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Adventures of a Rydberg electron in an anisotropic world
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The study of subtle interactions in atomic and molecular systems has stirred scientific curiosity since
the dawn of quantum mechanics. Even today, research into perturbative long-range interactions
continues to push into new territory, driven largely by the experimental capabilities of Rydberg state
spectroscopy to detect effects of extremely weak interactions. While static long-range multipole
interactions have been studied for years, the presence of dynamic terms that involve both position and
momentum operators has been demonstrated only surprisingly recently. In this paper we document
the existence of an effective vector interaction term in the long-range potential experienced by a
moving charged particle in the presence of an anisotropic ionic core. In contrast to ordinary static
quadrupole or dipole interaction terms, the existence of this vector interaction hinges on the motion
of the distant charge as it roams beyond the confines of the core. [S0034-6861(99)00703-5]
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I. INTRODUCTION

The astonishing precision of high resolution Rydberg
state spectroscopy provides a revealing probe of small
and large perturbations. The field has progressed tre-
mendously during the half century since the crucial mea-
surement of the Lamb shift (Lamb and Retherford,
1947; Lamb and Retherford, 1950). It is now possible to
measure some of the smallest forces in nature through
their tiny influences on atomic and molecular energy
levels. The measurement of the electroweak interaction
and of nuclear anapole moments in table-top atomic
physics experiments (Wood et al., 1997) has had impor-
tant implications in nuclear and high energy physics.
Other groups (Sturrus et al., 1988; Arcuni et al., 1990;
Sturrus et al., 1991; Ward et al., 1996; Jacobson et al.,
1997) have attempted in recent years to make an experi-
mental measurement of the ‘‘Casimir force’’ predicted
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to affect the spectra of Rydberg levels (Spruch, 1986).
While the existence of such a force is a clearcut implica-
tion of atomic theory, it has not yet been conclusively
observed in a Rydberg atom or molecule.

Much of the physics community’s interest in this sub-
ject stems from the ability of Rydberg spectroscopists to
probe small and subtle interactions. In order to under-
stand such tiny interactions, however, it is crucial to first
understand quantitatively the energy level shifts and
perturbations associated with the quantum mechanics of
a Rydberg electron that experiences ‘‘simple electro-
static interactions.’’ These contributions are often sub-
tracted from the measured Rydberg energy level in or-
der to expose the energy shift or splitting that is of
interest in any particular experiment.

The present Colloquium article chronicles a surprising
development this decade that has resulted in the discov-
ery of ‘‘new physics’’ in the ostensibly simple motion of
a Rydberg electron (or other charged particle) moving
in the field of an anisotropic ionic core. To set the stage
for this discovery, consider first the better-understood
problem of an electron that roams beyond an isotropic,
closed-shell ionic core. In addition to the net Coulomb
attraction towards the ion, the electron also polarizes
the ion, inducing an electric dipole moment whose mag-
nitude decreases in proportion to the inverse squared
distance r between the electron and ion. The coefficient
of proportionality is the polarizability a of the ionic
state. Several studies (Dalgarno et al., 1968; Seaton and
Steenman-Clark, 1977; Drachman, 1982) have treated
this system and shown that an adiabatic treatment of the
electron radial coordinate leads to an effective potential
energy Vpol(r)52(a/2r4) at large values of r. (Except
where stated otherwise, we adopt atomic units, in which
e5\5me51.)

Comparatively few theoretical formulations have de-
veloped a description of a charged particle that interacts
with an anisotropic core possessing nonzero angular mo-
mentum. In atomic physics, some examples include Dal-
garno et al. (1968), Seaton and Steenman-Clark (1977),
821(3)/821(13)/$17.60 ©1999 The American Physical Society
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Drachman (1982), while in molecular physics, a pertur-
bative scheme has been developed to interpret a class
of experiments (Eyler and Pipkin, 1983; Sturrus et al.,
1988; Sturrus et al., 1991). Also, Herzberg and Jungen
(1982), Jungen et al. (1989), and Jungen et al. (1990)
have formulated and applied a more general nonpertur-
bative scheme to describe molecular Rydberg states. An
anisotropic core opens up some new types of interac-
tions that are absent for an isotropic core. The first is an
interaction potential (Q/r3)P2(cosu) between the dis-
tant electron and the electric quadrupole moment (Q) of
the core, which can be nonzero if the core angular mo-
mentum J is greater than or equal to 1. The core anisot-
ropy causes a second modification as well: now the 1/r4

polarizability interaction contains both a scalar contribu-
tion 2(a(s)/2r4) and a tensor contribution. The latter is
sometimes written as 2(a(t)/2r4)P2(cosu). Note that u
is the angle between a symmetry axis in the ionic core
and the unit position vector r̂ of the Rydberg electron.

The theory of Rydberg systems has traditionally been
divided among perturbative approaches that form the
basis for polarization models, and multichannel formu-
lations like R-matrix and multichannel quantum defect
theory (MQDT) (Aymer et al., 1996). When the Ryd-
berg electron has a large orbital angular momentum l ,
the centrifugal repulsion keeps the electron beyond its
inner turning point „rt.

1
2 l (l 11)… most of the time,

which eliminates most short-range interactions such as
exchange and partial screening of the nuclear charge.
Exploited particularly as sensitive probes of long-range
interactions, the perturbative approaches have been use-
ful tools for both theory and experiment. Of course per-
turbative approaches are limited to systems for which
the coupling among Rydberg states is weak or negli-
gible. The more rigorous basis set expansions of nonper-
turbative multichannel formulations, on the other hand,
can describe this complicated physics, but remain lim-
ited in the physical insight and interpretation that they
yield readily.

The recent prediction, measurement, and confirma-
tion of a vector interaction (Zygelman, 1990; Clark et al.,
1996; Ward et al., 1996; Clark and Greene, 1997), in Ry-
dberg systems with nonspherical ionic cores, highlights
the need to better understand the nature of nonrelativ-
istic long-range interactions. The vector interaction is a
term in the effective long-range potential energy which
has the structure

bv

Lc
W

•lW

r6
. (1)

Here Lc
W and lW denote the orbital momenta of the ionic

core and the Rydberg electron, respectively, and r is the
distance between the Rydberg electron and the core.
While we use the term ‘‘vector interaction’’ to describe
the Lc

W
•lW structure in Eq. (1), it is of course an overall

scalar, whereby it remains consistent with the required
conservation of total angular momentum of the core-ion
system. It is the only nonzero term in the effective long-
range potential with radial exponent n<6 that has an
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odd tensorial rank for the ionic degrees of freedom.
(Other odd-rank terms such as the dipole or octopole
terms of the electrostatic interaction fail to survive in
first-order, for the typical situation in which the ionic
states possess definite parity.) Strictly speaking, the op-
erators Lc

W and lW in Eq. (1) are even parity pseudovec-
tors rather than odd-parity vectors, with respect to sepa-
rate transformations of the ionic or Rydberg electron
degrees of freedom. But for brevity we refer to their
scalar product throughout this paper as a ‘‘vector inter-
action.’’

