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When an interacting many-body system, such as a magnet, is driven in time by an external
perturbation, such as a magnetic field, the system cannot respond instantaneously due to relaxational
delay. The response of such a system under a time-dependent field leads to many novel physical
phenomena with intriguing physics and important technological applications. For oscillating fields, one
obtains hysteresis that would not occur under quasistatic conditions in the presence of thermal
fluctuations. Under some extreme conditions of the driving field, one can also obtain a nonzero
average value of the variable undergoing such ‘““dynamic hysteresis.”” This nonzero value indicates a
breaking of the symmetry of the hysteresis loop about the origin. Such a transition to the
“spontaneously broken symmetric phase” occurs dynamically when the driving frequency of the field
increases beyond its threshold value, which depends on the field amplitude and the temperature.
Similar dynamic transitions also occur for pulsed and stochastically varying fields. We present an
overview of the ongoing research in this not-so-old field of dynamic hysteresis and transitions.

[S0034-6861(99)00503-6]

CONTENTS
I. Introduction 847
II. Magnetic Response Under an Oscillating field:
Model Studies 848
III. Dynamic Hysteresis 851
IV. Dynamic Transitions 854
A. Due to oscillating fields 854
B. Due to pulsed and stochastic fields 856
1. Response to a positive pulse field 856
2. Response to a negative pulse field and the
magnetization-reversal transition 857
3. Dynamic transition due to random (time
varying) fields 857
V. Concluding Remarks 858
Acknowledgments 858
References 859
. INTRODUCTION

Consider a cooperatively interacting many-body sys-
tem, such as a magnet, driven by an oscillating external
perturbation, such as an oscillating magnetic field. The
thermodynamic response of the system, e.g., the magne-
tization, will then also oscillate with necessary modifica-
tions in its form, and will lag behind the applied field
due to the relaxational delay. This delay in the dynamic
response gives rise to a nonvanishing area of the
magnetization-field loop, a phenomenon we term dy-
namic hysteresis. When the time period of oscillation of
the external perturbation becomes much less than the
typical relaxation time of the thermodynamic system,
the hysteresis loop becomes asymmetric around the ori-
gin and an interesting thermodynamic phase arises spon-
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taneously out of dynamically broken symmetries due to
the competing time scales in such nonequilibrium driven
systems.

In the example of a magnetic system, the time (¥)
variation of the magnetization m(t) lags behind that of
the oscillating field /4 (¢) (=hsinwt, say), and after some
initial transient period, the dynamic m(t)—h(t) loop
stabilizes and encloses a nonvanishing loop area
A(T,hy,0) [=$¢mdh], which depends on the tempera-
ture T of the system and the field amplitude % and fre-
quency w. This hysteresis is dynamical in origin and dis-
appears in the quasistatic limit. Pure magnetic systems,
without any random defects or anisotropies to pin the
magnetic domains, can relax properly in the quasistatic
limit and follow the field in phase due to the presence of
thermal fluctuations at any finite temperature. No hys-
teresis can therefore occur in pure magnets in the qua-
sistatic limit (Landau and Lifshitz, 1935; Feynman et al.,
1964; Kittel, 1966). It may be mentioned here that a sub-
set of the engineering studies on hysteresis are of course
in this quasistatic limit, in materials containing random
pinning defects (see, e.g., the Proceedings of the Work-
shop on Hysteresis Modelling and Micromagnetism,
1997). Such quasistatic hysteresis in random materials
has been modelled recently by using magnetic models
having randomly quenched magnetic fields (Mirollo and
Strogatz, 1990; Sethna et al., 1993). One studies here the
self-organizing avalanches in the zero-temperature spin-
flip dynamics under an external field (see, e.g., Sethna
et al., 1993; Dahmen and Sethna, 1993; Dhar et al,
1997). For most of the design engineering problems con-
nected with recording processes and materials, the study
of hysteresis is essentially dynamic in nature (see Torre,
1966; Mallinson, 1987). A power-law dependence of
such hysteretic loss on the magnetic induction (related
to the external field) was first proposed empirically,
more than a century ago, by Steinmetz (1892). Here, in
this Colloquium, we confine ourselves to pure magnetic
systems and examine the dynamic hysteresis arising out
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of two competing time scales, namely the relaxation
time of the system and the time period of the external
field. As such, it exists in any pure extensive (coopera-
tive) system at any finite temperature, and disappears in
the static limit. Following an early study of the dynamics
in a driven model bistable system having rate competi-
tion (Agarwal and Shenoy, 1981), the low frequency and
amplitude power-law behavior for such dynamic hyster-
etic loss was first investigated in a multicomponent mag-
netic model by Rao ef al. (1989, 1990a), in the limit of a
large number of components.

An important aspect of the magnetization-field loop
or m—h loop shape, in this example of the dynamics of a
pure magnet, is that the loop becomes asymmetric (in
the positive and negative ranges of m) as the driving
frequency of the field increases. The reason for this is
that the system does not get enough time to relax, even
to follow the sign (phase) of the external field. This
causes a spontaneous symmetry breaking and a nonvan-
ishing value of the dynamic order parameter Q given by
the time averaged magnetization over a complete period

o2 o,

This nonzero value of the order parameter Q develops
spontaneously in the high frequency ranges, although
the external perturbation does not provide, on average
(over time), any symmetry breaking field (§4dr=0). A
prototype of this dynamic transition was first observed
by Tomé and de Oliveira (1990) in the numerical solu-
tion of the mean field equation of motion of the classical
one component magnetic model (see the next section).
However, the transition there is not truly dynamic as it
can exist for such equations of motion even in the zero
frequency (static) limit of the driving field. This transi-
tion in the static limit is an artifact of the mean field
approximation, which neglects nontrivial fluctuations.
The occurrence of the dynamic transition for models in-
corporating thermodynamic fluctuations, was later
shown in several Monte Carlo simulation studies (Lo
and Pelcovits, 1990; Acharyya and Chakrabarti, 1994,
1995). In these numerical studies, incorporating fluctua-
tions, the dynamic transition disappears in the static
limit.

