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Plasmas consisting exclusively of particles with a single sign of charge (e.g., pure electron plasmas and
pure ion plasmas) can be confined by static electric and magnetic fields (in a Penning trap) and also
be in a state of global thermal equilibrium. This important property distinguishes these totally
unneutralized plasmas from neutral and quasineutral plasmas. This paper reviews the conditions for,
and the structure of, the thermal equilibrium states. Both theory and experiment are discussed, but the
emphasis is decidedly on theory. It is a huge advantage to be able to use thermal equilibrium statistical
mechanics to describe the plasma state. Such a description is easily obtained and complete, including
for example the details of the plasma shape and microscopic order. Pure electron and pure ion
plasmas are routinely confined for hours and even days, and thermal equilibrium states are observed.
These plasmas can be cooled to the cryogenic temperature range, where liquid and crystal-like states
are realized. The authors discuss the structure of the correlated states separately for three plasma
sizes: large plasmas, in which the free energy is dominated by the bulk plasma; mesoscale plasmas, in
which the free energy is strongly influenced by the surface; and Coulomb clusters, in which the number
of particles is so small that the canonical ensemble is not a good approximation for the microcanonical
ensemble. All three cases have been studied through numerical simulations, analytic theory, and
experiment. In addition to describing the structure of the thermal equilibrium states, the authors
develop a thermodynamic theory of the trapped plasma system. Thermodynamic inequalities and
Maxwell relations provide useful bounds on and general relationships between partial derivatives of
the various thermodynamic variables.
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I. INTRODUCTION

This paper discusses plasmas with a single sign of
charge that are confined in Penning traps. These traps
typically have cylindrical symmetry, with radial confine-
ment provided by a uniform axial magnetic field and
axial confinement by electrostatic fields. Examples of
plasmas that have been confined in recent experiments
include pure electron plasmas, positive-ion plasmas of
one or more species, positron plasmas, and electron-
antiproton plasmas. These plasmas are totally unneutral-
ized, and in that sense they are a subset of the more
general class of nonneutral plasmas.

Plasmas with a single sign of charge provide some
unique research opportunities that are not available with
neutral (or quasineutral) plasmas. In principle these
plasmas can be confined forever by static electric and
magnetic fields, and in practice very long confinement
times (hours and even days) are routinely achieved.
They can be confined by such fields and also be in a state
of thermal equilibrium. Since recombination cannot oc-
cur, they can be cooled to the cryogenic temperature
range, where liquid and crystal-like states are predicted
and observed.

The thermal equilibrium states are the focus of the
paper. At first one might think that the existence of such
states is an obvious and trivial property shared by all
plasmas, but that is not the case. A neutral (or quasineu-
tral) plasma cannot be confined by static electric and
magnetic fields and also be in a state of thermal equilib-
rium. Consequently, a confined neutral plasma cannot
be in a state of minimum free energy; there is always
free energy to drive instabilities, and these instabilities
have plagued the confinement of neutral plasmas. In
contrast, a confined plasma with a single sign of charge
that is in a state of thermal equilibrium is guaranteed to
be stable and quiescent. In general, a system that is in or
near thermal equilibrium tends to be controllable and
predictable. Furthermore, the effect of small controlled
deviations from thermal equilibrium can be investigated
with precision. Thermal equilibrium states are routinely
observed for both pure electron plasmas and pure ion
plasmas.

From a theoretical perspective, it is a huge advantage
to be able to use thermal equilibrium statistical mechan-
ics to describe the plasma state. Such a description is
easily obtained and is very complete; for example, it in-
cludes the detailed structure of the sheath at the plasma
surface and of the microscopic order. It should also be
noted that the evolution to thermal equilibrium may be
so complicated that we cannot follow it in detail; for
example, it may involve a turbulent phase. Nevertheless,
the resulting thermal equilibrium state is determined by
constants of the motion that are preserved during the
evolution, so the thermal equilibrium state can be pre-
dicted from the initial conditions.

We are discussing here a cloud of unneutralized
charges, and the reader may wonder why we call this
cloud a plasma. The reason is that it exhibits many of
the collective phenomena associated with neutral plas-
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mas. For example, a pure electron plasma exhibits
electron-plasma oscillations (Langmuir oscillations) that
are essentially the same as those exhibited by a neutral
plasma. The reason for this is easy to understand.
Electron-plasma oscillations occur at such a high fre-
quency in a neutral plasma that the ions do not partici-
pate in the motion. Likewise, the other modes that in-
volve only the electrons in a neutral plasma are
supported by a pure electron plasma. In addition, a non-
neutral plasma exhibits the phenomenon of Debye
shielding. To be precise, we refer to a weakly correlated
cloud of charges as a plasma only when the cloud is large
in all its dimensions compared to the Debye length, lD
5(kT/4pne2)1/2. Here, T is the temperature of the
charges and n is the density. The name nonneutral
plasma came into usage with the publication of David-
son’s monograph, Theory of Nonneutral Plasmas (1974).

Clouds of unneutralized charges have been confined
for long times in various kinds of traps: Penning traps, rf
or Paul traps, Kingdon traps, and storage rings (King-
don, 1923; Penning, 1936; Paul and Steinwedel, 1953).
However, clouds that are large and dense enough to be
called a plasma have typically been confined in Penning
traps. Furthermore, we shall observe that charged-
particle confinement in radio-frequency Paul traps can
be approximately described by an effective ponderomo-
tive potential, leading to thermal equilibrium identical
to that of Penning traps. Consequently, we consider only
Penning traps and their natural generalizations.

In Sec. II, we use an idealized model of the trap to
construct confinement theorems. For the idealized trap,
the plasma cannot escape. Of course, a real trap has
imperfections—most importantly, field and construction
errors that break the cylindrical symmetry—so the
plasma is gradually lost. Nevertheless, the loss time can
be long compared to the time for Coulomb interactions
to bring the charges into thermal equilibrium with each
other.

In Sec. III, we review the mean-field (or Boltzmann)
description of the thermal equilibrium states. The main
difficulty in obtaining such a description is in solving
Poisson’s equation for the self-consistent electric poten-
tial. A plasma is by definition a collection of charges that
can substantially modify (Debye shield) the trap poten-
tial. Fortunately, the thermal equilibrium states have a
simple universal character. The plasma rotates rigidly
(without shear) about the direction of the magnetic field,
and the density is nearly uniform out to some surface of
revolution and there drops to zero on the scale of the
Debye length. For the important case of a small plasma
in a quadratic trap potential, the surface of revolution is
a spheroid (ellipse of revolution), and a complete ana-
lytic solution is possible. For a multispecies plasma, cen-
trifugal separation can be important, with different spe-
cies residing in concentric rings. In this section, we also
discuss generalizations of the Penning trap that admit
thermal equilibrium states.

When the plasma is cooled correlations between the
charges become important. A measure of the strength of
correlations is the coupling parameter G5e2/akT , or,
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equivalently, the plasma expansion parameter 1/nlD
3

54p)G3/2. Here, a is the Wigner-Seitz radius (i.e.,
4pna3/3[1). The coupling parameter is simply the ratio
of the interaction energy between neighboring charges,
e2/a , to the random energy per degree of freedom, kT.
Correlations are weak when G!1 and strong when G
@1. A large range of G values is experimentally acces-
sible, and thermal equilibrium states are observed for
both weakly correlated and strongly correlated plasmas.
For a strongly correlated cloud of charges, the Debye
length is smaller than the interparticle spacing and effec-
tively loses its meaning. For this case, we require the
cloud to be much larger than the interparticle spacing. It
is worth noting here that some authors limit the defini-
tion of plasma to include only the case of weak correla-
tion. These authors have in mind neutral plasmas. When
correlations (collisions) become strong in an electron-
ion plasma, the collisional drag between electrons and
ions effectively destroys modes such as Langmuir oscil-
lations. One is left with acoustic modes in which the
electrons and ions move together, so the system loses
much of its distinctive character as a plasma. However,
for the nonneutral plasmas under consideration here,
Langmuir oscillations survive into the regime of strong
correlation. As the correlated system of charges begins
to resemble a crystal, the Langmuir oscillations simply
evolve into phonons.

The Boltzmann distribution is a one-particle distribu-
tion and cannot describe the effect of correlations. In
Sec. IV, we review the N-particle (Gibbs) description of
the thermal equilibrium states. Because the mean-field
potential is large compared to the interaction potential
for neighboring charges, the correlations cause only
small changes in the gross (mean-field) shape of the
plasma, as established in Sec. III. Instead, they simply
establish order within that shape.

A standard theoretical model for the study of correla-
tions is the one-component plasma (OCP). An OCP is a
system of classical point charges that is embedded in a
uniform neutralizing background charge. We shall see
that the Gibbs distribution for a magnetically confined
single-species plasma is the same as the Gibbs distribu-
tion for an OCP (of finite size). Thus the magnetically
confined plasmas provide a laboratory realization of an
OCP, at least for thermal equilibrium properties. In ad-
dition, the theory that was developed to describe the
effect of correlations in an infinite OCP can be applied
to magnetically confined plasmas, if these plasmas are
large enough to manifest bulk properties.

The Gibbs distribution for an infinite homogeneous
OCP can be scaled so that it depends only on G, that is,
the nature of the thermal equilibrium state is deter-
mined by G. For G!1 the system of charges is a weakly
correlated plasma, for G>2 the system begins to exhibit
the local order characteristic of a fluid, and for G5174
there is a phase transition to a bcc crystal state.

However, in many experiments on strongly correlated
nonneutral plasmas, the number of trapped particles is
not sufficiently large for us to treat the plasma as infinite
and homogeneous. Consequently, the correlation prop-
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
erties of the plasma are substantially affected by finite-
size effects. We identify three size regimes that display
qualitatively different correlation behavior: Coulomb
clusters, which consist of only a few trapped charges
(N&10); mesoscopic plasmas (also referred to by some
authors as microplasmas), which are larger than the clus-
ters but are still strongly influenced by finite-size effects;
and large plasmas, which are sufficiently large to be
treated as infinite and homogeneous. Only for large
plasmas is a transition to a bcc lattice observed.

For mesoscopic plasmas, a bcc lattice in the crystalline
phase is no longer expected; instead the crystal structure
displays sensitive dependence on the overall shape and
size of the plasma. Over a broad parameter range the
plasma crystal consists of concentric shells of charge,
which can be thought of as lattice planes that have been
deformed by the external confinement potential into
shells. For other parameters, the plasmas can be com-
pressed into one-dimensional lines of charge (Coulomb
chains) or two-dimensional discs. In Sec. IV we compare
numerical simulations and analytic theory of mesoscopic
plasmas to experimental results that probe the shell
structure. We also review the thermal equilibrium prop-
erties of the infinite OCP and compare these properties
to recent experiments on large, strongly correlated plas-
mas. Finally, we describe some aspects of strongly cor-
related Coulomb clusters. At low temperatures these
small collections of charges form simple geometrical
configurations that can be predicted on the basis of a
minimum-energy principle.

In Sec. V we consider the thermodynamics of nonneu-
tral plasmas. A thermodynamic description of the
plasma state has many advantages. Using thermodynam-
ics we can uncover a number of connections between
seemingly unrelated physical properties. For example,
thermodynamic derivatives are connected by Maxwell
relations; the second law imposes bounds on measurable
quantities; and TdS equations allow a general descrip-
tion of the dynamical evolution of the plasma between
different thermal equilibrium states, including the evo-
lution caused by complex transport phenomena.

In Sec. VI we conclude with a brief discussion of sev-
eral topics that could have been included in a review of
thermal equilibrium properties, but were not for lack of
space. For those readers who would like to learn more
about nonneutral plasmas, we also briefly touch upon
several other active areas of research in nonneutral
plasma physics and provide some references.

The history of research on trapped clouds of unneu-
tralized charges dates back nearly half a century and has
roots in atomic physics as well as plasma physics. Pen-
ning (1936) invented the basic confinement configura-
tion for use as a vacuum gauge. Dehmelt (1967) pio-
neered the use of Penning traps for fundamental studies
of individual particles, and together with Ramsey and
Paul received the 1989 Nobel prize in physics. Gradually
the use of Penning traps for research in atomic physics
(and chemistry) became widespread. Research on the
collective properties of nonneutral plasmas in Penning-
trap-like field configurations (magnetrons) dates back to
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efforts in World War II to produce high-power radiation
sources for radar. A seminal paper from this period is
that by Brillouin (1945). In the late 1960s and early
1970s nonneutral plasma physics experienced a period of
rapid development, borrowing techniques and ideas
from traditional plasma physics (Davidson, 1974). Re-
search in the atomic physics and plasma physics commu-
nities proceeded rather independently until the early
1980s, when collaboration began. The two communities
brought different and complementary techniques to the
table. The atomic physicists started from rather small
plasma samples (N;1022104), but brought substantial
experience with Penning traps, a tradition of precision
measurements, and the powerful techniques of laser
cooling and diagnostics. Plasma physicists started with
much larger plasmas (N;1010) and brought experience
with and understanding of collective phenomena and
many-body physics. The two communities have learned
from each other, borrowed diagnostic techniques and
trap designs, exchanged postdocs, and held joint meet-
ings. Much of the work discussed here results from this
collaboration.

As general references on nonneutral plasmas, we rec-
ommend the two monographs by Davidson (1974, 1990)
and the two AIP conference proceedings on Nonneutral
Plasma Physics (Roberson and Driscoll, 1988; Fajans
and Dubin, 1994). These latter two references focus
more explicitly on nonneutral plasmas in traps and in-
clude papers from atomic physicists and plasma physi-
cists. A general reference on strongly coupled OCPs is
the review article by Ichimaru (1982). A more recent
review (Ichimaru, Iyetomi, and Tanaka, 1987) discusses
theoretical schemes in the analysis of multiparticle cor-
relations as well as transport calculations in the strongly
correlated regime. The proceedings of the recent Nobel
Symposium on Trapped Charged Particles and Funda-
mental Physics (Bergström, Carlberg, and Schuch, 1995)
provides a good overview of trap physics from the per-
spective of atomic physics. Likewise the review article
by Brown and Gabrielse (1986) provides an in-depth
discussion of the use of Penning traps for confinement of
small numbers of charges.

II. CONFINEMENT AND CONSTANTS OF THE MOTION

A. Confinement geometry

Figure 1 shows a simple example of a Penning trap
(Penning, 1936). A conducting cylinder is divided axially
into three sections, with the central section held at

FIG. 1. Schematic diagram of a Malmberg-Penning trap.
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ground potential and the two end sections held at posi-
tive potential. (Throughout the paper, the figures and
discussion refer to positively charged particles, but the
case of negative charges is covered by obvious sign
changes.) In addition, there is a uniform-axial magnetic
field. The plasma resides in the region of the central
grounded section, with radial confinement provided by
the magnetic field and axial confinement by the electric
fields. To understand radial force balance, one must re-
alize that the plasma rotates about the axis of symmetry
of the trap. The associated Lorentz force (ev3B/c),
where v is the rotational velocity, is directed radially
inward and balances all of the radially outward forces
(centrifugal, pressure, and electrostatic). This simple
form of the trap (with cylindrical electrodes) is often
called a Malmberg-Penning trap, since the late John
Malmberg pioneered its use for the confinement of non-
neutral plasmas (deGrassie and Malmberg, 1977, 1980).
Figure 2 shows a Penning trap in which the cylindrical
electrodes are replaced by hyperbolas of revolution.
Such traps were developed originally to confine small
numbers of charged particles (Dehmelt, 1967; Brown
and Gabrielse, 1986), but more recently have been used
to confine charge clouds that are large and dense enough
to qualify as a plasma. Penning traps of the form shown
in these two figures have been used to confine electron
plasmas (deGrassie and Malmberg, 1980; Driscoll,
Malmberg, and Fine, 1988; Gould and LaPointe, 1991;
Hart, 1991; Tan and Gabrielse, 1993; Chu et al., 1993;
Tinkle et al., 1994), positive-ion plasmas of one or more
species (Brewer et al., 1988; Bollinger, Wineland, and
Dubin, 1994), positron plasmas (Surko and Murphy,
1990; Cowan et al., 1993; Greaves et al., 1994; Mohri
et al., 1995), and electron-antiproton plasmas (Gabrielse
et al., 1989; Holzscheiter et al., 1996). We shall develop
the theory with traps of this form in mind. To be specific,
we shall assume that the trap electrode structure is cy-
lindrically symmetrical, that the potentials on the elec-
trodes are maintained at constant values, and that the
magnetic field is uniform and axial and constant in time.

However, it should be noted that this is not the most
general trap for which confinement in a state of thermal
equilibrium is possible. Confinement requires the
plasma to rotate through the magnetic field, and thermal
equilibrium requires the trap fields to be stationary in

FIG. 2. Penning trap for which the electrodes are hyperbolas
of revolution.
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the rotating frame. If the trap fields are stationary in the
laboratory frame, they must have cylindrical symmetry.
In relation to our basic model, the magnetic field need
not be uniform so long as it has the required cylindrical
symmetry. Moreover, the trap fields can be asymmetric
and time dependent, so long as they are time indepen-
dent in some rotating frame. We shall discuss these gen-
eralizations in Sec. III.H. The confinement and thermal
equilibrium states for these more general configurations
can be understood from simple modifications and rein-
terpretations of the theory developed for our basic
model.

B. Constants of the motion

As a preliminary to a discussion of the thermal equi-
librium states, it is necessary to determine the effective
constants of the motion for the plasma. These quantities
need not be exact constants; it is only necessary that
they be nearly constant on the time scale required for
interactions to bring the plasma charges into thermal
equilibrium with each other. For our theoretical discus-
sion, we introduce an idealized model of the plasma and
trap such that the quantities of interest are exact con-
stants.

We consider a plasma of N-like charges that interact
electrostatically in a cylindrically symmetric Penning
trap with time-independent voltages applied to the end
electrodes and a time-independent and uniform axial
magnetic field, B5 ẑB . The vector potential for this field
can be written as A5 ûAu(r), where Au(r)5Br/2.
Here, (r ,u ,z) is a cylindrical coordinate system with the
z axis coincident with the axis of symmetry of the trap.
We write the electric potential as

f~r!5fT~r!1(
j

eG~rurj!, (2.1)

where fT(r) is the trap potential in the absence of a
plasma. This potential satisfies Laplace’s equation and
matches the potential specified on the conducting
boundary, that is, on the electrodes. The quantity
G(rurj) is the Green’s function, which vanishes on the
conducting boundary, and rj is the position of the jth
charge. The Green’s function differs from the Coulomb
interaction 1/ur2rju because of image charges in the con-
ducting boundary.

To a good approximation, the motion of the charges is
governed by the Hamiltonian

H5(
j51

N S prj

2

2m
1

Fpu j
2

e

c
Au~rj!rjG2

2mrj
2 1

pzj

2

2m
D

1(
j51

N

efT~rj!1
1
2 ( 8

i ,j51

N

e2G~riurj!, (2.2)

where the prime on the sum denotes that j5i is ex-
cluded, and where the canonical momenta are given by
(Goldstein, 1980)
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prj
5mṙj , pu j

5mrj
2u̇ j1

e

c
Au~rj!rj , pz5mżj .

(2.3)

The first sum in Eq. (2.2) is the kinetic energy, the sec-
ond is the electrostatic energy of the charges in the trap
potential, and the third is the electrostatic interaction
energy of the charges with each other and with their
images. Diamagnetic and relativistic effects have been
neglected, since velocities are typically small (i.e., uvju/c
!1) in the experiments of interest. Also, in the second
sum, we have neglected the interaction energy of each
charge with its own image; typically this is much smaller
than efT(r) unless the charge is very near the wall. Note
that the interaction of a particular charge with the im-
ages of all of the other charges can be large and is re-
tained in the third sum. The constants of the motion
follow from the symmetry properties of the Hamiltonian
(Landau and Lifshitz, 1976, p. 13), and these properties
are not changed by dropping the (v/c)2 corrections and
the interaction of a charge with its own image. These
approximations are used only to simplify the notation.
In addition, for notational simplicity, we have taken the
case of a single-species plasma; the results are easily
generalized to a multispecies plasma so long as all of the
species have the same sign of charge.

Since the Hamiltonian is invariant under translations
in time (i.e., ]H/]t50), the Hamiltonian itself is a con-
stant of the motion,

H5E . (2.4)

We may think of H as the total particle energy, but
should note that H is not the system energy. Not all of
the energy required to assemble the system of charges in
the trap is included in H. The battery that is used to
maintain constant voltage on the end electrodes does
work against the image charge that flows on and off of
these electrodes. In addition, the circuit that keeps the
current in the magnetic solenoid constant does work
against variations in the plasma magnetic moment (the
plasma magnetic moment arises from its rotation). Up to
an additive constant, the Hamiltonian is equal to the
system energy minus the work done by these external
circuits.

The cylindrical symmetry of the apparatus implies
that the trap potential is of the form fT(rj)5fT(rj ,zj)
and that the Green’s function is of the form G(riurj)
5G(ri ,zi ,rj ,zj ,u i2u j). Thus the Hamiltonian is invari-
ant under translations in u, i.e.,

(
j51

N

]H/]u j50,

and the total canonical angular momentum is conserved:

Pu[(
j51

N

pu j
5L . (2.5)

Of course, for a real plasma in a real trap, the total
energy and the total canonical angular momentum are
not conserved exactly. The charges slowly radiate away
both energy and angular momentum; there are neutrals,
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and collisions with the neutrals change the plasma en-
ergy and angular momentum; and most importantly
there are small field errors and construction errors that
break the cylindrical symmetry and apply a small torque
on the plasma. However, with care all of these effects
can be made sufficiently small that interactions between
the particles bring the plasma into thermal equilibrium
before the energy and angular momentum change by a
significant amount. Thus we proceed with a description
of the plasma confinement and thermal equilibrium
states using our idealized model.

C. Confinement theorem

To understand the confinement, it is useful to intro-
duce the Hamiltonian in a frame that rotates with fre-
quency 2v (Landau and Lifshitz, 1976, p. 129),

HR5H1vPu . (2.6)

This quantity is conserved so long as H and Pu are con-
served. Of course, we are free to view the dynamics
from any rotating frame that is convenient. It is impor-
tant to note here that 2v is not necessarily the rotation
frequency of the plasma. The minus sign is included ex-
plicitly so that v can be chosen to be positive (for a
plasma of positive charges). When the canonical mo-
menta are replaced with velocity variables, Eq. (2.6)
takes the form

HR5(
j51

N m

2
vj

21(
j51

N

efT~rj ,zj!

1
1
2 (

i ,j51

N

8 e2G~riurj!1v(
j51

N S mvu j
r j1

e

c
Brj

2/2D ,

(2.7)

where we have used (e/c)Au(r)r5eBr2/2c . Carrying
out a small amount of algebra yields the result

HR5(
j51

N m

2
~vj1vrjû j!

2

1(
j51

N

efR~rj ,zj!1
1
2 (

i ,j51

N

8 e2G~riurj!, (2.8)

where

efR~r ,z !5efT~r ,z !1mv~Vc2v!r2/2 (2.9)

is the effective trap potential in the rotating frame and
Vc5eB/mc is the cyclotron frequency.

This potential consists of three terms: efT is the po-
tential energy due to the voltages maintained on the
electrodes, 2mv2r2/2 is the centrifugal potential, and

mvVcr2/25E
0

r
dre~vr !B/c

is the potential induced by rotation through the mag-
netic field. It is this last term that provides the radial
confinement. For a suitable choice of the bias voltage on
the end electrodes and for sufficiently large v(Vc2v),
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the equipotential surfaces of efR(r ,z) are nested sur-
faces of revolution with the value of efR(r ,z) increasing
outward from the center of the trap. The term efT(r ,z)
increases as z moves toward either end, where the posi-
tively biased end electrodes are located. For sufficiently
large v(Vc2v), the term mv(Vc2v)r2/2 makes
efR(r ,z) an increasing function of r [even though
efT(r ,z) is decreasing in r]. Thus efR(r ,z) is a poten-
tial well that acts to confine the plasma.

A simple confinement theorem can be constructed by
noting that the first and third sums in Eq. (2.8) are
non-negative.1 Particles can escape to the wall only by
climbing high up in the potential well, that is, by increas-
ing the second sum in Eq. (2.8). This must be accompa-
nied by a decrease in the other two sums, since HR is
conserved. Physically, the particles can climb up the po-
tential only by using kinetic energy and electrostatic en-
ergy of interaction. Because these latter two quantities
are non-negative, their initial values set the maximum
amount that they can decrease. Suppose that all of the
particles are initially inside (bounded by) some equipo-
tential surface efR(r ,z)5ef1 and that the first equipo-
tential where the potential begins to decrease (or inter-
sects the wall) is efR(r ,t)5ef2 . Then only a small
fraction of the charges can escape if Ne(f22f1) is
much larger than the initial values of the first and third
sums in Eq. (2.8).

In applying this theorem, we are free to choose v.
However, care must be taken, since v appears both in
the effective trap potential and in the kinetic energy (in
the rotating frame). In addition, v must lie in the inter-
val 0,v,Vc so that v(Vc2v) is positive. Neverthe-
less, for any initial state of the plasma, the well can be
made deep enough to provide confinement for a range
of v values, if Vc and the bias voltage on the end elec-
trodes are sufficiently large.

D. Constraint on the mean-square radius of the plasma

An alternate confinement theorem focuses on the ra-
dial (magnetic) confinement and establishes a constraint
on the mean-square radius of the plasma (i.e.,

(
j51

N

rj
2.const

O’Neil, 1980; Davidson, 1990). Of course, it is the mag-
netic confinement that one worries about; the axial con-
finement can be guaranteed simply by choosing the bias
voltage on the end electrodes to be sufficiently large.

This theorem illustrates the important role of conser-
vation of angular momentum in guaranteeing radial con-

1The non-negative character of the third sum follows from
the fact that G(rur8).0. A negative value for G(rur8) would
imply that G(rur8) reaches a minimum at some point r inside
the confinement region; recall that G(rur8) vanishes on the
boundary and is positive near r5r8. Of course, a minimum is
not possible since ¹2G(r,r8)50 except at r5r8.
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finement. In terms of velocity variables, Eq. (2.5) takes
the form

L5Pu5(
j51

N

mvu j
r j1eBrj

2/2c , (2.10)

where we have used Au(r)5Br/2. For a sufficiently
large magnetic field, the mechanical part of the angular
momentum is small compared to the vector potential
part, so Eq. (2.10) reduces to

L.(
j51

N

eBrj
2/2c . (2.11)

We shall return to this point shortly and bound the ne-
glected terms. Since the plasma contains only a single
sign of charge, the charge can be factored out from un-
der the sum along with the other constants, and we ob-
tain a constraint on the mean-square radius of the
plasma,

const5L.
eB

2c (
j51

N

rj
2. (2.12)

This equation is a very powerful constraint, and it can
be illustrated by a simple example. Figure 3 shows the
end view of a plasma column that is initially shaped like
a cylindrical shell of radius 1 cm [i.e., rj(t50)51 cm for
j51, . . . ,N]. The plasma resides in a long cylindrical
trap (see Fig. 1) with the conducting wall at radius r
510 cm. Taking this situation as the initial condition,
what will be the dynamical evolution of the plasma? It
turns out that a hollow column is unstable to diocotron
modes (Davidson, 1990; Driscoll and Fine, 1990), so
these modes grow to large amplitude, nonlinear effects
come into play, and a turbulent-like evolution ensues.
Interparticle collisions also affect the evolution, particu-
larly the long-time evolution. However, all of this com-
plicated dynamics involves only internal interactions, so

L}(
j

r j
2

is conserved. This means that only 1% of the particles
can move from rj(0)51 cm out to the wall at r
510 cm; the other 99% of the particles must remain
confined. Of course, on a very long time scale, collisions
with neutrals and trap asymmetries produce a slow

FIG. 3. Schematic diagram used to illustrate the power of the
constraint ( jr j

25const.
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change in L, and the plasma gradually expands. For a
neutral plasma, the constraint

(
j

r j
25const

is replaced by

(
j

e jr j
25const,

so an electron and an ion can move to the wall together
and still preserve the sum. This is precisely what hap-
pens in electron-ion collisional transport as well as in
many instabilities. One can see that it is much easier to
confine a plasma with a single sign of charge than it is to
confine a neutral plasma.

We now return to the derivation and use conservation
of energy to place a bound on the neglected terms. Con-
servation of angular momentum implies that

uVc/22vuU(
j51

N

rj
2~ t !2(

j51

N

rj
2~0 !U

5U(
j51

N

rj~0 !v̄u j
~0 !2(

j51

N

rj~ t !v̄u j
~ t !U , (2.13)

where v̄u5vu1vr is the u component of the velocity in a
frame that rotates with frequency 2v. By using the in-
equality

uv̄uu<@ v̄z
21 v̄u

21 v̄r
2#1/25 v̄, (2.14)

we obtain the inequality

uVc/22vuU(
j51

N

rj
2~ t !2(

j51

N

rj
2~0 !U

<(
j51

N

rj~0 !v̄j~0 !1rj~ t !v̄j~ t !. (2.15)

To bound

(
j

r jv̄j ,

we choose the v̄’s so that

(
j

r jv̄j

is a maximum for a given value of the kinetic energy

KR5(
j

m v̄j
2/2,

that is, the v̄j’s are chosen so that

05d(
j51

N

rjv̄j2ad(
j51

N

v̄j
2/25(

j51

N

~rj2a v̄j!d v̄j , (2.16)

where d v̄j is an independent infinitesimal variation and
a is a Lagrange multiplier. Thus we find that v̄j5rj /a ,
where a must be chosen so that

KR5~m/a2!(
j

r j
2/2.
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This yields the bound

(
j51

N

rjv̄j5F2KR

m (
j51

N

rj
2G 1/2

. (2.17)

Suppose that KR
max is the maximum possible value for

KR . Equations (2.17) and (2.15) then imply the inequal-
ity

U(
j51

N

rj
2~ t !2(

j51

N

rj
2~0 !U

<F 8KR
max

m~Vc22v!2G 1/2F X(
j51

N

rj
2~0 !C1/2

1X(
j51

N

rj
2~ t !C1/2G .

(2.18)

By factoring the left-hand side, we obtain

ux21u<« , (2.19)

where

«5F 8KR
max

m~Vc22v!2(
j

r j
2~0 !G 1/2

,

x25(
j

r j
2~ t !Y (

j
r j

2~0 !. (2.20)

To bound KR
max , we use the constancy of

HR5KR1U1(
j

efR~rj!. (2.21)

Here, KR and U represent the first and third sums in Eq.
(2.8). As mentioned earlier (see footnote 1), U is non-
negative. For a given bias voltage on the end electrodes,
Vc can be chosen to be large enough that fR(r) is a
potential well even for v!Vc . For this theorem there is
an advantage in choosing v to be as small as possible,
consistent with the condition that efR(r) takes its mini-
mum value at r50. If we choose this minimum value to
be fR(0)50, then the third sum in Eq. (2.21) also is
non-negative. Thus we obtain the bounds

KR
max<HR~0 ! (2.22)

and

«<F 8HR~0 !

m~Vc22v!2(
j

r j
2~0 !G 1/2

. (2.23)

For a nonneutral plasma, it is typically the case that
U(0) sets the size of HR(0). For a column of density n
and radius r(0), a simple estimate yields U(0)
;pne2r2(0)N . Thus we find the requirement that «
;vp /Vc!1, where we have set Vc22v.Vc .

As a simple numerical example, consider an electron
column that is confined in a magnetic field of strength 1
kilogauss and that is of initial radius r(0)51 cm. For
this case, mVc

2r2(0) is of order 105 eV, so «!1 if
HR(0)/N!105 eV. In comparison, for a column of den-
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sity n.107 cm23 and radius r(0)51 cm, U(0)/N
;pne2r2(0) has the value 5 eV.

III. MEAN-FIELD DESCRIPTION OF THERMAL
EQUILIBRIUM STATES

When the plasma is sufficiently warm that correlations
are small (i.e., G5e2/akT!1), the thermal equilibrium
states may be described with a one-particle (i.e., Boltz-
mann) distribution.

A. Boltzmann distribution

Because the total Hamiltonian and the total canonical
angular momentum are both conserved, the Boltzmann
distribution takes the form (Davidson and Krall, 1970;
Prasad and O’Neil, 1979; Davidson, 1990)

f~r,v!5

N expF2
1

kT
~h1vpu!G

E d3rd3v expF2
1

kT
~h1vpu!G , (3.1)

where

h5
mv2

2
1ef~r! (3.2)

is the one-particle Hamiltonian and

pu5mvur1
eB

2c
r2 (3.3)

is the one-particle canonical angular momentum. Here,

f~r!5fT~r!1eE d3r8d3v8f~r8,v8!G~rur8! (3.4)

is the mean-field (or Vlasov) electric potential. Equation
(3.4) is the mean-field version of Eq. (2.1). The tempera-
ture and rotation frequency (T and v) are determined
by the values of

H5E d3rd3v@mv2/21efT~r!#f~r,v!

1
1
2 E d3rd3vd3r8d3v8e2G~rur8!f~r,v!f~r8,v8!

(3.5)

and

Pu5E d3rd3vFmvur1
eBr2

2c G f~r,v!. (3.6)

These are the mean-field versions of Eqs. (2.2) and (2.5).
Since H5E and Pu5L are conserved during the evolu-
tion to thermal equilibrium, T and v can be predicted
from the initial conditions. As mentioned in the Intro-
duction, this is one of the advantages of being able to
use thermal equilibrium statistical mechanics.

It is important to note that v plays a different role in
the thermal distribution than in the confinement theo-
rem of Sec. II.C. In the thermal distribution, v is fixed
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by the constants of the motion H5E and Pu5L ; we
shall see shortly that 2v is the rotation frequency of the
plasma. On the other hand, in the confinement theorem,
2v is the rotation frequency of the frame from which
we view the dynamics; we are free to choose v.

Distribution (3.1) can be derived formally from the
Gibbs distribution as an expansion in the small param-
eter 1/nlD

3 54p)G3/2!1 (Ichimaru, 1992). More sim-
ply, it follows from maximization of the entropy

S52kE d3rd3vf ln f , (3.7)

subject to fixed values for N5*d3rd3vf and for H and
Pu as defined in Eqs. (3.5) and (3.6). Note that Eqs. (3.5)
and (3.7) already have built in the fact that correlations
are weak. The variation leads to distribution (3.1) with
the mean-field potential given by Eq. (3.4). The param-
eters T and v enter as Lagrange multipliers associated
with the fixed values of H and Pu . In distribution (3.1) a
third Lagrange multiplier has been eliminated in favor
of the constant N5*d3rd3vf .

Substituting Eqs. (3.2) and (3.3) into Eq. (3.1) and
carrying out a small amount of algebra yields the distri-
bution

f~r,v!5n~r ,z !S m

2pkT D 3/2

expF2
m

2kT
~v1vr û !2G ,

(3.8)
where the density is given by

n~r ,z !5N

expH 2
1

kT
@efR~r ,z !1efp~r ,z !#J

E d3r expF2
1

kT
~efR1efp!G .

(3.9)

Here, fR is the effective trap potential in the rotating
frame [see Eq. (2.9)], and fp is the plasma space-charge
potential, that is, the second term in Eq. (3.4)

The velocity distribution is Maxwellian in a reference
frame that rotates with frequency 2v. This implies that
the local fluid velocity

v5

E d3vvf

E d3vf
5vr û (3.10)

is a shear-free, rigid rotation flow. Of course, a thermal
equilibrium flow must be shear free. Viscous forces act-
ing on a shear in the flow would produce entropy, and
that is impossible for a state of maximum entropy.

To see that the density distribution can correspond to
a confined plasma, we recall that efR(r ,z) is a potential
well for a suitable choice of the bias voltage on the end
electrodes and of the magnetic-field strength. The
plasma simply resides in that potential well. The term
efT(r ,z) [see Eq. (2.9)] forces the distribution to be
exponentially small at the ends, where the positively bi-
ased electrodes are located, and the term mv(Vc
2v)r2/2 forces the distribution to be exponentially
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
small at large r. Of course, the wall is located beyond the
region where the distribution becomes exponentially
small.

At this point it is useful to pause for a moment and
consider other confinement schemes that can lead to a
confined thermal equilibrium identical to Eqs. (3.8) and
(3.9). In particular, radio-frequency Paul traps can also
confine charged particles for long periods of time. In
Paul traps a rapidly oscillating electric field creates a
time-averaged force that traps the charges. Provided
that the rapid oscillations in the particle position and the
velocity caused by the oscillating E field are small and
can be neglected, the confinement force is conservative,
described by a ponderomotive potential. A thermal
equilibrium description of the particle confinement can
then be developed, leading back to Eqs. (3.8) and (3.9),
with fR(r) now taking the role of the ponderomotive
potential. Usually there is negligible plasma rotation, so
v50 in Eq. (3.8) and the velocity distribution (neglect-
ing the rapid oscillations) is a centered Maxwellian.
Later we shall describe several experiments involving
nonneutral clouds confined in Paul traps (see Sec. IV.E).

It is easy to see that distributions of the form (3.1) are
not consistent with confinement of a neutral (or partially
neutral) plasma in a Penning trap. When the plasma
contains more than one species, there is a distribution
for each species, but the distributions must all have the
same values of T and v. Since the sign of the charge
enters as a coefficient in the two terms that provide con-
finement [i.e., efT(r ,z) and mvVcr2/25evBr2/2c],
confinement of a positively charged species implies non-
confinement of a negatively charged species.

This argument can be extended to the most general
form of a thermal equilibrium distribution function
(Landau and Lifshitz, 1980, p. 104),

f j5exp$a j2b@hj1g•pj1d•~r3pj!#%, (3.11)

where hj5mjvj
2/21ejf is the one-particle Hamiltonian

for a particle of species j and pj5mjv1(ej /c)A(r) is the
canonical momentum. The Lagrange multipliers b, g,
and d must have the same values for the electron and
ion distributions; the a j’s can be different to account for
different numbers of electrons and ions (i.e., NeÞNi).
Distributions of this form allow for the possibility that
the system conserves the number of electrons, the num-
ber of ions, the energy, the three components of linear
momentum, and the three components of angular mo-
mentum. These are the only possible additive constants
for a macroscopic system.

Integrating over velocity yields the density distribu-
tions

nj5S 2p

mjb
D 3/2

expH a j2bF2mj~g1d3r!2
1
2

1ejc~r!G J ,

(3.12)
where c(r)5f(r)1(g1d3r)•A(r)/c . Thus we obtain

@ne~r !#zni~r !}eb@~Zme1mi!~g1d3r!2/2#, (3.13)

where Z[ei /ueeu. Confinement would require that ne
Zni

approach zero for large uru, but that is not the case. Thus
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a neutral (or partially neutral) plasma cannot be con-
fined by static electric and magnetic fields and also be in
a state of thermal equilibrium. That plasmas with a
single sign of charge can be so confined is an important
property that distinguishes these plasmas from other
plasmas.

Finally, it is instructive to look at the thermal equilib-
rium distribution from the perspective of force balance.
Operating on both sides of Eq. (3.9) with ]/]r yields

2nm
vu

2

r
52ne

]f

]r
1ne

vu

c
B2

]p

]r
, (3.14)

and operating with ]/]z yields

052ne
]f

]z
2

]p

]z
, (3.15)

where vu5vr is the azimuthal fluid velocity, f5fT
1fp is the total electric potential, p5nkT is the pres-
sure, and we have used v, T5const. Equations (3.14)
and (3.15) are the fluid dynamic statements of radial and
axial force balance for an azimuthally symmetric equi-
librium. Of course, we expect that force balance is satis-
fied by the thermal equilibrium distribution. The more
interesting observation is that force balance plus the
conditions v, T5const imply the thermal equilibrium
density distribution, that is, Eqs. (3.14) and (3.15) can be
integrated (for v, T5const) to obtain density distribu-
tion (3.9).

This latter perspective can help us understand the ap-
proach to thermal equilibrium. Suppose that initially the
plasma is in a stable, azimuthally symmetric equilibrium.
If the cyclotron radius is small compared to the plasma
radius, as is typically the case, the approach to thermal
equilibrium takes place in two stages with well-
separated time scales. First, collisions produce a local
thermal equilibrium along each field line. The velocity
distribution is then Maxwellian and Eq. (3.15) is satisfied
along each field line. However, the temperature at this
stage typically is not independent of r. Likewise, the lo-
cal rotation frequency, v5vu /r , as determined by Eq.
(3.14), typically is not independent of r. On a longer
time scale, viscous forces acting on the shear in the ro-
tational flow drive the system toward a state of rigid
rotation (i.e., v5constant). Likewise, the radial trans-
port of heat makes the temperature constant. These two
conditions plus force balance then imply that the system
is in a state of global thermal equilibrium. To finish the
story, we note that on an even longer time scale, weak
effects that are not included in our idealized model (Sec.
II.B) produce a slow change in E and L, and, in re-
sponse, the temperature T and the rotation frequency v
evolve slowly in time.

B. Experimental observation of thermal-equilibrium states

Thermal equilibrium states (or states close to thermal
equilibrium) have been observed in experiments with
pure electron plasmas and in experiments with pure ion
plasmas. Here, we review the geometry and diagnostic
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
techniques for these experiments and present evidence
that the plasmas evolved to thermal equilibrium. Fur-
ther results from the experiments will be discussed as we
proceed with the theory.

1. Electron plasmas

Experiments with electron plasmas were carried out
with an apparatus of the form shown schematically in
Fig. 4 (Driscoll, Malmberg, and Fine, 1988). The trap-
ping and confinement region (cylinders A, B, and C) is
the same as was shown in Fig. 1, but also shown is a hot
filament (the electron source) to the left of cylinder A
and a collimator hole, velocity analyzer, and collector
assembly to the right of cylinder C. The apparatus was
operated in an inject, hold, and dump-and-measure
cycle. For injection, cylinder A was briefly grounded so
that a column of electrons extended from the hot fila-
ment to cylinder C. When cylinder A was returned to
negative potential, the flow of electrons from the fila-
ment was blocked and a plasma was trapped in the re-
gion of cylinder B. After a containment time t, cylinder
C was pulsed to ground potential, and the electrons
streamed out along field lines to the collimator, velocity
analyzer, and collector. By repeating this cycle for vari-
ous radial positions of the collimator hole and for vari-
ous containment times, Driscoll et al. were able to deter-
mine the plasma density and temperature as a function
of r and t. The good shot-to-shot reproducibility ob-
served at fixed values of r and t implied that the plasmas
had good azimuthal symmetry.

Typical parameters for the collection of trapped elec-
trons were a density of n.107 cm23, a temperature of
kT.1 eV, and a diameter and length of about 5 cm.
The Debye length lD5AkT/4pne2.0.2 cm was small
compared to the diameter and length, so the collection
of electrons was indeed a plasma. The magnetic-field
strength was varied from about 50 G to 500 G, so the
characteristic cyclotron radius varied from rc

5AkT/m/Vc.531022 cm to rc5531023 cm, which is
small compared to the plasma radius.

As was discussed above, the approach to thermal
equilibrium for a plasma with a small cyclotron radius
takes place in two stages with well-separated time scales.
On the collisional time scale (about 1023 sec for these
plasmas), local thermal equilibrium was established
along each field line. On a relatively long time scale (a
few seconds for these plasmas), the radial transport pro-
cess brought the plasma to a state of global thermal

FIG. 4. Schematic diagram of Malmberg-Penning trap used to
observe thermal equilibrium states of a pure electron plasma.
From Driscoll, Malmberg, and Fine (1988).
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equilibrium. It is this latter process that was of interest
in the experiments, so the ejection time t was always
chosen to be much larger than the time required to es-
tablish local thermal equilibrium.