Traditionally, long-range interaction potentials have
taken the form of purely coordinate-dependent poten-
tial energy functions. Equation (1) departs from this tra-
dition through its inclusion of angular momentum op-
erators in the long-range potential. The physical
implications of this angular momentum dependence are
dramatized in Fig. 1, which shows two similar pairs of
coplanar classical orbits for a two-electron atom. In a
strictly adiabatic treatment of the outer Rydberg elec-
tron motion, the interaction energy would be the same
for these two orbit configurations. Owing to the pres-
ence of interactions like Eq. (1), however, the interac-
tion energies contain a term that has opposite sign for
antiparallel and parallel orbits. We return in Sec. IV to
this example, and analyze this simple coplanar configu-
ration from both a classical and a quantum mechanical
perspective. Both analyses predict that the left-hand
state, with parallel angular momenta, has lower energy
than the right-hand state with antiparallel angular mo-
menta.

Figure 2 demonstrates that there are simple, experi-
mentally measurable consequences caused in the pattern
of Rydberg state energy level splittings by the vector
interaction. Shown are the splittings one expects for the
energy eigenstates EL(Lc ,l ) associated with different
eigenvalues L(L11) of the total squared angular mo-
mentum LW 5LW c1lW . The level splittings are for a system
for which we can ignore the spin of the Rydberg elec-
tron and consider only its orbital angular momentum l
56 and that of the core (Lc52 for this example). If
there were only isotropic (scalar) terms in the long-
range electron-core interaction potential, all of the lev-

FIG. 1. Classical orbits of a Rydberg electron around a core
consisting of an electron with angular momentum circling
about a nucleus. The interaction energy associated with the
vector interaction term in Eq. (1) has opposite sign depending
on whether the angular momenta are parallel (left) or antipar-
allel (right).
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els in Fig. 2 would be degenerate. The presence of core
anisotropy is well known to produce terms of tensorial
rank k52, however, in the form of a quadrupole mo-
ment and a tensor polarizability interaction as discussed
above. These anisotropic interactions cause a splitting
among the different energy levels EL(Lc ,l ) as is de-
picted in the left-hand portion of Fig. 2. The L depen-
dence of the splittings is controlled by a Wigner
6J-coefficient:

~21 !LH Lc l L

l Lc k J .

Notice in particular how the highest (L58) and lowest
(L54) energy levels deviate in the same direction from
the center of the distribution for the ‘‘ordinary’’ k52
tensorial interactions, while in contrast, the k51 vector
interaction of Eq. (1) results in energy shifts of opposite
sign for the extremes in total angular momentum. This is
expected since the recoupling coefficient in the large L
limit has an L dependence governed by 'Pk(L̂c• l̂ ),
with the odd-k Legendre polynomials odd in parity. This
qualitative difference between splitting patterns induced
by odd k and even k terms in the interaction potential
can be measured in the laboratory.

The vector interaction is an example of a dynamic
angular interaction that physically reflects the inability
of the ionic core to instantaneously adjust to the angular
motion of the Rydberg electron. Here is the classical
picture of this effect: as the Rydberg electron ‘‘orbits’’
the core, the core tries to repolarize in the direction of
the Rydberg electron, but fails to do so fast enough and
its dipole moment lags behind. This nonadiabatic behav-
ior qualitatively resembles retardation, but it originates
in the nonrelativistic dynamics of the Rydberg electron
rather than in the finite speed c at which interactions
propagate through space (Spruch, 1986; Babb and
Spruch, 1994).

FIG. 2. Pattern of relative energy level splittings caused by the
conventional anisotropic tensor (k52) terms and by the vec-
tor (k51) interaction term of Eq. (1). The splittings shown
are for a quantum mechanical Rydberg atom of total angular
momentum L, where the ionic core has angular momentum
Lc52 and the Rydberg electron has orbital angular momen-
tum l 56. The spin of the Rydberg electron has been ne-
glected in this illustration.
Rev. Mod. Phys., Vol. 71, No. 3, April 1999
In this article we sketch the development of a system-
atic adiabatic treatment of Rydberg systems that in-
cludes these nonadiabatic effects explicitly. We stress
the qualitatively new insights that have emerged from
this line of research in the present decade. Experimental
observations of Ne Rydberg states (Ward et al., 1996)
have recently confirmed the existence of the vector in-
teraction and its importance in Rydberg state spectros-
copy.

II. ADIABATIC THEORY

A. Adiabatic representation

The concept of adiabaticity has been used extensively
in atomic and molecular physics. The earliest application
was the extremely useful Born-Oppenheimer approxi-
mation, which provides the entire framework used today
to understand the low vibrational states of diatomic mol-
ecules. The approximation starts from the slowness of
the nuclear motion compared with the molecular elec-
trons; in consequence, the electronic properties of the
system acquire a relatively weak parametric dependence
on the internuclear separation. In other words, the slow
nuclear motion leads to an approximate separation of
the nuclear and electronic degrees of freedom.

This approach can be extended to many other prob-
lems in physics. The validity is immediately clear if the
adiabatic degree of freedom is ‘‘slow’’ compared to all
other degrees of freedom in the system. In Rydberg at-
oms and molecules it is the radial coordinate r of the
Rydberg electron that serves as the best adiabatic coor-
dinate.

A Rydberg atom or molecule with high angular mo-
mentum is a simple quantum system involving an elec-
tron (l >5) and a relatively isolated ionic core. The
slow-moving Ryberg electron can be regarded as a
probe of the weak electrostatic properties of the ionic
core: properties like the permanent quadrupole and
higher multipole moments and the polarizabilities of the
relevant ionic states. The large spatial separation be-
tween the Rydberg and core electrons causes Rydberg
electron spin effects (such as exchange) to be negligible.
The absence of exchange between the Rydberg electron
and the core leads to the choice of coupling scheme as
(Jcl )K coupling (Pruvost et al., 1991). In this scheme,
the total angular momentum Jc of the fast core electrons
is coupled with the orbital momentum l of the slow
Rydberg electron to form a resultant K. (The quantum
number K then acts as the ‘‘total angular momentum’’ of
the atom in most of our derivations below.)

The centrifugal repulsion of the high-l Rydberg elec-
tron forces it to roam far beyond the confines of the
core. A simple representation of the wave function for
such a system uses an r-independent basis set $f i(v)%,
where v denotes all other coordinates of the system (in-
cluding spin) besides r. The $f i(v)% are the complete
set of ionic energy eigenstates, whose angular momenta
are coupled with the orbital functions Ylm of the Ryd-
berg electron. This ansatz for a Schrödinger eigenstate
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leads to a set of coupled radial equations that are usually
called the ‘‘close-coupling equations’’ (without ex-
change) in atomic physics. The radial function Mi(r) in
this expansion „( if i(v)Mi(r)… can be viewed as the
wave function for radial motion within the ith ionic
channel of the system. A diagonal matrix element Vii(r)
of the core-Rydberg potential energy of interaction in
this representation, when added to the centrifugal repul-
sion term and to the ionic energy level Ei in channel i,
constitutes an effective ‘‘potential curve’’ that governs
the radial motion of the Rydberg electron in that chan-
nel. Off-diagonal matrix elements Vji(r) can be viewed
as causing transitions of the electron from the ith
electron-core channel to the jth channel.