Although the subject of nonequilibrium phenomena
associated with first-order phase transitions has received
considerable attention in the recent past, most of the
attention has been focused on two variants of the prob-
lem: Rapid quenching of a melt or of a spin system from
a disordered phase to one of the competing ordered
phases (see, e.g., Bray, 1994), or to the century-old prob-
lem of the decay (often remarkably slow, as for example
in some allotropic forms of carbon) of the metastable
phases of a condensed matter system through the nucle-
ation of the domains of various phases, as the external
conditions of the system are suddenly changed (see, e.g.,
Rikvold and Gorman, 1994). The interest in the study of
nonequilibrium phenomena associated with extended
systems, driven periodically or stochastically between
two (or more) equivalent ordered phases, is somewhat
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more recent. These phenomena are also related to the
phenomena of stochastic resonance in bistable systems
that are periodically driven in the presence of stochastic
noise (see, e.g., Gammaitoni et al., 1998). Here, the reso-
nance of the weak periodic modulation (which by itself
is incapable of inducing any phase change) with the
Kramers’ frequency of the theromodynamic system
(coming from the finite temperature Boltzmann prob-
ability of activated hopping across a finite barrier be-
tween the two ordered phases) finally succeeds in induc-
ing the periodic phase changes of the entire macroscopic
system. Since its early introduction as a possible model
for the dependence of the earth’s ice age periods on the
weak periodic modulations of the earth’s dynamics
through resonance of the stochastic noise of its weather
(Benzi et al., 1981), the concept has found wide applica-
tions to a variety of physical phenomena in biological
and engineering sciences, including dynamic hysteresis
(Sides et al., 1998a).

Interestingly enough, in spite of its immense practical
importance in the engineering problems of magnetic re-
cording, and the prospect of very interesting physics, the
problem of dynamic transition and hysteresis in periodi-
cally driven magnetic systems was overlooked for many
years. Although it is now less than ten years old, the
subject has become a field of considerable novelty and
vitality. A number of key issues are already settled and a
few others are nearly resolved. In this Colloquium we
try to give an introduction to these intriguing nonequi-
librium dynamic transition phenomena in driven ex-
tended systems and to discuss simple analytic theories
connecting them.

Il. MAGNETIC RESPONSE UNDER AN OSCILLATING
FIELD: MODEL STUDIES

The detailed nature of the dynamic response of ex-
tended systems (having many interacting degrees of
freedom), under time-dependent fields, is being investi-
gated intensively these days. Considerable efforts have
been made, in particular using computer simulations, to
investigate the nature of the above-mentioned dynamic
phase transition and hysteresis in Ising models. Simple
Ising systems contain ferromagnetically interacting spin
degrees of freedom, each with binary (up/down or =1)
spin states. Let us consider a simple ferromagnetic sys-
tem represented here by an Ising model with nearest
neighbor ferromagnetic coupling, which is put under an
oscillating external field. Such a system can be repre-
sented by the Hamiltonian

H==2 Jsisi—h() 2 s;, (1)
(ij) i
with
h(t)=hgsin wt. (1a)

Here s; (= £1) represents the Ising spin variable at the
site i on a d-dimensional lattice and J;; represents the
spin-spin interaction strength between sites i and j. Z;
runs over all the lattice sites and 2 ;) runs over all the
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distinct nearest-neighbor pairs. Note that for truly long-
range interactions, as in the mean field models discussed
later, the sum in Eq. (1) extends over all the pairs and
the value of J;; decreases inversely with the number of
sites in the system. The system is in contact with an iso-
thermal heat bath at temperature 7. For simplicity all
J;j(>0) are taken equal to a constant J(=1), and the
temperature 7 is measured in units of J, setting the Bolt-
zmann constant at unity. In order to keep H/T dimen-
sionless, & in Eq. (1a) is also measured in units of J.

We will discuss later the equations of motion for the
average magnetization m(=(s;)) (where ( ...) denotes
the ensemble average) for such systems. It may be noted
here that since no transverse magnetization is possible
for the Ising system (the magnetization m is a scalar),
the magnetization can only try to follow the field, albeit
with a delay. The behaviors of the response magnetiza-
tion m(t) are qualitatively indicated in Fig. 1 for some
typical cases. Generally, since the equation of motion of
such systems remains invariant for t—¢+2/w, the re-
sponse magnetization also becomes periodic (not neces-
sarily sinusoidal, even though the field is so) with the
same periodicity or some integer multiple of it (in cases
of stochastic resonance). This is responsible for the fea-
ture that the magnetization m can at most be double
valued at any field £, and the m — & loop has to be closed
(on average; in the thermodynamic limit). The phase de-
lay in m(t) (compared to that of A(t)) gives rise to the
dynamic hysteresis loss or the loop area A. The same
delay and the constraint of identical periodicity for the
field and the response magnetization can induce an
asymmetry in the response (in =m) as the driving fre-
quency increases. When the time period of oscillation
falls far behind the effective relaxation time of the
many-body system, a dynamically broken symmetric
phase arises spontaneously with a nonvanishing value of
the dynamic order parameter Q (the period averaged
magnetization).

Typically, for fixed temperature 7 and field amplitude
hg, the dynamic hysteresis loss A increases with increas-
ing frequency w for low values of w. This is because, for
low values of w, the effective delay in the response in-
creases as w increases. In general, for a fixed w, A in-
creases with decreasing 7" and increasing /4 until A satu-
rates. Eventually, as the driving frequency exceeds a
threshold value (dependent on /4, and T; see Acharyya,
1998b), the loop area A starts decreasing, because of the
increase in the effective delay (phase lag) towards 2.
Eventually, the loop area vanishes for very high fre-
quencies when the dynamic symmetry is fully broken
(Q=1). For a fixed frequency, this dynamic transition
phase boundary (separating nonzero and zero values of
Q in the hy— T plane) is in general convex towards the
origin. With large values of the field amplitude &, or
temperature 7, one gets a “forced oscillation” kind of
scenario inducing the dynamically symmetric (Q=0)
phase. However, right near the dynamic phase bound-
ary, in the symmetric (Q =0) phase, the field amplitude
hy may not be sufficient to cross the free energy barrier
at that temperature and stochastic resonances can in-
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duce such dynamic symmetry in several attempts or in
averages over several cycles (Sides et al., 1997, 1998a).
With decreasing w, the phase boundary shrinks inward.
Finally, in the static limit (w=0) the dynamic transition
disappears and the phase boundary in the h,— T plane
collapses to a line with #;=0 and ending at T=T, the
static transition temperature of the unperturbed system.

