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One of my favorite times in the academic year occurs
in early spring when I give my class of extremely bright
graduate students, who have mastered quantum me-
chanics but are otherwise unsuspecting and innocent, a
take-home exam in which they are asked to deduce su-
perfluidity from first principles. There is no doubt a spe-
cial place in hell being reserved for me at this very mo-
ment for this mean trick, for the task is impossible.
Superfluidity, like the fractional quantum Hall effect, is
an emergent phenomenon—a low-energy collective ef-
fect of huge numbers of particles that cannot be deduced
from the microscopic equations of motion in a rigorous
way and that disappears completely when the system is
taken apart (Anderson, 1972). There are prototypes for
superfluids, of course, and students who memorize them
have taken the first step down the long road to under-
standing the phenomenon, but these are all approximate
and in the end not deductive at all, but fits to experi-
ment. The students feel betrayed and hurt by this expe-
rience because they have been trained to think in reduc-
tionist terms and thus to believe that everything not
amenable to such thinking is unimportant. But nature is
much more heartless than I am, and those students who
stay in physics long enough to seriously confront the
experimental record eventually come to understand that
the reductionist idea is wrong a great deal of the time,
and perhaps always. One common response in the early
stages of learning is that superconductivity and the
quantum Hall effect are not fundamental and therefore
not worth taking seriously. When this happens I just
open up the AIP Handbook and show the disbeliever
that the accepted values of e and 4 are defined by these
effects, and that ends that. The world is full of things for
which one’s understanding, i.e., one’s ability to predict
what will happen in an experiment, is degraded by tak-
ing the system apart, including most delightfully the
standard model of elementary particles itself. I myself
have come to suspect most of the important outstanding
problems in physics are emergent in nature, including
particularly quantum gravity.

One of the things an emergent phenomenon can do is
create new particles. When a large number of atoms
condense into a crystal, the phonon, the elementary
quantum of sound, becomes a perfectly legitimate par-
ticle at low energy scales. It propagates freely, does not
decay, carries momentum and energy related to wave-
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length and frequency in the usual way, interacts by
simple rules that may be verified experimentally, medi-
ates the attractive interaction responsible for conven-
tional superconductivity, and so forth, and none of these
things depends in detail on the underlying equations of
motion. They are generic properties of the crystalline
state. The phonon ceases to have meaning when the
crystal is taken apart, however, because sound makes no
sense in an isolated atom. A somewhat more esoteric
example, although a more apt one, is the Landau quasi-
particle of a metal (Pines and Nozieres, 1966). This is an
excited quantum state that behaves like an extra elec-
tron added to a cold Fermi sea, but which is actually a
complex motion of all the electrons in the metal. It is not
possible to deduce the existence of quasiparticles from
first principles. They exist instead as a generic feature of
the metallic state and cease to exist if the state does.
This problem is not limited to solids. Even the humble
electron, the most elementary particle imaginable, car-
ries a polarization of the Dirac sea with it as it travels
from place to place and is thus itself a complex motion
of all the electrons in the sea. In quantum physics there
is no logical way to distinguish a real particle from an
excited state of the system that behaves like one. We
therefore use the same word for both.

Whenever one is confronted with unpredictable emer-
gent phenomena there is need for a sound definition of
sameness of two states of matter. The one most of us
prefer is the existence of a reversible adiabatic map.
One imagines slowly changing the underlying equations
of motion, checking at each stage to make sure the
ground state and low-lying excitations have evolved in a
one-to-one way. There is actually no need to check this
if the system contains only a small number of particles,
for the mapping is then guaranteed to be one-to-one by
virtue of the adiabatic principle. But if the system con-
tains a thermodynamically large number of particles it
can happen that a small change to the equations of mo-
tion results in a violent rearrangement of the ground
state and low-lying excitations and a corresponding
breakdown of the one-to-one mapping. This is a quan-
tum phase transition. We say that two states are the
same phase of matter if they can be slowly transformed
into each other without encountering a quantum phase
transition, and different phases of matter if they cannot.
By this definition metals, insulators, and superconduct-
ors are all different phases of matter, but two metals
with slightly different electron-electron repulsion
strengths are the same. This definition of sameness is
one of the most powerful ideas in physics, for it relieves
us of the need to compute the properties of complex
systems from first principles to understand them. Instead
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we can just find a prototype that is easy to solve and
then map our solution backward adiabatically.

SOLITONS

The idea that particles carrying parts of an elementary
quantum number might occur as an emergent phenom-
enon is not new. Already in the late 1970s there was a
serious theory literature on this subject stemming from a
key paper of Jackiw and Rebbi (1976), but more gener-
ally from the rapid advances in field theory made in as-
sociation with the solution of the strong interactions.
The topological soliton or kink particle of Jackiw and
Rebbi is conceptually similar to the 't Hooft—Polyakov
monopole ('t Hooft, 1974; Polyakov, 1974) and the skyr-
mion (Skyrme, 1961), both of which were proposed as
simplified models of real elementary particles. Solid-
state physicists first became aware of these ideas
through a paper by Su, Schrieffer, and Heeger (1979) in
which it was proposed that solitons might be the charge
carriers of the conducting polymer polyacetylene. I first
heard about this through my colleague Gene Mele, who
was at the time working on the theory of polyacetylene
in collaboration with Michael Rice at the Xerox Web-
ster Research Center (Rice et al., 1976). Gene was ob-
sessed with solitons and had gone to such lengths to
make realistic models of them that he could convince
any reasonable person of their existence, and quickly
convinced me. This is, of course, a theorist’s statement.
People who were not experts in quantum mechanics
tended to find the idea outrageous, particularly since the
experimental evidence for the existence of solitons was
always indirect. It eventually came to pass that enthusi-
asm for the soliton idea among funding agents waned,
the particle theorists diverted their energies to strings,
and solitons were effectively forgotten. It is difficult
nowadays to find anyone younger than I am who knows
anything about them. I have always found the history of
solitons to be a poignant comment on the effect of fash-
ion on scientific thought, for there was no doubt among
well-informed physicists that the idea was right and of
potentially great importance.

