field-theory configurations of the previ-
ous section.

As before, in M theory the type-IIA brane configura-
tion is an M5-brane with worldvolume R1,33S , where
R1,3 is the 113 spacetime (x0,x1,x2,x3) and S is a two-
dimensional surface embedded in the four-dimensional
space Q5S13R23S1 in the (x4,x5,x6,x10) directions.
Since both x4 and x10 are compact, to find the curve S it
is convenient to parametrize Q by the single-valued co-
ordinates t and u :

t5e2s/R10, s5x61ix10,

u5e2iv/R4, v5x41ix5 (308)

and describe the curve by the algebraic equation

F~ t ,u !50. (309)

As in Secs. IV.C.4 and IV.C.5, the form of the curve
should be

F~ t ,u !5A~u !t21B~u !t1C~u !50 (310)

and we may set

A~u !51 (311)

corresponding to all semi-infinite four-branes’ being to
the right of the right five-brane (NL50, NR5Nf , see
above). Since both u5` (that is, x55`) and u50 (x5
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52`) correspond to the asymptotic region, the multi-
plicity of the the zero roots of the polynomials B(u) and
C(u) is relevant. Analyzing (Brandhuber, Itzhaki, et al.,
1997b) the asymptotic behavior as in Sec. IV.C.4, one
finds that curves describing consistent SU(Nc) configu-
rations with Nf fundamental flavors have

B~u !5b)
i51

Nc

~u2Ai!,

C~u !5cuNc2Nf/22ccl)
f51

Nf

~u2Mf!, (312)

where a ,b ,Ai ,Mf ,ccl are constant parameters and ccl
must obey the conditions (291) and (292). Therefore ccl
in Eq. (312) corresponds precisely to ccl in field theory.
In M theory ccl must obey the condition (291) because
otherwise the curve is not holomorphic, and it must
obey the condition (292) because otherwise the
M5-brane describes a type-IIB configuration in which
the external five-branes cross each other.

Each monomial untm in the curve is associated with
the point (n ,m) in the grid diagram dual to the web,
that is, to a face in the web where it is dominant. The
curve is just the sum of these monomials (Kol, 1997;
Aharony, Hanany, and Kol, 1998) with the coefficients
constrained to obey some consistency conditions.

The four-dimensional field-theory limit is obtained at
R˜0. To consider this limit in M theory, it is convenient
to rewrite the algebraic Eqs. (309)–(312) in terms of v
[instead of u in Eq. (308)]. By an appropriate choice of
the constants b and c in Eq. (312) one finds the curve

t21te2iNcv/2R4)
i51

Nc

R4 sinS v2ai

2R4
D

1e2iv(Nc2ccl)/R4)
f51

Nf

R4 sinS v2mf

2R4
D50, (313)

where the parameters Ai and Mf in Eq. (312) are related
to ai and mf in Eq. (313), respectively, by

Ai5e2ai /R4, Mf5e2imf /R4. (314)

The R˜0 limit means R4˜` [see Eq. (301)] and, there-
fore, in the four-dimensional limit the curve (313) be-
comes

t21t)
i51

Nc

~v2ai!1)
f51

Nf

~v2mf!50. (315)

This is precisely the curve of N52 supersymmetric
SU(Nc) gauge theory with Nf flavors in four dimensions
[Eq. (117)].

D. Some generalizations

To study N51 supersymmetric symplectic (or or-
thogonal) gauge theories in five dimensions we need to
present an orientifold five-plane. For instance, let us in-
troduce an O512-plane parallel to the D5-branes (294)
in the type-IIB webs of Sec. VIII.B. This gives rise to an
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Sp(Nc/2) gauge theory on the D5-branes (because the
orientifold has a positive charge, thus imposing a sym-
plectic projection on the parallel D five-branes). The
brane configuration is necessarily invariant under the
orientifold reflection, and therefore it is more con-
strained than the SU(Nc) configurations. In particular,
given Nc and Nf , there is a unique possibility (modulo
equivalence transformations) for the orientation of the
external legs—the one invariant under the mirror reflec-
tion. This single consistent configuration—describing an
Sp(Nc/2) gauge theory with Nf fundamental
hypermultiplets—corresponds to the unique field theory
obeying the condition ccl50 (see Sec. VIII.A). More-
over, as in the unitary case, the field-theory condition
(293) translates in the brane construction into the re-
quirement that the external legs not cross each other.