Thus the assumption of local thermal equilibrium was
used in combination with the experimental measure-
ments to determine the plasma state. In particular, the
density in each cylindrical shell was assumed to vary in z
according to the Boltzmann factor

n~r ,z ,t !5N~r ,t !
exp@2ef~r ,z ,t !/kT~r ,t !#

E
2`

1`

dz exp@2ef~r ,z ,t !/kT~r ,t !#
,

where the normalization N(r ,t) and the local tempera-
ture T(r ,t) were measured directly. The density
n(r ,z ,t) and the self-consistent potential f(r ,z ,t) were
determined by solving Poisson’s equation subject to the
known boundary conditions for f specified on the con-
ducting wall. Of course, the Boltzmann factor is a solu-
tion to Eq. (3.15). The normalization N(r ,t) was deter-
mined by letting the plasma stream out along the field
lines and measuring the charge that passed through the
collimator hole. In measuring the local temperature
T(r ,t), special care was taken, since a large amount of
electrostatic energy was converted to parallel kinetic en-
ergy when the plasma disassembled. However, the per-
pendicular kinetic energy did not change, since the cy-
clotron period was short compared to the disassembly
time, that is, m5mv'

2 /2B was a good adiabatic invariant.
To measure the plasma temperature, the dependence of
the electron distribution on perpendicular kinetic energy
was determined.

The results were reported for a cut through the
plasma at its mid-plane (z50). Figure 5 shows graphs of
the density n(r ,0,t) and rotation frequency vR(r ,0,t)
5vu(r ,0,t)/r as a function of r for three values of t. The
rotation frequency follows from Eq. (3.14) given the val-

FIG. 5. Experimental density profiles n(r ,0,t) and rotation
profiles vR(r ,0,t) at three times (t50,3 sec,10 sec) showing
the evolution to thermal equilibrium. Here vD

52(mnVcr)21]p/]r is the contribution to rotation from the
diamagnetic drift. From Driscoll, Malmberg, and Fine (1988).
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ues of ](nkT)/]r and ]f/]r . One should note that the
graphs labeled t50 actually refer to a containment time
that is long compared to the time to come to local ther-
mal equilibrium, that is, long compared to 1023 sec. The
plasma was not in a state of global thermal equilibrium
at this time; the radial variation in the rotation fre-
quency shows that the flow had shear. By the time t
510 sec, the shear in the rotational flow had nearly van-
ished and the density profile had evolved to a form that
we shall see is expected for thermal equilibrium. For this
particular evolution, the temperature was initially radi-
ally uniform at 0.8 eV, and it remained uniform through-
out the evolution, rising in value to 1.1 eV by t
510 sec. For other cases, the temperature typically was
nonuniform initially but became uniform during the evo-
lution. In this experiment, local thermal equilibrium was
achieved in 1023 sec, global thermal equilibrium in
about 10 sec, and Pu changed substantially (allowing
plasma expansion) in about 103 sec. The three time
scales were well separated.

2. Ion plasmas

Next we discuss a series of experiments that were car-
ried out with 9Be1 ion plasmas (Brewer et al., 1988).
One of the main advantages of using a plasma that con-
sists of partially ionized atoms is that the atoms have a
very large cross section for resonant interaction with
light. The cross section for resonant scattering can be 15
orders of magnitude larger than the Thomson scattering
cross section for electrons, and even a single atom can
be detected. In the experiments, resonant scattering of
laser light was used to cool the plasma, to transfer angu-
lar momentum to the plasma, and to diagnose the
plasma.

The basic idea of Doppler laser cooling is easy to un-
derstand (Wineland et al., 1985). A beam of laser light
that is tuned to the low-frequency side of some atomic
transition is directed through the plasma. Ions with a
velocity component that is directed oppositely to the di-
rection of beam propagation (i.e., k•v,0) are Doppler
shifted into resonance and absorb photons at a high rate.
Here, k refers to the wave number of the laser light and
v to the ion velocity. Conversely, ions with a velocity
component in the same direction as the beam propaga-
tion (i.e., k•v.0) are Doppler shifted out of resonance
and absorb photons at a low rate. When an ion absorbs
a photon, the ion suffers the recoil Dv5\k/m , where
2p\ is Planck’s constant and m is the mass of the ion.
Subsequently, the ion reemits the photon symmetrically,
so that on average the reemission process produces no
change in the ion momentum. For a narrow laser beam
that passes through (or near) the rotational axis of the
plasma, the velocity component y•k/uku is associated
with the random thermal motion of the ions rather than
the coherent rotational motion of the plasma. Thus the
net effect of the absorption and reemission process is to
cool the plasma. A cooling beam also can be used to
exert a torque on the plasma. Suppose that the beam
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passes through the plasma in a direction that makes a
90° angle with respect to B. If the beam passes directly
through the rotational axis, the beam simply cools the
plasma, but if the beam is offset slightly to one side of
the rotational axis, it cools the plasma and applies a
torque on the plasma. When the applied torque and
cooling balance the ambient backward torque and heat-
ing, a steady state is reached.

In an initial set of experiments, the ions were confined
in traps with hyperbolic electrodes of the form shown in
Fig. 2. Beams for cooling (and applying a torque) were
provided by a frequency-doubled dye laser that pro-
duced up to 50 mW of power; it was tuned to the low-
frequency side of the transition 2s2S1/2(mI53/2,mJ
51/2) to 2p2P3/2(3/2,3/2) of the 9Be1 ion. A lower-
power laser (!mW), called the probe laser, was used to
remove 9Be1 ions from the 2s2S1/2(3/2,1/2) state by
resonantly exciting them to the 2p2P3/2(3/2,21/2) state,
from which they decayed preferentially to a third state.
This produced a reduction in the observed scattered
light from the cooling beams. The probe beam did not
have to overlap with a cooling beam, because the spatial
mixing time associated with the rotational and axial mo-
tion of the ions was short compared to the lifetime of the
depopulation. The size and shape of the plasma was de-
termined by measuring the decrease in scattered light
for different positions of the probe beam. The plasma
rotation frequency was determined through the Doppler
shift by measuring the probe-laser frequency that pro-
duced the maximum decrease in scattered light, and the
density was determined from the rotation frequency by
using Eq. (3.20). The temperature was obtained by de-
termining the Doppler contribution to the frequency
broadening of the resonance.

To load the plasma, a vapor of 9Be atoms was created
in the confinement region and then ionized with an elec-
tron beam. The initially diffuse and warm cloud of ions
was then cooled and increased in density by use of the
cooling (and torque) laser. The number of ions trapped
ranged from a few to about 104. As an example, a par-
ticular ‘‘large’’ cloud contained N.33104 ions, at a
density of n.2.33107 cm23, and a perpendicular tem-
perature of T'.0.1 K. Assuming that collisional inter-
actions between the ions maintained an approximate
equipartition between the parallel and perpendicular de-
grees of freedom (i.e., T i.T'), the Debye length was
approximately lD.4.531024 cm. This is small com-
pared to the axial and radial dimensions of the cloud
(2Zp51.631023 cm and 2Rp51.231023 cm), so the
cloud was a plasma.

One signature of global thermal equilibrium is a
shear-free rotational flow. The Doppler-shifted center of
the depopulation resonance for the probe beam is given
by n85n01^k•v&/2p , where n0 is the frequency of the
resonance in the rest frame of the ion and ^ & denotes an
average over the ions along the path of the beam. In the
experiments, a narrow probe beam was adjusted to pass
through the plasma mid-plane (i.e., z50) at a distance d
from the axis of rotation. For a shear-free flow (i.e., v
5 ûvr), k•v5kvr sin u5kvd at every point along the
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
probe beam so n82n05kvd/2p . The upper graph in
Fig. 6 is a plot of the measured value of n082n0 versus d,
and one can see that the variation with d is nearly linear.
The lower graph is a plot of the residual difference be-
tween the resonance frequency data and the best fit to
linear variation. The solid curve is a fit to the sheared
flow v(r)5v(11jr/rd), where j.20.160.1. One
might have worried that the ambient torque and the ap-
plied laser torque would produce substantial shears in
the flow and drive the plasma far away from thermal
equilibrium, but this was not the case. Apparently, these
torques were small enough that ion-ion interactions (vis-
cous effects) were able to keep the plasma near thermal
equilibrium. We shall return later to a discussion of the
expected and observed plasma shape.

C. Self-consistent potential, Debye shielding, and
imaginary neutralizing charge

As mentioned in the introduction, we reserve the
name plasma for a collection of charges that is large in
all of its dimensions compared to the Debye length. A
consequence of this definition is that the space-charge
potential fp is not negligible in the thermal equilibrium
density distribution [i.e., in Eq. (3.9)]. As a simple ex-
ample, consider a uniform-density spherical plasma of
radius Rp in free space. One easily finds that

FIG. 6. Doppler shift of resonance frequency vs the probe
beam displacement from the axis of rotation for a plasma of
30 000 9Be1 ions. The residuals are plotted below along with a
fit to the sheared flow v(r)5v(11jr/rp), where the least-
squares fit is j520.160.1. From Brewer et al. (1988).
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uefp~Rp!2efp~0 !u
kT

5
1
6 S Rp

lD
D 2

@1. (3.16)

Thus it is necessary to solve for fp(r ,z) in order to
obtain an explicit expression for n(r ,z). We must solve
Eq. (3.4) or, equivalently, we must solve Poisson’s equa-
tion,

¹2fp524pen~r ,z !, (3.17)

subject to the boundary condition that fp vanish every-
where on the conducting wall. This equation is nonlinear
in fp , since fp enters the density distribution (3.9) ex-
ponentially. We refer to a solution pair fp(r ,z) and
n(r ,z) as a self-consistent potential and density. Fortu-
nately, the self-consistent solutions obtained for differ-
ent fR(r ,z), T, and N all have the same universal char-
acter (Prasad and O’Neil, 1979). The plasma density is
nearly constant out to some surface of revolution and
there drops to zero on the scale of a Debye length.

We can understand these solutions in simple physical
terms. In the rest frame of the plasma, which here is the
rotating frame, the plasma charges arrange their posi-
tions so that any externally imposed electrostatic field is
Debye shielded out (Davidson, 1974; 1990). In the
present case, fR(r ,z) is the effective external potential
in the rotating frame, so we expect that

fp~r ,z !1fR~r ,z !.const (3.18)

inside the plasma. From this equation and Eqs. (2.9) and
(3.17), we find that

4pe2n52¹2efp5¹2efR52mv~Vc2v!. (3.19)

Here, we have used ¹2fT50. Thus the density is nearly
constant inside the plasma. Furthermore, from this argu-
ment it is not surprising that the density drops to zero at
the plasma surface on the scale of the Debye length.
This variation will be considered in detail in Sec. III.D.
Referring again to the experimental results in Fig. 5, one
can see that the radial density profile for t510 sec is of
the expected thermal equilibrium form.

Another way to understand these solutions is to note
that the second term in efR(r ,z) [see Eq. (2.9)] is qua-
dratic in r. As described in Sec. II.C, this term is the
contribution to the potential energy due to rotation.
Suppose that the radial confinement were not provided
by rotation through a magnetic field, but rather were
provided by an imaginary cylinder of uniform negative
charge (to confine a plasma of positive charges). Such a
cylinder would produce a radial electric field Er
522pen2r and an electric potential f25pen2r2,
where n25const is the density of the imaginary negative
charge. If this density were chosen to have the value
en25mv(Vc2v)/2pe , the cylinder of negative charge
would provide a potential-energy term, ef25mv(Vc
2v)r2/2, that is identical to the second term in efR .
Thus the thermal equilibrium density distributions for
the two systems would be identical. In the Introduction,
we promised to demonstrate the equivalence of the ther-
mal equilibrium states for a magnetically confined
single-species plasma and a one-component plasma
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
(OCP), and we have here the mean-field version of that
demonstration. The equivalence is useful because we
know what would happen if we put positive charges into
a cylinder of uniform negative charge. Starting at the
center of the cylinder, the positive charges would match
their density to that of the negative charge, neutralizing
the negative charge out to some surface where the sup-
ply of positive charges was exhausted. Setting n.n2

and using 4pe2n252mv(Vc2v) immediately repro-
duces Eq. (3.19).

This equation usually is written as (Davidson, 1990)

vp
252v~Vc2v!, (3.20)

where vp5(4pne2/m)1/2 is the plasma frequency. For
given values of the density and magnetic-field strength
(or, equivalently, given values of vp

2 and Vc), the equa-
tion determines two possible rotation frequencies,

v65
Vc6AVc

222vp
2

2
. (3.21)

The frequencies are real only if 2vp
2 /Vc

2<1 or B2/8p
>mn2c2. This inequality sets the maximum density that
can be confined for a given magnetic-field strength (Bril-
louin, 1945). In Fig. 7, v6 /Vc are plotted as a function
of 2vp

2 /Vc
2; the solution v1 lies on the upper half of the

parabola and the solution v2 on the lower half.
It is important to note that quadratic relation (3.20) is

a necessary condition for a solution but not a sufficient
condition. Also, the radial confining field 2](efR)/]r
52]efT /]r2mv(Vc2v)r must be negative. Since
2]efT /]r is positive, v(Vc2v) must be larger than
zero. In Sec. III.F, we shall obtain explicit solutions for
the case of a quadratic trap potential [see Eq. (3.37)].
For this case, 2e]fT /]r is given by mvz

2r/2, so solu-
tions are possible only for vz

2<2v(Vc2v). For typical
operating conditions vz!Vc , so a thin strip at small
vp

252v(Vc2v) is removed from the allowed states in

FIG. 7. Plasma rotation frequency as a function of plasma den-
sity and magnetic-field strength.
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parabola 7. We shall see in Sec. III.F that at the limit
[i.e., vz

252v(Vc2v)], the plasma shape becomes a pan-
cake with zero axial extent.

Note that the existence of the two solutions (i.e., v6)
does not contradict our expectations that the total num-
ber of particles, total energy, and total canonical angular
momentum uniquely determine a thermal equilibrium
state. Consider two solutions with the same value for
vp

252v(Vc2v), for T, and for the total number of par-
ticles N, but with different rotation frequencies v1 and
v2 as given by Eq. (3.21). The two solutions have the
same density distribution but different velocity distribu-
tions. Consequently, the total energy and the total ca-
nonical angular momentum are different for the two so-
lutions. In fact, the total canonical angular momentum

L5m~Vc/22v!E d3rn~r ,z !r2 (3.22)

differs for the two solutions by a minus sign, since
(Vc/22v1)52(Vc/22v2). In general, L is positive on
the lower half of the parabola where v,Vc/2, is nega-
tive on the upper half where v.Vc/2, and vanishes at
the Brillouin limit where v5Vc/2. We shall see in Sec.
III.F that the rotational state of a pure ion plasma has
been varied continuously over all of the allowed states
along the parabola by using a laser to continuously vary
the total energy and the canonical angular momentum
of the plasma.

Further insight into the relation between the two so-
lutions can be obtained by considering the particle dy-
namics in a frame that rotates with the plasma. In the
laboratory frame, the single-particle Hamiltonian is
given by

h5
pz

2

2m
1

pr
2

2m
1

~pu2mVcr2/2!2

2mr2 1ef~r ,z !. (3.23)

A canonical transformation to a frame that rotates with
frequency 2v yields the Hamiltonian hR5h1vpu ,
which can be rewritten as

hR5
pr

2

2m
1

pz
2

2m
1

@pu2m~Vc22v!r2/2#2

2mr2

1@ef~r ,z !1mv~Vc2v!r2/2# . (3.24)

The canonical angular momentum pu is invariant under
this canonical transformation. The quantity in square
brackets is simply (efR1efp) and so is nearly constant
within the plasma. The remaining terms imply cyclotron
motion in a uniform magnetic field, but with a cyclotron
frequency that is modified from its value in the labora-
tory frame. The cyclotron frequency in the rotating
frame is called the vortex frequency (Davidson, 1990)
and is given by Vv5Vc22v . Physically, the modifica-
tion is due to the Coriolis force. For two solutions v1

and v2 as given by Eq. (3.21), the vortex frequencies
are equal and opposite—that is, the effective magnetic
fields in the two rotating frames are equal and opposite.
Other than the reversal in the direction of the field, the
particle dynamics (as viewed in the rotating frames) is
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
the same for the two solutions. We have already noted
that the density distributions are the same for the two
solutions.

In the rotating frame, the mean velocity vanishes, but
individual particles have nonzero velocity because of fi-
nite temperature. The cyclotron (or vortex) motion of
the particles is characterized by the radius rv
5AT/m/Vv . This scale length is small compared to the
dimensions of the plasma for nearly every state along
the parabola. The reason is that lD is small compared to
the plasma dimensions and AT/m/Vc5lDvp /Vc,lD .
However, very near the Brillouin limit (where v5Vc/2)
the vortex frequency vanishes and rv becomes infinite.
The effective magnetic-field strength in the plasma is
zero, and the particles follow straight-line orbits inside
the plasma and reflect in the Debye sheath at the plasma
edge. Of course, in the sheath the bracket in Hamil-
tonian (3.24) is not constant.

D. Infinitely long column

In this subsection, we obtain the self-consistent poten-
tial and density for the simple case of an infinitely long
column (O’Neil and Driscoll, 1979; Davidson, 1990). In
the next subsection we do the same for a finite-length
column of specific dimensions (Prasad and O’Neil,
1979). These solutions corroborate the general character
of the self-consistent solutions postulated in the previous
subsection, namely, that the plasma density is nearly
constant out to some surface of revolution and there
drops to zero on the scale of the Debye length.

It is useful to introduce the quantity

c~r ,z !52
e

kT
@fR~r ,z !1fp~r ,z !#

1
e

kT
@fR~0,0!1fp~0,0!# . (3.25)

Density distribution (3.9) then takes the form

n~r ,z !5n0exp@c~r ,z !# , (3.26)

where n0 is the density at the origin. Poisson’s equation
can be written as

¹2c5
1

lD
2 Fexp~c!2

2mv~Vc2v!

4pn0e2 G , (3.27)

where lD
2 5kT/(4pn0e2) and use has been made of

¹2efR52mv(Vc2v). By introducing the scaled
lengths z5z/lD and r5r/lD and defining the param-
eter

g5
2mv~Vc2v!

4pn0e2 21, (3.28)

we obtain the convenient form

S ]2

]z2 1
1
r

]

]r
r

]

]r Dc5@exp~c!212g# . (3.29)

For an infinitely long column, or for the central region
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of a column that is long compared to its radius, we may
neglect the z dependence, so Eq. (3.29) reduces to

1
r

]

]r
r

]c

]r
5exp~c!212g . (3.30)

The desired solutions c5c(r) are such that c(0)
5c8(0)50. Note that c is unchanged when fp(r) is
shifted by a constant. Consequently, we can always shift
fp(r) so that it vanishes on a cylindrical conductor at
some large radius.

Figure 8 shows c(r) and n(r)/n05exp@c(r)# for vari-
ous values of g; these solutions were obtained by nu-
merically integrating Eq. (3.30) out from the origin start-
ing with the conditions c(0)5c8(0)50. Solutions that
imply confinement [i.e., n(r)→0 as r→`] are obtained
only for g.0, and solutions corresponding to a plasma
(with small Debye length compared to the width of the

FIG. 8. Self-consistent solutions for c(r) and n(r)/n(0)
[exp@c(r)#, for several values of the parameter g [see Eq.
(3.28)]. From O’Neil and Driscoll (1979).
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column) are obtained only for g!1. As we expect, these
solutions are such that the density is nearly constant out
to the edge of the column and then falls off on the scale
of a Debye length. Also note that g!1 implies that Eq.
(3.20) is well satisfied.

Some analytic progress can be made in describing
these small g solutions. Interior to the plasma ucu!1 so
we may use the Taylor expansion exp(c).11c and ap-
proximate Eq. (3.30) by the linear equation

1
r

]

]r
r

]c

]r
2c[2g . (3.31)

The solution that satisfies the boundary conditions
c(r)5c8(r)50 is given by

c~r!5g@12I0~r!# , (3.32)

where I0(r) is a Bessel function of imaginary argument.
To be specific, let us define the plasma radius Rp to be
the radius where the density drops to 1/e times the cen-
tral density [i.e., c(Rp /lD)521]. Substituting the large
r asymptotic expansion I0(r).exp(r)/A2pr then yields
the relation

~2pRp /lD!1/2 exp@2Rp /lD#5g . (3.33)

For large Rp /lD , the falloff in density is a universal
function independent of g except for a shift along the r
axis. It is convenient to introduce x5r2rp , where rp
5Rp /lD . By using ux/rpu!1 and g!ucu, we reduce Eq.
(3.30) to the form

d2c

dx2 5ec21. (3.34)

Multiplying by dc/dx and integrating yields

1
2 S dc

dx D 2

5ec2c1A . (3.35)

Using the boundary condition c, dc/dx→0 as x→2`
allows us to evaluate the constant of integration, A
521. A second integral is given by

E
21

c dc8

Aexp~c8!2c821
52&x , (3.36)

where we have used c(x50)521. The final quadrature
can be performed numerically, and Fig. 9 shows this so-
lution plotted as a function of r.

E. Finite-length column

In this subsection, we discuss the self-consistent po-
tentials for a plasma column that is confined in an appa-
ratus of the form shown in Fig. 1 (Prasad and O’Neil,
1979). Suppose that the radius of the cylindrical conduc-
tors is R, that the length of the central conductor is L,
and that the two end conductors are each much longer
than R. Suppose further that the central conductor is
grounded and that the two end conductors are held at
some positive potential V . At a distance of a few times
R into the end conductors, the potential has, to good
approximation, the constant value V over the whole
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cross section, so one can imagine that the end cylinders
are enclosed with conducting end caps.

The scaling that leads to Eq. (3.29) reduces to four the
number of parameters on which the solution depends: g,
eV/kT , R/lD , and L/lD . For small g, the numerical
solutions of Eq. (3.29) exhibit the general features de-
scribed in Sec. III.B; the density is nearly constant out to
a surface of revolution and there falls off on the scale of
the Debye length.

The curve c(r ,z)521 lies in the surface layer where
the density falls off. At any point along this curve, we
can introduce a rectangular coordinate system (u ,v),
where the u axis is tangent to the curve and the v axis is
normal to the curve. For small g, the radius of curvature
of the c521 curve is typically much larger than unity,
that is, much larger than the Debye length in unscaled
variables. Consequently, Eq. (3.29) can be approximated
by ]2c/]v25exp(c)21, and the falloff in density „i.e.,
n(v)5n(0,0)exp@c(v)#… is very nearly of the form
shown in Fig. 9. As an example, consider the case g
50.0003, eV/kT5100, R/lD516, and L/lD564. Figure
10 shows the c(r ,z)521 curve with local coordinate
systems attached at the points a, b, and c. Figure 11

FIG. 9. Self-consistent solutions for c(r) and n(r)/n(0)
[exp@c(r)# in the limit g→0. From Prasad and O’Neil (1979).
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
shows a comparison between the numerical result for c
plotted as a function of the local variable v [i.e., c(v)]
and the solution for c shown in Fig. 9; the solid curve is
from Fig. 9, and the circles, triangles, and crosses are
numerical values of c(v) along the v axis in the local
coordinate systems at a, b, and c.

This picture implicitly assumes that the potential ap-
plied to end conductors is large enough to provide good
confinement. When the applied potential is only slightly
larger than the potential at the center of the plasma [i.e.,
eV2ef(0,0).(few)kT], a long finger of plasma can ex-
tend into the region of the end cylinder (Peurrung and
Fajans, 1990). The transverse dimensions of this finger
may not be large compared to the Debye length, even
though the overall solution corresponds to small g.

F. Small spheroidal plasmas

For many experiments, the plasma is small compared
to the dimensions of the trap and resides in a nearly
quadratic potential well. In general, the thermal equilib-
rium shape of such a plasma is a uniform-density spher-
oid, that is, an ellipse of revolution (Bollinger and Wine-
land, 1984; Turner, 1987; Brewer et al., 1988; Bollinger,
Wineland, and Dubin, 1994). We assume here that the
Debye length is negligibly small compared to the dimen-
sions of the plasma.

FIG. 10. The curve c(r ,z)521 for the case g50.0003,
eDV/T5100, rc516, and zc564. a, b, and c are three points
where local orthogonal coordinate systems (u ,v) are intro-
duced. From Prasad and O’Neil (1979).

FIG. 11. Comparison of the falloff of c(v) at the points a
(circles), b (triangles), and c (crosses) of Fig. 10. The solid
curve is c(r) from Fig. 9. From Prasad and O’Neil (1979).
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Near the center of a trap, one expects (by Taylor ex-
pansion) that the trap potential is approximately qua-
dratic:

efT.
mvz

2

2
~z22r2/2!1C . (3.37)

Here, vz
2 and C are constants, and it is assumed that

equal potentials are applied to the two end conductors.
The value of vz

2 is proportional to the value of the ap-
plied potential; also, vz can be interpreted as the oscil-
lation frequency of a single particle in small-amplitude
motion along the magnetic field (axial motion). The co-
efficient of r2 relative to that of z2 is determined by the
requirement ¹2fT50.

For the case in which only a small number of particles
are confined, the simple harmonic axial motion serves as
a useful diagnostic and manipulative tool through reso-
nant interaction with an external circuit (Brown and
Gabrielse, 1986), so some traps are designed to make
the quadratic approximation much better than would in
general be expected. For example, Fig. 2 shows a trap
for which the conducting electrodes are hyperbolas of
revolution. Since the equipotential surfaces for the qua-
dratic potential [i.e., z22r2/25const] define hyperbolas
of revolution, a trap for which the hyperbolas extended
to infinity would produce an exactly quadratic potential.
In practice, the hyperbolas are truncated, as shown in
Fig. 2, so the quadratic form is only an approximation,
though it is very good over a substantial region near the
center of the trap. If the equation defining the end elec-
trodes is z22r2/25z0

2, the equation defining the center
ring electrode is z22r2/252r0

2/2, and the potential dif-
ference between end and center electrodes is V0 , the
axial oscillation frequency is given by

eV05
mvz

2

2
~z0

21r0
2/2!. (3.38)

Even for a trap with cylindrical electrodes, it is possible
to achieve a potential that is nearly quadratic over a
substantial region (Brown and Gabrielse, 1986). This is
accomplished by choosing the lengths of the various cyl-
inders so that the quartic term in the Taylor series van-
ishes; the cubic and quintic terms vanish by symmetry.

Adding mv(Vc2v)r2/2 to fT yields the effective
trap potential in the rotating frame

efR~r ,z !5
mvz

2

2
~z21br2!1C , (3.39)

which is also quadratic. The parameter b is defined as

b5
v~Vc2v!

vz
2 2

1
2

5
1
4

~Vc
22Vv

2!

vz
2 2

1
2

. (3.40)

This parameter determines the symmetry of the effec-
tive trap potential and hence the shape of the plasma.
For example, when b51 the plasma is spherically sym-
metric, whereas for b@1 the plasma is squeezed into a
line along the z axis, and for b→0 the plasma is a flat
2D pancake in the x-y plane.
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
As mentioned earlier, not all frequencies in Fig. 7 rep-
resent allowed states; it is necessary that the radial con-
fining field, 2](efR)/]r , be negative. In the notation
used here, this is the requirement that b.0, which can
be rewritten as vz

2,2v(Vc2v). Thus radial confine-
ment in a quadratic trap potential is possible only when
the rotation frequency is in the range vm,v,Vc

2vm , where vm[Vc/22@(Vc/2)22vz
2/2#1/2 is the mag-

netron frequency (drift frequency) for a single charge
alone in the trap (Brown and Gabrielse, 1986). Note that
the allowed frequency range shrinks to zero (i.e., vm
→Vc/2) when vz approaches Vc /& . In this case, the
radial electric field of the trap [i.e., 2]fT /]r
5(m/e)vz

2r/2] is so large that radial force balance can-
not be achieved; even a single charge cannot be con-
fined.

The condition vz
2,2v(Vc2v) together with Eq.

(3.20) implies a lower limit on the plasma density, that
is, vz,vp . At first this may seem puzzling, but it must
be remembered that Eq. (3.20) assumes that the Debye
length is small compared to the dimensions of the
plasma. We shall see shortly that the plasma assumes the
shape of an infinitesimally thin disc as vp

252v(Vc2v)
approaches vz

2. Of course, before the limit is reached,
the Debye length ceases to be small compared to the
plasma thickness, and at that point there is no longer a
requirement that vp.vz (Paulson and Spencer, 1998).

The quadratic form of fR(r ,z) allows one to deter-
mine analytically the shape of the plasma in the limit
that the Debye length is small compared to the plasma
size (Bollinger and Wineland, 1984; Turner, 1987;
Brewer et al., 1988; Bollinger, Wineland, and Dubin,
1994). As discussed earlier, the plasma charges adjust
their positions in this limit so that efR1efp is constant
inside the plasma. Thus the plasma space-charge poten-
tial must be quadratic within the plasma. It is well
known that a uniformly charged spheroid (ellipse of
revolution) in free space produces an interior potential
that is quadratic in r and z and an exterior potential that
approaches zero at infinity (Landau and Lifshitz, 1960).
Here, the plasma dimensions are small compared to the
distance to the walls, so the boundary condition that
fp50 on the conducting walls reduces approximately to
the condition that fp approaches zero at infinity. Thus
the bounding surface of the plasma is a spheroid. By
writing down the potential due to a uniformly charged
spheroid and comparing the coefficients of r2 and of z2

to the corresponding coefficients in 2fR , we obtain the
relations

g~a!5
1

2b11
, (3.41)

vp
2

vz
2 52b11, (3.42)

where a5Zp /Rp is the aspect ratio (shape) of the
spheroid, 2Rp is the spheroid diameter, and 2Zp is the
length. Equation (3.42) is equivalent to Eq. (3.20), and
the function g(a) is given by
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g~a!5Q1
0~a/Aa221 !/~a221 !, (3.43)

where Q1
0 is an associated Legendre function of the sec-

ond kind. The aspect ratio a is a monotonically increas-
ing function of b, as one would expect on the basis of the
physical arguments following Eq. (3.40).

This is a useful place to compare again to experiment.
The 9Be1 plasmas that were discussed in Sec. III.B.2
(Brewer et al., 1988) were small compared to the trap
dimensions, and the plasmas resided in a nearly qua-
dratic trap potential. The plasmas were not weakly cor-
related (i.e., G;1210), but we still expect the gross
plasma shape to be described by the mean-field analysis
given here. Even for strongly correlated plasmas, the
mean-field energy typically is much larger than the cor-
relation energy (i.e., efp@e2/a), so the gross plasma
shape and density are substantially determined by a bal-
ance of mean-field forces, that is, by requirement (3.18).
The correlations simply establish order within that
shape.

The shape of the plasma was determined experimen-
tally by measuring the decrease in scattered light for
different positions of the probe beam. Figure 12 shows a
comparison of measured boundary points and an ellipse
that was fitted to the end points along the y and z axes.
The plasma consisted of 5000 9Be1 ions at a density of
4.73107 cm23. Figure 13 shows a test of the relationship
g(Zp /Rp)5vz

2/2v(Vc2v), which follows from Eqs.
(3.40) and (3.41). The solid curve is a plot of g(Zp /Rp),
and the squares, triangles, and circles are measurements
taken with different plasma clouds (N;2000 to 40 000
9Be1 ions) and different trap parameters. The agree-
ment is quite good.

In more recent but as yet unpublished results, Huang,
Tan, Bollinger, and Wineland simply imaged the fluores-
cence from the laser-excited atoms. Figure 14 shows a
side-view picture of a small plasma (N.83104 Be1

ions) in a quadratic trap potential together with a fit to

FIG. 12. Comparison of shape of a 5000 9Be1 ion plasma to an
ellipse. The data points indicated by solid circles were mea-
sured and those indicated by open circles were inferred by
assuming symmetry about the axis of rotation (z axis). The
ellipse was determined from the end points along the y and z
axis. From Brewer et al. (1988).
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an ellipse. The aspect ratio as determined from the fitted
ellipse is a51.763, which agrees to better than 1% with
the aspect ratio a51.75 predicted from Eqs. (3.40),
(3.41), and (3.42) for the independently determined fre-
quencies vz/2p5795 kHz, Vc/2p57.608 MHz, and
v/2p5213.7 kHz. The ions in this cloud had the micro-
scopic order of a crystal (see Sec. IV), and the rotation
frequency was determined by measuring the rotation
frequency of a Bragg scattering pattern.

Because a spheroid is a simple analytically tractable
shape, the integral expressions for total particle number
and total canonical angular momentum and energy in
the laboratory frame can be evaluated easily:

N5
4
3

pnZpRp
2 , (3.44)

FIG. 13. Experimental test of the expected relationship
g(Zp /Rp)5vz

2/2v(Vc2v) [see Eqs. (3.40) and (3.41)]. The
solid curve is a plot of g(Zp /Rp) and the squares, triangles,
and circles are measurements taken with different plasmas
(N;2000–40 000 9Be1 ions). From Brewer et al. (1988).

FIG. 14. Side view of Be1 plasma, together with fitted ellipse
(the dashed line).
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L5
1
5

NmVvRp
2 , (3.45)

E5
1
10

Nm@2~vp
21v2!Rp

213vz
2~Zp

22Rp
2 !#1NC ,

(3.46)

where Vv5Vc22v is the vortex frequency. In the rotat-
ing frame the energy ER is related to E and L via Eq.
(2.6):

ER5
3
10

Nmvz
2@2bRp

21Zp
2 #1NC . (3.47)

There are no temperature corrections, since this whole
discussion assumes that the Debye length (and tempera-
ture) are negligibly small.

Equations (3.44) and (3.45), together with Eqs. (3.41)
and (3.42), determine the plasma state (n, Zp , Rp , and
v) in terms of the trap parameters vz and Vc and the
constants of the motion N and L. Equation (3.46) is not
needed to determine the plasma state; for a given state
this equation determines the value of E such that the
temperature is zero. To simplify the algebra we scale
frequencies by vz : V̂v5Vv /vz , v̂5v/vz , and V̂c
5Vc /vz , and we introduce a scale length a0
[(e2/mvz

2)1/3. This scale length is equal to the Wigner-
Seitz radius a when the plasma is spherically symmetric.
Then Eqs. (3.44) and (3.45) become

R̂p
3[S Rp

a0
D 3

5
3

2b11
N

a~b!
, (3.48)

L̂[
L

mNa0
2vz

5
1
5 S Rp

a0
D 2

V̂v , (3.49)

where a(b) is given by Eq. (3.41).
Now, b is a symmetric quadratic function of V̂v [see

Eq. (3.40)], taking on its maximum value, bB5(1/4)V̂c
2

21/2, at the Brillouin limit where V̂v50. Thus Eq. (3.48)
implies that the scaled plasma radius R̂p is also symmet-
ric in V̂v , taking on its minimum value R̂B at the Bril-
louin limit (recall that the aspect ratio a is a monotoni-
cally increasing function of b). Equation (3.49) then
implies that L is an antisymmetric and monotonically
increasing function of V̂v , taking on positive values in
the lower half of the parabola of Fig. 7 and negative
values in the upper half. The inverse of this relation
therefore exists and yields the required relation between
V̂v and the parameters N, L, vz , and Vc , V̂v

5V̂v(L̂ ,V̂c), or alternatively v̂5v̂(L̂ ,V̂c). This value
for v̂ can then be employed to determine Rp /a0 ,
Zp /a0 , and n using Eqs. (3.40), (3.41), (3.42), and (3.48).

This analysis is relevant to a series of experiments in
which a small plasma of 9Be1 ions in a quadratic trap
potential was made to evolve through a sequence of
thermal equilibrium states by the application of laser
cooling and laser torque beams (Bollinger et al., 1995).
The cooling beam passed through the rotational axis of
the plasma and was tuned 10–50 MHz below the reso-
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nance frequency of a 9Be1 ion at rest. The torque beam
was displaced substantially off the rotational axis so that
it could act with a large lever arm and exert a large
torque, which tended to increase v. The frequency of
the torque beam, vT/2p , was adjusted from 0 to 1500
MHz above v0/2p to compensate for the Doppler shift
associated with the rotational motion. To measure the
plasma rotation frequency accurately, microwaves were
used to drive the electron spin-flip transition (13/2,
11/2)→(13/2,21/2) of the 9Be1 ground state. A de-
crease in fluorescence was observed when the micro-
wave frequency vs or the motional sideband frequency
vs6v fell within the resonance width of the spin-flip
transition. The sidebands enter because the rotating ions
see the microwave field as modulated at the rotation
frequency. By using this technique, the rotation fre-
quency was determined to an accuracy of a few kHz.

By use of the cooling and torque lasers to control the
total energy and canonical angular momentum of the
plasma, the plasma rotation frequency was varied con-
tinuously over the full range of allowed frequencies, v
5vm to v5Vc2vm . The torque laser changed the an-
gular momentum of the plasma and also did work on the
plasma, since the torque was applied to a rotating
plasma. As the plasma evolved, this work appeared as a
change in the electrostatic energy, kinetic energy of ro-
tation, and heat, but the cooling laser was able to re-
move the heat fast enough that the temperature (and
Debye length) remained small. Thus the conditions of
the experiment match the assumptions used in our the-
oretical discussion.

From that discussion we can predict the plasma evo-
lution as a function of L. The plasma starts off in a state
with large and positive L and, correspondingly, with
small rotation frequency, density, and aspect ratio (i.e.,
v.vm , vp.vz , and a.0). As L is decreased, the ro-
tation frequency, density, and aspect ratio all increase.
When L passes through zero, the rotation frequency is
v5Vc/2 and the density and aspect ratio reach their
maximum values [vp5Vc /& and a5g21(2vz

2/Vc
2)]. As

L becomes progressively more negative, the frequency
continues to increase, but the density and aspect ratio
decrease. For large and negative L, the frequency ap-
proaches the upper limit Vc2vm and the density and
aspect ratio again approach their minimum values (vp
5vz and a.0).

As a specific check on the theory, Fig. 15, taken from
Bollinger et al. (1995), shows a plot of Rp /RB versus
v/Vc5@12V̂v /V̂c#/2, as given by Eq. (3.48) for the case
V̂c56.62. The points are measurements of Rp /RB ver-
sus v/Vc , and one can see that the agreement with
theory is quite good.

It is interesting to note that a continuously negative
torque makes the plasma contract radially for v,Vc/2
and expand radially for v.Vc/2. Intuitively, we can
think of the radial transport as a radial drift that is pro-
duced by an azimuthal force. The sign of the azimuthal
force remains constant, but the direction of the drift re-
verses at v5Vc/2 because the direction of the effective
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magnetic field (in the rotating frame of the plasma) re-
verses at v5Vc/2. Recall that the effective cyclotron
frequency in the rotating frame of the plasma is the vor-
tex frequency Vv5Vc22v .

G. Centrifugal separation

A plasma with a single sign of charge need not be a
single-species plasma. For a many-species plasma, the
thermal equilibrium density distribution for species j can
be written as

nj~r ,z !5nj0exp@c j~r ,z !# , (3.50)

where

c j~r ,z !5
2ej

kT Ff~r ,z !2f~0,0!1
vBr2

2c
2

mj

ej

v2r2

2 G .

(3.51)
In general, the density distribution for species j differs
from that for species i if eiÞej or if mj /ejÞmi /ei . We
refer to the difference produced by eiÞej as charge dif-
ference separation and that produced by mj /ejÞmi /ei
as centrifugal separation.

To explore the distinction between these two effects,
it is useful to consider the simple case in which species
j51 is dominant and forms a plasma that is many Debye
lengths across, and species j52 is a trace admixture that
makes a negligible contribution to the electric potential
f(r ,z). From Eq. (3.51) we obtain

c25
e2

e1
c11

e2

kT S m2

e2
2

m1

e1
D v2r2

2
. (3.52)

Under the conditions postulated, uc1(r ,z)u is exponen-
tially small throughout the plasma interior and rises to
order unity in a thin (Debye-scale) shell at the surface.
Charge difference separation, which is due to the first
term in Eq. (3.52), can be significant only in this thin
shell and plays no role in the limit of zero Debye length.
In contrast, centrifugal separation, which is due to the

FIG. 15. Radius of a 2000 9Be1 ion plasma as a function of
rotation frequency. The radius is scaled to the radius at the
Brillouin limit and the rotation frequency to the cyclotron fre-
quency. The solid curve is the theoretical prediction with no
adjustable parameters. From Bollinger et al. (1995).
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second term in Eq. (3.52), can be significant throughout
the plasma and becomes particularly important in the
limit of small temperature (small Debye length).

The transport mechanism that brings about the sepa-
ration is easy to understand. Because of the centrifugal
force, two ions that are at the same radial position but
have different charge-to-mass ratios rotate about the
plasma axis at different rates. The collisional drag be-
tween two species gives rise to a radial drift of one spe-
cies outward and the other inward. Because the Cou-
lomb interaction is long range, we expect that the drag
can be exerted even over a small gap between the spe-
cies, producing complete separation.

In what follows, we go to the limit of zero Debye
length, so the charge-difference separation plays no role,
and, as we shall see, the centrifugal separation is com-
plete. The simple case of an infinitely long column can
be treated analytically (O’Neil, 1981). To be specific, we
choose mj11 /ej11.mj /ej . Species j then forms a ring
that extends from r5aj to r5bj , where bj,aj11 . Of
course, the innermost species forms a central column
(i.e., a150). In the limit of zero Debye length, it is nec-
essary that

f~r !1
vBr2

2c
2

mj

ej

v2r2

2
.const (3.53)

inside the ring occupied by species j (i.e., for aj,r,bj).
In this region, only species j makes a significant contri-
bution to the charge density, so we can set

¹2f524pejnj~r !. (3.54)

Operating on Eq. (3.53) with ¹2 and using Poisson’s
equation then implies that the density of species j is
nearly constant within the ring

nj~r !.nj5
2mjv~V j2v!

4pej
2 . (3.55)

For finite but small temperatures, we would find that
the rise in density near r5aj and the drop in density
near r5bj occurs on the scale of a few Debye lengths
lD ,j5(kT/4pej

2nj)
1/2. Outside the ring—that is, well be-

yond the Debye-sheath regions at the edges—the den-
sity of species j would be exponentially small. Thus the
criterion for complete separation is simply that the De-
bye lengths for two neighboring species be small com-
pared to the gap between the species (i.e., lD ,j , lD ,j11
!aj112bj). Indeed this is the criterion for the validity
of this treatment.

Over most of a gap, the potential satisfies Laplace’s
equation, so it follows that

aj11

df

dr U
aj11

5bj

df

dr U
bj

. (3.56)

Operating on Eq. (3.53) with rd/dr and evaluating the
result at r5aj11 and at r5bj yields two equations,
which when combined with Eq. (3.56) yield a relation
that determines the width of the gap,

aj11
2 2bj

25
ej11~mj11 /ej112mj /ej!v

2bj
2

mj11v~V j112v!
. (3.57)
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If there are M species (j51, . . . ,M), then 3M11 re-
lations are necessary to determine all of the parameters
aj , bj , nj , and v. These are the M relations given by Eq.
(3.55), the M21 relations given by Eq. (3.57) plus the
condition a150, the M relations that specify the number
of particles per unit length for each of the species

Nj

L
5njp~bj

22aj
2!, (3.58)

and the relation that specifies the total canonical angular
momentum per unit length,

Pu

L
5(

j
mj~2v1Vc/2!njp~bj

42aj
4!/4. (3.59)

Centrifugal separation has been observed experimen-
tally (Larson et al., 1986; Imajo et al., 1997). The experi-
ments by Larson et al. were carried out with a plasma of
Be1 and Hg1 ions that were confined in a Penning trap
with a parabolic potential. Figure 16(a) shows the mea-
sured shape of a small Be1 plasma before and after the
addition of Hg1 ions, and Fig. 16(b) shows the same
thing for a larger plasma. Figure 16(c) shows the results
of a numerical calculation of the plasma shape assuming
zero Debye length and numbers of Be1 and Hg1 ions
that correspond to the experiment of Fig. 16(a). The
theory predicts complete separation, but this could not
be checked experimentally because of the orientation of
the probe laser. A later experiment (Wineland, Weimer,
and Bollinger, 1993) did observe complete centrifugal
separation of the Be1–Mg1 plasma. The experiments of
Imajo et al. observed complete separation in a plasma of
Be1 and Cd1 ions.

