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The motion of planetary bodies is the archetypal clockwork system. Indeed, clocks and calendars were
developed to keep track of the relative motions of the Earth, the Sun, and the Moon. However, studies
over the past few decades imply that this predictable regularity does not extend to small bodies, nor
does it apply to the precise trajectories of the planets themselves over long timescales.
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I. INTRODUCTION

The mechanical model for the workings of the Uni-
verse developed by Isaac Newton and other natural phi-
losophers of the Enlightenment was one of the greatest
advances of knowledge in human history. Predictable,
deterministic models were developed that were able to
accurately describe an immense variety of superficially
disparate phenomena observed in the heavens and on
Earth. Technological advances made possible by this
physical understanding have brought about tremendous
material benefits for humankind. The philosophical im-
plications of understanding and being able to predict the
workings of nature have been equally profound, and
have engendered major changes in values and beliefs.

Einstein’s theory of relativity modified Newton’s
models for motion and gravity, but did not attack the
principle of predictability of the Universe. The other
great revolution of twentieth century physics, quantum
mechanics, introduced the concept of fundamental un-
certainties in the behavior of individual systems. Indeed,
Einstein found certain aspects of quantum mechanics
philosophically unsatisfying because of these unpredict-
abilities. The motion of the planets (as well as the mo-
tions of various other physical systems, including the
double pendulum and the simple inclined billiard de-
scribed below) is in principle deterministic, in the sense
that given exact knowledge of the masses and initial con-
ditions, the motion can be calculated as precisely as de-
sired (neglecting quantum effects). However, some tra-
jectories depend so sensitively on the system parameters
that they are for practical purposes quite unpredictable.
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Hence, the seemingly contradictory term deterministic
chaos has been developed to describe this type of mo-
tion. The realization that deterministic chaos also can
have profound effects on many macroscopic processes
has provided another significant blow to the ‘‘clock-
work’’ view of the Universe.

A single pendulum can be viewed as a rigid mass con-
strained to move in one dimension around a pivot. The
motion of such a pendulum in a uniform gravitational
field provides a classical example used to demonstrate
regular, predictable motion. Suspending the pendulum
from a point rather than from a rod doubles the number
of degrees of freedom that the system has, but does not
fundamentally alter the character of the motion. How-
ever, if instead one adds a second pendulum pivoting
from near the base of the first, the resulting system ex-
hibits a far richer range of physical behavior. At very
low or very high energy, the motion of such a double
pendulum is quite simple. However, at intermediate en-
ergies it can move wildly, following a sensitive and
nearly impossible to predict ‘‘chaotic’’ trajectory (Shin-
brot et al., 1992).

The problem of two spherically symmetric bodies at-
tracted to one another by Newtonian gravity is also
quite regular and predictable. However, the addition of
a third body allows a far richer range of phenomena, and
systems of four or more mutually gravitating bodies are
extremely difficult to analyze analytically. Indeed, New-
ton suspected that the mutual gravitational interactions
of the planets ultimately would destabilize the Solar Sys-
tem, and hypothesized that divine intervention was oc-
casionally needed to restabilize the orbits of the planets.

When a comet or an asteroid passes close to a planet,
its orbital path is altered by the planet’s gravity. A small
change in its trajectory prior to the encounter will be
magnified into a much larger divergence by the interac-
tion. Planet-crossing trajectories can (except in a small
fraction of special cases) suffer repeated close encoun-
ters, so exceedingly small variations in the initial param-
eters of the problem can result in large differences in the
eventual trajectory and fate of the body (Fig. 1). Thus,
close approaches lead to a ‘‘trivial’’ example of chaos.
Some slow approaches can be very convoluted, even
leading to temporary capture of planetary satellites,
which make many close approaches to a planet within a
brief interval of time (Fig. 2, cf. Petit and Hénon, 1986;
Greenzweig and Lissauer, 1990; Kary and Dones, 1996).
In such cases, neighboring trajectories can rapidly di-
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verge in character. (Similar chaotic motion occurs in the
‘‘inclined simple billiard problem,’’ where a point par-
ticle that is confined to move in a plane and subjected to
a constant ‘‘gravity’’ force bounces elastically off two
fixed disks; see Hénon, 1988. Trajectories of the particle
can diverge rapidly for small changes in its initial posi-
tion or velocity.) Backwards integrations of the orbit of
comet D/Shoemaker-Levy 9, which collided with Jupiter
in 1994, cannot be used to definitively determine this
body’s precapture heliocentric orbit because of this
chaos (Chodas and Yeomans, 1996). Long-range, far
weaker interactions among the planets can also lead to
chaos for certain orbital configurations, although other
configurations appear stable for extremely long periods
of time.