The full effective potential matrix that governs the
Rydberg electron radial motion that enters the conven-
tional close-coupling (CC) equations without exchange
is

Vij
CC~r !5S l i~ l i11 !

2r2
2

1
r

1EiD d ij1Vij~r !. (2)

Here l i is the orbital momentum of the Rydberg elec-
tron in channel i. Unless stated otherwise, matrix ele-
ments involve integrals over all coordinates (v) (and
traces over all spins) in the problem, except for the ra-
dial coordinate of the Rydberg electron. (The spin of the
Rydberg electron is ignored for the remainder of this
article.) Note that we have split off the dominant Cou-
lomb interaction 2(1/r), whereby the remaining poten-
tial matrix Vij(r) can be written as an asymptotic series
in 1/r , with the leading term being of order r22 as r
→` .

B. Adiabatic close-coupling equations

The basis set $f i(v)% used in the conventional close-
coupling equations are independent of the radial coordi-
nate r of the Rydberg electron, which means that the
resulting representation does not describe the increasing
polarization of the core electrons during close encoun-
ters. That physics is incorporated into the standard close
coupling equations only through off-diagonal channel
coupling, which is difficult to visualize. Accordingly, we
introduce a representation that builds the predominant
dynamical effects of electron-core interactions into a
more useful effective potential energy curve. As in the
molecular Born-Oppenheimer approach, these potential
curves are obtained by diagonalization of an ‘‘adiabatic
Hamiltonian’’ Ĥr5const in which derivative operators
with respect to the adiabatic coordinate r have been dis-
carded. The resulting adiabatic eigenstates Fm(r ;v)
form (at every value of r), like the $f i(v)% discussed
above, a complete orthonormal set in the coordinates v .
The adiabatic approximation is valid in our present con-
text if the system remains confined within a single adia-
batic channel as the Rydberg electron roams slowly be-
yond the confines of the core. To be explicit, the
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adiabatic potentials Um(r) and eigenstates Fm(r ;v) are
defined as parametrically r-dependent solutions of the
linear eigenvalue problem:

Ĥr5constFm~r ;v!5Um~r !Fm~r ;v!. (3)

In the representation $f i(v)%, the matrix of the adia-
batic Hamiltonian operator Ĥr5const reduces to VCC(r).
The adiabatic channel functions are r-dependent super-
positions of the ionic core states. They contain informa-
tion concerning the instantaneous interactions between
the Rydberg electron and the core, and provided r varies
slowly, concerning the approximately conserved proper-
ties of the electron-core system. Expansion of the total
wave function for the system in terms of the adiabatic
channel functions

C~r ,v!5
1
r (

m
Fm~r !Fm~r ;v!, (4)

transforms the Schrödinger equation into a set of
coupled radial equations. These can be written in matrix
form as

F2
1
2 S I

d

dr
1P~r ! D 2

1U~r !2EIGF~r !50, (5)

where the derivative coupling matrix is defined by

Pmn~r !5 K FmU ]

]r
FnL . (6)

In this paper we adopt Greek letters to label the adia-
batic channels. At sufficiently large distances r→` , each
adiabatic channel converges to one of the ionic channels
labeled by Roman letters in the primitive close-coupling
representation.

In contrast to the primitive close-coupling representa-
tion, in which the coupling among the ionic channels
enters through the potential matrix VCC, the coupling of
our adiabatic channels enters through a derivative ma-
trix Pmn(r) that modifies the radial momentum opera-
tor. Thus the P matrix accounts for all nonadiabatic or
inelastic effects that arise because the slow Rydberg
electron is ‘‘not quite slow enough.’’ For most of the
regimes discussed in this review, the off-diagonal deriva-
tive couplings are small compared with the diagonal
adiabatic potentials. Under these conditions, the motion
of the system remains confined within a single adiabatic
channel to an excellent approximation. As we discuss
below, the analogy between the modified radial momen-
tum operator and the field-theory notion of ‘‘minimal
coupling’’ (Zygelman, 1990) permits some of the long-
range interactions to be viewed as non-Abelian gauge
fields.

C. Adiabatic potentials and postadiabatic corrections

The Born-Oppenheimer approximation, which ne-
glects the channel coupling matrix P(r) altogether, is
adequate for many purposes. To achieve higher accu-
racy or to treat higher energy processes, however, it is
important to include some effects of P(r). One natural
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approach to this problem seeks an approximate single-
channel form for the radial Schrödinger equation, such
as

S 2
1
2

d2

dr2
1um~r ,E !2E D Fm~r !50, (7)

in which we have introduced a new effective potential
um(r ,E) that depends on the adiabatic potentials
$Un(r)%, the derivative couplings, and the energy of the
system E in some simple algebraic way.

The post-adiabatic theory of Klar and Fano (Klar and
Fano, 1976; Klar, 1977), later generalized by Aquilanti
(Aquilanti et al., 1994), is such a method that includes
perturbative derivative coupling effects through an it-
erative algebraic procedure. The main idea is to trans-
form the original adiabatic equation (5) into a set of
coupled single-channel equations where the new cou-
pling arises from terms proportional to P(r) or
(d/dr)P(r). This ‘‘postadiabatic procedure’’ can be it-
erated, in principle, which will (hopefully) reduce the
coupling strength in each successive iteration.

For our purposes we use only the first iteration of the
procedure, for which the effective potential is given by

um~r ,E !.Um~r !2
1
2

~P2!mm

12„E2Um~r !…(
n

uPmnu2

Um~r !2Un~r !
. (8)

The perturbative condition Pmn
2 (r)!uUm(r)2Un(r)u

should be satisfied at all r relevant in the problem, but
this should always be satisfied for sufficiently high l
states of Rydberg systems. A first immediate implication
of the nonadiabatic corrections is an increase in the po-
tential energy due to the repulsive energy-independent
diagonal term (2P2)mm . Inclusion of this term in mo-
lecular problems is often called the ‘‘adiabatic approxi-
mation’’ as opposed to the strict Born-Oppenheimer ap-
proximation which neglects P(r) completely. This term
is usually written as a second derivative coupling matrix
in that context, but it is equivalent to our form as the
square of the first-derivative matrix (see Klar and Fano,
1976). A second implication is the presence of an
energy-dependent contribution; its sign can vary from
state to state, but for the channel of lowest energy, it
generally (Klar and Klar, 1978) makes the effective post-
adiabatic potential um(r ,E) increasingly attractive as the
energy increases above threshold.