H. Generalization of the confinement geometry

Thus far we have assumed that the trap and trap fields
are time independent and cylindrically symmetrical and
that the magnetic field is uniform and axial. However,
these are not the most general assumptions that are con-
sistent with confinement in a state of thermal equilib-
rium and with the confinement theorem of Sec. II.C.

1. Inhomogeneous but cylindrically symmetric magnetic field

An obvious generalization is that the magnetic field
need not be homogeneous so long as it is cylindrically
symmetrical. To include this generalization, we need
only set Au5Au(r ,z) in the previous results. By using
rA•dl5**B•dS, we obtain

2prAu~r ,z !5E
0

r
2pr8dr8Bz~r8,z !5F~r ,z !, (3.60)

where F(r ,z) is the magnetic flux through a circle of
radius r at axial location z. In the effective trap potential
in the rotating frame [see Eq. (2.9)], we must replace
mvVcr2/25(ev/c)Au(r)r by (ev/2pc)F(r ,z). The re-
sult is

efR~r ,z !5efT~r ,z !1
ev

2pc
F~r ,z !2

mv2r2

2
. (3.61)
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This generalized trap potential can be used in the con-
finement theorem of Sec. II.C and in the thermal equi-
librium distribution [Eq. (3.9)].

If the Debye length is small, we again expect the
plasma charges to adjust their positions so that Eq.
(3.18) is satisfied within the plasma. From this equation
and Eqs. (3.17) and (3.61), we obtain

4pe2n~r ,z !52¹2efp5¹2efR522mv21
ev

2pc
¹2F ,

(3.62)

where we have used ¹2fT50. Equation (3.62) is the
generalization of Eq. (3.19). By using the relations

FIG. 16. Experimental observation of centrifugal separation
for a Be1 and Hg1 ion plasma: (a) the measured shape of an
800 Be1 ion plasma with and without the addition of Hg1 ions;
(b) the same measurements for a 12 000 Be1 ion plasma and a
Hg1 plasma that extends beyond the visibility aperture; (c) the
theoretically predicted shapes for conditions in (a). From Lar-
son et al. (1986).
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]F

]r
52prBz~r ,z !,

]F

]z
522prBr~r ,z !

05~¹3B!u5
]Br

]z
2

]Bz

]r
, (3.63)

we find that
¹2F54pBz~r ,z !. (3.64)

Thus Eq. (3.62) reduces to (Turner, 1991)

vp
2~r ,z !522v21

2ve

mc
Bz~r ,z !, (3.65)

which is the same as Eq. (3.20) except that Bz(r ,z) has
replaced B. Of course, the density (and vp

2) here are
functions of (r,z). The right-hand side of Eq. (3.65) can
be written as vp2

2 (r ,z)54pe2n2(r ,z)/m , where
n2(r ,z) is the density of the imaginary neutralizing
charge, and Eq. (3.65) can then be interpreted as the
small Debye-length requirement of charge neutrality
[i.e., n(r ,z)5n2(r ,z)].

An interesting conclusion can be drawn from Eq.
(3.65) concerning the possibility of traps with closed
field lines (e.g., toroidal traps). It is not possible to have
a region of positive vp2

2 (r ,z) where Bz.0 and another

region of positive vp2

2 (r ,z) where Bz,0. Therefore
there cannot be a closed field line that lies completely in
the region of positive vp2

2 (r ,z). In Sec. VI, we shall
briefly discuss work in which the requirement that the
plasma be in thermal equilibrium is replaced by the less
restrictive requirement that the plasma be stable. It is
observed that stable equilibria are possible for a toroidal
magnetic configuration.

When finite temperature effects are included, the
problem becomes more complicated. The plasma poten-
tial is no longer constant along the magnetic-field lines,
and certain populations of particles are trapped in both
the low- and high-field regions (Fajans et al., 1996).

2. Rotating wall

The essential requirement of the confinement theo-
rem of Sec. II.C. is that there exist a rotating frame
where the Hamiltonian HR is a constant of the motion.
In Sec. II.C, we assumed that the trap and trap fields
were time independent and cylindrically symmetrical.
We argued that H and Pu were conserved separately
and that, therefore, HR5H1vPu was conserved. How-
ever, this is a special case. HR can be conserved even if
H and Pu are not conserved. To be specific, HR is con-
served if and only if HR does not depend explicitly on
time (i.e., dHR /dt5]HR /]t50). Of course, when
checking the time dependence, we must express HR in
terms of the angle variables for the rotating frame (i.e.,
ū j5u j1vt).

Likewise, the Boltzmann distribution (3.1) does not
require that H and Pu be separately conserved. It is suf-
ficient that there exist a rotating frame (2v) in which
HR is conserved. In this case, v is no longer a free pa-
rameter to be determined by Eqs. (3.5) and (3.6). The
temperature T is the only free parameter, and it is de-
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termined by the value of HR . Of course, Eqs. (3.5) and
(3.6) can be combined to give the mean-field expression
for HR5H1vPu .

As an example, suppose that a trap of the form shown
in Fig. 1 is modified by azimuthally dividing one of the
cylinders into many sections. By applying properly
phased and temporally varying potentials to each sector,
one can produce a trap potential of the form fT
5fT(r ,u1vt ,z). The aliasing fields are small in the re-
gion of the plasma if the sectors are sufficiently small
and numerous and if the plasma is sufficiently far from
the walls. This is the type of trap potential that would be
produced by rotating an asymmetric electrode structure,
so we say that the trap has a ‘‘rotating wall.’’

Since fT(r ,u1vt ,z) depends explicitly on t and u,
neither H nor Pu are conserved. On the other hand, fT
is independent of time when expressed in terms of the
angle variable for the rotating frame (i.e., ū5u1vt), so
HR does not depend explicitly on time and is conserved.
Thus the confinement theorem and the thermal equilib-
rium results apply, except that v must be interpreted as
a trap parameter. For example, Eq. (3.20) uniquely de-
termines the density of the plasma in terms of the two
trap parameters v and Vc . (For simplicity, we assume
here that the magnetic field is uniform.) The plasma
density is uniform out to some surface, but that surface
is not a surface of revolution.

This surface of revolution can be evaluated explicitly
when the plasma is small in size compared to the size of
the electrodes. In this case the trap potential can be ap-
proximated by a harmonic form obtained through Tay-
lor expansion about the saddle point at the center of the
trap potential. Note that this point may be shifted from
the geometrical center of the trap electrodes if the
rotating-wall field has a dipole component. However,
when image charges are neglected this merely shifts the
plasma center of mass, provided that the plasma is single
species. [If the plasma consists of several species, a
dipole-field rotating wall can cause centrifugal separa-
tion and nontrivial changes in the plasma shape (Huang
et al., 1998a).] Here we consider the shape change in a
single-species plasma due to quadrupole components of
the rotating-wall potential. In the rotating frame where
the rotating-wall potential is stationary, the potential
takes the form

efT5
1
2

mvz
2H z822

1
2

@~122d!x821~112d!y82#J ,

(3.66)

where d is a measure of the x82y8 anisotropy of the
potential, and where (x8,y8,z8) are coordinates chosen
so that there are no cross terms in fT . These coordi-
nates are rotated by some angles u and c with respect to
the frame of reference that is aligned with the magnetic-
field direction ẑ (see Fig. 17). Note that the Laplacian of
fT is zero.

To this trap potential we add the corrections due to
rotation, mv(Vc2v)(x21y2)/2, to obtain the effective
trap potential in the rotating frame, fR ,

efR5
1
2

mvz
2x8•«R•x8, (3.67)

where «R is the symmetric matrix
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«R5S 2
1
2

1d1~b1 1
2 !~12sin2 u sin2 c!

2~b1 1
2 !sin2 u sin 2c

2

2~b1 1
2 !sin 2u sin c

2

• 2
1
2

2d1~b1 1
2 !~12sin2 u cos2 c!

2~b1 1
2 !sin 2u cos c

2

• • 11~b1 1
2 !sin2 u

D , (3.68)
and where b is the trap parameter, given by Eq. (3.40).
This potential can be converted to normal form by

performing another rotation to new coordinates
(x9,y9,z9) that diagonalize «R :

efR5
1
2

mvz
2~ax921by921cz92!, (3.69)

where a, b, and c are the eigenvalues of «R and are
functions of b, d, u, and c.

In general a, b, and c are the solutions to a cubic
polynomial. When u and c equal zero no rotation is nec-
essary and a, b, and c take on the values

a5b1d , (3.70a)

b5b2d , (3.70b)

c51. (3.70c)

When c50 but uÞ0 (i.e., a tilt about the x axis),

a5b1d , (3.71a)

b5
b2d111SA~b2d21 !21~2b11 !~312d!sin2u

2
,

(3.71b)

c5
b2d112SA~b2d21 !21~2b11 !~312d!sin2u

2
,

(3.71c)

where S equals 61; which sign one chooses is arbitrary
depending on which axis one wishes to label y9 and
which one wishes to label z9. For example, for small u,
there is a near zero in the square root at b2d2150,
and in order to have b and c approach their u50 values
b2d and 1, respectively, one must choose S such that

S5 H 1,
21,

d<b21,
d>b21. (3.72)

The results for a, b, and c are shown in Fig. 18 as a
function of d for a particular value of b and for u50°
and 10°. The choice of S in Eq. (3.72) allows b and c to

FIG. 17. Frame of reference (x8,y8,z8) in which the harmonic
rotating-wall trap field takes the form of Eq. (3.66).
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approach their u50 limits for all values of b and d; how-
ever, this choice creates a discontinuity in b and c at d
5b21. Physically, this discontinuity is merely an inter-
change of the y9 and z9 axes, which can be carried out
by a 90° rotation around the x8 axis; note that u→u
1p/2 does not change the matrix coefficients in Eq.
(3.68).

It is not difficult to show that the arguments of the
square roots in Eqs. (3.71b) and (3.71c) are always non-
negative, so that a, b, and c are always real. However,
for arbitrary values of b, d, and u, a, b, and c need not be
positive, as can be seen in Fig. 18. Nevertheless, they are
required to be positive in order to confine the plasma,
and this leads to limits on the possible values of b, d, and
u.

For example, for u50, Eqs. (3.70) imply b.udu is re-
quired for confinement. When uÞ0 Eqs. (3.71) imply
that

b.udu (3.73)

and

4b23~2b11 !sin2u

21~2b11 !sin2u
.2d (3.74)

are required to confine the plasma. These bounds in the
b–d plane are plotted in Fig. 19 for different u values.
They are generalizations of the requirement that b.0
for an axisymmetric-aligned trap potential.

The shape of a zero-temperature mean-field plasma
follows from the quadratic form of Eq. (3.69). In poten-
tial theory it is well known that the potential inside a
uniform ellipsoid of density n2 with principal axes
(a1 ,a2 ,a3) aligned along the x9, y9, and z9 axes, respec-
tively, takes the form

fp~x9!52
1
4

m

e
vp

2~A1x921A2y921A3z92!1C ,

(3.75)

where C is a constant and where A1 , A2 , and A3 are
dimensionless functions of the ratios of the principal
axes a3 /a1 ,a2 /a1 that can be written in terms of elliptic
integrals (Binney and Tremaine, 1987):

A1~a2 /a1 ,a3 /a1!52
a2a3

a1
2

F~u ,k !2E~u ,k !

k2 sin3u
, (3.76a)
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A2~a2 /a1 ,a3 /a1!

52
a2a3

a1
2

E~u ,k !2k82F~u ,k !2~a3 /a2!k2 sinu

k2k82 sin3u
,

(3.76b)

A3~a2 /a1 ,a3 /a1!52
a2a3

a1
2

~a2 /a3!sinu2E~u ,k !

k82 sin3u
, (3.76c)

where k5A(a1
22a2

2)/(a1
22a3

2), k82512k2, and u
5cos21(a3 /a1), and F(u ,k) and E(u ,k) are elliptic inte-
grals of the first and second kind, respectively. The no-
tation used for the elliptic integrals is that of Gradshteyn
and Ryzhik (1980); for example,

E~u ,k !5E
0

u

daA12k2 sin2a .

The functions defined in Eqs. (3.76) satisfy A11A2
1A352, so that ¹2fp524pen2 . The requirement
that the total potential fP1fR be constant inside the
plasma then implies that n25mv(Vc2v)/2pe2, the
same requirement on the density as for axisymmetric
traps without rotating walls. Here, we have used Eqs.
(3.67) and (3.68) to find ¹2efR5mvz

2Tr(«R) which is
invariant under rotations.

Furthermore, force balance in the x9, y9, and z9 di-
rections leads to

vp
2

2
A15vz

2a , (3.77a)

vp
2

2
A25vz

2b , (3.77b)

vp
2

2
A35vz

2c . (3.77c)

Any two of these equations can be employed to deter-
mine a3 /a1 and a2 /a1 , and these two aspect ratios
specify the plasma shape.

As a specific example, we take the case in which u
5c50 and in which the plasma is very long, vz→0, but
vz

2d is finite so that there remains a finite asymmetric
x2y trap potential. The plasma then becomes a cylinder
with an elliptical cross section and shape determined by

FIG. 18. Coefficients a, b, and c entering into the effective
confinement potential of a harmonic rotating wall for b52 as
a function of the anisotropy parameter d, for c50°, u50°
(solid line), and 10° (dotted line).
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Eqs. (3.77) and (3.70). In this limit A1 , A2 , and A3 sim-
plify to

A15
2a2

a11a2
, A25

2a1

a11a2
, A350. (3.78)

The elliptical-cylinder aspect ratio is then provided by
the simple result

a1

a2
5

b2d

b1d
, (3.79)

where we have used Eqs. (3.70a) and (3.70b) and have
divided Eq. (3.77a) by Eq. (3.77b).

Another analytically tractable limit is the case in
which the trap fields are chosen so that the plasma forms
an elliptical disc; for example, a3→0, with a1 and a2

finite. In this case u→p/2, k→A12a2
2/a1

2, k8→a2 /a1 ,
and Eq. (3.76c) implies A3→2. Then, by Eq. (3.77c),
vp

2→vz
2c , and Eqs. (3.76a) and (3.76b) imply that A1

and A2 are of order a3 :

lim
a3→0

A1

a3
5

2a2

a1
2

K2E

12a2
2/a1

2 , (3.80a)

lim
a3→0

A2

a3
5

2
a2

E2~a2
2/a1

2!K

12a2
2/a1

2 , (3.80b)

where K5K(A12a2
2/a1

2) and E5E(A12a2
2/a1

2) are
complete elliptic functions of the first and second kinds
(Gradshteyn and Ryzhik, 1980).

The elliptic disc’s shape is found by taking the ratio of
Eqs. (3.77a) and (3.77b),

a2
2

a1
2

K2E

E2a2
2K/a1

2 5
a

b
, (3.81)

which can be solved numerically for the aspect ratio
a2 /a1 .

Any real trap has unavoidable field asymmetries (field
errors) that are stationary in the laboratory frame, and
these asymmetries exert a drag on the rotating plasma.
In equilibrium this backward torque must be balanced
by a forward torque due to the rotating asymmetry. If
the plasma is a fluid, such a torque can develop only if
there is some slippage between the rotational flow of the
fluid and the rotating asymmetry. In other words, only
when the asymmetry rotates faster than the fluid can it

FIG. 19. Limits on the trap parameter b and the anisotropy
parameter d for confinement within a harmonic rotating wall,
c50°.
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create a viscous torque that tends to increase the fluid
rotation. On the other hand, if the plasma is a crystal
that can support shear stress, there need not be such
slippage. Instead, the deformation of the crystal caused
by the rotating asymmetry can create a static shear stress
in the rotating frame that torques on the crystal, even
without slippage. Furthermore, the field errors, which
are stationary in the laboratory frame, are time depen-
dent in the rotating frame. This explicit time depen-
dence means that dHR /dt5]HR /]t has a small nonzero
value. If the heating rate is slow compared to the time to
come into thermal equilibrium, the thermal equilibrium
description is still valid, but the temperature T slowly
increases. To have a steady state, the plasma also must
be cooled.

If the slippage between the rotating-field asymmetry
and the rotational flow of the plasma is substantial, the
plasma is not even close to being in thermal equilibrium
in the frame of the rotating asymmetry. In this case, it is
more useful to think of the rotating asymmetry as simply
a means of applying a torque on the plasma, much as the
laser beam applies a torque. We assume that the plasma
is in some cylindrically symmetrical thermal equilibrium
state, but that T and v evolve slowly as a result of slow
changes in the plasma energy E and angular momentum
L. The rotating asymmetry and any stationary asymme-
try are assumed to be weak, and the time for Coulomb
collisions to bring the plasma into a state of thermal
equilibrium is assumed to be short compared to the time
for significant changes in E and L. A steady state is
reached when there is a balance such that the net torque
and the net energy input are zero (i.e., E5L50). In
Sec. V, we develop a thermodynamic approach to trans-
port and discuss such issues as the frequency and tem-
perature stability near a steady state.

In experiments with pure electron plasmas (Pollock
and Anderegg, 1994), a rotating-wall configuration (with
eight sectors) confined the electrons for arbitrarily long
times in a steady state. In this case, the cooling was due
to cyclotron radiation. In addition, a rotating wall con-
figuration (again with eight sectors) achieved arbitrarily
long steady-state confinement of a pure ion plasma
(Huang et al., 1997). In this case, the cooling was due to
collisions with neutrals. In these experiments the plasma
was not in thermal equilibrium in the rotating frame of
the wall. The wall could develop sufficient torque to bal-
ance the ambient torques only if there was substantial
slippage between the wall and plasma.

In more recent experiments (Huang et al., 1996) with
strongly correlated Be1 ion plasmas (pure ion crystals),
there was zero slip between the rotating plasma and the
rotating wall, so the analysis presented here presumably
applies. In these experiments, the crystal structure was
monitored by Bragg scattering, and the rotation rate of
the crystal was determined precisely by measuring the
rotation rate of the scattering pattern. For long periods,
the crystal and rotating wall were locked in phase, rotat-
ing together. The rotating-field asymmetry was qua-
dratic, as is assumed in the present analysis, but the field
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amplitudes were so small that distortion of the plasma
from cylindrical symmetry could not be measured.

IV. STRONG CORRELATION

In this section, we consider nonneutral plasmas for
which the coupling parameter G5e2/akT is large. The
plasma charges are then strongly correlated, and liquid
and crystalline states are predicted and observed. We
shall see that the structure of the ordered state can de-
pend on plasma size and shape as well as on the value of
G. Three size regimes in which the plasmas have quali-
tatively different properties are, in order of decreasing
size, large plasmas, mesoscopic plasmas, and Coulomb
clusters. We shall discuss these three regimes separately.

While the physics of strong correlation presents us
with several new effects, it is fortunate that the main
conclusions of the last section concerning the overall
shape and size of the plasma remain valid for both me-
soscopic and large plasmas and can be a reasonable first
approximation even for Coulomb clusters. Even for
strong correlation, the characteristic mean-field poten-
tial ef is large compared to e2/a when N@1. Thus the
gross plasma shape is still determined by a balance of
mean-field forces, so the shape as discussed in the pre-
vious section remains almost unchanged. The influence
of correlations is to establish order within that gross
shape.

A. Microcanonical and canonical ensembles

Of course, strongly correlated plasmas cannot be de-
scribed by the Boltzmann distribution (a one-particle
distribution). Rather, an N-particle distribution must be
used. As discussed in Sec. II, an isolated plasma of N
interacting charges in a cylindrically symmetrical trap
with time-independent fields admits two constants of the
motion: the Hamiltonian H(r1 ,v1 ,. . . ,rN ,vN) and the ca-
nonical angular momentum Pu(r1 ,v1 ,. . . ,rN ,vN). The
microcanonical ensemble for such a plasma is character-
ized by the distribution (Landau and Lifshitz, 1980, p.
12)

fm.c.~r1 ,v1 ,. . . ,rN ,vN!5Ad@H2E#d@Pu2L# , (4.1)

where A is a constant that is chosen to normalize the
phase-space integral of the distribution to unity and E
and L are the fixed values of H and Pu . According to
the ergodic hypothesis, this distribution describes the
thermal equilibrium state of the plasma. The average of
any function G(r1 ,v1, . . . ,rN ,vN) taken over the microca-
nonical distribution is equal to the long-time average of
the function taken along the system trajectory in the
6N-dimensional phase space.

On the other hand, the distribution for a canonical
ensemble (the Gibb’s distribution) is given by (Landau
and Lifshitz, 1980, p. 106)

fc~r1 ,v1 .. .rN ,vN!5C exp@2~H1vPu!/kT# , (4.2)

where C is a factor used to normalize the integral of fc
to unity. This constant is related to the canonical parti-
tion function Zc through
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C215ZcN!S h

m D 3N

5E
2`

1`

d3r1 .. .d3vN exp@2~H1vPu!/kT# , (4.3)

where h is Planck’s constant. The Gibbs distribution is
similar to the Boltzmann distribution [Eq. (3.1)] in that
both represent a system with fixed values of the tem-
perature T and rotation frequency 2v. However, the
full N-particle Hamiltonian and angular momentum en-
ter the Gibbs distribution, whereas the mean-field
single-particle energy and angular momentum enter the
Boltzmann distribution, so correlations between par-
ticles are kept in the Gibbs distribution and are omitted
in the Boltzmann distribution. The Gibbs distribution
describes a plasma that is in thermal contact with an
energy and angular momentum reservoir. For example,
Fig. 20 shows a trapped plasma that is in thermal contact
with an infinitely long column (the reservoir) that is
characterized by temperature T and rotation frequency
2v. Thermal fluctuations produce a transfer of energy
and angular momentum back and forth between the res-
ervoir and plasma.

For a sufficiently large plasma (i.e., N@1), the fluc-
tuations in plasma energy and angular momentum are
small compared to the mean energy and angular mo-
mentum and have only a small influence on the plasma
state. Thus, for most physical quantities, an average over
the microcanonical distribution can be replaced by an
average over the Gibbs distribution (Reif, 1965). In es-
tablishing the correspondence between the two distribu-
tions, one chooses T and v so that E5^H& and L
5^Pu&, where the averages are over the Gibbs distribu-
tion. This well-known equivalence between the two dis-
tributions is useful because the Gibbs distribution offers
advantages analytically; for example, H and Pu enter the
Gibbs distribution only through the combination HR
5H1vPu . However, we should note that the equiva-
lence does not extend to averages of certain fluctuations;
for example, ^(H2E)2& is identically zero for the micro-
canonical distribution and is small [i.e., ^(H2E)2/E2&
;1/N] but nonzero for the Gibbs distribution. We shall
discuss fluctuations separately in Sec. V.E.

1. Mesoscopic plasmas, large plasmas, and Coulomb
clusters

Later in this section we shall numerically evaluate av-
erages according to both the microcanonical and the
Gibbs distributions. For N*100, we will find no notice-
able difference in average quantities such as the local

FIG. 20. Plasma in thermal contact with heat and angular mo-
mentum reservoir.
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density when evaluated using the two distributions. Thus
we take N*100 to be a loose criterion for the applica-
bility of the Gibbs distribution.

Although a plasma with N;100 is large enough that
the Gibbs distribution is applicable, such a plasma is not
large enough to be considered infinite and homoge-
neous. In fact, it has been found that surface effects can
strongly influence the correlation properties of a crystal-
lized plasma even when N.104 (Rahman and Schiffer,
1986; Dubin and O’Neil, 1988; Gilbert, Bollinger, and
Wineland, 1988; Dubin, 1989; Schiffer, 1995). Plasmas
that are sufficiently small that correlations are strongly
influenced by plasma shape and size, but that are suffi-
ciently large (N*100) that the Gibbs distribution is ap-
plicable, are referred to here as mesoscopic.

On the other hand if the plasma is large enough, sur-
face effects can be neglected in the plasma interior. The
microscopic structure in the interior is the same as for an
infinite homogeneous plasma. In Sec. IV.D we estimate
that bulk crystalline properties do not begin to dominate
over surface properties until the plasma’s minimum di-
mension is approximately 60 interparticle spacings [(N
*105) for a spherical plasma (Dubin, 1989)]. However,
when the plasma is not too strongly correlated, i.e., G
&10, the plasma size required to neglect surface effects
drops appreciably, to N*103 for a spherical cloud. This
is because the correlation length of the fluid phase is
only on the order of one or two interparticle spacings,
and the effect of the surface penetrates into the interior
only over this distance. We refer to plasmas for which
surface effects are negligible as large plasmas.

Finally, when N is very small, N&10, the Gibbs and
microcanonical distributions are no longer equivalent.
This is the regime of Coulomb clusters. When cooled to
low temperatures such clusters have been observed to
form simple geometric configurations whose structures
vary with particle number and external fields (Wineland
et al., 1987; Deidrich et al., 1987). Predictions for the
structures of Coulomb clusters can be made by minimiz-
ing the energy of the system subject to the constraints of
either constant rotation frequency (canonical ensemble)
or constant angular momentum (microcanonical en-
semble). Catalogs of such structures have been compiled
(Rafac et al., 1991) and compared to experiment (Deid-
rich et al., 1987; Wineland et al., 1987; Itano, Bergquist,
and Wineland, 1989).

2. Spatial and reduced distribution functions

For the case of a trap with a uniform axial magnetic
field, the combination HR5H1vPu is written out in
Eq. (2.8). The velocity dependence and spatial depen-
dence of the Gibbs distribution can be separated:

fc~r1 ,v1 .. .rN ,vN!5~2pkT/m !23N/2

3expF2(
i51

N 1
2

m~vi1vriû i!
2/kTG

3fc
~s !~r1 ,. . . ,rN!. (4.4)

The spatial part of the Gibbs distribution is
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fc
~s !~r1 .. .rN!5C̄ expF2(

j51

N H 1
2 (

iÞj
e2G~riurj!

1efR~rj ,zj!J Y kTG , (4.5)

where C̄ is a constant normalizing fc
(s) to unity. The ve-

locity dependence in Eq. (4.4) is a product of Max-
wellians as viewed in a frame that rotates with frequency
2v. The spatial dependence corresponds to a set of in-
teracting charges that resides in (is confined by) the ex-
ternal potential fR(r ,z).

It is useful to introduce the reduced spatial distribu-
tion functions

r~M !~r1 ,. . . ,rM!5E d3rM11 .. .d3rNfc
~s !~r1, . . . ,rN!.

(4.6)

For example, the plasma density n(x) is related to the
first reduced distribution r(1)(x) through

n~r!5Nr~1 !~r!. (4.7)

The correlation function g(r1 ,r2), which describes two-
body spatial correlations, is defined in terms of r(2)

through

r~2 !~r1 ,r2!5r~1 !~r1!r~1 !~r2!@11g~r1 ,r2!# . (4.8)

The correlation function measures the extra probability,
beyond what would be expected of a completely random
distribution, of finding particles at r1 and r2 . Because the
Coulomb interaction is a binary interaction, all of the
thermodynamic functions can be evaluated from knowl-
edge of n(r) and g(r1 ,r2) (and T). In Secs. IV.B–IV.D
we shall consider the behavior of both these functions in
mesoscopic and large plasmas. Coulomb clusters are suf-
ficiently small that other techniques for examining cor-
relations, such as directly viewing the particle positions,
can be more instructive. Clusters will be discussed in
Sec. IV.E.

3. Relation to a one-component plasma

Much of the remaining discussion in this section fol-
lows from a useful analogy between a trapped nonneu-
tral plasma and a one-component plasma (OCP). As de-
scribed in the introduction, an OCP is a system of point
charges that is embedded in a uniform neutralizing
background charge. In Sec. III.C, we established an
equivalence between the mean-field, thermal equilib-
rium, spatial structure of a magnetically confined plasma
and an OCP. Here, we establish the same equivalence
using the Gibbs distribution, so the equivalence includes
all spatial correlation properties (Malmberg and O’Neil,
1977) (but does not include time-dependent correlations
such as two-time correlation functions). Following the
discussion in Sec. III.C, we note that the second term on
the right-hand side of Eq. (2.9) can be interpreted as the
potential due to an imaginary cylinder of negative
charge [i.e., ef25pen2r2, where n25mv(Vc
2v)/2pe2]. Thus the Gibbs distribution for a single-
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species plasma in a Penning trap differs only by rotation
from that for the same plasma confined by a cylinder of
neutralizing charge and externally applied electrode po-
tentials. In regard to the thermal equilibrium properties,
the Penning trap plasma provides a laboratory realiza-
tion of an OCP. This equivalence is particularly useful
for large trapped plasmas, since infinite homogeneous
OCP’s have been the subject of much theoretical study,
and we can borrow results from these studies to obtain a
theoretical description of correlation effects in large
trapped plasmas.

4. Infinite homogeneous one-component plasma and the
coupling parameter G

An infinite homogeneous classical OCP that is in a
state of thermal equilibrium is characterized by the den-
sity n5n2 , the charge e and mass m of the particles,
and the energy kT. The only dimensionless parameter
that can be constructed from these quantities is the cou-
pling parameter, G5e2/akT , where a5(3/4pn)1/3 is the
Wigner-Seitz radius. Thus, when lengths are scaled by a,
the correlation function must take the form g
5g(r1 /a ,r2 /a ;G); that is, time-independent correlation
phenomena can be parametrized by the single number
G. For example, a plasma with density n1 and tempera-
ture T1 is equivalent to a plasma with a different density
n2 provided that T25(n2 /n1)1/3T1 , since G is identical
for the two systems. This ability to vary the density and
temperature without changing the correlation properties
follows from the lack of any intrinsic spatial scale in the
interparticle potential uri2rju21. (The Coulomb poten-
tial is a particular case of a more general class of scale-
free inverse-power potentials of the form uri2rju2n, all
of which have the property that their correlations de-
pend only on a single parameter.)

The coupling parameter G is simply the ratio of the
interaction energy between neighboring charges e2/a to
the kinetic energy per degree of freedom kT. Correla-
tions are weak when G!1 and are strong when G@1.
The regime G!1 is typical for neutral plasmas and in-
deed most nonneutral plasma experiments are also car-
ried out in this regime. One can get an idea of the sort of
densities and temperatures required to enter the
strongly correlated regime G.1 by writing G in physical
units:

G52.69Z2S n

109 cm23D 1/3S T

KD 21

, (4.9)

where Z is the number of elementary charges on each
particle. For a low-Z plasma, with temperatures on the
order of 10 eV51.13105 K, rather large densities on the
order of 1023 cm23 are required for G;1; such param-
eters are not impossible to achieve for very short times
in experiments using shock tubes (Chace and Moore,
1959; Ivanov et al., 1976; DeSilva and Kunze, 1993) or
solids heated and compressed by lasers (Brueckner and
Jorna, 1974; Craxton, McCrory, and Soures, 1986), for
example. In astrophysical contexts, such as the interior
of a white or brown dwarf star, densities are sufficiently
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large, of order 1031 cm23, that the strongly correlated
regime is accessible even when temperatures are on the
order of 107 K (Schatzman, 1958). In experiments with
nonneutral plasmas, strong correlation has been
achieved by reducing the temperature to the cryogenic
regime. With pure electron plasmas, temperatures on
the order of 4 K are obtained by cooling the vacuum
chamber and electrode structure with a liquid-helium
bath; the electrons come to temperature equilibrium
with the walls through cyclotron radiation. At densities
on the order of 1010 cm23 correlation parameters of or-
der unity have been achieved (Malmberg et al., 1988). In
other cryogenic experiments, electrons have been
trapped in a 2D layer directly on the surface of liquid
helium, forming a 2D strongly correlated plasma (Cole,
1974). In experiments involving pure ion plasmas, the
technique of laser cooling (see Sec. III.B.2) has been
applied in order to lower temperatures to the mil-
liKelvin range. At typical densities of order 109 cm23,
correlation parameters of several hundred have been
achieved (Bollinger and Wineland, 1984; Bollinger,
Wineland, and Dubin, 1994).

Another route to strong correlation takes advantage
of the Z2 dependence in G. Indeed, in what we believe
to be the first experiment on strongly correlated trapped
charges (Weurker, Shelton, and Langmuir, 1959), sev-
eral dust grains were charged to Z;104 or more and
were suspended in the fields of a Paul trap in crystalline
configurations reminiscent of the Coulomb clusters to be
discussed in Sec. IV.E. For such large Z values, G@1
was achieved even though the ‘‘temperature’’ of the
grains was rather large. (However the number of
trapped dust grains was only on the order of 10 to 20.) In
heavy-ion storage rings many highly stripped ions can be
trapped, and it has been theorized that strongly corre-
lated nonneutral plasmas could be produced (Rahman
and Schiffer, 1986). However, in the present experi-
ments densities and temperatures are not sufficient to
achieve strong correlation.

It is instructive to display the correlation criterion in a
density and temperature ‘‘phase diagram’’ (Malmberg
and O’Neil, 1977). In Fig. 21, the ordinate is log10 T ,
where T is measured in degrees Kelvin. The abscissa
along the bottom of the figure is log10 n , where n is mea-
sured in particles per cubic centimeter. The abscissa
along the top of the figure is the log10 B , where B is
measured in Gauss and is related to n through the Bril-
louin limit for an electron plasma (i.e., vp5Vc /&). In
other words, the value of B that appears above a par-
ticular n is the lowest value of B for which an electron
plasma of that density can be confined. For an ion
plasma, the value of B must be increased by the square
root of the mass ratio Ami /me. As a rough indication of
the current technical limit on steady large-scale mag-
netic fields, a vertical dotted line is drawn at B
5100 kG, which corresponds to a maximum electron
density of n5531014 cm23. For comparison the maxi-
mum density of a Be1 ion plasma is displayed as the
dashed line at the density n5331010 cm23. The onset of
the fluid state is indicated by the diagonal line at G52
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and of the crystalline state by the diagonal line at G
5174. The phase diagram shows that a crystalline OCP
is accessible for Be1 plasmas that are laser cooled to
1–10 mK and that a fluid OCP is accessible for electron
plasmas that are cooled to about 4 K. The dot and
square show temperatures and densities that have been
reached in experiments with reasonably large electron
and ion plasmas, respectively (Malmberg et al., 1988;
Bollinger, Wineland, and Dubin, 1994).

In electron experiments quantum effects can also play
a role at low temperatures. For example, the electron
cyclotron motion becomes quantized when kT&\Vce

.
This criterion is displayed in the figure for the magnetic
fields given by the upper abscissa, and it is clear that at
4 K the cyclotron motion cannot be treated classically at
typical magnetic fields of order 40 kGauss. However, it
has been shown that quantization of the cyclotron mo-
tion has no effect on the spatial correlation properties,
including the freezing transition, provided that the other
degrees of freedom remain classical (Dubin and O’Neil,
1986a). This can be understood from a physical picture
of a system of charges with quantized gyromotion. The
cyclotron radius v' /Vc is replaced by the quantum cy-
clotron radius A\/mVc. Each charge can then be
thought of as a guiding center for which the perpendicu-
lar kinetic energy associated with the Larmor motion is
quantized; however, the guiding centers still interact via
what is essentially the classical Coulomb interaction, so
the spatial correlations between these guiding centers
are unaffected by the magnetic field, provided that the
quantum Larmor radius is small compared to an average
interparticle spacing. On the other hand, functions such
as the specific heat which depend on the mean perpen-
dicular kinetic energy are greatly affected by the quan-
tization of the cyclotron motion. Nevertheless, that por-
tion of the specific heat that depends on correlations is
given by the classical formula.

FIG. 21. Phase diagram of the one-component plasma: tem-
perature T vs density n2 . Also shown on upper x axis is the
minimum magnetic field required to produce the correspond-
ing density, B5A8pmn2c2 [see Eq. (3.21)].
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At even lower temperatures for which \vp*kT the
phonons in the solid phase become quantized and the
motions of the particles in the fluid phase must also be
described in quantum-mechanical terms. The freezing
transition is affected by the quantization of the plasma
oscillations. While the Wigner-Kirkwood expansion
(Hansen and Vieillefosse, 1975; Landau and Lifshitz,
1980, p. 98) works to provide quantum corrections when
\vp!kT , only recently have accurate theory results
been obtained for the size of the effect when \vp
*kT . Estimates based on the Lindemann melting crite-
rion, including the zero-point oscillations of the
phonons, indicate a small decrease in the temperature
required for melting (Mochkovitch and Hansen, 1979).
More detailed quantum Monte Carlo simulations of the
solid and liquid free energies substantially verify this ef-
fect (Iida and Ichimaru, 1995). Experiments on pure-
electron quantum liquids and crystals could provide use-
ful empirical data for the freezing transition in this
nondegenerate quantum regime. Such data would be of
great interest to the astrophysics community since the
interior of white dwarf stars can fall into this regime
(Chabrier, Ashcroft, and DeWitt, 1992).

Finally, if the plasma density is large enough so that
\vp*e2/a , the zero-point energy of the phonon oscilla-
tions is, by itself, sufficiently large to melt the lattice; this
is called Wigner melting (Wigner, 1934). In addition,
spin-spin correlations caused by exchange effects can
cause ferromagnetic transitions in OCP’s with Fermi sta-
tistics (Ceperley and Alder, 1980). However, the densi-
ties needed to enter this regime are much larger than
can be attained in present nonneutral plasma experi-
ments: for electrons n*1022 cm23 is required.

B. Numerical experiments on mesoscopic plasmas

In the early experiments with strongly coupled Be1

plasmas (Bollinger and Wineland, 1984; Gilbert, Bol-
linger, and Wineland, 1988), the number of particles was
typically in the range 102,N,104. Such plasmas were
mesoscopic in scale—large enough to admit a Gibbs de-
scription but small enough that surface effects were im-
portant. In this section we explore the thermal equilib-
rium states of such plasmas numerically.

In accord with the experiments, the trap potential is
taken to be harmonic; see Eq. (3.37). As noted in Eq.
(3.39), the trap potential in the rotating frame, fR , is
then also harmonic. Since the plasmas are small com-
pared to the distance to the walls, G(r1ur2) can be set
equal to ur12r2u21. When distances are scaled by the
Wigner-Seitz radius a, the spatial part of the Gibbs dis-
tribution takes the form

fc
~s !~r1 ,. . . ,rN!5C̄ expF2G(

j51

N H(
i.j

u r̄ i2 r̄ ju21

1
3

4b12
~ z̄ j

21b r̄ j
2!J G , (4.10)

where b is defined in Eq. (3.40). Thus the spatial struc-
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ture of the plasma is completely determined by the val-
ues of N, G, and b. The trap parameter b determines the
gross shape of the plasma, N determines the size, and,
for a mesoscopic plasma, G, N, and b determine correla-
tion structure. For example, the plasma is crystallized
when G5` , but the structure of the crystal depends on
both b and N in the mesoscopic range.

Several authors have performed simulations of plas-
mas in such harmonic traps using different numerical
techniques (Rahman and Schiffer, 1986; Totsuji, 1987;
Dubin and O’Neil, 1988; Hasse and Avilov, 1991; Tsu-
ruta and Ichimaru, 1993). The Monte Carlo method di-
rectly evaluates average quantities in the canonical en-
semble. One considers a sequence of random steps of
each particle in configuration space and conditions ac-
ceptance or rejection of a given step by the change in the
probability of the N-particle state, that is, the change in
the value of the configurational portion of the Gibb’s
distribution, fc

(s) . When fc
(s)new/fc

(s)old.1, the step is ac-
cepted, but if fc

(s)new/fc
(s)old,1, the step is accepted only

with probability fc
(s)new/fc

(s)old ; otherwise the particle is
replaced in its old position. Averages are taken over the
sequence of configurations generated in this way, and
for a sufficiently long sequence the average approaches
an average taken with respect to fc

(s) . Only static prop-
erties of the system can be studied with this technique.

Another numerical approach evaluates a time average
over the phase-space trajectory of the N-particle system,
generated via a molecular dynamics simulation. In mo-
lecular dynamics the equations of motion of N interact-
ing charges are integrated forward in time numerically
for a time long enough that the particles come to ther-
mal equilibrium with each other. Since energy and an-
gular momentum are conserved to within the numerical
accuracy of the simulation, a time average of any phase
function is expected to be equal to an average over the
microcanonical distribution, which for large N is in turn
expected to give the same results as the average over the
Gibbs distribution. Indeed, differences between aver-
ages evaluated by the two methods were negligible for
N*100 (Dubin and O’Neil, 1988).

Furthermore, there is latitude in the choice of dynam-
ics employed in the molecular dynamics simulation pro-
vided that N is large enough for the Gibbs distribution
to apply and that one is interested only in static thermal
equilibrium properties. The spatial part of the Gibbs dis-
tribution simply describes a collection of interacting
charges that reside in the potential fR(r ,z). Any dy-
namics that yield this effective trap potential must pre-
dict the same thermal equilibrium spatial structure for
the plasma. We have already seen one example of this
latitude in the equivalence between the (magnetically
confined) Penning trap plasma and an (electrostatically
confined) one-component plasma. Some authors neglect
the magnetic field entirely and perform molecular dy-
namics simulations of N charges in an effective potential
well fR [such simulations apply dynamically to charges
in a Paul trap, neglecting the micromotion caused by the
rf field (Rahman and Schiffer, 1986; Hasse and Avilov,
1991)]. While the dynamics of the particle trajectories
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are quite different from those of charges in a Penning
trap, long time averages of any phase function
G(r1 , . . . ,rN) are guaranteed to be identical to the re-
sults of molecular dynamics simulations that include the
magnetic field. Other authors have integrated the equa-
tions of motion, including the Lorentz force of the ap-
plied magnetic field (Totsuji, 1987). One can also em-
ploy guiding-center dynamics in molecular dynamics
simulations, which assumes that B is large, as is often the
case in the experiments (Dubin and O’Neil, 1988). The
effective potential fR(r ,z) is the same for guiding-
center dynamics as for the actual dynamics except for a
rescaling of the magnetic-field strength [i.e., mv(Vc
2v)→mvVc8] because guiding-center dynamics ne-
glects the centrifugal force. The advantage of using
guiding-center dynamics is that the rapid cyclotron mo-
tion is averaged out and need not be followed numeri-
cally.

Using these numerical techniques, several authors
have considered the effect of correlations on the density
n(r) of particles in a harmonic trap. In the Monte Carlo
method n(r) is obtained from a reduced distribution
function using Eq. (4.7), whereas in molecular dynamics
n(r) is evaluated through the time average of the Klim-
ontovitch density:

n~r!5
1
T E

0

T
dt(

j51

N

d@r2rj~ t !# . (4.11)

In practice the procedure for obtaining n(r) is identical
in both cases. The trap volume is cut into a grid of small
subvolumes. For each generated configuration in Monte
Carlo, or time step in molecular dynamics, the density is
measured by counting the number of charges that fall
within each subvolume; an average over many configu-
rations (Monte Carlo) or long times (molecular dynam-
ics) is then performed to reduce statistical noise.