In this article, I will summarize some of the types of
chaotic motion which occur or may have occurred in our
Solar System and other planetary systems, and discuss
their implications for the stability and longevity of these
systems. Section II covers the forces responsible for the
motion of planetary bodies. Analytic and numerical cal-
culation techniques are compared in Sec. III. The con-
cept of chaotic and regular trajectories is introduced in
Sec. IV. The relationship between resonances and chaos
is discussed in Sec. V. Chaos has profound implications
for the formation of planetary systems, as described in
Sec. VI. Most planetary dynamical interactions are
Hamiltonian processes, in which energy is conserved
and trajectories are time reversible, but drag forces are
important in some situations, and can lead to a funda-
mentally different type of chaos that is reviewed in Sec.
VII. Section VIII contains a summary of the implica-
tions of chaotic motion for the stability of planetary sys-
tems. I conclude in Sec. IX by citing some types of cha-
otic motion not discussed elsewhere in this article. Some

FIG. 1. Eleven simulations of the future orbital semimajor axis
of comet 95P/Chiron, which currently crosses the orbits of both
Saturn and Uranus. Initial orbital elements of the simulated
bodies differed by about 1 part in 106, which is smaller than
observational uncertainties. Note that the orbit is highly cha-
otic, with gross divergence of trajectories in less than 104 years.
Diagrams courtesy L. Dones, who performed these simultions
using the SWIFT integration package (Levison and Duncan,
1994).
Rev. Mod. Phys., Vol. 71, No. 3, April 1999
of this material is covered in previous reviews of chaotic
motion in the Solar System that were written by Wisdom
(1987a, 1987b), Duncan and Quinn (1993) and Laskar
(1996). Malhotra (1998) reviews various aspects of reso-
nant behavior in the Solar System, including chaos.
More general treatments of planetary dynamics can be
found in Danby (1988) and C. D. Murray and Dermott
(1999). A nontechnical discussion of chaotic motion in
the Solar System is provided by Peterson (1993).

II. FORCES

Newtonian gravity provides an excellent approxima-
tion to the force acting upon most bodies in the Solar

FIG. 2. Trajectory of a test particle initially orbiting the Sun
that was temporarily captured into an unusually long-duration
unstable orbit about Jupiter. (a) Projected into the plane of
Jupiter’s orbit about the Sun. (b) Projected into a plane per-
pendicular to Jupiter’s orbit. Figure from Kary and Dones
(1996).
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System. The major departures from simple Keplerian
motion of large objects generally result from asymme-
tries in the gravitational fields of the dominant forcing
body or perturbations by other bodies. General relativ-
istic corrections are usually quite small in comparison
(even for the precession of Mercury’s periapse, plan-
etary perturbations are more than ten times as impor-
tant as are general relativistic effects; Misner et al.,
1973), and quantum effects are minuscule. General rela-
tivity was included in some of the simulations of the
Solar System discussed herein, and it may actually sig-
nificantly destabilize the obliquity (also known as the
axial tilt, i.e., the angle between the orbital angular mo-
mentum vector and the rotational angular momentum
vector) of Mars (Touma and Wisdom, 1993), but this
appears to be caused by the proximity of the system to a
particular resonance rather than a fundamental change
resulting from inclusion of a different type of force.
Most of the results presented in this article have been
derived assuming that the only force acting is Newtonian
gravity.

Small particles are affected by radiation forces, and
charged small particles can have their motions altered
by planetary magnetic fields (Burns et al., 1979; Burns,
1987). The trajectories of comets are perturbed by the
rocketlike response to asymmetric loss of volatile mate-
rial from their surfaces (Marsden et al., 1973; Yeomans,
1994). Physical collisions change trajectories; however,
such impacts are rare except in planetary ring systems;
nonetheless, they may be important for moving aster-
oids and Kuiper belt objects (asteroid-sized solid bodies
which orbit in a disk exterior to the planet Neptune)
into major resonances. Gas drag affects bodies encoun-
tering planetary atmospheres. Both gas drag and colli-
sions were much more important during the planet for-
mation epoch, when many solid bodies of comparable
sizes orbited the Sun within a gas-dominated disk. In
contrast to the small and primarily quantitative effects
of general relativity, the example of chaotic motion dis-
cussed in Sec. VII depends in a more basic way on the
dissipative (non-Hamiltonian) nature of the gas drag
force.

III. ANALYTIC RESULTS AND NUMERICAL TECHNIQUES

The mutual forces between the planets can be ex-
panded into series whose terms contain increasing pow-
ers of planetary masses, inclinations, and eccentricities.
However, although such perturbation expansions are
done in powers of small parameters, the existence of
resonances between the planets introduces small divi-
sors into the expansion terms. These small divisors make
some high order terms in the power series unexpectedly
large, and Poincaré (1892) showed that these perturba-
tion series often diverge and have validity only over fi-
nite time spans.

Mathematical stability (in the sense that planetary or-
bits will remain well-separated and the system will re-
main bound for infinite time) can be proven for a system
of extremely small but nonetheless finite mass planets
Rev. Mod. Phys., Vol. 71, No. 3, April 1999
with orbits similar to those in our Solar System (Arnold,
1962). However, the set of initial conditions for which
the proof does not apply is everywhere dense, i.e., there
is always a point in phase space arbitrarily close to a
given choice of initial conditions for which the proof
does not guarantee stability. Thus, the system might not
remain stable if it were subjected to perturbations, even
if these perturbations were arbitrarily small. Mathemati-
cal theorems like this are of very limited use when dis-
cussing astronomical stability.

From an astronomical viewpoint, stability implies that
the system will remain bound (no ejections) and that no
mergers of planets will occur for the possibly long but
finite period of interest, and that this result is robust
against (most if not all) sufficiently small perturbations.
In the remainder of this discussion, we shall only be con-
cerned with stability in an astronomical sense.