The basic idea of the soliton is illustrated in Fig. 1.
Polyacetylene is a zigzag planar chain of CH units with
every other bond contracted slightly. Because there are
two equivalent ways of contracting the bonds, there is a
possibility of domain walls between even-contracted re-
gions and odd-contracted ones. These are the solitons.
Realistic modeling reveals that these domain walls
should be quite mobile, with an acceleration mass of
about 10 times the electron mass, and that they should
carry either a net electric charge of e and no net spin, or
a spin of 1/2 and no charge. This breakup of the charge
and spin quantum numbers of the electron is the impor-
tant new effect, for an excitation carrying charge but no
spin, or vice versa, cannot be adiabatically deformed
into a free electron as a matter of principle. The excita-
tions of a conventional insulator, in contrast, are neces-
sarily deformable into free electrons, and thus always
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FIG. 1. Physics of polyacetylene. The symmetric configuration
of the atoms shown in the upper left is absolutely unstable to a
distortion that contracts every other bond. This causes the one-
electron density of states, shown on the right, to acquire a gap.
Formation of a domain wall results in the development of a
state at mid gap (dotted curve on the right) and a net electric
charge of + e if this state is empty.

have charge e and spin 1/2. The alleged properties of
solitons were therefore quite unprecedented and ex-
traordinary.

The property of polyacetylene that causes solitons to
exist is its discrete broken symmetry. If one wraps a mol-
ecule with an even number of segments into a ring, one
discovers that it has two equivalent quantum-mechanical
ground states, and that these transform into each other
under clockwise rotation by one segment, a symmetry of
the underlying equations of motion. A conventional in-
sulator would have only one ground state and would
transform under this operation into itself. These two
states acquire classical integrity in the thermodynamic
limit. When the ring is small, local perturbations, such as
a force applied to one atom only, can mix the two
ground states in arbitrary ways, and in particular can
tunnel the system from the even-doubled state to the
odd-doubled one. But this tunneling becomes exponen-
tially suppressed as the size of the ring grows, and even-
tually becomes insignificant. Classical integrity and two-
fold degeneracy together make the broken-symmetry
state fundamentally different from the conventional in-
sulating state; one cannot be deformed into the other in
the thermodynamic limit without encountering a quan-
tum phase transition.

The peculiar quantum numbers of the soliton are
caused by the formation of a mid-gap state in the elec-
tron spectrum. The N-electron model Hamiltonian (Su
et al., 1979)

N
Xip1—X;
j+1 J E +
H= 2 [t( 1= / )2 (C/T,ch+1,0+cjl+1,oc/,o)
] ag
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is solved in the limit of large M by picking fixed dis-

placements x;,—x;= * 6l and then minimizing the ex-

pected energy per site,
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FIG. 2. When a disorder-free 2-d electron gas is placed in a
magnetic field it can be Lorentz boosted to generate a current
and a transverse electric field. The ratio of these then gives Eq.
(3), which is inconsistent with all quantum Hall experiments.
This shows that disorder is essential for plateau formation.
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A nonzero value of §is obtained for any value of k, as
the chain is absolutely unstable to symmetry breaking by
virtue of the Peierls effect. The gapped electron spec-
trum shown in Fig. 2 is the density of states for §=0.1.
When the equation is solved again for the soliton one
finds an extra state in the center of the gap. The soliton
has charge +e when this state is unoccupied. The re-
maining charge and spin states just reflect the various
ways the mid-gap state can be populated with electrons.

The fact that soliton has charge +e when unoccupied
was first discovered numerically (Pople and Walmsley,
1962) and then subsequently explained by Schrieffer us-
ing his now-famous adiabatic winding argument (Su and
Schrieffer, 1981). This idea is critical to the theory of the
fractional quantum Hall effect, so I shall review it here
briefly. One imagines adding a perturbation Hamil-
tonian that forces the order parameter to have a certain
phase ¢ far from the origin. One then imagines locking
the phase at the left end of the molecule to zero and
then adiabatically advancing ¢ at the right end from 0 to
7. While this is occurring the entire ground state at the
right end is slowly sliding to the right, pumping electric
charge out to infinity as it does so. The amount pumped
by winding by 7 must be one electron, half the charge of
the unit cell, since winding by twice this much just moves
the unit cell over. But there is no net transfer of spin, as
the system is a gapped singlet at every step in the opera-
tion. Since the operation also creates a soliton, we con-
clude that the soliton must have spin 0 and charge +e. It
is deeply important that this argument is completely
model-independent and relies only on the discrete bro-
ken symmetry of the bulk interior and the possibility of
deforming the Hamiltonian into something simple at the
ends of the sample without collapsing the gap.

There was an important variant of the soliton idea
that foreshadowed the fractional quantum Hall discov-
eries, namely, when the polyacetylene was imagined to
be so severely p-type doped that the number of elec-
trons in the 7 band is 2N/3 rather than N (Su and Schri-
effer, 1981). The instability is then to contract every
third bond, and there are two kinds of soliton—one
winding forward by 27/3 and the other winding back-
ward by the same amount—with charges +2e/3 and
+4e/3 when all their mid-gap states are empty. So the
separation of the spin and charge degrees of freedom of

Rev. Mod. Phys., Vol. 71, No. 4, July 1999

the electron in native polyacetylene is a special case of a
more general effect in which the charge quantum num-
ber is fractionalized. The tendency of the Peierls insta-
bility to commensurate is actually so strong that frac-
tionalization is expected to occur at other rational
fillings as well, for example, 3N/4 and 3N/5. Indeed the
only reason it would not occur at all rational fillings is
that the gap for most of these states is small and thus
susceptible to being overwhelmed by the ion kinetic en-
ergy (which we have neglected), finite temperature, or
dirt. These effects all favor fractions with small denomi-
nators.

The fact that these beautiful and reasonable ideas of
Schrieffer and Su never became widely accepted may be
traced in the end to one key difficulty: Long-range bond-
contraction order was never found in polyacetylene. It is
perfectly possible for solitons to exist if the discrete sym-
metry breaking has not set in globally—for example, if it
is interrupted every now and again by sample
imperfections—and many experiments were done in
highly defective and disordered polyacetylene with just
this idea in mind. But the existence of solitons is ines-
capable only if the sample orders. This is a beautiful
example of the special role ordering phenomena play in
solid-state physics, for while not always necessary they
are often sufficient to demonstrate the truth of a thing.
The problem with polymers in this context is that they
owe most of their unique properties to noncrystallinity
and are intentionally designed to tangle and disorder,
i.e., not to do the one thing that would prove the exis-
tence of solitons. So in this sense the hope of demon-
strating fractional quantization in real polyacetylene
conclusively was doomed from the start.