Figure 22 shows the results of a Monte Carlo calcula-
tion for a range of G values from 1 to 150 for a cloud of
400 charges (Dubin, 1996). The rotation frequency v

FIG. 22. Equilibrium density as a function of spherical radius r
in a spherically symmetric (a5b51) nonneutral plasma of
N5400 charges, for G51, 10, and 150. The density is normal-
ized to the cold mean-field value n2 . Dashed line is the cold
mean-field theory. From Dubin (1996).
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was chosen so that the effective trap potential fR was
spherically symmetric (b51). The average density n(r)
was plotted as a function of spherical radius r. For G
51 the density fell smoothly to zero in a manner quali-
tatively similar to the limit of weak correlation (see Fig.
9). As G increased, the plasma edge steepened, ap-
proaching the Heaviside step-function density of cold
mean-field theory, shown in the figure as the dotted line.
However, the density also began to exhibit oscillations
near the plasma edge. These oscillations are evidence of
local order—the damping length of the oscillations is a
measure of the correlation length—and are a precursor
to the formation of lattice planes. Such behavior has
been seen in a similar system at moderate values of G,
the one-component plasma with an edge (see, for ex-
ample, Ichimaru, Iyetomi, and Tanaka, 1987, and refer-
ences therein). Oscillatory density profiles are also ex-
pected to occur at the interface of simple liquids in
contact with a wall (Hansen and McDonald, 1986).

As G increases further, the oscillations increase in
magnitude until the density between the peaks ap-
proaches zero and the ion cloud separates into concen-
tric shells. For N5100 and b51 this occurs at G;140
[see Fig. 23 (Dubin and O’Neil, 1988)]. For larger clouds
the G value required to separate the cloud into shells
increases and a few interstitial charges sometimes ap-
pear to be caught between the shells, although there has
been no systematic study of this phenomenon. The dis-
tance between shells is on the order of a Wigner-Seitz
radius a, as one would expect. The distance between
ions within a shell is also of order a. Thus the number of
ions per shell roughly scales as the surface area of the
shell, the number of shells roughly scales as N1/3, and
the average density equals n2 .

Shell structure is also observed when b is not equal to
unity. For bÞ1 the overall shape of the cloud is very
close to the spheroid of cold mean-field theory (see Fig.
24), but the cloud consists of concentric nested shells.
The number of particles per unit area is approximately

FIG. 23. Density as a function of spherical radius for N
5100,G5140,a5b51. Position is in units of (3e2/mvz

2)1/3,
density is in units of (3e2/mvz

2)21. From Dubin and O’Neil
(1988).
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the same on each shell, and the distance between shells
is also constant, of order the Wigner-Seitz radius a. This
implies that the inner shells are typically not spheroids
(ellipses of revolution), since the figure obtained by
drawing a curve where each point on the curve is equi-
distant from an ellipse is not itself an ellipse. Instead, the
inner shells are spheroidlike surfaces of revolution
(Schiffer, 1995). The reason for this behavior will be dis-
cussed in Sec. IV.D.2. For b→` (i.e., vz→0) the plasma
becomes cylindrical, and concentric cylindrical shells are
observed to form (Rahman and Schiffer, 1986). When
b→0 (i.e., vz→`) the charges are compressed into a
2D system in the x-y plane, and the system forms a
distorted 2D hexagonal lattice rather than shells (Rafac
et al., 1991; Bedanov and Peeters, 1994). The 2D struc-
ture is similar to the bounded vortex lattices observed in
superfluid helium, since such vortices also interact via a
repulsive Coulomb potential, albeit of logarithmic rather
than 1/r form (Campbell and Ziff, 1979).

Concentric shell structures have been observed in ex-
periments with Be1 ion plasmas that have been laser
cooled into the strongly coupled regime (Gilbert, Bol-
linger, and Wineland, 1988). Figure 25 shows a sche-
matic diagram of the apparatus used in these experi-
ments. Three laser beams (perpendicular cooling beam,
diagonal cooling beam, and probe beam) intersected the
plasma cloud, exciting atoms in the various shells, and
the resulting fluorescence was focused onto a photon-
counting imaging tube located at one end of the cylin-
drical electrode assembly. The probe beam could be
translated along the z axis in order to observe how the
radii of the shells varied with z.

Figure 26 shows three images of shell structure to-

FIG. 24. Particle positions as a function of cylindrical radius r
and axial position z in a crystallized (T50) plasma of N
51028 charges, b52.0. Dashed curve is the plasma edge in
cold mean-field theory.
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gether with a length scale. Figure 26(a) shows a single
shell for a small rather elongated cloud (N.20,a.6.5),
Figure 26(b) shows sixteen shells (probe-beam fluores-
cence only) for a much larger, nearly spherical cloud
(N.15 000,a.0.8), and Fig. 26(c) shows eleven shells
plus a central column for the same cloud under different
trap parameters (and therefore different aspect ratio, a
.2.4). In this latter image, fluorescence from all three
lasers is shown. The number of shells and the spacing
between the shells is in qualitative agreement with the
results of the computer simulations.

While in many cases the shells were spheroidlike, as
expected from theory, in some cases the shells were
open cylinders whose lengths varied so that the cylinders
fit within an overall spheroidal shape. Figure 26(c) is an
example of such cylindrical structure: it is apparent that
the shells cut by the diagonal beam have the same cylin-
drical radius as those cut by the transverse probe and
cooling beams, although the diagonal beam cuts these
shells at different values of z. It has been suggested that
shear between the shells (induced perhaps by laser

FIG. 25. Schematic diagram of apparatus used to image shell
structure of strongly correlated Be1 ion plasmas (Gilbert, Bol-
linger, and Wineland, 1988). Three laser beams excite atoms in
the various shells, and the resulting fluorescence is focused
onto a photon-counting imaging tube.

FIG. 26. Experimental images of shell structures: (a) A single
shell in a cloud containing approximately 20 ions. (b) Sixteen
shells in a cloud containing about 15 000 ions with a.0.8; (c)
Eleven shells plus a central column in the same cloud as (b)
with a.2.4. This image shows ion fluorescence from all three
laser beams. From Gilbert, Bollinger, and Wineland (1988).
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torques) may account for this discrepancy between the
experiments and theory based on thermal equilibrium.
However, no definite explanation of this effect has been
found as yet.

In the simulations the ions appear to be well confined
within the shells—ions rarely hop from one shell to an-
other. This observation can be quantified by measuring
the mean-square change in the radial position of the ions
in molecular dynamics simulations when the cloud is
spherical (Dubin and O’Neil, 1988):

^@dr~ t !#2&5
1

MN (
i51

N

(
j51

M

@ri~ t j1t !2ri~ t j!#
2, (4.12)

where t j2t j21 is a constant time offset and t,t j2t j21 .
For the N5100, G5140, and b51 case of Fig. 23, one
observes that ^@dr(t)#2& is almost constant. On the other
hand, ions do diffuse within the shells. This can be seen
by examining the mean-square change in z position,
^@dz(t)#2&, defined in an analogous manner to Eq.
(4.12). This function increases linearly with time pro-
vided that ^@dz(t)#2& is small compared to the radius of
the cloud (see Fig. 27), so we may obtain an average
diffusion coefficient in the z direction through the defi-
nition ^dz2(t)&52Dzzt . As G increases, Dzz is observed
to decrease (see Fig. 28), but it remains nonzero even at
rather large G values, showing no abrupt transition to a
crystallized state. Thus the system behaves like a fluid
within each shell, but can be characterized as a solid in
the direction perpendicular to the shells, since charges
are localized within a given shell. Similar behavior is
observed in smectic liquid crystals.

For very large values of G the particle diffusion within
the shells ceases and the charges in each shell are con-
fined to a distorted 2D hexagonal lattice. In addition,
there can be a few ‘‘interstitial’’ charges caught between
shells. The hexagonal symmetry is immediately apparent
when one views one of the shells in the rotating frame.
Figure 29 shows a projection of one-half of the outer
shell for an N5256 spherical plasma (O’Neil, 1988).

FIG. 27. Mean-square change in position versus time for the
plasma shown in Fig. 23 and for Vc /vz510. Taken from Du-
bin and O’Neil (1988). Position is measured in units of
(3e2/mvz

2)1/3, time is in units of vz
21.
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While most charges have six nearest neighbors in a hex-
agonal arrangement, twelve pentagonal defects also oc-
cur. There is always an ion at the center of the pentagon,
although in some cases this charge is an interstitial. This
state is a local equilibrium that can be loosely thought of
as the G5` or T50 limit. However, there are many
other local minima in the potential energy of the system.
Many simulations have been run in which clouds have
been cooled to large G values starting with different ini-
tial conditions, and, while the final state can vary slightly
from case to case, the overall hexagonal structure within
the shells is preserved.

An example of a larger system is also displayed in
Figs. 30 and 31. In Fig. 30 the equilibrium positions of
N54096 charges cooled to a local minimum-energy

FIG. 28. Average single-particle diffusion in z direction as a
function of G in spherical plasmas. Squares N5100; circles N
5256; Vc /vz510. Position is measured in units of
(3e2/mvz

2)1/3, time is in units of vz
21. From Dubin and O’Neil

(1988).

FIG. 29. Half of the outer shell of a spherical cloud of N
5256 charges, projected onto the x2y plane (O’Neil, 1988).
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state with spherical symmetry are displayed as a func-
tion of cylindrical radius r and z. As can be observed
here, it is typically the case that the outer shell is the
best defined while the inner shells become progressively
less well defined and more interstitials appear. In some
cases, however, the shells nearest the center of the
plasma are also quite well defined, as though the par-
ticles in the center, far from the boundaries, preserved
some information concerning the overall spherical sym-
metry of the plasma (see, for example, Fig. 22).

The hexagonal structure in the outer shell of the large
plasma is immediately apparent when a projection of
half the shell is performed, as in Fig. 31. Here we have
also determined the number of nearest neighbors for
each particle in the shell using Wigner-Seitz construc-

FIG. 30. Particle positions as a function of cylindrical radius r
and axial position z in a crystallized plasma of N54096
charges, a5b51. Cold mean-field theory for the plasma edge
follows the dashed curve.

FIG. 31. Half of the outer shell of the N54096 cloud of Fig.
30. Wigner-Seitz construction employed to connect nearest
neighbors. Regions of dislocations are shaded.
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tion, and have connected the nearest neighbors. Several
defects in the structure are apparent; such defects must
occur in any lattice on a closed surface except for a few
special cases such as the Platonic solids. However, the
defects do appear to group together into areas sur-
rounded by relatively large regions of good hexagonal
order. Whether there is a preferred arrangement for the
defects on the surface is an outstanding question.

The number of defects have been studied carefully for
N&103 (Tsuruta and Ichimaru, 1993). The defects are
constrained by the geometry of the convex shell in which
they lie. Euler’s theorem (Britannica Online, 1998)
states that for any convex polytope the number of verti-
ces V , the number of edges E, and the number of faces
F satisfy V1F5E12. If we define N(x) to be the num-
ber of particles in the shell with x nearest neighbors, a
straightforward application of this theorem yields

(
x

~62x !N~x !512. (4.13)

If only N(5) and N(6) are nonzero, then Eq. (4.13)
implies that N(5)512. This result is consistent with the
defect structure for many cases. However, as one can see
in Fig. 31, other types of defects also occur: N(5) and
N(7) are nonzero, and particles with eight nearest
neighbors sometimes occur as well. However, Eq. (4.13)
must be satisfied. For example, in the N54096 case
shown in Fig. 31, the number of particles in the outer
shell is 1040, and N(5)549, N(7)535, N(8)51; these
numbers satisfy Eq. (4.13).

Of course the number of defects quoted above are
only approximate, particularly for the larger clouds.
There are many local minimum-energy states with dif-
fering numbers of defects. Since these defects distort the
surrounding lattice they cost energy, and so the
minimum-energy state is expected to have a small num-
ber of defects. By carefully cooling and reheating the
cloud several times one can anneal the cloud and come
close to the absolute minimum-energy state; however,
for large N, constraints on computer time do not allow
one to be sure of finding the absolute minimum. For
example, for the N5256 case displayed in Fig. 29,
N(5)512 and there are no other types of defects in the
outer shell. In the simulations performed by Tsuruta and
Ichimaru (1993) the system was cooled to a slightly dif-
ferent minimum-energy state, with N(5)516 and N(7)
54. Nevertheless, the overall trends displayed in Fig. 32
of increasing numbers of defects but a smaller percent-
age of defects with increasing shell size do appear to
occur even when considerable effort is employed to find
the minimum-energy states.

The value of G required to crystallize the charges
within the shells appears to vary sensitively with N and
b. This has not been studied carefully because the melt-
ing temperature also appears to vary sensitively with the
particular local minimum configuration in which the sys-
tem is initially trapped. Nevertheless, it may be useful to
discuss a few particular cases. For b51 and N5100 the
charges continue to diffuse even for G values of 800–
1000, whereas for the b51, N5256 case diffusion ceases
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at G;380 for the local minimum whose outer shell is
depicted in Fig. 29. These G values are considerably
larger than the critical value G.174 for a fluid-bcc tran-
sition in an infinite homogeneous system. Furthermore,
the observed shell structure is incompatible with bcc
symmetry.

The differences between bcc symmetry and the shell
structure are apparent in the probability function c(r)
(Rahman and Schiffer, 1986; Dubin and O’Neil, 1988).
This function provides the probability density of finding
two charges at a distance r from each other, averaged
over some given set of particles. For an infinite homoge-
neous system, c(r)511g(r), where g(r) is the angle-
averaged correlation function. c(r) is related to the co-
ordination number N(r) by the equation

N~r !5n2E
0

r
c~r !4pr2dr . (4.14)

The coordination number is the average number of par-
ticles within a distance r of any given charge in the set.
This function can be used to determine the average
number of nearest neighbors around each charge.

Figure 33(a) shows c(r) for the interior of the crystal-
line cloud of N54096 charges shown in Figs. 30 and 31,
counting only particles with positions ri<10a in order to
avoid surface effects (the particles in the outer shell
have fewer nearest neighbors than those in the interior

FIG. 32. Number of particles N(x) with x nearest neighbors in
the outer shell of a spherical crystallized plasma with N par-
ticles; (a) 4<N<60; (b) 32<N<1024. From Tsuruta and Ichi-
maru (1993).
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of the cloud). Also shown for comparison is c(r) for a
bcc lattice of the same density. As can be seen from Fig.
34(a), which plots c(r) versus the coordination number
N(r), the first peak in c(r) contains about 14 charges,
which equals the number of first and second nearest
neighbors of the bcc lattice. However, there is no other
resemblance between the correlation function of the bcc
lattice and that of the cloud. The decaying oscillations
observed in c(r) are reminiscent of the fluid phase and
are not substantially modified by increasing N up to val-
ues as high as 20 000 [the largest number that has been
simulated so far (Schiffer, 1995, p. 191)]. From such a
correlation function one might conclude that the charges
are in a disordered or glassy state.

However, if one considers the correlations between
charges only within a given shell, the order apparent in
Fig. 29 or 31 reemerges. Figure 33(b) displays c(r)
counting only the charges within the outer shell of the
same cloud of N54096 charges as in Fig. 33(a). Also
shown is c(r) for a 2D hexagonal lattice. The 2D hex-
agonal lattice is apparent in both the position of the
peaks and the number of nearest neighbors within the
shell. The number of nearest neighbors can be deter-
mined by evaluating the 2D coordination number

N2D~r !5sE
0

r
c~r !2prdr , (4.15)

where s is the average number of particles per unit area
in the shell. The probability function is plotted versus
N2D(r) in Fig. 34(b), showing that there are six nearest
neighbors in the first peak of c(r) and twelve particles in
the next two peaks, as expected for a 2D hexagonal lat-
tice.

FIG. 33. Spatial correlation in a mesoscopic plasma: (a) Two-
particle probability function c(r) within the cloud of N
54096 charges shown in Figs. 30 and 31; (b) Same as (a) but
only counting charges within the outer shell.
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Apparently, the concurrence of good two-dimensional
order within a shell along with low three-dimensional
order is caused by a lack of spatial correlation between
charges in neighboring shells. The number of charges
per unit area is nearly the same in each shell. The 2D
lattices in neighboring shells then go ‘‘out of phase’’ with
each other as one moves from point to point along the
shell, since an equal interparticle spacing will subtend a
different angle in different shells.

The lack of spatial correlation between shells explains
the 2D hexagonal structure observed in the simulations.
It is well known that the preferred lattice structure of a
2D one-component plasma of charges confined in a
plane is 2D hexagonal (Cole, 1974). In the shell-
structure phase each shell can be thought of as a 2D
one-component plasma, distorted into a closed surface
and substantially uncorrelated with the other shells;
hence the 2D hexagonal lattice. Indeed, this picture of
the system forms the basis of a useful model of the shell-
structure phase that we consider in Sec. IV.D.

C. Large plasmas

We say that a plasma is large when the influence of
the surface is limited to a surface layer that is thin by
comparison to the plasma dimensions. Rather than the
shell structure observed in mesoscopic plasmas, large
plasmas have interior correlation properties that are the
same as those for an infinite homogeneous one-
component plasma. Therefore we first review the ther-
mal equilibrium properties of the infinite homogeneous
OCP.

FIG. 34. Determination of nearest neighbors: (a) c(r) of Fig.
33(a) plotted vs coordination number N(r); (b) Same as (a)
but only counting charges within the outer shell.
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1. The correlation function of the one-component plasma

In an infinite homogeneous plasma the correlation
function g(r1 ,r2), defined by Eq. (4.8), is a function only
of r12r2 . In a weakly correlated OCP an expansion of
the second equation in the equilibrium Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy in
the small parameter G yields the well-known expression
for g(r) (Montgomery and Tidman, 1964; Ichimaru,
1973):

g~r!5
2e2

kT

e2r/lD

r
. (4.16)

Thus the correlation length in a weakly correlated
plasma is the Debye length lD : particles separated by a
distance larger than lD are screened from one another
and so are uncorrelated. However, when G*1 this ex-
pression is no longer valid. The Debye length becomes
less than an interparticle spacing and is no longer physi-
cally meaningful. In the strongly correlated regime, g(r)
has been evaluated using large-scale Monte Carlo simu-
lations of the homogeneous OCP in periodic boundary
conditions (Hansen, 1973; Slattery, Doolen, and DeWitt,
1980; Stringfellow, DeWitt, and Slattery, 1990), as well
as through analytic approximations such as the
hypernetted-chain approximation (Ichimaru, Iyetomi,
and Tanaka, 1987, and references therein). Simulation
results for g(r) are displayed in Fig. 35 for different val-
ues of G. It is apparent that when G.1 the length scale
over which g approaches zero (the correlation length) is
of order a rather than lD . Furthermore, as G increases
beyond about 2, oscillations begin to appear in g(r).
These oscillations signify the onset of local ordering—a
characteristic of a fluid. However, there is apparently no
discontinuous vapor-liquid phase transition; rather, the
system behaves like a fluid beyond the critical point.
This observation is consistent with the hypothesis that a
vapor-liquid phase transition requires an attractive com-
ponent to the interaction between particles (Alder and
Wainwright, 1957).

FIG. 35. The two-particle correlation function g(r) for a one-
component plasma at various values of the correlation param-
eter G. From Ichimaru (1982).
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As G increases further, the oscillations in g(r) become
more pronounced and the correlation length increases.
Finally, at G;174 a first-order phase transition to a bcc
crystalline phase with long-range order is predicted to
occur. This prediction is based on a comparison of the
Helmholtz free energy of the fluid phase to that of the
crystalline phase and is considered in more detail in the
next subsection. For a perfect bcc lattice, g(r) is aniso-
tropic. At T50 it consists of an infinite sum of delta
functions at the bcc lattice sites,

g~r!5n2
21( 8

p
d~r2p!21, (4.17)

where the set of lattice points is p/a5(3/8p)1/3@ x̂(l2m
1n)1 ŷ(l1m2n)1 ẑ(2l1m1n)# for integers l, m,
and n; the prime on the sum indicates that the point p
50 is not included.

The Fourier transform of g(r) is also of interest:

S~k!511n2E d3re2ik•r
„g~r!11…. (4.18)

This function, called the static structure factor, can be
directly measured in Bragg scattering experiments. In
the fluid phase, S is a function only of the magnitude of
k and, like g(r), displays decaying oscillations (see Fig.
36). However, in the solid phase S(k) becomes aniso-
tropic and is sharply peaked around particular k values
corresponding to the lattice reciprocal to $p%. At zero
temperature, Eq. (4.17) can be used in Eq. (4.18) to ob-
tain

S~k!5N(
g

D~g2k!, (4.19)

where D(x) is a Kronecker delta function and the set $g%
is the set of lattice points reciprocal to the set $p%. For
example, when $p% is a bcc lattice $g% is fcc, and vice
versa (Kittel, 1976). Thus measurement of S(k) provides
direct evidence of spatial correlations.

Recently, Bragg scattering experiments that probe
S(k) were performed (Tan, Bollinger, Jelenkovic, and

FIG. 36. The static structure factor S(k) for a one-component
plasma at various values of G. From Ichimaru (1982).
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Wineland, 1995a; Tan et al., 1995b, p. 387; Itano, Bol-
linger, Tan, Jelenkovic, Huang, and Wineland, 1998). In
these experiments a laser beam was directed along the z
axis of the trap. A small amount of this light was scat-
tered by the ions and it was this signal, picked up with a
photo cathode positioned as in Fig. 25, that was used to
reconstruct S(k). This was difficult since the laser oper-
ated in the UV at 313 nm and the ions were spaced by
microns, so the scattering angle was quite small. Never-
theless, by using polarized light and by careful position-
ing of a beam dump for the unscattered beam, Tan et al.,
were able to observe Bragg rings in the scattered light.
An image of the rings is shown in Fig. 37(a) for a cloud
with 23105 Be1 ions. The pattern is partially blocked by
the beam dump and by a wire mesh; nevertheless, sev-
eral rings can be observed which are evidence of long-
range order. The angle u subtended by a Bragg ring is
inversely proportional to a, a fact which was verified by
changing the plasma density using laser torque. Figure
37(b) is a differential scattering cross section (i.e., scat-
tered light intensity versus scattered wave number k)
generated from Fig. 37(a) by averaging the photon
counts azimuthally about the z axis. The scattered wave
number k is determined from the scattering angle u ob-
served in Fig. 37(a) via the Bragg relation k
52q sin(u/2).qu , where q is the wave number of the
incident light. Thus each Bragg peak in Fig. 37(b) corre-
sponds to a ring in Fig. 37(a).

Several such patterns were created by heating and re-
cooling the cloud. Figure 38(a) shows a histogram of the
number of observed Bragg peaks as a function of their
position ka. Here a is measured from the density of the
plasma, known to about 5% accuracy from the rotation
frequency. The positions of the peaks are consistent with
bcc order. Even better agreement is obtained by allow-
ing a to be a fitting parameter, as shown in Fig. 38(b). A
histogram was employed in Fig. 38 because in any one
ring pattern, only a few of the many possible bcc Bragg
peaks were observed [see Fig. 37(b)]. When the plasma

FIG. 37. Evidence of long-range order: (a) Observed Bragg
scattering pattern from N52.73105 ions. The pattern is par-
tially blocked by the shadow from various trap components.
(b) Intensity vs scattered wave number k normalized to the
Wigner-Seitz radius a. From Tan et al. (1995a, 1995b) and
Itano et al. (1998).
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was heated and recooled different ring positions would
emerge. The reason for this behavior became apparent
after a second more sophisticated experiment, in which
the Laue pattern was directly observed using a strobo-
scopic technique that removed the effect of plasma ro-
tation (Tan et al., 1995b; Itano et al., 1998). The Bragg
scattering pattern from a single stationary crystal con-
sists of dots (the Laue pattern). The pattern of dots de-
pends on the orientation of the crystal with respect to
the incident beam. In the experiments the crystal ro-
tated, so the dots became rings. However, at any given
point in a ring, the light intensity was modulated at some
multiple of the rotation frequency. This modulation was
observed and used to determine the rotation frequency
to high accuracy. The photon fluorescence detector used
to image the Bragg pattern was strobed at this fre-
quency, resulting in an image of the Laue dots. The ob-
served Laue patterns were often consistent with a single
bcc crystal oriented with a fourfold symmetry axis [the
(100) plane] along the laser [Fig. 39(a)]. Although a
square pattern is also consistent with an fcc (100) plane
oriented along the laser, the absolute magnitude of the
scattering angles was consistent only with bcc order.
Other orientations also occurred. In Fig. 39(b), a sixfold
symmetry pattern consistent with the bcc (111) plane
oriented parallel to the beam is shown, and in Fig. 39(c),
a pattern consistent with the orientation of the bcc
(1,1,25) plane along the laser is shown. Apparently in
each case displayed here the pattern was created by a
single bcc crystal rather than several randomly oriented
bcc crystallites, which would have produced rings at ev-
ery allowed Bragg angle rather than a single Laue pat-
tern. These data are the first direct evidence of crystal-
lization in an effectively infinite homogeneous OCP.

FIG. 38. (a) Histogram counts the number of observed peaks
(not intensity) from various diffraction patterns of the same
cloud (N52.73105 ions), with no adjustable parameters; (b)
Same as (a), but allowing a to be determined as a fitting pa-
rameter; now even large k peaks fit the bcc lattice pattern.
Ticks indicate positions of Bragg peaks for various lattice
types. From Tan et al. (1995a, 1995b), and Itano et al. (1998).
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2. Correlation energy

The thermodynamic expression for the energy of an
infinite OCP is given by (Brush, Sahlin, and Teller,
1966)

U5
3
2

NkT1Ucorr , (4.20)

where the first term is the average kinetic energy and
the second term is the average potential energy due to
Coulomb interactions:

Ucorr

NkT
~G!5

e2n2

2kT E d3r
g~r!

r
. (4.21)

Because there is a neutralizing background charge the
potential energy would be zero except for correlations.
Therefore the average potential energy is often referred
to as the correlation energy; it is also often referred to as
the excess internal energy.

This quantity has been carefully studied through both
analytic approximations and large-scale numerical simu-
lations. For nearly uncorrelated plasmas, the classic ana-
lytic expansion techniques for neutral gases such as the
virial expansion do not work because of the long-range
nature of the Coulomb interaction. However, for G!1
one can employ Eq. (4.16) in Eq. (4.21) to obtain the
Debye-Huckel approximation to the correlation energy
(Landau and Lifshitz, 1980, p. 242),

Ucorr

NkT
52

2pe4n2

~kT !2 E
0

`

dre2r/lD52
)

2
G3/2. (4.22)

Although the interparticle potential is repulsive, the cor-
relation energy is negative because of the uniform neu-
tralizing background. Around a given charge a correla-
tion hole develops in which it is unlikely to find other
particles due to the repulsion between like charges. This
correlation hole has an opposite neutralizing charge as-
sociated with it because of the neutralizing background,
and the hole and the charge at its center have a negative
potential energy.

The idea of a correlation hole can be used to estimate
the correlation energy of the OCP for larger values of G
(Ichimaru, 1982). Consider the situation depicted in Fig.
40. For large G the charges repel one another and are
roughly equally spaced at a distance of order a . We then
dissociate the infinite homogeneous OCP into a collec-
tion of N charges together with a spherical piece of the
uniform background of radius a and equal but opposite
charge. Since the spheres do not overlap, and since the
total charge within each sphere is zero, there is no inter-
action between the spheres and the potential energy is
just the sum of the potential energy of each sphere. A
straightforward electrostatics calculation provides us
with this energy:

Ucorr
ionsphere

NkT
52

9
10

G . (4.23)

The correlation energy has been evaluated numeri-
cally by a number of authors over several decades in a
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FIG. 39. (Color) Images of
Laue patterns created by Bragg
scattering off of different
clouds, made by gating the pho-
tocathode at the rotation fre-
quency. From Tan et al. (1995a,
1995b), and Itano et al. (1998).
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
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FIG. 39. (Continued).
FIG. 40. Dissociation of an infinite one-component plasma
into ion spheres.
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
series of increasingly accurate Monte Carlo simulations,
as faster and faster computers became available. The
latest work provides separate results for Ucorr in the fluid
and solid phases. In the fluid phase the Monte Carlo
data are well described for G>1 by the semiempirical
fitting function

Ucorr
fluid

NkT
5aG1bG1/31c , (4.24)

where a520.90, b50.590673, c520.26569 (Stringfel-
low, DeWitt, and Slattery, 1990). Note that at large G
values, Eq. (4.24) implies that Ucorr is close to the ion-
sphere model, Eq. (4.23).

Turning to the solid phase, for which G@1, we use an
expansion of Ucorr in powers of (1/G):

Ucorr
solid

NkT
5A21G1A01

A1

G
1

A2

G2 1¯ . (4.25)

TABLE I. Expansion coefficients in the free energy of the
solid phase for various lattices.

A21 A0 ^ln(vp /vn)& A1 A2 A3

bcc 20.895929 1.5 2.4939 10.84 352.8 1.7943105

fcc 20.895874 1.5 2.4537 12.35 236.46 3.0513105

hcp 20.895838 1.5 2.4481 ← unknown →
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The constants A21 and A0 follow from harmonic lattice
theory: A053/2 is the thermal correction associated with
an ideal gas of phonons, while A21 is half the Madelung
energy of the static lattice. Values of A21 are listed for
several lattices in Table I; note that they are all close to
the ion-sphere model. The bcc and fcc constants differ
only by one part in 1024, so the bcc lattice is only
slightly more stable than the fcc lattice at large G values.
This is an important property of the OCP to which we
shall return in Sec. IV.D.4 when we consider surface
effects on the lattice structure.

The higher-order constants A1 , A2 , etc., represent
the corrections to the harmonic lattice approximation
when phonon-phonon collisions are taken into account.
For many years it was thought that A1 was identically
zero. However, more recently A1 has been evaluated
analytically for fcc and bcc lattices; the values are dis-
played in Table I (Nagara, Nagata, and Nakamura, 1987;
Dubin, 1990). Exact values for the higher coefficients
are not known, but the numerical Monte Carlo data for
the solid phase Ucorr

solid are well fitted by keeping A2 and
A3 and dropping higher terms (Dubin, 1990):

Ucorr
solid

NkT
5A21G1A01

A1

G
1

A2

G2 1
A3

G3 . (4.26)

The values of A2 and A3 used in the fits to the Monte
Carlo data are displayed in Table I.

The results for U in the fluid and solid phases are
shown in Fig. 41. We can use these results to show that
there is a first-order fluid-solid phase transition that lib-
erates energy when the fluid freezes.

3. Free energy, the freezing transition, and correlation
pressure

In order to determine the location of the phase tran-
sition, one compares the Helmholtz free energy of the
fluid phase to that of the solid phase. The Helmholtz
free energy rather than the Gibbs free energy is used
because the density of the system is fixed by the uniform
background density n2 .

The Helmholtz free energy F of the OCP is related to
the internal energy U [see Eq. (5.2)] through

FIG. 41. Internal energy U vs correlation parameter G for an
infinite classical one-component plasma for both fluid and solid
phases: (dashed line, bcc; solid line, fluid). The ion-sphere en-
ergy 20.9G is subtracted in order to more easily observe the
variation of U with G.
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U52T2
]~F/T !

]T D
V ,N

. (4.27)

By integrating this equation one can find F in terms of
an integral over U:

F~T !

T
52E

T0

T U~T8!

T82 dT81
F~T0!

T0
, (4.28)

where T0 is a reference temperature where F is known.
To evaluate the fluid-phase free energy, one takes T0
very large (G0→0) so that the reference system is a
weakly correlated OCP for which

F~T0!5NkT0@ ln@n2ld
3 #21# , (4.29)

where ld(T0)5(h2/2pmkT0)1/2 is the thermal deBro-
glie wavelength. The integral in Eq. (4.28) can be carried
out for the fit to the fluid energy of Eq. (4.24), and one
obtains, for G.1,

FfluidNkT ~T !5aG13bG1/31~31c !ln G

2@a13b11.1516#1
3
2

lnF2\2kT

me4 G .

(4.30)

The constant 1.1516 arises from numerical integration of
Monte Carlo data for U from 0<G<1 (Slattery,
Doolen, and DeWitt, 1982). Note that T0 in Eq. (4.29) is
replaced by T in the last term of Eq. (4.30) because U
→3NkT/2 in the G→0 limit.

For the free energy of the crystalline phase one uses
Eq. (4.26) for U, taking the reference temperature to be
small so that F(T0) is now given by the results of har-
monic lattice theory:

Fharmonic~T !

NkT
5A21G13 lnS \vp

kT D2
1
N ( 8

n
lnS vp

vn
D ,

(4.31)
where this form assumes \vp!kT . The sum in the last
term runs over the frequencies vn of the 3N indepen-
dent phonon modes of the lattice, neglecting zero-
frequency modes. This term, referred to as the phonon
entropy by some authors, becomes an average over the
first Brillouin zone as N→` , denoted as ^ln(vp /vn)&.
This average has been evaluated for various

FIG. 42. Free energies of the solid and fluid phases for an
infinite classical one-component plasma. The ion-sphere en-
ergy 20.9G is subtracted from F/NkT so that the crossing of
the curves can be more easily seen.
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lattice types, and the values are displayed in Table I.
The solid free energy is equal to

Fsolid~T !

NkT
5

Fharmonic~T !

NkT
2

A1

G
2

A2

2G22
A3

3G3 . (4.32)

The solid and fluid free energies are then compared to
determine where they are equal. Note that Planck’s con-
stant enters in the same way for both the fluid and the
solid free energies and cancels out of the difference, so
the free-energy difference depends only on G. The solid
and fluid free energies are displayed in Fig. 42. The bcc
solid free energy is lower than the fluid free energy for
G.174. The value G5172 that is usually quoted for the
freezing transition (Nagara, Nagata, and Nakamura,
1987; Dubin, 1990) was obtained using the solid free en-
ergy of Eq. (4.32), but the form used for Ffluid was given
by a slightly less accurate expression than Eq. (4.30)
(Slattery, Doolen, and DeWitt, 1982), which was the
best available at the time. On the other hand, other au-
thors have recently obtained the value G5173 using mo-
lecular dynamics simulations and fitting functions of
comparable accuracy to Eqs. (4.24) and (4.26) (Farouki
and Hamaguchi, 1993). Clearly, the exact G value at the
phase transition is very sensitive to slight changes in the
fluid and solid free energies, because the fluid and solid
free-energy curves are nearly parallel near the intersec-
tion (Stringfellow, DeWitt, and Slattery, 1990).

At the phase transition there is a latent heat that fol-
lows from the energy and entropy difference of the solid
and fluid phases and is given by the jump in internal
energy shown in Fig. 41:

latent heat
NkT

5
DU

NkT
50.72. (4.33)

However, for an infinite OCP there is no volume change
at this first-order transition, since the density is set by
the uniform background.

The free energy for an fcc solid is also shown in Fig.
42. Note that the fcc free energy is only slightly larger
than the bcc free energy. Only small changes in the free
energies would be necessary to make the fcc lattice more
stable than the bcc lattice. The fcc lattice becomes more
stable than the fluid phase at G.184. In Sec. IV.D we
shall find that the addition of surface effects due to finite
size can cause a structural phase transition from bcc to
fcc.

Derivatives of the free energy yield other thermody-
namic functions. One such function, the pressure p, will
be of use in later sections. The pressure is defined as

p52
]F

]V D
T ,N

. (4.34)

This derivative can be evaluated explicitly by noting that
U/NkT is a function only of G. Taking a derivative of
Eq. (4.28) with respect to V , and taking T0 large so that
F(T0) is given by Eq. (4.29), yields the result

p5n2kTS 11
1
3

Ucorr

NkT
~G! D . (4.35)
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When G is small the pressure is given by that of an ideal
gas, p5n2kT . However, in the strongly correlated re-
gime the pressure is dominated by the potential energy
of the interacting charges and p'20.3n2e2/a , where
we have employed Eq. (4.23). The fact that both the
pressure and the derivative 2]p/]V are negative does
not imply that the OCP is unstable; the uniform neutral-
izing background charge provides a stabilizing force.

Equation (4.35) together with Eq. (4.33) implies that
the thermal pressure of the fluid phase differs from that
of the solid phase at the phase transition. In ordinary
fluids this is impossible, since phase equilibrium requires
that the pressures be identical. In the infinite OCP the
phases can be in equilibrium with different thermal pres-
sures because the uniform neutralizing background
makes up the pressure difference.

4. Thermodynamic functions for a large trapped plasma

In Sec. V, we shall discuss the thermodynamics of
trapped plasmas systematically. Here, we preempt a por-
tion of that discussion and relate the thermodynamic
functions for a large trapped plasma to those for an
OCP. As mentioned earlier, a plasma is said to be large
when the influence of the plasma surface is limited to a
thin surface layer. For the fluid phase, the thickness of
this surface layer is about a correlation length. For a
crystal, the thickness of the layer can be less than the
bulk correlation length because of dislocations near the
surface. The scale of the thickness is set by lD for weak
correlation and by a for strong correlation. In general,
we shall denote the thickness by l and assume that l is
small compared to all three plasma dimensions. In the
limit where the volume of the surface layer is negligibly
small compared to the volume of the plasma as a whole,
we shall see that the free energy of the trapped plasma
(as viewed in the rotating frame) is simply related to the
OCP free energy discussed in the last section.

The plasma energy in the rotating frame is given by

ER5^HR&5
3
2

NkT1E d3r1 .. .d3rN

3F S 1
2 (

iÞj
e2G~riurj!1(

i
efR~rj! D G fc

~s !~r1 ,. . . ,rN!,

(4.36)

where use has been made of Eqs. (2.8) and (4.4). The
averages can be written in terms of the reduced distri-
bution functions:

ER5
3
2

NkT1E d3r1efR~r1!n~r1!

1
N~N21 !

2 E d3r1d3r2e2G~r1ur2!r~2 !~r1 ;r2!.

(4.37)

Writing r(2) in terms of the correlation function g(r1 ,r2)
then yields the result
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ER5
3
2

NkT1E d3r1n~r1!FefR~r1!

1
1
2 E d3r2e2G~r1ur2!n~r2!G

1
1
2 E d3r1d3r2n~r1!n~r2!g~r1 ,r2!e2G~r1ur2!,

(4.38)

where N21 has been approximated by N.
For a large plasma, the second of the three terms in

this expression for ER is much larger than the other two.
It is useful to compare this term to the energy of a zero-
temperature mean-field plasma,

ER
~0 !5eE d3rfR~r!n ~0 !~r!

1
e2

2 E d3r1d3r2n ~0 !~r1!n ~0 !~r2!G~r1ur2!,

(4.39)

where n(0)(r) is equal to n2 out to the surface of the
cold mean-field plasma and is zero beyond. The surface
is a sharp boundary because lD50 for T50. The cold
mean-field plasma has the same number of particles, the
same rotation frequency, and the same trap parameters
as the actual plasma. The reader may recall that ER

(0)

was evaluated in Eq. (3.47) for the case of a spheroidal
plasma. The density difference Dn(r)[n(r)2n(0)(r) is
nonzero only within a distance l of the surface; both
n(r) and n(0)(r) must equal n2 in the plasma interior.
Spatial oscillation (or simply spatial variation) of n(r) is
possible only within the surface layer, because knowl-
edge of the surface position is necessary to define the
phase of the oscillation. Thus, for a large plasma, ER

(0) is
close in value to the second term in the expression for
ER in Eq. (4.38).

Formally, we shall show that the difference is negli-
gible in the limit where the volume of the surface layer is
negligible compared to the volume of the plasma as a
whole. To this end, consider the difference

ER2ER
~0 !5

3
2

NkT1E d3r1Dn~r1!FefR~r1!

1E d3r2e2G~r1ur2!n ~0 !~r2!G
1

1
2 E d3r1d3r2e2G~r1ur2!Dn~r1!Dn~r2!

1
1
2 E d3r1d3r2n~r1!n~r2!g~r1 ,r2!e2G~r1ur2!.

(4.40)

The second term can be rewritten as

*d3r1eDn~r1!@fR~r1!1fp
~0 !~r1!# ,

where fp
(0)(r1) is the space-charge potential for the cold

mean-field plasma. According to Eq. (3.18), fR(r)
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1f(0)(r) is a constant, say C, inside the cold mean-field
plasma. Also, because the cold mean-field plasma and
the plasma have the same number of charges,
*d3rDn(r) is zero. Thus the second term in Eq. (4.40)
can be rewritten as

E
outside

d3r1en~r1!@fR~r1!1fp
~0 !~r1!2C# , (4.41)

where the integral is over the volume outside the cold
mean-field plasma. The density n(r1) is nonzero only
out to a distance l beyond the surface of the cold mean-
field plasma. Near the surface, fR(r)1fp

(0)(r) differs
from C by only a small amount

fR~r!1fp
~0 !~r!.

x2

2
~ n̂•¹!2@fR~r!1fp

~0 !~r!# ,

where n̂ is the normal to the surface, x is the distance
from the surface, and the derivatives are evaluated just
outside the surface. First-order terms in x vanish
since ¹(fR1fp

(0)) is zero inside and continuous at
the surface. Thus integral (4.41) is of order
Al3en2(n̂•¹)2@fR1fp

(0)#;Aln2e2n2l2, where A is
the surface area of the plasma. By setting Aln2

5NDV/V , where DV is the volume of the correlation-
length-thick surface shell and V is the volume of the
plasma as a whole, and by noting that l is of order lD or
a, we obtain the estimates N(DV/V)kT or
N(DV/V)e2/a . The first term in Eq. (4.40) is of order
NkT and the last of order Ne2/a , so the second term is
negligible in the limit DV/V→0.

Similarly, the third term in Eq. (4.40), for which the
integrand is nonzero only when both r1 and r2 are within
a length l of the surface, is another surface contribution.
One can see this by writing this term as

1
2 E d3r1d3r2e2G~r1ur2!Dn~r1!Dn~r2!

5
e

2 E d3r2Dfp~r2!Dn~r2!,

where Dfp(r2) is the potential difference caused by
Dn(r1). Writing d3r2 as d2rdx where d2r is an area ele-
ment of the surface and x is a coordinate normal to the
surface, we integrate by parts, neglecting surface curva-
ture, to obtain

2
e

2 E d2rE dx
]Dfp

]x E
2`

x
dx8Dn~x8!.

Since ]Dfp /]x→0 as x→6` , we replace ]Dfp /]x by
its maximum magnitude, 4pen2l (this follows from the
Poisson equation ]2Df/]x2.24peDn). Since

E
2`

`

dxDn~x !50,

we estimate

E
2`

`

dxE
2`

x
dx8Dn~x8!
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to be of order n2l2. Then the magnitude of the third
term in Eq. (4.40) is of order A 2pe2n2ln2l2, which is
the same estimate that was obtained for the second
term. Thus the third term also is negligible in the limit
DV/V→0.

In this limit, we can also neglect contributions to the
integral in the fourth term for r1 and r2 values within the
surface layer. In the plasma interior, we may set n(r)
5n2 , g(r1 ,r2)5g(r12r2), and G(r1ur2).ur12r2u21; so
Eq. (4.40) reduces to the result

ER2ER
~0 !5U , (4.42)

where U is the internal energy of an OCP as given in Eq.
(4.20). Again we note that the mean-field electrostatic
energy dominates the energy of a large trapped plasma,
that is, ER

(0) is much larger than U. In an OCP this mean-
field energy does not appear because there really is a
uniform neutralizing background charge present, and
the self-energy of this background, which is not included
in Eq. (4.42), just cancels ER

(0) . Equation (4.42) was pre-
viously recognized to hold for the special cases of large
plasmas in slab geometry (Dubin, 1989) and spherical
geometry (Hasse and Avilov, 1991).

A word of caution should be added concerning the
neglected surface contributions. In the limit DV/V→0
these terms clearly are negligible, but for any real
trapped plasma DV/V is finite. In practice, there re-
mains the question of just how small DV/V must be for
the surface terms to be negligible. The answer to this
question is nontrivial and depends on the correlation
state of the bulk plasma. For example, the bulk correla-
tion energies for bcc and fcc crystals are the same to
within four significant figures [e.g., uUbcc2U fccu5(5.6
31025)Ne2/a at T50]. For the surface energy [i.e.,
(DV/V)Ne2/a] to be negligible compared to the differ-
ence between the bulk energies for the two crystal struc-
tures, it is necessary that DV/V be quite small. In Sec.
V.D.4 this question is discussed in detail, and it is argued
that the plasma must be about 60 lattice planes across
for surface terms to be negligible. For the fluid phase,
the condition is not so restrictive.

