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INTRODUCTION

The fractional quantum Hall effect is a very counter-
intuitive physical phenomenon. It implies that many
electrons, acting in concert, can create new particles
having a charge smaller than the charge of any indi-
vidual electron. This is not the way things are supposed
to be. A collection of objects may assemble to form a
bigger object, or the parts may remain their size, but
they don’t create anything smaller. If the new particles
were doubly charged, it wouldn’t be so paradoxical—
electrons could “‘just stick together”” and form pairs. But
fractional charges are very bizarre indeed. Not only are
they smaller than the charge of any constituent electron,
but they are exactly 1/3 or 1/5 or 1/7 etc. of an electronic
charge, depending on the conditions under which they
have been prepared. And yet we know with certainty
that none of these electrons has split up into pieces.

Fractional charge is the most puzzling of the observa-
tions, but there are others. Quantum numbers—usually
integers or half-integers—turn out to be also fractional,
such as 2/5, 4/9, and 11/7, or even 5/23. Moreover, bits of
magnetic field can get attached to each electron, creating
yet other objects. Such composite particles have proper-
ties very different from those of the electrons. They
sometimes seem to be oblivious to huge magnetic fields
and move in straight lines, although any bare electron
would orbit on a very tight circle. Their mass is unre-
lated to the mass of the original electron but arises
solely from interactions with their neighbors. More so,
the attached magnetic field changes drastically the char-
acteristics of the particles, from fermions to bosons and
back to fermions, depending on the field strength. And
finally, some of these composites are conjectured to coa-
lesce and form pairs, vaguely similar to the formation of
electron pairs in superconductivity. This would provide
yet another astounding new state with weird properties.

All of these strange phenomena occur in two-
dimensional electron systems at low temperatures ex-
posed to a high magnetic field—only electrons and a
magnetic field. The electrons reside within a solid, at the
interface between two slightly different semiconductors.
This is presently the smoothest plane we can fabricate to
restrict the electrons’ motion to two dimensions. Quan-
tum mechanics does the rest.

*The 1998 Nobel Prize in Physics was shared by Robert B.
Laughlin, Horst L. Stormer, and Daniel C. Tsui. This lecture is
the text of Professor Stormer’s address on the occasion of the
award.

Reviews of Modern Physics, Vol. 71, No. 4, July 1999

0034-6861/99/71(4)/875(15)/$18.00

Most of the experiments are very simple. Given a high
magnetic field, typically from a commercial supercon-
ductive magnet, and given a temperature close to abso-
lute zero, typically 1/100 to 1/10 of a degree Kelvin from
a commercially available helium refrigerator, only a bat-
tery, a resistor, and a voltmeter are required. In reality
one employs somewhat more sophisticated instrumenta-
tion to increase the data accumulation rate.

The samples are made from ultra-pure semiconductor
materials. They are the essential ingredient for the ex-
periments. Before diving into the mysterious caverns of
two-dimensional many-particle physics, one needs to get
an appreciation for the sophisticated technologies that
make the journey possible.

TWO-DIMENSIONAL ELECTRON SYSTEMS

In a three-dimensional world, the creation of a two-
dimensional system usually requires a surface of an ob-
ject or an interface between two substances and a force
to keep things there. A game of billiards—on the surface
of a table and held down by gravity—is a commonly
cited model system. Electrons can be confined to the
surface of liquid helium or to the surface of some insu-
lator. They can be kept there by an electric field, which
pushes them against a highly impenetrable barrier. The
most successful method to create two-dimensional elec-
tron systems (2DESs) is to confine them within a solid to
the interface between a semiconductor and an insulator
or to the interface between two different semiconduc-
tors. The first is the so-called silicon MOSFET (metal-
oxide-semiconductor field-effect transistor), in which the
2DES is confined to the interface between silicon and
silicon oxide; see Fig. 1(a).

In a silicon MOSFET, electrons reside at the silicon
side of the interface, pushed against the highly impen-
etrable, insulating silicon oxide glass by an electric field
from a metal electrode atop the glass. The ability to vary
the electron concentration in the silicon—and hence the
electrical resistance—via the electrode (called the gate)
makes this structure an ideal transistor. Silicon
MOSFETs are the workhorse of today’s ~$140 billion
silicon industry—providing the central ingredient for ev-
erything from the PC to the digital watch.

In a MOSFET, electrons can move along the plane of
the interface but are bound to it in the perpendicular
direction. In fact, due to quantum mechanics, they can-
not move in this direction at all. The electric field from
the electrode pushes the carriers so strongly against the
glass and they become so strongly entrapped in this di-
rection that only a set of discrete states are quantum
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FIG. 1. Schematic drawings of a silicon metal-oxide-
semiconductor field-effect transistor (MOSFET). (a) The two-
dimensional electron system (2DES) resides at the interface
between silicon and silicon oxide. Electrons are held against
the oxide by the electric field from the gate metal; (b) Sche-
matic drawings of a modulation-doped gallium arsenide/
aluminum gallium arsenide (GaAs/AlGaAs) heterojunction.
The 2DES resides at the interface between GaAs and
AlGaAs. Electrons are held against the AlGaAs by the elec-
tric field from the charged silicon dopants (+) in the AlGaAs;
(c) Energetic condition in the modulation-doped structure
(very similar to the condition in the MOSFET). Energy in-
creases to the left. Electrons are trapped in the triangular-
shaped quantum well at the interface. They assume discrete
energy states in the z direction (black and horizontally
striped). At low temperatures and low electron concentration
only the lowest (black) electron state is occupied. The elec-
trons are totally confined in the z direction but can move in the
x-y plane.

mechanically allowed in this dimension [see Fig. 1(c)].
At low temperatures, much lower than the energetic
spacing between these orbits, and at sufficiently low den-
sity, all electrons reside in the lowest of these states.
Their behavior in this z direction is rigidly confined. On
the other hand, they are free to move in the x-y plane.
The silicon MOSFET represents an almost ideal imple-
mentation of the concept of a 2DES, and much of the
physics of 2DESs has relied on it.

As good and versatile as they are, such MOSFETs
have their limitations. Residing at the interface between
a crystalline semiconductor and an insulating, random
glass, electrons are often scattered by the roughness of
the plane or by impurities that can penetrate the glass
layer. Electron scattering is undesirable. It ejects elec-
trons in a random fashion out of their trajectories, ob-
scuring the observation of their ““clean” behavior, gov-
erned solely by their mutual interactions and
interactions with a magnetic field. Of course, electrons
are also scattered by vibrations of the atoms, so-called
phonons. Cooling the samples to temperatures near ab-

Rev. Mod. Phys., Vol. 71, No. 4, July 1999

solute zero reduces such vibrations to a level at which
they become negligible as compared to scattering from
any residual impurities.

Electrons, bound to the interface between two differ-
ent crystalline semiconductors, should make for an even
“better” 2DES than the one in a silicon MOSFET.
Modulation-doped gallium-arsenide/aluminum-gallium-
arsenide (GaAs/AlGaAs) heterostructures have pro-
vided such a superior system for research and for some
high-performance applications.

MODULATION DOPING

Pure semiconductors do not conduct electricity at low
temperatures. There are no free electrons that can move
about the crystal. All of them have been consumed by
the bonds that hold the solid together. To conduct elec-
tricity, semiconductors require the addition of a small
number of impurities, known as doping. Doping entails
somewhat of a physical “‘catch 22”’: without doping there
are no free electrons, but doping introduces impurities,
which strongly scatter the newly introduced free carri-
ers. In a three-dimensional semiconductor, this dilemma
can practically not be circumnavigated. In two dimen-
sions, however, there is a way. One can separate the
mobile electrons from their parent impurities by confin-
ing them to different, neighboring planes. Such layers
need to be in close proximity to each other for the im-
purities to transfer their electrons, but sufficiently far
apart to prevent such electrons from scattering off the
charged core of their bare parent impurities, which they
leave behind. Molecular beam epitaxy (MBE) provides
the tools for such an undertaking.