Gauge theories with product gauge groups can also be
considered in the brane picture. For example, webs cor-
responding to a product of unitary gauge groups
SU(N1)3SU(N2)3¯3SU(Nk) have—in the gs˜0
limit—k11 parallel NS five-branes separated in x6, and
Ni D five-branes connecting the ith NS five-brane (from
the left in x6) to the i11st NS five-brane, i51, . . . ,k .
For gsÞ0, the five-branes bend, according to the rules
discussed in this review, describing the exact quantum
corrections to the five-dimensional theories. Again, the
condition that external legs not cross each other must
correspond to appropriate field-theory constraints.

Webs of five-branes can also be used to obtain new
N52 3-d superconformal field theories from 5d fixed
points. This is done by considering two identical webs
separated, say in the x7 direction, and stretching be-
tween them D3-branes with worldvolume in
(x0,x1,x2,x7). For more details we refer the reader to
Aharony and Hanany (1997).

Finally, we should remark that some deformations of
consistent webs may lead to theories with no gauge-
theory interpretation.

E. Six-dimensional theories

In this section we discuss brane configurations in the
type-IIA string with six-branes ending on five-branes
which describe at low-energy six-dimensional (0,1) su-
persymmetric gauge theories (Brunner and Karch,
1997).

We consider NS five-branes, D six-branes, and orien-
tifold six-planes in the type-IIA string with worldvolume

NS5: ~x0,x1,x2,x3,x4,x5!,

D6/O6: ~x0,x1,x2,x3,x4,x5,x6!. (316)

With these objects we can construct several stable con-
figurations leading to consistent 6d supersymmetric
gauge theories with eight supercharges, a few examples
of which are presented below:

• SU(Nc) with Nf52Nc . Let us stretch Nc D6-branes
between two NS5-branes that are separated in x6. To
the left of the left five-brane we place NL semi-infinite
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D6-branes, while to the right of the right five-brane
we place NR semi-infinite D6-branes. Since six-branes
ending on a five-brane behave like electric charges in
zero dimensions, stability implies that the total charge
must vanish. This zero-charge condition on the five-
branes implies that

NL5NR5Nc⇒Nf[NL1NR52Nc . (317)

The low-energy theory on the D6-branes is therefore
an SU(Nc) gauge theory with Nf52Nc fundamental
hypermultiplets. In field theory, the condition (317) is
precisely the one required for anomaly cancellation in
(0,1) SUSY six-dimensional theories. Again, we find
that the brane configuration is stable if and only if the
gauge theory is anomaly free.
We may compactify the theory on a three-torus in the
(x3,x4,x5) directions and perform T duality in these
directions. The brane configuration considered above
is T dual to configurations describing SU(Nc) gauge
theories with eight supercharges and Nf52Nc , which
were discussed in previous sections. T duality (fol-
lowed by decompactifications) in the x5 direction T5
takes it to a web of five-branes describing a particular
N51 five-dimensional gauge theory. T45 leads to an
N52 four-dimensional configuration, while T345 gives
an N54 three dimensional case.

• SO(Nc) with Nf5Nc28. To get an orthogonal gauge
group we add an O6-plane and stick the two NS five-
branes separated in x6 on top of the orientifold. As we
have learned, there is a sign flip in the Ramond-
Ramond charge of the orientifold on the two sides of
the five-brane.
Consider the case in which an O624-plane (the orien-
tifold six-plane with charge 24) is stretched between
the two NS five-branes. To the left of the left five-
brane and to the right of the right five-brane we must
have semi-infinite O614-planes. Moreover, between
the NS five-branes we stretch Nc D six-branes and to
the left and right of them we place NL and NR semi-
infinite D6-branes, respectively. The zero-force condi-
tion on the five-branes now implies that

NL5NR5Nc28⇒Nf[~NL1NR!/25Nc28. (318)

To obtain the consistency condition (318) we had to take
into account the sign flip of the orientifold.
The theory on the six-branes is a (0,1) supersymmetric
SO(Nc) gauge theory (because the orientifold segment
parallel to the Nc finite six-branes is an O624 , thus im-
posing an orthogonal projection) with Nf hypermultip-
lets in the vector representation. The requirement (318)
is precisely the anomaly-free condition in such a gauge
theory.