Some chaotic regions in the three-body problem have
been modeled analytically (cf. Sec. V). However, the
analytic results thus far obtained for many-body gravi-
tating systems are of limited applicability, and thus nu-
merical experiments have proven extremely valuable.
These experiments have benefited from the substantial
advances in both computer hardware and integration al-
gorithms over the past few decades. Algorithms for So-
lar System integrations typically differ substantially from
the type of N-body codes used for stellar and galactic
integrations. In Solar System problems, there are fewer
bodies, one body usually dominates the potential, and
integrations must be carried out for a substantially
larger number of orbital periods, because the systems
are dynamically much older (the dynamical age of a
planetary-type system is its actual age divided by the
shortest or most characteristic orbital period; this pro-
vides a nondimensional measure of the number of orbits
that bodies within the system have completed).

Efficient schemes have been developed by separating
the Hamiltonian of the system into the sum of a Keple-
rian part and an interaction part (Wisdom and Holman,
1991; Duncan et al., 1998). The Keplerian portion can be
solved analytically, and is equivalent to moving the body
along a conic section. The interaction portion, which is
much smaller, is also amenable to analytic solution. By
alternate application of the two Hamiltonians, the sys-
tem can be advanced in an accurate and efficient man-
ner. Applying the operators serially is an approximation,
but as the interaction Hamiltonian is small, good accu-
racy can be achieved even using time steps that are
much longer than allowed by previously popular integra-
tion schemes.

IV. REGULAR VS CHAOTIC TRAJECTORIES

For some initial conditions, numerical experiments
show that the trajectories are regular (quasiperiodic),
with variations in their orbital elements that seem to be
well described by readily calculable perturbation series,
while, for other initial conditions, the trajectories are
found to be chaotic and are not as confined in their mo-
tions (Fig. 3). The evolution of a system which is chaotic
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depends so sensitively on the system’s precise initial
state that the behavior is in effect unpredictable, even
though it is strictly determinate in a mathematical sense.
Chaos can occur in a wide variety of physical systems;
see Lichtenberg and Lieberman (1992) for a more com-
prehensive treatment of chaotic motion.

There is a key difference between regular and chaotic
orbits that is often used as a definition of chaos: Two
trajectories that begin arbitrarily close in phase space in
a regular region will diverge from one another as a
power (usually linear) of the elapsed time, whereas in a
chaotic region two nearby trajectories will typically di-
verge exponentially in time. Within a given chaotic re-
gion, the time scale for this divergence typically does not
depend on the precise values of the initial conditions. If
one computes the distance d(t) between two particles
having an initially small separation d(0), one finds that
for regular orbits d(t)2d(0) grows as a power of time t
(usually linearly) whereas for chaotic orbits

d~ t !;d~0 !edt, (1)

where (in the limit of infinitesimal initial separation and
as t→`) d is the Lyapunov characteristic exponent and
d21 is the Lyapunov time scale (Fig. 4). The Lyapunov
time scale thus represents the e-folding time for the di-
vergence of neighboring trajectories. Note that the
Lyapunov time scale is not well defined if close encoun-
ters can occur, because the time interval between succes-
sive close approaches varies irregularly (Whipple and

FIG. 3. Surface of section showing both chaotic and regular
trajectories for test particles subject to the gravitational tugs of
a planet and a star whose mass is 999 times as large as that of
the planet. The frame rotates about the center of mass of the
system such that the star and planet (which travel on a circular
orbit) remain at (20.001, 0) and (0.999, 0), respectively. Ev-
ery test particle’s x coordinate and its first derivative are plot-
ted each time the particle crosses the x axis moving towards
positive y. Particles on regular trajectories generate the
smooth curves in the figure, whereas the scattered points were
generated by a few particles on chaotic trajectories. Each test
particle in the simulation has the same value of the Jacobi
parameter, a combination of energy and angular momentum
which is an integral of motion in the restricted circular three-
body problem. Plot courtesy M. Holman.
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Shields, 1993). Additionally, the criterion for chaos
given by Eq. (1) is misleading if bodies are ejected from
the system, as exponential growth no longer occurs, but
nevertheless the trajectory does not behave in a manner
that most researchers would consider regular.

The exponential divergence discussed above implies
that chaotic orbits show such a sensitive dependence on
initial conditions that the detailed long-term behavior of
the orbits is lost within several Lyapunov time scales.
Roughly speaking, one bit of accuracy is lost every
Lyapunov time. Even a fractional perturbation as small
as 10210 in the initial conditions will result in a 100%
discrepancy in ;25 Lyapunov times. Short Lyapunov
times are indicative of eventual large-scale chaos. How-
ever, one of the interesting features of much of the cha-
otic behavior seen in simulations of the orbital evolution
of bodies in the Solar System is that the time scale for
large changes in the principal orbital elements (semima-
jor axis, eccentricity and inclination) is often many or-
ders of magnitude larger than the Lyapunov time scale
(Duncan and Quinn, 1993; Holman and Murray, 1996).
Moreover, except in highly chaotic regions, the
Lyapunov time scale is usually not a very accurate pre-
dictor for the time that a particular body requires in
order to exhibit major orbital changes (N. Murray and
Holman, 1997).