MBE is basically a high-vacuum evaporation tech-
nique which allows one to evaporate high-quality, thin
layers of semiconductors onto each other. Invented in
the late 1960s by Al Cho at Bell Laboratories, it forms
the basis of a large industry, manufacturing high-
performance photonic and electronic devices, with an
emphasis on communications. One standard materials
combination used in MBE crystal growth in GaAs and
GaAlAs. These are two semiconductors with practically
identical atom-to-atom spacing (lattice constant), but
they differ slightly in the energies of their free electrons
(electron affinity). Electrons have a slight “preference”
for GaAs over AlGaAs—about 300meV in a typical
sandwich. An almost identical lattice constant guaran-
tees a virtually defect-free, stress-free, and hence high-
quality interface. The difference in electron affinity al-
lows one to keep electrons at bay from their highly
scattering parent impurities.

In its most common implementation, the 2DES in an
MBE-grown GaAs/AlGaAs sandwich resides at the
GaAs side of a single interface with AlGaAs; see Fig.
1(b). A several-um-thick GaAs layer is grown onto a
1/2-mm-thick GaAs substrate. The substrate provides a
template for the arriving atoms as well as mechanical
support for the final structure. The GaAs layer is then
covered by a ~0.5-um-thick layer of AlGaAs. During
the high-quality, extremely clean, atomic-layer-by-
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atomic-layer growth process, silicon impurities are intro-
duced into the AlGaAs material at a distance of about
0.1 um from the interface. Each silicon impurity has one
more outer-shell electron than the gallium atom, which
it replaces in the solid. It easily loses this additional elec-
tron, which wanders around the solid as a conduction
electron. Seeking the energetically lowest state, the elec-
tron ventures over the energetic cliff and falls “down”
into the GaAs material, only 0.1 um away. In the highly
pure GaAs layer such conduction electrons can move
practically unimpeded by their parent silicon impurities,
which remain in the AlGaAs layer, on the other side of
the barrier. With modulation doping you ‘‘can have your
cake and eat it.”

The attraction from all those positively charged (loss
of one electron) stationary silicon ions pulls the mobile
electrons against the AlGaAs barrier of the interface
[see Fig. 1(c)]. The conditions are completely analogous
to the conditions in a Si MOSFET, in which the metal
gate pulls the electrons against the silicon oxide barrier
of its interface. The same quantization of the z motion
of the carriers arises and the carriers become quantum
mechanically bound to the interface, but remain mobile
within the x-y plane. The advantage that a modulation-
doped GaAs/AlGaAs heterostructure provides over a Si
MOSFET originates from its atomically smooth inter-
face between two crystalline semiconductors of very
high purity. Transistors from such modulation-doped
material (so-called HEMT transistors) represent today’s
lowest-noise, highest-frequency transistors and are ex-
tensively used in mobile telephony. Amazingly, much of
the bizarre physics to be described below would occur in
a transistor, not unlike those in many mobile phones, if
cooled to low temperatures and placed in a high mag-
netic field.

Electron mobility is a common measure for the ease
with which electrons move through a material. At low
temperatures, where the scattering by phonons is negli-
gible, mobilities in today’s GaAs/AlGaAs heterostruc-
tures exceed those in Si MOSFETs by almost a factor of
1000! Such modulation-doped specimens represent pres-
ently the best implementation of the concept of a two-
dimensional metal, almost free of detrimental scattering
from the host (see Fig. 2). This fact is best expressed as
a mean free path of an electron before it scatters. It is
~1/5 mm, meaning that a conduction electron passes by
one million atoms of the semiconductor without scatter-
ing.

Modulation doping was invented and implemented in
1977 by four researchers at Bell Laboratories. Figure 3
shows a photograph taken around that time, in which
they congregate around an early MBE machine. MBE
technology has advanced immensely since these early
days, and MBE machines have grown in size and com-
plexity. Figure 4 shows a photograph of today’s high-
mobility MBE system at Bell Labs and the researchers
who employ it to fabricate the world’s most exquisite
modulation-doped specimens.
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FIG. 2. Progress made over the years in the mobility (u) of
electrons in two-dimensional electron systems in modulation-
doped GaAs/AlGaAs as a function of temperature. At high
temperature u is limited by scattering with phonons of the
solid. At the lowest temperatures u is limited by impurities
and defects in the material. “Bulk GaAs” represents a charac-
teristic bulk sample. Since the inception of modulation doping
w has risen by more than a factor of 1000. A mobility of 2
%107 cm?/Vsec corresponds roughly to 1/5 mm (!) ballistic
flight of the electrons through the semiconductor before a col-
lision takes place.

THE HALL EFFECT

The Hall effect was discovered in 1879 in a sheet of
gold leaf by Edwin Hall, a graduate student at Johns
Hopkins University in Baltimore. Running a current /
through such a thin metal sheet, he measured two char-

FIG. 3. The inventors of the modulation-doping process con-
gregating in 1978 around an early molecular beam machine at
Bell Labs. From left: Willy Wiegmann, Art Gossard, Horst
Stormer, and Ray Dingle.
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FIG. 4. Today’s Bell Labs ultra-high-purity molecular beam
epitaxy equipment with Loren Pfeiffer (center right) and Ken
West (center left), who are synthesizing the world’s highest-
mobility material. They are joined by Kirk Baldwin (left), who
has worked with me for almost 20 years, and Amir Yacoby
(right), a postdoc who worked on one-dimensional wires.

acteristic voltages (see Fig. 5). The first, V, was the volt-
age along the current path, which, when divided by the
current, represented the electrical resistance R of the
material. The second, V, was the voltage across the
current path, which was expected to be zero since the
current ran perpendicular to it. This was indeed Hall’s
observation until he applied a magnetic field B vertical
to the metal sheet. It gave rise to a nonzero voltage Vy
across the current path. From his different experiments,
Hall deduced that V;; was proportional to the current /
and proportional to the magnetic field B. Hence, denot-
ing V /1 as an electrical resistance Ry yielded Ry B.
Ever since this effect has been known as the Hall effect.

B

Magneto
R=V/

V

B
Ry=-<n

FIG. 5. Geometry for measurement of the magnetoresistance
R and the Hall resistance R; as a function of the current / and
magnetic field B. V represents the longitudinal voltage,
which is dropping along the current path, and V' the Hall
voltage, which is dropping perpendicular to the current path.
The electron density per cm? is denoted as n and the charge of
the electron as e. The black dots represent electrons that are
forced toward one side of the bar following the Lorentz force
from the magnetic field.
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The associated voltage V is the Hall voltage, which,
when divided by the current /, becomes the Hall resis-
tance Ry .

The origin of the Hall effect is classical electrodynam-
ics. The presence of the magnetic field exerts a sideward
force (Lorentz force) onto the electrons, which, on av-
erage, had been moving in the direction of the current.
They are pushed toward one side of the specimen (de-
pending on the direction of the magnetic field), giving
rise to a charge accumulation on one side as compared
with the other. This accumulation of charge ultimately
results in the appearance of a voltage across the current
path. Obviously, the higher the field, the bigger the
push, the bigger Ry . But also, the lower the density of
electrons, the higher Ry . This sounds initially counter-
intuitive, but is rather simple, too. To generate the same
current, fewer electrons need to travel faster. Faster
electrons experience a stronger Lorenz force and create
a bigger V;; and, hence, a bigger Ry, .