Equation (4.42) can be used to obtain the Helmholtz
free energy FR of a large plasma as seen in the rotating
frame. The free energy is related to the energy through
](FR /T)/]T52ER /T2 [see Eq. (5.2)]. Integrating this
equation with respect to T, and substituting for ER via
Eq. (4.42), we observe that the integral involving ER

(0)

yields ER
(0)/T because ER

(0) is independent of T, and the
integral involving U yields F/T where F is the Helmholtz
free energy of an OCP [see Eq. (4.28)]. Thus we are led
to

FR5ER
~0 !1F . (4.43)

This relation also follows from a physical argument: for
a large plasma, where the volume of the thin surface
shell is negligible, the entropy is determined by the bulk
plasma. However, the particle distribution function for
the bulk is the same as for an infinite OCP, so the
plasma entropy is the same as the OCP entropy. This
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observation, together with the relations FR5ER2TS
and F5U2TS lead to Eq. (4.43).

In Sec. V, we shall write other thermodynamic func-
tions as derivatives of FR . In general, FR depends on T,
v, N, B, and $Vj%, where the $Vj% are voltages on the
electrodes. Here, we note some consequences of the
separation FR5ER

(0)1F and of the distinct properties of
ER

(0) and F. As mentioned earlier, ER
(0) is much larger

than F. Also, ER
(0) increases with N faster than the first

power, that is, ER
(0) is nonextensive in the limit N→` ;

whereas, F is proportional to N and so is extensive. Thus
the nonextensive dependence enters only through ER

(0) ,
and this dependence is particularly simple because ER

(0)

does not depend on temperature (or on the state of cor-
relation). ER

(0) is completely determined by n2 [or,
equivalently, by v(Vc2v)] and the shape and size of
the cold mean-field plasma. The shape is determined by
some combination of v, N, B, and $Vj%. In contrast, F/N
depends on n2 and T (and through these on the corre-
lation state), but does not depend on plasma shape or
size.

As simple examples, consider the relations [see Eq.
(5.9)]

L5
]FR

]v D
T ,N ,B ,$Vj%

, (4.44)

S52
]FR

]T D
v ,N ,B ,$Vj%

, (4.45)

where L is the mean angular momentum. Since ER
(0) is

much larger than F, Eq. (4.44) can be written to a good
approximation as L.]ER

(0)/]vuT ,N ,B ,$Vj%
. Thus L is non-

extensive and is largely independent of T (and the cor-
relation state of the plasma). In the next section we shall
obtain an explicit expression for the small temperature-
dependent correction. On the other hand, since ER

(0) is
independent of T, Eq. (4.45) reduces, as expected, to the
entropy for an OCP, S52]F/]Tun2 ,N

. Since F is exten-
sive, S is extensive. Thus s[S/N is intensive and de-
pends only on n2 and T (Dubin and O’Neil, 1986a,
1986b).

A differential Tds relation for a large plasma can be
written as

Tds5T
]s

]TU
n2

dT1T
]s

]n2
U

T

dn2 , (4.46)

where the coefficients are related to well-known thermo-
dynamic functions for an OCP. For example, the first
coefficient can be written as

T
]s

]TU
n2

5
T

N

]S

]TU
n2

5
1
N

cn2
, (4.47)

where cn2
is the specific heat at constant density. By

using S52]F/]Tun2 ,N
and the relation

Ucorr52T2]@~F2F ideal!/T#/]Tun2 ,N
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we obtain

cn2

Nk
5

3
2

2G2
]

]G F Ucorr

NkT
~G!/G G . (4.48)

As shown in Fig. 43, the specific heat displays large de-
viations from the ideal-gas value of 3/2, approaching the
classical harmonic lattice value of 3 in the strongly cor-
related limit.

The second coefficient can be written as

T
]s

]n2
U

T

52
TV

n2

]s

]VU
T ,N

5
TV

n2

]2~F/N !

]V]T U
T ,N

,

where V5N/n2 is the plasma volume. By using Eq.
(4.34), we obtain

T
]s

]n2
U

T

52
T

n2
2

]p

]TU
n2

, (4.49)

where p5p(n2 ,T) is the OCP pressure given in Eq.
(4.35).

Thus Eq. (4.46) reduces to

Tds5
1
N

cn2
dT1T

]p

]TU
n2

dS 1
n2

D , (4.50)

which is well known from the thermodynamics of homo-
geneous fluids (Zemansky, 1968). It is instructive to
compare this form for Tds to that in Eq. (5.10), which is
the analogous result for a general (possibly mesoscopic)
trapped plasma. The general form includes differentials
of E, L, N, B, and $Vj%, but these quantities enter Eq.
(4.50) only through their effect on T and n2 . Clearly,
the separation FR5ER

(0)1F has a powerful simplifying
effect.

As a simple application of Eq. (4.50), let us consider
an adiabatic change of state

Tds505
cn2

dT

N
2

T

n2
2

]p

]T
dn2 . (4.51)

In an uncorrelated plasma, p5n2kT and cn2
5c ideal ,

where c ideal53Nk/2 for classical point charges. We then
find the usual adiabatic relation between T and n2 for
an ideal gas:

] ln T

] ln n2
D

s

5
Nk

c ideal
. (4.52)

FIG. 43. Specific heat at constant density, cn2
(G), for an infi-

nite classical one-component plasma.
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However, in a strongly correlated plasma the relation is
modified, since both p and cn2

depend on G; see Eqs.
(4.48) and (4.35). As discussed in Sec. IV.C.3, for G*3
the pressure actually changes sign as Ucorr /NkT be-
comes negative, so one might imagine that during an
adiabatic expansion the correlated plasma would actu-
ally heat rather than cool. However, this is not the case,
although the rate of cooling during the expansion is re-
duced compared to Eq. (4.52) (Dubin and O’Neil,
1986b). In fact, using Eq. (4.35), we can express Eq.
(4.51) succinctly in terms of the specific heat, which is
non-negative:

] ln T

] ln n2
D

s

5
Nk

cn2

S 11
cn2

2c ideal

3Nk
D . (4.53)

The technique of adiabatic expansion has been proposed
as a method for cooling electron plasmas into the
strongly correlated regime (Dubin and O’Neil, 1986b).
The technique works best when the electron cyclotron
motion is quantized, in the lowest Landau level, but the
motion parallel to B remains classical. In this case an
adiabatic increase in the length of the plasma can be
thought of as a one-dimensional adiabatic expansion,
because the perpendicular degrees of freedom associ-
ated with cyclotron motion are ‘‘frozen out.’’ If the
plasma is uncorrelated, c ideal5Nk/2 and Eq. (4.52) im-
plies a much larger decrease in temperature than for a
3D expansion, where c ideal53Nk/2. However, correla-
tions reduce the cooling rate, because correlations in-
crease cn2

above Nk/2 (see Fig. 43). [As discussed in
Sec. IV.A, Eq. (4.53) remains valid even if the cyclotron
motion is quantized because correlations remain classi-
cal provided that \vp!kT .] Equation (4.53) shows that
cooling is slowed by the strong-correlation state of the
plasma; nevertheless, quantization of the cyclotron mo-
tion still makes the cooling rate larger than for the case
of 3D expansions.

Finally, we consider the implications of Eq. (4.43) for
the freezing transition in a large plasma. In the previous
section, the freezing transition for an infinite homoge-
neous OCP was determined by finding the G value at
which Fsolid becomes smaller than Ffluid. One minimizes
the Helmholtz free energy F, rather than the Gibbs free
energy, because the neutralizing background charge
fixes the plasma density (or volume). In Sec. V, we shall
show that the free energy FR must be a minimum for a
trapped plasma that is in thermal contact with a heat
and angular momentum reservoir. When the rotation
frequency of the reservoir is fixed and the temperature is
gradually lowered, a freezing transition occurs when
FR

solid becomes smaller than FR
fluid (we assume that the

plasma is large enough that the transition is sharp).
Since ER

(0) is independent of the temperature and of the
correlation state of the plasma, the relation FR5ER

(0)

1F shows that the freezing transition for a large plasma
occurs at the same temperature (or G value) as it does
for an infinite homogeneous OCP. There is no change in
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bulk density just as for the infinite OCP phase transition,
since n2 is fixed by the rotation frequency of the reser-
voir.

On the other hand, if the plasma is not connected to
an angular momentum reservoir, so that angular mo-
mentum rather than rotation frequency is fixed as T var-
ies through the transition, there now will be a change in
rotation frequency and a concommitant change in den-
sity at the phase transition. However, FR is not exten-
sive, increasing with N more rapidly than the first power
of N, and this implies that the density change is small,
becoming negligible for a sufficiently large plasma.
Physically, the cold mean-field energy renders negligible
any density change at the transition, even if the correla-
tion energy could be lowered by such a change, Since
the correlation energy is small compared to the mean-
field energy for large plasmas. [We shall discuss this den-
sity change more carefully in connection with Eq.
(4.79).] We return again to the observation that large
plasmas have correlation properties identical to the infi-
nite OCP.

5. Effect of correlations on the plasma edge

At the edge of the plasma the density falls from the
bulk value n2 to zero with a characteristic functional
form that depends on G. For a weakly correlated plasma
this density profile can be derived from the solution of
the Poisson-Boltzmann equation, Eq. (3.34), and is dis-
played in Fig. 9. For a strongly correlated plasma the
density profile can be obtained numerically using the
methods discussed in Sec. IV.B (see Figs. 22 and 23).
However, a theoretical description of the strongly corre-
lated plasma edge of comparable simplicity and accuracy
to that of the weakly correlated edge has not yet been
found. Nevertheless, some exact analytic results can be
obtained.

We consider a large plasma, so Eqs. (4.42) and (4.43)
apply. Also, for a large plasma, the edge region can be
treated in slab geometry, that is, the density depends
only on the coordinate x measured normal to the sur-
face. Taking a derivative with respect to x in Eq. (4.5)
and using Eq. (4.8) then leads to the first equation of the
BBGKY hierarchy:

kT
]n

]x1
52en~x1!

]

]x1
@fp1fR#

2e2n~x1!E d3r2n~x2!g~r1 ,r2!
]

]x1
ur12r2u21.

(4.54)

This equation can be thought of as a generalization of
the force balance relation for a fluid, Eq. (3.14), that
includes the (nonlocal) pressure force due to correla-
tions. The equation leads back to the Poisson-
Boltzmann system if the correlation function g is ne-
glected. However, in the strongly correlated limit the
correlation pressure term involving g is not negligible,
and since g is an unknown function both of r1 and r2 no
exact solution for n can be found. This problem is well
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known in the literature of fluid-vapor interfaces and me-
tallic surfaces, and approximation schemes for the solu-
tion of such integral equations abound [see, for example,
Hansen and McDonald (1986)]. Here, however, we shall
focus on exact results.

Although the exact functional form of the density pro-
file cannot be determined analytically, exact results for
moments of the density profile can be derived. One ex-
act result follows from the virial theorem:

(
i

S ri•
]

]ri
HRD53NkT . (4.55)

For a harmonic trap in which fR is quadratic and
G(riurj)5uri2rju21, this can be written as

Nmvz
2~^z2&1b^r2&!2«c53NkT , (4.56)

where «c5^( i.je
2/uri2rju& is the mean Coulomb energy

of the cloud and ^z2& and ^r2& are the mean-square
length and cylindrical radius, respectively, of the plasma.

We can use this relation to investigate the effect of
temperature (Corngold, 1993) and correlations on the
mean-square length and radius. [The b51 zero-
temperature limit of Eq. (4.56) has also been employed
to check that a zero-temperature equilibrium has been
achieved in molecular dynamics simulations of spherical
plasmas (Hasse and Avilov, 1991).] The average total
energy ER of a plasma in a harmonic trap in the rotating
frame can be written as the sum of the average kinetic
energy, the external trap potential, and the Coulomb
interaction energy [see Eq. (4.37)]:

ER5
3
2

NkT1
1
2

Nmvz
2~^z2&1b^r2&!1NC1«c ,

(4.57)

where C is the constant in Eq. (3.39). Substituting for «c

from Eq. (4.56), using the large-plasma result ER5ER
(0)

1U , and using expression (4.20) for U then yields the
relation

3
2

Nmvz
2~^z2&1b^r2&!

5ER
~0 !2NC1NkTS 31

Ucorr

NkT
~G! D . (4.58)

By substituting Eq. (3.47) for ER
(0) , we obtain the result

3
2

mvz
2F ^z2&2

Zp
2

5
1bS ^r2&2

2Rp
2

5 D G
5kTS 31

Ucorr~G!

NkT D . (4.59)

For a cold mean-field plasma, ^z2&5Zp
2 /5 and ^r2&

52Rp
2 /5, so Eq. (4.59) describes how temperature and

correlations affect ^z2& and ^r2& in a large plasma in a
harmonic trap. Equation (4.58) has also been derived by
Corngold for the special case of a weakly correlated in-
finitely long cylindrical plasma (Corngold, 1993).

More general results for moments of the density pro-
file other than ^z2& and ^r2& and for plasmas trapped in
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general geometries can be derived using the first equa-
tion of the BBGKY hierarchy, Eq. (4.54) (Dubin, 1996).
We integrate Eq. (4.54) from a point x5x in within the
plasma where n(x)5n2 , to a point x5xout where
n(x)50:

2kTn252eE
x in

xout
dx1n~x1!

]

]x1
~fp1fR!

2e2E
x in

xout
dx1E d3r2n~x1!n~x2!g~r1 ,r2!

3
]

]x1
ur12r2u21. (4.60)

For large plasmas the integrals involving the correlation
function g(r1 ,r2) can be simplified. We split the integral
involving g into two pieces,

e2E
x in

xout
dx1E d3r2n~x1!n~x2!g

]

]x1
ur12r2u21

5e2E
x in

xout
dx1E

2`

x in
dx2E d2r'2n~x1!n~x2!g~r1 ,r2!

3
]

]x1
ur12r2u211e2E

x in

xout
dx1E

x in

xout
dx2

3E d2r'2n~x1!n~x2!g~r1 ,r2!
]

]x1
ur12r2u21.

(4.61)

However, if surface curvature is neglected, we can write
g(r1 ,r2)5g(x1 ,x2 ;r'1

2r'2
) where r1 is the component

of r parallel to the surface. The second integral on the
right-hand side of Eq. (4.61) then vanishes because
g is symmetric on interchange of x1 and x2 but
]ur12r2u21/]x1 is antisymmetric. Furthermore, since x in
is in the bulk, we can replace g and n by their bulk forms
g(r12r2) and n2 , respectively, and we can replace xout
by ` since g(r)→0 when uru is larger than a correlation
length. Thus the integral involving g in Eq. (4.60) be-
comes

2e2E
x in

`

dx1E
2`

x in
dx2E d2r'2n2

2 g~r12r2!
]

]x1
ur12r2u21.

This expression is merely the total force per unit area
due to correlations in the x direction across a surface x
5x in , caused by plasma on one side of the surface, x
,x in . Since x in is within the uniform bulk plasma, this
correlation force per unit area equals the correlation
pressure in an infinite homogeneous OCP, provided that
the plasma is in the fluid phase, for which correlations
are isotropic. One can show this directly by changing
integration variables from r2 to r5r22r1 , writing d3r
5r2drdV , where dV is an element of solid angle, and
performing the integral over dV as well as over dx1 .
Assuming that g5g(r), this leaves a single integral over
g(r), which is equal to n2kTUcorr /(3NkT), where the
correlation energy Ucorr is given in terms of g(r) by Eq.
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(4.21). However, Eq. (4.35) shows that this equals the
correlation contribution to the OCP pressure. Thus Eq.
(4.60) becomes

p5eE
x in

xout
dxn~x !

]

]x
~fp1fR!. (4.62)

This is merely an expression for force balance across the
surface x in : plasma pressure p balances the mean-field
electrostatic forces. However, this expression is exact
only in the fluid phase, for a crystal g(r) is not isotropic
and neither is the correlation pressure. Rather, the left-
hand side of Eq. (4.62) is replaced by n̂•p•n̂ , where n̂ is
a surface normal and p is the equilibrium pressure ten-
sor of the crystal. The thermodynamic pressure p of Eq.
(4.35) is related to the diagonal elements of p through
p5Tr(p)/3; for a cubic crystal such as bcc the diagonal
elements are all equal to p. However, we shall see that
the effect of anisotropy can often be neglected: Eq.
(4.62) is an excellent approximation for the shell-
structure phase of mesoscopic plasmas, since the crystal-
line symmetry is imperfect.

It is a straightforward exercise to check that the un-
correlated equilibrium density profile of Fig. 9 satisfies
Eq. (4.62) for p5n2kT . Defining x̄5x/lD and c
52e(fp1f t)/kT , we find that Eq. (4.62) becomes

215E
2`

`

dx̄
n~ x̄ !

n2

]c

] x̄
. (4.63)

However, since n5n2ec, the integral can be performed,

E
c50

2`

dx̄
]

] x̄
ec5ecu0

2`521, (4.64)

verifying Eq. (4.62) for the uncorrelated density profiles.
Equation (4.62) can also be expressed in a form that

depends only on the density profile (Dubin, 1996) and
applies to any confinement geometry. The right-hand
side of Eq. (4.62) is the net mean-field electrostatic force
in the x direction on the plasma slab located between x in
and xout , except for a minus sign. However, if we con-
sider the plasma to be confined by a uniform back-
ground of charge density 2en2 , this net mean-field
force must be equal and opposite to the net electrostatic
force exerted by the charges between x in and xout on the
uniform background. Noting that the force on the back-
ground vanishes in the cold mean-field limit, we can
write the expression for electrostatic force balance be-
tween the plasma charges between x in and xout and the
background as

E
x in

xout
dxen

]

]x
~fp1fR!52E

2`

1`

en2DExdx ,

(4.65)

where DEx is the difference in the electric field due to
the plasma charges and the charges of a cold mean-field
plasma. Solving a 1D Poisson equation (in the edge re-
gion) yields

DEx~x !54peE
x in

x
Dn~x !dx , (4.66)
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where Dn(x)[n(x)2n(0)(x), and n(0)(x) is the density
of the cold mean-field plasma. Since Dn(x) is nonzero
only near the edge and since

E
x in

xout
dxDn~x !50,

we see that DEx(x) is nonzero only in the interval x in to
xout . Thus Eq. (4.62) can be rewritten as

p524pe2n2E
x in

xout
dxE

x in

x
dx8Dn~x8!, (4.67)

and integrating by parts yields the result

p54pe2n2E
x in

xout
dxxDn~x !. (4.68)

This form of Eq. (4.62) is useful because it allows one
to evaluate the effects of temperature and correlations
on equilibrium averages in large plasmas. For example,
consider the average of any smooth function f(r),

^f&5N21E d3rf~r!n~r!. (4.69)

Adding and subtracting the zero-temperature mean-field
density n(0)(r) to the integrand, we break the average
up into the average taken with respect to the zero-
temperature mean-field equilibrium, ^f&(0)

[N21*d3rfn(0), and the difference due to correlation
or thermal effects:

^f&5^f&~0 !1N21E d3rfDn . (4.70)

Since Dn is zero everywhere but near the plasma edge,
we can Taylor expand f, keeping terms up to first order
in the distance x from the edge:

^f&2^f&~0 !5N21E d2r'n̂•¹fE dxxDn , (4.71)

where n̂ is a unit vector normal to the cold fluid surface
and the area integral is over the fluid surface. Here we
have employed the charge-conservation constraint
*Dndx50. We can then substitute from Eq. (4.68) for
the integral over x and employ the divergence theorem
to obtain the result

^f&2^f&~0 !5
p

4pe2n2
2 ^¹2f&~0 !. (4.72)

This equation provides the temperature dependence of
equilibrium averages (Dubin, 1996). For example, the
mean-square length and cylindrical radius of the plasma
are given by

^z2&5^z2&~0 !1
p

2pe2n2
2 , (4.73)

^r2&5^r2&~0 !1
p

pe2n2
2 . (4.74)

[Equation (4.74) was first derived for the special case of
a weakly correlated, infinitely long cylindrical plasma
(Davidson and Lund, 1993).]
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Thus an increase in p (or T) at fixed v and N causes
both ^r2& and ^z2& to increase, in accordance with our
intuition that the plasma should expand as p increases.
The effect of correlations on moments of the plasma
density can be observed qualitatively in Figs. 22, 24, and
30. In the strongly correlated regime where p is negative,
the density profile shrinks within the cold fluid surface,
and moments such as ^z2& decrease in accord with Eqs.
(4.73). However, in weakly correlated plasmas the pro-
file extends beyond the fluid boundary and ^z2& is in-
creased over its cold fluid value.

Although the derivation of Eq. (4.72) assumed that
the edge region was small compared to the size of the
plasma, which is a good approximation for large plas-
mas, for mesoscopic plasmas with G@1, shells form
throughout the plasma, and one would not expect Eq.
(4.72) to hold. Nevertheless, Eq. (4.72) appears to work
well even in the extreme limit of G→` where the meso-
scopic plasma is crystallized—see Fig. 44.

Equations (4.73) and (4.74) are also consistent with
the virial theorem for the case of a harmonically trapped
plasma. This can be verified by direct substitution of
Eqs. (4.73) and (4.74), together with Eq. (4.35) and the
harmonically trapped fluid values ^z2&(0)5Zp

2 /5, ^r2&(0)

52Rp
2 /5, into Eq. (4.59).

We can also use Eq. (4.74) to determine the tempera-
ture dependence of the canonical angular momentum.
In general Eq. (2.5) implies that

L5^Pu&5
Nm~Vc22v!^r2&

2
. (4.75)

Substituting for ^r2& from Eq. (4.74) yields the tempera-
ture and correlation correction to the angular momen-
tum of a large plasma,

FIG. 44. Effect of correlations on density moments in crystal-
lized plasmas as a function of the trap parameter b. Shown are
differences between the actual value of a moment and its cold
mean-field value, for several moments. Distances are in terms
of the Wigner-Seitz radius, N is the number of trapped
charges. Dots are the results of molecular dynamics simula-
tions; lines are theory predictions [Eqs. (4.72)–(4.74)]. From
Dubin (1996).
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L2L ~0 !

N
52

~Vc22v!

vp
2n2

p , (4.76)

where L(0) is the value of L for a cold mean-field
plasma. This equation is analogous to Eq. (4.42), which
describes the effect of correlations on the energy of the
plasma.

Equation (4.76) is consistent with a Maxwell relation
to be derived in Sec. V. According to Eq. (5.17),

]L

]T D
v ,N

52
]S

]v D
T ,N

52
]~n2!21

]v
TN

]p

]T D
n2

, (4.77)

where in the second step we have employed Eq. (4.50)
for S, which is valid for large plasmas. On the other
hand, Eq. (4.76) implies

]L

]T D
v ,N

5
2N~Vc22v!

vp
2n2

]p

]T D
v ,N

, (4.78)

and ]n2 /]v can be evaluated using Eq. (3.19), showing
that Eqs. (4.77) and (4.78) are identical. Thus Eq. (4.76)
provides the correct temperature dependence for L for
large plasmas. Nevertheless, Eq. (4.76) is exact only in
the fluid phase where g5g(uru). Although we have
shown that it provides the correct temperature depen-
dence for L, as discussed in connection with Eq. (4.62)
there can be a temperature-independent correction to
Eq. (4.76) in the crystalline phase where g(r) is not an
isotropic function of r.

Recall that there is a jump in the thermal pressure p at
the fluid-solid phase transition [see Eqs. (4.35) and
(4.33)]. If angular momentum is conserved during the
transition, Eq. (4.76) implies that the rotation frequency
must also jump at the transition. Since the angular mo-
mentum is dominated by L(0), Eq. (4.76) implies

Dv.2
2N~Vc22v̄ !Dp

vp
2n2]L ~0 !/]v̄

, (4.79)

where Dp is the thermal pressure jump, equal to
0.24n2kT from Eqs. (4.35) and (4.33), and v̄ is the av-
erage value of v at the transition. Equation (4.79), to-
gether with Eq. (3.19), implies that there is a change in
density of the plasma at the phase transition when angu-
lar momentum is conserved. However, this density
change is small since ]L(0)/]v is not extensive, increas-
ing with N more rapidly than the first power of N. Thus
a sufficiently large trapped plasma exhibits no density
change at the phase transition, just as for an infinite
OCP.

D. Analytic models of mesoscopic plasmas

As discussed in Sec. IV.B, mesoscopic plasmas are ob-
served to crystallize into concentric shells of charge.
These shells are approximately equally spaced by a dis-
tance of about n2

21/3 , and the number of particles per
unit area within each shell is roughly n2

2/3 , so that the
average density of the plasma matches that of the uni-
form background. The shape of the outer shell follows
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
that of the cold mean-field plasma, while the shape of
the inner shells is determined from the roughly equal
spacing between shells.

These observations have been explored theoretically
by consideration of idealized models of the plasma
called shell models. In these models, the crystalline
plasma is regarded as a series of thin concentric shells of
charge, and the number of shells S, spacing Di between
shells, and charge Qi on each shell is then determined by
minimizing an approximate potential-energy function.
Typically the approximation involves neglecting correla-
tions between particles in different shells, but keeping
correlations within a shell in some approximate fashion.
The values of S, Di , and Qi derived from these models
are often found to match the simulation results with
rather good accuracy. Shell models have been formu-
lated for cylindrical plasmas (Totsuji and Barrat, 1988;
Hasse and Schiffer, 1990), spherical plasmas (Hasse and
Avilov, 1991; Tsuruta and Ichimaru, 1993), and plasmas
in planar geometry (Dubin, 1989).

The most complex shell models also keep some effects
of correlations between particles in different shells. This
allows one to explore structural phase transitions as the
external fields are varied and to obtain an estimate for
how large a plasma must be in order to be described as
a large plasma with the bcc structure of an infinite OCP.

1. Cylindrical shell model

The first shell model was put forward by Totsuji and
Barrat (1988) in order to explain the cylindrical shells
observed in simulations of long cylindrical plasma col-
umns confined by a harmonic potential (Rahman and
Schiffer, 1986). The potential energy of this system is

ER5
1
2

mvr
2(

i51

N

ri
21(

i.j

N

e2G~riurj!, (4.80)

where ri is the cylindrical radius of charge i and vr is the
frequency of the harmonic confinement potential. As
usual, the external potential can be thought of as being
produced by a background charge of constant density
n25mvr

2/2pe2.
The simplest version of the shell model replaces the N

particles by S uniform thin cylindrical shells with radii
Ri , density ni per unit length, and number per unit area
s i5ni/2pRi . The energy per particle of this system is

E8R

N
5

1
NL

3F(
i51

S 1
2

mvr
2Ri

2ni1
1
2 (

i51

S

(
j51

S

ninje
2f~RiuRj!G ,

(4.81)

where NL5( i51
S ni is the total number per unit length,

and f(RiuRj) is a Green’s function for the potential be-
tween cylinders:

f~RiuRj!522 lnS R.

Rw
D , (4.82)
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TABLE II. Results of cylindrical shell model for k5831025.

Cold mean-field theory [Eqs. (4.88) and (4.89)]

k1/2R̄p5& , ER
(0)/N2e2NL ln(R̄v)524.3133e2NL

Model 1, S54 Model 2

Shell no. f i n̄ i k1/2R̄i
f i n̄ i k1/2R̄i

1 0.1510 0.1510 0.3886 0.0538 0.0538 0.1839
2 0.3795 0.2285 0.7283 0.2369 0.1831 0.5185
3 0.6658 0.2862 1.0224 0.5520 0.3151 0.8757
4 1.000 0.3343 1.2906 1.0000 0.4479 1.2369

ER /N2e2NL ln(R̄v)524.3054e2NL ER /N2e2NL ln(R̄v)524.3468e2NL
where R.5max(Ri ,Rj) and Rw is the location of a cy-
lindrical conducting wall at which the potential equals
zero.

When we normalize distances and densities per unit
length by NL , Eq. (4.81) becomes

E8R

N
5e2NL

3H (
i51

S

n̄ iF1
2

kR̄i
22S n̄ i12(

j,i
n̄ jD ln R̄iG1ln R̄wJ .

(4.83)

Here R̄i5RiNL , n̄ i5ni /NL , R̄w5RwNL , and the pa-
rameter k is defined as

k5
mvr

2

e2NL
3 5

2pn2

NL
3 . (4.84)

This parameter is a measure of the strength of the con-
finement field compared to that of the plasma self-field.
Other authors employ the scaled density per unit length
l5NLa rather than k, where a is the Wigner-Seitz ra-
dius. The two parameters are related by Eq. (4.84):

l5S 3
2k D 1/3

. (4.85)

Positions of the shells are now evaluated by minimi-
zation of E8R with respect to the shell positions Ri ,
holding the charge on each shell fixed:

kR̄i
252(

j51

i21

n̄ j1n̄ i , (4.86)

which is merely an expression of radial force balance.
Substituting this result into Eq. (4.83) and defining

f i[(
j51

i

n̄ i , i51,.. . ,S ,

and f0[0 yields

E8R

N
5

e2NL

2 H 12(
i51

S

~f i
22f i21

2 !ln~f i1f i21!1ln~R̄w
2 k !J .

(4.87)
Minimization of this expression with respect to the f i’s,
provides a nonlinear recurrence relation for the f i’s
., Vol. 71, No. 1, January 1999
which can be solved numerically for a given number of
shells S. The results of this procedure for the case S54
is shown in Table II as Model 1. Note that both the
energy and the overall radius of the plasma are close to
those of a cold mean-field plasma,

RpNL5S 2
k D 1/2

, (4.88)

ER
~0 !

N
5e2NLF3

4
1lnS Rw

Rp
D G . (4.89)

However, this shell model suffers from an important de-
fect: the number of shells and the values of the f i’s are
independent of k, as can be seen from Eq. (4.87) where
k enters only as an additive constant. This is physically
incorrect; in fact one observes in experiments or simula-
tions that the number of shells varies with the external
field strength: the number of shells should decrease with
increasing k. Furthermore, if one allows S to vary in the
model, one finds that the minimum-energy state has in-
finite S and ni→0, that is, one returns to the cold mean-
field plasma [for example, in Table II, Model 1 has
slightly higher energy than the cold mean-field limit S
5` given by Eq. (4.89)].

This difficulty is related to the neglect of correlations
between charges within the shells. Totsuji and Barrat
(1988) overcame this problem by including in the energy
the correlation energy between particles in a given shell
and neglecting the correlation energy between particles
in separate shells. The correlation energy of charges,
Ucorr , confined to a thin cylindrical shell of radius Ri is
the difference between the Coulomb energy of the
charges and the energy of a thin uniform cylindrical
shell. Totsuji and Barrat show that for a crystalline sys-
tem Ucorr has the functional form

Ucorr

N
5nie

2c~niRi!, (4.90)

where the function c(R̄) is determined by the type of
lattice on the cylinder. After comparing several helical
lattices, Totsuji and Barrat observed that c(R̄) is well
approximated by the following functional form:

c~R̄ !5H g1ln~R̄/2!, R̄,0.153, ~4.91a!

2h/~2A2pR̄ !, R̄.0.153, ~4.91b!
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where g50.577 . . . is Euler’s constant, and where h
53.921 . . . .

The small R̄ form of c(R̄) is the normalized correla-
tion energy per particle of a 1D Coulomb chain (some-
times also referred to as a Coulomb string)—a 1D lattice
of uniformly spaced charges (Totsuji, 1988). The large R̄

form of c(R̄) is the normalized correlation energy per
particle of a planar 2D hexagonal lattice (Totsuji, 1978).
The 2D hexagonal lattice is the minimum-energy struc-
ture for a 2D planar system of charges, and so one
would expect a system of charges confined to a cylinder
to approach this lattice structure for cylinders of large
radius.

The energy of the cylindrical shell model, including
the correlation energy between particles within the same
shell, is then

E9R

N
5

E8R

N
1e2NL(

i51

S

n̄ i
2c~ n̄ iR̄ i!, (4.92)

where E8R is the energy of the previous shell model,
neglecting intrashell correlations, given by Eq. (4.83).
Minimization of ER9 with respect to n̄ i , R̄i , and S for
given k (subject to the constraint that ( in̄ i51) yields
predictions for the number of shells, their position, and
their charge per unit length, as well as the energy of the
configuration. An example is shown in Table II for k
5831025, listed as Model 2, and compared to the re-
sults of the previous shell model, Model 1, as well as the
cold mean-field approximation, which is given by the
equation at the top of the table. Note that the energy of
this shell model is now less than that of the cold mean-
field limit. Furthermore, using l5NL a and Eq. (4.85) to
convert energies to units of e2/a , one finds that the dif-
ference between the shell-model energy of Model 2 and
the cold mean-field energy is close to the ion-sphere
value of 20.9e2/a per particle.

Table III lists the values of l [determined from k via
Eq. (4.85)] at which transitions from one shell to two
shells, two to three, etc., are expected to occur according
to Eq. (4.92). The ranges of l for which the inner shell
was actually a Coulomb chain were not precisely deter-
mined. These results may be compared to those of a

TABLE III. Critical values of l5NLa for transitions between
differing structures.

Structure
Model 2, Totsuji

and Barrat (1988)
Hasse

and Schiffer (1990)

1-D chain ¯ 0,l,0.709
Zigzag ¯ 0.709,l,0.964
Helix ¯ 0.964,l,1.25
Single shell 0,l,3.35 1.25,l,3.10
Shell11D chain ¯ 3.10,l,5.7
2 shells 3.35,l,10.0 5.7,l,9.5
2 shells1string ¯ 9.5,l,13
3 shells 10.0,l,20.3
4 shells 20.3,l,34.0
5 shells 34.0,l,51.6
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more detailed model that compares the correlation en-
ergies of various helical patterns of charge within each
shell (Hasse and Schiffer, 1990). In this work the ranges
of l over which the inner shell was a chain were accu-
rately determined for the first few transitions; these
ranges are shown in Table III. When k decreases beyond
a critical value the 1D chain becomes linearly unstable
and suffers a second-order structural phase transition to
a zig-zag configuration [Fig. 47(b)]. The point of linear
instability can be easily calculated (Totsuji and Barrat,
1988):

k54.2072 . . . ~l50.7091 . . . !. (4.93)

As k decreases below this critical value a second critical
point is reached where the zig-zag develops a helical
twist [Fig. 47(c)]. The value of k (or l) at this critical
point has also been evaluated (Hasse and Schiffer,
1990):

k51.67 . . . ~l50.964 . . . !. (4.94)

As k decreases further, more complex helical arrange-
ments are predicted to occur [on the basis of numerical
simulations (Hasse and Schiffer, 1990)], and finally a
second shell appears.

Experiments have been performed that can be com-
pared to these predictions (Birkl, Kassner, and Walther,
1992). Shell structures were created in plasmas consist-
ing of several hundred thousand laser-cooled ions con-
fined in a quadrupole ring trap. Side-view pictures of the
shell structures, observed via laser-induced fluorescence
of the ions, are displayed in Fig. 45. As l increased, the
radius and number of the shells increased. Experimental
data for the radius and number of shells are displayed in
Fig. 46 as a function of the well depth ec0
5(1/2)mvz

2r0
2, where r052.5 mm is the radius of the

confinement electrodes. The straight lines in Fig. 46
show critical l values separating different numbers of
shells taken from Table III. Sometimes the innermost
shell is a Coulomb chain or string. Good agreement be-
tween theory and experiment is observed for the loca-
tions of these structural transitions.

There are some difficulties with the shell models pre-
sented so far. Although symmetric geometries such as
cylindrical and spherical plasmas can be dealt with, the
more general case of spheroidal plasmas is not analyti-
cally tractable, since spacing between shells and density
within a shell should be allowed to vary as a function of
position during the minimization procedure, and the po-
tential arising from a surface of arbitrary shape and sur-
face charge density must be evaluated numerically. The
model then becomes more complex than the original
system of isolated charges.

Another problem with the shell model of Eq. (4.92) is
more fundamental. As k decreases, the number of shells
increases and the model continues to predict that the
lowest-energy state is a system of concentric shells with
a 2D hexagonal lattice within each shell. However, this
is not true as k→0 since a sufficiently large system
should exhibit the structural features of an infinite ho-
mogeneous system, i.e., a bcc lattice. This problem is
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FIG. 45. (Color) Images and intensity profiles of ions in the ring trap, observed via laser fluorescence, as N increases: (a) 1D chain;
(b) one shell, N553104; (c) one shell1chain, N513105; (d) two shells, N523105; (e) two shells1string, N533105; (f) four
shells, N583105. From Birkl, Kassner, and Walther (1992).
clearly related to the neglect of correlations between
separate shells. In the next section we consider a shell
model that can account for intershell correlations and
that also addresses the issue of asymmetric geometries
such as spheroidal plasmas.

2. Planar shell model

Consider a system of charges confined in the z direc-
tion by a uniform neutralizing background n2 . In the x
and y directions the system is infinite and homogeneous.
This system models the surface region of a spheroidal
plasma with a sufficiently large radius that the curvature
can be neglected. Thus the z direction can be thought of
as the local normal to the surface of the plasma.

A shell model can be developed for this geometry
(Dubin, 1989). This planar model has the advantage that
it applies to systems of any shape, provided that the ra-
dius of curvature of the shells is large compared to the
Wigner-Seitz radius. The shell model analogous to Eq.
(4.92) consists of a series of S planes at positions zi with
number per unit area s i . The planes are ordered so that
z1,z2,z3, . . . . The total number per unit area is

s5(
i51

S

s i .

The planes are in a potential well of the form mvp
2z2/2,

where vp5A4pe2n2 /m is the plasma frequency of the
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effective neutralizing background charge. The energy
per particle of this shell model is a sum of three terms:
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s F E
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i51
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2s i2
e2h

2
s i

3/2D G ,

(4.95)

where 6L are the positions of conducting walls. The
first term is the self-energy of the set of S planes, written
in terms of the space-charge electric field «(z). The sec-
ond term in Eq. (4.95) is the energy associated with the
external potential, and the last term is the correlation
energy associated with each 2D hexagonal lattice plane.
The constant h53.921 is the same as appears in Eq.
(4.91b). As in the previous cylindrical shell model, no
correlations between different shells are kept in this ver-
sion of the model. These correlations will be considered
presently.

Since the magnitude of the electric field due to a given
plane j is constant, equal to 2pes j , the field due to all
the planes can be written as a sum,

«~z !52peS 2(
j51

i

s j2s D , (4.96)

where i labels the plane nearest to z for which zi,z .
Substituting Eq. (4.96) into Eq. (4.95), the integral over
z can be performed, yielding
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where

s̄ i5s ia
2, z̄ i5zi /a , f i5(

j51

i

s̄ j /s̄ ,

f0 5 0, and zS115L and z052L . [Note that in Dubin
(1989), distances were normalized to n2

21/3 ; here we nor-
malize to the Wigner-Seitz radius a.]

The parameter s̄ is the total number per unit area
normalized by the Wigner-Seitz radius:

s̄5sa2. (4.98)

This parameter plays the same role as the parameter l
(or k) in the cylindrical shell model. It parametrizes the
strength of the Coulomb repulsion between adjacent
charges, of order e2s , compared to the strength of the
background confinement force, of order e2/a2. As s̄ in-
creases, we expect the number of lattice planes S to in-
crease.

Minimization of Eq. (4.97) with respect to the position
zi and charge density s i of each lattice plane, holding S
fixed, implies that the charge density on each lattice
plane is identical,

FIG. 46. Outer radius of the shell structure as a function of the
potential depth c0 (in V) in a quadrupole ring trap. Different
symbols denote different numbers of shells and/or central
strings. From Birkl, Kassner, and Walther (1992).
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s i5
s

S
, (4.99)

and that the lattice planes are spaced by a uniform dis-
tance D,

zi5zi
~0 ![DS i2

S11
2 D , i51,2, . . . ,S . (4.100)

The spacing between planes is related by force balance
to the charge on each lattice plane and the density of the
background:

D5
s

n2S
. (4.101)

As one might expect, the mean density of the system of
planes, s/DS , matches the background density n2 .

The energy per particle of the system is found by sub-
stituting Eqs. (4.99)–(4.101) into Eq. (4.97):
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N
, (4.102)

where the term in square brackets is the cold mean-field
energy per particle of a uniform slab of density s per
unit area, and Ucorr is the extra correlation energy of the
shell model,
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a F2p2

9 S s̄

S D 2

2
h

2 S s̄

S D 1/2G . (4.103)

This extra energy arises because the system consists of S
planes of charge rather than a uniform slab of charge
(the first term), and correlations between particles
within each plane are kept (the second term).

FIG. 47. Structure of infinitely long cylindrical plasma at low
density per unit length (x2y dimensions magnified for clarity):
(a) l,0.709: 1D Coulomb chain; (b) 0.709,l,0.964: zigzag;
(c) 0.964,l, . . . : helix.
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The first term in Eq. (4.103) is positive, indicating that
a system of S parallel planes of charge has higher energy
than a charge spread throughout a uniform slab, as one
would expect intuitively. However, the second term,
arising from intraplane correlations, is negative and this
creates a tendency to form a finite set of ordered planes.
The competition between these two terms determines
how many planes form, just as in the previous cylindrical
shell model.

For a given value of the parameter s̄ we can deter-
mine the number of lattice planes S by minimizing Ucorr
with respect to S, from which one finds that the value of
S giving the minimum energy is

Smin5@16p2/~9h!#2/3s̄ . (4.104)

The normalized distance between lattice planes is then
determined by Eqs. (4.104) and (4.101),

D̄[
D

a
5S 3h2

4p D 1/3

51.54, (4.105)

where a is an average interparticle spacing, and the cor-
relation energy is

Ucorr

N
52

3
8 S 9h4

16p2D 1/3 e2

a
520.8923

e2

a
, (4.106)

where we have used the value of h for a 2D hexagonal
lattice, h53.921 . . . . Note that this h value yields the
lowest possible energy since the 2D hexagonal lattice
has the lowest Madelung energy of all 2D lattices.

Of course, S must be an integer, so Eq. (4.106) is ac-
tually the minimum possible correlation energy, occur-
ring when s̄ is chosen such that Smin is an integer. For
other values of s̄ the minimization procedure produces
an integer value of S close to Smin , and a value of
Ucorr /N close to but slightly larger than Eq. (4.106). The

actual solutions for S, Ucorr , and D̄ as a function of s̄
are shown in Fig. 48. The cusps in Ucorr as s̄ increases
arise as S increases by integer steps. For large s̄ one can
observe in Fig. 48 that S remains close to Smin and D is
close to the value 1.54 a.

Considering the results of this planar shell model as
applied to a confined spheroidal plasma with large ra-
dius of curvature, we observe that simulations show the
charge per unit area on each shell and the spacing be-
tween shells are approximately constant (see Table II, or
Figs. 22, 24, and 30), and the spacings are close to the
value 1.54 a given by Eq. (4.105).

The shell spacing D can be used to estimate the num-
ber of spheroidal shells expected to be observed in a
large spheroidal plasma (Dubin, 1989). Observing that
the shells closely follow the surface of the cold mean-
field spheroid, we find that the number of shells is simply
determined by the number of equidistant concentric sur-
faces one can fit into a spheroid of given radius Rp and
length 2Zp . Noting that N54pRp

2Zpn2/3, we obtain
from this simple algorithm the following estimate for the
number of shells as a function of N and the aspect ratio
a5Zp /Rp :
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(4.107)

For example, for a spherical cloud of N54096 particles,
Eqs. (4.107) and (4.105) imply that one should observe
10.4 shells, whereas Fig. 30 shows that such a cloud has
10 shells (and a central charge). For N51028 charges, a
cloud with a51.75 is predicted to have 5.4 shells,
whereas Fig. 24 shows that such a cloud actually has five
shells and a central Coulomb chain of four charges. Of
course, this algorithm breaks down when N is small, or
when a is either much less or much greater than unity.
The case of small N (Coulomb clusters) is considered in
Sec. IV.E, while the cases of small and large a are dis-
cussed in Sec. IV.D.5.