The derivative couplings Pmn(r) can be computed, for
instance, by using the Hellman-Feynman theorem. The
diagonal derivative couplings vanish, that is Pmm(r)50,
since the P matrix is skew symmetric, and the off-
diagonal terms are given by

Pmn~r !5

^Fmu
]

]r
Ĥr5constuFn&

Un~r !2Um~r !
. (9)

The partial derivative of the adiabatic Hamiltonian is
readily evaluated analytically. This form of the deriva-
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tive coupling matrix clearly demonstrates the apparently
singular behavior when two channels of common sym-
metry are nearly degenerate „Um(r)'Un(r)…. This is
mainly signalling a failure of the adiabatic (and posta-
diabatic) notion that the dynamics can be boiled down
to a single effective channel. At such a near degeneracy
the physics must inherently involve both of the strongly
coupled, nearly degenerate channels; in other words, an
‘‘avoided crossing’’ of this type can redistribute radial
flux among the strongly coupled channels.

D. Perturbative adiabatic diagonalization
for nondegenerate channels

In Rydberg atoms and molecules with high orbital an-
gular momentum (e.g., typically l >5), the dominant
electrostatic interaction between the Rydberg electron
and the ionic core is the dipole moment which goes as
1/r2. Since a typical inner turning radius is rt'l (l
11)/2 for a Rydberg electron near zero energy, all elec-
trostatic interactions are perturbative compared to the
screened-charge term 21/r . The small values of the
electrostatic matrix elements Vij(r) compared with the
ionic threshold splittings thus validates a perturbative
diagonalization of the VCC(r) matrix.

An important step in a systematic perturbative diago-
nalization of this matrix is the inclusion of diagonal ele-
ments Vii(r) in the unperturbed Hamiltonian „see the
modified iteration-perturbation formulas of Morse and
Feshbach (1953)…. This is immediately apparent when
the long-range coupling matrix is written as

Vij
CC~r !5S l i~ l i11 !

2r2
2

1
r

1Ei1Vii~r !D d ij1Vij~r !,

(10)

where the Vij(r) now indicate purely off-diagonal con-
tributions. A spherical multipole expansion of Vij(r)
now usefully separates the core-electron and Rydberg-
electron coordinates

Vij~r !5 (
k50

`

^f iu
ri

k

rk11
Pk~cosu ir!uf j&

5 (
k50

`

^f iu
ri

k

rk11
C ~k !~ r̂ i!•C ~k !~ r̂ !uf j& , (11)

where the C(k) are renormalized spherical harmonics.
The perturbative diagonalization of the VCC(r) ma-

trix, through second order in Vij(r), produces terms in-
volving summations over intermediate channels n with
potential energy denominators Um(r)2Un(r). These
second-order contributions can be classified as either de-
generate or nondegenerate depending on whether or not
an intermediate channel n is degenerate with the physi-
cally relevant channel m at r→` (i.e., Un5Um). The
coupling to nondegenerate channels (i.e., EnÞEm) con-
tributes a long-range potential with the structure
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um~r !5Em2
1
r

1
l m~ l m11 !

2r2
1

Qmm
~2 !

r3
2

am

2r4
1

Qmm
~4 !

r5

1
bm

ad1bm
nad22~E2Em!lm2dm2hm

2r6
1OS 1

r8D ,

(12)

where ad (or nad) is our shorthand notation for radially
adiabatic (or nonadiabatic). (Note that a radially adia-
batic term like bm

ad still includes nonadiabatic coupling in
the angular degrees of freedom.) Most terms in this po-
tential can be written as a standard second-order pertur-
bation sum. The exceptions include the diagonal quad-
rupole Qmm

(2) and hexadecapole Qmm
(4) terms which are

diagonal (first-order) matrix elements of the ionic elec-
tric quadrupole and hexadecapole operators. Also, the
term involving the energy-dependent postadiabatic term
lm deviates from the normal perturbation expansion, de-
riving instead from the postadiabatic expansion dis-
cussed above. Explicit expressions for these terms as in-
finite perturbation sums over bound and continuum
states of the core, can be obtained along the lines of the
derivation given by Watanabe and Greene (1980), al-
though there are differences in notation, in coupling
scheme, and in the multipoles that were included. Each
term Qmm

(2) , Qmm
(4) , am , bm

ad , bm
nad , lm , dm , and hm

depends on the various quantum numbers Jm , l m , and
K in a relatively complicated fashion that is difficult to
analyze:

Qmn
~k !5^mu (

i51

Nc

ri
kPk~cosu ir!un&, (13)

am5 (
n5” m

2Qmn
~1 !Qnm

~1 !

En2Em
, (14)

bm
ad5 (

n5” m

@ l n~ l n11 !2l m~ l m11 !#

~En2Em!2
Qmn

~1 !Qnm
~1 ! , (15)

bm
nad5 (

n5” m

4Qmn
~1 !Qnm

~1 !

~En2Em!2
, (16)

lm5 (
n5” m

8Qmn
~1 !Qnm

~1 !

~En2Em!3
, (17)

dm5 (
n5” m

2Qmn
~2 !Qnm

~2 !

En2Em
, (18)

and

hm5 (
n5” m

4Qmn
~1 !Qnm

~3 !

En2Em
. (19)

In Eq. (13) Nc denotes the number of ionic core elec-
trons, while the subscript r refers to the Rydberg elec-
tron. One consequence of including nonadiabatic effects
is the appearance of an energy dependent term in the
long-range potential. This energy dependence has been
difficult to sort out because different treatments disagree
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in multiplicative constants (Seaton and Steenman-Clark,
1977; Drachman, 1982). Drachman (1982) shows, how-
ever, that the energy dependent term of order 1/r6 can
be written as an l -dependent linear combination of 1/r7

and 1/r8, implying that the energy-dependent term can
be regarded as a contribution of higher order than 1/r6.

E. Degenerate channel contributions

The nature of the long-range potential changes quali-
tatively when degenerate terms are present. For in-
stance, in the 3pnl channels of Mg, the 3pnf and 3pnh
channels are degenerate, which results in a very long-
range quadrupole coupling between them. Second-order
degenerate contributions appear when intermediate
channels n share the same threshold energies En

5Em , K-value, and parity with the physically relevant
channel m at r→` . However, for simplicity we assume
that (as in the Mg case cited above) the intermediate
Rydberg electron orbital momentum l n differs from l m
for all degenerate channels. A derivation similar to that
given above produces two additional contributions to
the potential um(r) that originate in coupling to the de-
generate channels:

ũm~r !5um~r !1
am

r4
1

bm

r6
1OS 1

r8D , (20)

where the am and bm terms are explicitly

am5 (
nÞm

2Qmn
~2 !Qnm

~2 !

l m~ l m11 !2l n~ l n11 !
(21)

and

bm5 (
nÞm

4Qmn
~2 !Qnm

~4 !

l m~ l m11 !2l n~ l n11 !
. (22)

Equation (20) excludes one potentially important type
of degenerate channel coupling. It arises when two or
more ionic states of opposite parity are degenerate and
can consequently support a permanent dipole moment:
when this occurs, the result is a term proportional to 1/r2

at large r. The resulting degenerate dipole coupling of
channels can be important, e.g., in the properties of dou-
bly excited states of the hydrogen negative ion. This case
must be treated as in Seaton (1961) and Gailitis and
Damburg (1963), rather than through the formulas of
this paper. After a transformation to the representation
in which the long-range dipole coupling is diagonal in
such instances, the effects of other (nondipole) multi-
poles can be handled using the present techniques.