In its final form R ;= B/(ne), where n is the electron
density per cm? (unit area) in the sample, which is equal
to the electron density N per cm® (unit volume) times
the thickness of the specimen, and e is the elementary
charge of an electron. Notice that no other electron pa-
rameter, such as its mass, nor any of the material param-
eters are entering—only the electron density. Most re-
markably, Ry does not depend on the shape of the
specimen. In fact, even a set of holes drilled into the
specimen would not alter the result. A perforated metal
sheet shows the same Hall resistance as a perfect sheet,
as long as all electrical contacts remain mutually con-
nected. Due to its independence from all intrinsic and
extrinsic parameters, the Hall effect has become a stan-
dard tool for the determination of the density of free
electrons in electrical conductors. In particular, the elec-
tron density of semiconductors, which can vary widely,
depending on preparation, is measured via the Hall ef-
fect.

In 1879 Edwin Hall discovered that in a normal con-
ductor the resistance Ry depends linearly on the
strength B of the magnetic field (see Fig. 6). In 1980
Klaus von Klitzing discovered that, for the case of two-
dimensional electron systems, the dependence is very
different.

THE INTEGRAL QUANTUM HALL EFFECT

Perform a Hall experiment at the low temperature of
liquid He (~4 K) in a very high magnetic field (~10 T)
on the two-dimensional electron system of a Si
MOSFET and you will find a stepwise dependence of
the Hall resistance on magnetic field, rather than Edwin
Hall’s linear relationship (see Fig. 7). Yet more surpris-
ingly, the value of Ry at the position of the plateaus of
the steps is quantized to a few parts per billion (!) to
Ry =h/(ie*), where i is an integer and / is Planck’s con-
stant (Ry~25.812...kQ for i=1). In 1990, h/e?, the
quantum of resistance, as measured reproducibly to
eight significant digits via this integral quantum Hall ef-
fect (IQHE), became the world’s new resistance stan-
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FIG. 6. Edwin Hall’s Hall data of 1878 as plotted from a table
in his publication. The vertical axis is proportional to the Hall
voltage V; of Fig. 5 and the horizontal axis is proportional to
the magnetic field of Fig. 5. A linear relationship between V
and B and hence between Ry and B is apparent. Since the
days of Edwin Hall, this strictly linear relationship has been
confirmed by many, much more precise experiments.

dard. Concomitant with the quantization of Ry, the
magnetoresistance R drops to vanishingly small values.
This is another hallmark of the IOHE and both are di-
rectly related.

Why are two-dimensional systems (2DESs) so differ-
ent? And what is the origin of the steps and minima?
Classically, electrons in a high magnetic field are forced
onto circular orbits, following the Lorentz force. Quan-
tum mechanically, there exists only a discrete set of al-
lowed orbits at a discrete set of energies. The situation is
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FIG. 7. The integral quantum Hall effect. Left panel: original
data of the discovery of the integral quantum Hall effect
(IQHE) by Klaus von Klitzing in 1980 in the two-dimensional
electron system of a silicon MOSFET transistor. Instead of a
smooth curve, he observed plateaus in the Hall voltage (Upg)
and found concomitant deep minima in the magnetoresistance
(Upp). The horizontal axis represents gate voltage (V),
which varies the carrier density n. The right panel shows
equivalent data taken on a two-dimensional electron system in
GaAs/AlGaAs. Since these data are plotted vs magnetic field,
they can directly be compared to Edwin Hall’s data of Fig. 6.
Rather than the linear dependence of the Hall resistance on
magnetic field of Fig. 6, these data show wide plateaus in Ry
and in addition deep minima in R.
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not unlike the discrete set of orbits that arise in an atom.
Energetically, these so-called Landau levels represent an
equally spaced ladder of states having energies, E;= (i
—3)heB/(2mm) (i=123,...), proportional to the
magnetic field B. Here m is the electron mass and /4 is
Planck’s constant. (Throughout this lecture we are ne-
glecting the effects due to the electron spin. It simplifies
the discussion without much loss of generality.) Elec-
trons can only reside at these energies, but not in the
large energy gaps in between. The existence of the gaps
is crucial for the occurrence of the IQHE. Here 2DESs
differ decisively from electrons in three dimensions. Mo-
tion in the third dimension, along the magnetic field, can
add any amount of energy to the energy of the Landau
levels. Therefore, in three dimensions, the energy gaps
are filled up and hence eliminated, preventing the quan-
tum Hall effect from occurring. In 2DESs, in addition to
the existence of energy gaps, the number of electrons
fitting into each Landau level is exactly quantized. It
reflects the number d of orbits that can be packed per
Landau level into each cm? of the specimen. This turns
out to be d=eB/h. Notice that this capacity per Landau
level, also called its degeneracy, apart from natural con-
stants, depends only on the magnetic field B. None of
the materials parameters enters in any way. It is there-
fore a universal measure, independent of the material
employed.

Let the sample have a fixed 2D electron density n. At
low temperatures, where all electrons try to fall into the
energetically lowest available states, and in a sufficiently
high magnetic field, all electrons fit into the lowest Lan-
dau level, filling it only partially. As the field is lowered,
the capacity of the Landau levels shrink according to d
=eB/h. At By=nh/e the lowest Landau level is exactly
full. Any further reduction of the field requires the first
electron to leave the lowest Landau level and jump
across the energy gap to the next higher Landau level at
an energy cost of heB/(27m). Reducing the field to
B,=(nhle)/2= B /2 fills two Landau levels, and the first
electron has to move to the third level, etc. This creates
a sequence of fields B;=(nh/e)/i, at which all electrons
fill up an exact number of Landau levels, keeping all
higher Landau levels exactly empty. At these special
points on the magnetic-field axis, the magnetoresistance
R drops momentarily and the Hall resistance Ry as-
sumes a set of very special values. Using R ;= B/(ne)
from the classical Hall resistance and inserting the val-
ues of the sequence of distinctive fields B; into the equa-
tion results in a quantized Hall resistance of Rp
=h/(ie2), i=1,23... . While this is the desired result,
it does not account for the true hallmarks of the IQHE,
which are wide plateaus in Ry and broad minima in R.

According to the above derivation, R would take on
its quantized value only at very precise positions B; of
magnetic field. This would be a poor basis for a stan-
dard, since the precision to which R assumes one of the
quantized values would depend on the precision to
which one could determine B. In reality, in the IQHE,
the Hall resistance Ry assumes the quantized values
over extended regions of B around B;.
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FIG. 8. Photograph of a GaAs/AlGaAs sample. The size is
about 6 X 1.5 mm. Black area (in reality mirrorlike but reflect-
ing the black camera) is the original surface above the 2DES.
Gray areas have been scratched away to confine the current
path to the center of the sample. White areas are indium
blotches used to make contact with the 2DES. Gold wires are
attached. Specimens like this one, prepared with little atten-
tion to exact dimension or to tidiness, show quantization of the
Hall resistance to an accuracy of about 10 parts in a billion.
The specimen shown is the sample in which the fractional
quantum Hall effect (FQHE) was discovered in 1981.