V. RESONANCES AND CHAOS

In dynamical systems like the Solar System, chaotic
regions are not distributed at random. Chaotic trajecto-
ries are generally associated with resonances, i.e., loca-
tions at which the ratios of characteristic forcing and
response frequencies of the system are sufficiently well
approximated by quotients of (usually small) integers. In
these locations, perturbations add constructively, and
the effects of many small tugs can build up over time to
create a large-amplitude, long-period response. Reso-
nance forcing usually produces variations in orbital ec-

FIG. 4. Logarithm of the separation in phase space between
two pairs of initially adjacent orbits. The lower curve repre-
sents a pair of particles that appear near (0.7, 0) in the surface
of section shown in Fig. 3. The upper curve represents a pair
that begins in the chaotic zone. Plot courtesy M. Holman.
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centricities and/or inclinations much larger than in semi-
major axes. The simplest orbital resonances to visualize
are the mean-motion resonances, in which the orbital pe-
riods of two bodies are commensurate. Secular reso-
nances, which occur between the precession frequencies
of planetary bodies, are also important for destabilizing
orbits within the Solar System.

A. The resonance overlap criterion for chaos

Consider the case of a massive secondary which per-
turbs massless (test) particles. For nearly circular and
coplanar orbits, the strongest mean motion resonances
occur at locations where the ratio of the orbital period
of the test particle to that of the secondary is of the form
N :(N61) where N is an integer. At these locations,
conjunctions (closest approaches) always occur at the
same phase in the test particle’s orbit, and tugs add co-
herently. The strength and effective width of these first-
order resonances increases as N grows, because the mag-
nitude of the perturbations is larger when the closest
approach distance is smaller. First-order resonances also
become closer together near the orbit of the secondary.
Sufficiently close to the secondary, resonance regions
overlap. This leads to the onset of chaos as particles shift
between the nonlinear perturbations of various reso-
nances. The region of overlapping resonances is ap-
proximately symmetric about the planet’s orbit, and has
a half-width Daro given by

Daro'1.5S m

M D 2/7

a , (2)

where a is the semimajor axis of the planet’s orbit, m is
the mass of the planet, and M is the mass of the star. The
functional form of Eq. (2) has been derived analytically
(Wisdom, 1980), whereas the coefficient is a numerical
estimate based upon the behavior of integrated trajecto-
ries (Duncan et al., 1989).

B. Resonances in the asteroid belt

There are obvious patterns in the distribution of aste-
roidal semimajor axes that are associated with mean-
motion resonances with Jupiter (Fig. 5). At these reso-
nances, a particle’s period of revolution about the Sun is
a small integer ratio multiplied by Jupiter’s orbital pe-
riod. In the outermost part of the belt, asteroids are con-
centrated near the 1:1, 3:2, and 4:3 resonances. In con-
trast, resonance regions are depleted at greater distances
from Jupiter. The mechanisms believed to be respon-
sible for producing this distribution are discussed below.

The Trojan asteroids travel in a 1:1 mean motion reso-
nance with Jupiter; they execute small to moderate am-
plitude librations about the L4 and L5 triangular La-
grangian points 60° ahead of or behind Jupiter, thereby
avoiding close approaches to Jupiter. (The L4 and L5
points of a planet on a circular orbit lie in the orbital
plane, and each of them, together with the star and the
planet, forms the vertices of an equatorial triangle.
These two locations are stable equilibrium points viewed
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in a frame rotating with the angular velocity of the
planet, provided the planet’s mass is less than 1/27th that
of the star.) Large amplitude librators are removed from
resonance rapidly, and the current distribution is still
being gradually ‘‘eroded’’ from its edges (Levison et al.,
1997). Another example of a protection mechanism pro-
vided by a resonance is the Hilda group of asteroids at
Jupiter’s 3:2 mean motion resonance and the asteroid
279 Thule at the 4:3 resonance. The Hilda asteroids have
a libration about 0° of their critical argument, 3l822l
2Ã , where l8 is Jupiter’s longitude, l is the asteroid’s
longitude, and Ã is the asteroid’s longitude of perihelion
(the place in its orbit where it is nearest the Sun). In this
way, whenever the asteroid is in conjunction with Jupi-
ter (l5l8), the asteroid is close to perihelion (l8
'Ã) and well away from Jupiter. The stability of reso-
nance locks is discussed in detail by Peale (1976). Calcu-
lations by Ferraz-Mello et al. (1996) suggest that the
Hilda asteroids are not necessarily permanently con-
fined, but may escape from resonance on a time scale
comparable to the age of the Solar System.