3. Intershell correlations

So far we have neglected correlations between par-
ticles in separate lattice planes. As a result the planar
shell model discussed in Sec. IV.D.2 suffers from the
same defect as the cylindrical shell model discussed in
Sec. IV.D.1: as s̄→` (or equivalently as S→`), the sys-
tem becomes infinite and homogeneous, yet there is no
transition to the bcc lattice as expected for an infinite
homogeneous OCP. We shall now resolve this problem
by introducing an improved model that keeps correla-
tions between the shells (Dubin, 1989). We further gen-
eralize the previous model by relaxing the assumption

FIG. 48. Planar shell model neglecting interplane correlations:
Upper plot: spacing D between adjacent lattice planes, number
of planes S. Lower plot: correlation energy per particle
Ucorr /N as a function of s̄5sa2, where s is the number of
particles per unit area and a is the Wigner-Seitz radius.
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that the planar lattice within each shell is 2D hexagonal;
we shall see that this is crucial to our analysis. However,
in order that the model be tractable we assume that each
planar shell consists of the same 2D lattice, defined by
primitive vectors a and b, and that these lattices are dis-
placed in space from one another by rj5(xj ,yj ,zj) (see
Fig. 49). This necessarily implies that the number of
charges per unit area s i in each planar shell is identical,
equal to s/S . However, the correlations between shells
imply that the spacing between shells now varies:

z̄ i5 z̄ i
~0 !1d z̄ i , (4.108)

where z̄ i
(0) is the shell position given by Eq. (4.100) and

d z̄ i is the variation in position. The correlation energy of
the system, including intershell correlations, is then (Du-
bin, 1989)
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where distances are in units of a, ĥ is the constant de-
termining the 2D correlation energy of a given 2D lat-
tice plane, and the sum over k̄ is a sum over the recip-
rocal lattice to the 2D lattice plane; the prime denotes
neglect of the k50 term. The constant ĥ depends on the
angle between a and b and the ratio of their lengths. The
reciprocal lattice is defined by primitive vectors

S 2pS

s
ẑ3a,

2pS

s
ẑ3bD . (4.110)

The first two terms of Eq. (4.109) are identical to Eq.
(4.103) and provide the contribution to the correlation
energy that arises from neglecting correlations between

FIG. 49. Planar shell model including correlations between lat-
tice planes.
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charges in different planes. The third and fourth terms
account for interplane correlations. The third term pro-
vides the Coulomb interaction energy between two iden-
tical lattice planes separated by ri2rj , subtracting out
the interaction energy of two uniform planes (the k̄50
term in the sum) since this energy has already been ac-
counted for in the first term. The last term is the extra
energy due to the external potential because the planes
are no longer spaced evenly.

In order to find the structure of the crystal for a given
value of s̄ one minimizes the correlation energy with
respect to the lattice-plane positions ri , the structure of
each plane as defined by the primitive vectors a and b,
and the number of lattice planes S. For example, dzi is
determined by the equation

d z̄ i5
D̄

2 (
i51

S

(
jÞi

S

( 8
k̄

sgn~ z̄ i2 z̄ j!e2kuzi2zju

3cos k̄•~ r̄i2 r̄j!, (4.111)

which can be solved iteratively for d z̄ i if S, xi , yi , a, and
b are known. However, rather than performing the full
numerical minimization over all parameters, Dubin
(1989) considered only a few symmetric lattice types,
fixing a, b, xi , and yi . The choices were based on the
intuition that these symmetric lattices could form bcc
and fcc structures in the bulk. While this method does
not guarantee that the true minimum-energy structure is
found, it considerably simplifies the analysis. For a few
values of s, the full minimization was performed, and in
each run the crystal settled into one of these symmetric
lattices within the numerical accuracy of the procedure
(however, see the Note on page 143). These symmetric
lattices are displayed in Fig. 50 and Table IV and consist
of square, 2D hexagonal, and elongated hexagonal lat-
tice planes. Other cases, such as hcp stacking (Fig. 50),
also consist of 2D hexagonal lattice planes, but the
planes are stacked differently and have slightly higher
energy than the 2D hexagonal stacking. From among
this finite set of equilibria one chooses the value of S
that provides the lowest energy for a given s̄ . For ex-
ample, when s̄ is small the minimum energy state is a
single 2D hexagonal lattice plane. As s̄ increases be-
yond the critical value,

s1a250.427 . . . , (4.112)

the single 2D hexagonal plane becomes unstable, as
Coulomb repulsion forces charges out of the x-y plane,
and the system forms three interlocking 2D hexagonal

FIG. 50. Local minimum-energy planar-lattice structures: top
view looks along z axis. Side view looks along x axis, showing
three planes.
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TABLE IV. Surface energies of bounded Coulomb lattices.

3D lattice type
Lattice plane

parallel to surface
Type of

lattice plane
a
←

b
(arb. units)

(xj ,yj)
→

D/a
for perfect lattice Es(e2/a)

bcc (111) 2D hexagonal (1,0) (1/2,)/2) (0,1/))j 0.5863 4.605531022

bcc (100) square (1,0) (0,1) (1/2,1/2)j 1.016 2.339531022

bcc (110) elongated hexagons (1,0) (1/2,1/&) (1/2,0)j 1.436 3.779 31023

fcc (110) rectangular (1,0) (0,&) (1/2,1/&)j 0.9046 3.037031022

fcc (100) square (1,0) (0,1) (1/2,1/2)j 1.279 1.018531022

fcc (111) 2D hexagonal (1,0) (1/2,)/2) (0,1/))j 1.477 2.147 31023

hcp 2D hexagonal (1,0) (1/2,)/2) (0,0),j even 1.477 2.12 31023

(0,1/))j ,j odd
lattice planes. The distance between the planes rapidly
increases as s increases, until at s2a250.442 a different
local minimum consisting of two square lattice planes
takes over as the global energy minimum. As s in-
creases, this structure is replaced by another energy
minimum consisting of two planes with elongated hex-
agonal symmetry (Dubin, 1993).

Figure 51 displays other equilibria further along in the
sequence as s̄ increases. One can see that for large s̄ a
symmetric lattice is created in the bulk with nearly
evenly spaced lattice planes, spaced by the distance D
5s/(n2S) predicted by the previous planar shell model
[Eq. (4.101)].

Only near the surfaces are the lattice planes unevenly
spaced. This is because, as Eq. (4.111) shows, the varia-
tion in spacing is caused by correlation forces between
different planes. These correlation forces fall off expo-

FIG. 51. Planar shell model keeping interplane correlations:
Upper plot, z position, number, and type of lattice planes as
normalized density per unit area s̄5sa2 increases; dashed
line, 2D hexagonal; thin solid line, square; heavy solid line,
elongated hexagons. Lower plot, correlation energy per par-
ticle Ucorr /N for these bounded lattices. Numbers refer to
number of planes.
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nentially with distance between the planes, with a char-
acteristic exponentiation length of order 1/kmin where
kmin is the minimum magnitude of the reciprocal lattice
vectors [see Eq. (4.111)]. Thus in the bulk the correla-
tion force cancels and d z̄ i vanishes.

4. Mesoscopic to large-plasma transition

As s̄ increases, the symmetry of the lattice continues
to jump between 2D hexagonal lattice planes and elon-
gated hexagonal planes. In the bulk, away from the sur-
face, the 2D hexagonal lattice planes form an fcc lattice
and the elongated hexagonal planes form a bcc lattice.
The energies of these competing minima are displayed
in Fig. 52. The energies of the fcc and bcc lattices show a
similar cusp behavior to that in the previous shell model
neglecting interplane correlations [Fig. 48(b)], along
with an overall downward trend as s̄ increases. The
competing energy curves cross many times, so the lattice
structure exhibits sensitive dependence on s̄ .

As can be seen in Fig. 52, the sensitive dependence of
the lattice structure on s̄ persists until s̄ becomes quite
large. Only for s̄*20–21 is the bcc lattice the lowest-
energy state without any further sensitive dependence
on s̄ ; this defines the large-plasma regime. Using Eq.
(4.101) and the D/a values for perfect fcc and bcc lat-

FIG. 52. Correlation energy per particle Ucorr /N as a function
of normalized density per unit area s̄5sa2 values near the
point where structural transitions between fcc and bcc order
cease (continuation of Fig. 51 to large s̄ values). Dashed and
solid horizontal arrows show energies of infinite fcc and bcc
lattices, respectively. fcc (100) corresponds to the square lattice
of Fig. 51, while fcc (111) corresponds to the 2D hexagonal
structure and bcc (110) corresponds to the elongated hexa-
gons. From Dubin (1989).
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tices in Table IV, we find that this range of s̄ corre-
sponds to S.58 bcc lattice planes or S.57 fcc planes.

For s̄&20 the many transitions between fcc and bcc
structure can be understood as a competition between
surface energy and bulk energy in each structure. For
large S and s̄ , the correlation energy per particle, Eq.
(4.109), can be written as a sum of a bulk energy per
particle Eb and a surface energy per particle 2ES /S :

Ucorr

N
5Eb1

2ES

S
. (4.113)

For given values of s̄ , S, a, and b, the bulk energy is
obtained from Eq. (4.109) by taking an infinite number
of lattice planes spaced evenly by the normalized dis-
tance D̄ given by Eq. (4.101):

Eb5
e2

a
F D̄2

8
1

3D̄

2
(
j51

`

( 8
k̄

e2Dkj

k̄

3cos k̄•~ r̄j112 r̄1!2
ĥ

2
S 3

4p
D̄ D 1/2G . (4.114)

Certain values of a, b, rj , and D̄ minimize Eb . For ex-
ample, for a and b corresponding to a 2D hexagonal
lattice, and for the rj’s chosen as shown in Table IV, D̄
51.477 makes a perfect fcc lattice, with a bulk energy
per particle given in Table I. This 2D hexagonal lattice
corresponds to the fcc (111) plane, so we call this lattice
fcc (111). On the other hand, for a and b corresponding
to the elongated hexagons, D̄51.436 creates a bcc (110)
lattice [i.e., the (110) plane is parallel to the surface].
Since fcc and bcc lattices have the lowest energies, and
these energies are nearly identical (see Table I), the val-
ues D̄51.436 and D̄51.477 are preferred and, for a
given value of s̄ , S will be an integer as close as possible
to 4ps̄/(3D̄) [see Eq. (4.101)]. Each successive cusp in
the correlation energy curves displayed in Fig. 52 corre-
sponds to a unit increase in S and a concurrent jump in
Eb as D̄ varies around the preferred value. Since the
bulk bcc and bulk fcc energies are extremely close, with
bcc lower by less than one part in 104 (see the horizontal
arrows in Fig. 52), only a very small surface-energy con-
tribution need be added in order to change the lattice
structure. It is for this reason that the lattice structure
displays sensitive dependence on s̄ even for rather large
values of s̄ .

The bcc (110) and fcc (111) orientations are favored
over the myriad other orientations since these orienta-
tions have low surface energies. For an infinite lattice
any orientation is possible, but for a bounded lattice the
surface energy depends on which lattice plane is parallel
to the surface. The surface energy is given by the differ-
ence between the correlation energy, Eq. (4.109), and
the bulk energy, Eq. (4.114). When S is large ES be-
comes independent of S:
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ES5
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For stable lattices ES is positive (Landau and Lifshitz,
1980, p. 517). Values of ES for bulk bcc and fcc lattices
with different orientations are displayed in Table IV. As
one can see from the table, the surface energy of a lat-
tice with bulk bcc symmetry is minimized when the 110
plane (elongated hexagons) is parallel to the surface.
For an fcc lattice the surface energy is minimized when
the 111 plane (a 2D hexagonal lattice plane) is parallel
to the surface, and this surface energy is slightly less
than that of the bcc lattice. [The hcp surface energy is
slightly lower than fcc (111), but the bulk energy of hcp
structure is too high to make it a contender for the
minimum-energy state.]

Thus the bcc (110) and fcc (111) orientations are fa-
vored; other orientations of the bcc and fcc lattices have
larger surface energy, as can be seen in Fig. 52 for the
fcc (100) lattice, which is the next lowest energy state.
This is because the fcc (111) and bcc (110) lattice planes
are the most widely separated lattice planes in fcc and
bcc lattices, respectively. The wider the separation of the
planes, the lower the correlation between them (the
planes appear to one another as uniform sheets at large
separation), and less interplane correlation implies less
surface energy [recall that in the previous planar shell
model, where interplane correlations were neglected,
there was no surface energy term—see Eq. (4.106)].

Note. It has recently been discovered that the elon-
gated hexagons deform into a slightly lower energy
rhombic structure when full energy minimization is per-
formed in the planar shell model [Eq. (4.109)] (Mitchell,
Bollinger, Dubin, Huang, Itano, and Baughman, 1998).
This has the effect of reducing the ranges of s over
which the square lattice is minimum energy compared to
what is shown in Fig. 51, and of lowering energy of the
bcc(110) lattice by a nearly imperceptible amount in Fig.
52. However, there is a negligible effect on the z posi-
tions of the lattice planes (Fig. 51) or on the mesoscopic
to large-plasma transition.

The planar model neglects surface curvature and so
applies in detail only to the central region of very oblate
plasmas or to the surface region of large plasmas. How-
ever, it may be that certain aspects of the model can be
applied to mesoscopic spheroidal plasmas. Numerical
studies have been performed to determine the energies
of spherical Coulomb crystals at zero temperature as a
function of the number of particles N (Hasse and
Avilov, 1991). The simulation results are shown in Fig.
53 as solid points. The correlation energy of mesoscopic
spherical plasmas with N&5000 is observed to obey
roughly a bulk-plus-surface-energy form:

Ucorr

N
5Eb1

ES

N1/31
Ecu

N2/3 , (4.116)
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where Ecu is a ‘‘curvature energy’’ term, and Eb , ES ,
and Ecu are determined by a numerical fit to the data
(the solid curve in Fig. 53). The authors compare these
computed energies to those of spherical fragments of a
bcc crystal (the open circles), also fitting this data set
using Eq. (4.116) (the dashed curve). The crossing point
of these two fits provides an estimate that the mesos-
copic shell-structure phase gives way to a bcc lattice
when N*106, corresponding to a diameter of roughly
200 a. This is somewhat larger than what is suggested
by the planar shell model, in which the thickness SD of
the system (where S is the number of planes and D the
spacing between adjacent planes) is about 90 a. This fol-
lows from our previous estimate s̄*20 for the mesos-
copic to large-plasma transition, together with Eq.
(4.101). In a spherical plasma this thickness corresponds
to N;105 charges, if we take the thickness of the planar
system to correspond to the diameter of the spherical
system (the number is somewhat larger if this thickness
corresponds to the radius rather than the diameter of
the sphere). For spheroidal plasmas, a minimum dimen-
sion of about 90 a requires that the particle number ex-
ceed

N*105a , a,1, (4.117a)

N*105/a2, a.1. (4.117b)

Bragg scattering experiments (Tan et al., 1995a;
1995b; Itano et al., 1998), discussed in Sec. IV.C, observe
reproducible bcc order in crystals consisting of a few
times 105 charges, consistent with the estimate of Eq.
(4.117). However, a thickness equal to 90 a across the
minimum dimension must still be regarded as only a
rough estimate for the minimum size of a crystal re-
quired to enter the regime of large plasmas.

The planar shell model discussed here neglects the
effects of finite temperature on the structural transitions.
At finite T free energies rather than correlation energies

FIG. 53. Correlation energy per particle in spherical Coulomb
crystals vs number of particles to the 21/3 power: solid points,
molecular dynamics simulations of mesoscopic plasmas; open
circles, spherical fragments of bcc crystals. Lines are fits of the
form given by Eq. (4.116). From Hasse and Avilov (1991).
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should be compared to determine the stable structure.
This requires evaluation of the entropy associated with
different crystalline configurations. Such an evaluation
has been made in the harmonic lattice approximation, in
which the phonons are treated as an ideal gas (Dubin
and O’Neil, 1990). The phonon entropy [see Eq. (4.31)]
is found to separate into a bulk and a surface contribu-
tion. For large s̄ the most stable lattice structures are
again fcc(111) and bcc(110), but the number of lattice
planes required to enter the regime of large plasmas is
found to decrease as temperature increases (the phonon
entropy of the bcc lattice is larger than that of the fcc
lattice because bcc is not as closely packed as fcc).

5. Limits of large and small aspect ratio: Inhomogeneous
Coulomb chains and discs

When the external fields and rotation frequency are
chosen such that b!1 or b@1 the mesoscopic plasma
can no longer be described as a system of concentric
spheroidal shells. Rather, the charges are squeezed onto
the z axis when b@1, or are collapsed onto the x-y
plane when b!1. Examples of the resulting 1D and 2D

FIG. 54. Positions of charges in minimum-energy states in 1D
and 2D systems: (a) 1D Coulomb chains of various sizes in a
quadratic confinement potential (Dubin, 1997), (b) 2D systems
in quadratic confinement (top) and hard-wall confinement
(bottom). Lines show the Wigner-Seitz cells around each
charge. N5230. From Bedanov and Peeters (1994).
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configurations are shown in Fig. 54. Bedanov and
Peeters have also analyzed hard-wall confinement po-
tentials [Fig. 54(b, bottom)], but here we focus on the
harmonic potential case both for simplicity and because
of its experimental relevance. Unlike the shell-structure
phase, the interparticle spacing varies with position, in-
creasing with distance from the center of the system. For
the 2D disc this variation can be understood from the
highly oblate limit of the cold mean-field spheroid
(Raface et al., 1991; Dubin, 1993). The number of par-
ticles per unit area in a spheroid is

s~r !5n2E
2zp~12r2/Rp

2
!1/2

zp~12r2/Rp
2

!1/2

dz5
3N

2pRp
2 F12S r

Rp
D 2G1/2

.

(4.118)
The disc radius Rp is determined by N, vz , and b using
the b!1 limit of Eqs. (3.48) and (3.44):

Rp5S 3pe2

4mvz
2

N

b D 1/3

. (4.119)

The average interparticle spacing in the 2D crystallized
disc then varies with position as s(r)21/2, which is in fact
what is observed in the simulations when N is large.

However, if we attempt to explain the variation of the
interparticle spacing of the 1D Coulomb chain using a
similar cold mean-field model, we encounter a problem
(Dubin, 1993). Describing the 1D chain as a highly pro-
late spheroid, the number of particles per unit length
should vary as

NL~z !52pn2E
0

Rp~12z2/Zp
2

!1/2

rdr5
3
4

N

Zp
S 12

z2

Zp
2 D ,

(4.120)
and the half-length Zp of the spheroid is determined by
the b@1 limit of Eqs. (3.48) and (3.44),

Zp
35

12pe2N

mvz
2 F lnF8mvz

2

3e2 Zp
3bG21G , (4.121)

which is a nonlinear equation for Zp that can be solved
numerically for given values of vz , N, and b.

The problem with using Eqs. (4.120) and (4.121) as a
model for the 1D Coulomb chain is apparent in Eq.
(4.121), which says that for fixed N and vz the length of
the chain increases logarithmically with increasing b. In
fact, the length of a 1D chain with all particles on the z
axis should depend only on N and vz , since only the
confining force in the z direction should affect the equi-
librium. This problem arises because the cold mean-field
approximation does not work for a 1D system: a line
charge has infinite energy.

This problem does not occur in the 2D disc limit be-
cause a 2D disc has finite energy in the mean-field limit,
so discreteness of the 2D disc plasma can be safely ig-
nored. In 2D as well as in 3D systems, correlations have
only a small effect on the equilibrium. However, for the
1D Coulomb chain the discreteness of the constituent
charges cannot be neglected; it has a large effect on the
density, even on scales large compared to an interpar-
ticle spacing.
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To see this another way, note that the total Coulomb
energy of a system scales roughly as e2N2/Zp , where Zp
is the size of the plasma. However, the correlation en-
ergy scales as Ne2/a , where a is an average interparticle
spacing, of order N1/D/Zp for a D-dimensional system.
Thus correlation energy scales as N111/De2/Zp , which is
of the same order of magnitude as the total Coulomb
energy for a 1D system, but is only a small part of the
energy when D.1. Therefore the 1D chain equilibrium
cannot be correctly determined without including corre-
lation energy.

One can include the correlation energy by using an
approximation useful in the limit N@1, based on the
local-density approximation (Dubin, 1993; Dubin, 1997).
One writes the self-energy

«c5(
i.j

e2/uzi2zju

of the 1D chain as

«c5«01Ucorr , (4.122)

where «0 is the cold mean-field energy of a globule of
uniform-density charged fluid, with density per unit vol-
ume n2 , number density NL(z) per unit length, and
radius r0(z)5@NL(z)/pn2#1/2, and Ucorr is the remain-
ing correlation energy.

The energy «0 of a thin uniform-density globule of
arbitrary shape can be written as an integral over the
density per unit length NL :
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(4.123)

This expression neglects image charges and assumes
r0(z)!(d ln NL /dz)21; otherwise, it is valid for any
shape r0(z) [or number per unit length NL(z)]. [A gen-
eralization that includes image charges can be found in
Dubin (1997).]

We now require a form for the correlation energy
Ucorr . Since the interparticle spacing is assumed to be
small compared to the scale of variation of NL , the
plasma is locally homogeneous, and so we can approxi-
mate the correlation energy per particle by that of an
infinite homogeneous 1D chain in a cylinder of uniform
charge (the local-density approximation). The total cor-
relation energy is then an integral over the correlation
energy per particle of a Coulomb chain:

Ucorr5E dzNLe2NLFc~r0NL!2
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dze2NL
2 Fg2
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4

1lnS r0NL

2 D G , (4.124)

where we have employed Eqs. (4.90) and (4.91a); the
extra factor of 21/4 compared to Eq. (4.91a) arises
through the difference in energy between a uniform cyl-
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inder and a thin cylindrical shell with the same number
of particles per unit length NL and radius r0 .

Note that when NL is fixed, Ucorr depends on r0 and
as r0→0, Ucorr diverges logarithmically. The mean-field
energy «0 also diverges as r0→0 [see Eq. (4.123)]. How-
ever, the two divergences cancel when «0 and Ucorr are
added together, and the resulting expression for the to-
tal self-energy of the Coulomb chain is independent of
r0(z):
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In order to determine NL(z) we then minimize the
total energy of the system with respect to NL , including
the external potential:

ER@NL#5«c@NL#1E dzNL~z !
1
2

mvz
2z2. (4.126)

This functional minimization procedure yields an inte-
gral equation that must be solved numerically in general.
An approximate analytic solution can be obtained by
choosing a trial variational function for NL(z). One
choice that works rather well is the quadratic form given
by Eq. (4.120). One can then minimize ER@NL# with
respect to the variational parameter Zp . This yields the
result

Zp
35

3e2

mvz
2 N@ ln@6N#1g213/5# . (4.127)

The resulting density per unit length is shown in Fig. 55
and compared to the density per unit length as obtained
from simulations of 1D chains. The fit is close, but one
can see that Eq. (4.127) slightly overestimates the length
of the chain. A much improved fit to the simulations is
obtained by using a trial function with two variational
parameters, Zp and C:

FIG. 55. Density per unit length n(z) vs position z in 1D
Coulomb chains of different sizes: Dots, molecular-dynamics
simulation results taken from Fig. 54(a). Dashed line: One-
parameter variational solution of Eq. (4.126). Solid line: Two-
parameter variational solution. Distance and density in units of
(e2/mvz

2)1/3. From Dubin (1997).
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The form of the coefficients are chosen so that

E
2Zp

Zp
dzNL~z !5N .

Minimization of ER@NL# with respect to Zp and C is
performed numerically, and the results are shown in Fig.
55 as solid lines, which closely match the simulations.

Although the equilibrium of the 1D chain is unaf-
fected by the value of b, this equilibrium is stable only if
b is sufficiently large. If b is too small, the radial confin-
ing force cannot overcome the Coulomb repulsion be-
tween charges and, just as for the infinite Coulomb
chain, the charges move off the axis, forming a zig-zag as
in Fig. 47(b). However, since the density of the inhomo-
geneous chain is largest in the center, the charges first
form the zig-zag structure in the central region (Schiffer,
1993). This inhomogeneous zig-zag transition is dis-
played in Fig. 56. At lower values of b the next instabil-
ity of an infinite system sets in, and a helical twist devel-
ops, which is shown in Fig. 47(c). The analogous
transition in a finite system is shown in Fig. 56. As b
decreases further, concentric shells eventually develop
and we return to the regime of spheroidal shell struc-
ture.

FIG. 56. Structural phase transitions in trapped plasmas for
large b and for N570 charges: (a) 1D Coulomb chain; (b) and
(c) zigzag; (d) helix. x2y scales magnified by a factor of 100
compared to z scale. kz /kr51/b . From Schiffer (1993).
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Since the interparticle spacing is small compared to
the scale of variation of NL , the critical value of b below
which the central part of the chain becomes unstable can
be evaluated using the result for an infinite homoge-
neous chain, Eq. (4.93). According to this equation, in-
stability sets in when the minimum value of k, attained
at the center of the chain, falls below 4.2072:

2pn2

@NL~z50 !#3,4.2072 . . . (4.129)

[here we have used the definition of k, Eq. (4.84)]. When
we use the approximate analytic variational form for
NL(z), Eqs. (4.120) and (4.127), together with Eqs.
(3.19) and (3.40), then yield

bcrit~N !5
0.591N2

ln~6N !1g213/5
. (4.130)

The critical b value for stability of the 1D chain has also
been investigated in simulations. Equation (4.130) is
found to be a good match to the simulations (Schiffer,
1993) for large N. In Fig. 57, the triangles display where
simulations find an instability of the 1D chain to a zig-
zag phase, and the solid line is Eq. (4.130).

Similarly, the 2D disc equilibrium is stable only when
b is sufficiently small. If b is too large, Coulomb repul-
sion overcomes the confining force, and particles near
the center of the disc come out of the z50 plane, just as
was discussed for the infinite homogeneous 2D plasma
in Sec. IV.D.3. The critical b value for stability of the 2D
disc follows from Eq. (4.112), in a manner analogous to
the analysis leading to Eq. (4.130). One merely replaces
s in Eq. (4.112) by the maximum value of s in the inho-
mogeneous disc, given by Eq. (4.118) at r50. The result
for bcrit is

bcrit~N !5
0.665
N1/2 . (4.131)

This critical value for stability of the 2D disc has also
been determined in simulations for various values of N,
shown by the open circles in Fig. 57. Again, Eq. (4.131),

FIG. 57. Structural phase diagram of plasmas trapped in a
harmonic potential. Adapted from Dubin (1993) and Schiffer,
(1993).
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the dashed line, provides a good match to the simulation
data (Schiffer, 1993) for large N.

Figure 57 summarizes the results of this section. It can
be regarded as the structural phase diagram for crystal-
lized charges in a harmonic trap (Dubin, 1993). For large
b values the charges form a 1D Coulomb chain along
the z axis, and for small b values they form a 2D disc in
the x-y plane. For intermediate values of b the plasma
consists of concentric shells if N is not too large. How-
ever, when N is sufficiently large, a bcc lattice forms
within the plasma. An estimate for the size needed to
enter this regime of large plasmas is provided by Eq.
(4.117) and is shown in Fig. 57 as the dot-dashed lines.
On the other hand, when N is very small the system
enters the regime of Coulomb clusters. We consider
properties of these clusters in the next section.

E. Coulomb clusters

In this section we discuss some aspects of the thermal
equilibrium properties of small numbers of trapped
charges (N&10). When these ‘‘Coulomb clusters’’ are
laser cooled to temperatures in the range of millidegrees
Kelvin, they assume symmetric configurations that mini-
mize their potential energy and are the analogs of the
crystalline states observed in larger systems. These con-
figurations of minimum energy (CME’s) can be ob-
served in experiments and have been carefully studied
using computer simulations (e.g., Itano, Bergquist, and
Wineland, 1989, p. 241; Rafac et al., 1991; Tsuruta and
Ichimaru, 1993). In this section we review the behavior
of the CME as system parameters are varied. We focus
on the case of harmonic traps since most of the experi-
mental work on Coulomb clusters has been carried out
in such traps.

The theoretical problem of finding the CME of
charges confined in a neutralizing background has a long
history, going at least as far back as Thomson’s investi-
gations of the plum-pudding model of the atom (Thom-
son, 1904). The related problem of determining the
CME of charges trapped on the surface of a sphere has
received somewhat more attention over the years, pos-
sibly because limiting the charges to a 2D surface sim-
plifies the problem by reducing the number of local en-
ergy minima. Even so, the problem remains unsolved for
arbitrary N and is a topic of current research (see, for
example, Altschuler et al., 1997, and references therein).

Most experimental work on Coulomb clusters has
been carried out in Paul traps rather than Penning traps.
When CME’s are considered in Paul traps it must be
remembered that these configurations have neglected
the jitter motion associated with the applied rf field.
While the jitter motion has a negligible effect on CME’s
for most experiments on Coulomb clusters, the jitter
motion, together with the effect of the laser cooling, can
in some circumstances cause chaotic motion of the
trapped charges as well as transitions between chaotic
and regular motion (Blümel, 1995; Hoffnagle and
Brewer, 1995). These nonlinear dynamics effects are
specific to Paul traps and lie beyond the scope of this
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review. Here we consider only the CME’s, which apply
both to Paul and Penning traps.

1. Constant rotation frequency

We first consider the case in which the equilibrium
rotation frequency is fixed by an angular momentum
reservoir, or by entrapment in a Paul rather than a Pen-
ning trap. Later we shall compare this case to the situa-
tion that is more typical of Penning trap experiments,
where the angular momentum is held fixed.

In the rotating frame the Hamiltonian takes the form
of Eq. (2.8). If we cool the cluster to its minimum-energy
state at fixed rotation frequency, we minimize the value
of this Hamiltonian. This minimization implies that ki-
netic energy in the rotating frame is zero, which in turn
implies that

vi1vriû i50, (4.132)

so the ion cluster rotates rigidly.
Minimization of the potential energy F(r1 ,. . . ,rN) de-

termines the positions of the charges in the cluster.
The value of F at the minimum is equal to the energy

ER of the crystallized charges as seen in the rotating
frame [see Eq. (2.8)]. This energy is connected to the
energy as seen in the laboratory frame E, through Eq.
(2.6):

F5ER5E1vL , (4.133)

where L is the angular momentum of the CME, given by
Eq. (4.75),

L5
NmVv

2 ^r2&,

and where ^r2& is the mean-square cylindrical radius of
the CME:

^r2&5
1
N (

i51

N

ri
2.

Some useful ‘‘thermodynamic’’ relations between
these quantities can be derived using the fact that F is
minimized at the CME. Recalling that rotation fre-
quency is fixed by an external angular momentum reser-
voir, consider a small interaction with the reservoir that
changes the angular momentum by a small amount DL ,
leading to a change in F, which we Taylor expand in
powers of DL using Eq. (4.133):

DF5S ]E

]L
1v DDL1

1
2

]2E

]L2 DL21¯ . (4.134)

Since the CME is an extremum of F, the first-order term
in DL must vanish, so we obtain the relation

v52
]E

]L
. (4.135)

Furthermore, the CME is not just an extremum of F, it
is a local minimum, so the second-order term in DL
must be nonnegative, which, when combined with Eq.
(4.135), implies that
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]L

]v
<0. (4.136)

Equation (4.135) can be manipulated into a useful
form involving ER rather than E. Substituting for E us-
ing Eq. (4.133) implies

v52
]ER

]L
1v1L

]v

]L
. (4.137)

However ]ER /]L ]L/]v5]ER /]v , so Eq. (4.137) be-
comes

L5
]ER

]v
. (4.138)

Equations (4.135), (4.136), and (4.138), derived here
for CME’s, are actually the zero-temperature limits of
more general relations that can be derived by minimiz-
ing the free energy of the plasma. These general rela-
tions are developed in Sec. V.

Minimization of F has been carried out by several
authors using both analytic and numerical methods
(Mostowski and Gajda, 1985; Baklanov and Che-
botayev, 1986; Casdorff and Blatt, 1988; Rafac et al.,
1991; Tsuruta and Ichimaru, 1993; Bedanov and Peeters,
1994). These authors have focused on the experimen-
tally important case of a harmonic trap for which F can
be written as

F~r1 ,. . . ,rN!5(
i.j

e2

uri2rju
1(

i

1
2

mvz
2~zi

21bri
2!.

(4.139)

If one scales distances by (e2/mvz
2)1/3, F(r1 ,. . . ,rN) de-

pends only on the number of particles N and the trap
parameter b. The minimum-energy configurations for
systems with 3 to 18 ions in a spherically symmetric con-
fining potential (b51) are shown in Fig. 58. Several of
these configurations do not correspond with naive ex-
pectations. For example, when N58 the ions do not lie
on the vertices of a cube (Mostowski and Gajda, 1985)
but instead form two squares rotated by 45° with respect
to each other. This configuration was first identified as a
CME at the turn of the century by scientists investigat-
ing Thomson’s model of the atom (Föppl, 1912; Thom-
son, 1921).

For N up to 12 the ions appear to lie on the surface of
a sphere. In fact this is only exactly true for the symmet-
ric configurations N52, 3, 4, 6, 8, and 12. For N55, 7, 9,
10, and 11 the radii differ slightly. For example, for N
55 the two particles along the symmetry axis are at a
distance r51.1036 from the origin, whereas the particles
in the central triangle have radii r51.0808 [in units of
(e2/mvz

2)1/3].
When N513 it becomes energetically favored for a

single ion to be at the origin. For 22,N,27, there are
two ions inside the outer envelope. These inner ions are
the beginnings of a second shell. As more ions are
added, the ions form the concentric shell structures de-
scribed in previous sections.
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FIG. 58. Minimum-energy configurations of Coulomb clusters in a spherical harmonic potential. From Rafac et al. (1991).
For anisotropic confinement (bÞ1), the CME varies
as b varies. It has been observed that as b is varied
continuously (for example, by varying vz), the CME
also changes continuously except at specific values of b
at which discontinuous changes in the symmetry of the
CME occur (Rafac et al., 1991). These jumps are due to
competing local energy minima, which become lowest
energy at these b values. The transitions are the analogs
of the structural transitions that were discussed for me-
soscopic systems in Sec. IV.D. Some of the transitions

FIG. 59. Structural phase transitions in Coulomb clusters as b
is varied: (a) N52; (b) N53; (c) N54. The z axis is in the
vertical direction in all cases.
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are first order (an order parameter such as the mean-
square radius has a discontinuous jump) and some be-
have like phase transitions of the second kind, where
derivatives of the order parameter with respect to b are
discontinuous. Some examples of these structural transi-
tions are shown in Fig. 59, for the cases of N52, 3, and
4.

For N52, and b.1, the ions sit on opposite sides of
the origin in the x –y plane. When b.1, the ions are
aligned along the z axis; these are the only stable con-
figurations [Fig. 59(a)]. The value b51 is special in that
any rotation of the configuration around the origin is
allowed; this rotational symmetry occurs for all N val-
ues.

For N53, three configurations are stable, as shown in
Fig. 59(b). Again, the ranges of b over which the con-
figurations are the CME correspond to the ranges over
which the configurations are stable local minima. When
b,1 the CME is an equilateral triangle in the x-y
plane. When 1,b,12/5 the CME is an isosceles tri-
angle with the long side parallel to the z axis, and when
b.12/5 the ions are squeezed into a line along the z
axis.

For N54, six distinct stable equilibria are found, two
of which have overlapping regions of linear stability [see
Fig. 59(c)]. When b,(1123/2)/25/250.677 the charges
form a square in the x-y plane. When 0.677,b
,1.4705 (stable for 0.677,b,1.6279) the configuration
is no longer coplanar; it becomes a tetrahedron with two
equal-length edges that are transverse to one another as
well as the z axis. When 1.4705,b,2333/2/(1133/2)
51.677 (stable for 1.4019,b,1.677), the tetrahedron
now has one edge parallel to the z axis and one perpen-
dicular. When 1.677,b,2.8468 the configuration be-
comes coplanar, forming a rhombus parallelogram with
two ions on the z axis and two ions in the x –y plane.
When 2.8468,b,4.1542, the ions that were in the x-y
plane move out of the plane, one above and one below.
For 4.1542,b , the ions are squeezed onto the z axis,
forming a Coulomb chain.

Experiments on clusters of ions confined in a Paul
trap have directly observed these structural transitions
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(Deidrich et al., 1987; Wineland et al., 1987; Itano,
Bergquist, and Wineland, 1989, p. 241). Using laser fluo-
rescence techniques, one can image the ion positions di-
rectly. For example, Figs. 60(g),(h),(i) show three such
images of four charges, with b50.25, 2.2, and 5.7. In
each case the observed configuration (square, rhombus,
Coulomb chain) corresponds to the expected theoretical
CME shown in Fig. 59(c).

For larger values of N the CME’s become more nu-
merous and complex as a function of b. They have been
determined numerically as a function of b for N<10.
Interactive animations of some of the CME’s can be
viewed over the world wide web at the nonneutral
plasma home page at UCSD (http://sdphca.ucsd.edu/
Ioncrys.html). Larger clusters have also been directly
imaged in experiments. Figures of the CME’s may be
found in Itano, Bergquist, and Wineland, 1989, p. 241.

For sufficiently large b the ions are always com-
pressed onto the z axis, forming an inhomogeneous 1D
Coulomb chain, as discussed in Sec. IV.D. On the other
hand, as b→0 the ions always settle into the x –y plane.
The structure of these 2D clusters has also been studied
as a function of N (Rafac et al., 1991; Bedanov and

FIG. 60. Experimental images of clusters of two, three, and
four trapped laser-cooled Hg1 ions in a Paul trap. The coordi-
nate system of (a) applies to the remaining pictures except for
(c). The tick marks on the axes are separated by 10 mm. (c) A
three-dimensional intensity plot for two ions pinned along the
z axis with b56. The voltage VR is related to b through b
50.5(11BVR)/(22BVR), where B50.907 V21 (Wineland
et al., 1987).
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Peeters, 1994). For N<5 the ions lie on a circle, and for
6<N<8 a single ion sits in the center of the ring, while
at N59 a second ion joins the first in an inner ring.
These concentric rings are two-dimensional analogs of
the concentric shell structures observed in spheroidal
plasmas. For large N the ions form the distorted 2D hex-
agonal lattice discussed in Sec. IV.D.

The energy ER as seen in the rotating frame [i.e., the
value of F at the minimum, given by Eq. (4.139)] and
the mean-square radius of the clusters are shown in Figs.
61 and 62 as a function of b for N52, 3, and 4. Note that
the mean-square radius jumps in value for various val-
ues of b. These jumps occur when a new configuration
becomes the CME.

The curves in Figs. 61 and 62 are connected by Eq.
(4.138), ]ER /]v5L . Using Eqs. (4.75) and (3.40) one
can easily show that Eq. (4.138) can be written as

]~ĒR!

]b
~b ,N !5

1
2

N^ r̄2&~b ,N !, (4.140)

FIG. 61. Scaled energy ĒR and mean-square cylindrical radius
^ r̄2& as a function of the trap parameter b for Coulomb clusters
in a harmonic trap, for N52 (dashed) and N53 (solid). Ar-
rows denote the locations of structural phase transitions.

FIG. 62. Same as Fig. 61 but for N54. Insets blow up the
region around the first-order structural phase transition that
occurs at b51.47 when v is held fixed during the transition.
The dashed curves correspond to the results for a cold mean-
field spheroid for which the total particle number equals 4.
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where the overbars denote that distances are scaled by
(e2/mvz

2)1/3 and that the energy is scaled by
mvz

2(e2/mvz
2)2/3. Thus changes in the slope of the ER vs

b curves are connected to the discrete jumps in the
mean-square radius that can be observed in Figs. 61 and
62.

Furthermore, when a new CME takes over from a
previous CME, the new CME must have lower energy
than the old CME. This implies that the slope of the
energy curve decreases as b increases through a transi-
tion. Equation (4.140) then implies that the mean-square
radius always decreases in the jump as b increases. One
can also show that ]^ r̄2&/]b,0 by considering fluctua-
tions in ^r2& in the canonical ensemble [see Eq. (5.67)].
This explains the negative slope of the ^r2& versus b
curves.

Also shown in Fig. 62 are the energy and mean-square
radius one would obtain for a cold mean-field spheroid,
as determined by Eqs. (3.41)–(3.44) and (3.47) [and tak-
ing C50 in Eq. (3.47)]. Even for very small numbers of
charges, the mean-field approximation still provides the
qualitatively correct dependence for the mean-square
radius, although the jumps due to structural phase tran-
sitions are, of course, missed in the mean-field theory.
However, cold mean-field theory does not provide a
very good model for the energy of the cluster. Clearly,
correlation energy plays an important role in the cluster
equilibrium.

The difference between the exact cluster energy and
the cold mean-field energy is the correlation energy of
the cluster. The correlation energy per particle for
spherical Coulomb clusters is plotted in Fig. 63 as a func-
tion of N (Tsuruta and Ichimaru, 1993). As N increases
the correlation energy decreases as surface effects be-
come less important (Fig. 63 is analogous to Fig. 53,
which shows the same effect in mesoscopic plasmas with
larger N). Several dips in the U vs N curve can be ob-
served. The values N54, 6, 10, 12, 19, 32, 38, and 56 all
have lower energy than nearby N values. Clusters with
N56, 12, and 38 have particularly low energies, prompt-
ing some authors to refer to these N values as ‘‘magic
numbers’’ for spherical Coulomb clusters, borrowing the

FIG. 63. Correlation energy Ucorr vs particle number N in
spherical Coulomb clusters. From Tsuruta and Ichimaru
(1993).
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terminology from nuclear physics. These N values all
correspond to particularly symmetric configurations: an
octahedron for N56, a dodecahedron (icosahedron) for
N512, and a two-shelled structure consisting of an oc-
tahedron inside a face-centered icosahedron for N538.

2. Constant angular momentum

In experiments involving isolated charges trapped in a
Penning trap, angular momentum is a conserved quan-
tity, not rotation frequency. In this section we determine
the minimum-energy state holding angular momentum
fixed rather than rotation frequency.

We will see that states of minimum energy at fixed
angular momentum are identical to those obtained by
holding rotation frequency fixed, except near first-order
structural phase transitions. In the previous section we
observed that when rotation frequency is fixed the
mean-square cylindrical radius jumps in value at first-
order transitions (see Figs. 61 and 62). Such jumps in
radius are suppressed when angular momentum is con-
stant, so one might imagine that these first-order transi-
tions are disallowed. Actually, they still occur, but in a
different fashion than for the case of constant rotation
frequency. When L is fixed there is a jump in v at the
transition, just as when v is fixed there is a jump in L.
The jumps are related by the fact that 2v and L are
thermodynamically conjugate variables, as we shall see.
This behavior is analogous to the physics of p-V systems
at a first-order phase transition.

First we consider the general problem of finding the
CME while holding angular momentum fixed rather
than rotation frequency. The Hamiltonian
H(r1 ,v1 ,. . . ,rN ,vN) is then minimized subject to the con-
straint that the angular momentum Pu(r1 ,v1 ,. . . ,rN ,vN)
is held constant. We employ the technique of Lagrange
multipliers to carry out the minimization, constructing
the function

HR~x1 ,v1 ,. . . ,xN ,vN!5H1vPu , (4.141)

where v is a Lagrange multiplier. Extrema of HR pro-
vide us with candidates for the CME. However, note
that HR is actually the Hamiltonian in a frame rotating
with frequency 2v [see Eq. (2.6)], so the extrema of HR
are identical to those discussed in the search for minima
holding rotation frequency fixed. We are then led to
curves of ER vs b and ^r2& vs b, as in Figs. 61 and 62.
From these curves we can construct the desired plots of
E vs L.