The majority of studies on such Ising systems in an
oscillating field have been made employing the Monte
Carlo method (see e.g., Binder, 1979) using the Me-
tropolis single spin flip dynamics. Starting from an arbi-
trary initial state or configuration of spins (e.g., with all
spins up), the spin state s;(¢) at each site i and time ¢ is
updated sequentially with a probability proportional to

exp

1
_TAEI'([) )

where AE;(t)=2s,[2;s;(t)+h(t)], the change in energy
due to the spin flip. One full scan over the entire lattice
is defined as the unit time step (or Monte Carlo step per
site). The response magnetization (per site) at time ¢ is
then easily calculated: m(¢)=(1/N)Z;s;(t), where N is
the total number of spins in the lattice (N=L if one
considers a d-dimensional hypercubic lattice of linear
size L). One then concentrates on the behavior of the
response function m(¢) for a long time ¢ (much after the
stabilization, starting from the initial state) as compared
to the field h(¢). Specifically, one considers quantities
like the loop area A(=¢mdh) and the dynamic order
parameter

-5

The mean field! equation of motion for the average
magnetization m can be written as
dm m+ h(t))

—_ — +
m+tanh T

i )

'In a cooperatively interacting system as, for example, de-
scribed by the Hamiltonian (1), each degree of freedom (here
spin) interacts with the neighboring one. Hence the interaction
tries to induce complete order (m=1) in the system. The ther-
mal noise, at any nonvanishing 7, induces fluctuations destroy-
ing the order and takes the system to microscopic states that
are not energetically favorable. The probabilities of such
higher energy states are given by the Boltzmann probabilities
at that 7. The overall order is then given by the thermody-
namic average value (m<1), while there are fluctuations
around this average. In the mean field approximation, one iso-
lates an arbitrarily chosen cluster of spins (usually one spin)
and performs the statistical mechanics for these chosen spins
exactly, taking the states of all its (interacting) neighbors at
their mean or average state (represented by the average m).
This self-consistent approximation therefore pictures each de-
gree of freedom to be placed in a mean field provided by the
average state of the neighbors and the interaction strength J
(in Eq. (2) the value of T.=JZ,, has been put equal to unity,
where Z,, denotes the number of nearest neighbors of any
spin).
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FIG. 1. Schematic time variation of the response magnetization m(¢) compared to that of the oscillating field 4 (¢) for different
values of frequency w and amplitude /s of the oscillating field and temperature 7T of the system. The results are in fact actual
Monte Carlo simulation results for an Ising model on a square lattice with the values for #, and T as indicated in the figures. The
figures on the right-hand side show the corresponding m —h loops. The values for loop area A and the dynamic order parameter
QO are also indicated in these figures. As one can see, the first two cases correspond to Q =0, while the other two correspond to
dynamically broken symmetric phase (with Q+#0). The first figure and the last correspond to A=0, while the middle two

correspond to nonvanishing A.

where h(t) is given by Eq. (la) and the microscopic
relaxation time (on the right-hand side of Eq. (2)] is put
equal to unity (see Suzuki and Kubo, 1968). This simple
nonlinear equation (in one variable) is indeed capable of
capturing a number of important features of dynamic
hysteresis and of the dynamic transition. However, the
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lack of fluctuations of the thermodynamic average value
m in the above equation is responsible for the loss of
some very significant features. For example, even in the
quasistatic limit, one requires a nonvanishing coercive
field amplitude to overcome the free energy barrier or to
go from a +m state to the corresponding —m state
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crossing the barrier which is finite below the static order-
disorder transition temperature 7.. Consequently, a
nonzero hysteresis loop area can be found even in the
static limit. Also, any applied field here (of magnitude
below that of the coercive field which is nonzero for T
<T,) cannot break the asymmetry of the system. The
“dynamic transition” therefore occurs here even in the
static limit. Still, considerable analytical studies have
been made for hysteresis from such single-variable, non-
linear, periodically driven equations of motion or maps
(Jung et al., 1990; Goldsztein et al., 1997). Some efforts
have been made to incorporate the effects of Gaussian
noise on the Langevin-type equation of motion for m
with a somewhat weaker nonlinearity (Mahato and
Shenoy, 1994; Paniconi and Oono, 1997). Efforts have
also been made to treat the effects of fluctuations using
a renormalization group technique for a general
n-component system (with n components for the magne-
tization vector m), and study the n—oo limit (Rao et al.,
1990a, 1990b; Rao and Pandit, 1991; Thomas and Dhar,
1993; Zhong and Zhang, 1995).

lll. DYNAMIC HYSTERESIS

The dynamic contribution to the coercive field and the
hysteresis loop area has been investigated in several re-
cent experiments, mostly in thin films or in two dimen-
sions. Bruno et al. (1990) studied the dependence of the
hysteresis loop area A on the rate of change of the ex-
ternal field, in ultrathin ferromagnetic films. Their study
gives some indirect information on the dynamic contri-
bution to the loop area A.

In a more recent experiment, Jiang et al. (1995, 1996a,
1996b) studied the frequency-dependent hysteresis of
epitaxially grown ultrathin (2 to 6 monolayer thick) Co
films on a Cu(001) surface at room temperature. The
films have strong uniaxial magnetization with two ferro-
magnetic phases of opposite spin orientations. This mag-
netic anisotropy makes it appropriate to represent the
system by an Ising-like model (see also He and Wang,
1993). The external magnetic field 4(¢) on the system
was driven sinusoidally in the frequency (f=w/27)
range 0.1 to 500 Hz and in the amplitude (%) range 1 to
180 Oe. Here of course the time-varying current or the
magnetic field induces an eddy current in the core,
which results in a counter-field reducing the effective
magnitude of the applied field. The surface magneto-
optical Kerr effect technique was used to measure the
response magnetization m(t). A typical variation of the
loop area A with the driving frequency f, at room tem-
perature and at fixed external field amplitude 4, is
shown in Fig. 2(a). Also, it may be mentioned that in a
recent similar experiment on dynamic hysteresis in ultra-
thin Fe films on W(110) surface (Suen and Erskine,
1997), the typical behavior of the dynamic hysteresis is
observed to be similar, although considerable discrepan-
cies are observed in the actual details for different ma-
terials and regimes.