Early investigations of Jupiter’s 3:1 mean motion
resonance (in the inner asteroid belt) found that most
orbits starting with small eccentricity were regular and
showed very little variation in eccentricity or semimajor
axis over time scales of 53104 yr, in agreement with
the results of low-order perturbation expansions. Subse-
quently, Wisdom (1982) showed that an orbit near this
resonance could maintain a low eccentricity (e,0.1) for
nearly a million years and then rapidly ‘‘jump’’ to e
.0.3 (Fig. 6). The outer boundaries of the chaotic zone
as determined by Wisdom’s (1985a) work coincide well
with the observed boundaries of the 3:1 Kirkwood gap
(Fig. 7). Since asteroids which begin on nearly circular
orbits in the gap acquire sufficient eccentricities to cross

FIG. 5. Histogram of all numbered asteroids brighter than
15th magnitude versus orbital period (with corresponding
semimajor axes shown on the upper scale); the scale of the
abscissa is logarithmic. The dashed vertical lines represent
from left to right the planets Mars, Jupiter, and Saturn. As
asteroids with shorter orbital periods are better lit and pass
closer to Earth, there is a strong observational bias favoring
objects plotted towards the left. Note the prominent gaps in
the distribution for orbital periods 1/2, 2/5, 3/7, and 1/3 that of
Jupiter. Plot courtesy A. Dobrovolskis.
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the orbit of Mars and in many cases that of the Earth,
the perturbative effects of the terrestrial planets are ca-
pable of clearing out the 3:1 gap. Some particles are
forced to such high eccentricity by the 3:1 resonance that
they either collide with the Sun or are destroyed by solar
heating or tides during close perihelion passages (Glad-
man et al., 1997; Migliorini et al., 1997). The 3:1 and
other resonances in the inner asteroid belt provide a
chaotic path for delivery of meteorites to Earth (Wis-
dom, 1985b; Gladman et al., 1997). Resonances can ac-
count for several other gaps in the distribution of orbital
elements of the asteroids (e.g., Holman and Murray,
1996), and variations in Jupiter’s orbital elements caused
by tugs from Saturn can further destabilize trajectories
in resonance regions (N. Murray et al., 1998).

The region immediately interior to Jupiter’s orbit is
cleared by resonance overlap, but the general depletion
of the outer belt (and some of the Kirkwood gaps) has
not been fully accounted for (Gladman and Duncan,
1990; Lecar et al., 1992; Holman and Murray, 1996).

FIG. 6. Eccentricity vs time for the orbit of a test particle near
Jupiter’s 3:1 resonance. The time is measured in units of 20 000
orbital periods of Jupiter (about 240 000 years). From Wisdom
(1982).

FIG. 7. Comparison of the distribution of observed asteroids
with the calculated outer boundaries associated with the 3:1
resonance of Jupiter. From Wisdom (1987a).
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These clear regions are probably the result of cosmog-
onic effects (i.e., those associated with the formation of
the asteroids and Jupiter, cf. Torbett and Smoluchowski,
1980; Gomes, 1997; Lecar and Franklin, 1997; Liou and
Malhotra, 1997) such as resonance sweeping by the mi-
grating and/or growing Jupiter.

The Kuiper belt, which consists of icy bodies orbiting
a bit farther from the Sun than does Neptune, is sub-
jected to many of the same type of resonant perturba-
tions as is the asteroid belt (Duncan et al., 1995; Mal-
hotra, 1996). These gravitational perturbations, along
with collisionally induced orbital changes (Morbidelli,
1997), bring some of the bodies very close to Neptune.
Ultimately, some of these objects become visible to us as
short-period comets (Levison and Duncan, 1997).

VI. CHAOS AND PLANET FORMATION

Terrestrial planets are believed to grow by pairwise
accretion of solid bodies known as ‘‘planetesimals’’ (Sa-
fronov, 1969). The initial stages of the formation of gas
giant planets probably also involves binary agglomera-
tion of planetesimals, with accretion of significant quan-
tities of gas initiated once the heavy-element core had
acquired enough mass to trap hydrogen and helium
gravitationally (Pollack et al., 1996). Although some
characteristic properties of planetary systems are prob-
ably strongly correlated with the masses and sizes of the
disks from which they accreted, chaos is a major factor
in planetary growth (Lissauer, 1995). In the early and
middle stages of planetary growth, large numbers of
planetesimals travel on intersecting, highly chaotic or-
bits. Gravitational focusing by the largest bodies in the
swarm allows them to double in mass more rapidly than
can smaller bodies, via a process known as runaway ac-
cretion (Greenberg et al., 1978; Wetherill and Stewart,
1989). When these large bodies accumulate enough of
their neighbors, the remaining protoplanets are no
longer in crossing orbits. However, the cumulative ef-
fects of forcing by many weak resonances can excite ec-
centricities sufficiently for orbits to cross and accretion
to continue (Chambers et al., 1996).

Accretion (augmented, if and when the planets grow
massive enough to scatter debris onto very eccentric or-
bits, by collisions with the star and ejection to interstel-
lar space) proceeds until a configuration that is stable for
the lifetime of the star is formed. Resonances that may
be able to destabilize orbital configurations occur at
places where relevant periods are related by rational
numbers. As the set of rational numbers is dense, there
appear to be an infinite number of paths to chaos (more-
over, there are often many bodies whose resonances
may be important and secular resonances as well as
mean motion resonances often come into play). How-
ever, some of these paths are much faster than others, so
objects located near strong resonances can be accreted
or ejected from the system very quickly, whereas other
particles can remain in low eccentricity orbits for many
orders of magnitude longer, if not indefinitely.
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Changing orbits can be viewed as diffusion through
phase space. However, this diffusion is not a purely ran-
dom walk; rather, some paths are much faster than oth-
ers. The lifetimes of the members of an ensemble of test
particles on similar but not identical orbits are, at least
in some cases, distributed such that similar numbers of
particles become planet-crossing per decade of system
evolution (Holman and Wisdom, 1993). That is, as the
system ages, the expected time remaining until orbit
crossing for the particles currently on well-behaved or-
bits increases. This is in contrast to many other natural
systems such as radioactivity of a given isotope, which
exhibit exponential decay, in which the expected future
life of the remaining atoms does not change with time.
Chaotic systems in which all periodic orbits are unstable
generally exhibit exponential decay, whereas those that
contain stable regions of nonzero area generally show
algebraic decay of the survival probability (Yalcinkaya
and Lai, 1995).