III. RECOUPLING AND PARAMETRIZATION

The long-range anisotropic potential developed in the
previous sections involves various terms that depend on
the quantum numbers of both the core and the Rydberg
electron in a rather complicated way. This complexity
intertwines the core properties, such as its multipole mo-
ments and polarizabilities, with those of the Rydberg
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electron, and somewhat obscures the operator structure
of the interaction between the Rydberg electron and the
core. To clarify the dependence of each term on Jc , l ,
and K, and to reveal the operator structure of the full
potential, we disentangle each term using Wigner-Racah
recoupling algebra and place each into the form

(
k

~21 !kX ~k !
•Y ~k !, (23)

where X(k) operates on the ionic core while Y(k) oper-
ates on the Rydberg electron. Next we replace the ten-
sorial structure with coupled unit tensorial operators
acting in the space of the core and the Rydberg electron
(Clark et al., 1996; Clark and Greene, 1997), respec-
tively. In many systems these unit tensorial operators
can be replaced with simpler angular momentum opera-
tors of equal rank that generate the same coupling and
reflect the basic symmetry properties of the system.

The separation of the core and Rydberg electron op-
erators enables us to perform one last and crucial trans-
formation: the parametrization of the long potential. For
each power of 1/r there is a channel-dependent coeffi-
cient that depends only on properties of the ionic core.
These coefficients can be readily identified as the scalar
and tensor multipole moments, polarizabilities, and hy-
perpolarizabilities that characterize the interaction of
the core with the Rydberg electron.

In low-Z atomic systems where the spin-orbit interac-
tion is small compared with electrostatic interactions,
the total orbital angular momentum Lc and the total
spin Sc of the core are approximately good quantum
numbers. Regrouping terms with the same r dependence
and tensorial structure, the nondegenerate long-range
potential, for a low-Z atomic system, leads to the form

um~r !5
l m~ l m11 !

2r2
2

1
r

1Em2
as

2r4
2

hs

r6

2S Q

r3
1

a t

2r4
1

h t

r6 DA mm
~2 !1

bv

r6 ^LW c•lW &mm , (24)

which better displays its operator structure and aniso-
tropic nature. The parameters as and a t are the stan-
dard scalar and tensor dipole polarizabilities, Q is the
quadrupole moment, and hs and h t are higher-order sca-
lar and tensor hyperpolarizabilities. Explicit expressions
for all terms, including the angular factor A mm

(2) are given
in Clark et al. (1996) and Clark and Greene (1997).

The new vector interaction proportional to Lc
W

•lW is
similar in structure to a term predicted by Zygelman
(1990). We also note that a term of this tensorial struc-
ture was introduced into atomic spectroscopy by Trees
(1951a, 1951b, 1952) and Racah (1952), on semiempir-
ical grounds and without an explicit derivation or formal
justification. As a complement and extension of the
work of Zygelman, we provide an explicit expression for
the coefficient of this unusual interaction and interpret
its physical origin. The vector hyperpolarizability bv is
given by
Rev. Mod. Phys., Vol. 71, No. 3, April 1999
bv5(
n

cn

udnu2

~En2Em0
!2

, (25)

where dn is the reduced matrix element of the core di-
pole operator

dn5^gcLci (
j51

Nc

rjC
~1 !~ r̂ j!ignLn& , (26)

and cn is the angular coefficient

cn5A3
2

1

ALc~Lc11 !~2Lc11 !
H 1 Lc Lc

Ln 1 1 J .

(27)

The existence of this term has been controversial
since a simple parity argument might seem to negate the
existence of any odd-rank moments in the long-range
potential. The parity argument fails, however, because it
is an even parity pseudovector in the ionic core degrees
of freedom, as we discussed in the Introduction. Never-
theless this term would still vanish were it not for the
l n(l n11) factor inside the summation for bm

ad
„cf. Eq.

(15)…, which allows the bv coefficient to survive. To
show that terms in the untransformed potential in Eq.
(5) without such an additional l n dependence cannot
generate odd tensorial contributions such as LW c•lW , we
evaluate the summation over l n explicitly:

(
l n

~21 ! l n~2l n11 !$l m ,a ,l n%$l n ,b ,l m%

3H a b k

l m l m l n
J 5~21 !a1b1k$a ,b ,k%$l m ,l m ,k%.

(28)

Here the bracket $x ,y ,z%

$x ,y ,z%5S x y z

0 0 0 D (29)

is a condensed notation for 32j symbols whose mag-
netic quantum numbers vanish. Since each contribution
to our long-range potential involves a and b multipole
moments that add up to an even number, by parity, the
tensorial rank k must be even in this case.

However, if there is an addition l n dependence, such
as l n(l n11) in bm

ad , the summation becomes

(
l n

~21 ! l nl n~ l n11 !~2l n11 !$l m ,1,l n%
2

3H 1 1 1

l m l m l n
J 5~21 ! l m11F2

3
l m~ l m11 !

~2l m11 ! G1/2

,

(30)

which is nonzero for Rydberg states with l mÞ0. Thus it
is the centrifugal energy of the Rydberg electron, or the
angular motion, that generates the vector interaction.

An identical analysis can be applied to the degenerate
contributions of the long-range potential. The degener-
ate coefficients depend on permanent quadrupole
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and/or hexadecapole moments of the ionic core, but like
the vector hyperpolarizability, they also depend on the
orbital momentum of the Rydberg electron. For these
reasons the degenerate contributions are generally
small, but cannot be neglected if a single channel adia-
batic analysis is used to interpret experimental Rydberg
energy distributions.

In order to preserve the simple structure of the non-
degenerate long-range potential and to describe Ryd-
berg state energies in systems where channel coupling
can be important, a diabatic variant of the above formu-
lation can be helpful for practical calculations. This di-
abatic reformulation involves a pertubative expansion of
a Green’s function, in contrast to the above perturbative
diagonalization of an adiabatic Hamiltonian. The diaba-
tic treatment produces an effective Hamiltonian with a
potential matrix that approximately resembles the non-
degenerate long-range potential, while allowing for cou-
pling between different m and m8 channels:

Hmm852
1
2

d2

dr2
1

l m~ l m11 !

2r2
2

1
r

1Em2
as

2r4
2

hs

r6

2S Q

r3
1

a t

2r4
1

h t

r6 DA mm8
~2 !

1
bv

r6 ^LW c•lW &mm8 .

(31)

The appearance of degenerate contributions within the
adiabatic approximation reflects the manner in which
this theoretical formulation attempts to incorporate the
coupling of degenerate channels. However, since the
adiabatic approximation generally stresses qualitative
and physical insight rather than spectroscopic accuracy
of the resulting level spectrum, we advocate bypassing
the complexity of an adiabatic analysis in most cases.
This can be done with relative ease through a diabatic
formulation of the coupling among degenerate or nearly
degenerate channels developed by Clark et al. (1996).