The observed variation of the loop area A with fre-
quency w follows the generic form discussed earlier: A
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decreases for both low and high values of w. However, it
may be noted that A does not quite vanish in the zero
frequency limit. The observed variation can, in fact, be
fitted to a form

A=A+ heabg| 3
0 0w g hg s ( )
with the scaling exponents «, B8, and y and with the scal-
ing function g having a suitable nonmonotonic form
such that g(x)—0 as x—0 or =.2 Here A, is the loop
area in the zero frequency limit. It seems, depending on
the nature of the dynamic processes involved in differ-
ent materials and also the ranges (of amplitude, fre-
quency, etc.), the values of the exponents differ dramati-
cally. While Jiang et al. (1995) obtained a=0.67=p for
Co films on Cu(100), and a=0.6 and B=0.3 for Fe films
on Au(001), Suen and Erskine (1997) obtained much
lower values for the same exponents: «=0.3 and B
=0.06 (perhaps logarithmic) for Fe films on W(110) sur-
faces. It may be mentioned that Jung et al. (1990) ob-
served, in the context of their analytical study for a
model switching between two modes of a semiconductor

laser, that one needs to replace A, in Eq. (3) by %, to
account for a subtraction of a threshold field amplitude
below which no hysteresis takes place.

This experimental observation perhaps indicates that
the observed hysteresis is not entirely dynamic in origin;
A does not quite vanish in the static limit 0w—0. An
approximate mean field solution of Eq. (2) can of course
give the above fitting form (3) for A (Jung et al., 1990;
Luse and Zangwill, 1994; Hohl et al., 1995; Goldsztein
et al., 1997): Linearizing the mean field equation (2), for
small m and hy (T>T,=1), one gets

dm h(t) T-1
a et S “)

the steady state solution of which can be written as
m(t)=mgcos(wt—¢) for h(t)=hocoswt. A direct
substitution then gives my=hy/T JE€+w? and ¢
=sin"!(w/\J€®+ w?). For the loop area A in this linear-
ized limit, one gets

A= fﬁ mdh~hig()IT,

w

g(w)=m~ Q)

>The constants a,B,v, etc., in general assume noninteger val-
ues, indicating singularities in the power laws. Very small val-
ues of the constants are often taken as indications for logarith-
mic variations rather than power laws (taking the
representation Inx=[(x"—1)/n],_). These constants are called
the scaling exponents here, in conformity with the practice in
critical phenomena, where the exponents also turn out to be
universal in the sense that they do not depend on most of the
details of the thermodynamic system. The scaling function is
again a term borrowed from the critical phenomena literature,
where the function g is not dependent on the individual values
of w and £, but is a function only of the scaled variable w/h].
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FIG. 2. Experimental results for the dynamic hysteresis loop area A and the dynamic order parameter Q (Jiang et al., 1995). (a)
The results for the loop area A as a function of frequency f is plotted at a fixed ac current of 0.4 Amp. The direction of the
magnetic field is parallel to the film plane. The insets show plots of m —h loops for the following particular values of the field
amplitudes Ag: (i) hy=48.0 Oe (top inset) and (ii) #;=63.0 Oe (bottom inset). (b) The dynamic order parameter Q, i.e., the
average magnetization over a cycle, is plotted against the field amplitude at a fixed frequency f=4 Hz. The insets show plots of
m—h loops for the following particular values of the field amplitudes 4: (i) hy=48.1 Oe (right inset) and (ii) #,=12.0 Oe (left

inset).

Rev. Mod. Phys., Vol. 71, No. 3, April 1999



B. K. Chakrabarti and M. Acharyya: Dynamic transitions and hysteresis 853

The above Lorentzian form for the variation of the loop
area A with frequency w is in fact valid for T>T,. For
T=T, a similar form for the frequency variation will be
valid with an additional frequency-independent contri-
bution Ay(T)~m (T)h(T)~(T,—T)?, where m (T)
denotes the equilibrium magnetization and #4.(7T) the
static coercive field at that temperature 7<T. (=1
here). The above Lorentzian form (5) for the variation
of the dynamic hysteresis loop area A with the fre-
quency w of the driving field, at high temperatures, may
be compared with that given in Eq. (3) with =2, =1,
and y=0. In fact, the numerical solution for the loop
area A from Eq. (2) for T>T, (=1) gives excellent
agreement with Eq. (5) (Ag is zero for T>T,). At
higher field amplitudes and lower temperatures (7
<T,), the above linearization of the tanh term in Eq.
(2) becomes inappropriate. Jung et al. (1990) and Gold-
sztein et al. (1997) considered the effect of an additional
m? term in the right-hand side of Eq. (4). In the limit
w—0, they could solve such a nonlinear equation and
obtained A~ A +h4w® with a=2/3=b for positive val-
ues of hog=hy—h,.

In models for order-disorder ferroelectrics, the coop-
erative dipole-dipole interaction is represented by an
Ising Hamiltonian, while the quantum tunneling be-
tween the two equivalent wells (corresponding to Ising
states *1) is represented by a (noncommuting) tunnel-
ing field. A similar mean field treatment of the semiclas-
sical equation of motion of a quantum (Ising) system,
for finite temperature hysteresis, was performed by
Acharyya et al. (1994). Here the tunneling field is driven
sinusoidally to simulate a periodic modulation of the ex-
ternal pressure on the sample.