LOCALIZATION

The two-dimensional electron gas of a silicon field-
effect transistor or a GaAs heterostructure, the venue of
the integral and fractional quantum Hall effects, is noto-
riously imperfect. This is important because it immedi-
ately eliminates the possibility that microscopic details
are responsible for Klaus von Klitzing’s magnificent ef-
fect, the highly accurate quantization of the Hall con-
ductance to integral multiples of e*/h (von Klitzing
et al., 1980). The field-effect transistor, for example, is
made by oxidizing the surface of a piece of silicon, an
operation that always results in microscopic strain and
bond disorder at the surface because the silicon and
SiO, lattice parameters do not match. This problem is so
troublesome that it is customary to oxidize in the pres-
ence of a small partial pressure of water so that hydro-
gen is available for tying up the occasional dangling sili-
con bond. GaAs heterostructures are better in this
regard, as the interface between the GaAs and the
Al,Ga;_ As alloy is nominally epitaxial, but the Al at-
oms are still substituted at random in the GaAs lattice
and are thus scattering centers. In either system there is
the problem of the dopant ions, which are always strong
scatterers because they are stripped of their carriers and
thus Coulombic. The technique of modulation doping,
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invented by my co-winner Horst Stormer, mitigates this
effect enormously but does not eliminate it. And of
course there are chemical impurities gettered to the in-
terface in unknown amounts. It is true that modern het-
erostructures have huge mobilities undreamed of in the
old days, but they are not perfect.

Nor, as it turns out, would one want them to be, for
imperfection is required for the quantum Hall effect to
occur in the customary experimental configuration. Con-
sider the situation, illustrated in Fig. 2, of a translation-
ally invariant strip of charge density p in a normal mag-
netic field B. Because of translational invariance,
flowing current along the strip is the same as Lorentz
boosting by speed v, which gives a current j=vp, an
electric field E=vB/c, and a Hall conductance

J pc
Cy=E= g 3)

In a real field-effect transistor or heterostructure p is
fixed by doping and the gate voltage and is not accu-
rately quantized. Often it is even the variable against
which the Hall plateaus are plotted. Thus this result is
inconsistent with all quantum Hall experiments. Sample
imperfection is implicated in the formation of plateaus
because it is the only agent in the problem, other than
sample ends, capable of destroying translational invari-
ance.

The most obvious thing for disorder to do is cause
Anderson localization (Anderson, 1958). Localization is
the underlying cause of the insulating state that results
when an idealized noninteracting metal is subjected to a
sufficiently large random potential. It simply means that
all the eigenstates of the one-electron Hamiltonian be-
low a certain energy have finite spatial extent, so that
occupying them with electrons contributes nothing to
the zero-frequency conductivity. Real metals, in which
the electrons interact, have a similar metal-insulator
transition, and it is believed that the two states of matter
in question are adiabatically continuable to their nonin-
teracting counterparts. Already at the time of the quan-
tum Hall discovery there was a large experimental lit-
erature on localization in 2-d metals, particularly those
occurring in semiconductors, from which it was known
that localization effects were so strong in the absence of
a magnetic field that only the insulating state should ex-
ist at zero temperature (Abrahams et al., 1979; Dolan
and Osheroff, 1979; Bishop et al., 1980; Bergman, 1982).
So there were many reasons to suspect the quantum
Hall effect of being an emergent phenomenon that, like
the Anderson insulator, could be understood solely in
terms of one-electron quantum mechanics and localiza-
tion.

There are two exact results that are particularly im-
portant for developing this idea. The first is the solution
of the trivial model

Norq

where

h. e. _ 2

—I—Eeyj], 4)
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A(F)=By%. (5)

With lengths measured in multiples of

one finds this to be a Slater determinant of the orbitals

eikxe(y+y0—k)2/2

1
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where yp=eFEl/hw., the energies of which are
Ey o= (n+ Uho,+hek| 2| = M EY 8
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If the electric field E is small, so there is a large gap
between Landau levels n and n+1, and the chemical
potential is adjusted to lie in this gap, then the number
of electrons in the sample is N=nL L y/27rlz, the charge
density is p=ne/2wl?, and Eq. (3) becomes oy =pc/B
=ne’/h. As a check on this result we note that

1 . hd e E
_J’jwk,n(xﬂy)(Ya_EAx)wk,n(xay)dxdy:CE-
)

Thus the current carried by each orbital is e times clas-
sical drift velocity cE/B. Adding these up and and di-
viding by the sample area, we find that

;=" 10
The second important result is the exact solution of the
Hamiltonian

N
H =H-V*2 8(F)), (11)
]

originally worked out by R. E. Prange (1981). The
S6-function impurity potential is found to bind a single
localized state down from each Landau level, and this
state does not carry electric current, consistent with
one’s intuition. However, the remaining delocalized
states turn out to be carrying too much, and the sum of
the excess just exactly cancels the loss of a state! I have
always found this result astonishing, for it is as though
the remaining delocalized states understood that one of
their comrades had been killed and were pulling harder
to make up for its loss.

In the light of hindsight it is possible to prove that the
Prange effect occurs for a broad class of impurity poten-
tials. For this we must invoke some more general prin-
ciples, for it is scarcely practical to diagonalize all pos-
sible impurity Hamiltonians and compute the current
carried by their thermodynamically large number of or-
bitals one by one. Instead we notice that the current
operator is formally the derivative of the Hamiltonian
with respect to vector potential (Laughlin, 1981). That
is, if we let
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FIG. 3. Illustration of thought experiment identifying quantum
of Hall conductance with the electron charge. As magnetic flux
A¢=hcle is adiabatically forced through the loop, one elec-
tron per Landau level is transferred from one edge to the
other. In the absence of disorder the transfer is accomplished
by a mechanical shift of the one-body wave functions that
evolves each wave function into its neighbor. When small
amounts of disorder are present the number of electrons trans-
ferred must be exactly the same, but the mechanism of transfer
is not, for the wave functions are violently distorted by even
the smallest perturbation.