IV. QUALITATIVE INTERPRETATION OF THE VECTOR
INTERACTION TERM

One of the greatest challenges faced in our analysis is
to develop a qualitative interpretation of the vector in-
teraction term. We address this in the present section
from different points of view: first through an analytical
rearrangement of the operator structure, and then
through a two-electron example that we consider from
both a classical viewpoint and a quantum mechanical
viewpoint.

A. Analysis using recoupling methods

First we show how the form of the interaction term
can be recast into an analytical form in which a cross
product of the core electric dipole operators appears as
a projection onto the orbital angular momentum of the
Rydberg electron. Such a cross product is suggestive of
the presence of torques in the nonadiabatic electron-
core interaction dynamics, as is the occurrence of
Rev. Mod. Phys., Vol. 71, No. 3, April 1999
pseudovectors in the interaction term, for that matter. In
order to see how torques arise in the electric dipole in-
teraction term between the Rydberg electron and the
core, we begin by rewriting bm

ad as

bm
ad5 (

n5” m

@ l n~ l n11 !2l m~ l m11 !#

~En2Em!2
Qmn

~1 !Qnm
~1 !

5 (
n5” m

^mu@ r̂ ,lW 2#•rWcun&^nu r̂8•rWc8um&

~En2Em!2
. (32)

The variables in the second matrix element in the pre-
ceding equation are primed, to serve as a reminder that
they are integrated over independently of the variables
in the first matrix element. The commutator of r̂ and lW 2

is

@ r̂ ,lW 2#5i~ lW 3 r̂2 r̂3lW !, (33)

and with a little recoupling, the term of vectorial nature
in bm

ad is seen to be proportional to

~@ r̂ ,lW 2#3Pr̂8!•~rWc3PcrWc8!. (34)

Using

@ r̂ ,lW 2#3Pr̂8522i~ r̂•Pr̂8!lW 12i r̂~ lW •Pr̂8!22 r̂3Pr̂8

(35)
we see the emergence of a 1/r6 vector interaction term
proportional to

;lW •~rWc3PcrWc8!. (36)

The existence of this vector interaction hinges on the
presence of the centrifugal l (l 11) factors in the ex-
pression for bm

ad , which again supports our interpreta-
tion that the interaction results from the angular motion
of the Rydberg electron. Moreover, the vector cross
product on the right-hand side of Eq. (33) suggests that
the Rydberg electron exerts a torque on the ionic core,
when the motion of the Rydberg electron tries to ‘‘drag’’
the polarization vector of the spinning ionic core.

B. A two-electron example treated classically

Next we return to the example discussed in Fig. 1,
with two nonoverlapping coplanar electrons that move
in the field of a bare charge Z52 nucleus. The inner
electron is initially in a circular Bohr orbit with n152
and l 151, while the outer electron is started in a circu-
lar orbit with n257 and l 256. The zeroth-order Hamil-
tonian for this system then looks like

H05
1
2

pW 1
21

1
2

pW 2
22

2
r1

2
1
r2

. (37)

We have assumed here that r2@r1 , whereby the inner
electron (r1'2) fully screens the outer electron (r2
'49), and the leading order perturbation to H0 is the
dipole component of the electron-electron interaction:

V5
r1cosu12

r2
2 . (38)
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In order to find the energy shift of the system due to
the perturbative dipole interaction V, we have propa-
gated classical trajectories for the Hamiltonian H0
1R(t)V , where R(t) is an adiabatic ‘‘ramp-on’’ that is
zero at time t50 and becomes unity after many orbit
periods of the outer electron. „This method of evaluat-
ing perturbation energies in conjunction with classical
mechanics was used successfully in a different context by
Hooker et al. (1997).… Figure 3 shows that the resulting
perturbation in the energy of the system has opposite
sign for the two geometries of Fig. 1. In particular, the
energy shift is negative when the two angular momenta
lW 1 and lW 2 are parallel (left-hand case in Fig. 1), while
the energy shift has nearly the same magnitude but is
positive when these angular momenta are antiparallel
(right-hand case in Fig. 1).

C. Two-electron example treated using quantum
mechanics

The same system just considered classically possesses
a simple quantal description. One quantitative differ-
ence between this example of a one-electron ionic core
in the n152 state of He1 and the cases formulated in
Secs. II and III, is that a one-electron hydrogenic ion
possesses the unusual ‘‘accidental degeneracy’’ (when
fine structure is neglected) of the 2s and 2p substates. It
is well known that this degeneracy magnifies the effect
of the dipole interaction between a distant electron and
the hydrogenic ion, which is one reason we have chosen
this example. At the same time, this system can be
treated simply using 2 by 2 matrices in an LS-coupled
representation. In the following, we let r stand for r2 ,
the distance of the outer electron from the nucleus,

FIG. 3. The classical energy shift versus time for the model
discussed in Sec. IV.B, consisting of an inner ‘‘2p’’ electron
and an outer ‘‘n57,l 56’’ electron. The dipole interaction is
‘‘ramped on’’ over several orbital periods of the outer electron.
The unperturbed orbits are initially circular and coplanar, with
the two angular momenta parallel in the lower curve and an-
tiparallel in the upper curve. After the ‘‘ramp function’’ satu-
rates for t'104 a.u., the energy shifts become constant and can
be viewed as the classical analogs of a perturbative quantal
energy shift (see text).
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while l is the orbital angular momentum of that outer
electron. The leading order term at r→` in the poten-
tial accordingly contributes in order r22, i.e., on a par
with the centrifugal term in the Rydberg electron
Hamiltonian.

The quantum mechanical channel describing this
2pnl two electron atom thus has the following charac-
ter. When the angular momenta of the inner (l 151)
and outer electron (l 56) are ‘‘parallel,’’ the zeroth-
order state can be written as u(2p ,nl 56)L57&, i.e., as
an eigenstate of LW 25L(L11) with L57. The dominant
channel that couples to this state is the channel
u(2s ,n l 1157)L57&. The correction to the long-
range Coulomb potential of the outermost electron is
therefore a dipolar }1/r2 potential for this example,
whose coefficient is obtained by diagonalization of the
combined centrifugal and dipole-interaction potentials.
Through dipolar order, neglecting terms of order r23,
the effective potential appropriate for parallel angular
momenta is the smaller eigenvalue of

Veff~r !52
1
r

1S l ~ l 11 !

2r2

d

r2

d

r2

~ l 11 !~ l 12 !

2r2

D .

Here d is a matrix element of the core electric dipole
operator between the two coupled channels, d
5^2pur1u2s& ^(1l )L5l 11ucosu12 u(0, l 11)L5l 11&
52A21/20. The analogous effective potential relevant
for antiparallel angular momenta of the core and the
Rydberg electron is the larger eigenvalue of

Veff~r !52
1
r

1S l ~ l 11 !