All these mean field studies, mentioned above, are for
systems without any thermal fluctuations. In any realistic
system, as in the experimental systems described above,
such fluctuations are present and theoretical analysis be-
comes considerably more difficult. However, computer
simulation studies on such models are possible and these
studies give significant insights regarding the effects of
such fluctuations. Extensive Monte Carlo studies have
been made for the Ising system represented by the
Hamiltonian (1) in one to four dimensions (Lo and Pel-
covits, 1990; Acharyya and Chakrabarti, 1994, 1995).
Acharyya and Chakrabarti observed that at high tem-
peratures (T>T,) the loop area variation for the entire
frequency range can be represented by

w
A(T,ho,w)~h6“T“’g(W), (6)

2(@)~wPexp(— o’/ o), (6a)

where the scaling function g(®) is exponentially decay-
ing in such Monte Carlo studies, with an initial power-
law growth (compared to the Lorentzian form (5) in the
linearized mean field case). The above scaling form (6)
obviously reduces to a power law in the low frequency
limit: A~h{w?T ¢, with a=a—By, b=, and c=p
+ B6. The fitting curve for the collapsed data for the
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FIG. 3. Variation of scaled loop area A=Ah, *T* with the
scaled frequency @=w/h}T® for the Monte Carlo data in d
=2. The inset shows the variation of A with w at different 4,
and 7. Different symbols correspond to different 7" and h:
(O) T=15, hy=125; (O) T=15, hy=15; (A) T=2.0, h
=1.25; (O) T=20, hy=1.5; (x) T=2.5, hy=1.5; (X) T=2.5,
hy=1.75; (6-pointed star) T=3.0, hy=2.0; and (1) T=3.0, hy
=2.5. The solid curve indicates the proposed scaling function
g(®)~ P exp(—w?/o) with B=0.3.

loop area A as a function of the scaled frequency @
(= w/h]T?) gives the scaling function g(@). The best fit
values of the exponents «, B, v, and & depend on the
dimension. One typical result for the data collapse for A
in two-dimensional Monte Carlo study is shown in Fig.
3. The best fit values for these exponents seem to be «
=1.0; B=0.3, 0.5, and 0.5; y=0.9, 0.7, and 1.4; 6=1.2,
1.8, and 1.4; and p=0.8, 1.2, and 0.5, in d=2, 3, and 4,
respectively. This gives a=0.7, 0.6, and 0.3, and b=0.3,
0.5, and 0.5, respectively, in the above dimensions
(Acharyya and Chakrabarti, 1995). For linearly swept
fields, extensive simulation studies to check the above
scaling behavior of A has been done recently by Zheng
and Zhang (1998a, 1998b). They estimated the value of
the dynamic exponent z (see Sec. IV B) from the expo-
nent B and compared that with the direct Monte Carlo
estimates for the same.

If the applied field amplitude and the system size are
both small, one can utilize a picture for the spin flips
occurring through the nucleation of a single spin domain
(Thomas and Dhar, 1993; Sides et al., 1998a). The clas-
sical nucleation theory of Becker and Doring (see, e.g.,
Rikvold and Gorman, 1994) suggests that the nucleation
rate is [~exp[—F(l.)/T], given by the optimality condi-
tion [.=[o(d—1)/2d]/h of the free energy F(I)=2hl"
+ 01! for the formation of a droplet or domain of
linear size / under field /4. Here o is proportional to the
surface tension for the formation of the droplet. For low
temperatures the magnetization switches from about +1
to —1 as the field is swept from positive to negative
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values. The hysteresis loop area A is then essentially
proportional to the (dynamic) coercive field h.=hywt,,
where the switching time ¢, can be estimated by requir-
ing an order of unity value for the total integrated
switching probability within ¢, :

ty 1
fo a“ exp( } [h(r)]d—l)

_q (e 1
=(hyw) Jo dhexp| — a1 =1.
This suggests that
A~h~[=In(hyw)]~ =D, (7

for small 7, and w. In this estimate, the loop area disap-
pears logarithmically in the static limit. Extensive simu-
lation studies by Sides et al (1998a, 1998b) and by
Acharyya and Stauffer (1998) for small system sizes and
low field amplitudes seem to suggest that the above
logarithmic dependence on frequency can indeed be ob-
served for extremely low frequencies. However the in-
accessibility of such really low frequencies, both in simu-
lations and in experiments, and power-law—type fits to
the data for rather high frequencies might be respon-
sible for the apparent indication of an effective constant
value A, for the “extrapolated” loop area in the zero
frequency limit, as discussed earlier in Eq. (3). Let us
remember that such an analysis is valid only when a
single domain of flipped spins grows and induces the
switching in magnetization. As the field amplitude in-
creases, and/or the system size becomes much larger
than the single critical domain size /., the switching oc-
curs by the coalescence of multiple domains. The exten-
sion of the above nucleation rate analysis from a single
domain to the crossover region of multidomains has also
been done recently (Sides et al., 1998b, 1998d; see also
Sides, 1998). In such strong field cases, however, the
power-law scaling behavior (6) seems to be quite appro-
priate as indicated by the results from various Monte
Carlo studies (Acharyya and Chakrabarti, 1995). Ana-
lytically, the effect of such fluctuations can still be tack-
led in the large » limit of an n-vector model (Rao et al.,
1990a), for which one finds A~h{jw’ for w—0 in the
high temperature limit, with a=1/2=5 with logarithmic
corrections (Dhar and Thomas, 1992; see also Zhong
and Zhang, 1995).

IV. DYNAMIC TRANSITIONS
A. Due to oscillating fields

As mentioned in the preceding section, the experi-
ment by Jiang et al. (1995) on dynamic hysteresis in epi-
taxially grown ultrathin Co films on a Cu(001) surface
with magnetic anisotropy at room temperature exhibits
a prominent signature of the dynamic transition as the
driving frequency increases. The observed hysteresis
loops tend to become asymmetric about the zero mag-
netization line (see Fig. 2(a)) in the high frequency re-
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T

FIG. 4. Schematic diagram of the dynamic phase boundary in
the field amplitude (4,) and temperature (7) plane at a fixed
nonzero frequency. The dotted line is the boundary of the dis-
continuous transition and the solid line represents the bound-
ary of continuous transition. The small circle represents the
tricritical point (TCP). Insets demonstrate the breaking of the
symmetry of the dynamic hysteresis (m—h) loop due to dy-
namic transition.

gime. Even for a very low frequency (f=4 Hz), they
observed the same symmetry breaking dynamic transi-
tion by reducing the amplitude of the magnetic field (see
Fig. 2(b)). However, the precise experimental phase
boundary for this dynamic transition is not available to
date. Moreover, no experimental attempt has been
made so far to probe the thermodynamic nature of such
dynamic transitions. A similar dynamic transition can
also be seen clearly from the data obtained by Suen and
Erskine (1997) in Fe films on W(110) surfaces.