The origin for plateau formation and broad minima
lies in electron localization. In spite of the extreme care
with which the 2DES is prepared, there remain some
energetic valleys and hillocks along the interface, be
they due to residual defects, steps, or impurities. Each
Landau level is a reproduction of this uneven landscape.
As a Landau level is being filled with electrons, some of
the electrons get trapped (localized) and isolated. They
no longer participate in the electrical conduction
through the specimen, and these patches of localized
electrons become inert and act like a set of holes cut out
from the 2D sheet. As in a perforated metal sheet, such
isolated patches do not affect the measurements of the
density of mobile carriers in the flat part of the land-
scape, which are circumnavigating the hills and valleys.
As long as filling and emptying of a Landau level fills or
empties only the localized states at the energetic fringes,
while keeping the Landau level in the extended flat re-
gions full to capacity, the sample’s Hall resistance Ry
and magnetoresistance R remain steady. Since, in the
conducting regions, the Landau level is full, the Hall
resistance remains fixed to its quantized value. Localized
electrons provide a reservoir of carriers that keep the
Landau levels in the energetically flat part of the sample
exactly filled for finite stretches of magnetic field, giving
rise to finite stretches of quantized Hall resistance and
vanishing resistance in the IQHE.

The precision of quantization does not depend on the
shape and size of the specimen, nor on the particular
care taken to define its contact regions. (Figure 8 shows
a particularly egregious example.) In a quirk of nature,
the existence and precision of the IQHE plateaus re-
quires the existence of imperfections in the sample.
Without such dirt there would be no IQHE. Instead,
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even in a 2DES, one would revert to Edwin Hall’s
straight line.

In an ingenious thought experiment, Bob Laughlin
was able to deduce the existence and precision of the
IQHE from a set of very simple experimental ingredi-
ents (see his contribution to this volume). In his ap-
proach, the value of R=h/(ie*)=(hle)/(ie) emerges
as a ratio of the magnetic flux quantum ¢,=/h/e and the
electronic charge e, together with the number of occu-
pied Landau levels i. Magnetic flux quanta are the el-
ementary units in which a magnetic field interacts with a
system of electrons. (The magnetic field itself is not
quantized. This is different from charge, which usually
comes in chunks of e. However, for the purposes of this
lecture, which deals with magnetic fields in the presence
of electrons, one may think of it as being quantized.)
Being the ratio of ¢ to e, one can regard R as being a
very precise measure of the electron charge when ex-
pressed as e= ¢ /(iRy). From this purview, Klaus von
Klitzing’s experiment has provided a highly accurate
electrometer to determine the charge of the current-
carrying particle in a 2DES.

THE FRACTIONAL QUANTUM HALL EFFECT
Discovery

In the beginning of October, 1981, Dan Tsui and I,
both working at Bell Labs, had taken a specimen of a
new sample made from modulation-doped GaAs/
AlGaAs material to the Francis Bitter Magnet Lab at
MIT in Cambridge. The sample had been grown by Art
Gossard, also of Bell Labs, and his assistant Willie Wieg-
mann. Having gained increasing experience with modu-
lation doping over the course of a couple of years, they
had, for the first time, been able to fabricate a low-
electron-density sample (n=1.23X10"cm™2) with an
exceedingly high mobility of w=90000cm?V sec. Fig-
ure 8 is actually a photograph of this specimen. Given
the high magnetic fields available at the magnet lab, we
foresaw being able to venture into the so-called extreme
quantum limit, where the lowest Landau level is only
partially occupied with electrons. The goal was to inves-
tigate this regime for signs of the so-called Wigner solid,
an electron crystal in two dimensions. The formation of
such a regular array of electrons had been predicted
theoretically, but remained unobserved.

On October 7, a Hall measurement on this specimen
at the temperature of liquid He (4.2 K) produced the
data at the top of Fig. 9. The largely linear relationship
between Hall resistance R and magnetic field B is evi-
dent. Deviations at low field indicate the emergence of
the IQHE. Knowledge of the electron density, as well as
the values of the resistance steps [Rpy=h/(ie?), i
=1,2,3...], clearly identify these features as the IQHE.
With the last (i=1) step occurring at B~5T (~7 cm on
the mm paper), for all fields beyond this point the elec-
trons had to reside in the lowest Landau level, filling it
to only a fraction v of its capacity. As the sample was
cooled to 1.5 K, the IQHE features firmed up, develop-
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FIG. 9. Data of October 7, 1981, on the specimen # 6-19-81(3)
(see Fig. 8) on millimeter paper. The top panel shows the Hall
resistance Ry at temperatures 4.2 K and 1.5 K vs magnetic
field B. The bottom panel shows the magneto resistance R vs B
at similar temperatures. 1 T is equivalent to ~1.5 cm. Features
at ~3 cm and ~7 cm are due to the IQHE. Weaker features at
~21 cm are due to the FQHE. The scribbles in the top panel
are from reuse of the millimeter paper for data reduction from
other traces.

ing the familiar, flat plateaus (see top Fig. 9). A remark-
able feature occurred at B=15T: the Hall trace started
to deviate from the originally straight line, showing a
behavior not unlike that observed in the IQHE at the
higher temperature of 4.2 K. This feature was totally
unexpected. Beyond the emergence of a plateau in Ry,
the magnetoresistance R seemed to exhibit a concomi-
tant minimum (see bottom Fig. 9).

The IQHE, arising from exact filling of Landau levels,
could not have been at work, since above B~5T the
lowest level was only partially occupied. Furthermore,
the Hall resistance in the vicinity of this change in slope
far exceeded the largest possible of IQHE resistances of
Ry =hle*~25 kQ. Lightheartedly, Dan Tsui enclosed
the distance between B=0 and the position of the last
IQHE (~7 cm) between two fingers of one hand and
measured the position of the new feature in this unit. He
determined it to be three and exclaimed, “‘quarks!” Al-
though obviously joking, with finely honed intuition, he
had hit on the very essence of the data.

Following Laughlin’s gedanken experiment and ac-
cepting quantization of the Hall resistance to measure
the charge of the particle, a plateau three times as high
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FIG. 10. First publication on the FQHE. Hall resistance data
(here p,,) and magnetoresistance data (here p,,) are from the
same specimen as in Fig. 9. The filling factor » of the Landau
level is indicated on the top. The features at v=1,23,... are
due to the IQHE. The features at v=1/3 are due to the FQHE.
Sample dimensions and sample temperatures are indicated.

as the last IQHE plateau meant the appearance of a
charge q=d¢,/(3h/e*)=e/3. Obviously, our low-
temperature, low-energy experiment (milli-eV, not
Millions-e¢V) could not have generated anything even
remotely related to quarks (subnuclear particles en-
dowed with 1/3 charge), but, as it turned out, the impli-
cation of some kind of fractionally charged particle was
dead right. At the time, we did not know what we had
discovered. The paper on the findings (see Fig. 10), pub-
lished in March 1982 in Physical Review Letters with
Tsui, Stormer, and Gossard as authors, speculated on its
being a signature of a Wigner solid or equivalent, but
the paper also remarked on a fractional charge. No pho-
tographs exist from the days of October 1981. However,
Fig. 11 is a record of our first ultra-low-temperature
ultra-high-magnetic-field run at the Francis Bitter Na-
tional Magnet Lab at MIT.

Origin

The IQHE can be understood solely on the basis of
the quantized motion of individual 2D electrons in the
presence of a magnetic field and random fluctuations of
the interface potential which creates localized states.
The existence of all fellow electrons enters only in the
simplest of ways—as a filler of empty states of the Lan-
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FIG. 11. First successful operation of our dilution refrigerator
in high magnetic field. The sign reads: 85 mK, 280 kG, Feb. 16.
84. The proud operators are, clockwise from upper left, Albert
Chang, Peter Berglund (who was largely responsible for the
design and implementation of the instrument), Greg Boebin-
ger, Dan Tsui, and Horst Stormer.

dau levels. The electrostatic interaction (so-called Cou-
lomb interaction) between the like-charged carriers is
irrelevant to the understanding of the IQHE. It is there-
fore called a single-particle effect.

