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The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical
perspective. Mean-field theory provides a framework to understand the main features of the
condensation and the role of interactions between particles. Various properties of these systems are
discussed, including the density profiles and the energy of the ground-state configurations, the
collective oscillations and the dynamics of the expansion, the condensate fraction and the
thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length
and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as
well as the dynamic properties of the system; the predictions of mean-field theory are in excellent
agreement with available experimental results. Effects of superfluidity including the existence of
quantized vortices and the reduction of the moment of inertia are discussed, as well as the
consequences of coherence such as the Josephson effect and interference phenomena. The review also
assesses the accuracy and limitations of the mean-field approach. [S0034-6861(99)00103-8]
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FIG. 1. (Color) Images of the velocity distribution of rubidium atoms in the experiment by Anderson et al. (1995), taken by means
of the expansion method. The left frame corresponds to a gas at a temperature just above condensation; the center frame, just
after the appearance of the condensate; the right frame, after further evaporation leaves a sample of nearly pure condensate. The
field of view is 200 um X270 um, and corresponds to the distance the atoms have moved in about 1/20 s. The color corresponds to
the number of atoms at each velocity, with red being the fewest and white being the most. From Cornell (1996).

London (1938) as a possible manifestation of BEC. Evi-
dence for BEC in helium later emerged from the analy-
sis of the momentum distribution of the atoms measured
in neutron-scattering experiments (Sokol, 1995). In re-
cent years, BEC has been also investigated in the gas of
paraexcitons in semiconductors (see Wolfe, Lin, and

Snoke, 1995, and references therein), but an unambigu-
ous signature for BEC in this system has proven difficult
to find.

Efforts to Bose condense atomic gases began with hy-
drogen more than 15 years ago. In a series of experi-
ments hydrogen atoms were first cooled in a dilution

FIG. 2. (Color) Collective excitations of a Bose-Einstein condensate. Shown are in situ repeated phase-contrast images taken of
a “pure” condensate. The excitations were produced by modulating the magnetic fields which confine the condensate, and then
letting the condensate evolve freely. Both the center-of-mass and the shape oscillations are visible, and the ratio of their oscillation
frequencies can be accurately measured. The field of view in the vertical direction is about 620 um, corresponding to a condensate
width of the order of 200—300 um. The time step is 5 ms per frame. From Stamper-Kurn and Ketterle (1998).
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refrigerator, then trapped by a magnetic field and fur-
ther cooled by evaporation. This approach has come
very close to observing BEC, but is still limited by re-
combination of individual atoms to form molecules (Sil-
vera and Walraven, 1980 and 1986; Greytak and Klepp-
ner, 1984; Greytak, 1995; Silvera, 1995). At the time of
this review, first observations of BEC in spin-polarized
hydrogen have been reported (Fried et al., 1998). In the
1980s laser-based techniques, such as laser cooling and
magneto-optical trapping, were developed to cool and
trap neutral atoms [for recent reviews, see Chu (1998),
Cohen-Tannoudji (1998), and Phillips (1998)]. Alkali at-
oms are well suited to laser-based methods because their
optical transitions can be excited by available lasers and
because they have a favorable internal energy-level
structure for cooling to very low temperatures. Once
they are trapped, their temperature can be lowered fur-
ther by evaporative cooling [this technique has been re-
cently reviewed by Ketterle and van Druten (1996a) and
by Walraven (1996)]. By combining laser and evapora-
tive cooling for alkali atoms, experimentalists eventually
succeeded in reaching the temperatures and densities re-
quired to observe BEC. It is worth noticing that, in these
conditions, the equilibrium configuration of the system
would be the solid phase. Thus, in order to observe
BEC, one has to preserve the system in a metastable gas
phase for a sufficiently long time. This is possible be-
cause three-body collisions are rare events in dilute and
cold gases, whose lifetime is hence long enough to carry
out experiments. So far BEC has been realized in ¥’Rb
(Anderson et al., 1995; Han et al., 1998; Kasevich, 1997
Ernst, Marte et al., 1998; Esslinger ef al., 1998; Soding
et al., 1999), in BNa (Davis et al., 1995; Hau, 1997 and
1998; Lutwak et al, 1998), and in ’Li (Bradley et al.,
1995 and 1997). The number of experiments on BEC in
vapors of rubidium and sodium is now growing fast. In
the meanwhile, intense experimental research is cur-
rently carried out also on vapors of caesium, potassium,
and metastable helium.

One of the most relevant features of these trapped
Bose gases is that they are inhomogeneous and finite-
sized systems, the number of atoms ranging typically
from a few thousands to several millions. In most cases,
the confining traps are well approximated by harmonic
potentials. The trapping frequency wy, also provides a
characteristic length scale for the system, ay,
=[#/(mwy,)]"% of the order of a few microns in the
available samples. Density variations occur on this scale.
This is a major difference with respect to other systems,
like, for instance, superfluid helium, where the effects of
inhomogeneity take place on a microscopic scale fixed
by the interatomic distance. In the case of ¥Rb and
2Na, the size of the system is enlarged as an effect of
repulsive two-body forces and the trapped gases can be-
come almost macroscopic objects, directly measurable
with optical methods. As an example, we show in Fig. 2
a sequence of in situ images of an oscillating condensate
of sodium atoms taken at the Massachusetts Institute of
Technology (MIT), where the mean axial extent is of the
order of 0.3 mm.
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FIG. 3. Density distribution of 80 000 sodium atoms in the trap
of Hau ef al. (1998) as a function of the axial coordinate. The
experimental points correspond to the measured optical den-
sity, which is proportional to the column density of the atom
cloud along the path of the light beam. The data agree well
with the prediction of mean-field theory for interacting atoms
(solid line) discussed in Sec. III. Conversely, a noninteracting
gas in the same trap would have a much sharper Gaussian
distribution (dashed line). The same normalization is used for
the three density profiles. The central peak of the Gaussian is
found at about 5500 um™2. The figure points out the role of
atom-atom interaction in reducing the central density and en-
larging the size of the cloud.

The fact that these gases are highly inhomogeneous
has several important consequences. First BEC shows
up not only in momentum space, as happens in super-
fluid helium, but also in coordinate space. This double
possibility of investigating the effects of condensation is
very interesting from both the theoretical and experi-
mental viewpoints and provides novel methods of inves-
tigation for relevant quantities, like the temperature de-
pendence of the condensate, energy and density
distributions, interference phenomena, frequencies of
collective excitations, and so on.

Another important consequence of the inhomogene-
ity of these systems is the role played by two-body inter-
actions. This aspect will be extensively discussed in the
present review. The main point is that, despite the very
dilute nature of these gases (typically the average dis-
tance between atoms is more than ten times the range of
interatomic forces), the combination of BEC and har-
monic trapping greatly enhances the effects of the atom-
atom interactions on important measurable quantities.
For instance, the central density of the interacting gas at
very low temperature can be easily one or two orders of
magnitude smaller than the density predicted for an
ideal gas in the same trap, as shown in Fig. 3. Despite
the inhomogeneity of these systems, which makes the
solution of the many-body problem nontrivial, the dilute
nature of the gas allows one to describe the effects of the
interaction in a rather fundamental way. In practice a
single physical parameter, the s-wave scattering length,
is sufficient to obtain an accurate description.
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The recent experimental achievements of BEC in al-
kali vapors have renewed a great interest in the theoret-
ical studies of Bose gases. A rather massive amount of
work has been done in the last couple of years, both to
interpret the initial observations and to predict new phe-
nomena. In the presence of harmonic confinement, the
many-body theory of interacting Bose gases gives rise to
several unexpected features. This opens new theoretical
perspectives in this interdisciplinary field, where useful
concepts coming from different areas of physics (atomic
physics, quantum optics, statistical mechanics, and
condensed-matter physics) are now merging together.

The natural starting point for studying the behavior of
these systems is the theory of weakly interacting bosons
which, for inhomogeneous systems, takes the form of
the Gross-Pitaevskii theory. This is a mean-field ap-
proach for the order parameter associated with the con-
densate. It provides closed and relatively simple equa-
tions for describing the relevant phenomena associated
with BEC. In particular, it reproduces typical properties
exhibited by superfluid systems, like the propagation of
collective excitations and the interference effects origi-
nating from the phase of the order parameter. The
theory is well suited to describing most of the effects of
two-body interactions in these dilute gases at zero tem-
perature and can be naturally generalized to also ex-
plore thermal effects.

An extensive discussion of the application of mean-
field theory to these systems is the main basis of the
present review article. We also give, whenever possible,
simple arguments based on scales of length, energy, and
density, in order to point out the relevant parameters for
the description of the various phenomena.

There are several topics which are only marginally
discussed in our paper. These include, among others,
collisional and thermalization processes, phase diffusion
phenomena, light scattering from the condensate, and
analogies with systems of coherent photons. In this sense
our work is complementary to other recent review ar-
ticles (Burnett, 1996; Parkins and Walls, 1998). Further-
more, in our paper we do not discuss the physics of ul-
tracold collisions and the determination of the scattering
length which have been recently the object of important
experimental and theoretical studies in the alkalis
(Heinzen, 1997; Weiner et al., 1999).

The plan of the paper is the following:

In Sec. II we summarize the basic features of the non-
interacting Bose gas in harmonic traps and we introduce
the first relevant length and energy scales, like the oscil-
lator length and the critical temperature. We also com-
ment on finite-size effects, on the role of dimensionality
and on the possible relevance of anharmonic traps.

In Sec. III we discuss the effects of the interaction on
the ground state. We develop the formalism of mean-
field theory, based on the Gross-Pitaevskii equation. We
consider the case of gases interacting with both repulsive
and attractive forces. We then discuss in detail the
large-N limit for systems interacting with repulsive
forces, leading to the so-called Thomas-Fermi approxi-
mation, where the ground-state properties can be calcu-
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lated in analytic form. In the last part, we discuss the
validity of the mean-field approach and give explicit re-
sults for the first corrections, beyond mean field, to the
ground-state properties, including the quantum deple-
tion of the condensate, i.e., the decrease in the conden-
sate fraction produced by the interaction.

In Sec. IV we investigate the dynamic behavior of the
condensate using the time-dependent Gross-Pitaevskii
equation. The equations of motion for the density and
the velocity field of the condensate in the large-N limit,
where the Thomas-Fermi approximation is valid, are
shown to have the form of the hydrodynamic equations
of superfluids. We also discuss the dynamic behavior in
the nonlinear regime (large amplitude oscillations and
free expansion), the collective modes in the case of at-
tractive forces, and the transition from collective to
single-particle states in the spectrum of excitations.

In Sec. V we discuss thermal effects. We show how
one can define the thermodynamic limit in these inho-
mogeneous systems and how interactions modify the be-
havior compared to the noninteracting case. We exten-
sively discuss the occurrence of scaling properties in the
thermodynamic limit. We review several results for the
shift of the critical temperature and for the temperature
dependence of thermodynamic functions, like the con-
densate fraction, the chemical potential, and the release
energy. We also discuss the behavior of the excitations
at finite temperature.

In Sec. VI we illustrate some features of these trapped
Bose gases in connection with superfluidity and phase
coherence. We discuss, in particular, the structure of
quantized vortices and the behavior of the moment of
inertia, as well as interference phenomena and quantum
effects beyond mean-field theory, like the collapse re-
vival of collective oscillations.

In Sec. VII we draw our conclusions and we discuss
some further future perspectives in the field.