Mapping out the structure of the chaotic ‘‘sea’’ is easi-
est when the system contains a small number of massive
bodies. Another extreme, that of many low mass bodies
on neighboring orbits, exhibits predictable patterns in
the time to orbit crossing despite the chaotic nature of
the individual trajectories involved. Chambers et al.
(1996) integrated systems of three or more (in most
cases equal mass) planets that began on equally (or
nearly equally) spaced coplanar circular orbits. They
found that, for given masses, the time elapsed before the
first pair of orbits crossed, tc , is well approximated by
the formula

tc5becDo, (3)

where Do signifies the initial separation in orbital radii
of the planets and b and c are constants.

Duncan and Lissauer (1997) integrated systems with
initial orbits identical to moons of Uranus, but with the
masses of the secondaries all increased (or, in a few
cases, decreased) from their ‘‘actual’’ values (in the case
of Uranus’s smaller moons, estimated values are quite
uncertain) by the same factor, mf . We found that the
crossing time obeyed a relationship analogous to Eq.
(3). In particular,

tc5bmf
a , (4)

where a and b are constants. These power law fits ex-
tend over seven orders of magnitude in crossing time
(Fig. 8), with some systems exhibiting a steepening
(greater sensitivity to changes in mf) at the smallest
masses (which is very frustrating, as these simulations
require the most computer time, in some cases a few
months of c.p.u. time on a fast workstation). The rms
dispersion of individual systems about the best fit curve
is only about a factor of two for the small inner Uranian
moons, which travel on closely spaced orbits; systems
with more massive and more separated secondaries ex-
hibit greater scatter. The value of a varies from about
24 for Uranus’s inner moons to approximately 210 for
its outer satellites. The scalings given by Eqs. (3) and (4)
are not yet understood theoretically.
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The integrations of Duncan and Lissauer (1997) indi-
cate that the orbits of Uranus’s outer moons, taken as an
isolated Hamiltonian dynamical system, are stable for a
time scale much longer than the age of the Solar System.
However, two or more of that planet’s inner moons may
become orbit crossing in a few million to several tens of
millions of years. Other processes, such as tidal damp-
ing, may stabilize the system, or these moons may be
much younger than the Solar System, having formed
within the past ;108 years as the result of a cata-
strophic impact destroying a larger moon. Another in-
teresting result of these integrations is that the merging
of the least stable pair of moons increases the lifetime of
the system by many orders of magnitude.

The irregularity of orbits increases the potential diver-
sity of planetary systems. The combination of runaway
accretion and chaos implies that microscopic changes in
initial conditions can lead to substantially different out-
comes. Indeed, protoplanetary disks very similar to the
one from which our planetary system is believed to have
formed can also produce 3 to 5 terrestrial planets in a
variety of sizes and orbits (Wetherill, 1990).

Chaotic interactions leading to mergers and ejections
of planets tend to increase orbital eccentricities and in-

FIG. 8. The orbit crossing time tc , in seconds, is shown as a
function of the mass enhancement factor mf , for various syn-
thetic systems based on the Uranian satellite system. The
square symbols indicate runs that included eight of the ten
Uranian moons discovered by the Voyager spacecraft (Cord-
elia and Ophelia, the e ring shepherds, were omitted). The
circles denote results for 13 moon runs, which also included
the larger classical satellites of Uranus: Miranda, Ariel, Umb-
riel, Titania and Oberon, whose orbits lie well exterior to those
of the Voyager-discovered moons. From Duncan and Lissauer
(1997).
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clinations of the planets remaining in the system (Dun-
can and Lissauer, 1997). The nearly coplanar and circu-
lar orbits of the major planets in our Solar System (and
of the major moons in most satellite systems) suggests
that some damping process (e.g., accretion or ejection of
many small planetesimals, interactions with gas) was im-
portant in determining the current configurations (Levi-
son et al., 1998). The eccentric orbits of the planets that
were recently discovered in orbit about the stars 70 Vir-
ginis (Marcy and Butler, 1996) and 16 Cygni B (Cochran
et al., 1997) suggest that chaotic scattering may have
played an even more profound role in determining the
configurations of other planetary systems (Rasio and
Ford, 1996; Weidenschilling and Marzari, 1996; see,
however, Holman et al., 1997, for an alternative expla-
nation for the large eccentricity of 16 Cygni B’s plan-
etary companion). Calculations by Levison et al. (1998)
demonstrate that some plausible giant planet systems
can appear well behaved (orbits which are not crossing
and slowly changing) for longer than the 107 year time
scale characteristic of planetary growth (Lissauer, 1993),
yet become wildly chaotic (mergers and/or ejections) in
less than 109 years.