The FQHE (fractional quantum Hall effect), on the
other hand, can no longer be understood on the basis of
the behavior of individual electrons in a magnetic field.
The existence of an energy gap—so crucial for the exact
quantization in the IQHE—is expected also to be essen-
tial for the occurrence of the FQHE. However, all
magnetic-field-induced energy gaps have been ex-
hausted by the IQHE and have emerged as integral
quantization of the Hall resistance to Ry=h/(ie?), i
=123 ... . Other energy gaps, at fractional filling of a
Landau level, must be of a different origin.

The origin of the FQHE is interaction between elec-
trons. It is therefore termed a many-particle effect or an
electron correlation effect, since the charged electrons
are avoiding each other by correlating their relative mo-
tion in an intricate manner. In the IQHE, electrons have
no freedom to avoid one another. Occurring at exact
integral Landau-level filling, electrons are already ““close
packed” with no option for further avoidance. At frac-
tional filling this is different. There is much “‘space” in a
Landau level. Electrons have the freedom to avoid each
other in the energetically most advantageous fashion.
The electron solid we had been searching for, in which
electrons reside at fixed positions of maximum mutual
distance, would have represented a static pattern that
minimizes electron interaction. In the FQHE, the elec-
trons assume an even more favorable state, unforeseen
by theory, by conducting an elaborate, mutual,
quantum-mechanical dance.

Many-particle effects are extraordinarily challenging
to address theoretically. In most situations they cause
only a small adjustment of the behavior of the electrons
and can be taken into account in an approximate man-
ner. Often such a treatment is quite adequate, but on
occasion many-particle interactions become the essence
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of a physical effect. Superconductivity and superfluidity
are of such intricate origin. To account for their occur-
rence one had to devise novel, sophisticated theoretical
means. The emergence of the FQHE requires such a
new kind of thinking.

Bob Laughlin had the correct theoretical insight and
invented an elegant wave function which described the
quantum-mechanical behavior of all those electrons in
the 1/3 FQHE (as well as all other 1/¢ FQHE states) in
a very succinct equation of some 15 letters. It represents
a triumph of many-particle theory. He also provided a
reason for the existence of an energy gap and a deriva-
tion of this most mysterious charge of ¢/3 (see his con-
tribution to this issue). In the following sections I will
attempt to give the reader an impression of the simple
beauty of the physical concepts in the regime of the
FQHE. Rather than addressing the expert, to whom sev-
eral excellent monographs are available (see bibliogra-
phy), my presentation aims at the scientifically knowl-
edgeable layperson who attempts to develop a sense for
the origin of a phenomenon as strange as the FQHE.
The discussion follows a nonhistorical path. It draws
from the concept of the formation of composite particles
between electrons and the magnetic field. From the vista
of this model, the serene beauty of electron correlation
in 2D Landau levels manifests itself most clearly.

Of electrons and flux quanta

In a classical model, 2D electrons behave like charged
billiard balls on a table [Fig. 12(a)]. They are distinguish-
able by virtue of their different history and they can be
tracked individually. Quantum mechanically, electrons
are smeared out over the table. They are inherently in-
distinguishable and one can only cite a probability of
finding an electron—any electron—at any particular lo-
cation. In a perfect 2D system, this probability is abso-
lutely uniform over the whole plane. The electrons be-
have like a featureless liquid [Fig. 12(b)]. That is not to
say that the motions of the electrons are not correlated.
These like-charged carriers strongly avoid each other, as
shown in Fig. 12(c) in a classical representation. They
also do this in the quantum-mechanical liquid of Fig.
12(b). It affects the probability of finding one electron
here having detected another electron there (e.g., close
by), but one cannot represent it in a graph as simple as
Fig. 12(c).

It was an important conceptual step to realize that an
impinging magnetic field B could be viewed as creating
tiny whirlpools, so-called vortices, in this lake of
charge—one for each flux quantum ¢,="rh/e of the mag-
netic field [Fig. 12(d)]. The notion of a whirlpool is quite
appropriate, since such vortices have indeed a quantum-
mechanical “‘swirl”’—a phase twist—to them. Inside the
vortex, electronic charge is displaced, dropping to zero
in the center and recovering to the average surrounding
charge density at the edge of the vortex. The extent of a
vortex is roughly the size of the area which contains one
quantum of magnetic flux (areaX B=¢). Therefore
each vortex can be thought of as carrying with it one flux
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FIG. 12. Schematic drawing of 2DES in various approxima-
tions. Black dots represent electrons. White holes represent
vortices. Arrows represent magnetic flux quanta ¢, of the
magnetic field B.

quantum. Of course, just as the electrons are spread out
uniformly over the plane, so are the vortices. As re-
quired by quantum mechanics, the probability of finding
an electron—as well as a vortex—remains totally uni-
form [Fig. 12(e)]. However, the picture of electrons and
vortices provides an intuitive way of looking at electron-
electron correlation in the presence of a magnetic field.

Electrons and vortices are opposite objects, one rep-
resenting a package of charge, the other the absence of
charge. Correlation of their mutual positions can prove
energetically very beneficial. Placing vortices directly
onto electrons is particularly advantageous since the
trough of the whirlpool, which represents the displace-
ment of all fellow electrons, keeps their charges at bay
and reduces mutual repulsion. This intuitive image re-
quires some mental flexibility. Each electron is at the
center of a vortex and at the same time is part of the
pool of electrons generating vortices surrounding all
those other electrons. Who says many-particle physics is
easy?

Each electron always needs to be surrounded by one
vortex. In the language of electrons and vortices, it is the
system’s way of satisfying the Pauli exclusion principle
for electrons, which, in this situation, requires that no
two electrons can be in the same position. The whirlpool
provides the required place of respite. At complete fill-
ing of the lowest Landau level, where the number of
electrons equals the number of flux quanta, the arrange-
ment of electrons and vortices is totally controlled by
the Pauli principle—one vortex per electron, no choices
(see Fig. 13). This is the condition of the i=1 IQHE. It
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FIG. 13. Schematic drawing of electron vortex attraction of a
2DES in the presence of a magnetic field: (a) In the fully filled
Landau level v=1, there are as many vortices as there are
electrons, and the Pauli exclusion principle forces the vortices
onto the electrons (b). (The spin of the electron is neglected
throughout.)

can easily be extended to more Landau levels and also
to include both electron-spin directions and hence to i
=234 ... . The IQHE is driven by the Pauli exclusion
principle for electrons. It is another way of expressing
that the existence of other electrons enters the IQHE
only in the simplest of ways—as a filler of empty states.
When the number of vortices deviates from the number
of electrons, then there are choices.

At magnetic fields higher than the i=1 IQHE, the
stronger magnetic field provides more flux quanta and
hence there are more vortices than there are electrons.
The Pauli principle is readily satisfied by placing one
vortex onto each electron [Fig. 14(a)]—but there are
more vortices available. The electron system can consid-
erably reduce its electrostatic Coulomb energy by plac-
ing more vortices onto each electron [Fig. 14(b)]. More
vortices on an electron generate a bigger surrounding
whirlpool, pushing further away all fellow electrons,
thereby reducing the repulsive energy. The so-

Coulomb forces

flux quantum attachment

FIG. 14. Schematic drawing of electron vortex attraction at
fractional Landau-level filling »=1/3. Now there are three
times as many vortices as there are electrons. (a) The Pauli
principle is satisfied by placing one vortex onto each electron.
(b) Placing three vortices onto each electron reduces electron-
electron (Coulomb) repulsion. Vortex attachment can be
viewed as the attachment of magnetic flux quanta to the elec-
trons, transforming them to composite particles (c).
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established relative motion of electrons is no longer
driven by the Pauli exclusion principle but by reduction
in Coulomb energy. This is the central principle under-
lying electron-electron correlation in 2DES in a mag-
netic field. Casting electron-electron correlation in terms
of vortex attachment facilitates the comprehension of
this intricate many-particle behavior. Regarding the vor-
tices as little whirlpools ultimately remains a crutch for
visualizing something that has no classical analog.