The overlap between current theoretical and experi-
mental investigations of BEC in trapped alkalis is al-
ready wide and rich. Various theoretical predictions,
concerning the ground state, dynamics, and thermody-
namics are found to agree very well with observations;
others are stimulating new experiments. The comparison
between theory and experiments then represents an ex-
citing feature of these novel systems, which will be fre-
quently emphasized in the present review.

Il. THE IDEAL BOSE GAS IN A HARMONIC TRAP
A. The condensate of noninteracting bosons

An important feature characterizing the available
magnetic traps for alkali atoms is that the confining po-

tential can be safely approximated with the quadratic
form

m
Vexd(r)= 7(w3x2+w§y2+w§zz). (1)

Thus the investigation of these systems starts as a text-



Dalfovo et al.. Bose-Einstein condensation in trapped gases 467

book application of nonrelativistic quantum mechanics
for identical pointlike particles in a harmonic potential.

The first step consists in neglecting the atom-atom in-
teraction. In this case, almost all predictions are analyti-
cal and relatively simple. The many-body Hamiltonian is
the sum of single-particle Hamiltonians whose eigenval-
ues have the form

n,+*-lhw

2

zZ

1
ny+§

1
snxnynZZ(nx+ E)hwﬁ— hiw,+

@
where {n,,n,,n.} are non-negative integers. The
ground state ¢(ry,...,ry) of N noninteracting bosons
confined by the potential (1) is obtained by putting all
the particles in the lowest single-particle state (n,=n,
=n,=0), namely ¢(r(,...,ry)=11;¢(r;), where ¢y(r)
is given by

m
- ﬁ(wxxz-f- a)yyz-i- a)zzz) ,

3
and we have introduced the geometric average of the
oscillator frequencies:

. Moy, 3/4
(PO(I)_ = eXp

whoz(wxwywz)lB' (4)

The density distribution then becomes 7 (r) =N|g(r)|?
and its value grows with N. The size of the cloud is in-
stead independent of N and is fixed by the harmonic
oscillator length:

3 12
aho= ( ) (5)

n wy,

which corresponds to the average width of the Gaussian
in Eq. (3). This is the first important length scale of the
system. In the available experiments, it is typically of the
order of a,,~1 um. At finite temperature only part of
the atoms occupy the lowest state, the others being ther-
mally distributed in the excited states at higher energy.
The radius of the thermal cloud is larger than ap,. A
rough estimate can be obtained by assuming kpT
>hwy, and approximating the density of the thermal
cloud with a classical Boltzmann distribution 7ny(r)
wexp[—Vex(r)/kgT]. I Ve (r)=(1R2)mwir?, the
width of the Gaussian is R;=ay(kgT/hwy,)"?, and
hence larger than ay,. The use of a Bose distribution
function does not change significantly this estimate.
The above discussion reveals that Bose-Einstein con-
densation in harmonic traps shows up with the appear-
ance of a sharp peak in the central region of the density
distribution. An example is shown in Fig. 4, where we
plot the prediction for the condensate and thermal den-
sities of 5000 noninteracting particles in a spherical trap
at a temperature T=0.97°, where T is the temperature
at which condensation occurs (see discussion in the next
section). The curves correspond to the column density,
namely the particle density integrated along one direc-
tion, n(z)=[dxn(x,0,z); this is a typical measured
quantity, the x direction being the direction of the light
beam used to image the atomic cloud. By plotting di-
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FIG. 4. Column density for 5000 noninteracting bosons in a
spherical trap at temperature T=O.9T?. The central peak is
the condensate, superimposed on the broader thermal distri-
bution. Distance and density are in units of ap, and a;oz, re-
spectively. The density is normalized to the number of atoms.
The same curves can be identified with the momentum distri-
bution of the condensed and noncondensed particles, provided
the abscissa and the ordinate are replaced with p,, in units of
ay., and the momentum distribution, in units of af,, respec-
tively.

rectly the density n(r), the ratio of the condensed and
noncondensed densities at the center would be even
larger.

By taking the Fourier transform of the ground-state
wave function, one can also calculate the momentum
distribution of the atoms in the condensate. For the
ideal gas, it is given by a Gaussian centered at zero mo-
mentum and having a width proportional to a{ol. The
distribution of the thermal cloud is, also in momentum
space, broader. Using a classical distribution function
one finds that the width is proportional to (kzT)2. Ac-
tually, the momentum distributions of the condensed
and noncondensed particles of an ideal gas in harmonic
traps have exactly the same form as the density distribu-
tions ny and n4 shown in Fig. 4.

The appearance of the condensate as a narrow peak in
both coordinate and momentum space is a peculiar fea-
ture of trapped Bose gases having important conse-
quences in both the experimental and theoretical analy-
sis. This is different from the case of a uniform gas
where the particles condense into a state of zero mo-
mentum, but BEC cannot be revealed in coordinate
space, since the condensed and noncondensed particles
fill the same volume.

Indeed, the condensate has been detected experimen-
tally as the occurrence of a sharp peak over a broader
distribution, in both the velocity and spatial distribu-
tions. In the first case, one lets the condensate expand
freely, by switching off the trap, and measures the den-
sity of the expanded cloud with light absorption (Ander-
son et al., 1995). If the particles do not interact, the ex-
pansion is ballistic and the imaged spatial distribution of
the expanding cloud can be directly related to the initial
momentum distribution. In the second case, one mea-
sures directly the density of the atoms in the trap by
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means of dispersive light scattering (Andrews et al.,
1996). In both cases, the appearance of a sharp peak is
the main signature of Bose-Einstein condensation. An
important theoretical task consists of predicting how the
shape of these peaks is modified by the inclusion of two-
body interactions. As anticipated in Fig. 3, the interac-
tions can change the picture drastically. This effect will
be deeply discussed in Sec. I1I.

The shape of the confining field also fixes the symme-
try of the problem. One can use spherical or axially sym-
metric traps, for instance. The first experiments on ru-
bidium and sodium were carried out with axial
symmetry. In this case, one can define an axial coordi-
nate z and a radial coordinate r, =(x2+y?)'? and the
corresponding frequencies, o, and o, = w, = w, . The ra-
tio between the axial and radial frequencies, X\
=w,/w, , fixes the asymmetry of the trap. For A<1 the
trap is cigar shaped while for A>1 is disk shaped. In
terms of A the ground state Eq. (3) for noninteracting
bosons can be rewritten as

14
®o(r)= e exp

. (6)

1
- W(riﬂ\zz)
€

Here a, =(h/mw, )" is the harmonic-oscillator length
in the xy plane and, since w, =\~ "w,,, one has also
a, = \6q ho -

The choice of an axially symmetric trap has proven
useful for providing further evidence of Bose-Einstein
condensation from the analysis of the momentum distri-
bution. To understand this point, let us take the Four-
ier transform of the wave function Eq. (6): @q(p)
cexp[—a? (p> +\"'p?)/24%]. From this one can calculate
the average axial and radial widths. Their ratio,

WP Py = 1, 7

is fixed by the asymmetry parameter of the trap. Thus
the shape of the expanded cloud in the xz plane is an
ellipse, the ratio between the two axis (aspect ratio) be-
ing equal to \/\. If the particles, instead of being in the
lowest state (condensate), were thermally distributed
among many eigenstates at higher energy, their distribu-
tion function would be isotropic in momentum space,
according to the equipartition principle, and the aspect
ratio would be equal to 1. Indeed, the occurrence of
anisotropy in the condensate peak has been interpreted
from the very beginning as an important signature of
BEC (Anderson et al., 1995; Davis et al., 1995; Mewes
et al., 1996a). In the case of the experiment at the Joint
Institute for Laboratory Astrophysics (JILA) in Boul-
der, the trap is disk-shaped with A= 8. The first mea-
sured value of the aspect ratio was about 50% larger
than the prediction, J\, of the noninteracting model
(Anderson et al., 1995). Of course, a quantitative com-
parison can be obtained only including the atom-atom
interaction, which affects the dynamics of the expansion
(Holland and Cooper, 1996; Dalfovo and Stringari, 1996;
Holland et al., 1997; Dalfovo, Minniti, Stringari, and Pi-
taevskii, 1997). However, the noninteracting model al-
ready points out this interesting effect due to anisotropy.
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B. Trapped bosons at finite temperature:
thermodynamic limit

At temperature T the total number of particles is
given, in the grand-canonical ensemble, by the sum

N= 2 {eXp[B(Snxnynz_lu)]_1}_17 (8)

Ny shy Ry

while the total energy is given by

E= X

Ry Ny N,

Snxnynz{exp[ﬁ(snxnynz_M)]_1}_1» (9)

where u is the chemical potential and 8= (kzT) . Be-
low a given temperature the population of the lowest
state becomes macroscopic and this corresponds to the
onset of Bose-Einstein condensation. The calculation of
the critical temperature, the fraction of particles in the
lowest state (condensate fraction), and the other ther-
modynamic quantities, starts from Egs. (8) and (9) with
the appropriate spectrum Enenyn, (de Groot, Hooman,

and Ten Seldam, 1950; Bagnato, Pritchard, and Klepp-
ner, 1987). Indeed the statistical mechanics of these
trapped gases is less trivial than expected at first sight.
Several interesting problems arise from the fact that
these systems have a finite size and are inhomogeneous.
For example, the usual definition of thermodynamic
limit (increasing N and volume with the average density
kept constant) is not appropriate for trapped gases.
Moreover, the traps can be made very anisotropic,
reaching the limit of quasi-two-dimensional and quasi-
one-dimensional systems, so that interesting effects of
reduced dimensionality can be also investigated.

As in the case of a uniform Bose gas, it is convenient
to separate out the lowest eigenvalue g, from the sum
(8) and call N the number of particles in this state. This
number can be macroscopic, i.e., of the order of N, when
the chemical potential becomes equal to the energy of
the lowest state,

3 _
B pe=5ho, (10)

where w=(w,+w,+w.)/3 is the arithmetic average of
the trapping frequencies. Inserting this value in the rest
of the sum, one can write

1
", ,nyE,nZ;&o exp[ Bh(wn,+oyn,+w.n )]—1"
(11)
In order to evaluate this sum explicitly, one usually as-
sumes that the level spacing becomes smaller and

smaller when N—oo, so that the sum can be replaced by
an integral:

N_N():

NoN _foc dn.dnydn,
o ] exp[ Bh(wn+oyn,+o.n)]—-1"

(12)

This assumption corresponds to a semiclassical descrip-
tion of the excited states. Its validity implies that the
relevant excitation energies, contributing to the sum
(11), are much larger than the level spacing fixed by the
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oscillator frequencies. The accuracy of the semiclassical
approximation (12) is expected to be good if the number
of trapped atoms is large and kpT>%w;,. It can be
tested a posteriori by comparing the integral (12) with
the numerical summation (11).