A—A+AyzR, (12)
where A is a constant, then

B LS LY (13)

m, 5 |idx c / dA

This is actually true when the particles interact as well, a
fact that will prove useful later. Normally this relation is
of little help, for the addition of a constant vector poten-
tial is simply a gauge transformation, which has no
physical meaning. But if the sample is wrapped into a
loop, as shown in Fig. 3, then A acquires the physical
meaning of a magnetic flux ¢=A(L , forced through the
loop. Let us now imagine picking a sequence of flux val-
ues and solving the problem

HylVg)=E 4| W y) (14)

for each one, so that the many-body ground state |V ,)
and corresponding energy eigenvalue E, are tabulated
functions of ¢. Then by the Hellman-Feynman theorem
we have

J d IE ,

v, s v, —%<W¢|H¢|\I’¢>—W. (15)
That is, the total current at any given value of ¢ is just
the adiabatic derivative of the total energy with respect
to ¢. This is actually not surprising, for slowly changing
¢ creates an electromotive force around the loop, which
does work on the system if current is flowing. If there is
no dissipation then the energy eigenvalue must increase
accordingly. The effect is just Faraday’s law of induc-
tion. Now if the loop is large, so that Aharonov-Bohm
oscillations are suppressed and the current changes neg-
ligibly during the insertion process, the adiabatic deriva-
tive may be replaced by a differential

_AE
I—CR, (16)

where the denominator is the flux quantum /Ac/e. The
advantage of this is that H,, is then exactly equal to H,
up to a gauge transformation. This means that the en-
ergy can have increased only through repopulation of
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FIG. 4. Effect of disorder on the one-body density of states.
Landau levels at (n+1/2)hw,, which are highly degenerate,
first broaden slightly without filling in the gap, thus maintain-
ing the quantum Hall sum rule without the need to invoke
localization. The states in the tails are localized, however, so
the Fermi level may be moved down into them with no ill
effects. Additional disorder broadens the spectrum further un-
til the tails grow together. The quantization is still exact, how-
ever, because all the states at the Fermi surface are localized.
This enables the quantum Hall effect to occur even when there
are no true gaps.

the original states. How this comes about in the transla-
tionally invariant case is shown in Fig. 3. The orbitals in
the presence of nonzero ¢ are

1
D (xX,y)= eikxe(y+y0—k—a)2/2
2L,
a\" )
X 5 e~ Hyo—k=a)? (17)

where a=el¢g/ficL,. As ¢ is advanced from 0 to A¢
they simply slide over like a shift register, the net result
being to transfer one state per Landau level from the
left side of the sample to the right, i.e., to transfer one
electron across the sample per occupied Landau level. If
the potential difference between the two sides is V' we
thus have

neV e’
I=c Ao =no. (18)
Now we can imagine turning on a small impurity poten-
tial in the interior of the ribbon. If the potential is suffi-
ciently small that the gaps between Landau levels re-
main clean then there can be no change in the outcome
of this thought experiment, for adiabatic evolution of ¢
stuffs exactly one state per Landau level into the disor-
dered region on the left side and pulls exactly one out on
the right. Conservation of states requires that they get
through somehow. This applies not only to random po-
tentials but to nonrandom ones as well, including the &
function used by Prange. Thus we have shown that any
one-electron Hamiltonian that can be adiabatically
evolved into ideal Landau levels without having states
cross the Fermi level has an exactly quantized Hall con-
ductance.
This previous argument can be significantly strength-
ened if the potential is random. In Fig. 4 we plot the
one-electron density of states of the Hamiltonian,

N 2
2 1 |A.
H= 7 {Zme[TVj_

-

A(F;)

SYIES

+ Vrandom( F])] (19)
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for various strengths of V ,,4om- The exact shape of this
density of states is model-dependent, but the basic fea-
tures are not. When V' ,,4om 1S small its primary effect is
to break the degeneracy of the Landau level. The states
in the tails of the distribution that results are localized.
This is easiest to see in the limit that V., 4om iS slowly
varying and smooth, for then the one-body eigenstates
are well approximated as racetracks that travel along
equipotentials. The analogy commonly drawn is with a
mountainous landscape filled up to a certain height with
water (Trugman, 1983). If the water level is low one gets
small, isolated lakes, which become increasingly isolated
as the water level drops because the deepest valleys oc-
cur rarely. If it is high one gets small, isolated islands,
which become increasingly isolated as the water level
rises because the tallest mountains occur rarely. Some-
where in the middle is a percolation point dominated at
long length scales by a vast, crenulated shoreline which
cannot distinguish islands from lakes. The significance of
localization in the tails is that localized states are ‘‘not
there” in the flux-winding thought experiment, in the
sense that a state confined to one side of the loop cannot
tell that the vector potential being added adiabatically is
associated with flux ¢ through the loop. It thinks that we
are doing a gauge transformation, so it simply changes
its phase. It does not move in response to addition of ¢,
and its energy does not change. This means that it con-
tributes nothing to the sum rule, and that whether it is
occupied or not is irrelevant to the thought experiment.
Thus the theorem of exact quantization is true not only
if there are no states at the Fermi level, but also if all the
states at the Fermi level are localized.

The ability of the exact quantization theorem to be
extended to cases where the density of states does not
have true gaps is crucial for accounting for real quantum
Hall experiments. A field-effect transistor is a capacitor.
It stores charge in response to the application of a gate
voltage by the rule Q=CV,, where C is determined by
the oxide thickness, sample area, and little else. Accord-
ingly, a sweep of the gate voltage is really a sweep of Q,
not of chemical potential. The chemical potential in a
real experiment simply adjusts itself to whatever is re-
quired to fix the charge at Q. Thus, if it were not for
localization, the chemical potential would always be
pinned in a Landau level, this Landau level would al-
ways be only partially occupied, and the conditions for
observing the quantum Hall effect would never be
achieved. But if the Fermi level lies in a region of local-
ized states then the chemical potential can move about
freely, populating or depopulating the localized states at
will with no effect whatsoever on the Hall conductance.
Another aspect of the experiments nicely accounted for
by localization is lack of parallel resistance. In the limit
that the electrons do not interact the parallel conduc-
tance o, is due to electric dipole transitions from states
just below the Fermi level to just above. If the states in
question are localized, o, must be zero. Localization
causes insulation. However, the resistivity and conduc-
tivity tensors are inverses of each other, so that if o,
=ne?/h we also have
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Note that experiments that tune the magnetic-field
strength instead of V, are not fundamentally different,
as they simply vary the length scale against which the
charge density is measured. This still requires the chemi-
cal potential to adjust itself to keep Q fixed.