• Sp(Nc/2) with Nf5Nc18. To get a symplectic gauge
group all we need to do is to change the sign of the
orientifold in the previous example. The projection of
the O614-plane stretched between the five-branes on
the parallel Nc six-branes is the symplectic one, lead-
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ing to an Sp(Nc/2) supersymmetric gauge theory.
Moreover, the zero-force condition implies now that
the theory has Nc18 fundamental hypermultiplets:

NL5NR5Nc18⇒Nf[~NL1NR!/25Nc18, (319)

which is precisely the anomaly-free condition in gauge
theory.

• Product groups. Configurations describing an alternat-
ing product of k orthogonal and symplectic gauge
groups can be studied by considering k11 NS five-
branes separated in x6 on top of an O6-plane. The
zero-force condition implies the correct relations of
colors and flavors required for anomaly cancellation
in field theory.

Very recently, new works discussing branes and six-
dimensional theories have appeared (Brunner and
Karch, 1998; Hanany and Zaffaroni, 1998b). In these
works configurations including eight-branes and orienti-
folds were considered, leading to classes of 6d models
with nontrivial fixed points at strong coupling, some of
which were studied previously in field theory (Seiberg,
1997a) and using branes at orbifold singularities (Intrili-
gator, 1997).

IX. DISCUSSION

A. Summary

The worldvolume physics of branes in string theory
provides a remarkably efficient tool for studying many
aspects of the vacuum structure and properties of BPS-
saturated states in supersymmetric gauge theories. By
embedding it in a much richer dynamical structure,
brane dynamics provides a new perspective on gauge
theory and in many cases explains phenomena that are
known to occur in field theory but are rather mysterious
there. We list here some examples of results that can be
better understood using branes that were described in
this review:

(1) Montonen and Olive’s electric-magnetic duality in
four-dimensional N54 SUSY gauge theory as well
as Intriligator and Seiberg’s mirror symmetry in
three-dimensional N54 SUSY gauge theory are
consequences of the nonperturbative S-duality sym-
metry of type-IIB string theory (Green and Gut-
perle, 1996; Tseytlin, 1996; Hanany and Witten,
1997).

(2) Nahm’s construction of the moduli space of mag-
netic monopoles can be derived by using the de-
scription of monopoles as D strings stretched be-
tween parallel D3-branes in type-IIB string theory
(Diaconescu, 1997). A similar description leads to a
relation between the moduli space of monopoles in
one field theory and the quantum Coulomb branch
of another (Hanany and Witten, 1997).

(3) The auxiliary Riemann surface whose complex
structure was proven by Seiberg and Witten to de-
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termine the low-energy coupling matrix of four-
dimensional N52 SUSY gauge theory is naturally
interpreted as part of the worldvolume of a five-
brane (Klemm et al., 1996; Witten, 1997a). Hence it
is physical in string theory; moreover, this geometri-
cal interpretation is very useful for studying BPS-
saturated states in N52 supersymmetric Yang-Mills
theory.

(4) Seiberg’s infrared equivalence between different
four-dimensional N51 supersymmetric gauge theo-
ries is manifest in string theory (Elitzur, Giveon, and
Kutasov, 1997; Elitzur, Giveon, et al., 1997). The
electric and magnetic theories provide different pa-
rametrizations of the same quantum moduli space of
vacua. They are related by smoothly exchanging
five-branes in an appropriate brane configuration.
Many additional features of the vacuum structure of
N51 SUSY gauge theories can be reproduced by
studying the five-brane configuration (Brandhuber,
Itzhaki, et al., 1997a; Hori, Ooguri, and Oz, 1998;
Witten, 1997b). In particular, the QCD string of
confining N51 supersymmetric Yang-Mills theory
appears to be a membrane ending on the five-brane
(Witten, 1997b).

(5) The vacuum structure of N52 supersymmetric
gauge theories in three dimensions and, in particu-
lar, the generalization of Seiberg’s duality to such
systems, can be understood using branes (Elitzur,
Giveon, et al., 1997). An interesting feature of
Seiberg’s duality in three dimensions is that it re-
lates two theories, one of which is a conventional
field theory, while the other does not seem to have a
local field-theoretic formulation (but it does have a
brane description).