The integral (12) can be easily calculated by changing
variables (Bhw,n, =7, , etc.). One finds

kBT)3’ 13

ﬁ(,()ho

N—N0=g(3)(

where {(n) is the Riemann ¢ function and wy, is the
geometric average (4). From this result one can also ob-
tain the transition temperature for Bose-Einstein con-
densation. In fact, by imposing that Ny—0 at the transi-
tion, one gets

N 1/3
kpT= hwh0< @) =0.94% w, N'°. (14)

For temperatures higher than 7° the chemical potential
is less than u. and becomes N dependent, while the
population of the lowest state is of the order of 1 instead
of N. The proper thermodynamic limit for these systems
is obtained by letting N—o and wy,—0, while keeping
the product Nw; , constant. With this definition the tran-
sition temperature (14) is well defined in the thermody-
namic limit. Inserting the above expression for 7% into
Eq. (13) one gets the T dependence of the condensate
fraction for T<T":

3

(3
c

N (15)

The same result can be also obtained by rewriting Eq.
(12) as an integral over the energy, in the form

= p(e)de
NN | e T o

where p(e) is the density of states. The latter can be
calculated by using the spectrum (2) and turns out to be
quadratic in &: p(g)=(1/2)(hwy,) s> Inserting this
value into Eq. (16), one finds again result Eq. (13). The
integral E= [jde p(e)e/[exp(Be)—1] gives instead the
total energy of the system Eq. (9) for which one finds
the result

E  3(4)(T 4
NksT!  £(3) (W

Starting from the energy one can calculate specific heat,
entropy, and the other thermodynamic quantities.
These results can be compared with the well-known
theory of uniform Bose gases (see, for example, Huang,
1987). In this case, the eigenstates of the Hamiltonian
are plane waves of energy e =p?/(2m), with the density
of states given by p(g)=(27) 2V (2m/#?)¥*\/e, where
V is the volume. The sum (8) gives Ny/N=1
—(TIT%? and kzT’=(27h%/m)[n/{(3/2)1?7, with n
=N/V, while the energy is given by E/(NkzT?)
=3¢(5/2)/[2£(312)1(TITY) 2.

(7)
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Another quantity of interest, which can be easily cal-
culated using the semiclassical approximation, is the
density of thermal particles n(r). The sum of n+(r) and
the condensate density, 7,(r) =N|¢y(r)|?, gives the to-
tal density n(r)=ny(r)+n(r). At T<T° and in the
thermodynamic limit, the thermal density is given
by the integral over momentum space n7(r)
=[dp(2nh) [exp(Be(p,r))— 117",  where &(p.r)
=p22m+V(r) is the semiclassical energy in phase
space. The result is

np(t) =7 gyn(e” BVexD), (18)

where Ny=[27h%/(mkyT)]"? is the thermal wave-
length. The function g3,(r) belongs to the class of func-
tions g.(z)=2,_,2"/n* [see, for example, Huang
(1987)]. By integrating n;(r) over space one gets again
the number of thermally depleted atoms N-—N,
=N(T/T?)3, consistent with Eq. (15). In a similar way
one can obtain the distribution of thermal particles in
momentum space: n7(p)=(\ymwy,) g3l exp(—Bp?/
2m)].

The above analysis points out the existence of two
relevant scales of energy for the ideal gas: the transition
temperature k5 T? and the average level spacing % wy, .
From expression (14), one clearly sees that kg TS can be
much larger than Zw;,. In the available traps, with N
ranging from a few thousand to several millions, the
transition temperature is 20 to 200 times larger than
f oy, . This also means that the semiclassical approxima-
tion is expected to work well in these systems on a wide
and useful range of temperatures. The frequency
./ (27) is fixed by the trapping potential and ranges
typically from tens to hundreds of Hertz. This gives # wy,,
of the order of a few nK. In one of the first experiments
at JILA (Ensher et al., 1996), for example, the average
level spacing was about 9 nK, corresponding to a critical
temperature [see Eq. (14)] of about 300 nK with 40000
atoms in the trap. We also note that, for the ideal gas,
the chemical potential is of the same order of #wy,,, as
shown by Eq. (10). However, as we will see later on, its
value depends significantly on the atom-atom interac-
tion and shall consequently provide a third important
scale of energy.

The noninteracting harmonic-oscillator model has
guided experimentalists to the proper value of the criti-
cal temperature. In fact, the measured transition tem-
perature was found to be very close to the ideal gas
value Eq. (14), the occupation of the condensate becom-
ing macroscopically large below the critical temperature
as predicted by Eq. (15). As an example, in Fig. 5 we
show the first experimental results obtained at JILA
(Ensher et al., 1996). The occurrence of a sudden transi-
tion at T/T°~1 is evident. Similar results have been ob-
tained also at MIT (Mewes et al., 1996a). Apart from
problems related to temperature calibration, a more
quantitative comparison between theory and experi-
ments requires the inclusion of two main effects: the fact
that these gases have a finite number of particles and
that they are interacting. The role of interactions will be
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FIG. 5. Condensate fraction as a function of 7/7". Circles are
the experimental results of Ensher ef al. (1996), while the
dashed line is Eq. (15).

analyzed extensively in the next sections. Here we
briefly discuss the relevance of finite-size corrections.

C. Finite-size effects

The number of atoms that can be put into the traps is
not truly macroscopic. So far experiments have been
carried out with a maximum of about 107 atoms. As a
consequence, the thermodynamic limit is never reached
exactly. A first effect is the lack of discontinuities in the
thermodynamic functions. Hence Bose-Einstein conden-
sation in these trapped gases is not, strictly speaking, a
phase transition. In practice, however, the macroscopic
occupation of the lowest state occurs rather abruptly as
temperature is lowered and can be observed, as clearly
shown in Fig. 5. The transition is actually rounded with
respect to the predictions of the N—oo limit, but this
effect, though interesting, is small enough to make the
words transition and critical temperature meaningful
even for finite-sized systems. It is also worth noticing
that, instead of being a limitation, the fact that N is finite
makes the system potentially richer, because new inter-
esting regimes can be explored even in cases where
there is no real phase transition in the thermodynamic
limit. An example is BEC in one dimension, as we will
see in Sec. II D.

In order to work out the thermodynamics of a nonin-
teracting Bose gas, all one needs is the spectrum of
single-particle levels entering the Bose distribution func-
tion. Working in the grand-canonical ensemble for in-
stance, the average number of atoms is given by the sum
(8) and it is not necessary to take the N—o limit. In
fact, the explicit summation can be carried out numeri-
cally (Ketterle and van Druten, 1996b) for a fixed num-
ber of particles and a given temperature, the chemical
potential being a function of N and 7. The condensate
fraction Ny(7T)/N, obtained in this way, turns out to be
smaller than the thermodynamic limit prediction (15)
and, as expected, the transition is rounded off. An ex-
ample of an exact calculation of the condensate fraction
for 1000 noninteracting particles is shown in Fig. 6
(circles). With their numerical calculation, Ketterle and
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FIG. 6. Condensate fraction vs temperature for an ideal gas in
a trap. The circles correspond to the exact quantum calculation
for N=1000 atoms in a trap with spherical symmetry and the
solid line to the prediction (19). The dashed line refers to the
thermodynamic limit (15).

van Druten (1996b) found that finite-size effects are sig-
nificant only for rather small values of N, less than about
10*. They also calculated the occupation of the first ex-
cited levels, finding that the fraction of atoms in these
states vanishes for N—<¢ and is very small already for N
of the order of 100.

The first finite-size correction to the law (15) for the
condensate fraction can be evaluated analytically by
studying the large-N limit of the sum (8) (Grossmann
and Holthaus, 1995a, 1995b; Ketterle and van Druten,
1996b; Kirsten and Toms, 1996; Haugerud, Haugset, and
Ravndal, 1997). The result for Ny(T)/N is given by

N T\3 3wl(2) T\?
N _<W> o257 3(T‘?) NE )

To the lowest order, finite-size effects decrease as N~
and depend on the ratio of the arithmetic (») and geo-
metric (wy,) averages of the oscillator frequencies. For
axially symmetric traps this ratio depends on the de-
formation parameter A=w, /0w, as o/op,=(\
+2)/(3\"3). For N=1000 prediction (19) is already in-
distinguishable from the exact result obtained by sum-
ming explicitly over the excited states of the harmonic-
oscillator Hamiltonian, apart from a narrow region near
T° where higher-order corrections should be included to
get the exact result. This is well illustrated in Fig. 6,
where we plot the prediction (19) (solid line) together
with the exact calculation obtained directly from Eq. (8)
(circles). Both predictions are also compared with the
thermodynamic limit, No/N=1—(T/T?).

Finite-size effects reduce the condensate fraction and
thus result in a lowering of the transition temperature as
compared to the N—o limit. By setting the left-hand
side of Eq. (19) equal to zero one can estimate the shift
of the critical temperature to order N~ (Grossmann
and Holthaus, 1995a, 1995b; Ketterle and van Druten,
1996b; Kirsten and Toms, 1996):

ST wl(2) 7]
_c__ “13 _ A1
TS ﬁwho[é(?ﬁ)]”N 0.73 whON . (20)
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Another problem, which deserves to be mentioned in
connection with the finite size of the system, is the
equivalence between different statistical ensembles and
the problem of fluctuations. In the thermodynamic limit,
the grand canonical, canonical, and microcanonical en-
sembles are expected to provide the same results. How-
ever, their equivalence is no longer ensured when N is
finite. Rigorous results concerning the ideal Bose gas in
a box and, in particular, the behavior of fluctuations, can
be found in Ziff et al. (1977) and Angelescu et al. (1996).
In the case of a trapped gas, Gajda and Rzazewski
(1997) have shown that the differences between the pre-
dictions of the micro- and grand canonical ensembles for
the temperature dependence of the condensate fraction
are small already at N~1000. The fluctuations of the
number of atoms in the condensate are instead much
more sensitive to the choice of the ensemble (Navez
et al., 1997; Wilkens and Weiss, 1997; see also Holthaus,
Kalinowski, and Kirsten, 1998, and references therein).
Inclusion of two-body interactions can, however, change
the scenario significantly (Giorgini, Pitaevskii, and Strin-
gari, 1998).

D. Role of dimensionality

So far we have discussed the properties of the ideal
Bose gas in three-dimensional space. Though the trap-
ping frequencies in each direction can be quite different,
nevertheless the relevant results for the temperature de-
pendence of the condensate have been obtained assum-
ing that kzT is much larger than all the oscillator ener-
gies fiw,,hw,,iw,. In order to observe effects of
reduced dimensionality, one should remove such a con-
dition in one or two directions.

The statistical behavior of two-dimensional (2D) and
1D Bose gases exhibits very peculiar features. Let us
first recall that in a uniform gas Bose-Einstein conden-
sation cannot occur in 2D and 1D at finite temperature
because thermal fluctuations destabilize the condensate.
This can be seen by noting that, for an ideal gas in the
presence of BEC, the chemical potential vanishes and
the momentum distribution, n(p)<[exp(Bp*/2m)
—1]7!, exhibits an infrared 1/p? divergence. In the ther-
modynamic limit, this yields a divergent contribution to
the integral [dpn(p) in 2D and 1D, thereby violating
the normalization condition. The absence of BEC in 1D
and 2D can be also proven for interacting uniform sys-
tems, as shown by Hohenberg (1967).

In the presence of harmonic trapping, the effects of
thermal fluctuations are strongly quenched due to the
different behavior exhibited by the density of states p(e).
In fact, while in the uniform gas p(g) behaves as £(?~2)2,
where d is the dimensionality of space, in the presence
of an harmonic potential one has instead the law p(¢)
~g?71 and, consequently, the integral (16) also con-
verges in 2D. The corresponding value of the critical
temperature is given by
N )1/2

@ (21)

kBTZD:thD(
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where w2D=(wxwy)1/2 (see, for example, Mullin, 1997,
and references therein). One notes first that in 2D the
thermodynamic limit corresponds to taking N—o and
w,p—0 with the product Nw3,, kept constant. In order
to achieve 2D Bose-Einstein condensation in real 3D
traps, one should choose the frequency w, in the third
direction large enough to satisfy the condition A w,p
<kpT,p<fw,; this implies rather severe conditions on
the deformation of the trap. The main features of BEC
in 2D gases confined in harmonic traps and, in particu-
lar, the applicability of the Hohenberg theorem and of
its extensions to nonuniform gases, have been discussed
in detail by Mullin (1997).