VII. DISSIPATION-INDUCED CHAOS

The characteristics of a dynamical system change
when energy can be removed from the system. In par-
ticular, the system can damp down towards a stable state
which is referred to as an attractor. A trivial physical
example is an unforced pendulum, which ultimately
damps to the state in which the weight is at the bottom.
A not so trivial example with a single attractor is a reso-
nance lock in which one moon on an eccentric orbit can
settle into a state wherein it is always at the same radius
whenever it passes the moon with which it is in reso-
nance (Peale, 1976). Even very simple nonlinear dissipa-
tive systems can have more than one attractor for some
parameter values and can transition from regular to cha-
otic motion as this parameter is varied. The simple lo-
gistical map given by

xn115Axn~12xn!, (5)

where the parameter 0,A,4, maps the interval [0, 1)
onto itself. For A<3, this mapping converges towards a
single value, but for larger A, the behavior is more com-
plex. When the value of A is between 3 and approxi-
mately 3.45, the value of x asymptotically bounces back
and forth between two attractors. At larger and succes-
sively closer values of A , the number of attractors
doubles again and again with x bouncing between an
ever greater number of attractors. This sequence at
which these ‘‘period doublings’’ occur converges and the
period becomes infinite, leading to a chaotic situation
when A is near 3.57. For even higher values of A, either
x bounces between a finite number of attractors or it
varies chaotically. A more detailed description of the
behavior of the map given in Eq. (5), as well as of simple
physical systems (such as the forced damped nonlinear
pendulum) which exhibit similar behavior, can be found
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in textbooks on chaos theory (e.g., Bergé et al., 1984;
Schuster, 1989; Hilborn, 1994).

Planetesimals orbited the Sun on slightly perturbed
Keplerian paths, whereas the gaseous component of the
solar nebula orbited more slowly due to partial pressure
support. Planetesimals thus experienced a headwind
which caused their orbits to decay sunwards; the orbits
of small planetesimals decayed most rapidly due to this
gas drag (Adachi et al., 1976). Such rapid radial trans-
port of material could greatly increase the effective
feeding zone of a planet, assuming this material could be
efficiently captured as it spiraled by the planet on its
sunward path. However, Weidenschilling and Davis
(1985) found that many planetesimals were trapped in
mean motion resonances exterior to the planet, and thus
they could not be accreted.

Kary et al. (1993) integrated the orbits of numerous
planetesimals subjected to gas drag and the perturba-
tions of one large protoplanet on a circular orbit. As
planetesimals approach the planet, the resonances that
they encounter become stronger and stronger. For a
given drag rate and protoplanet mass, the resonance far-
thest from the planet that is capable of trapping can be
calculated by balancing the angular momentum supplied
to the planetesimal by the planet with that removed by
the gas. Resonances very near the planet, although indi-
vidually quite strong, cannot trap planetesimals because
their overlap induces chaos (Sec. V.A). As planetesimals
have nonzero eccentricities when they approach the
resonances capable of trapping, the initial torque that
they are subjected to, and their fate within each reso-
nance, depends on the phase of the approach, and as
such trapping can be considered to be probabilistic. In
most cases, Kary et al. found that particles were trapped
in a range of resonances, with the outermost trapping
resonance depending on both planetary mass and the
drag parameter, while the inner one depended only on
planetary mass, and was that given by the resonance
overlap criterion [Eq. (2)]. However, for some drag pa-
rameters, several planetesimals were trapped in distant
resonances, but no planetesimals were trapped in the
resonances immediately exterior to the chaotic zone pre-
dicted by the resonance overlap criterion. This result
was surprising, because these resonances were believed
to be the ones most capable of trapping planetesimals.

Upon closer examination of the equilibrium position
at conjunction of particles that were trapped in these
‘‘peculiar’’ resonances at lower drag parameters, Kary
et al. (1993) found a period-doubling transition to chaos
(Fig. 9). Particles trapped in most resonances settle into
orbits in which they are always at the same distance
from the Sun when they are passed by the planet, in
analogy to the mapping given by Eq. (5) when A<3.
The planet is thus able to give them just enough energy
and angular momentum in this encounter to balance the
energy and angular momentum removed by gas drag
since the previous passage. However, for some reso-
nances, although such a stable single attractor exists
when drag is small, when the gas drag is increased be-
yond a certain value no single equilibrium passage dis-
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tance exists. Rather, the particle alternates between two
radii at conjunction. For even larger drag rates, the equi-
librium locations bifurcate again and again, repeatedly
doubling the time required by the particle to complete a
cycle and return to its previous location relative to the
planet and the star. Progressively smaller increases in
drag rate are required for each successive period dou-
bling, with the ratio of successive bifurcation distances
approaching the universal value of 4.669 . . . for dissipa-
tive systems in which the functional description has qua-
dratic maxima (Feigenbaum, 1978). The system becomes

FIG. 9. Surfaces of section showing particle distance x from
the star (measured in units of the distance between the planet
and the star) at conjunction as a function of the drag param-
eter K, for particles trapped in the 20/21 mean motion reso-
nance with a planet whose mass is 1026 times that of the star.
A similar ‘‘pitchfork’’ pattern is seen when the particle dis-
tance is replaced with semimajor axis, eccentricity, or eccentric
anomaly at conjunction. At any given K, the particle cycles
through all of the stable positions. The box in the upper right
corner of (a) indicates the range of (b). From Kary et al.
(1993).
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chaotic (and the resonance is no longer capable of trap-
ping planetesimals) at the convergence point of the se-
quence of period doublings.