(6) Webs of branes provide a useful description of non-
trivial fixed points of the renormalization group in
five and six dimensions (Aharony and Hanany, 1997;
Aharony, Hanany, and Kol, 1998; Brunner and
Karch, 1998; Hanany and Zaffaroni, 1998b).

In fact, one could argue that all the results regarding the
vacuum structure of strongly coupled supersymmetric
gauge theories obtained in the last four years should be
thought of as low-energy manifestations of string theory.

The improved understanding of the vacuum structure
obtained by embedding gauge theory in the larger con-
text of string or brane theory is very interesting, but it
would be even more important to go beyond the
vacuum/BPS sector and obtain new results on nonva-
cuum low-energy properties, e.g., the masses and inter-
actions of low-lying non-BPS states. In field theory not
much is known about this subject, but there are reasons
to believe that progress can be made using branes.

The role of branes in describing low-energy gauge
theory so far is somewhat analogous to that of Landau-
Ginzburg theory in critical phenomena. It provides a re-
markably accurate description of the space of vacua of
the theory as a function of the parameters in the La-
grangian, including aspects that are quite well hidden in
the standard variables, such as strong-weak coupling re-
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lations between different theories. As in critical phe-
nomena, to compute critical exponents or, more gener-
ally, study the detailed structure of the infrared
conformal field theory, one will have to go beyond the
analysis of the vacuum. However, if the analogy to sta-
tistical mechanics is a good guide, the brane
description—which clearly captures correctly the order
parameters and symmetries of the theory—should prove
to be a very useful starting point for such a study.

B. Open problems

In the course of the discussion we have encountered a
few issues that deserve better understanding. Some ex-
amples are the following:

1. SU(Nc) versus U(Nc)

We have seen in Secs. IV and V that brane configura-
tions describing four-dimensional gauge theory with a
unitary gauge group seem to have the peculiar property
that while classically the gauge group is U(Nc), quan-
tum mechanically it is SU(Nc), with the gauge coupling
of the U(1) factor vanishing logarithmically as we turn
on quantum effects. At the same time, an interpretation
of the physics in terms of an SU(Nc) gauge theory
seems to be in contradiction with certain supersymmet-
ric deformations of the brane configuration, which ap-
pear to be parameters in the Lagrangian rather than
moduli (Giveon and Pelc, 1998). It would be interesting
to resolve this apparent paradox, especially because it is
closely related to other issues that one would like to
understand better. In particular, as we have seen, some
of the features of the infrared physics are not visible
geometrically in brane theory. For example, in four-
dimensional magnetic N51 SQCD with Nf5Nc , the
mesons M [Eq. (148)] are clearly visible, while the bary-
ons B , B̃ [Eq. (150)] are more difficult to see. Similarly,
in three-dimensional N52 SQCD, the fields V6 [Eq.
(265)] are a form of dark matter, visible only through
their effect on the quantum moduli space of vacua.

2. Nontrivial fixed points, intersecting five-branes,
and phase transitions

Brane configurations provide very useful descriptions
of the classical and quantum moduli spaces of vacua of
different gauge theories, but so far it has proved difficult
to use them to study other features of the long-distance
behavior. The corresponding M-theory five-brane be-
comes singular as one approaches a nontrivial IR fixed
point, and thus it is not well described by 11-dimensional
supergravity. Only aspects of the fixed point that can be
studied by perturbing away from it and continuing to
unphysical values of L6 , R10 , such as the superpotential,
dimensions of chiral operators, and global symmetries,
can be usefully studied using low-energy M theory.

An important tool for studying the low-energy dy-
namics of N51 SUSY gauge theories using branes is
N51 duality. We have seen that the theory on four-
branes stretched between nonparallel five-branes
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changes smoothly when the five-branes meet in space
and exchange places. In the case of parallel five-branes,
this process corresponds to a phase transition. It would
be very interesting to understand this phenomenon in
more detail by studying the theory on parallel versus
nonparallel five-branes.