In 1D the situation is also very interesting. In this
case, Bose-FEinstein condensation cannot occur even in
the presence of harmonic confinement because of the
logarithmic divergence in the integral (16). This means
that the critical temperature for 1D Bose-Einstein con-
densation tends to zero in the thermodynamic limit if
one keeps the product Nw;p fixed. In fact, in 1D the
critical temperature for the ideal Bose gas can be esti-
mated to be (Ketterle and van Druten, 1996b)

N
kBTlD:hwle (22)

with wp=w,. Despite the fact that one cannot have
BEC in the thermodynamic limit, for finite values of N
the system can nevertheless exhibit a large occupation of
the lowest single-particle state in a useful interval of
temperatures. Furthermore, if the value of N and the
parameters of the trap are chosen in a proper way, one
observes a new interesting phenomenon associated with
the macroscopic occupation of the lowest energy state,
taking place in two distinct steps (van Druten and Ket-
terle, 1997). This happens when the relevant parameters
of the trap satisfy simultaneously the conditions T;p
<T;3p and hw, <kgT;5p, where T3p coincides with the
usual critical temperature given in Eq. (14) and w, is the
frequency of the trap in the xy plane. In the interval
T,p<T<Tsp, only the radial degrees of freedom are
frozen, while no condensation occurs in the axial de-
grees of freedom. At lower temperatures, below Tp,
the axial variables also start being frozen and the overall
ground state is occupied in a macroscopic way. An ex-
ample of this two-step BEC is shown in Fig. 7. It is also
interesting to notice that the conditions for the occur-
rence of two-step condensation in harmonic potentials
are peculiar of the 1D geometry. In fact, it is easy to
check that the corresponding conditions 7,p<T3p and
hw,<kgT;p, which would yield two-step BEC in 2D,
cannot be easily satisfied because of the absence of the
In N factor.

It is finally worth pointing out that the above discus-
sion concerns the behavior of the ideal Bose gas. Effects
of two-body interactions are expected to modify in a
deep way the nature of the phase transition in reduced
dimensionality. In particular, interacting Bose systems
exhibit the well-known Berezinsky-Kosterlitz-Thouless
transition in 2D (Berezinsky, 1971; Kosterlitz and Thou-
less, 1973). The case of trapped gases in 2D has been
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FIG. 7. Behavior of an ideal gas with N=10° particles in a
highly anisotropic trap: w, =5.6X10%w,, corresponding to
T3p=2T,p. Solid line: fraction of atoms in the ground state
(n,=0, n,=0, n,=0), dashed line: fraction of atoms in the
lowest radial state (n,=0, n,=0).

recently discussed by Mullin (1998) and is expected to
become an important issue in future investigations.

E. Nonharmonic traps and adiabatic transformations

A crucial step to reach the low temperatures needed
for BEC in the experiments realized so far is evapora-
tive cooling. This technique is intrinsically irreversible
since it is based on the loss of hot particles from the trap.
New interesting perspectives would open if one could
adiabatically cool the system in a reversible way (Ket-
terle and Pritchard, 1992; Pinkse et al., 1997). Reversible
cooling of the gas is achieved by adiabatically changing
the shape of the trap at a rate slow compared to the
internal equilibration rate.

An important class of trapping potentials for studying
the effects of adiabatic changes is provided by power-
law potentials of the form

Veu(r)=Ar®, (23)

where, for simplicity, we assume spherical symmetry.
The critical temperature for Bose-Einstein condensation
in the trap (23) has been calculated by Bagnato, Prit-
chard, and Kleppner (1987) and is given by

N#3 6\TA°
2m)? T(1+68)¢(32+6)

Here we have introduced the parameter 6=3/a, while
I'(x) is the usual gamma function. By setting §=3/2 and
A=muw} /2, one recovers the result for the transition
temperature in an isotropic harmonic trap. The result
for a rigid box is instead obtained by letting 6—0.

It is straightforward to work out the thermodynamics
of a noninteracting gas in the confining potential (23)
(Bagnato, Pritchard, and Kleppner, 1987; Pinkse et al.,
1997). For example, for the condensate fraction one
finds: No/N=1—(T/ TS)””. More relevant to the dis-
cussion of reversible processes is the entropy which re-
mains constant during the adiabatic change. Above T,

1/(32+ 8)

kpT= (24)
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the system can be approximated by a classical Maxwell-
Boltzmann gas and the entropy per particle takes the
simple form

5
—| 2+ 56— ¢(32+6)

Nkg |2 *

T

c

3—!—8
2

From this equation one sees that the entropy depends
on the parameter A of the external potential (23) only
through the ratio 7/ T(L).. Thus, for a fixed power-law de-
pendence of the trapping potential (6 fixed), an adia-
batic change of A, like, for example, an adiabatic expan-
sion of the harmonic trap, does not bring us closer to the
transition, since the ratio 7/7° remains constant. A re-
duction of the ratio 7/T" is instead obtained by increas-
ing adiabatically &, that is, changing the power-law de-
pendence of the trapping potential (Pinkse et al., 1997).
For example, in going from a harmonic (8;=3/2) to a
linear trap (8,=3), one gets the relation #,=0.7¢7" be-
tween the initial and final reduced temperature ¢
=T/T?. In this case a system at twice the critical tem-
perature (¢;=2) can be cooled down to nearly the criti-
cal point (¢t,=1.1). Using this technique it should be
possible, by a proper change of §, to adiabatically cool
the system from the high-temperature phase without
condensate down to temperatures below 7', with a large
fraction of atoms in the condensate state.

The possibility of reaching BEC using adiabatic trans-
formations has been recently successfully explored in an
experiment carried out at MIT (Stamper-Kurn, Miesner,
Chikkatur et al., 1998).

Ill. EFFECTS OF INTERACTIONS: GROUND STATE
A. Order parameter and mean-field theory

The many-body Hamiltonian describing N interacting
bosons confined by an external potential V., is given, in
second quantization, by
2

. . fi .
H=f dr¥i(r) —%V%Vm(r) P (r)

+%f drdy' ViU Vie—r) @)V (r),
(20)

where ¥ (r) and ¥ (r) are the boson field operators that
annihilate and create a particle at the position r, respec-
tively, and V(r—r') is the two-body interatomic poten-
tial.

The ground state of the system, as well as its thermo-
dynamic properties, can be directly calculated starting
from the Hamiltonian (26). For instance, Krauth (1996)
has used a path-integral Monte Carlo method to calcu-
late the thermodynamic behavior of 10* atoms interact-
ing with a repulsive ‘“hard-sphere’ potential. In prin-
ciple, this procedure gives exact results within statistical
errors. However, the calculation can be heavy or even
impracticable for systems with much larger values of N.
Mean-field approaches are commonly developed for in-
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teracting systems in order to overcome the problem of
solving exactly the full many-body Schrodinger equa-
tion. Apart from the convenience of avoiding heavy nu-
merical work, mean-field theories allow one to under-
stand the behavior of a system in terms of a set of
parameters having a clear physical meaning. This is par-
ticularly true in the case of trapped bosons. Actually
most of the results reviewed in this paper show that the
mean-field approach is very effective in providing quan-
titative predictions for the static, dynamic, and thermo-
dynamic properties of these trapped gases.

The basic idea for a mean-field description of a dilute
Bose gas was formulated by Bogoliubov (1947). The key
point consists in separating out the condensate contribu-
tion to the bosonic field operator. In general, the field

operator can be written as W (r)=3,¥ (r)a,, where
V¥ ,(r) are single-particle wave functions and a, are the
corresponding annihilation operators. The bosonic cre-
ation and annihilation operators a!, and a,, are defined
in Fock space through the relations

al|nogny . ng,..Y=\n+1|ng.ny,...n,+1,..),
(27)
Aglng, iy, )= \/n—a|n0,n1,...,na—1,...>,

(28)
where n, are the eigenvalues of the operator ﬁa=azaa

giving the number of atoms in the single-particle « state.
They obey the usual commutation rules:

[aa,a,g]:b‘a,ﬂ, [a,.ag]=0, [az,ag]zo. (29)

Bose-FEinstein condensation occurs when the number of
atoms n, of a particular single-particle state becomes
very large: ng=N,>1 and the ratio Ny/N remains finite
in the thermodynamic limit N—o. In this limit the
states with Ny and Ny*1=N, correspond to the same
physical configuration and, consequently, the operators
ay and a} can be treated like ¢ numbers: ay=aj=N,.
For a uniform gas in a volume V, BEC occurs in the
single-particle state ¥=1/\/V having zero momentum
and the field operator ¥ (r) can then be decomposed in
the form W (r)=N,/V+¥’'(r). By treating the opera-
tor ¥’ as a small perturbation, Bogoliubov developed
the “first-order” theory for the excitations of interacting
Bose gases.

The generalization of the Bogoliubov prescription to
the case of nonuniform and time-dependent configura-
tions is given by

W (r,0)=D(r,0) + V' (r,1), (30)

where we have used the Heisenberg representation for
the field operators. Here ®(r,t) is a complex function
defined as the expectation value of the field operator:

@ (r,1)=(¥(r,r)). Its modulus fixes the condensate den-
sity through n4(r,t) =|®(r,t)|?. The function ®(r,¢) also
possesses a well-defined phase and, similarly to the case
of uniform gases, this corresponds to assuming the oc-
currence of a broken gauge symmetry in the many-body
system.
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The function ®(r,7) is a classical field having the
meaning of an order parameter and is often called the
“wave function of the condensate.” It characterizes the
off-diagonal long-range behavior of the one-particle
density matrix p,(r’,r,t) =<\I}T(r’,t)\l}(r,t)). In fact, the
decomposition (30) implies the following asymptotic be-
havior (Ginzburg and Landau, 1950; Penrose, 1951; Pen-
rose and Onsager, 1956):
‘ /lir‘n p1(r' 1, t)=0* (x',1)D(r,t). (31)
r —r|—ow

Notice that, strictly speaking, in a finite-sized system nei-
ther the concept of broken gauge symmetry, nor the one
of off-diagonal long-range order can be applied. The
condensate wave function ® nevertheless still has a clear
meaning: it can in fact be determined through the diago-
nalization of the one-body density matrix,
Jdr' pi(x' ;x)®;(r')=N,;®,(r), and corresponds to the
eigenfunction ®;, with the largest eigenvalue N;. This
procedure has been used, for example, to explore Bose-
Einstein condensation in finite drops of liquid helium by
Lewart, Pandharipande, and Pieper (1988). The connec-
tion between the condensate wave function, defined
through the diagonalization of the density matrix and
the concept of order parameter commonly used in the
theory of superfluidity, is an interesting and nontrivial
problem in itself. Another important question concerns
the possible fragmentation of the condensate, taking
place when two or more eigenstates of the density ma-
trix p;(r’,r) are macroscopically occupied. One can
show (Nozieres and Saint James, 1982; Nozieres, 1995)
that, due to exchange effects, in uniform gases interact-
ing with repulsive forces, the fragmentation costs a mac-
roscopic energy. The behavior can however, be different
in the presence of attractive forces and almost degener-
ate single-particle states (Nozieres and Saint James,
1982; Kagan, Shlyapnikov, and Walraven, 1996; Wilkin,

Gunn, and Smith, 1998).
The decomposition (30) becomes particularly useful if

¥ s small, i.e., when the depletion of the condensate is
small. Then an equation for the order parameter can be
derived by expanding the theory to the lowest orders in
¥’ as in the case of uniform gases. The main difference
is that here one also gets a nontrivial “zeroth-order”
theory for ®(r,t).