2r2

d8

r2

d8

r2

~ l 21 !l

2r2

D ,

where d85^2pur1u2s&^(1l )L5l 21ucosu12u(0,l 21)L
5l 21&5A27/22. The resulting eigenvalues give effec-
tive potentials for the outer (l 56) electron:

V↑↑
eff~r !52

1
r

1
l ~ l 11 !

2r2
2

0.147

r2
,

V↑↓
eff~r !52

1
r

1
l ~ l 11 !

2r2
1

0.198

r2
.

The last term in each potential gives the effect of the
perturbation. The quantum mechanical estimate of the
perturbation energy is obtained by averaging the last
term in the above two potentials over the radial n57,
l 5 6 orbital, which gives: D↑↑

QM526.631025 a.u., and
D↑↓

QM58.931025 a.u. These quantum mechanical en-
ergy shifts for this example are within about a factor of
two of the classically estimated energy shifts, confirming
that the basic classical picture presented above is quali-
tatively correct. Interestingly, the quantum mechanical



830 W. Clark and C. H. Greene: A Rydberg electron in an anisotropic world
interpretation for this prototype two-electron example
shows that the different sign of the energy perturbation
for parallel and antiparallel angular momenta is a con-
sequence of differential level repulsion. The state
2pnl @L5l 11# , with parallel angular momenta, is
pushed down in energy by its interaction with the
higher-lying 2sn8(l 11)@L5l 11# state, whereas the
state 2pnl @L5l 21# , with antiparallel angular mo-
menta, is pushed up in energy by the lower 2sn8(l
21)@L5l 21# state. This qualitative interpretation re-
mains similar when the ionic s and p levels are not de-
generate, except that the differential level repulsion
then causes the l dependence in the potential to begin
at the r26 level rather than the r22 level.

V. NON-ABELIIAN GAUGE FORMULATIION

Zygelman (1990) was the first to predict the existence
of the vector interaction and to estimate the magnitude
of the proportionality constant. In an original and pio-
neering approach, he used ideas of non-Abelian gauge
fields and geometric phases to study long range atomic
forces. Extending the work of Berry (1984), Wilczek and
Zee (1984), Jakiw (1986), and Moody et al. (1986), he
realized that the derivative coupling matrix within an
adiabatic representation resembles a vector potential or
a non-Abelian gauge field, an artifact of the representa-
tion. As with minimal coupling, a gauge transformation
can in principle be found that eliminates the vector po-
tential. However, if the channel space is finite or trun-
cated the derivative coupling can only approximately be
removed by a gauge transformation, leaving an effective
potential, as in our formulation. It was based on this
framework that Zygelman first suggested that a vector
interaction involving Lc

W
•lW should be present in the

long-range interaction between a charged particle and
an anisotropic system.

VI. RYDBERG STATES OF NEON

The importance of the vector interaction and the
channel coupling provided by the effective Hamiltonian
approach have been demonstrated for the n510 Ryd-
berg states of Ne with orbital momenta l 55, 6, 7, and 8.
These states were studied in recent experiments by
Ward et al. (1996), with the full interpretation emerging
from our theoretical analysis (Clark et al., 1996; Clark
and Greene, 1997; Clark, 1998). Most importantly, for
the purposes of this paper, this example permits a de-
tailed test of the capability of our parametrized long-
range potential to describe the Rydberg state energy
levels that are attached to the lowest ionization thresh-
old. The theoretical computation of Rydberg energies
was accomplished by diagonalization of the Hamiltonian
in Eq. (31), followed by a minimization of the weighted
x2 function (involving differences between the observed
and computed energy levels) with respect to the param-
eters as , a t , bv , . . . . It is worth noting that there is
nothing ad hoc about the parametrized theory. Analytic
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expressions for each parameter are given in our previous
publications, and each can be computed from first
principles. In fact, an ab initio calculation of
as , a t , bv , . . . using multiconfiguration Hartree-Fock
atomic wave functions was a key component of the pro-
posed theoretical interpretation.

The experimentally observed spin splittings were only
partially resolved in the Ward et al. (1996) experiment;
these were analyzed by the experimental group to ex-
tract ‘‘spinless’’ transition frequencies. We neglected all
spin-orbit terms in the Rydberg electron Hamiltonian,
and all exchange interactions between a core electron
and the Rydberg electron. The dominant perturbative
effects (in addition to those described above) that must
be added to our computed Rydberg levels are mass po-
larization (i.e., arising from the small deviation of the
atomic center of mass from the nuclear center of mass)
and the magnetic interaction between the Rydberg elec-
tron and the ionic core, given by

Hmag52
gJ

2
a2

JW c•lW

r3
, (39)

where a is the fine-structure constant and gJ is the g
factor of the ionic core.

The results of our analysis are summarized in Tables I
and II. Table I compares the various fitted parameters
for Ne1 with those obtained in a fit carried out by Ward
et al. (1996). Our own fitted results improve the x2 by
some 80% over the x2 obtained in the fit carried out by
Ward et al. (1996). The fact that our x2 per degree of
freedom (per parameter) is now approximately 1 sug-
gests that our anisotropic Hamiltonian correctly ac-
counts for the energetics of these Rydberg levels. It also
suggests that our nonperturbative calculation of the Ry-
dberg electron radial motion within the coupled chan-
nels improves somewhat upon the perturbative descrip-
tion of the radial motion adopted by Ward et al. Our
computed levels are compared in Table II with those of
Ward et al. (1996), for the n510 Rydberg states of Ne
with l 55, 6, 7, and 8. These parameters reproduce all
observed energy level splittings to 500 kHz or better.

In order to determine the importance of the vector
interaction term in our long-range Hamiltonian, we have
repeated the same least-squares fitting analysis that was
described in the preceding paragraph, except the vector
hyperpolarizability bv was constrained to vanish. Table I
lists the fitted parameters obtained from this analysis
with bv omitted. The greatest change among the param-
eters occurs in the fitted Ne1 2P3/2 gyromagnetic ratio
gJ , which changes from 1.342 to 1.307. The tensorial
structure of the gyromagnetic term is similar to that of
the vector interaction and it is not surprising that the
resulting fit modifies gJ to ‘‘mock up’’ the effects omit-
ted by setting bv equal to zero. Since the l dependence
of the spin-orbit interaction is very different from that of
the term involving bv , however, a change in gJ can only
crudely compensate for the omission of bv from the fit.
Note also that the LS coupling value of gJ is precisely
4/3, but spin-orbit interactions in the Ne1 ion can
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TABLE I. Comparison of fitted (experimental) and theoretical parameters for Ne1. L refers to
length form and V refers to velocity form. The value of gJ in column 4 is based on pure LS coupling.
The values labeled ‘‘present’’ are from our earlier work (Clark, et al., 1996), as are the unlabeled
theoretical values for as , a t , and bv . (The errors quoted for the fitted parameters in the first two
columns are probably underestimated. The authors thank S. R. Lundeen for pointing out a study by
Komara et al. (1998) which discusses this point.)