Specifically, we have seen using branes that the quan-
tum moduli spaces of vacua and quantum chiral rings of
the electric and magnetic SQCD theories coincide. This
leaves open the question whether Seiberg’s duality ex-
tends to an equivalence of the full infrared theory, since
in general the chiral ring does not fully specify the IR
conformal field theory. It is believed that in gauge
theory the answer is yes, and to prove it in brane theory
will require an understanding of the smoothness of the
transition when five-branes cross.

It is important to emphasize that the question cannot
be addressed using any currently available tools. The
M-theory approach fails since the characteristic size of
the five-brane becomes small, and the brane interactions
relevant for this situation are unknown. As we saw, the
fact that when parallel Neveu-Schwarz five-branes cross
the theory on four-branes stretched between them un-
dergoes a phase transition, is related to the fact that
when the five-branes coincide they describe a nontrivial
six-dimensional conformal field theory. It is a hallmark
of nontrivial fixed points that the physics seen when one
is approaching them from different directions is differ-
ent. To show smoothness for nonparallel branes one has
to understand the theory on intersecting nonparallel NS
five-branes. At present such theories are not under-
stood.

3. Orientifolds

Brane configurations involving orientifold four-planes
such as those of Figs. 19, 21, and 42, discussed in Secs.
IV and V, are still puzzling. It appears that when a
D-brane intersects an orientifold and divides it into two
disconnected components, the charge of the orientifold
flips sign as one crosses the D-brane. Also, upon com-
pactification of such brane configurations on a longitudi-
nal circle and T duality along the circle, one finds brane
configurations in type-IIB string theory in which the
analysis is severely constrained by S duality. It is not
clear how the corresponding analysis is related to the
process of compactifying the low-energy gauge theory
on the four-branes from four to three dimensions.

4. Future work

Clearly, there is much that remains to be done. The
two main avenues for possible progress at the moment
seem to be the following:

a. More models

One would like to find the sort of description of the
vacuum structure and low-energy physics that we pre-
sented for additional models. Specific examples include
models with exceptional gauge groups and more general
matter representations of the classical groups, such as
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SO groups with spinors. For example, if one believes
that Seiberg’s duality is a string-theory phenomenon, it
should be possible to find an embedding in string theory
of the set of Seiberg dual pairs studied by Pouliot (1995),
Berkooz et al. (1997), and others.

One way to proceed in the case of four-dimensional
N52 supersymmetry is to study configurations in which
an M5-brane wraps the Seiberg-Witten surface relevant
for the particular gauge theory, as has been done by
Klemm et al. (1996). It would be interesting to under-
stand the relation of these constructions to the sort of
configurations studied here. It is worth stressing that one
is looking for a brane construction that does not merely
share with supersymmetric Yang-Mills theory its
vacuum structure. Rather, we want to reproduce the
whole RG trajectory corresponding to the particular
gauge theory in some limit of string/brane dynamics.
This means that there has to be a weakly coupled de-
scription of the brane configuration, suitable for study-
ing the vicinity of the UV fixed point of SYM theory.

For N51 supersymmetric theories, it would be inter-
esting to construct large classes of chiral gauge theories
that break supersymmetry and study them using branes.
This may clarify the general requirements for SUSY
breaking and hopefully provide the same kind of con-
ceptual unification of SUSY breaking that was achieved
for Seiberg-Witten theory and N51 duality.

In this review we have mostly discussed the worldvol-
ume physics on branes that have finite extent in one
noncompact direction. An interesting generalization
corresponds to configurations containing branes that are
finite or semi-infinite in more than one noncompact di-
rection. The simplest case to examine is that of branes
that are finite in two directions.

We have seen that such configurations are necessary
to describe Euclidean field configurations that give rise
to different nonperturbative effects (see, for example,
Figs. 8 and 34). Similarly, in Sec. IV configurations of
D2-branes stretched between two NS5-branes and two
D4-branes were used to describe magnetic monopoles
in four-dimensional N52 SYM theory. Using U duality,
such configurations could be mapped to other interest-
ing configurations. For example, one could study
Dp-branes [with worldvolume, say, in
(x0,. . . ,xp22,x4,x8), p52,3,4,5] stretched between a pair
of NS5-branes separated by a distance L8 in x8 and a
pair of NS58-branes separated by a distance L4 in x4

[see Eqs. (91) and (173) for the conventions], or
D3-branes stretched between two NS5-branes separated
in x6 and two D5-branes [Eqs. (294)] separated in x5.