In order to derive the equation for the condensate
wave function ®(r,t), one has to write the time evolu-

tion of the field operator W(r,r) using the Heisenberg
equation with the many-body Hamiltonian (26):

Jd . P
ih - (r)=[¥,H]

202
—| _ N TSN
[ . +Vext(r)+f dr'V'(xr' 1)

XV =)W, | (). (32)

Then one has to replace the operator ¥ with the classi-
cal field @. In the integral containing the atom-atom in-
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teraction V(r’'—r), this replacement is, in general, a
poor approximation when short distances (r' —r) are in-
volved. In a dilute and cold gas, one can nevertheless
obtain a proper expression for the interaction term by
observing that, in this case, only binary collisions at low
energy are relevant and these collisions are character-
ized by a single parameter, the s-wave scattering length,
independently of the details of the two-body potential.
This allows one to replace V(r' —r) in Eq. (32) with an
effective interaction

V(r'—r)=gér'—r), (33)

where the coupling constant g is related to the scattering
length a through

47h%a
8= .

- (34)

The use of the effective potential (33) in Eq. (32) is
compatible with the replacement of ¥ with ® and yields
the following closed equation for the order parameter:
a 2y2
o9 _[ "V 5
ih = D10 =| = o+ V(1) + 5| D(r,0)] )@(r,w.
(35)

This equation, known as Gross-Pitaevskii (GP) equa-
tion, was derived independently by Gross (1961, 1963)
and Pitaevskii (1961). Its validity is based on the condi-
tion that the s-wave scattering length be much smaller
than the average distance between atoms and that the
number of atoms in the condensate be much larger than
1. The GP equation can be used, at low temperature, to
explore the macroscopic behavior of the system, charac-
terized by variations of the order parameter over dis-
tances larger than the mean distance between atoms.

The Gross-Pitaevskii equation (35) can also be ob-
tained using a variational procedure:

(36)
where the energy functional E is given by
h? 2 2, 81504
E[®]=] dr E|VCD| + V(1) | P|*+ §|(I>| . (37

The first term in the integral (37) is the kinetic energy of
the condensate FEy;,, the second is the harmonic-
oscillator energy E},, while the last one is the mean-
field interaction energy E;,. Notice that the mean-field
term E;,, corresponds to the first correction in the virial
expansion for the energy of the gas. In the case of non-
negative and finite-range interatomic potentials, rigor-
ous bounds for this term have been obtained by Dyson
(1967), and Lieb and Yngvason (1998).

The dimensionless parameter controlling the validity
of the dilute-gas approximation, required for the deriva-
tion of Eq. (35), is the number of particles in a “scatter-
ing volume” |a|®. This can be written as n]a|®, where -
is the average density of the gas. Recent determinations
of the scattering length for the atomic species used in
the experiments on BEC give: a=2.75 nm for *Na
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(Tiesinga et al., 1996), a=5.77 nm for ¥Rb (Boesten
etal., 1997), and a=—1.45nm for 'Li (Abraham et al.,
1995). Typical values of density range instead from 10"
to 10 cm ™3, so that n]a|? is always less than 1072,

When 7a|><1 the system is said to be dilute or
weakly interacting. However, one should better clarify
the meaning of the words ‘“weakly interacting,” since
the smallness of the parameter 72]a|’ does not imply nec-
essarily that the interaction effects are small. These ef-
fects, in fact, have to be compared with the kinetic en-
ergy of the atoms in the trap. A first estimate can be
obtained by calculating the interaction energy, E;,, on
the ground state of the harmonic oscillator. This energy
is given by gNn, where the average density is of the
order of N/aj,, so that E;,»=N?|al/a}, On the other
hand, the kinetic energy is of the order of N%w;, and
thus E,*Nay, 2. One finally finds

(o]
Eint N|a|
— .
Evin  ano

(38)

This is the parameter expressing the importance of the
atom-atom interaction compared to the kinetic energy.
It can be easily larger than 1 even if nja|><1, so that
also very dilute gases can exhibit an important nonideal
behavior, as we will discuss in the following sections. In
the first experiments with rubidium atoms at JILA
(Anderson et al., 1995) the ratio |al|/ay, was about 7
x 1073, with N of the order of a few thousands. Thus
Nalay, is larger than 1. In the experiments with 'Li at
Rice University (Bradley et al., 1997; Sackett et al., 1997)
the same parameter is smaller than 1, since the number
of particles is of the order of 1000 and |a|/ap,~0.5
X 1073, Finally, in the experiments with sodium at MIT
(Davis et al., 1995) the number of atoms in the conden-
sate is very large (10°—107) and N|a|/ay,~10°=10*.
Due to the assumption ¥’ =0, the above formalism is
strictly valid only in the limit of zero temperature, when
all the particles are in the condensate. The dynamic be-
havior and the generalization to finite temperatures will
be discussed in Secs. IV and V, respectively. Here we
present the results for the stationary solution of the
Gross-Pitaevskii (GP) equation at zero temperature.

B. Ground state

For a system of noninteracting bosons in a harmonic
trap, the condensate has the form of a Gaussian of av-
erage width a;, [see Eq. (3)], and the central density is
proportional to N. If the atoms are interacting, the shape
of the condensate can change significantly with respect
to the Gaussian. The scattering length entering the
Gross-Pitaevskii equation can be positive or negative, its
sign and magnitude depending crucially on the details of
the atom-atom potential. Positive and negative values of
a correspond to an effective repulsion and attraction be-
tween the atoms, respectively. The change can be dra-
matic when the interaction energy is much greater than
the kinetic energy, that is, when N|a|/ay,>1. The cen-
tral density is lowered (raised) by a repulsive (attractive)
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wave function

O L] 1

r (units of ay,)

FIG. 8. Condensate wave function, at 7=0, obtained by solv-
ing numerically the stationary GP Eq. (39) in a spherical trap
and with attractive interaction among the atoms (a¢<0). The
three solid lines correspond to N|a|/ap,=0.1,0.3,0.5. The
dashed line is the prediction for the ideal gas. Here the radius
r is in units of the oscillator length a,, and we plot
(aj,/N)"2¢(r), so that the curves are normalized to 1 [see also

Eq. (40)].

interaction and the radius of the atomic cloud conse-
quently increases (decreases). This effect of the interac-
tion has important consequences, not only for the struc-
ture of the ground state, but also for the dynamics and
thermodynamics of the system, as we will see later on.

The ground state can be easily obtained within
the formalism of mean-field theory. For this, one
can write the condensate wave function as ®(r,t)
= ¢(r)exp(—iut/h), where u is the chemical potential
and ¢ is real and normalized to the total number of
particles, [dr ?=Ny=N. Then the Gross-Pitaevskii
Eq. (35) becomes

h2V?

T Ve 20 | S =p(x).  (39)
This has the form of a ‘“nonlinear Schrodinger equa-
tion,” the nonlinearity coming from the mean-field term,
proportional to the particle density 7(r)= ¢*(r). In the
absence of interactions (g=0), this equation reduces to
the usual Schrodinger equation for the single-particle
Hamiltonian —#2/(2m)V?+ V (r) and, for harmonic
confinement, the ground-state solution coincides, apart
from a normalization factor, with the Gaussian function
(3): ¢(r)=+Ney(r). We note, in passing, that a similar
nonlinear equation for the order parameter has been
also considered in connection with the theory of super-
fluid helium near the N\ point (Ginzburg and Pitaevskii,
1958); in that case, however, the ingredients of the equa-
tion have a different physical meaning.

The numerical solution of the GP Eq. (39) is relatively
easy to obtain (Edwards and Burnett, 1995; Ruprecht
et al., 1995; Dalfovo and Stringari, 1996; Edwards, Dodd
et al., 1996b; Holland and Cooper, 1996). Typical wave
functions ¢, calculated from Eq. (39) with different val-
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FIG. 9. Same as in Fig. 8, but for repulsive interaction (a
>0) and Na/a;,,=1,10,100.

ues of the parameter N|al|/ay,, are shown in Figs. 8 and
9 for attractive and repulsive interaction, respectively.
The effects of the interaction are revealed by the devia-
tions from the Gaussian profile (3) predicted by the non-
interacting model. Excellent agreement has been found
by comparing the solution of the GP equation with the
experimental density profiles obtained at low tempera-
ture (Hau et al., 1998), as shown in Fig. 3. The conden-
sate wave function obtained with the stationary GP
equation has been also compared with the results of an
ab initio Monte Carlo simulation starting from Hamil-
tonian (26), finding very good agreement (Krauth,
1996).

The role of the parameter N|a|/ay,, already discussed
in the previous section, can be easily pointed out, in the
Gross-Pitaevskii equation, by using rescaled dimension-
less variables. Let us consider a spherical trap with fre-
quency wyp, and use ay,, a;(f, and %oy, as units of
length, density, and energy, respectively. By putting a
tilde over the rescaled quantities, Eq. (39) becomes

[— V247248 m(Nalay,) > (D) ]dF) =21 ¢(F).  (40)
In these new units the order parameter satisfies the nor-

malization condition [d¥ ¢|?>=1. It is now evident that
the importance of the atom-atom interaction is com-
pletely fixed by the parameter Na/ay,, .

It is worth noticing that the solution of the stationary
GP Eq. (39) minimizes the energy functional (37) for a
fixed number of particles. Since the ground state has no
currents, the energy is a functional of the density only,
which can be written in the form

h? n?
E[n]zf dr [E|V\/r—z|2+nvext(r)+ gT
=Exint Enot Ein - (41)

The first term corresponds to the quantum kinetic en-
ergy coming from the uncertainty principle; it is usually
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named ‘‘quantum pressure’ and vanishes for uniform
systems. In general, for a nonstationary order param-
eter, the kinetic energy in Eq. (37) also includes the con-
tribution of currents in the form of an additional term
containing the gradient of the phase of ®.

By direct integration of the GP Eq. (39) one finds the
useful expression

u=(Eyint+ Enot2Ei,)/N (42)

for the chemical potential in terms of the different con-
tributions to the energy functional (41). Further impor-
tant relationships can be also found by means of the
virial theorem. In fact, since the energy (37) is stationary
for any variation of ¢ around the exact solution of the
GP equation, one can choose scaling transformations of
the form ¢(x,y,z)—(1+v)"?¢[(1+v)x,y,z], and in-
sert them in Eq. (37). By imposing the energy variation
to vanish at first order in v, one finally gets

1
(Ekin)x_(Eho)x+ EEintZO? (43)

where (Exin)v=(Zip})2m and (Eno)x=(m/
2)w*(2,;x?). Analogous expressions are found by choos-
ing similar scaling transformations for the y and z coor-
dinates. By summing over the three directions one fi-
nally finds the virial relation:

2Ekin_2Eh0+3Eint:0' (44)

The above results are exact within Gross-Pitaevskii
theory and can be used, for instance, to check the nu-
merical solutions of Eq. (39).