Present fit
Present fit without bv Ward et al. Theoretical

Q 20.204020(5) 20.204001(11) 20.20403(5) 20.1964 (Sundholm and Olsen, 1994)
20.2032(5) (Sundholm and Olsen, 1994)

20.2117 (Ward et al., 1996)

as 1.3018(2) 1.3011(6) 1.3028(13) 1.23 (L)
1.19 (V)

1.27 (Hibbert et al., 1977)

a t 20.0259(3) 20.0261(3) 20.026(5) 20.0374 (L)
20.0396 (V)

20.035 (Ward et al., 1996)

bv 0.059(2) ‘‘0’’ 0.045(29) 0.0678 (L)
0.0719 (V)

hs 20.10(1) 20.10(1) 20.29(24) 21.44 (Chang et al., 1994)

h t 0.274(5) 0.264(3) 0.5(5)

gJ 1.342(12) 1.307(24) 1.354(21) 4/3

x2 7.1 27.5 35.7

TABLE II. Comparison of calculated „with and without bv , see Clark et al. (1996)… and experimen-
tally observed (Ward et al., 1996) energies (MHz) of n510 Rydberg neon with Jm53/2 and l 55, 6,
7, and 8. DE5Eobs2Ecalc .

States Eobs (MHz) Ecalc DE Ecalc
bv50 DEbv50

H9/2 2145.58(77) 2145.63 0.05 2144.15 21.43
H11/2 2142.67(10) 2142.60 0.07 2142.81 20.14
H13/2 26022.24(19) 26022.02 0.22 26022.66 0.42

I9/2 25267.15(35) 25267.38 0.23 25266.64 20.51
I11/2 2356.30(24) 2356.18 20.12 2355.91 20.39
I13/2 800.52(5) 800.50 0.02 800.55 20.03
I15/2 24131.36(15) 24131.35 20.01 24131.10 20.26
K11/2 23838.06(35) 23838.50 0.44 23838.26 0.20

K13/2 2646.41(8) 2646.37 20.04 2646.36 20.05
K15/2 ‘‘0’’ ‘‘0’’ ‘‘0’’ ‘‘0’’ ‘‘0’’

K17/2 23205.01(16) 23204.97 20.04 23204.68 20.33
L13/2 23073.14(35) 23073.64 0.50 23073.56 0.42

L15/2 2883.09(8) 2883.04 20.05 2883.08 20.01
L17/2 2494.04(5) 2494.04 0.00 2494.05 0.01

L19/2 22693.41(18) 22693.38 20.03 22693.14 20.27
., Vol. 71, No. 3, April 1999
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change this value from its LS-coupled limiting value. (A
separate measurement of the ionic linear Zeeman effect
could in principle test our fitted gJ value independently.)

The computed Rydberg levels we obtain with the vec-
tor interaction omitted are also given in Table II. The
largest discrepancies between the computed and ob-
served levels appear in the lower l states, where the
largest difference is 21.43 MHz for the n510 H9/2
state. Most important is the clear degradation in the
quality of the fit when we constrain bv50. The new
least-squares fit obtained with bv50 results in x2

527.5, approximately four times worse (per degree of
freedom) than the fit including the vector interaction.
We interpret this as evidence that the existence of the
vector interaction has been confirmed by the Ward et al.
(1996) measurement of Rydberg states of Ne.

To complement our analysis of this Rydberg system,
Table I compares our separately calculated ab initio the-
oretical values for as , a t , and bv with other theoretical
and experimental results. (These are obtained using
both the length and velocity forms of the electric dipole
matrix elements, which should agree if the ionic wave
functions are exact.) The details of these calculations are
presented by Clark et al. (1996). In view of the difficulty
of the ab initio calculation of such parameters for the
many-electron ion Ne1, the calculated values are seen
to agree reasonably well with the values deduced from
our fit to the measurements of Ward et al. (1996). This
strengthens the argument that the vector interaction
does exist and plays an important role in certain features
of Rydberg spectra.

VII. SUMMARY AND CONCLUSIONS

Our interest in this subject originated with the predic-
tion, by Zygelman (1990), of a nonrelativistic ‘‘orbit-
orbit-type’’ potential in Rydberg systems with non-
spherical cores. The use of standard atomic and
molecular theory techniques has established the exis-
tence and provided some degree of understanding of the
physical origin of such an interaction. Moreover, this
analysis has spawned an improved theory that permits a
spectroscopically accurate description of Rydberg elec-
tron motion in the field of an arbitrary anisotropic core.

This unusual potential, purely electrostatic in nature
despite the vector structure, exists because of three ef-
fects: the dipole interaction between the core and the
Rydberg electron, the angular motion of the Rydberg
electron, and the anisotropy of the core with nonzero
angular momentum. Our preliminary analysis seems to
indicate that the Rydberg electron exerts a torque on
the ionic core, when the motion of the Rydberg electron
attemps to ‘‘drag’’ the core polarization vector. This
classical notion cannot be developed very far, however,
since the dynamics of the ionic core occur at far shorter
time scales than the time scale of the Rydberg electron
motion, because the ionic core energy splittings are very
large (DE@1 eV) and also because the ionic properties
unavoidably require a quantal description.
Rev. Mod. Phys., Vol. 71, No. 3, April 1999
Despite the substantial theoretical and experimental
interest in high-precision Rydberg state spectroscopy
over the years, the vector interaction term of Eq. (1) was
not previously identified. A line of research with possi-
bly related insights is that of Berry and Robbins (1993).
These authors use classical mechanics to treat a slow
massive particle in the field of a fast system with spin SW ,
and obtain terms in the interaction that involve SW and
the orbital angular momentum. The quantum mechani-
cal description presented in this paper differs sufficiently
in spirit, however, that it has not proven easy to connect
it with those other notions, which were termed ‘‘geo-
metrical magnetism’’ by Berry and Robbins (1993).

The study of the n510 Rydberg states of Ne has been
the first opportunity to establish the existence of the vec-
tor interaction within a Rydberg system. The extraction
of the Ne1 multipole moments, polarizabilities, and hy-
perpolarizabilities, through a procedure of minimizing a
weighted x2 function, involving differences between the
observed (Ward et al., 1996) and computed energy lev-
els, demonstrated the importance of channel coupling
even in high-l states that can usually be described by
perturbative methods. The 80% reduction in the x2 per
degree of freedom is evidence for the importance of the
vector interaction. Moreover, the approximate agree-
ment between the fitted coefficient and our relatively
crude calculation of the vector hyperpolarizability
(Clark et al., 1996) provides further confirmation of this
surprising vector interaction.

While almost any Rydberg system with an anisotropic
core offers the opportunity to gain more insight into the
vector and other anisotropic interactions, the most
promising systems are simple diatomic sytems like
H2, D2, and HD where accurate core wave function in-
formation can be obtained. A recent analysis shows that
the vector hyperpolarizability bv for H2 and D2 Rydberg
states (Clark, 1998) is far smaller than for an atomic ion,
owing to the greater rotational inertia of a molecular
ion. The additional complexity in the rotational and vi-
brational degrees of freedom offers fertile possibilities
to further our understanding of subtle interactions in
quantum physics and to strengthen the fruitful interac-
tion of theory and experiment.
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