The flux-winding experiment also demonstrates that
small amounts of disorder cannot completely localize all
the states in a Landau level. There must be extended
states, for if there were not the whole Landau level
would be “not there” and therefore incapable of carry-
ing current. This is a very nontrivial result, for the argu-
ments that all states should be localized in two dimen-
sions in the absence of a magnetic field are sound. Just
exactly where the extended states reside in the weak-
disorder limit is a matter of some debate. Most experi-
ments are consistent with the idea, originally proposed
by Levine, Libby, and Pruisken (1983), that there is a
scaling theory of localization for this problem, although
a different one from the field-free case, and that the
extended states occur at one and only one energy some-
where near the center of the broadened Landau level.
The strong-disorder limit is not controversial at all, how-
ever, for it is clear that complete localization must occur
in this case. Another important implication of the flux-
winding result therefore is that extended-state bands
cannot simply disappear but must “float” through the
Fermi surface as the disorder potential is increased, for
only when extended states appear at the Fermi energy
does the argument fail. The floating effect, which was
predicted simultaneously by David Khmel’nitzkii (1984)
and me (Laughlin, 1984), was eventually observed ex-
perimentally (Glozman et al., 1995).

The larger idea underlying these arguments is that the
quantum Hall effect is an emergent phenomenon char-
acterized by the ability of the matter in question to
pump an integral number of electrons across the sample
in a flux-winding experiment. The noninteracting models
we have been discussing are nothing but prototypes;
having understood them we identify the real experi-
ments as their adiabatic continuations. This is not a very
radical idea, for except for the presence of a magnetic
field the ideal Landau level is not that different from a
band insulator, a state of matter known to be continu-
able to its noninteracting prototype or, more precisely,
defined by this property. The integrity of the low-lying
excitations in either case is protected by the existence of
the gap, which assures there are no other states into
which a low-energy excitation can decay. This does not
prove that other states are impossible—which is fortu-
nate since the discovery of the fractional quantum Hall
effect proves otherwise—but it does show that it makes
sense, particularly since there are plenty of experimental
instances of adiabatic continuability from an interacting
system to a noninteracting one in solid-state physics. If
the state in question does map to a noninteracting pro-
totype then a flux-winding experiment either dissipates
or pumps an integral number of electrons across the
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sample. When the latter occurs, the Hall conductance is
accurately quantized. The reason is that it measures the
charge of the particle being pumped, in this case the
charge of the electron.

FRACTIONAL QUANTUM HALL STATE

The fractional quantum Hall state is not adiabatically
deformable to any noninteracting electron state. I am
always astonished at how upset people get over this
statement, for with a proper definition of a state of mat-
ter and a full understanding of the integral quantum
Hall effect there is no other possible conclusion. The
Hall conductance would necessarily be quantized to an
integer because it is conserved by the adiabatic map and
is an integer in the noninteracting limit by virtue of
gauge invariance and the discreteness of the electron
charge. So the fractional quantum Hall state is some-
thing unprecedented—a new state of matter.

Its phenomenology, however, is the same as that of
the integral quantum Hall state in almost every detail
(Tsui et al., 1982). There is a plateau. The Hall conduc-
tance in the plateau is accurately a pure number times
e?/h. The parallel resistance and conductance are both
zero in the plateau. Finite-temperature deviations from
exact quantization are activated or obey the Mott
variable-range hopping law, depending on the tempera-
ture. The only qualitative difference between the two
effects is the quantum of Hall conductance.

Given these facts the simplest and most obvious ex-
planation, indeed the only conceivable one, is that the
new state is adiabatically deformable into something
physically similar to a filled Landau level except with
fractionally charged excitations. Adiabatic winding of a
flux quantum—which returns the Hamiltonian back to
itself exactly—must transfer an integral number of these
objects across the sample. Localization of the objects
must account for the existence of the plateau. All the
arguments about deformability and exactness of the
quantization must go through as before. As is commonly
the case with new emergent phenomena, it is the experi-
ments that tell us these things must be true, not theories.
Theories can help us better understand the experiments,
in particular by providing a tangible prototype vacuum,
but the deeper reason to accept these conclusions is that
the experiments give us no alternative.

My prototype ground state for the original 1/3 effect
discovered by Tsui, Stormer, and Gossard is (Laughlin,
1983a)

N

W, (z1,...,28)= II (zj—z)"exp| —

12 2 |‘Z |2
eay

where m is an odd integer, in this case 3, and z;=x;
+iy; is the location of the jth particle expressed as a
complex number. Horst likes to joke that his whole ef-
fect fits in one tiny equation, and I am deeply flattered
every time he makes this joke in public, but the truth is
that the equation is simple only because he and Dan had
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the good fortune to find the 1/3 state first. Most of the
other 30-odd fractional quantum Hall vacua that have
now been discovered do not have prototypes this simple,
and I would be remiss in not pointing out that there are
now reasonable alternatives (Jain, 1989). These ground
states are all adiabatically deformable into each other,
however, and are in this sense fundamentally the same.
My wave function was originally conceived as a varia-
tional ground state for the model Hamiltonian

H_% 1 |4 621* 2+V .
< 2m, n - (7}) ion(77)
N
+ 2> V(7= F), (22)
j<k
where
. .. B R
A(F) =5 (x9-y9),
Vion(7)=—pf v(F=r")dr'. (23)
sample

The ion potential is present only because one of the
electron-electron repulsions we wish to consider is the
Coulomb interaction v(r)=e?/r, which must be neutral-
ized by a background charge density p for the system to
be stable. This wave function was subsequently shown
by Duncan Haldane (1983) to be an exact ground state
of a class of Hamiltonians with nonlocal potentials.
The most important feature of this wave function is
that it locks the electron density at exactly 1/2wmi? in
the limit that N becomes thermodynamically large. We
know this to be true because the square of the wave
function is equivalent to the probability distribution
function of a classical one-component plasma. Letting

|\I,(Zl9'"aZN)lzzeiﬁqj(z1 """" ZN)’ (24)

and choosing B=1/m to make the analogy transparent,
we obtain

N

D(zy,...,zy)=—2m>2 Inz;—z;|+
<k

N
m
2
ﬁ; |Zj| .
(25)

This is the potential energy of particles of “‘charge” m
repelling each other logarithmically—the natural Cou-
lomb potential in two dimensions—and being attracted
to the origin a uniform ‘“charge” density 1/27/%. In or-
der to have local electrical neutrality, which is essential
in a plasma, the particles must have density p
=127ml>.

It is also very important that the state is not crystalline
when m is small. This is obvious for the case of m=1,
for then the wave function is just a full Landau level, but
for other values of m one must appeal to the extensive
literature on the classical one-component plasma
(Caillol et al., 1982). Numerical studies have shown that
crystallinity—or, more precisely, power-law correlations,
for true crystallinity is impossible in two dimensions at
finite temperature—occurs when the thermal coupling
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constant I'=2m is about 140. Thus we are deeply in the
liquid range at m=3 and generally when m is a small
odd integer. It was partially on the basis of this that I
predicted the existence of a fractional quantum Hall
state at 1/5, which was eventually found experimentally
(Chang et al., 1984).