In a series of experiments, a gas has been imaged after
a sudden switching off of the trap and the kinetic energy
of the atoms has been measured by integrating over the
observed velocity distribution. This energy, which is also
called the release energy, coincides with the sum of the
kinetic and interaction energies of the atoms at the be-
ginning of the expansion:

Erelekin+Eint- (45)

During the first phase of the expansion both the quan-
tum kinetic energy (quantum pressure) and the interac-
tion energy are rapidly converted into kinetic energy of
motion. Then the atoms expand at constant velocity.
Since energy is conserved during the expansion, its ini-
tial value (45), calculated with the stationary GP equa-
tion, can be directly compared with experiments. This
comparison provides clean evidence for the crucial role
played by two-body interactions. In fact, the noninter-
acting model predicts a release energy per particle given
by E./N=(1/2)(1+\/2)# wy,,, independent of N. Con-
versely, the observed release energy per particle de-
pends rather strongly on N, in good agreement with the
theoretical predictions for the interacting gas. In Figs. 10
and 11, we show the experimental data obtained at JILA
(Holland et al., 1997) and MIT (Mewes et al., 1996a),
respectively.

Finally, we notice that the balance between the quan-
tum pressure and the interaction energy of the conden-
sate fixes a typical length scale, called the healing length
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FIG. 10. Comparison of the release energy as a function of
interaction strength from the stationary GP equation (solid
line) and the experimental measurements (solid circles). Inset
shows the expansion of widths of the condensate in the hori-
zontal (empty circles) and vertical (crosses) directions against
the predictions of the time-dependent GP equation (dashed
and solid lines) for the data point at 10”*Nv'?=0.53. Here v is
the frequency of the trapping potential and the trapped gas is
rubidium. From Holland et al. (1997).

& This is the minimum distance over which the order
parameter can heal. If the condensate density grows
from 0 to n within a distance £, the two terms in Eq. (39)
coming from the quantum pressure and the interaction
energy are ~%2/(2mé&?) and ~4wh’an/m, respectively.
By equating them, one finds the following expression for
the healing length:

&= (8ana) V2 (46)

This is a well-known result for weakly interacting Bose
gases. In the case of trapped bosons, one can use the
central density, or the average density, to get an order of

200

100

Uiy (NK)

Number of Condensed Atoms N, (10°)

FIG. 11. Release energy of the condensate as a function of the
number of condensed atoms in the MIT trap with sodium at-
oms. For these condensates the initial kinetic energy is negli-
gible and the release energy coincides with the mean-field en-
ergy. The symbol U, is here used for the mean-field energy
per particle. Triangles: clouds with no visible thermal compo-
nent. Circles: clouds with both thermal and condensed frac-
tions visible. The solid line is a fit proportional to N3° (see
discussion in Sec. II1.D). From Mewes et al. (1996a).
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magnitude of the healing length. This quantity is rel-
evant for superfluid effects. For instance, it provides the
typical size of the core of quantized vortices (Gross,
1961; Pitaevskii, 1961). Note that in condensed-matter
physics the same quantity is often named ‘“‘coherence
length,” but the name ‘“healing length” is preferable
here in order to avoid confusion with different defini-
tions of coherence length used in atomic physics and
optics.

C. Collapse for attractive forces

If forces are attractive (a<0), the gas tends to in-
crease its density in the center of the trap in order to
lower the interaction energy, as seen in Fig. 8. This ten-
dency is contrasted by the zero-point kinetic energy
which can stabilize the system. However, if the central
density grows too much, the kinetic energy is no longer
able to avoid the collapse of the gas. For a given atomic
species in a given trap, the collapse is expected to occur
when the number of particles in the condensate exceeds
a critical value N, of the order of ay,/|al. It is worth
stressing that in a uniform gas, where quantum pressure
is absent, the condensate is always unstable.

The critical number N, can be calculated at zero tem-
perature by means of the Gross-Pitaevskii equation. The
condensates shown in Fig. 8 are metastable, correspond-
ing to local minima of the energy functional (37) for
different N. When N increases, the depth of the local
minimum decreases. Above N, the minimum no longer
exists and the Gross-Pitaevskii equation has no solution.
For a spherical trap this happens at (Ruprecht et al.,
1995)

NCI’|a|

Qo

=0.575. (47)

For the axially symmetric trap with ‘Li used in the ex-
periments at Rice University (Bradley et al., 1995 and
1997; Sackett et al., 1997), the GP equation predicts
N,=1400 (Dalfovo and Stringari, 1996; Dodd et al.,
1996); this value is consistent with recent experimental
measurements (Bradley et al., 1997; Sackett et al., 1997).
The same problem has been investigated theoretically
by several authors (Houbiers and Stoof, 1996; Kagan,
Shlyapnikov, and Walraven, 1996; Pitaevskii, 1996;
Shuryak, 1996; Bergeman, 1997).

A direct insight into the behavior of the gas with at-
tractive forces can be obtained by means of a variational
approach based on Gaussian functions (Baym and
Pethick, 1996). For a spherical trap one can minimize
the energy (37) using the ansatz

N 12 r2
¢>(r)=(W) CXP( - m) (48)

where w is a dimensionless variational parameter which
fixes the width of the condensate. One gets
E(w) 3

N|a|
D=2 2y ~12 -3
Nhaop. 4(w +w)—(2m) ™ wo. (49)
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FIG. 12. Energy per particle, in units of A wy,, for atoms in a
spherical trap interacting with attractive forces, as a function of
the effective width w in the Gaussian model of Egs. (48) and
(49). Curves are plotted for several values of the parameter
Nl|al/ay, . The local minimum disappears at N=N,.

This energy is plotted in Fig. 12 as a function of w, for
several values of the parameter N|a|/ay,. One clearly
sees that the local minimum disappears when this pa-
rameter exceeds a critical value. This can be calculated
by requiring that the first and second derivative of E(w)
vanish at the critical point (w=w_, and N=N,). One
finds w,=5""~0.669 and N|a|/a,,~0.671. The last
formula provides an estimate of the critical number of
atoms, for given trap and atomic species, reasonably
close to the value of Eq. (47) obtained by solving exactly
the GP equation. The Gaussian ansatz has been used by
several authors in order to explore both static and dy-
namic properties of the trapped gases. The stability of a
gas with <0 has been explored in details, for instance,
by Pérez-Garcia et al. (1997), Shi and Zheng (1997a),
Stoof (1997), and Parola, Salasnich, and Reatto (1998).
The variational function proposed by Fetter (1997),
which interpolates smoothly between the ideal gas and
the Thomas-Fermi limit for positive a, is also very close
to a Gaussian for a<0.

The behavior of the gas close to collapse could be
significantly affected by mechanisms not included in the
Gross-Pitaevskii theory. Among them, inelastic two- and
three-body collisions can cause a loss of atoms from the
condensate through, for instance, spin exchange or re-
combination (Edwards, Dodd eral, 1996; Fedichev
et al., 1996; Hijmans et al., 1993; Moerdijk et al., 1996).
This is an important problem not only for attractive
forces but also for repulsive forces when the density of
the system becomes large.

Recent discussions about the collapse, including quan-
tum tunneling phenomena, can be found, for instance, in
Kagan, Muryshev, and Shlyapnikov (1998), Sackett,
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Stoof, and Hulet (1998), Ueda and Huang (1998), and
Ueda and Leggett (1998).

D. Large-N limit for repulsive forces

In the case of atoms with repulsive interaction (a
>0), the limit Na/ap,>1 is particularly interesting,
since this condition is well satisfied by the parameters N,
a, and ay, used in most of current experiments. More-
over, in this limit the predictions of mean-field theory
take a rather simple analytic form (Edwards and Bur-
nett, 1995; Baym and Pethick, 1996).

As regards the ground state, the effect of increasing
the parameter Na/ay, is clearly seen in Fig. 9: the atoms
are pushed outwards, the central density becomes rather
flat, and the radius grows. As a consequence, the
quantum-pressure term in the Gross-Pitaevskii Eq. (39),
proportional to V2\n(r), takes a significant contribution
only near the boundary and becomes less and less im-
portant with respect to the interaction energy. If one
neglects completely the quantum pressure in Eq. (39),
one gets the density profile in the form

n(r):¢2(r):g71[ﬂ_Vext(r)] (50)

in the region where u>V (r), and n=0 outside. This
is often referred to as Thomas-Fermi (TF) approxima-
tion.

The normalization condition on n(r) provides the re-
lation between chemical potential and number of par-
ticles:

(D)

Note that the chemical potential depends on the trap-
ping frequencies, entering the potential V. given in Eq.
(1), only through the geometric average wy, [see Eq.
(4)]. Moreover, since uw=JdE/JN, the energy per particle
turns out to be E/N=(5/7) . This energy is the sum of
the interaction and oscillator energies, since the kinetic
energy gives a vanishing contribution for large N. Fi-
nally, in the same limit, the release energy (45) coincides
with the interaction energy: E /N=(2/7) .

The chemical potential, as well as the interaction and
oscillator energies obtained by numerically solving the
GP Eq. (39) become closer and closer to the Thomas-
Fermi values when N increases (see, for instance, Dal-
fovo and Stringari, 1996). For sodium atoms in the MIT
traps, where N is larger than 10°, the Thomas-Fermi ap-
proximation is practically indistinguishable from the so-
lution of the GP equation. The release energy per par-
ticle measured by Mewes ef al. (1996a) is indeed well fit
with a N? law, as shown in Fig. 11. The same agreement
is expected to occur for rubidium atoms in the most re-
cent JILA traps, having N larger than 10° (Matthews
et al., 1998).

The density profile (50) has the form of an inverted
parabola, which vanishes at the classical turning point R
defined by the condition u=V_(R). For a spherical

hoy, [15Na\?P
m=— .

Qo
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Na/ay, = 100

distance

FIG. 13. Density profile for atoms interacting with repulsive
forces in a spherical trap, with Na/ay,,=100. Solid line: solu-
tion of the stationary GP Eq. (39). Dashed line: Thomas-Fermi
approximation (50). In the upper part, the atom density is plot-
ted in arbitrary units, while the distance from the center of the
trap is in units of ay,. The classical turning point is at R
=43lay,. In the lower part, the column density for the same
system is reported.

trap, this implies u=m w? R?/2 and, using result (51) for
w, one finds the following expression for the radius of
the condensate

15Na) s

QAho

Rzaho (52)

which grows with N. For an axially symmetric trap, the
widths in the radial and axial directions are fixed by the
conditions ,u=mwiRi/2=mw§Zz/2. It is worth men-
tioning that, in the case of the cigar-shaped trap used at
MIT, with a condensate of about 107 sodium atoms, the
axial width becomes macroscopically large (Z~0.3
mm), allowing for direct in situ measurements.

The value of the density (50) in the center of the trap
is ne(0)=u/g. It is worth stressing that this density is
much lower than the one predicted for noninteracting
particles. In the latter case, using Eq. (3) one gets
nyo(0)=N/(m2a}). The ratio between the central
densities in the two cases is then

nTF(O) B 152/5771/2 Na =3/5
ne(0) 8 lap,

and decreases with N. For the available traps with >*Na
and ¥Rb, where Na/a,, ranges from about 10 to 10%,
the atom-atom repulsion reduces the density by one or
two orders of magnitude, which is a quite remarkable
effect for such a dilute system. An example was already
shown in Fig. 3; in that case, the number of particles is
about 80000 and Na/ay,,~300.

In Fig. 13(a) we show the density profile for a gas in a
spherical trap with Na/ay,=100. The comparison with
the exact solution of the GP Eq. (39) shows that the TF

(33)

Qho
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approximation is very accurate except in the surface re-
gion close to R. In part b of the same figure, we plot the
column density, n(z)=[dx n(x,0,z), which is the mea-
sured quantity when the atomic cloud is imaged by light
absorption or dispersive light scattering. Using the TF
density (50) with V4= (12)moi?, one finds n(z)
=(43)[2(mwi)]Pe [ u— (12)mwi,z*1Y2 One
notes that the accuracy of the Thomas-Fermi approxi-
mation is even better in the case of the column density,
because the extra integration makes the cusp in the
outer part of the condensate smoother.