An example of this procedure is shown in Fig. 64 for
N54, taking vz /Vc50.2. First, we determine L vs v
using Eq. (4.75) and the data of Fig. 62. The L vs v
curve in Fig. 64(a) is antisymmetric about the Brillouin
limit point L50, v5Vc/2, as expected. However, for the
choice vz /Vc50.2, there is a rather large range of v
values for which L50. This range of v values corre-
sponds to b.4.1542, for which the four charges collapse
to the z axis, forming a 1D Coulomb chain with ^r2&
50. Also, for future reference note that the curve of L
vs v is double valued near v/Vc50.1 and 0.9, where
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there are two stable equilibria. One can easily see this in
the inset to the figure, which shows the region around
v/Vc50.1.

The information in this L2v plot can then be used to
construct the E vs L curve, using the relation E5ER
2vL and the data in Figs. 62 and 64(a). There are two
branches of the E vs L curve, which meet at L50, as
shown in the example in Fig. 64(b). The high-energy
branch with negative angular momentum corresponds to
rotation frequencies higher than Vc/2. Most of the en-
ergy in this branch arises from rapid rotation. The low-
energy branch occurs for positive angular momenta and
corresponds to rotation frequencies below Vc/2. Here
most of the energy arises from Coulomb interactions be-
tween the charges as well as the external trap potential.

The slope of the E vs L curve is connected to the

FIG. 64. Minimum energy state of N54 Coulomb cluster at
fixed angular momentum, vz/Vc50.2: (a) Angular momen-
tum vs rotation frequency (b) Energy in the laboratory frame
vs angular momentum. Energy is in units of mvz

2(e2/mvz
2)2/3,

angular momentum is in units of mvz(e2/mvz
2)2/3. Inset blows

up the location of the first-order structural phase transition
that occurs at L0>3.2.
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rotation frequency through Eq. (4.135), v52]E/]L . A
jump in the slope of the curve occurs at L50, and Eq.
(4.135) then implies v changes discontinuously as L
passes through zero. This jump in v corresponds to the
range of v values for which the charges are squeezed
onto the z axis and L5^r2&50. Only when v is above or
below this range is LÞ0.

The E vs L curve is double valued due to the exis-
tence of more than one stable local energy minimum, as
discussed previously in relation to Eq. (4.139) (although
the double-valued nature of the curve is very difficult to
observe). For the example shown in Fig. 64(b) (N54
and vz /Vc50.2), the curve is double valued in two lo-
cations near L/mvza0

2.63.2 (the region near 3.2 is
blown up in the inset). Since angular momentum is now
held fixed rather than rotation frequency, the structural
transition now causes a jump in the rotation frequency
of the cluster. This jump can be observed in the inset to
Fig. 64(a).

Note that the curves shown in Fig. 64 are mapped
directly from those shown in Fig. 62. However, the lin-
ear stability boundaries at fixed v (the end points of the
curves in Fig. 62) will in general differ when L rather
than v is fixed. Unconstrained fluctuations away from
extrema of HR are less stable than fluctuations con-
strained by fixed L. Therefore the actual stability bound-
aries at fixed L extend beyond the end points of the
curves shown in Fig. 64, although the degree of exten-
sion is presently unknown. Nevertheless, one can show
that the CME at fixed L always corresponds to a stable
or neutrally stable configuration at fixed v, so the exten-
sions to the curves are not needed to find the CME.

The behavior of the cluster near the transition be-
tween local energy minima can be understood analyti-
cally from the behavior of ER(v). For example, we can
analytically determine the value of L0 at the transition
between two structures A and B provided that the jump
in v is not too large. These structures are assumed to
have energy curves in the rotating frame labeled ER

A(v)
and ER

B(v). Expanding to second order in v around the
point v5v0 where ER

A5ER
B5E0 (i.e., the location of

the structural transition when v is fixed), we obtain

ER
A5E01L0

ADv1
]LA

]v0

Dv2

2
, (4.142a)

ER
B5E01L0

BDv1
]LB

]v0

Dv2

2
, (4.142b)

where

Dv5v2v0 , L
0
A
~B !

5L A
~B !

~v0!

and where we have employed Eq. (4.138). Furthermore,
to the same order of approximation, application of Eq.
(4.138) to Eqs. (4.142) yields the cluster angular mo-
menta:

LA5L0
A1

]LA

]v0
Dv , (4.143a)
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LB5L0
B1

]LB

]v0
Dv . (4.143b)

Now we evaluate the energy in the laboratory frame,
E5ER2vL , using Eqs. (4.142) and (4.143):

EA5E02v0L2
1
2

~L2L0
A!2

]LA/]v0
, (4.144a)

EB5E02v0L2
1
2

~L2L0
B!2

]LB/]v0
, (4.144b)

where we have substituted for Dv in terms of L using
Eqs. (4.143). Finally, we subtract Eq. (4.144b) from
(4.144a) in order to determine the transition point L0
where EA2EB50. In this process the linear term in L
vanishes, which is why we needed to keep second-order
variations in E in Eqs. (4.142). The resulting equation
for L0 has the solution

L05
L0

A1L0
BA]LA/]v0 /]LB/]v0

11A]LA/]v0 /]LB/]v0

. (4.145)

This equation exhibits the connection between struc-
tural transitions in the E2L plane and in the ER2v
plane. In the ER2v plane a transition at v5v0 creates
a jump between structures with different angular mo-
menta, L0

A and L0
B . In the E2L plane a transition be-

tween the same two structures occurs at L5L0 , a
weighted average of L0

A and L0
B given by Eq. (4.145).

Furthermore, there is a jump in rotation frequency at
the transition. This jump can be determined via Eqs.
(4.143) and (4.145):

vA2vB5
L0

A2L0
B

A]LA/]v0]LB/]v0

. (4.146)

This shows that the jump in v that occurs in the E2L
plane is proportional to the jump in L that occurs in the
ER2v plane. Equations (4.145) and (4.146) are valid
provided that L0

A and L0
B are not too different, so that

the Taylor expansions in Eq. (4.142) are valid.
In some cases the differences between competing clus-

ter angular momenta are too large for the previous
Taylor-expansion analysis to be accurate. A case in
point is the transition that occurs for N52 at b51. Now
the behavior of the CME at fixed angular momentum
differs qualitatively from the behavior at fixed v. When
v is held fixed the two charges jump from the x-y plane
(L finite) to locations along the z axis (L50) as b in-
creases through b51 [Fig. 59(a)]. However, when L is
fixed, instead of jumping between the two orientations,
the cluster now rotates continuously from one orienta-
tion to the other, with the orientation controlled at all
times by external parameters. The orientation is deter-
mined by Eq. (4.75):

L5
mN

2
VvS e2

mvz
2D 2/3

^ r̄2&~b51,N ,u ,c!, (4.147)

where the overbar on r̄ denotes distances normalized to
(e2/mvz

2)1/3 and the angles u and c determine the orien-
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tation of the cluster. In Eq. (4.147) the vortex frequency
Vv is related to Vc and vz by the condition that b51:

Vv
25Vc

226vz
2. (4.148)

For example, for two charges in the trap, the mean-
square cylindrical radius of the cluster at b51 is

^ r̄2&~b51,N52,u ,c!5224/3 sin2 u , (4.149)

where u is the angle between the z axis and a line con-
necting the two charges. Equations (4.147)–(4.149) im-
ply that for N52 the angle u satisfies

sin u5F 24/3L

m~Vc
226vz

2!1/2 S mvz
2

e2 D 2/3G 1/2

. (4.150)

Thus the orientation of the cluster varies continuously
between sin u50 and sin u51 as vz and/or Vc are varied
at fixed L. Similarly, for three charges, the mean-square
radius at b51 is

^ r̄2&5
31/3~11sin2 u!

2
, (4.151)

where now u is the angle between the z axis and the
plane of the three ions, which form an equilateral tri-
angle. When angular momentum is held fixed and other
parameters are varied, u satisfies

sin2 u5
4L

32/3m~Vc
226vz

2!1/2 S mvz
2

e2 D 2/3

21. (4.152)

On the other hand, for four ions, the tetrahedron has a
mean-square cylindrical radius that is independent of
orientation, ^ r̄2&521/6/31/2. It is also the case that, for
N56, 8, 12, and 13, ^ r̄2& is independent of orientation,
so for these special values of N the orientation of the
cluster is not fixed by external parameters when b51,
and the cluster can rotate freely, just as when v is held
fixed.

V. THERMODYNAMICS OF NONNEUTRAL PLASMAS

Various useful relations between quantities evaluated
in thermal equilibrium can be derived using thermody-
namic arguments. The relations are based on the expres-
sion of these quantities in terms of derivatives of ther-
modynamic potentials with respect to the thermo-
dynamic variables of the system. For a nonneutral
plasma in a Penning trap, a complete set of thermody-
namic variables is the temperature T, total particle num-
ber N, the rotation frequency 2v, the magnetic field B,
and the voltages $Vj% on the surrounding electrode
structure. This set of variables specifies the thermal
equilibrium state of the plasma. However, it is by no
means the only possible complete set. For example, de-
pending on the circumstances one might wish to replace
T by the energy E and v by the angular momentum L.

We have already considered some thermodynamic re-
lations in Secs. IV.C.4 and IV.C.5. However, in those
discussions we were concerned with correlation effects
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in large plasmas. Here we consider more general rela-
tions that hold for any nonneutral plasma for which the
Gibbs distribution describes the thermal equilibrium.
For an isolated plasma this requires N*100, as we have
previously discussed.

The thermodynamic relations can be useful in several
ways. For example, Maxwell relations connect seemingly
unrelated physical quantities. Stability criteria place
bounds on measurable quantities, such as the specific
heat. These bounds are related to the magnitude of fluc-
tuations which can be measured in experiments. We can
also use thermodynamics to determine quantities that
are easy to measure in terms of other quantities which
are easier to calculate. Finally, a thermodynamic ap-
proach greatly simplifies the description of slow plasma
evolution (transport) due to such effects as collisions
with neutrals, interaction with field errors, and interac-
tion with laser cooling and torque beams. As mentioned
earlier, these effects gradually change the values of E
and L. If the change is slow compared to the time re-
quired for Coulomb collisions to bring the plasma to
thermal equilibrium, the plasma evolves through a se-
quence of thermal equilibrium states, and the slow
change in E and L translates to a slow change in T and
v. The thermodynamic approach describes the evolution
using two first-order ordinary differential equations for
the time evolution of T and v, which is a major simpli-
fication from the partial differential equations typically
required to describe transport. The two equations pro-
vide a theoretical basis for the dynamic control of the
plasmas (e.g., through laser cooling and torque beams).

A. The TdS equation

A modern theory of thermodynamics begins by defin-
ing the free energy in terms of the canonical partition
function [see Eq. (4.3)]

FR~T ,v ,B ,$Vj%,N !52kT ln Zc , (5.1)

where the subscript R is a reminder that this is the free
energy in the rotating frame of the plasma. By simply
evaluating the following partial derivative one can show
that (Landau and Lifshitz, 1980, p. 74)

2T2
]

]T FFR

T G
v ,B ,$Vj%,N

5^HR&[ER , (5.2)

where the bracket indicates an average over the Gibbs
distribution (4.2). The entropy S is defined through the
relation

FR5ER2TS , (5.3)

which, together with Eq. (5.2), implies the familiar result

]FR

]T D
v ,B ,$Vj%,N

52S . (5.4)

Likewise, the partial derivatives of FR with respect to
the other thermodynamic variables are physically mean-
ingful quantities. For example, the partial derivative
with respect to v yields the angular momentum
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]FR

]v D
T ,B ,$Vj%,N

5^Pu&[L , (5.5)

and the partial derivative with respect to N is by defini-
tion the chemical potential

]FR

]N D
T ,v ,B ,$Vj%

5m . (5.6)

This function plays an important role in determining the
thermal equilibrium of systems in which the number of
particles can fluctuate.

The partial derivative of 2FR with respect to B is
equal to the average magnetic moment of the plasma:

]FR

]B D
T ,v ,$Vj%,N

5E d3r1 .. .d3vN

e

2c
v(

i51

N

ri
2fc~r1 ,. . . ,vN!

5
Ne

2c
v^r2&52M , (5.7)

where the minus sign enters the last equality because
2v is the rotation frequency of the plasma. Note that M
is a negative quantity for a nonneutral plasma, indicating
that the magnetization induced by rotation opposes the
applied magnetic field: the plasma is diamagnetic. This
appears to contradict the Bohr-van-Leeuwen theorem,
which states that classical systems cannot display dia-
magnetism (Pathria, 1986). However, the theorem ap-
plies only to systems that do not rotate in thermal equi-
librium. In a nonneutral plasma the magnetic moment
arises from the current created by rotation.

The partial derivative of 2FR with respect to the elec-
trode voltage Vj is equal to the average charge qj in-
duced on the electrode by the plasma:

]FR

]Vj
D

T ,v ,B ,$VkÞj%,N

52qj . (5.8)

To prove this relation we note that the voltages Vj enter
the Hamiltonian HR only through the trap potential
fT(r), whose linear dependence on $Vj% can be ex-
pressed as

fT~r!5(
j

Vjf̂T
~ j !~r!,

where f̂T
(j)(r) is the potential caused by a unit voltage on

electrode (j). Then Eqs. (5.1), (4.3), (4.5), and (2.9) im-
ply that

]FR

]Vj
D

T ,v ,B ,N ,$VkÞj%

5E d3r1 .. .d3vN(
i

ef̂T
~ j !~ri!fc~r1 .. .vN!

5(
i

^ef̂T
~ j !~ri!& .

This average can be related to qj by using Poisson’s
equation for the electrostatic potential f induced by the
N charges in the plasma,
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¹2f52(
i

4ped~r2ri!,

with the boundary condition that f50 on the elec-
trodes. Multiplying each side by f̂T

(j)(r) and integrating
over r implies

E d3r@f̂T
~ j !~r!¹2f#52(

i
4pef̂T

~ j !~ri!.

Now we add 2f(r)¹2f̂T
(j) to the integrand on the left-

hand side, which makes no change since ¹2f̂T
(j)50 ex-

cept on the wall where f50. However, this allows us to
apply Green’s theorem:

E d3r@f̂T
~ j !¹2f2f¹2f̂T

~ j !#5E dS•@f̂T
~ j !¹f2f¹f̂T

~ j !# ,

where the surface integral runs over the electrodes. On
the electrodes f50, while f̂T

(j) equals 1 on electrode j
and 0 on the other electrodes, so we have

E
sj

dS•¹f52(
i

4pef̂T
~ j !~ri!,

where the surface integral runs only over electrode j.
Taking the average of this equation and using the rela-
tion

E
sj

dS•¹f54pqj

yields Eq. (5.8).
The partial derivatives of the free energy expressed in

Eqs. (5.4)–(5.8) can be summarized by the total differ-
ential

dFR52SdT1Ldv2(
j

qjdVj2MdB1mdN .

(5.9)

FR is an example of a thermodynamic potential for the
system. By making Legendre transformations, we obtain
the total differential of other thermodynamic potentials.
For example, using Legendre transformation (5.3) to
eliminate FR in favor of ER yields the total differential

dER5TdS1Ldv2(
j

qjdVj2MdB1mdN .

(5.10)

Likewise, using the Legendre transformation E5ER
2vL to exchange ER for the energy in the laboratory
frame E [see Eq. (2.6)] yields

dE5TdS2vdL2(
j

qjdVj2MdB1mdN . (5.11)
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Obviously, this procedure can be continued to generate
many such total differentials.

Simply by rearranging terms, one can rewrite Eqs.
(5.10) and (5.11) in the traditional form TdS5¯ . For
many situations, the trap parameters and the particle
number are constant (i.e., dB5dVj5dN50), so Eq.
(5.11) reduces to the form

TdS5dE1vdL . (5.12)

This equation is formally equivalent to the well-known
TdS equation for a gas,

TdS5dE1pdV , (5.13)

where p corresponds to v and V to L. We shall make
use of this formal correspondence from time to time as
we proceed.

It is instructive to compare Eqs. (5.10) and (5.11) to
Eq. (4.50), the TdS equation for a large plasma. Note
that the mean-field energy ER

(0) makes large contribu-
tions to m, M, qj , L, and E [see Eq. (4.43)]. However,
recall that Eq. (4.50) implies that there is no mean-field
energy contribution to S; it remains an extensive vari-
able for a large plasma. Cancellations between large
mean-field energy terms must therefore occur in Eqs.
(5.10) and (5.11), leaving the relatively small extensive
variation in S apparent in Eq. (4.50). These cancellations
follow from the differential relation

05dER
~0 !2L ~0 !dv1(

j
qj

~0 !dVj1M ~0 !dB2m~0 !dN ,

(5.14)

where L(0), qj
(0) , M(0), and m(0) are the mean-field lim-

its of L, qj , M, and m, obtained by replacing FR with
ER

(0) in Eqs. (5.5)–(5.8). Equation (5.14) is the cold
mean-field limit of the general TdS equations. Equation
(5.14) summarizes several useful differential relations
for cold-fluid equilibria. For example, the charge in-
duced on the electrodes can be found from a derivative
of the cold mean-field energy:

qj
~0 !52

]ER
~0 !

]Vj
D

v ,B ,N ,$VkÞj%

. (5.15)

With knowledge of the cold mean-field energy, explicit
expressions can be derived for the induced charge. For
example, using the cold mean-field expression for the
energy of a plasma in a hyperbolic trap, Eq. (3.47), along
with Eqs. (3.38)–(3.44), one finds that the induced
charge on the ring and cap electrodes satisfies qring

(0)

1qcap
(0)5Ne , as one would expect, and that
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qring
~0 ! 2qcap

~0 !5Ne
Fz0

22
r0

2

2
1

6
5

~Rp
22Zp

2 !2
4
5

~2b11 !~bRp
22Zp

2 !d ln a/dbG
z0

21r0
2/2

. (5.16)
Since the plasma is assumed to be far from the elec-
trodes, one can see that the plasma shape has little effect
on the induced charge, as expected. Furthermore, the
induced charge is completely independent of the plasma
radius when the plasma is spherical (i.e., Rp5Zp), which
also follows from symmetry arguments.

B. Maxwell relations

By taking cross derivatives of the coefficients in the
total differentials, we obtain many Maxwell relations
(hundreds). Some examples that follow from Eq. (5.9)
are the following:

]L

]T D
v ,B ,$Vj%,N

5
]2FR

]T]v
52

]S

]v D
T ,B ,$Vj%,N

(5.17)

]L

]B D
T ,v ,$Vj%,N

5
]2FR

]B]v D52
]M

]v D
T ,B ,$Vj%,N

(5.18)

]qj

]Vk
D

T ,v ,B ,$VlÞk%,N

52
]2FR

]Vk]Vj
5

]qk

]Vj
D

T ,v ,B ,$VlÞj%,N

.

(5.19)
Equations (5.17) and (5.18) are typical of Maxwell rela-
tions in that they connect quantities that at first glance
seem unrelated. Of course, the relations are general.
Equation (5.19) might seem to be a simple reciprocal
relation from electrostatics but, in fact, is more general
since it involves the plasma response.

As a simple application of Maxwell relations, we
evaluate the rate at which charge flows onto (or off of)
an electrode as the temperature of a large plasma is var-
ied. The starting point is the two Maxwell relations

]qj

]T D
v ,B ,$Vk%,N

52
]2FR

]T]Vj
5

]S

]Vj
D

T ,v ,B ,N ,$VkÞj%

(5.20)

]qj

]T D
L ,B ,$Vk%,N

52
]~FR2vL !

]T]Vj
5

]S

]Vj
D

T ,L ,B ,$VkÞj%,N

.

(5.21)
For a plasma that is large compared to the correlation
length, we have already observed that s5s(T ,n2), so
Eqs. (5.20) and (5.21) become

]qj

]T D
v or L

5
]S

]n2
D

T

]n2

]Vj
D

v or L

. (5.22)

Since n25n2(v ,Vc), we observe that, at constant v,
]qj /]T)v50 in large plasmas, but for L5const we find

]qj

]T D
L

52
N

n2

]p

]T D
n2

2Vv

vp
2

]v

]Vj
D

T ,L

, (5.23)
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where we have used Eqs. (4.49) and (3.19). The deriva-
tive ]v/]Vj)L ,T is nonzero and can be evaluated for
large plasmas by dropping surface corrections and using
the zero-temperature uncorrelated form. Equation
(5.23) implies that the image charge on the conductors is
a function of temperature in large plasmas at fixed L.
However, if v is fixed instead, ]qj /]T50, because fixing
v fixes the background density n2 .

As a specific example, for an uncorrelated plasma in a
hyperbolic trap, Eq. (5.23) can be used with Eqs. (3.38)–
(3.45) to obtain

dqring

dT D
L

52
dqcap

dT D
L

5
d ln a/db

d ln a/db12vz
2/vp

213vz
2/Vv

2

Nk

V0
,

(5.24)

where V0 is the potential difference between the ring
and cap electrode [see Eq. (3.38)]. Since da/db.0, Eq.
(5.24) implies that charge flows off the cap electrode and
onto the ring electrode as temperature increases at con-
stant L. Consequently, measurements of qj might possi-
bly provide useful temperature information, although
the effect is small: for V051 V in a spherical plasma for
which Vv@vz , Eq. (5.24) predicts that a temperature
change of 1 K produces a charge Dq on the electrodes of
magnitude uDq/eNu5531025.

C. Derivatives at constant T and v vs derivatives
at constant E and L

It is convenient to work theoretically with the vari-
ables T and v since these variables enter the Gibbs dis-
tribution explicitly. However, these may not be the easi-
est variables to manipulate experimentally; E and L may
be easier to control than T and v. For example, it may
be easier to calculate the specific heat at constant rota-
tion frequency

cv5T
]S

]T D
v

, (5.25)

but easier to measure the specific heat at constant angu-
lar momentum

cL5T
]S

]T D
L

, (5.26)

where B, $Vj%, and N are held constant in both cases.
Fortunately, Maxwell relations (or combinations of
Maxwell relations) provide general relations between
such quantities.
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Rather than develop these relations explicitly, we
make use of the formal correspondence between the
TdS equation for a gas and the TdS equation for a ro-
tating plasma [see Eqs. (5.12) and (5.13)]. Recalling that
v corresponds to p and L to V , we see that cL corre-
sponds to the specific heat at constant volume cv and cv
to the specific heat at constant pressure cp . Simply tran-
scribing the well-known relation between cv and cp
(Landau and Lifshitz, 1980, p. 53) through the replace-
ments p→v and V→L yields the relation

cv2cL52T
~]L/]T !v

2

]L/]v)T
. (5.27)

In the next section, we shall show that ]L/]v)T<0
and that cL>0, so Eq. (5.27) implies that cv>cL>0.
However, in the large-N limit, the relative difference be-
tween cv and cL vanishes. To understand why, first re-
call that L increases with N more rapidly than the first
power of N, since L is dominated by the cold mean-field
contribution. However, ]L/]T)v is extensive [see Eq.
(4.78)], since the temperature affects only the plasma
edge. Thus ]L/]T)v is small compared to ]L/]v in the
limit N→` , and so

lim
N→`

cL

Nk
5

cv

Nk
. (5.28)

Other useful general relations linking derivatives at
constant T and v to those at constant E and L can also
be borrowed from the standard p2V system:

]E

]T D
L

5cL , (5.29)

]ER

]T D
v

5cv , (5.30)

]E

]L D
T

5T
]v

]T D
L

2v , (5.31)

]E

]v D
T

52T
]L

]T D
v

2v
]L

]v D
T

, (5.32)

]E

]T D
v

5cv2v
]L

]T D
v

. (5.33)

The properties of Jacobians (Landau and Lifshitz, 1980,
p. 53) can be used to relate the derivative of any quan-
tity G with respect to another quantity H at fixed E to a
derivative at fixed T. For example,

]G

]H D
E

5
]~G ,E !

]~H ,E !
5

]~G ,E !/]~G ,T !]~G ,T !/]~H ,T !

]~H ,E !/]~H ,T !

5
]G

]H D
T

]E

]T D
G

]E

]T D
H

. (5.34)

A similar relation between derivatives at fixed L and
fixed v can be derived by substituting L for E and v for
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T in Eq. (5.34). Finally, the Jacobian of the transforma-
tion from (E,L) to (T ,v) can be written as

]~E ,L !

]~T ,v!
5

]L

]v D
T

cL . (5.35)

D. Thermodynamic inequalities

The stability of a system in thermal equilibrium
against fluctuations away from equilibrium provides sev-
eral useful inequalities. We begin the derivation of these
inequalities by defining the system energy

E85E1(
j

qjVj1MB ,

which differs from the plasma (or particle) energy E
5^H& through the addition of the energy associated
with the induced image charges and the plasma mag-
netic moment. E8 is the total work, including that done
by external circuits, required to construct a plasma out
of individual charges brought in from infinity to a trap
with fixed electrode voltages Vj and fixed vacuum mag-
netic field B (i.e., the current in the solenoid is held
fixed). As the plasma is assembled in the trap, image
charges qj run onto the electrodes and the voltage
sources for the electrodes do work

(
j

qjVj .

Likewise the current source that maintains a constant B
field does work MB, the energy associated with mutual
inductance between the plasma and the surrounding so-
lenoid. For future reference, we write Eq. (5.11) in terms
of E8 rather than E:

dE85TdS2vdL1(
j

Vjdqj1BdM1mdN . (5.36)

We consider a plasma that is confined in a trap with
fixed electrode voltages Vj5Vj0 , and fixed magnetic
field B5B0 , and that is in contact with a heat, angular
momentum, and particle reservoir parametrized by tem-
perature T0 , rotation frequency 2v0 , and chemical po-
tential m0 . Initially, we postulate that the system is
slightly out of equilibrium; it does not have the values of
E, L, qj , M, or N that would correspond to
(T0 ,v0 ,Vj0 ,B0 ,m0) in thermal equilibrium. The system
adjusts itself by interacting with the reservoir, exchang-
ing energy, angular momentum, and particles, and by
also interacting with the external circuits that fix the
electrode voltages and magnetic field. In what follows
these circuits are assumed to have no entropy associated
with them, and the plasma and heat reservoir constitute
a thermally isolated system (no heat is exchanged with
the circuits, but work may be done on them). For ex-
ample, a constant voltage can be maintained by a ho-
mopolar generator that consists of a massive conducting
flywheel that rotates through a transverse magnetic field.
The state of the wheel is described by a single degree of
freedom, the rotation angle, so the generator has negli-
gible entropy.



157Daniel H. E. Dubin and T. M. O’Neil: Trapped nonneutral plasmas . . .
The second law then implies that the total entropy of
the plasma and the reservoir must be nonnegative in this
equilibration process:

DS1DSres>0. (5.37)

Furthermore, the entropy change of the reservoir is re-
lated to the heat Q absorbed into the system from the
reservoir,

DSres5
2Q

T0
. (5.38)

However, the first law for the plasma states that

Q5DE81W , (5.39)

where DE8 is the change in energy of the system (in-
cluding the energy of image charges and the magnetic
energy associated with M) and W is the work done by
this system. The system can do work as it comes to equi-
librium in a number of ways: for instance, induced image
charges can flow onto or off of the electrodes, which
requires the system to do work

2(
j

V0jDqj

against the circuits that hold the electrode voltages fixed;
angular momentum and particle exchange with the res-
ervoir causes work v0DL2m0DN to be performed; and
a change in magnetic moment DM of the plasma does
work 2B0DM against the power supply that fixes the
current in the magnetic-field solenoid. Adding these
contributions yields the relation

W5v0DL2(
j

V0jDqj2B0DM2m0DN . (5.40)

This relation can also be obtained directly from Eq.
(5.36) by considering the change in E8 at constant en-
tropy and setting W52DE8.

Substitution of Eqs. (5.38)–(5.40) into Eq. (5.37), and
then multiplying by the negative constant 2T0 , implies

DVR<0, (5.41)

where

VR[E82T0S1v0L2(
j

V0jqj2B0M2m0N

(5.42)

is a thermodynamic potential for the plasma. When v
5v0 , Vj5V0j , and B5B0 , VR5ER2T0S2m0N is the
grand potential of the plasma as seen in a rotating frame
(Landau and Lifshitz, 1980, p. 72). From Eq. (5.41) we
conclude that the thermal equilibrium state achieved by
a nonneutral plasma connected to a heat, angular mo-
mentum, and particle reservoir and confined by constant
electrode voltages and constant external magnetic field
is the state for which the thermodynamic potential VR is
minimized.
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Let us now examine the consequences of this result by
considering small fluctuations of the system away from
thermal equilibrium to some nearby state, under the
conditions that T0 , v0 , V0j , B0 , and m0 are fixed. Since
the system started in thermal equilibrium, the thermo-
dynamic potential VR must increase away from equilib-
rium, and we can use this fact to determine thermody-
namic inequalities. Say that there are P electrodes. Then
let $lk%, k51, . . . ,P14, be any complete set from the
P14 conjugate pairs of thermodynamic variables

$~T ,S !,~2v ,L !,$~Vj ,qj!%,~B ,M !,~m ,N !%. (5.43)

Note that the plasma rotation frequency 2v is the vari-
able conjugate to L. Here the term ‘‘conjugate’’ has the
usual meaning in thermodynamics: conjugate variables
are related through derivatives of the system energy E8
[see Eq. (5.36)]. The nearby state to which the system
has been perturbed is assumed to be characterized by
changes in the lk’s by small amounts dlk . The change
in VR compared to the minimum equilibrium value is
then

dVR5(
k

]VR

]lk
dlk1

1
2 (

j ,k

]2VR

]l j]lk
dl jdlk>0,

(5.44)

where the inequality follows from the fact that VR is
minimized in the thermal equilibrium for which dlk
50.

Now since dlk can be either positive or negative, the
first variation of VR must vanish, implying

]VR

]lk
50.

We can rewrite this equation by using the definition of
VR in Eq. (5.42) and substituting for ]E8/]l j from Eq.
(5.36):

]VR

]lk
5~T2T0!

]S

]lk
2~v2v0!

]L

]lk
1(

j
~Vj2V0j!

]qj

]lk

1~B2B0!
]M

]lk
1~m2m0!

]N

]lk
50. (5.45)

Equation (5.45) implies that the thermal equilibrium
state is such that

T5T0 , v5v0 , Vj5Vj0 ,

B5B0 , and m5m0 . (5.46)

For example, suppose that $lk%5$S ,L ,$qj%,M ,N% and
that lk5S . Then in Eq. (5.45), ]S/]lk is unity and the
remaining partial derivatives are zero, so we obtain T
5T0 . The other results in Eq. (5.46) follow from setting
lk5L , $qj%, M, and N one after the other.

When conditions (5.46) are satisfied, only the term
quadratic in the dlk’s survives and inequality (5.44) im-
plies that this term must be nonnegative. In other words,
in the space of $dlk% the surfaces of constant dVR are
closed and nested so that dVR50 is a local minimum.
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Since this is a statement concerning the topology of the
constant dVR surfaces, it remains true for any complete
set of lk’s that we choose. Therefore we lose no infor-
mation by choosing any particular set of lk’s. A conve-
nient set is $lk%5$S ,L ,$qj%,M ,N%, because we have al-
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ready determined the first derivatives of VR with respect
to these variables [see Eq. (5.45)]. For example,
]2VR /]S2)L ,$qj%,M ,N5]T/]S)L ,$qj%,M ,N . The entire set of
second derivatives forms a matrix of dimensions P14
by P14:
]2VR

]l j]lk
51

]T

]S D
L ,$qj%,M ,N

]T

]L D
S ,$qj%,M ,N

H ]T

]qk
D

S ,L ,$qjÞk%,M ,N
J ]T

]M D
S ,L ,$qj%,N

]T

]N D
S ,L ,$qj%,M

2
]v

]L D
S ,$qj%,M ,N

H 2
]v

]qk
D

S ,L ,$qjÞk%,M ,N
J 2

]v

]M D
S ,L ,$qj%,N

2
]v

]N D
S ,L ,$qj%,M

H ]Vj

]qk
D

S ,L ,$qjÞk%,M ,N
J ]Vj

]M D
S ,L ,$qj%,N

]Vj

]N D
S ,L ,$qj%,M

¯

]B

]M D
S ,L ,$qj%,N

]B

]N D
S ,L ,$qj%,M

]m

]N D
S ,L ,$qj%,M

,

(5.47)
where only the top half of the matrix is displayed be-
cause it is symmetric: ]2VR /]l j]lk5]2VR /]lk]l j .
This symmetry provides a set of Maxwell relations for
the system.

Stability implies that the eigenvalues of this matrix are
nonnegative, which yields P14 thermodynamic in-
equalities. These inequalities form a necessary and suf-
ficient set of criteria for stability of the equilibrium
against fluctuations in any of the thermodynamic vari-
ables.

However, the eigenvalues are quite complicated in
form, so we consider a simpler set of inequalities, which
only form a necessary set of criteria for stability (they
are not sufficient). Considering fluctuations in only one
of the lk’s at a time implies that each diagonal element,
]2VR /]lk

2 , must be nonnegative. For example, we find

]T

]S D
L ,$qj%,M ,N

>0, (5.48)

which implies that the specific heat at constant L, $qj%,
M, and N is nonnegative, provided that T>0. It is also
worthwhile to write out the other inequalities explicitly:

2
]v

]L D
S ,$qj%,M ,N

>0, (5.49)

]Vk

]qk
D

S ,L ,$qjÞk%,M ,N

>0, (5.50)

]B

]M D
S ,L ,$qj%,N

>0, (5.51)
]m

]N D
S ,L ,$qj%,M

>0. (5.52)

The fact that these inequalities are necessary but not
sufficient for stability can be seen by allowing variations
in more than one parameter. For example, consider
variations in both S and L. Then the determinant of the
232 matrix composed of the upper left-hand side of
]2VR /]l j]lk must be non-negative, which implies that

2
]T

]S D
L ,$qj%,M ,N

]v

]L D
S ,$qj%,M ,N

>S ]T

]L D
S ,$qj%,M ,N

2

,

providing more stringent bounds for both ]T/]S and
]v/]L than are provided by Eqs. (5.48) and (5.49).

Equations (5.48)–(5.52) reflect stability along one par-
ticular set of directions, given by lk5$S ,L ,$qj%,M ,N%,
but more information may be uncovered by considering
other directions. The inequalities so obtained take the
simplest forms when only one of each conjugate pair in
Eq. (5.43) is employed as a lk . For example, choose
$lk%5$T ,L ,$Vj%,B ,N%, and take lk5L in Eq. (5.45).
Then taking another derivative with respect to L yields

]2VR

]L2 D
T ,$Vj%,B ,N

52
]v

]L D
T ,$Vj%,B ,N

>0, (5.53)

where we have employed the equilibrium conditions,
Eq. (5.46), after taking the derivative. Similarly, taking
lk5T in Eq. (5.45) yields ]S/]T)L ,$Vj%,B ,N>0. Assum-
ing that T.0, and using definition (5.26), we then obtain

cL>0. (5.54)

This equation, together with Eq. (5.27), shows that cv

must also be non-negative. Analogous arguments show
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that any other choice for the set of $lk%’s consisting of
one variable from each of the conjugate pairs in Eq.
(5.43) can be employed without changing the basic form
of Eqs. (5.48)–(5.52). For example, ]M/]B)T ,v ,$Vj%,N

>0 and ]Vj /]qj)T ,L ,$VkÞj%,B ,m>0 as well.
The inequalities cL>0 and ]v/]L)T<0 are the ana-

logs of the inequalities cv>0 and ]p/]V)T<0 for a gas.
The latter two inequalities can be understood physically
as the conditions for temperature and mechanical stabil-
ity when the gas is in contact with a reservoir character-
ized by fixed temperature and pressure. Likewise, the
inequalities cv>0 and ]v/]L)T<0 are necessary for
temperature and rotation frequency stability when the
plasma is in contact with a reservoir characterized by
fixed temperature and fixed rotation frequency. In
thinking about frequency stability, it is necessary to re-
member that 2v is the rotation frequency, so it may be
useful to rewrite ]v/]L)T<0 as ](2v)/]L)T>0. Sup-
pose, for example, that a fluctuation makes 2v larger
(more positive) than the rotation frequency of the res-
ervoir. The reservoir will then exert a negative torque
on the plasma, opposing the differential rotation. The
two inequalities DL,0 and ](2v)/]L)T.0 then imply
that D(2v),0, which is a frequency change of the sign
required to restore equilibrium.

The inequality ]Vj /]qj)T ,L ,$VkÞj%,B ,m>0 also follows
from a straightforward physical picture. As Vj is in-
creased (holding the other parameters fixed), a plasma
consisting of positive charges is pushed away from elec-
trode j, so the (negative) image charge on that electrode
is decreased in magnitude.

The inequality ]M/]B)T ,v ,(Vj),N>0 implies that the
magnitude of the plasma’s (negative) magnetic moment
M decreases as B increases, which may be counterintui-
tive at first glance since the plasma is diamagnetic, so
one expects the magnitude of the plasma magnetization
to increase as B increases. However, the average mag-
netization is the magnetic moment divided by the
plasma volume, and as B increases the plasma volume
decreases, since the plasma radius tends to shrink. The
decrease in plasma volume allows the magnetization to
increase in magnitude even though the magnetic mo-
ment decreases in magnitude.
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Finally, we may wish to fix E rather than S or T. For
example, consider variations of L at fixed E, $Vj%, B,
and N. Taking lk5L in Eq. (5.45), and then taking an-
other derivative with respect to L, yields the inequality

]2VR

]L2 D
E ,$Vj%,B ,N

5
]T

]L D
E ,$Vj%,B ,N

]S

]L D
E ,$Vj%,B ,N

2
]v

]L D
E ,$Vj%,B ,N

>0. (5.55)

However, Eq. (5.11) implies that T]S/]L)E ,(Vj),B ,N

5v , so we can write Eq. (5.55) as

2T
]

]L S v

T D
E ,$Vj%,B ,N

>0. (5.56)

Note that this inequality does not imply that
(]v/]L)E ,$Vj%,B ,N<0. In fact, thermodynamic stability
does not disallow the possibility that (]v/]L)E ,$Vj%,B ,N

.0. Nevertheless, for a large classical plasma one can
show that the inequality is satisfied. By using Eqs. (5.34)
and (5.29), we obtain the relation

]v

]L D
E

5

]E

]T D
v

cL

]v

]L D
T

, (5.57)

where $Vj%, B, and N are held fixed throughout. Now,
cL>0 and ]v/]L)T<0, so the sign of ]v/]L)E hinges
on the sign of ]E/]T)v . Since E5ER2vL , Eq. (5.30)
implies that

]E

]T D
v

5cv2v
]L

]T D
v

. (5.58)

Unfortunately, this is as far as we can go in general be-
cause we do not have a general expression for ]L/]T)v .
However, for a large plasma, this derivative is given by
Eq. (4.78) and also cv5cL5cn2

, the specific heat of a
one-component-plasma. Employing these results in Eq.
(5.57), and using Eq. (4.35) to evaluate ]p/]T)v , yields
]v

]L D
E ,$Vj%,B ,N

5
]v

]L D
T ,$Vj%,B ,N

c ideal2NkS 12
2v2

vp
2 D 1

2
3 S 11

v2

vp
2 D ~cn2

2c ideal!

cn2

. (5.59)
For an OCP consisting of classical point charges, cn2

2c ideal , the specific heat due to correlation effects, is
non-negative (see Fig. 43) and c ideal53Nk/2, so
]v/]L)E<0. However, for a cryogenic electron plasma
for which the cyclotron motion is quantized and in the
lowest Landau level, c ideal5Nk/2. In this case Eq. (5.59)
implies that ]v/]L)E can be greater than zero, depend-
ing on the rotation frequency and the degree of correla-
tion. For example, for a weakly correlated plasma with
quantized cyclotron motion, Eq. (5.59) implies
]v/]L)E52@(Vc23v)/(Vc2v)#]v/]L)T , which is
greater than zero provided that Vc.3v .
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E. Fluctuations

The thermodynamic inequalities discussed in the pre-
vious section can be related to the magnitude of fluctua-
tions in the plasma, and some of these relations may be
of physical interest. For example, consider a fluctuation
dqi5qi2^qi& in the charge on a sector i at fixed N, v, T,
B, and $Vj%. (Here we employ the notation ^qi& for the
equilibrium average, and qi is the value of a particular
realization of the canonical ensemble, which fluctuates
by dqi about ^qi&.) Standard thermodynamic arguments
allow us to express the average ^dqidqj&T ,v in terms of
thermodynamic derivatives. We first express this aver-
age in terms of ^qiqj&T ,v , ^qi&, and ^qj&:

^dqidqj&T ,v5^qiqj&T ,v2^qi&^qj&. (5.60)

These averages can be expressed as derivatives of the
canonical partition function Zc . Using Eqs. (5.8) and
(5.1), one finds

^qi&5~kT/Zc!]Zc /]Vj)T ,v ,B ,N , (5.61)

and a modification of the argument that led to Eq. (5.8)
yields ^qiqj&T ,v5@(kT)2/Zc#]

2Zc /]Vi]Vj)T ,v ,B ,N . Put-
ting these averages together in Eq. (5.60) yields

^dqidqj&T ,v

5
1

Zc
~kT !2

]2

]Vi]Vj
ZcD

T ,v ,B ,N

2S kT

Zc
D 2 ]Zc

]Vi

]Zc

]Vj

5~kT !2
]2 ln Zc

]Vi]Vj
D

T ,v ,B ,N

5kT
]qi

]Vj
D

T ,v ,B ,N

5kT
]qj

]Vi
D

T ,v ,B ,N

, (5.62)

where in the last two steps we used Eq. (5.61) and the
Maxwell’s relation, Eq. (5.19). The subscripts on
^dqidqj&T ,v point out that the average is performed in a
constant T and v ensemble (the canonical ensemble).
Averages over the microcanonical ensemble will be dis-
cussed presently.

When i5j , the fact that ^dqi
2&T ,v must be non-

negative provides us with an inequality similar to Eq.
(5.50). Furthermore, fluctuations in image charge may
be of some interest since Eq. (5.62) shows that they pro-
vide a measure of the temperature of the plasma.

A similar relation can be derived involving the mag-
netic moment M of the plasma:

^dM2&T ,v5kT
]M

]B D
T ,v ,$Vj%,N

, (5.63)

which provides us with an inequality similar to that
given by Eq. (5.51). Measurements of fluctuations in M,
through use of a circuit connected to an external induc-
tance coupled to the plasma, for example, could also
provide a temperature diagnostic.

Another useful relation follows from consideration of
fluctuations in the function
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1/N(
i

r i
2.

The thermal equilibrium average of this function is the
mean-square cylindrical radius, ^r2&, and this average
can be obtained by taking a derivative of the free energy
with respect to v:

^r2&5
2

NmVv

]FR

]v D
T ,$Vj%,B ,N

. (5.64)

Equation (5.64) can be obtained directly using Eqs. (5.1)
and (4.3) or indirectly via Eq. (5.5) and the definition of
L, Eq. (4.75). Furthermore, fluctuations in

~1/N !(
i

r i
2

can be related to a derivative of ^r2& using arguments
analogous to those that led to Eq. (5.62):

K S d
1
N (

i
r i

2D 2L
T ,v

52
2kT

NmVv

]^r2&
]v D

T ,$Vj%,B ,N

.

(5.65)

This relation implies that

1
Vv

]^r2&
]v D

T ,$Vj%,B ,N

<0. (5.66)

When Vv is positive, the mean-square radius shrinks as
v increases, but when Vv becomes negative ^r2& ex-
pands, as one can see in Fig. 15, for example. For a
harmonic trap Eq. (5.66) can be written as

]^r2&
]b D

T ,vz ,N

<0, (5.67)

where the trap parameter b is defined by Eq. (3.40).
Note that B need not be held fixed in Eq. (5.67) since
^r2& depends on B only through b. Inequality (5.67) was
observed to hold in Coulomb clusters at zero tempera-
ture (see Sec. IV.E.1 and Figs. 61 and 62).