Another important feature of this state is the gap in
its excitation spectrum, which is to say its preferred den-
sity. This gap is indicated by the experiments and also by
the functional form of W¥,,, which gives only densities
1/2mmi?, but was demonstrated rigorously to exist only
when Haldane and Rezayi (1985) numerically diagonal-
ized Eq. (22) on a small sphere. Exactly the same value
for this gap—about 0.08¢%// for the Coulombic case at
m=3—was obtained by Girvin, MacDonald, and Platz-
man (1985) using hydrodynamic arguments. This is im-
portant because it identifies the lowest-energy excitation
to be a quantum of compressional sound. In most quan-
tum fluids the density operator p,, appropriately pro-
jected, has a large amplitude to create a phonon. If one
assumes this to be the only significant amplitude then
one can exploit a sum rule to express the excitation en-
ergy £, in terms of ground-state properties solely
(Feynman, 1972). Thus letting

py=P

N
; el (P, (26)

where P is the projector onto the lowest Landau level,
and denoting by |x) an arbitrary excited state of the
Hamiltonian of energy E, above the ground state, we
have

S (x|pg | )
T E B[

R CCTRILS
2 (Wulpghgl V)

The rigidity of the classical plasma implicit in W¥,, causes
the denominator of this expression to vanish unusually
rapidly as g—0, the result being that £, comes in at a
finite constant. The dispersion relation has a shallow
minimum at g=1.4/ for m=3, a value close to the or-
dering wave vector g=1.56/] of the competing Wigner
crystal. This minimum is aptly analogous to the roton of
liquid “He. E ¢ 1s quite similar to the dispersion relation
of the conventional exciton in a filled Landau level (Kal-
lin and Halperin, 1984).

The existence of an energy gap is sufficient to prove
that the state has elementary excitations that carry a
fraction of the electron charge. One imagines a thought
experiment, illustrated in Fig. 5, in which the sample is
poked with a thin magnetic solenoid through which
magnetic flux ¢ is adiabatically inserted. What happens
near the solenoid in this process is complicated and
model dependent, but far away from the solenoid the
effect is simply to translate each Landau orbit inward as
the phase is advanced, just as occurred in the integral
quantum Hall loop experiment. Since the Hamiltonian is
returned to its original state by the advance of ¢ from 0

27)
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FIG. 5. Illustration of thought experiment demonstrating the
existence of fractionally charged excitations. A fractional
quantum Hall ground state is pierced with an infinitely thin
magnetic solenoid, through which magnetic flux ¢ is inserted
adiabatically. The effect far away from the solenoid is to move
states toward the solenoid. Advancing the phase all the way to
A¢=hc/e returns the Hamiltonian to its original state, up to
an unimportant gauge transformation. This means that exactly
one state must be transported through the surface of a large
Gauss’s law pillbox centered at the solenoid, and also that the
solenoid may be removed at the end with no ill effects. The net
result is the creation of an eigenstate of the original Hamil-
tonian with charge e/m, the average charge per state at infin-

1ty.

to A¢p=hcle, up to an unimportant gauge transforma-
tion, the net effect of this advance must be to draw ex-
actly one state per Landau level through the surface of
an imaginary Gauss’s law pillbox enclosing the solenoid.
This draws in charge e/m, the average charge per state
at infinity, and piles it up somewhere in the vicinity of
the solenoid. The solenoid may then be removed, leav-
ing behind an exact excited state of the original Hamil-
tonian carrying charge e/m, the charge density of the
ground state.

A slight modification of this line of reasoning shows
that the quantization of the fractional charge is exact.
Let us imagine the situation illustrated in Fig. 6, in which
the bare electron mass changes slowly across the sample,
interpolating between a realistic value in region A to
one in region C so small that Eq. (21) becomes exact, all
the while maintaining the integrity of the gap. We now
perform the flux-winding experiment as before, only this
time we make the Gauss’s law pillbox so big that it cuts
region C. What happens in region A is complicated and
impossible to predict accurately from first principles, but

T T T ]

@@ c 1/we

f A B C

FIG. 6. Illustration of thought experiment showing that the
fractional charge is exact. One imagines a Hamiltonian param-
eter, such as the bare electron mass, that varies slowly in space
so as to continuously deform a test system A into an ideal one
at infinity C. A flux-winding experiment performed in A then
causes charge e/m to flow through a Gauss’s law pillbox that
cuts region C, regardless of the details, and this charge has no
choice but to accumulate near the solenoid. In this way region
A inherits exact properties from region C by virtue of integrity
of the gap across region B.



R. B. Laughlin: Fractional quantization 871

in region C exactly e/m of electric charge must be drawn
in from infinity per the previous arguments. But there is
no place for this charge to go other than the solenoid, at
least if region A is large. Thus the operation must have
made an excitation in region A with charge exactly e/m,
regardless of microscopic details. We have actually
proved something stronger in this example, for a second
Gauss’s law box placed inside region A shows that this
same charge must be related in a fundamental way to
the charge density in region A. Thus the latter is also
quantized to the ideal value, even though Eq. (21) is not
exact in this region. These arguments are quite general
and apply equally well to Hamiltonian parameters other
than the bare mass we may wish to make nonideal. The
charge is conserved by any adiabatic modification of the
Hamiltonian that maintains the gap and is therefore
characteristic of the entire phase of matter in question,
not simply a particular prototype.

Wave functions that reasonably approximate these
fractionally charged excitations, which I gave the unfor-

tunate name ‘‘quasiparticles,” are
N
1
2
-2z
41 5

W;O(zl,...,zN)zexp

N N
Xl;[ (Zj_ZO),Hk (zj=zK)", (28)

for the positive excitation at location z,, and

N
W, (z1,...,2§)=€Xp __Zz |Zj|2
0 41 5
N 9 N
<1 | 20——=z5 |I] (zj=z0™.
j 9z j<k

(29)

for the negative one. The excitation energies for these I
originally estimated were 0.022¢%/I and 0.025e?%/1, re-
spectively, for Coulomb interactions at m =3 (Laughlin,
1983a). Subsequent numerical work by Haldane and
Rezayi (1985) and Morf and Halperin (1986) found the
better numbers 0.026¢%/ and 0.073e?/I. These im-
proved energies sum to a value slightly higher than the
roton gap, as expected if the collective mode is viewed
as a quasiparticle-quasihole bound state, i.e., as an exci-
ton. Charge transport gaps of this size are found experi-
mentally (Boebinger et al., 1985) but are about half the
theoretical value corrected for finite thickness of the 2-d
electron gas. The remaining error is not of great concern
because disorder is expected to severely lower the ex-
perimental gap. It is easy to see that the quasihole wave
function describes a charge-1/3 excitation. Following the
procedure of Eq. (24) we obtain
N

<D(z1,...,zN)=—22 In|z;—z]
7

N N
m
—2m?2, Inlz;—z4]+ 577 2 |zl
j<k 21 J

(30)
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The plasma particles now see a phantom of ‘“‘charge” 1
at location z and arrange themselves on average to ac-
cumulate equal and opposite “charge” near z;. It is
somewhat more involved to demonstrate that the quasi-
electron wave function also describes a charge-1/3 exci-
tation, but the reasoning is similar (Laughlin, 1987).