The only region where the Thomas-Fermi density (50)
is inadequate is close to the classical turning point. This
region plays a crucial role for the calculation of the ki-
netic energy of the condensate. The shape of the outer
part of the condensate is fixed by the balance of the
zero-point kinetic energy and the external potential. In
particular, this balance can be used to define an effective
surface thickness d. For a spherical trap, for instance,
one can assume the two energies to have the form
#2/(2md?) and mwﬁoRd, respectively. One then gets
(Baym and Pethick, 1996)

d ay 4/3
=~ _ -3 Zhoj
4yt o

this ratio is small when TF approximation is valid, i.e.,
when R>ay,. It is interesting to compare the surface
thickness d with the healing length (46). In terms of the
ratio ap,/R one can write &/ R=(ay,/R)?, showing that
the healing length decreases with N more rapidly than
the surface thickness d.

A good approximation for the density in the region
close to the classical turning point can be obtained by a
suitable expansion of the GP Eq. (39). In fact, when
|r—R|<R, the trapping potential V..(r) can be re-
placed with a linear ramp, mwj,R(r—R), and the GP
equation takes a universal form (Dalfovo, Pitaevskii,
and Stringari, 1996; Lundh, Pethick, and Smith, 1997),
yielding the rounding of the surface profile.

Using the above procedure it is possible to calculate
the kinetic energy which, in the case of a spherical trap,
is found to follow the asymptotic law

Egn SH? (R)
- I ,

N ~2mR Cay, (39
where C=1.3 is a numerical factor. Analogous expan-
sions can be derived for the harmonic potential energy
E}, and interaction energy E;, in the same large N limit
(Fetter and Feder, 1998). A straightforward derivation is
obtained by using nontrivial relationships among the
various energy components Ey;,, Ey,, and E;,, of Eq.
(41). A first relation is given by the virial theorem (44).
A second one is obtained by using expression (42) for
the chemical potential and the thermodynamic defini-
tion u=dE/JIN. These two relationships, together with
the asymptotic law (55) for the kinetic energy, allow
one to obtain the expansions E;,/N=(3/7)urr
+#%/(mR*)In[R/(Can,)] and  E;/N=(2/7) urp—Hh%/
(mR?)In[R/(Cay,)]. From them one gets the useful re-
sults
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aﬁo R
pm=prp 1+3 Fln ﬁho)} (56)
and
5 aﬁo R
E:7N,MTF 1+7Fln(ﬁho) (57)

for the chemical potential and the total energy, respec-
tively. In these equations utp and R are the Thomas-
Fermi values (51) and (52) of the chemical potential and
the radius of the condensate. Equations (55)—(57),
which apply to spherical traps, clearly show that the rel-
evant small parameter in the large N expansion is
ano/R=(15Nala,) .

The Thomas-Fermi approximation (50) for the
ground-state density of trapped Bose gases is very useful
not only for determining the static properties of the sys-
tem, but also for dynamics and thermodynamics, as we
will see in Secs. IV and V. It is worth noticing that this
approximation can be derived more directly using local
density theory as we are going to discuss in the next
section.

E. Beyond mean-field theory

Before closing this discussion about the effect of in-
teractions on the ground-state properties, we wish to
come back to the basic question of the validity of the
Gross-Pitaevskii theory. All the results presented so far
are expected to be valid if the system is dilute, that is, if
nlal?<1. In order to estimate the accuracy of this ap-
proach we will now calculate the first corrections to the
mean-field approximation. Such corrections have been
recently investigated in several papers as, for instance,
by Timmermans, Tommasini, and Huang (1997) and by
Braaten and Nieto (1997). Here we limit the discussion
to the case of repulsive interactions and large N, where
analytic results can be found. In fact, in this limit the
solution of the stationary GP Eq. (39) for the ground-
state density can be safely replaced with the Thomas-
Fermi expression (50) and the energy of the system is
given by E/N=(5/7) utp, where pyg is the TF chemical
potential (51).

Let us first discuss the behavior of the ground-state
density. For large N one can use the local density ap-
proximation for the chemical potential:

M= Mlocal[n(r)] + Vext(r)- (58)

The use of the local-density approximation for u is well
justified in the thermodynamic limit N—%, o —0 where
the profile of the density distribution is very smooth.
Equation (58) fixes the density profile n(r) of the
ground state once the thermodynamic relation giqcq(7)
for the uniform fluid is known, the parameter u in the
left-hand side of Eq. (58) being fixed by the normaliza-
tion of the density. For example, in a very dilute Bose
gas at T=0, one has pujoq(n)=gnrn and immediately
finds the mean-field Thomas-Fermi result (50). The first
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correction to the Bogoliubov equation of state is given
by the law (Lee, Huang, and Yang, 1957; Lee and Yang,
1957):

Iu“local(n) =gn
v

1+ %(naﬁ)”z], (59)

which includes nontrivial effects associated with the
renormalization of the scattering length. Using expres-
sion (59) for pjeca, One can solve Eq. (58) by iteration.
The result is

m3?

=o I — _4 _ 32
l’l(l‘) 8 [lu' Vext(r)] W[M Vext(r)] ’ (60)

with u given by

p=prp(1+ma’n(0)). (61)

Then the energy can be also evaluated through the ther-
modynamic relation u=dJdE/JdN, and one finds

E=;N,LLTF(1+%\/7m3n(O)), (62)

where, in the second term, we have safely used the
lowest-order relation wpr=gn(0). In an equivalent way,
results (60)—(62) can be derived using a variational pro-
cedure by writing the energy functional of the system in
the local-density approximation.

Equations (61)—(62) show that, as expected, the cor-
rections to the mean-field results are fixed by the gas
parameter a’n evaluated at the center of the trap. This
quantity can be directly expressed in terms of the rel-
evant parameters of the system:

152/5 a )12/5

3 _ 16_%
a’n(0) oy N ar

(63)

Inserting typical values for the available experiments,
the corrections to the chemical potential and the energy
turn out to be of the order of 1%. These corrections to
the mean-field predictions should be compared with the
ones due to finite-size effects (quantum pressure) in the
solution of the Gross-Pitaevskii equation [see Egs. (56)
and (57)], which have a different dependence on the pa-
rameters N and a/ay,. One finds that finite-size effects
become smaller than the corrections given by Egs. (61)—
(62) when N is larger than about 10°.

Another important quantity to discuss is the quantum
depletion of the condensate. This gives the fraction of
atoms which do not occupy the condensate at zero tem-
perature because of correlation effects. The quantum
depletion is ignored in the derivation of the Gross-
Pitaevskii equation. It is consequently useful to have a
reliable estimate of its value in order to check the valid-
ity of the theory. Also in this case we can use local-
density approximation (Timmermans, Tommasini, and
Huang, 1997) and write the density of atoms out of the
condensate, n,,(r), using Bogoliubov’s theory for uni-
form gases at density n=n(r) (see, for example, Huang,
1987). One gets 1oy, (r)=(8/3)[n(r)a’/7w]"?. Integration
of ny, yields the result
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Now _ 5Vm Ja3n(0) (64)

N 8
for the quantum depletion of the condensate. Similarly
to the correction to the mean-field energy (62), this ef-
fect is very small (less than 1%) in the presently avail-
able experimental conditions.

The above results justify a posteriori the use of the
Bogoliubov prescription for the Bose field operators and
the perturbative treatment of the noncondensed part at
zero temperature. We recall that this situation is com-
pletely different from the one of superfluid “He where
quantum depletion amounts to about 90% (Griffin,
1993; Sokol, 1995).

IV. EFFECTS OF INTERACTIONS: DYNAMICS

A. Excitations of the condensate and time-dependent
Gross-Pitaevskii equation

The study of elementary excitations is a task of pri-
mary importance of quantum many-body theories. In
the case of Bose fluids, in particular, it plays a crucial
role in the understanding of the properties of superfluid
liquid helium and was the subject of pioneering work by
Landau, Bogoliubov, and Feynman (for a recent discus-
sion on the dynamic behavior of interacting Bose super-
fluids see, for instance, Griffin, 1993).

After the experimental realization of BEC in trapped
Bose gases, there has been an intensive study of the ex-
citations in these systems. Measurements of the fre-
quency of the lowest modes have soon become available
and the direct observation of the propagation of wave
packets has been also obtained. In the meanwhile, on
the theoretical side, a variety of papers has been written
to explore several interesting features exhibited by the
dynamic behavior of trapped Bose gases.

Let us start our discussion recalling that for dilute
Bose gases an appropriate description of the excitations
can be obtained from the time-dependent GP Eq. (35)
for the order parameter. This equation has been already
used in Sec. III for evaluating the stationary solution
¢(r) characterizing the ground state. In the low-
temperature limit, where the properties of the excita-
tions do not depend on temperature, the excited states
can be found from the ‘classical” frequencies w of the
linearized GP equation. Namely, one can look for solu-
tions of the form

D(r,t)=e M p(r)+u(r)e " +v*(r)e®]  (65)

corresponding to small oscillations of the order param-
eter around the ground-state value. By keeping terms
linear in the complex functions u and v, Eq. (35) be-
comes

ﬁwu(r)=[H0—,u+2g¢2(r)]u(r)+g¢2(r)v(r), (66)
—hov(r)=[Hy—pn+2g¢*(r)Jv(r) +gd*(ru(r),
(67)

where Hy=—(42/2m)V?+ Vo (r). These coupled equa-
tions allow one to calculate the eigenfrequencies @ and
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hence the energies e=hw of the excitations. This for-
malism was introduced by Pitaevskii (1961), in order to
investigate the excitations of vortex lines in a uniform
Bose gas.

This procedure is also equivalent to the diagonaliza-
tion of the Hamiltonian in Bogoliubov approximation,

in which one expresses the field operator ¥’ in terms of

the quasiparticle operators «; and oz]T through (Fetter,
1972 and 1996)

‘f”(r)=; [uj(D)a;(t) +o} (Na](0)]. (68)

By imposing the Bose commutation rules to the opera-
tors «@; and a}, one finds that the quasiparticle ampli-
tudes u and v must obey the normalization condition

| ar iz @ 0- vt @ m=s,. (69)

In a uniform gas, the amplitudes u and v are plane
waves and the resulting dispersion law takes the most
famous Bogoliubov form (Bogoliubov, 1947)

(ﬁ )2: ﬁZqZ thZ
@ 2m 2m

+2gn), (70)

where q is the wave vector of the excitation and n
=|¢|? is the density of the gas. For large momenta the
spectrum coincides with the free-particle energy
h2q*2m. At low momenta Eq. (70) instead yields the
phonon dispersion w=cq, where

c= \/g% (71)

is the sound velocity. It is worth noticing that this veloc-
ity coincides with the hydrodynamic expression c
=[(1/m)dP/dn]"? for a gas with equation of state P
=(1/2)gn? [see also the discussion after Eq. (78)].

In the case of harmonic trapping, an important role is
played by the ratio Na/ay,, and one expects different
behaviors in the two opposite limits Na/ap,<1 and
Nalap,>1. In the first case, one recovers the excitation
spectrum w=n,w,+n,0,+n o, of the noninteracting
harmonic potential [see Eq. (2)]. In the second case, one
obtains a different dispersion law for the excitations of
the system which are the analog of phonons [see Eq.
(80) below].