To my knowledge, this is the only celestial mechanics
problem yet analyzed to display such a period-doubling
transition to chaos. However, it appears to be analogous
to the well-studied problem of the periodically kicked
damped rotator (Schuster, 1989; Kary, 1993).

VIII. LONG-TERM STABILITY OF PLANETARY ORBITS

Questions concerning the stability of our Solar System
have been studied for over three centuries. Analytic cal-
culations have largely been superseded by numerical in-
tegrations in recent decades. Integrations of the orbits of
the four outer planets on million year time scales (Co-
hen et al., 1973) compare well with perturbation calcula-
tions, showing quasiperiodic behavior for the four major
outer planets. In addition, the angle 3l22lN2Ã
(where l and lN are the mean longitudes of Pluto and
Neptune, respectively, and Ã is the longitude of perihe-
lion of Pluto) was found to be in libration with a period
of 20,000 yr (Williams and Benson, 1971). This relation-
ship, referred to as the 2:3 mean motion resonance, acts
to prevent close encounters of Pluto with Neptune and
hence protects the orbit of Pluto. However, numerical
integrations show evidence for very long period changes
in Pluto’s orbital elements, with a Lyapunov exponent of
;(20 Myr)21 (Sussman and Wisdom, 1988).

Laskar (1989, cf. Sussman and Wisdom, 1992) found
that the orbits of the inner planets are also chaotic, with
a Lyapunov exponent of only ;(5 Myr)21. This chaos,
combined with imperfect knowledge of initial conditions
and planetary masses, implies that it may never be pos-
sible to accurately calculate the location of the Earth in
its orbit 100 million years in the past or into the future
(Duncan, 1994). Minor unmodeled perturbations, such
as the gravitational tug of asteroids or of passing stars,
could alter planetary longitudes substantially on this ti-
mescale, although they are unlikely to change the char-
acter of the motion (Tremaine, 1995).

Despite the observed chaos, it is likely that the Solar
System is astronomically stable, in the sense that the 8 or
9 largest known planets will probably remain bound to
the Sun in low eccentricity, low inclination orbits until
the Sun exhausts the hydrogen fuel in its core and grows
into a red giant (Duncan and Quinn, 1993; Laskar,
1997). Nonetheless, it is possible, although highly un-
likely, that this chaos could lead Mercury to collide with
either the Sun or Venus or be ejected from the Solar
System prior to the end of the Sun’s main sequence
phase 6 billion years in the future (Laskar, 1994). More-
over, from a mathematical point of view, the Solar Sys-
tem is unlikely to be stable indefinitely even in the ab-
sence of solar evolution and external perturbations
(Tremaine, 1995).

The mass-chaos relationship given by Eq. (4) also has
implications for the ultimate fates of planetary systems.
Sun-like stars lose a significant fraction of their mass
during their post-main sequence evolution (Sackmann
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et al., 1993). Duncan and Lissauer (1998) have inte-
grated systems with orbital parameters the same as
those of the planets, but with the masses of the planets
increased relative to that of the Sun. They find similar
relationships between masses and times to orbit crossing
as for the Uranian moons, but the dispersion about the
central fits is greater and the relationships show signs of
breaking down at small mass enhancement factors,
where integration times become too long to allow for
definitive answers. For reasonable solar mass loss rates,
Duncan and Lissauer find that the orbits of the giant
planets are likely to remain stable for at least tens of
billions of years subsequent to the Sun becoming a white
dwarf. Integrations of the terrestrial planets also show a
very stable system, although such computationally inten-
sive simulations have only modeled evolution of the sys-
tem for order of 109 years. The orbits of Pluto and of
many asteroids may become unstable soon after the Sun
becomes a white dwarf. However, the physical conse-
quences of the Sun’s luminous red giant phase may turn
these smaller objects into cometary bodies which are
subject to significant nongravitational forces resulting
from asymmetric mass ejection.

IX. PLANETARY ROTATION, ETC.

The list of applications of chaos theory to the study of
the motions of planetary bodies presented herein is by
no means exhaustive. For instance: Several pairs of plan-
etary satellites probably passed through chaotic zones
on their path into or through mean motion resonances;
in some cases such passages may have excited sufficient
orbital eccentricities to induce substantial tidal heating
(Dermott et al., 1988; Tittemore, 1990; Showman and
Malhotra, 1997). The obliquity of the planet Mars is be-
lieved to vary chaotically (Touma and Wisdom, 1993),
and the obliquities of the other terrestrial planets may
have suffered similar variations in the distant past
(Laskar and Robutel, 1993). Saturn’s moon Hyperion is
apparently tumbling chaotically (Wisdom et al., 1984;
Klavetter, 1989; Black et al., 1995). Many other moons
probably briefly experienced chaotic rotation prior to
becoming synchronously locked billions of years ago
(Wisdom, 1987c). Orbits around irregularly shaped bod-
ies (such as most asteroids) can be highly chaotic even in
the absence of external perturbers (Petit et al., 1997).
The study of chaotic dynamics in the Solar System is
developing rapidly, and many new examples and insights
are likely to be discovered in the near future.
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