There are now a number of experimental papers
which have reported the direct observation of charge e/3
quasiparticles. The most recent and widely cited are the
shot-noise measurements of Saminadayar et al. (1997)
and de-Picciotto et al. (1997), which detect the charge
through fluctuations in the current leaking across a nar-
row neck in a Hall bar. These very impressive experi-
ments are more subtle than they appear at first glance
because the relevant tunneling processes occur between
sample edges, the excitation spectra of which are not
gapped as they are in the bulk interior but rather the
gapless spectra of chiral Luttinger liquids (Wen, 1990).
The carriers in this strange one-dimensional metal carry
a charge e/3 inherited from the bulk but are somewhat
different physically from the quasiparticles in the inte-
rior and might even be construed as a different phenom-
enon. The shot noise expected from the tunneling of
these excitations turns out to have the classical form
with the electron charge reduced to e/3 (Kane and
Fisher, 1994). Somewhat more controversial, but in my
view quite sound, are the resonant tunneling experi-
ments of Goldman and Su (1995; Goldman, 1996), which
were well-controlled versions of a an older experiment
by Simmons et al. (1989). These experiments also in-
volve transport across a narrow neck of a Hall bar but
measure zero-frequency transport as a function of car-
rier density and magnetic field instead of time-
dependent current fluctuations (Jain et al., 1993). 1
should also mention the famous experiments of Clark
(Clark et al., 1988), which reported the observation of
fractional charge in the high-temperature intercept of
the activated parallel conductivity of the Hall plateau.
These measurements were startling but controversial be-
cause no simple theoretical basis for the effect could be
found. My own view, however, has continued to be that
the best spectroscopy of this charge is the quantized Hall
conductance itself, particularly in the limit that the
sample is so dirty that arguments based on idealized
edges make no sense, for the flux-winding sum rule mea-
sures the charge of the object transported across the
sample, regardless of details.

FRACTIONAL STATISTICS

Fractional quantum Hall quasiparticles exert a long-
range velocity-dependent force on each other—a gauge
force—which is unique in the physics literature in having
neither a progenitor in the underlying equations of mo-
tion nor an associated continuous broken symmetry. It
arises spontaneously along with the charge fractionaliza-
tion and is an essential part of the effect, in that the
quantum states of the quasiparticles would not count up
properly if it were absent. This force, which is called
fractional statistics (Leinaas and Myrheim, 1977; Wilc-
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zek, 1982), has a measurable consequence, namely, the
values of the subsidiary fractions 2/5 and 2/7 and their
daughters in the fractional quantum Hall hierarchy.

An isolated quasiparticle behaves physically like an
ordinary electron or hole in a Landau level, except that
its magnetic length is effectively ml. This follows from
its degeneracy in z, the functional form of the overlap
matrix

(Wi v)
0

20

+ +
NS SHIL Ao

=exp

1
4m12(|Z0|2_2Z3Z(’)+|Z(’)|2)}a (31)

and the equivalence of the wave function at m=1 to an
ordinary hole in the orbital

¢:,(z)=exp . (32)

1
= g 2P+ 1zl +2252)

This mapping is both one-to-one and physically apt.

A pair of quasiparticles, on the other hand, behaves
like a pair of ordinary electrons or holes in a Landau
level carrying magnetic solenoids containing a fraction
of a flux quantum (Arovas et al, 1984). The two-
quasiparticle wave function

"P;AEB(Zl"..’ZN)
1 N N
=exp| —gp 2 |3 | L] 2200z~ 20)
N
<1 (z=z™ (33)
j<k

is equivalent at m=1 to a pair of ordinary holes in an
otherwise full Landau level. It is obviously symmetric
under interchange of the quantum numbers z 4 and zp
and would thus appear to be the wave function of a pair
of bosons. This is not correct, however, for it is uniquely
the case in two dimensions that fermions have Bose rep-
resentations and vice versa. We must therefore use the
more sophisticated concept of a Berry phase to deter-
mine whether the particles are physically fermions or
bosons. Suppose the Hamiltonian is modified slightly so
as to stabilize a pair of quasiparticles at locations z 4 and
z g . This might be accomplished, for example, by adding
shallow potential wells at these locations. If the Hamil-
tonian parameter z, is then evolved around adiabati-
cally in a closed loop P, the wave function returns to
itself up to the phase

b= ffﬁ-ds:
P
A(zg)= lim V(P 225/ 0" z,425). (34)
ZA-*ZA

This expression gives
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+ 1 1 (F—=7p) X2

A= grxy— o ST G3)
for 7 far from 7. The curl of this vector potential is just
2 times the local charge density, so the extra solenoidal
component is simply a reflection of the missing charge
associated with the presence of the quasihole at zz. In
the case of m=1 the extra Berry phase incurred in mov-
ing A around B is just 27r. This means that the phase
incurred in going around halfway, so as to exchange the
particles, is a. The particles in this case are fermions.
Had we picked a Fermi representation in which to do
the calculation, for example by multiplying the wave
function by z4—zp, this extra phase would have come
out to be zero, but the end result would still have been
that the wave function returned to minus itself when the
particles were exchanged. When m # 1, however, neither
the Fermi nor the Bose representation gets rid of this
solenoidal component completely. In this case it is not
an artifact of the choice of representation but a real
velocity-dependent force.