Composite particles

Vortices are the expression of flux quanta in the 2D
electron system, and each vortex can be thought of as
having been created by a flux quantum. Conceptually, it
is advantageous to represent the vortices simply by their
“generators,” the flux quanta themselves. Then the
placement of vortices onto electrons becomes equivalent
to the attachment of magnetic flux quanta to the carriers
[Fig. 14(b),(c)]. Electrons plus flux quanta can be viewed
as new entities, which have come to be called composite
particles, CPs. As these objects move through the liquid,
the flux quanta act as an invisible shield against other
electrons. Replacing the system of highly interacting
electrons by a system of electrons with such a “guard
ring”’—compliments of the magnetic field—removes
most of the electron-electron interaction from the prob-
lem and leads to composite particles which are almost
void of mutual interactions. It is a minor miracle that
such a transformation from a very complex many-
particle problem of well-known objects (electrons in a
magnetic field) to a much simpler single-particle prob-
lem of rather complex objects (electrons plus flux
quanta) exists and that it was discovered.

CPs act differently from bare electrons. All of the ex-
ternal magnetic field has been incorporated into the par-
ticles via flux quantum attachment to the electrons.
Therefore, from the perspective of CPs, the magnetic
field has disappeared and they no longer are subject to
it. They inhabit an apparently field-free 2D plane. Yet
more importantly, the attached flux quanta change the
character of the particles from fermions to bosons and
back to fermions.

Fermions and bosons

In physics one differentiates between two types of
particles, bosons and fermions. Fermions, such as elec-
trons or protons, have the property that all other such
particles are excluded from being in the same quantum-
mechanical state, e.g., in the same position. They are
subject to the Pauli exclusion principle and fill sequen-
tially one available state after the other. Bosons, such as
photons or helium atoms, have no such restriction and
even have a preference for being in the same state. They
follow Bose-Einstein statistics. In a very casual way, the
exclusion principle for fermions is the reason for the
world’s not collapsing (all identical fermions staying
away from each other) and the second is the origin for
phenomena such as lasing or superfluidity (all photons
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or helium atoms condensing into the same state), usually
referred to as Bose condensation. Fermions have half-
integer spin while bosons have integer spin—spin being
related to the “spinning” of the particle.

As the case of superfluidity in helium shows, fermions,
the elements of atoms (electrons, protons, and neu-
trons), can be assembled to ‘““make” bosons (helium at-
oms). In a casual way, superconductivity, too, can be
seen as the assembly of pairs of fermions (electrons) into
bosons (Cooper pairs) which Bose condense into a su-
perconducting state. One cannot assemble bosons to
make ‘“quasi” fermions. In a very simplistic way, the
reason for the difference is that half-integers can be
added to make integers but integers cannot be added to
make half-integers.

Systems of fermions and systems of bosons behave
very differently under mutual exchange of the position
of two of their constituent particles—it is said to change
their statistics. Their wave function—the quantum-
mechanical description of the behavior of all the
particles—is multiplied by —1 in the case of fermions
and by +1 in the case of bosons. It is one of the deeper
mysteries of quantum mechanics and cannot be further
illuminated here. In any case, one needs to accept Na-
ture’s teachings.

Composite particle statistics

Electrons are fermions. As one slowly moves two
electrons in a 2D electron system around each other and
exchanges them, the wave function undergoes the sign
reversal expected from fermions. It is different for CPs
(Fig. 15). The attached flux quanta need to be taken into
account, and their presence changes the particles’ statis-
tics. As one slowly moves two CPs around each other
and exchanges them, the electrons by themselves re-
verse the sign of the wave function, but each attached
flux quantum creates an extra “twist,” multiplying it by
an extra —1. As a result, CPs can be either fermions or
bosons, depending on the number of attached flux
quanta. An electron plus an even number of flux quanta
becomes a composite fermion (CF), since the wave func-
tion is multiplied by —1 an odd number of times, i.e., by
—1. An electron plus an odd number of flux quanta be-
comes a composite boson (CB), since the wave function
is multiplied by —1 an even number of times, i.e., by +1.
This so-called transmutation of the particle statistics
through flux quantum attachment is deeply rooted in the
two-dimensionality of the system. It represents a deep
connection between space and particle statistics.

Accepting that CPs incorporate the external magnetic
field and show either boson or fermion behavior, the
perplexing properties of 2D electron systems in a high
magnetic field can readily be appreciated.

1/3 Fractional quantum hall state

At 1/3 filling of the lowest Landau level (v=1/3), the
magnetic field contains three times as many flux quanta
per unit area as there are electrons in the 2D system.
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FIG. 15. Statistics of electrons and composite particles. Ex-
change of two particles affects the wave function W, which
describes the quantum-mechanical behavior of the system. For
electrons, ¥ is multiplied by —1, identifying the particles as
fermions. With the attachment of an odd number of flux
quanta, ¥ remains unchanged under exchange (multiplication
by +1), identifying these particles as bosons. Attachment of an
even number of flux quanta returns the particles to fermions.
Here m is the number of flux quanta.

Therefore the electron liquid contains three times as
many vortices as there are carriers. To minimize
electron-electron interaction, each electron accepts
three vortices, which keeps fellow electrons optimally at
bay. This is equivalent to the attachment of three mag-
netic flux quanta to each electron, which renders these
objects CPs [Fig. 14(c)]. Since all the external magnetic
field has been incorporated into the particles, they reside
in an apparently magnetic-field-free region. Consisting
of an electron plus an odd number of flux quanta, the
resulting composites are composite bosons (CBs). Being
bosons and residing in apparently zero magnetic field,
these CBs Bose condense into a new ground state with
an energy gap, characteristic for such Bose condensa-
tion. This is the sought-after energy gap required for
quantization of the Hall resistance and vanishing resis-
tance to arise. It has been measured by various experi-
mental techniques, most directly by light scattering.

As the magnetic field deviates from exactly »=1/3 fill-
ing to higher fields, more vortices are being created (Fig.
16). They are not attached to any electrons, since this
would disturb the symmetry of the condensed state. The
amount of charge deficit in any of these vortices
amounts to exactly 1/3 of an electronic charge. These
quasiholes (whirlpool in the electron lake) are effec-
tively positive charges as compared to the negatively
charged electrons. An analogous argument can be made
for magnetic fields slightly below v=1/3 and the creation
of quasielectrons of negative charge e/3. Quasiparticles
can move freely through the 2D plane and transport
electrical current. They are the famous 1/3 charged par-
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FIG. 16. Schematic representation of 1/3 charged quasiparti-
cles. At slightly higher B fields than at v=1/3 additional vorti-
ces are created. They represent dimples in the electron lake. In
the dimples exactly 1/3 of an electron charge is missing. These
are the fractionally charged quasiparticles of the FQHE.

ticles of the FQHE that have been observed by various
experimental means, most recently by measurement of
the amount of electrical noise that they generate. Pla-
teau formation in the FQHE arises, in analogy to pla-
teau formation in the IQHE from potential fluctuations
and the resulting localization of carriers. In the case of
the FQHE the carriers are not electrons, but, instead,
the bizarre fractionally charged quasiparticles.