In the latter case, it is easy to check that the two-
dimensional low-energy theory on the three-branes has
(4,0) SUSY and is thus chiral. Therefore these configu-
rations and their generalizations offer a useful labora-
tory for the study of chiral field theories. A large class of
generalizations can be obtained by studying ‘‘chess
board’’ configurations in which branes finite in two di-
rections stretch like rugs between different segments of
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a two-dimensional network of intersecting branes (Fig.
52). Particular configurations of this sort44 are dual to
some of the chiral models discussed in Sec. V.D.5, using
the duality relating an ALE space with a Zn orbifold
singularity to a vacuum containing n21 solitonic five-
branes on R4/Zn .

Clearly, it would be interesting to study configurations
of this type with more branes and/or orientifolds, as well
as consider branes that are finite in more dimensions,
which should lead at low energies to many new models
and hopefully also to some new understanding.

b. The dynamics of five-branes

It is clearly important to develop tools to study the
dynamics of five-branes in string theory. Four-
dimensional N54 SYM theory can be thought of as the
six-dimensional conformal field theory on Nc five-branes
compactified on a two-torus whose modulus t is related
to the four-dimensional supersymmetric Yang-Mills cou-
pling (Witten, 1995b). N51,2 SYM theory can be
thought of as compactifications of the (2,0) conformal
field theory from six down to four dimensions on the
Seiberg-Witten Riemann surface S (Witten, 1997b).

Recently, the (2,0) theory on R5,1 and the compacti-
fied theory on R3,13T2 were studied using matrix theory
(Aharony, Berkooz, et al., 1998; Aharony, Berkooz, and
Seiberg, 1998; Ganor and Sethi, 1998). These attempts
are still at an early stage and it is not clear whether they
will eventually provide efficient techniques for studying
these theories. In any case, matrix descriptions of theo-
ries like four-dimensional N54 SYM theory are also
useful as a testing ground for matrix theory in general,
as the theory that one is trying to describe is in this case
well defined and understood (at least in certain corners
of parameter space), unlike eleven-dimensional M
theory for which matrix theory was originally proposed.

44See Hanany and Zaffaroni (1998) for a recent discussion.

FIG. 52. Does chess play a role in string theory?
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Another promising direction is to understand the
theory of the QCD string. At large Nc the string cou-
pling of the QCD string is expected to be small
(’t Hooft, 1974) and one may hope that the theory can
be described by a more or less conventional worldsheet
formalism (Polyakov, 1987). What kind of theory does
one expect to find? The brane construction suggests a
theory that lives in six dimensions, but is Lorentz invari-
ant in only four of these. There is a nontrivial metric in
the remaining two directions, F, which suppresses fluc-
tuations of the string in these directions. The resulting
picture is very reminiscent of noncritical superstrings
that were constructed by Kutasov and Seiberg (1990)
and of the recent work of Polyakov (1998). It would of
course be very interesting to make this more precise.

A long-standing puzzle in the theory of QCD strings is
related to the work of Kutasov and Seiberg (1991), who
pointed out that in fundamental string theory IR stabil-
ity of the vacuum (absence of tachyons) and unitarity
imply asymptotic supersymmetry of the spectrum. Con-
fining large-Nc gauge theories are traditionally expected
to have a string description even in the absence of su-
persymmetry (’t Hooft, 1974; Polyakov, 1987). The new
ideas on QCD string theory and, in particular, the rela-
tion of the QCD string to the fundamental string, might
help resolve the puzzle. Perhaps a description of QCD
in terms of continuous worldsheets requires asymptotic
supersymmetry. This may be related to recent specula-
tions that supersymmetry appears to play a deep role in
string dynamics (Banks et al., 1997; Douglas et al., 1997).
For example, there are indications that locality in string
theory is a consequence of asymptotic supersymmetry.

Eventually, one would like to use branes to study the
infrared dynamics of nonsupersymmetric theories like
QCD. At present, brane constructions shed no light on
strongly coupled nonsupersymmetric gauge theory.
Thus, if SUSY is dynamically broken for a particular
brane configuration, one can generally say very little
about the physics of the nonsupersymmetric ground
state. It seems quite likely that progress on one of the
fronts mentioned above will also allow one to study non-
supersymmetric gauge theories.
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