The important experimental effect of the fractional
statistics is to change the way quasiparticles pack. If
quasiholes were fermions, for example, so that the anal-
ogy with a Landau level were exact, then occupying ev-
ery available state would result in a uniform charge den-
sity of e/2mm?I>. This is correct for m=1 but for no
other case, for the wave function

1 N
\I,(Z],...,ZN):CXP _WE |Z]|2]
]
N N
><H Z/MH (zj=z)", (36)
Ji J<k

which describes M quasiholes packed as tightly together
near the origin as possible, simply pushes the fluid back
from a disc of area 27w MI[?, thereby creating a fluid of
uniform charge density e/2wmi®. Bosons, of course,
would pack at any density they liked, so the actual be-
havior of quasiparticles is somewhere in between. It was
on the basis of such observations that Halperin (1984)
first realized that the packing effect would account
nicely for the observed subsidiary fractions 2/5 and 2/7 if
the quasiparticles themselves were condensing into an
analogue of the 1/m state. The Bose-representation
wave function for condensing quasiparticles into the
+1/3 fractional-statistics analogue of the 1/3 state is

N
V(... ’77N):j1<_k[> (nj= )| m— el =1
LN
X exp —WEJZ |zj|2 ) (37)
The corresponding charge densities are
e |1 1
P23 792 =173)
1 |2/7 (quasiholes)
272|255 (quasielectrons) |’ (38)
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Repeating this argument hierarchically, Halperin was
able to predict a sequence of fractional quantum Hall
states which agreed with experiment and also with
Haldane’s more algebraic derivation of the sequence
(Haldane, 1983). It was subsequently discovered by Jain
(1989) that the sequence of fractional quantum Hall
ground states could be constructed by a method that did
not employ quasiparticles at all, and thus the obvious
conclusion that the occurrence of these fractions proves
the existence of fractional statistics was called into ques-
tion. However, it should not have been. The quasiparti-
cles are quite far apart—about 3/—in the 2/7 and 2/5
states, and the gap to make them is large, so to assume
that they simply vanish when these subsidiary conden-
sates form makes no sense. Had the quasiparticles been
fermions these densities would have been 10/27=0.370
rather than 2/5=0.40 and 8/27=0.296 rather than 2/7
=0.286. The effect of the fractional statistics is therefore
small but measurable, about 5% of the observed con-
densation fraction.

REMARKS

The fractional quantum Hall effect is fascinating for a
long list of reasons, but it is important, in my view, pri-
marily for one: It establishes experimentally that both
particles carrying an exact fraction of the electron
charge e and powerful gauge forces between these par-
ticles, two central postulates of the standard model of
elementary particles, can arise spontaneously as emer-
gent phenomena. Other important aspects of the stan-
dard model, such as free fermions, relativity, renormal-
izability, spontaneous symmetry breaking, and the Higgs
mechanism, already have apt solid-state analogues and
in some cases were even modeled after them (Peskin,
1995), but fractional quantum numbers and gauge fields
were thought to be fundamental, meaning that one had
to postulate them. This is evidently not true. I have no
idea whether the properties of the universe as we know
it are fundamental or emergent, but I believe the mere
possibility of the latter must give string theorists pause
for it would imply that more than one set of microscopic
equations is consistent with experiment—so that we are
blind to the microscopic equations until better experi-
ments are designed—and also that the true nature of
these equations is irrelevant to our world. So the chal-
lenge to conventional thinking about the universe posed
by these small-science discoveries is actually troubling
and very deep.

Fractional quantum Hall quasiparticles are the el-
ementary excitations of a distinct state of matter that
cannot be deformed into noninteracting electrons with-
out crossing a phase boundary. That means they are dif-
ferent from electrons in the only sensible way we have
of defining different, and in particular are not adiabatic
images of electrons the way quasiparticle excitations of
metals and band insulators are. Some composite fermion
enthusiasts claim otherwise—that these particles are
nothing more than screened electrons (Jain, 1989)—but
this is incorrect. The alleged screening process always
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runs afoul of a phase boundary at some point, in the
process doing some great violence to the ground state
and low-lying excitations. I emphasize these things be-
cause there is a regrettable tendency in solid-state phys-
ics to equate an understanding of nature with an ability
to model, an attitude that sometimes leads to overlook-
ing or misinterpreting the higher organizing principle ac-
tually responsible for an effect. In the case of the inte-
gral or fractional quantum Hall effects the essential
thing is the accuracy of quantization. No amount of
modeling done on any computer existing or contem-
plated will ever explain this accuracy by itself. Only a
thermodynamic principle can do this. The idea that the
quasiparticle is only a screened electron is unfortunately
incompatible with the key principle at work in these ex-
periments. If carefully analyzed it leads to the false con-
clusion that the Hall conductance is integrally quantized.

The work for which the three of us have been
awarded the Nobel Prize was a collaborative effort of
many excellent people in the most respected traditions
of science. I join my colleagues in regretting that Art
Gossard could not have shared in the Prize, as everyone
in solid-state physics understands that materials are the
soul of our science and that no significant intellectual
progress is ever possible without them. I gratefully ac-
knowledge the numerical work of Duncan Haldane and
Ed Rezayi (Haldane and Rezayi, 1985), which was cru-
cial in cementing the case that the energy gap existed
and in calibrating the quasiparticle creation energies. I
similarly acknowledge Bert Halperin’s many outstand-
ing contributions, including particularly his discovery
that quasiparticles obey fractional statistics (Halperin,
1984). The list of fundamentally important contributions
to the subject other than my own is so long that I cannot
begin to do it justice. There are the numerous papers
Steve Girvin and Alan MacDonald wrote, including par-
ticularly their obtaining, with Phil Platzman, the first ac-
curate estimate of the energy gap (Girvin et al., 1985).
There is Ad Pruisken’s work on localization in a mag-
netic field and his proposition of the first appropriately
modified scaling theory (Levine ef al., 1983). There is
Xiao-Gang Wen’s work on chiral edge excitations (Wen,
1990) and the follow-on work of Charles Kane and Mat-
thew Fisher (1994) describing quasiparticle tunneling
through mesoscopic necks. There was the magnificent
global phase diagram of the fractional quantum Hall ef-
fect proposed by Steve Kivelson, Dung-Hai Lee, and
Shoucheng Zhang (1992). And of course there is the
discovery of the strange Fermi surface at half-filling and
its explanation in terms of composite fermions by Bert
Halperin, Patrick Lee, and Nick Read (1993) that is now
defining the intellectual frontier in this field. I hope all
my colleagues who have been involved with this subject
over the years, both those I have mentioned and those I
have not, will accept my gratitude and appreciation for
all they have done and my humble acknowledgement
that the theory of the fractional quantum Hall effect,
like all good science, is the work of many hands.
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