Mean field scenario. Tomé and de Oliveira (1990)
studied the response of a kinetic Ising model, in the
presence of a sinusoidally oscillating magnetic field, by
solving the mean field equation of motion (2) for the
average magnetization. The dynamic order parameter Q
(the time average magnetization over a full cycle of the
oscillating field), which vanishes for the symmetric hys-
teresis loop, was found to assume nonzero values for
some range of values of field amplitude (4,) and tem-
perature (7), dependent on the frequency (w). The
ho—T plane is then divided by a phase boundary line
that separates the dynamically disordered (Q =0) phase
from a dynamically ordered (Q #0) phase for any fixed
frequency . Tomé and de Oliveira (1990) also identi-
fied a tricritical point on the phase boundary line that
separates the continuous/discontinuous nature of the
transition along the phase boundary. A schematic dia-
gram of the dynamic phase boundary is shown in Fig. 4.

However, as mentioned before, in this mean field ap-
proximation the dynamic transition can exist even in the
static limit. The reason is that for field amplitudes less
than the static coercive field /. (which is nonzero below
the order-disorder transition temperature 7.), the re-
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sponse magnetization varies periodically but asymmetri-
cally even in the zero frequency limit. The system then
remains locked to the higher, yet locally attractive, well
of the free energy and cannot go to the other (deeper)
well, unless driven by any noise or fluctuations that are
absent in the mean field system.

This mean field dynamic transition phase boundary in
the static limit can be easily estimated. This is because,
the hy(T) line in the hy— T plane for =0 corresponds
to the temperature dependence of the static coercive
field h.(T). Since the Landau (mean field) free energy
grows as (T,—T)? for T<T,, and the spontaneous
magnetization is my=(T.— T)"?, the coercive field can
be estimated from the balance of mgh, with the free
energy barrier height: myh.~(T.—T)?, or h.=(T,
—T)3?. The mean field dynamic phase transition bound-
ary (Acharyya and Chakrabarti, 1994) indeed converges
to such a behavior in the static limit: Ag(T)=(T.
—T)%2,

Thermodynamic nature of the transition. Lo and Pel-
covits (1990) first attempted to study the dynamic tran-
sition in the presence of fluctuations, as in the kinetic
Ising model, using Monte Carlo simulations. While they
could detect the transition, they could not obtain any
precise phase boundary for the transition. Acharyya and
Chakrabarti (1994) obtained later the dynamic transi-
tion phase boundary. Afterwards, various studies have
been made to investigate the thermodynamic nature of
this transition.

Extensive Monte Carlo studies in two and three di-
mensions show that a precise phase boundary (in the
ho—T plane) exists for the transition at any fixed non-
zero frequency (w) of the driving field. For (hy,T) val-
ues below this boundary, one gets asymmetric m—h
loops (or asymmetric dynamic hysteresis loops), while
for values above this boundary the loops are symmetric.
This spontaneous symmetry breaking transition of the
(dynamic) hysteresis loop can be accurately described by
the behavior of the dynamic order parameter Q, which
measures the stable (long time) average value of the
magnetization over a complete period. As mentioned
before, this dynamic breaking of symmetry arises due to
the competing time scales of the oscillating field and that
of the response magnetization. With decreasing fre-
quency, the phase boundary line in the ho— T plane
shrinks towards the origin, and eventually it becomes a
line along the T axis (hy=0), ending at T=T,.. Re-
cently, Acharyya (1998b) identified this dynamic transi-
tion point as the point where the correlation between
h(t) and m(t) goes to a minumum.

The Monte Carlo studies also indicate that the transi-
tion clearly becomes discontinuous (Q discontinuously
changes) for low temperatures and high field amplitudes
at any fixed frequency of the driving field (see insets of
Fig. 5). These indications suggest the existence of a tri-
critical point on the phase boundary that separates the
continuous/discontinuous nature of transitions. Very re-
cently, Acharyya (1999) has checked the existence of
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FIG. 5. Phase diagrams in the /(-T plane for various values of
o give the functional form of the transition temperature
T,(hy,w) for the dynamic phase transition: Monte Carlo re-
sults (a) for system sizes L =100 in d=2, and (b) for L =20 in
d=3. Below T;(h,w), Q acquires a nonzero value in F phase
and Q=0 in P phase. Different symbols denote different phase
boundary lines corresponding to different frequencies (w):
(0) 0=0.418, (A) @=0.208, (¢) w=0.104 in (a); and (O)
0=0.418, () ©=0.202, (O) ©=0.104 in (b). The locations of
the tricritical points (TCP) are indicated by the circle. The
insets show the nature of the transition just above (I: £;=2.2
and 4.4 in (a) and (b), respectively) and below (II: #,=1.8 and
3.6 in (a) and (b), respectively) the tricritical points along the
phase boundaries.

this tricritical point by studying the distribution P(Q) of
the order parameter Q and the temperature variation of
its fourth order cumulant

(0%

Vs

where (Q")=[Q"P(Q)dQ across the phase boundary.

Notwithstanding the fact that the response magnetiza-
tion m(t) is not necessarily sinusoidal, although it is pe-
riodic with the same frequency as that of the external
sinusoidally varying field /(¢), Acharyya and Chakra-
barti (1994, 1995) defined an AC susceptibility x
=m(t)/h(t)~(mg/hy)exp(—ip), assuming a represen-
tation m(t)=moexplio(t—1y4)] for h(t)~hyexp(iot).
Here, m, corresponds to the amplitude of the response
magnetization and ¢=wr.y is the effective phase lag
(given by the effective delay time 7.4 of the response
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FIG. 6. Comparison of the temperature variations of the
Monte Carlo results in d=2, with L=100,h,=0.2, and
0=0.063: Q (solid line), —dQ/dh, (®), and 5Q* (A).

m(t) compared to the field 4(¢)). Their Monte Carlo
study for two- and three-dimensional lattices on the
temperature variation of this complex susceptibility
(moduli of the real part x'=(mg/hy)cos[wr] and the
imaginary part x” = (mq/h)sin[w.]) of an Ising model
in a periodically varying external field shows that the
prominent peak in x” (and dip in x') occurs at T; as one
crosses the dynamic phase boundary (Q#0 for T
<T,(hy,w) and Q=0 for T=T,). It may be noted that
this AC susceptibility does not (directly) measure any
asymmetry of the m—h loops as Q measures: it essen-
tially measures the delay 7. in m(¢) compared to h(t).
Yet, the AC susceptibility measurements give precisely
the same dynamic symmetry breaking transition, where
they show peaks or dips. This feature of the AC suscep-
tibility is of course observed only for small values of A
(and large values of T'), where the dynamic transition is
continuous.