The FQHE at v=1/5, 1/7, etc., with quasiparticles of
charge e/5, e/7, etc., can be accounted for in total anal-
ogy to the 1/3 FQHE by attaching 5, 7, etc. flux quanta
to each electron. In fact, even states at v=2/3, 4/5, 6/7,
etc. and v=1+1/3, 1+1/5, etc. can be covered by this
procedure, regarding, for example, the v=2/3 state as a
full Landau level with 1/3 missing electrons. In this way
all fractions at Landau-level filling factor v=i=*1/q (of-
ten called the primary fractions) can be rationalized. But
there are many others.

The state at v=1/2

At first sight, the v=1/2 state should be similar to the
1/3 state, yet it turns out to be very different. At half
filling of the lowest Landau level, the magnetic field con-
tains two times as many flux quanta per unit area and
hence creates two times as many vortices as there are
carriers. In analogy to the 1/3 state, each electron ac-
cepts now two vortices, which keeps the others at bay
(Fig. 17). However, the attachment of an even number
of magnetic flux quanta to each electron renders these
objects composite fermions (CFs) and not composite
bosons. This drastically changes their behavior as com-
pared to the 1/3 FQHE and its equivalents.

As at v=1/3 so also at v=1/2, the entire external mag-
netic field has been incorporated into the particles and
they reside at apparently zero magnetic field. However,

FIG. 17. Schematic representation of the state at Landau-level
filling factor v=1/2. Two vortices are bound to each electron,
equivalent to the attachment of two flux quanta. The slight
offset of the second vortex is meant to represent the formation
of tiny in-plane dipoles.
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FIG. 18. The FQHE as it appears today in ultrahigh-mobility
modulation-doped GaAs/AlGaAs 2DESs. Many fractions are
visible. The most prominent sequence, v=p/(2p*+1), con-
verges toward v=1/2 and is discussed in the text.

being fermions they are prevented from condensing into
the lowest energy state. Instead, they fill up successively
the sequence of lowest-lying energy states, until a maxi-
mum is reached and all CFs have been accommodated.
The process is equivalent to the filling of states by elec-
trons at B=0. Hence, from the point of view of CFs, the
v=1/2 state appears equivalent to the case for electrons
at B=0. In spite of the huge external magnetic field at
half filling of the Landau level, CFs are moving in a
similar fashion to electrons moving in zero field. This
has been directly observed in experiment. Flux quantum
attachment has transformed these earlier electrons and
they are propagating along straight trajectories in a high
magnetic field, where normal electrons would orbit on
very tight circles. The mass of a CF, usually considered
to be a property of the particle, is unrelated to the mass
of the underlying electron. Instead, the mass depends on
the magnetic field and only on the magnetic field. In
fact, it is a mass of purely many-particle origin, arising
solely from interactions, rather than being a property of
any individual particle. It is another one of these baffling
implications of e-e interactions in high magnetic fields.
The absence of condensation and the lack of an energy
gap prevents the »=1/2 state from showing a quantized
Hall resistance. Instead the Hall line is featureless, just
as it is for electrons around B=0 (see Fig. 18).

The difference between v=1/3 and v=1/2 is striking.
One is a Bose-condensed many-particle state showing a
quantized Hall effect and giving rise to fractionally
charged particles. The other is a Fermi sea, in spite of
the existence of a huge external field, and its particles
have a mass that arises from interactions. One flux quan-
tum per electron makes all the difference.
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There are many fascinating open questions associated
with the v=1/2 state, such as: how does the mass vary
with energy for CFs? and what is the microscopic struc-
ture of the particles? Also, how does the electron spin
(which we were neglecting throughout this lecture) af-
fect CF formation? A beautiful picture of composite fer-
mions being tiny dipoles is emerging. While one of the
vortices is placed directly on the electron (Pauli prin-
ciple), the position of the second vortex is a bit displaced
from exact center, rendering the object an electric dipole
in the 2D plane. There is great promise for future dis-
covery and future theoretical insight.

All those other FQHE states

Bose condensation of CBs consisting of electrons and
an odd number of flux quanta rationalizes the appear-
ance of the FQHE at the primary fractions around
Landau-level filling factor v=i* 1/q with quantized Hall
resistances R, =h/(ve?) and deep minima in the con-
comitant magnetoresistance R. However, a multitude of
other FQHE states have been discovered over the years.
Figure 18 shows one of the best of today’s experimental
traces on a specimen with a multimillion cm?/V sec mo-
bility. What is the origin of these other states? The com-
posite fermion model offers an extraordinarily lucid pic-
ture. We shall discuss it for the sequence of prominent
fractions 2/5, 3/7, 4/9, 5/11, ... and 2/3, 3/5, 4/7, 5/9, . ..
(ie., v=p/(2p=x1), p=234...) around v=1/2.

At half filling the electron system has been trans-
formed into CFs consisting of electrons which carry two
magnetic flux quanta. All of the external magnetic field
has been incorporated into the particles and they reside
in an apparently field-free 2D plane. Since they are fer-
mions, the system of CFs at v=1/2 resembles a system of
electrons of the same density at B=0. What happens as
the magnetic field deviates from B=0? For electrons
their motion becomes quantized into electron-Landau
orbits. They fill up their electron-Landau levels, encoun-
ter the energy gaps, and exhibit the well-known
IQHE. CFs around v=1/2 follow the same route. As
the magnetic field deviates from exactly »=1/2, the mo-
tion of CFs becomes quantized into CF-Landau orbits.
They fill up their CF-Landau levels, encounter CF-
energy gaps, and exhibit an IQHE. However, this is not
an IQHE of electrons, but an IQHE of CFs. This IQHE
of CFs arises exactly at v=p/(2p*+1), which are the
positions of the FQHE features. In fact, the oscillating
features in the magnetoresistance R of the FQHE
around v=1/2 closely resemble the oscillating features
in R around B =0 and, once they have been shifted from
B=0 to v=1/2, they coincide with their position. This is
very remarkable in several ways.

CFs “survive” the additional (effective) magnetic field
(away from v=1/2), and the orbits of these composite
particles mimic the orbits of electrons in the equivalent
magnetic field in the vicinity of B=0. The CFs remain
“good” particles. In this way, a complex electron many-
particle problem at some rational fractional filling factor
has been reduced to a single-particle problem at integer
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filling of CF-Landau levels in an effective magnetic field.
Even the variation of the size of the energy gaps from
one FQHE state to the next can be regarded as deriving
from the ladder of Landau levels of CFs. More strikingly
yet, excellent quantum-mechanical wave functions for
these FQHE states can simply be derived from electron
Landau levels. Therefore the FQHE of electrons can be
regarded as the IQHE of CFs.

The CF model has been extraordinarily successful in
conquering those other FQHE states. Even the 1/3 state
can be viewed from the vantage point of this model. At
r=1/3 the CFs emanating from »=1/2 have been quan-
tized into CF-Landau levels and they are exactly filling
the lowest of these levels. Hence the »=1/3 FQHE state
is the equivalent of the i=1 IQHE of CFs which had
formed at »=1/2. In analogy to the electron case, the
flux quanta—one per CF—create vortices in the CF lig-
uid which are forced onto the CFs to satisfy the Pauli
principle for CFs. Each electron, holding two flux
quanta from being a CF in the first place, acquires a
third one, exactly as required to become the »=1/3
state. Bose condensation of CBs reappears as Landau-
level formation in CFs. In the FQHE regime they rep-
resent two different sides of the same coin.