Equation (5.66) can be employed to obtain an im-
proved bound on ]L/]v . A derivative with respect to v
of Eq. (4.75) implies

Nm

2
Vv

]^r2&
]v D

T ,$Vj%,B ,N

5
]L

]v D
T ,$Vj%,B ,N

1Nm^r2&.

(5.68)

Since Eq. (5.66) implies that the left-hand side of Eq.
(5.68) is less than or equal to zero, we find

]L

]v D
T ,$Vj%,B ,N

<2Nm^r2&, (5.69)

which is an improvement over Eq. (5.53). Note that the
right-hand side of Eq. (5.69) is the negative of the rota-
tional inertia of the plasma.

It is important to point out that the fluctuations in
Eqs. (5.62), (5.63), and (5.65) are assumed to occur in a
system at fixed v and T. We have added subscripts to



161Daniel H. E. Dubin and T. M. O’Neil: Trapped nonneutral plasmas . . .
the averages in order to point this out explicitly. How-
ever, it is presumably fluctuations at fixed L and E that
are of interest in many experimental measurements. Al-
though we have said that averages in the microcanonical
(fixed L and E) and canonical (fixed v and T) ensembles
are identical for large systems, this statement must be
modified when fluctuations are considered. A more pre-
cise statement is that averages of intensive quantities in
the two ensembles are identical to O(1/N). However,
for fluctuations these O(1/N) corrections are important,
and the two ensembles may provide different results in
the thermodynamic limit. One trivial example is that in
the microcanonical ensemble ^dPu

2&E ,L50, whereas in
the canonical ensemble Pu fluctuates. The reason that
the O(1/N) corrections are important can be under-
stood from the following argument. Consider the fluc-
tuation dG of an extensive quantity G. We evaluate
^dG2& by taking the difference ^dG2&5^G2&2^G&2.
Since G is extensive, ^G2& and ^G&2 scale as N2. The
O(1/N) difference between an evaluation of the aver-
ages using different ensembles will therefore scale as N.
However, typical fluctuations ^dG2& are also of O(N);
the O(N2) terms cancel after ^G&2 is subtracted from
^G2&. We therefore cannot necessarily neglect the
O(1/N) difference between evaluations of rms fluctua-
tions using different ensembles.

Fortunately, it is possible to relate the fluctuations in
different ensembles (Leibowitz, Percus, and Verlet,
1967). Given any two quantities G and H with average
values ^G&,^H& and fluctuations dG and dH about their
average values, the fluctuations in a constant E, L, B,
$Vj%, and N ensemble are related to the fluctuations in a
constant T, v, B, $Vj%, and N ensemble by

^dGdH&E ,L5^dGdH&T ,v2kT2
]T

]E D
L

]^G&
]T D

~v/T !

3
]^H&
]T D

~v/T !

1k
]T

]L D
E
H ]^G&

]T D
~v/T !

3
]^H&

]~v/T ! D
T

1
]^G&

]~v/T ! D
T

]^H&
]T D

~v/T !
J

1k
]~v/T !

]L D
E

]^G&
]~v/T ! D

T

]^H&
]~v/T ! D

T

,

(5.70)

where B, $Vj%, and N are also held fixed throughout. For
the mean-square fluctuations ^dqidqj&E ,L and
^dM2&E ,L , we have evaluated the derivatives in Eq.
(5.70). To do so we note that ]^G&/]T)(v/T)
5]^G&/]T)v1(v/T)]^G&/]v)T . In the large-plasma
limit, one can use Eqs. (5.28), (5.29), (5.34), and (4.78),
along with the fact that ]L/]v)T increases with N more
rapidly than the first power of N, to show that

^dM2&E ,L5kT]M/]B)T ,L ,$Vj%,N (5.71)

^dqidqj&E ,L5kT]qj /]Vi)T ,L ,B ,N

5kT]qi /]Vj)T ,L ,B ,N . (5.72)
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The derivatives in these equations differ from those of
Eqs. (5.62) and (5.63) because L is held fixed rather than
v.

Another example of a fluctuation for which there is a
difference between ensembles in the large-plasma limit
is the rms fluctuation in the z component of the kinetic
energy,

Kz5(
i

1
2 mvz

2.

This quantity can be followed in computer simulations
and may also be observable using laser diagnostics in
actual experiments, since these diagnostics can deter-
mine components of the particle velocities. In the ca-
nonical ensemble straightforward integrals over the
Maxwellian velocity distribution imply that ^Kz&
5NkT/2, so measurement of ^Kz& provides one with
the temperature. Fluctuations in Kz are also related to T
through averages over a Maxwellian:

^dKz
2&T ,v5

1
2

N~kT !2. (5.73)

However, using Eq. (5.70) one finds that in the constant
E and L ensemble the mean-square fluctuation is differ-
ent:

^dKz
2&E ,L5

1
2

N~kT !2F12
Nk

2cL
G . (5.74)

There can be a considerable difference between Eq.
(5.73) and Eq. (5.74). For example, for a large weakly
correlated electron plasma for which the cyclotron mo-
tion is quantized and in the ground state (but motion
parallel to B remains classical), cL→ 1

2 Nk . Equation
(5.74) then implies that ^dKz

2&E ,L vanishes. However,
Eq. (5.73) implies that ^dKz

2&T ,v remains finite. In the
microcanonical ensemble the fluctuation in Kz is non-
zero only by virtue of correlations that raise cL above
1
2 Nk .

F. Adiabatic processes

Some experiments involve adiabatic processes for
which S5const. We have already discussed the rate of
temperature change in adiabatic processes for large plas-
mas [see Eqs. (4.52) and (4.53)], but here we consider
general relations which hold even for plasmas that in-
clude surface effects. For example, the rate of work
done on the plasma due to different adiabatic processes
is given by Eq. (5.11):

]E

]Vj
D

S ,L ,$VkÞj%,B ,N

52qj ,
]E

]B D
S ,L ,$Vj%,N

52M

]E

]L D
S ,$Vj%,B ,N

52v . (5.75)

Typically, adiabatic expansions are carried out by
varying a sector voltage Vj at constant L. The tempera-
ture change in such a process is
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]T

]Vj
D

S ,L ,$VkÞj%,B ,N

52]S/]Vj)T ,L ,$VkÞj%,B ,N /]S/]T)L ,$Vj%,B ,N

52
T

cL

]qj

dT D
L ,$Vj%,B ,N

, (5.76)

where we have employed the Maxwell relation, Eq.
(5.21), and definition (5.26).

Adiabatic expansions can also be carried out by vary-
ing the magnetic field. The temperature change would
then be given by

]T

]B D
S ,L ,B ,N

52
T

cL

]M

]T D
L ,$Vj%,B ,N

. (5.77)

For large plasmas, Eqs. (5.76) and (5.77) are equivalent
to Eq. (4.53).

G. Thermodynamic approach to transport

For a collection of point charges that interact electro-
statically in an ideal trap for which the electrode struc-
ture is cylindrically symmetric and the trap fields are
time independent, E and L are constants (see Sec. II.B).
However, for a real plasma in a real trap, such effects as
collisions with neutrals, radiation, and interaction with
small (but unavoidable) field errors produce slow
changes in E and L. Furthermore, laser beams and ro-
tating field asymmetries are often applied to produce
changes in E and L. We assume that these changes are
slow compared to the time for collisions to bring the
plasma to thermal equilibrium, so the plasma evolves
through a sequence of thermal equilibrium states, and
the slow evolution of E and L translates to a slow evo-
lution of T and v. Thermodynamics provides a simple
framework for the description of this late time transport.
Throughout this section we assume that the particle
number and trap parameters are held constant (i.e.,
dN5dVj5dB50), so the TdS equation reduces to the
simple form in Eq. (5.12).

1. Direction of evolution

In some cases, thermodynamics alone can tell us the
sign of the change in quantities and the direction of evo-
lution. As a simple example, consider the sign of the
torque that a static-field error (asymmetry) exerts on a
rotating plasma. Of course, one’s intuition suggests that
the torque is a drag that opposes the rotation, but how
can we prove this? Fundamentally, the intuition is an
expression of the second law of thermodynamics. Since
the field asymmetry is static, E remains constant and we
can set dE50 in Eq. (5.12) to obtain the result

0<TdS5vdL52~2v!dL , (5.78)

where the inequality expresses the second law. Thus the
plasma rotation frequency (2v) and dL have opposite
signs, that is, the torque L̇5dL/dt opposes the rotation.
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For a plasma of positive charges, the rotation frequency

is negative (i.e., v.0) so L̇ is positive.
Although the torque opposes the rotation, it is not

necessarily true that this torque causes v to decrease
monotonically toward zero: a static-field error can in
some circumstances actually cause the rotation fre-
quency to increase in magnitude. This rather surprising
result follows from the fact that thermodynamics does
not fix the sign of ]v/]L)E . In some regimes ]v/]L)E
can be greater than zero. One example is the case of a
cryogenic pure electron plasma in the lowest Landau
level, which we discussed previously in connection with

Eq. (5.59). When ]v/]L)E.0, the fact that L̇.0 im-

plies v̇5L̇]v/]E)E.0, so the plasma spins more rap-
idly due to the application of the static-field error.

Of course, this cannot continue indefinitely, otherwise
the system would never approach thermal equilibrium
(which corresponds to v50 when a static error is ap-
plied). For example, for the case of the cryogenic pure
electron plasma, the field error causes an increase in
temperature [due to the entropy increase expressed in
Eq. (5.78) and inequality (5.54)]. This eventually causes
the system to leave the lowest Landau level, so ]v/]L)E
changes sign and v begins to decrease toward zero.

Next, let us suppose that some other effect, say, laser
cooling, maintains the plasma temperature at a constant
value without exerting a torque. Then the relation v̇

5(]v/]L)TL̇ plus the inequalities (]v/]L)T<0 and

L̇.0 imply that v̇ is negative. The stationary field asym-
metry slows the plasma rotation much as a caliper brake
slows the rotation of a freely spinning bicycle wheel.

For fixed T, the direction of evolution of v determines
the direction of evolution of all other quantities. For
example, Eq. (5.66) implies that ]^r2&/]v)T is positive
for v,Vc/2 and negative for v.Vc/2. Thus, if v starts
off at a large value and decreases monotonically, ^r2&
decreases until v5Vc/2 and then begins to increase. For
the special case of a quadratic trap potential, this behav-
ior can be seen in Fig. 15.

A more succinct argument treats the field asymmetry
and the process that maintains the temperature at a
fixed value as a heat and angular momentum reservoir.
The reservoir is assumed to be fixed at the initial tem-
perature T of the plasma and the rotation frequency
2v0 of the field error. Here, we allow for the more
general case of a rotating-field asymmetry (see the dis-
cussion of the ‘‘rotating-wall’’ field in Sec. III.H.2). The
heat transfer is assumed to be sufficiently effective that
the plasma remains in temperature equilibrium with the
reservoir even though it is not in frequency equilibrium
with the reservoir. The thermodynamic potential VR ,
which was defined in Eq. (5.42), must decrease as the
plasma evolves toward frequency equilibrium with the
reservoir. Thus we obtain

0>DVR5
]VR

]L D
T ,N ,B ,$Vj%

DL52~v2v0!DL , (5.79)
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where the partial derivative was evaluated by setting
lk5L , T5T0 , Vj5Vj0 , and B5B0 in Eq. (5.45).
Again, we find that the torque opposes the differential
rotation, which together with the inequality ]v/]L)T
<0 implies that the rotation frequency of the plasma
evolves toward that of the field asymmetry.

2. Evolution equations

If the plasma passes through a sequence of thermal
equilibrium states characterized by fixed values of N,
$Vj%, and B, the temperature and rotation frequency at
any instant can be expressed as T5T(E ,L) and v
5v(E ,L). The time derivative of these equations,

Ṫ5
]T

]E D
L

Ė~v ,T ,x j!1
]T

]L D
E

L̇~v ,T ,x j!, (5.80)

v̇5
]v

]E D
L

Ė~v ,T ,x j!1
]v

]L D
E

L̇~v ,T ,x j!, (5.81)

governs the plasma evolution, where Ė5Ė(v ,T ,x j) and
L̇5L̇(v ,T ,x j) are functions that describe the rate of
energy and angular momentum exchange with various
external agencies. For example, suppose that the plasma
energy and angular momentum were changing as a re-
sult of collisions with neutrals. Ė and L̇ would depend
on the plasma state (i.e., on v and T) and on some pa-
rameters x j that characterize the neutrals, such as the
neutral density and temperature. Likewise, for interac-
tion with a laser beam, Ė and L̇ would be determined by
the plasma state (i.e., v and T) and by parameters x j
such as the intensity and frequency of the laser light.
Assuming that the parameters x j are constant, or known
functions of time, the plasma evolution is governed by
two ordinary differential equations for the time evolu-
tion of T and v. This reduction in complexity from the
partial differential equations typically required to de-
scribe transport is possible because the plasma passes
through a sequence of thermal equilibrium states.

With the aid of Eqs. (5.29), (5.30), and (5.31), Eqs.
(5.80) and (5.81) can be rewritten as

cLṪ5AvL̇1Ė , (5.82)

cLv̇5F cv

]v

]L D
T

1v
]v

]T D
L
G L̇1

]v

]T D
L

Ė , (5.83)

where

A512
T

v

]v

]T D
L

. (5.84)

It is often more convenient to write Eq. (5.83) as

v̇S ]L

]v D
T

5L̇2S ]L

]T D
v

Ṫ , (5.85)

where use has been made of Eqs. (5.27) and (5.82). This
equation could have been written down directly by tak-
ing the time derivative of the mixed function v
5v(L ,T). By using Maxwell relations, the coefficients
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of Eqs. (5.82)–(5.85) can be written in many ways. How-
ever, one can see that only cv and the function L
5L(v ,T) are needed to evaluate the coefficients.

For the case of a large plasma, only one of the coeffi-
cients in the evolution equations depends on the plasma
shape. The other coefficients can be written out as ex-
plicit functions of T and v with no reference to plasma
shape. For example, cL5cv5cn2

, the specific heat of a
one-component plasma at constant density, is given by
Eq. (4.48). When the density is written as a function of v
using vp

252v(Vc2v), we obtain an expression for
cL(v ,T)5cv(v ,T) that is independent of plasma shape.
Likewise, ]L/]T)v is given by Eq. (4.78) in terms of the
pressure p(n2 ,T) for an OCP, which in turn is given by
Eq. (4.35). One can also check that T]v/]T)L is negli-
gible compared to v so that A.1.

For the simple case of a large and weakly correlated
plasma of point charges, the specific heat reduces to cn
5(3/2)Nk and the pressure to p5n2kT , so evolution
equations (5.82) and (5.85) reduce to the simple form

3
2

NkṪ5vL̇1Ė (5.86)

]L

]v D
T

v̇5L̇2
Nk~Vc22v!

v~Vc2v!
Ṫ . (5.87)

The coefficient ]L/]v)T depends on plasma shape.
For a large plasma, ]L/]v)T is determined principally
by the cold mean-field contribution to the angular mo-
mentum [see Eq. (4.76)] and can be evaluated explicitly
for two common trap geometries. For example, for a
long cylindrical plasma column of radius Rp and fixed
length, one can show that

]L ~0 !

]v D
T

52
NmRp

2

4 F ~Vc2v!21v2

v~Vc2v! G , (5.88)

while for a spheroidal plasma in a harmonic trap, Eqs.
(3.40)–(3.45) imply that

]L ~0 !

]v D
T

52
2NmRp

2

5 F11
Vv

2

3vp
2 S 21

d ln a~b!

db D G ,

(5.89)
where the radius Rp is determined by N, v, vz , and Vc
through Eq. (3.48). Note that in both cases the inequal-
ity ]L/]v)T<0 is satisfied.

As a simple example, consider the case of a pure elec-
tron plasma that is cooled by cyclotron radiation (Beck,
Fajans, and Malmberg, 1996). This is a process that re-
moves energy from the plasma but has negligible effect
on the angular momentum. Thus Eqs. (5.86) and (5.87)
reduce to the form

Ṫ5
Ė

3Nk/2
(5.90)

v̇

v
5

NkT~Vc22v!

v2]L/]v)T~Vc2v!

Ṫ

T
. (5.91)
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In Eq. (5.91) the coefficient of Ṫ/T is small; for example,
from either Eq. (5.88) or (5.89) one estimates that

NkT~Vc22v!

v2]L/]v)T~Vc2v!
&OS lD

Rp
D 2

!1.

Thus the plasma cools with little change in the rotation
frequency.

As another example, let us return to the interaction of
the plasma with a static-field asymmetry. As was dis-
cussed in Sec. V.G.1, for this case Ė50 and vL̇.0.
Thus Eqs. (5.86) and (5.87) reduce to the form

Ṫ5
vL̇

~3Nk/2!
.0 (5.92)

v̇

v
5

NkT

2]L/]v)Tv2 S Vc1v

Vc2v D Ṫ

T
, (5.93)

where the coefficient of Ṫ/T in Eq. (5.93) is again small
[i.e., O(lD

2 /Rp
2)], and we may conclude that the plasma

undergoes rapid heating with relatively slow change in
the rotation frequency.

In Sec. V.G.1 we postulated that some effect such as
laser cooling maintains the temperature at a constant
value without exerting a torque on the plasma. One can
see from Eqs. (5.86) and (5.78) that cooling, rather than
heating, is required (i.e., Ė52vL̇,0). Note that en-
ergy must be extracted whether ^r2& is decreasing (for
v.Vc/2) or increasing (for v,Vc/2). When ^r2& is de-
creasing, the electrostatic energy is increasing, but the
rotational kinetic energy is decreasing fast enough that
the total energy is decreasing.

3. Temperature and frequency stability

Often there is a competition between various effects.
For example, radiation pressure from a laser exerts a
torque that compensates the torque from collisions with
neutrals or interaction with field errors. In addition, cy-
clotron radiation or laser cooling may balance various
heating effects. We search for stable stationary states,
that is, states for which Ṫ5v̇50 and for which small
deviations from equilibrium, dv and dT , are damped.

As we shall see, the issue of stability is important.
Instabilities are observed when a parameter x j , charac-
terizing an applied torque or cooling process, is slowly
varied and the equilibrium location evolves in (v ,T)
space. When the location enters an unstable region, ei-
ther v or T (or both) can vary rapidly (‘‘jump’’) across
the region to the next stable equilibrium.

Suppose that Ė(v ,T) and L̇(v ,T) are known func-
tions and that (v8,T8) is an equilibrium point where Ė

5L̇50 and, therefore, where Ṫ5v̇50. To investigate
stability near this point, we set dv5v2v8 and dT5T
2T8, linearize Eqs. (5.82) and (5.85) with respect to dv
and dT , and assume that these quantities vary in time as
ent. The result is
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Setting the determinant of the coefficients equal to
zero yields a quadratic equation for n :

an21bn1c50, (5.96)

where
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, (5.97)
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]Ė

]v
D

T

. (5.99)

The two solutions to Eq. (5.96) are

n5
2b6Ab224ac

2a
, (5.100)

and stability requires Re(n)<0 for both solutions. In-
equalities (5.53) and (5.54) imply a<0, so stability re-
quires b,0 and c,0.

As a simple example, consider the case in which the
angular momentum may be considered constant on the
time scale required for significant changes in the energy.

Setting L̇50 in Eqs. (5.98) and (5.99) yields c50 and

b52
]L

]v D
T

]Ė
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D

v

1
]L

]T D
v

]Ė

]v
D

T

52
]L

]v D
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]Ė

]T
D

L

.

(5.101)

The nonzero root is n52b/a , which is stable for b,0

or ]Ė/]T)L,0 since ]L/]v)T,0. Temperature fluctua-

tions about the equilibrium are damped for ]Ė/]T)L

,0, since a positive dT leads to a negative dĖ

5]Ė/]T)LdT , which restores the equilibrium. From
Eq. (5.95) one can see that the fluctuations dT and dv
are coupled and vary in such a way that 05dL
5]L/]v)Tdv1]L/]T)vdT .

Of course, for this case of constant L, it is simpler to
replace the evolution equations (5.82) and (5.85) with
cLdṪ5Ė(T ,L) and L(v ,T)5const. This separates out
the temperature evolution at the outset and the stability
results follow trivially from the Taylor expansions:
cLdṪ5]Ė/dT)LdT and 05]L/]v)Tdv1]L/]T)dT .

As an illustration, we suppose that a plasma of par-
tially ionized atoms is heated by some ambient process
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at the rate Ėa(T ,L) and laser cooled at the rate

Ėl(T ,v ,x j). The laser light is assumed to be directed
along the trap magnetic field and the intensity to be uni-
form over the cross section of the plasma. In this case,
the laser light does not exert a torque on the plasma,
and the cooling rate does not depend on the plasma
rotation frequency. The laser frequency is tuned close to
but slightly lower than an electric dipole transition of the
partially ionized atoms that constitute the plasma. The
transition is characterized by the cross section at reso-
nance s0 , the frequency v0/2p , and the line width g0 .
The distribution of ion velocities parallel to B is Max-
wellian, with thermal spread u5A2kT/m . In this case
the cooling rate is given by the expression

Ėl~T ,I ,v l!5
NIs0

\v l

3E
2`

1` dvx~\klvx12R !exp@2vx
2/u2#

@11~v l2v082klvx!2~4/g0
2!#Apu

,

(5.102)

where I, v l , and kl5v l /c are the intensity, frequency,
and wave number of the laser light, v085v01R/h and
R5(\kl)

2/2m (Wineland and Itano, 1979).
We define the thermal Doppler width vD5klu and

for simplicity work in the limit where g0 , R/\!vD .
Equation (5.102) then reduces to the form

Ėl~T ,I ,v l!.
NIs0

\v l

Apg0

2
\~v l2v0!

vD
e2@~v l2v0!2/vD

2
#.

(5.103)

From this form one can see that Ėl can be negative and
substantial only if v l2v0 is negative but uv l2v0u is not
too large compared to vD .

In Fig. 65, the solid curve is a plot of Ėl versus
vD

2 /(v l2v0)2}T . The dashed and dotted curves are

plots of Ėa(T ,L) and 2Ėa(T ,L), respectively, assumed
here to be constant for simplicity. The intersections A
and B are equilibrium points where Ėl1Ėa50. Point A
is stable, since ]Ėl /]T)L1]Ėa /]T)L,0, and point B is
unstable, since ]Ėl /]T)L1]Ėa /]T)L.0. From the evo-
lution equation cLṪ5Ėl1Ėa , one can see that the tem-
perature will evolve to point A if it is started off at any
point to the left of B. When started off at any point to
the right of B, the temperature increases indefinitely.

In experiments, the temperature for a plasma in stable
equilibrium A is gradually reduced by slowly decreasing
uv l2v0u (Wineland and Itano, 1979). One can see from
Eq. (5.103) that vD tracks uv l2v0u. If the slow decrease
in uv l2v0u is made through increments, one must be
careful not to leave the temperature to the right of point
B after the increment—that is, the increments should be
smaller than O(vD). This can be restrictive for small
vD . Of course, for sufficiently small vD , Eq. (5.103)
does not accurately represent an integral (5.102).
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As another example of a stability criterion that is easy
to understand physically, consider the case in which
there is a strongly stable mechanism for temperature
control, that is, (]Ė/]T)v is negative and substantially
larger in magnitude than the other terms to which it is
compared in Eqs. (5.98) and (5.99). The solution for the
plus sign,

n15
]Ė

]T
D

v

Y cL , (5.104)

]L

]v D
T

dv1
]L

]T D
v

dT50, (5.105)

describes strongly damped temperature and frequency
fluctuations that conserve the angular momentum. In ef-
fect, this is the solution that we considered in the previ-
ous example. The solution for the minus sign,

n25
]L̇/]v)T

]L/]v)T
, (5.106)

dT.0, dvÞ0, (5.107)

describes weakly damped or growing (un2u!un1u) fre-
quency fluctuations that are decoupled from the tem-
perature fluctuations. Since ]L/]v)T,0, stability re-
quires that ]L̇/]v)T.0. This result is well known from
the analysis of induction electric motors as the condition
for frequency stability; recall, here, that 2v is the fre-
quency of rotation.

Again, the analysis can be simplified at the outset by
noting that the temperature is effectively fixed at the
equilibrium value where ]Ė/]T)L is negative and large
in magnitude. The time derivative of L(v ,T), holding T
fixed, yields the evolution equation v̇]L/]v)T

5L̇(v ,T), and Taylor expansion about the equilibrium
yields solution (5.106).

As a specific illustration, we suppose that two laser
beams act on the plasma. The first is an intense cooling
beam that is directed along B and provides strongly
stable temperature control, that is, provides a large and
negative ]Ė/]T)v . We suppose that this beam effec-
tively fixes T at some low value. The second is a narrow
beam that is directed transverse to B and passes through
the plasma at a distance d from the axis. The direction of
propagation is in the same sense as the plasma rotation;
so the torque due to the radiation pressure can balance
an ambient torque, say, due to a static-field error: Of
course, the ambient torque opposes the rotation. The
second beam can heat or cool the plasma depending on
how frequencies are adjusted.

For the simple case in which g0 , R/\!vD , the torque
is given by (Wineland et al., 1985)

L̇l.
2Is0Apg0

\v l2vD
n̄x~T ,v ,d !a\klde2@~v l2v02kldv!2/vD

2
#,

(5.108)
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where a is the cross-sectional area of the narrow laser
beam, and

n̄x~T ,v ,d !5E d3rd~y2d !d~z !n~r,v ,T ! (5.109)

is the line integral of the plasma density along the beam.
In writing Eq. (5.108), we used the fact that the x com-
ponent of the plasma rotation velocity is given by
x̂•vr'û5vr' cos u5vd all along the beam.

We have already discussed an experiment in which
this kind of two-laser system was used to vary the rota-
tion frequency of a plasma through the full range of
allowed values (see Fig. 15). Further results from this
experiment can be understood from the criterion for fre-
quency stability. Figure 66 shows a plot of the plasma
rotation frequency versus the frequency of the torque
laser (Heinzen et al., 1991). Interestingly, the function
v5v(v l) exhibits hysteresis behavior, with different
values of v obtained for the same value of v l depending
on whether v l is slowly increasing or slowly decreasing.
It is this behavior that we shall explain.

The condition for frequency equilibrium is that the
laser torque just balance the ambient torque

L̇l~v ,I ,v l!1L̇a~v!50, (5.110)

and the condition for frequency stability is that

]L̇l

]v
1

]L̇a

]v
.0. (5.111)

Dependence on T (or vD) is not denoted, since we as-
sume that the intense cooling laser effectively fixes the
value of T.

The experiments (Heinzen et al., 1991) suggest that
the ambient torque is due to a field error (tilt in the
magnetic field relative to the axis of the cylindrical elec-
trode structure) and that the ambient torque becomes
large (exhibits a resonance) near a particular value of
the plasma rotation frequency (v5v* ). At this fre-
quency, a tilt mode, which rotates backwards on the ro-
tating plasma, has zero frequency in the laboratory
frame and is driven secularly by the static-field error.
The amplitude of this mode presumably is limited by
viscous effects, which also set the frequency width of the
resonance. The solid curve in the upper half of Fig. 67 is
a sketch of an ambient torque L̇a(v) with a resonance
peak at v5v* , and the dashed curve in the lower half is
2L̇a(v), which is introduced for construction purposes.
The three solid curves in the lower half of the figure are
plots of L̇l(v ,I ,v l) as given by Eq. (5.108) for three
values of v l (i.e., v lA,v lB,v lC). To avoid confusion,
the full Maxwellian is not shown for curves A, B, and C.

Each intersection of a solid curve with the dashed
curve is an equilibrium point, that is, a solution of Eq.
(5.110). For curve A, one can see graphically that equi-
librium 1 is stable, that is, that ]L̇l /]v1]L̇a /]v.0. Re-
call, here, that the dashed curve is 2L̇a(v). This equi-
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librium is indicated by point 1 in Fig. 66. When the laser
frequency is increased to v lB , equilibrium 1 evolves to
equilibrium 2, which also is stable. Here, the equilibrium
point is climbing the resonance peak, so an increase in
v l produces relatively little change in v; see point 2 in
Fig. 66. Curve B has two other equilibria; one can see
graphically that 28 is unstable and 5 is stable. When the
laser frequency is increased to v lC , the equilibrium
evolves to point 3, which is on the edge of the stability
boundary. A slight increase in v l produces instability,
and the equilibrium jumps to equilibrium 4, the next
stable equilibrium. This jump produces the nearly verti-
cal section (3→4) of the curve in Fig. 66. For further
increase in v l , v simply tracks v l as before the reso-
nance. When the process is reversed by decreasing v l ,
only a small jump is encountered. Note that for decreas-
ing v l , equilibrium 4 evolves into equilibrium 5, which is
stable. For a sufficiently narrow resonance, the small
jump encountered for decreasing v l , would not be ap-
parent in Fig. 66.

VI. DISCUSSION

This review has focused on our current understanding
of nonneutral plasmas in thermal equilibrium. However,
the study of thermal equilibrium states forms an active
area of research, and new advances are being made al-
most on a daily basis. For example, the rotating-wall
technique described in Sec. III.H.2 is being carefully
studied due to both its usefulness in plasma control and
its fundamental importance in understanding the man-
ner by which external fields can inject angular momen-
tum into a rotating plasma. The ellipsoidal rotating-wall
equilibria discussed theoretically in Sec. III.H.2 have re-
cently been observed in experiments (Huang, Bollinger,

FIG. 65. A construction used to determine temperature equi-
librium and stability. The solid curve is a plot of the laser

cooling rate Ėl(T ,I ,v l) vs vD
2 /(v l2v0)2}T , assuming that

the angular momentum L is constant on the time scale of in-

terest. The dashed curve is an ambient heating rate, Ėa(T ,L),

assumed constant for simplicity, and the dotted curve is 2Ėa .

Points A and B are equilibria since Ėl1Ėa50 at these points.

Equilibrium A is stable since ]Ėl /]T)L1]Ėa /]T)L,0,

whereas B is unstable since ]Ėl /]T)L1]Ė/]T)L.0.
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Mitchell, and Itano, 1998b). New results on rotating-wall
equilibria with multispecies plasmas have also recently
been reported (Huang et al., 1998a), and both theoreti-
cal and experimental studies of the torque applied to the
plasma by the rotating wall are underway. In addition,
analytic studies of thermal equilibria in highly oblate
plasmas have recently been carried out (Paulson and
Spencer, 1998). New off-axis and oscillating thermal
equilibria have been discovered, and the thermodynam-
ics of these states and their connection to previous ex-
periments has been studied (O’Neil and Dubin, 1998).

Several topics that were not addressed in the previous
sections could easily have been included in a review of
thermal equilibrium states, but were neglected for lack
of space. These topics are briefly discussed below, in-
cluding a few of the more important references.

(1) Variational principles in the decay of 2D turbu-
lence. For certain initial conditions, a nonneutral plasma
column is unstable to the growth of diocotron modes
(Davidson, 1990). In experiments with pure electron
plasmas (Huang and Driscoll, 1994), such modes were
observed to grow to large amplitude and generate a
complicated turbulent flow. Ultimately the turbulence
decayed, leaving the plasma in a stable and quiescent
meta-equilibrium state, which then persisted essentially
unchanged until collisional transport drove the plasma
to a true thermal equilibrium state. We emphasize that
the meta-equilibrium state was produced by collective,
not collisional, processes and was not a thermal equilib-
rium state. Nevertheless, the experiments observed that
this meta-equilibrium state could be quite robust, vary-
ing in a reproducible manner as experimental param-
eters (such as the initial density profile) were varied.

It is interesting to ask if there is a theoretical principle
that predicts the structure of the meta-equilibrium state
just as maximum entropy predicts the structure of the
thermal equilibrium state. To a good approximation the
turbulence can be described by 2D bounce-average E
3B drift dynamics, since the important frequencies are
ordered as Vc@vB@vD . Here, vB is the characteristic
axial bounce frequency for an electron and vD is the
characteristic cross-field drift frequency. The plasma col-
umn is also sufficiently long that Poisson’s equation for
the electric potential is effectively two dimensional [i.e.,
f5f(r ,u)].

It turns out that the 2D drift Poisson equations are
formally equivalent to the Euler equations for the 2D
evolution of an ideal (incompressible and inviscid) fluid
(Levy, 1965), so the 2D plasma turbulence models the
2D turbulence of an ideal fluid. For example, Kelvin-
Helmholtz instabilities are the analog of the diocotron
instabilities. There has been much theoretical effort over
many years to predict the final state arising from the
decay of 2D turbulence in an ideal fluid, and prediction
of the meta-equilibrium state is part of that larger effort.

Some authors have represented the plasma as a 2D
system of charged rods that undergo E3B drifts due to
mutual interaction and, equivalently, the fluid as a 2D
system of interacting point vortices (Onsager, 1949;
Montgomery, 1972; Edwards and Taylor, 1974; Mont-
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gomery and Joyce, 1974; Seyler, 1976; Pointin and
Lundgren, 1976; Smith and O’Neil, 1990; Smith, 1991;
Eyink and Spoon, 1993). The turbulence is assumed to
mix the system ergodically and the relaxed state is pre-
dicted to be the maximum-entropy state for the 2D dy-
namics. These 2D thermal equilibria are quite different
from the full three-degree-of-freedom thermal equilibria
discussed in previous sections. For the case of a 2D
guiding-center drift plasma, only the guiding-center de-
grees of freedom are assumed to be ergodically mixed.
There is no equipartition with the degrees of freedom
associated with the axial bounce motion and the cyclo-
tron motion. This is a useful approximation only if ef-
fects that couple these motions to the guiding-center
motions (such as collisions) are negligible on the times-
cale of the experiments.

These 2D thermal equilibria have several interesting
features not found in 3D thermal equilibria. For ex-
ample, for energies above a certain threshold, the tem-
perature of the 2D plasma is negative. This can occur
because in the 2D system there are no terms in the
Hamiltonian associated with kinetic energy. Further-
more, at a second (higher) energy threshold the thermal
equilibria do not share the underlying cylindrical sym-
metry of the confinement geometry (Smith and O’Neil,
1990). However, this symmetry breaking has not yet
been observed in experiments.

Several attempts to improve this kind of theory have
been developed over the years. One approach involves
including the constraint that E3B flow is incompressible
(Lynden-Bell, 1967; Miller, Weichman, and Cross, 1992;
Robert and Sommeria, 1992); another applies the maxi-
mum entropy theory only to regions of the flow that are
well mixed (Jin and Dubin, 1998). Other authors choose
to extremize functionals other than the entropy, such as
enstrophy (Bretherton and Haidvogel, 1976; Matthaeus
and Montgomery, 1980; Leith, 1984; Huang and
Driscoll, 1994; Taylor, 1997). These theories have met
with varying degrees of success depending on the experi-

FIG. 66. Observed plasma rotation frequency vs frequency of
torque laser. The laser frequency was gradually increased then
gradually decreased, and the arrows indicate the direction of
evolution when the plasma rotation frequency was measured.
The interesting feature is the hysteresis loop. This result is
from Heinzen et al. (1991).
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mental regime. A complete and rigorous description of
the relaxed state of 2D turbulence remains an elusive
goal.

(2) Stability theorems. The variational equation, dS
2b(dH1vdPu)2gdN>0, that is used to find
maximum-entropy states can be given a different inter-
pretation to yield a stability theorem (Gardner, 1963;
Rosenbluth, 1965; Arnold, 1969). A generalized entropy
is introduced that is constant under a general constraint
on the dynamics, for example, under incompressible
flow in phase space. For a change of state that is allowed
under the dynamics, dS50. Setting dN50 reduces the
variational equation to bdHR<0. Thus the variational
equation can be reinterpreted as the statement that the
energy is a minimum (for b.0) or a maximum (for b
,0) relative to neighboring states that are accessible un-
der the dynamics. If HR is a constant of the motion, the
fact that HR is a local minimum (or maximum) means
that no change in state is possible. The plasma is in a
state of stable equilibrium. There are many examples of
this kind of stability theorem in the literature, and the
review article by Holm et al. (1985) has an extensive bib-
liography.

For the case of a trapped nonneutral plasma, David-
son and Krall (1970) established a sufficient condition
that HR be a local minimum. Examples in which the
energy is a local maximum are less common. For general
dynamics it is not possible to find states of maximum
energy because there is always a neighboring state with

FIG. 67. A construction used to determine frequency equilib-
ria and stability when the temperature is fixed. The solid curve
in the upper half of the figure is a plot of an ambient torque

L̇a(v) assumed to have a resonance peak, and the dashed

curve in the lower half is its negative 2L̇a(v). The three solid
curves in the lower half of the figure are plots of a laser torque

L̇l(v ,v l) for three values of v l (i.e., v lA,v lB,v lC). Each
intersection of the dashed curve with a solid curve is an equi-

librium, where L̇l(v ,v l)1L̇a(v)50. Equilibria 1, 2, 3, 4, and

5 are stable since ]L̇l /]v1]L̇a /]v.0, whereas 28 is unstable

since ]L̇l /]v1]L̇a /]v,0. The equilibria are realized sequen-
tially when v l is first increased and then decreased, and this
gives rise to the hysteresis loop in Fig. 66.
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larger kinetic energy. However, for 2D E3B drift dy-
namics the kinetic energy does not enter the Hamil-
tonian because the kinetic energy is bound up in adia-
batic invariants m5mv'

2 /2B and I5rvidl . It is then
possible to find states in which the electrostatic energy is
maximum, subject to the constraint of incompressible
flow (O’Neil and Smith, 1992, 1994). The plasma cannot
change out of such states because there is no place to
deposit the electrostatic energy that would be liberated
under the change.

The advantage of the minimum-energy stability theo-
rem is that the dynamics can be general—that is, no fre-
quency ordering is required to ensure that m and I are
good adiabatic invariants. The disadvantage is that mini-
mum energy can be established only in a rapidly rotating
frame, and this requires cylindrical symmetry of the trap
and equilibrium, at least for the case of time-
independent trap fields. The advantage of the
maximum-energy stability theorem is that cylindrical
symmetry is not required; maximum-energy states can
be realized in the laboratory frame. This allows us to
explore new confinement geometries, for example, tor-
oidal traps. The disadvantage is that the dynamics are
restricted, so the theorem only provides stability against
low-frequency drift perturbations such as diocotron
modes (Davidson, 1990). However, one expects (and ex-
periment seems to confirm) that these commonly ob-
served modes are the most dangerous (Driscoll and
Fine, 1990).

(3) Cross-magnetic-field transport. Nonneutral plas-
mas confined in Penning traps are excellent systems for
the study of collisional transport. Because these systems
can be confined quiescently for long periods of time,
collisional effects can be observed without being masked
by the large fluctuations inherent in most neutral labo-
ratory plasmas. The signature of the transport is a slow
relaxation of the plasma toward a confined thermal
equilibrium state, involving cross-magnetic-field fluxes
of particles, energy, and angular momentum.

Recent experiments have observed collisional fluxes
that are orders of magnitude larger than the predictions
of the classical theory of transport in magnetized plas-
mas. This is because the classical theory was developed
for plasmas for which the cyclotron radius rc was large
compared to the Debye length, but nonneutral plasmas
typically operate in the opposite regime. The observed
transport is in agreement with new theories developed
for the regime rc!ld . For a recent review of cross-
magnetic-field collisional transport in nonneutral plas-
mas, see Dubin (1998).

Externally applied fields can also induce cross-field
transport. An example of this is the rotating-wall field
discussed in Sec. III.H.2, used to inject angular momen-
tum into the plasma and change its radial density profile.
Static-field errors with azimuthal asymmetries also
change the angular momentum, causing the plasma
slowly to expand, as discussed previously in Secs. II.B
and V.G. The precise mechanism for this external trans-
port is still an outstanding question, but several experi-
mental papers have determined an approximate scaling
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law (the ‘‘Driscoll curve’’) for the transport rate (de-
Grassie and Malmberg, 1977; Driscoll and Malmberg,
1983; Eggleston, 1997).

(4) Strong magnetization. For plasmas confined in suf-
ficiently strong magnetic fields the cyclotron radius rc
can become smaller than the mean distance of closest
approach e2/kT . For an electron plasma this happens
when B exceeds 13 (T/100 K)3/2 kGauss. In this re-
gime of strong magnetization, Coulomb collisions are
strongly modified by the magnetic field. Collisional eq-
uipartition between particle velocities parallel and per-
pendicular to the magnetic field is suppressed by a many
particle adiabatic invariant associated with the fast cy-
clotron motion, and the equipartition rate becomes ex-
ponentially small (O’Neil and Hjorth, 1985; Glinsky,
O’Neil, Rosenbluth, Tsuruta, and Ichimaru, 1992). This
effect has been observed in experiments (Beck, Fajans,
and Malmberg, 1996).

(5) Collective modes. The spheroidal thermal equilib-
rium discussed in Sec. III.F has an important and useful
property: the linear cold-fluid electrostatic normal
modes of this thermal equilibrium state can be deter-
mined analytically (Dubin, 1991). This is the only known
realistic three-dimensionally confined plasma equilib-
rium for which all of the electrostatic modes can be ob-
tained analytically. The modes have been employed as a
diagnostic of the plasma shape and density for situations
where no other nondestructive diagnostic is available
(Weimer, Bollinger, Moore, and Wineland, 1994). The
modes have been observed in experiments by several
groups (Heinzen, Bollinger, Moore, Itano, and Wine-
land, 1991; Bollinger, Heinzen, Moore, Itano, Wineland,
and Dubin, 1993; Tinkle et al., 1994; Greaves, Tinkle,
and Surko, 1995; Higaki and Mohri, 1997; see also the
short review in Bollinger, Wineland, and Dubin, 1994,
and the upcoming article by Mitchell, Bollinger, Huang,
and Itano, 1998).

There is also a large body of work on nonneutral
plasma modes that are not directly related to thermal
equilibrium states, including work on diocotron instabili-
ties (White, Malmberg, and Driscoll, 1982; Driscoll,
1990; Smith and Rosenbluth, 1990), spatial Landau
damping (Briggs, Daugherty, and Levy, 1970; Pillai and
Gould, 1994; Corngold, 1995; Spencer and Rasband,
1997), nonlinear effects; Crawford and O’Neil, 1987;
Fine, Driscoll, and Malmberg, 1989; Mitchell and
Driscoll, 1994, and cyclotron and Bernstein modes
(Gould and LaPointe, 1991). The effect of modes on
transport caused by field errors is also of continuing in-
terest in several groups (see, for example, Bollinger,
Heinzen, Moore, Itano, Wineland, and Dubin, 1993).

(6) Other areas. Finally, we should mention that there
are a number of active areas of research in nonneutral
plasma physics that have little to do with the study of
thermal equilibrium states, but are of practical impor-
tance and scientific interest. Some of these areas were
alluded to in previous sections. Among these areas are
antimatter plasmas (see the review by Greaves and
Surko, 1997), fusion in Penning traps via nonthermal ve-
locity distributions (Barnes, Mitchell, and Schauer,
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1997), trapping of partially neutralized nonneutral plas-
mas (Walz, Ross, Zimmerman, Ricci, Prevedelli, and
Hansch, 1995; Hall and Gabrielse, 1996), nonneutral
plasmas employed in radiation sources and relativistic
beams (Davidson, 1990), and 2D turbulence and vortex
dynamics (Mitchell, Driscoll, and Fine, 1993; Huang and
Driscoll, 1994; Fine, Flynn, Cass, and Driscoll, 1995;
Huang, Fine, and Driscoll, 1995; Lansky, O’Neil, and
Schectėr, 1997).
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