Recently, the relaxation behavior of the dynamic or-
der parameter has been studied (Acharyya, 1997a).
Starting from any arbitrary initial state in the Monte
Carlo study, one can study the relaxation behavior of
O(p), which represents the value of Q for the pth cycle.
Acharyya showed that, similar to the critical slowing
down behavior in static critical phenomena, here also
the dynamics becomes extremely slow (in p) as one ap-
proaches the dynamic phase boundary T,(h,,w). He
also showed (Acharyya, 1997b) that the fluctuations §Q
in Q, over its average value, tend to diverge as one ap-
proaches the phase boundary (see Fig. 6). Very recently,
Sides et al. (1998c) applied a finite size scaling method®
to the Monte Carlo results for the dynamic transition in
the two-dimensional Ising model and estimated the val-

3In normal (static) critical phenomena, as one approaches the
transition point T, the correlation length & diverges: &~|T
—T.|"%. In a finite system of linear size L, one observes a
pseudocritical point at 7% where & becomes equal to L: T%
—T.~L" ' The finite size scaling method utilizes this scal-
ing property of 7¢ with L and estimates the values of the cor-
relation length and other exponents.
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ues of several exponents. In particular, their findings
suggest that the correlation length é~|T—T,| ™" for this
dynamic transition grows with an exponent value »
=1.1, slightly higher than the corresponding static tran-
sition exponent value (v,=1) in two dimensions.

B. Due to pulsed and stochastic fields

Since the oscillating field can be decomposed structur-
ally into successive applications of positive and negative
field pulses, considerable insights can be gained by in-
vestigating the nature of the dynamic response to iso-
lated pulsed fields. For the individual application of
pulses, the “positivity” or ‘“‘negativity”’ corresponds to
fields favoring or competing with the existing order be-
fore the application of the pulse, respectively. Another
interesting study of dynamic response has been in the
case of a stochastically varying (in time) field, where the
entire extended system is in a (spatially) uniform field
which varies randomly in time. The relaxation time of
the extended system being much larger than the time
unit over which the field changes randomly, a dynami-
cally broken symmetric phase again appears.

1. Response to a positive pulse field

Acharyya et al. (1997) studied the response of the ki-
netic Ising model (1a) to a pulsed field i (t)=h, for ¢,
<t<ty+t and h(t)=0 elsewhere. Here h, is in the
direction of the existing magnetic order m,(T) for T
<T,. and ¢, is much larger than the relaxation time of
the unperturbed system at that temperature. The behav-
ior of the response magnetization m(t) was studied as a
function of temperature T, pulse height 4, , and pulse
width 6t, using Monte Carlo simulations and also solv-
ing numerically the mean field equation of motion (2),
with A(¢) as given above. In particular, the response
contribution to the magnetization was characterized by a
(maximum) height m,, and a width A¢. For small values
of h,, the width ratio R=At/6t was found to diverge at
the critical point 7, of the unperturbed system, while
the pulse susceptibility x,=m,/h, was found to show a
finite peak at an effective transition temperature 77
#T.. It was found that the peak height increases and
the peak position T approaches T, as the pulse width
6t increases: T¢=T.+C(8t)™*; x=0.5 in two dimen-
sions (Acharyya et al., 1997). It was argued that this ef-
fective transition with a finite peak at T% occurs due to a
finite time effect, similar to the finite size effect in static
critical phenomena (Fisher, 1964; see footnote 3): one
observes an effective critical behavior here when the
width of the time window &t becomes equal to the re-
laxation time of the order of &~|T¢—T.| "%, or T¢
~T.+C(6t)"* with x=1/v,z, where v, and z denote
the standard correlation length and dynamic exponents,
respectively, for the equilibrium transition at 7.. In-
deed, the value of v,z is about 2.0 for two-dimensional
Ising systems.

Study of the response to such pulsed perturbations in
various self-organized critical models can help to predict
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the critical point before the critical threshold is reached
(Acharyya and Chakrabarti, 1996). Many of the cata-
strophic disasters occur dynamically in a self-organized
way and the disaster point (threshold stress or time) may
often be identified as a critical point. Naturally, the esti-
mates (prior to the disaster) of such self-organized criti-
cal points are extremely useful. Since most such dynami-
cally self-organized models respond to the appropriate
perturbations, which in turn accumulate to take the sys-
tem towards the critical point, the perturbations to test
the interval from the criticality must necessarily be local
in space and time (i.e., pulsed). Measuring the charac-
teristics of the response to local pulsed perturbations,
one can extrapolate or predict the imminent disaster
point (time) in, e.g., some self-organized criticality mod-
els of earthquakes (see, e.g., Chakrabarti and Benguigui,
1997).

2. Response to a negative pulse field and the
magnetization-reversal transition

Misra and Chakrabarti (1997, 1998) studied the re-
sponse of the kinetic Ising model (la) to a negative
pulsed field h(t)=—h, for tyst<ty+ 6t and h(t)=0
elsewhere. They used Monte Carlo simulations and nu-
merical solutions of the mean field equation of motion
(2) with the above form of 4 (¢). Due to the application
of the negative field pulse 4,, which opposes the exist-
ing order characterized by the equilibrium magnetiza-
tion m,(7T) for T<T,, the down-spin domains start
growing and continue until the field is withdrawn. De-
pending on the average magnetization m(ty+ &t) at the
time of the field withdrawal, the domains either grow
further (for negative values of m(ty+ dt)) to reach even-
tually the other equivalent ordered phase with reversed
magnetization —m, or they settle down (for positive val-
ues of m(ty+ 6t)) to the original ordered phase with
magnetization m, . This transition between the two well-
known equilibrium states, driven by pulsed fields com-
peting with the existing order of any of the equivalent
states, is essentially dynamic in nature and has interest-
ing properties.