With all these similarities, is the FQHE then the same
as the IQHE? Certainly not. From one point of view the
FQHE is the result of a complex behavior (many-
particle interactions) of simple particles (electrons) in
the presence of a true external magnetic field. From an-
other point of view it is the simple behavior (Landau
quantization) of complex new multicomponent particles
(composite fermions) in the presence of an effective
magnetic field. This view of the FQHE has developed
over the past decade or so. Its extreme simplicity is tes-
tament to the beauty of nature as much as it demon-
strates the ability and intuition of dozens of theorists
who have shaped it over the years. Whatever model one
constructs for the FQHE, its origin is an elegant
quantum-mechanical dance of electrons in a magnetic
field.

CFs are ‘“everywhere.” All even-denominator frac-
tions are candidates for CF formation. And all those CF
states are capable of generating their own CF Landau
levels, leading to a panoply of FQHE states. Such other
states are already visible in Fig. 18. Yet more of such
states appear in Fig. 19. FQHE states are emanating
from 1/2, 3/2, 1/4, 3/4, 5/4, and possibly from 3/8 and
3/14. There does not seem to be an end, although even-
tually the most fragile of states are destroyed by residual
potential fluctuations, or by the formation of solids of
electrons or CFs. Yet better 2DESs should remove the
curtain from those sensitive fractions. Their mere detec-
tion and classification may appear somewhat unimagina-
tive. However, so far, whenever we dug a bit deeper into
the rich soil of the 2DES in the presence of a magnetic
field we were rewarded with more surprises. One of
them has already occurred.

The peculiar state at v=5/2

Electrons with two attached flux quanta are fermions.
They fill up sequentially the lowest energy states and are
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FIG. 19. Multiple sequences of FQHE states. Only magnetore-
sistance data are shown for clarity. In the middle and top pan-
els, the bottom trace is shifted to the left by a magnetic field
equivalent to the field at v=1/2 and v=1/4, respectively. The
vertical lines show the self-similarity between different FQHE
sequences. The right-hand inset is a blowup showing yet more
developing FQHE states.

the starting point for multiple sequences of FQHE
states. However, they themselves cannot be FQHE
states. Yet the 5/2 state is exactly that. It has all the
characteristics of a FQHE state, including energy gap
and quantized Hall resistance, in spite of its even-
denominator classification (see Fig. 20). The v=5/2 state
resides in a higher Landau level (5/2=2+1/2), but this
fact should not alter the simple reasoning. The Landau
level below is energetically far removed and can be re-
garded as inert. Therefore the 5/2 state is really a 1/2
state in the next higher Landau level and should behave
as such—but it does not. Discovered more than a decade
ago, its true origin remains mysterious. With the advent
of the CF model, the »v=5/2 state has recently been re-
visited and a most tantalizing possibility has arisen.
Driven by many-particle interactions, the carriers at
half filling of the next Landau level indeed bind two flux
quanta each—just like their »=1/2 cousins. They form
CFs and fill up the states, just as in Fig. 17. However,
many-particle physics pushes those CFs further to a yet
lower-energy ground state. In loose analogy to the for-
mation of Cooper pairs in normal electron systems at
low temperatures and their subsequent condensation
into a superconducting state with an energy gap, these
CFs form new CF pairs which condense into a novel
many-particle ground state. The resulting energy gap
provides the essential ingredient for the observation of
the characteristic FQHE features. This is a very exciting
scenario, since it suggests that yet other, higher-order
electron-electron correlations than those of the CF/CB
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FIG. 20. FQHE at v=5/2. A FQHE state at such an even
denominator fraction should not be allowed. The origin of the
state remains unclear. An exciting possibility for the origin of
this state is the formation of composite fermion pairs. These
unpublished data were taken by J.-S. Xia and Wei Pan at the
NHMFL in Gainesville, Florida.

model can play a decisive role. The properties of the
resulting particles are also expected to be very unusual
(non-Abelian).

At present it remains unclear whether the 5/2 state is
indeed of such an elaborate lineage, or whether some
other, more mundane explanation will suffice. We will
have to await future, more sophisticated experiments to
tell us. If not the 5/2 state, there is a good chance that
some other, yet to be unearthed FQHE state may be of
such an intricate origin. And there may well be states
that we have not even imagined.

CONCLUSIONS

Two-dimensional electron systems in high magnetic
fields reveal to us totally new many-particle physics.
Confined to a plane and exposed to a magnetic field,
such electrons display an enormously diverse spectrum
of fascinating new properties: totally unexpected new
electron states with fractional quantum numbers, the at-
tachment of magnetic flux to electrons, new particles
obeying either Bose or Fermi statistics, cancellation of
exceedingly high magnetic fields, masses of purely
electron-electron interaction origin, and possibly a
strange, new process for particle pairing. These are but
the most prominent of observations and implications.
Most perplexing of all, such electrons create bizarre
fractionally charged particles, without any individual
electron splitting apart.

They are just electrons, although many of them. In-
deed, “More is different!”

EPILOGUE

I am very honored having been chosen to share in this
award of almost frightening proportions and I am grate-
ful for receiving 1/3 of this very special prize. Unfortu-
nately, the yet more delightful 1/4 version remained for-
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bidden. I attribute it all to an immense amount of good
fortune throughout my life and the truly outstanding
colleagues with whom it allowed me to work.

As so often, this award is being given to a lucky few,
but it truly honors the immense progress that has been
made in many-particle physics over the years—in par-
ticular in the physics of two-dimensional systems—and
the large group of experimentalists and theorists who
have brought it about. In this sense, I feel I share this
award with so many of my colleagues and friends around
the globe. To all of them I owe a great deal of gratitude.

As to our own contributions, the creators of materials
remain the true heroes of the trade. Art Gossard and
Willy Wiegmann fabricated the all-important sample in
which the FQHE was discovered and many more after
this event. Over the past decade or so, Loren Pfeiffer
and Ken West brought the art and science of 2D mate-
rial growth to new heights. It was in their samples that
most of the exciting new discoveries in the FOQOHE were
made. Kirk Baldwin’s wizardry in the cleanroom and his
screening of thousands of samples provided the under-
pinning to most of our experiments. Al Cho, John En-
glish, Jim Hwang, Mansour Shayegan, Charles Tu, Won
Tsang, and Gunther Weiman also provided invaluable
materials support.

I would not be here without the exceptional experi-
mental skills and deep physical insights of postdocs, stu-
dents, and collaborators at Bell Labs, Princeton Univer-
sity, and other institutions. They include Jim Allen, Ray
Ashoori, Edwin Batke, Peter Berglund, Greg Boebin-
ger, Albert Chang, Rui Du, Jim FEisenstein, Erich
Gornik, Taisto Haavasoja, Rick Hall, Hong-Wen Jiang,
Woowon Kang, Mikko Paalanen, Wei Pan, Aron Pinc-
zuk, Zack Schlesinger, Joe Spector, Werner Wegsc-
heider, Claude Weisbuch, Bob Willett, Jian-Sheng Xia,
Andrew Yeh, and Amir Yacoby.

None of what has been discovered in experiments by
many in the field I would have appreciated without my
theorist friends and colleagues patiently teaching me
FQHE physics. Particular insights I received from Nick
d’Ambrumenil, Steve Girvin, Duncan Haldane, Bert
Halperin, Song He, Jainendra Jain, Steve Kivelson, Bob
Laughlin, Dung-Hai Lee, Peter Littlewood, Allan Mac-
Donald, Rudolf Morf, Phil Platzman, Nick Read, Ed
Rezayi, Ramamurti Shankar, and Steve Simon. There
are many more, too numerous to list.

My new colleagues at Columbia University I thank for
a warm reception in their midst. Dominique, my wife, I
thank for her unceasing support and cheerfulness. I also
thank my producer.

Finally, I want to thank my long-time collaborator and
friend, Dan Tsui, in his characteristically few words:
“Thanks for taking me to the dance.”
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