Misra and Chakrabarti studied the phase diagram in
the h,—or plane for this dynamic magnetization-
reversal transition (from the phase with equilibrium
magnetization m,(T) before the application of the nega-
tive pulse, to the equivalent phase with magnetization
—m,(T) after the application of the field) for different
temperatures 7 below T.. The phase boundary here
gives the minimal combination of the negative pulse
strength (h,) and width (&¢) required for the
magnetization-reversal transition. It is seen that the av-
erage magnetization m(ty+ S5t) at the time of with-
drawal of the pulse is the appropriate order parameter
for such a transition and the average relaxation time
required for m(t) to settle to the final equilibrium mag-
netization m,(7T) or —m,(T) diverges as one ap-
proaches the phase boundary (from either side, at any
fixed temperature below the static critical temperature
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T.). This observation strongly indicates the thermody-
namic nature of this dynamic transition under a negative
pulsed field.

We discussed above such magnetization-reversal tran-
sitions in the presence of fluctuations (e.g., in the Monte
Carlo studies). One can also study the mean field ver-
sion of such a transition, where some analytic estimate
can be made for the phase boundary. It may be noted
that a major qualitative difference exists between the
phase diagrams of the respective cases: while in the pres-
ence of fluctuations 4 ,(T,5t)—0 for the phase bound-
ary for the pulse width 6t—, h,(t,6t)=h.(T) for ot
— in the mean field case where the static coercive field
h.(T) is nonvanishing for 7<T.. For small &¢, the
mean field phase boundary can be estimated approxi-
mately by solving the linearized mean field equation (4)
with h(t)=—h, for tyst<ty+dt and h,=0 elsewhere.
This linearization is most appropriate for t<t,+ ¢, and
the solution can be written as

h, 1-T
exp[ —e(t—1y)] T € T

One can, in fact, check this solution by direct substi-
tution in Eq. (4), with the above form of A(¢). The
magnetization-reversal transition occurs if m(ty+ 6t)
=<(0. The phase boundary can therefore be obtained
from the solution of m(ty+dt)=0. This gives h,dt
=m,T, for the equation of the phase boundary for T
=T.=1 and small &t (or large h,). In this region, the
above phase boundary equation in fact agrees fairly well
with even the Monte Carlo phase diagram. When the
contributions of fluctuations become important, the
above mean field theory fails. If #,—0 (as in the large &t
region of the phase diagram), one can again use the pic-
ture of nucleation of a single domain. Equating the
growth rate given by the Becker and Doring nucleation
rate / (discussed in Sec. I1I) with the inverse pulse width,
one gets 5tzexp(1/h‘;_]), suggesting & ,Inét=const
along the phase boundary in two dimensions. This
agrees fairly well with the Monte Carlo estimated phase
diagrams in the same dimensions, except at very low
temperatures where larger fields induce crossover to
multidomains (Misra and Chakrabarti, 1997, 1998;
Acharyya and Stauffer, 1998).

+h”
m(t)~|m, T

3. Dynamic transition due to random (time varying) fields

Very recently, an interesting version of this dynamic
phase transition has been predicted for a highly aniso-
tropic (Ising-like) magnetic system when the external
field on the system varies in time stochastically.
Acharyya (1998a) studied the long time response (mag-
netization) of a kinetic Ising system represented by the
Hamiltonian (la) when the uniform field over the
sample A (t) varies randomly in time with a white distri-
bution bounded between +#4y/2 and —hy/2. In a Monte
Carlo simulation study in two dimension, Acharyya
studied the nature of the response magnetization (see
Fig. 7(a),(b)) and determined the dynamic order param-
eter Q(=(1/7)[gm(t')dt'; 1) given by the long-time
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FIG. 7. Dynamic transition due to randomly varying fields in
time. (a), (b) Typical time variation of magnetization m(t)
compared to that of the stochastically varying field 4(¢) in a
Monte Carlo study in d=2, with L=100, T=1.7: hy, = 3.0 for
(a) and hy=1.0 for (b). (c) The corresponding dynamic transi-
tion phase boundary (separating the regions with average mag-
netizations Q=0 from Q@#0) in the field width
(hy)-temperature (7T) plane. The data points are obtained us-
ing both sequential updating ( ¢ ) and random updating (@)
in the Monte Carlo simulation.
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average (over the active duration of the magnetic field)
of magnetization. It was found that O assumes nonzero
values below a phase boundary line in the #,— T plane,
and vanishes continuously at the transition boundary
(see Fig. 7(c)). Again, the dynamic symmetry breaking
transition occurs due to the competing time scales, the
relaxation time of the many-body system being larger
than the switching time of the random field. Such a dy-
namic transition is again a nonequilibrium transition,
very similar to that for oscillating fields discussed in Sec.
IV.A. It may be mentioned that, in a slightly different
context, a discrete map version of the mean field equa-
tion of motion (2) with similar stochastically varying
field h(t) was analyzed recently by Hausmann and
Rujan (1997).

V. CONCLUDING REMARKS

The equilibrium response of cooperative systems to
external perturbations is now well understood. The non-
equilibrium (yet steady state) responses of such systems
to time driven perturbations are extremely important
technologically and involve intriguing physics. In cases
of magnets under oscillating fields, although some of the
phenomena have long been used in technology, little
was understood until very recently. The scaling proper-
ties of dynamic hysteresis and the spontaneous symme-
try breaking dynamic transition are now somewhat es-
tablished and partly understood. The role of stochastic
resonance in such dynamic hysteresis phenomena are,
although identified, not fully investigated or understood.

The nature of the dynamic transition due to negative
pulses, or that occurring for stochastically varying fields
in time, are not yet adequately investigated. Although
the existence of these transitions is fairly well estab-
lished, their detailed nature remains poorly understood
so far.

Although it is a bit surprising that the interest in such
commonly encountered technologically important prob-
lems came very late in the day, the subject has devel-
oped momentum in the last few years and a lot of inter-
esting physics has already been developed. We conclude
with the hope that this brief introductory review on the
exciting developments on these rather simple and
closely encountered dynamical problems in extended
systems will inspire further investigations. No doubt,
soon one can expect a maturity of the field, leading to
new physics and to better utilization of its technological
potential.
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