The coupled Egs. (66) and (67) were first used to nu-
merically calculate the excitations of trapped gases by
Burnett and co-workers (Edwards, Dodd et al., 1996;
Edwards, Ruprecht et al.,, 1996; Ruprecht et al., 1996).
Similar calculations have been also performed by other
authors, for both spherical and anisotropic configura-
tions (Singh and Rokhsar, 1996; Dalfovo, Giorgini et al.,
1997; Esry, 1997; Hutchinson and Zaremba, 1997,
Hutchinson, Zaremba, and Griffin, 1997; You, Hoston,
and Lewenstein, 1997).

For spherical traps, the solutions of Egs. (66) and (67)
are characterized by the quantum numbers 7, /, and m,
where n, is the number of radial nodes, / is the angular
momentum of the excitation, and m its z component.
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FIG. 14. Frequency (in units of w,) of the lowest collective
modes of even parity, m =0 and m =2, for N rubidium atoms
in the JILA trap (A= 8). Points are taken from the experi-
mental data of Jin et al. (1996). Solid lines are the predictions
of the mean-field Egs. (66) and (67) [see, for instance, Ed-
wards, Ruprecht et al. (1996); Esry (1997); You, Hoston, and
Lewenstein (1997)]. Dashed lines are the asymptotic results for
Nala, —» (Stringari, 1996b), as discussed in Sec. IV.B, with
a,=[#(mw,)]"?. Here one has a/a, =3.37X1073.

For axially symmetric traps, the third component m of
angular momentum is still a good quantum number. In
Fig. 14 we report the lowest solutions of even parity with
m=0 and m =2, obtained for a gas of rubidium atoms
confined in an axially symmetric trap (o,=w,=w,).
The asymmetry parameter of the trap (A=w,/w,
=/8) corresponds to the experimental conditions of Jin
et al. (1996) and values of N up to 10* are considered. In
the experiments these oscillations are observed by shak-
ing the condensate through the modulation of the trap-
ping magnetic fields. The general agreement between
theory and experiments is good and reveals the impor-
tant role played by two-body interactions. In fact, in the
absence of interactions, the eigenfrequencies would be
the ones predicted by the ideal harmonic oscillator,
which gives w=2w, for both modes.

Among the various excitations exhibited by these
trapped gases, special attention should be devoted to the
dipole mode. This oscillation corresponds to the motion
of the center of mass of the system which, due to the
harmonic confinement, oscillates with the frequency of
the harmonic trap (this frequency can, of course, be dif-
ferent in the three directions). Two-body interactions
cannot affect this mode because, in the presence of har-
monic trapping, the motion of the center of mass is ex-
actly decoupled from the internal degrees of freedom of
the system. This is best understood by considering Eq.
(35) and looking for solutions of the form

e PODx,y,z+ a(1)], (72)

where, for simplicity, we have considered only oscilla-
tions along the z axis. By a proper change of variables,
z—2z+a, one finds that Eq. (72) corresponds to an ex-
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act solution of the time-dependent Eq. (35) oscillating
with frequency w, . This property holds not only in the
context of the Gross-Pitaevskii equation, but is valid for
any interacting system confined in a harmonic potential
at zero, as well as finite temperature, and is independent
of statistics (Fermi or Bose). For example, such a decou-
pling is a well-known property of shell-model theory in
nuclear physics (Elliott and Skyrme, 1955; Brink, 1957).
It also exhibits interesting analogies with Kohn’s theo-
rem for electrons in a static magnetic field, stating that
the cyclotron frequency is not affected by interactions
(Kohn, 1961) [see also Dobson (1994) and references
therein for discussions about the generalization of
Kohn’s theorem to the case of electrons confined in har-
monic traps].

The fact that the dipole frequency is not affected by
two-body interactions offers a direct test on the numeri-
cal accuracy of the various methods used to solve the
equations of motion. On the other hand, the experimen-
tal determination of the dipole frequency turns out to be
a very useful procedure to check the harmonicity of the
trap and to determine accurately the value of the trap-
ping frequencies. The properties of the dipole excitation
in the framework of Bogoliubov theory have been dis-
cussed in detail by Fetter and Rokhsar (1998) [see also
Kimura and Ueda (1998)].

Of course the coupled Egs. (66) and (67) provide a
full series of solutions, with different values of the cor-
responding quantum numbers. So far experiments have
provided direct information only on the low-energy
modes which can be directly excited by suitable modu-
lation of the harmonic trap. These excitations will be
further discussed in the next section using the formalism
of collisionless hydrodynamic equations. States at higher
energy and multipolarity are also important, since they
characterize the thermodynamic behavior of the system,
as we will see later on.

Finally, we note that starting from the solutions of
Egs. (66) and (67), one can also evaluate the density of
particles out of the condensate at zero temperature
(quantum depletion) by summing the square modulus of
the “hole” amplitude v over all the excited states:
Nou(r) =2,lv;(r)|* (Fetter, 1972). The results (Dalfovo,
Glorgini et al., 1997; Hutchinson, Zaremba, and Griffin,
1997) are in agreement with the local-density estimate
(64).

B. Large Na/a,, limit and collisionless hydrodynamics

When the number of atoms in the trap increases, the
eigenfrequencies of the coupled Eqgs. (66) and (67) ap-
proach an asymptotic value. The new regime is achieved
when the condition Na/ay,>1 is satisfied. In this limit
the excitations are properly described by the hydrody-
namic theory of superfluids in the collisionless regime at
zero temperature. In a dilute gas this theory can be ex-
plicitly derived starting from the time-dependent GP
Eq. (35). To this purpose, it is convenient to write the
complex order parameter ® in terms of a modulus and a
phase, as follows:
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O (r,t)=n(r,t)e ST, (73)
The phase fixes the velocity field
f
n(r,t)v(r,t)= 21,—m(<I>*VCD—<DV<D*), (74)
so that
f
v(r,t)= n—qVS(r,t). (75)

The GP Eq. (35) can hence be rewritten in the form of
two coupled equations for the density and the velocity
field:

d

En%—Vo(vn):O (76)
and

ﬁZ

2m\/;

1%
m EH—V Vet gn—

2
V2Jn+ mTv =0.

(77)
Equation (76) is the equation of continuity, while Eq.
(77) establishes the irrotational nature of the superfluid
motion. It is worth noticing that, at this stage, Egs. (76)
and (77) do not involve any approximation with respect
to the GP Eq. (35) and can be used in the linear as well
as nonlinear regimes.

If the repulsive interaction among atoms is strong
enough, then the density profiles become smooth and
one can safely neglect the kinetic-pressure term, propor-
tional to %2, in the equation for the velocity field, which
then takes the form

d muv?
mgv-i—V(Vexﬁ—gn—F T)—O. (78)
This result corresponds to the equation of potential flow
for a fluid whose pressure and density are related by the
equation of state P=(1/2)gn?. Equations (76) and (78)
have the typical structure of the dynamic equations of
superfluids at zero temperature (see, for example, Pines
and Nozieres, 1966, Vol. II) and can be viewed as a par-
ticular case of the more general Landau’s theory of su-
perfluidity. According to this theory, which is valid if the
relevant physical quantities change slowly on distances
larger than the healing length, a complete description of
the dynamics of the fluid is obtained by coupling the
equation for the superfluid velocity field with a
Boltzmann-type equation for the distribution function of
elementary excitations (see Lifshitz and Pitaevskii, 1981,
Chap. 77). At high temperature, when the mean free
path of elementary excitations is short, one gets a system
of two-fluid hydrodynamics equations. Conversely, at
low temperature, where the role of thermally excited
states is negligible, the same equations reduce to the
hydrodynamic-type Eqgs. (76) and (78) involving only the
superfluid velocity. In this sense, equations can be re-
ferred to as the hydrodynamic equations of superfluids.
They should not be confused with the hydrodynamic
equations valid in the collisional regime at high tem-
perature.
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The stationary solution of Eq. (78) coincides with the
Thomas-Fermi density (50) while the time-dependent
Egs. (76) and (78), after linearization, take the following
simplified form:

Py
W5n=V~[cz(r)V6n], (79)

where mc?(r)=dP/dn=pu—V(r), the quantity ¢ hav-
ing the meaning of a local sound velocity.

The validity of Eq. (79) is based on the assumption
that the spatial variations of the density are smooth not
only in the ground state, but also during the oscillation.
In a uniform system (V.,=0) this is equivalent to im-
posing that the collective frequencies be much smaller
than the chemical potential. In this case, the solutions of
Eq. (79) are sound waves propagating with the Bogoliu-
bov velocity (71). Sound waves can propagate also in
nonuniform media, provided we look for solutions vary-
ing rapidly with respect to the size of the system, so that
one can assume a locally uniform sound velocity (Lan-
dau and Lifshitz, 1987, Chap. 67). This is possible if both
the conditions g L>1 and #ig<<mc are satisfied, where L
is the size of the condensate and q is the wave vector of
the sound wave. Furthermore, if the system is highly
deformed and cigar shaped, one can simultaneously sat-
isfy the conditions gZ>1 and gR, <1, characterizing
one-dimensional waves propagating in the z direction.
Here Z and R, are the radii of the condensate in the
axial and radial directions, respectively. In this case, one
can show (Zaremba, 1998) that the sound velocity in the
central region of the trap is given by u/2m, instead of
the usual Bogoliubov value u/m, where u=gn(0) and
n(0) is the value of the central density. The occurrence
of the extra factor of 2 follows from the fact that, in the
“one-dimensional”” geometry, the sound velocity is fixed
by the density averaged over the radial direction, which
is, of course, smaller than its central value.

In the experiments of Andrews, Kurn et al. (1997),
one-dimensional sound waves are generated by focusing
a laser pulse in the center of the trap. A wave packet
forms in this way, propagating outwards. It is then im-
aged at different times so that the value of the sound
velocity can be directly measured. In Fig. 15 we show
the observed values of ¢ at different densities. The
agreement with the theoretical predictions is reasonably
good especially at high density. Possible sources of inac-
curacy at low density are discussed by the same authors.
The theoretical analysis of the propagation of wave
packets and sound waves in the elongated geometry has
been the object of several recent works (Kavoulakis and
Pethick, 1998; Stringari, 1998; Zaremba, 1998).

In these nonuniform condensates, as already said, os-
cillations having wavelengths much smaller than the size
of the system or, equivalently, frequency much larger
than the trapping frequency wy,, propagate as usual
sound waves. Conversely, solutions of Eq. (79) at lower
frequency, of the order of wy,,, involve a motion of the
whole system (Baym and Pethick, 1996). They coincide
with the low-energy solutions of Egs. (66)—(67) dis-
cussed in the previous section. For a spherical trap these
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FIG. 15. Speed of sound c¢ versus condensate peak density
n(0) for waves propagating along the axial direction in the
cigar-shaped condensate at MIT. The experimental points are
compared with the theoretical prediction c=[gn(0)/2m]"?
(solid line). From Andrews, Kurn et al. (1997).

solutions are defined in the interval 0=<<r<R and have
the form 5n(r)=P§2"’)(r/R)r’Y,m(0,¢), where P{*")
are polynomials of degree 2n, containing only even
powers. The dispersion law of the discretized normal
modes is given by the formula (Stringari, 1996b)

w(n, l)=wn(2n2+2n,1+3n,+0)">. (80)

This result can be compared with the prediction for non-
interacting particles in harmonic potential:

o(n,,1)= wp(2n,+1) (81)

with 2n,+Il=n,+n,+n_ [see Eq. (2)]. Of particular in-
terest is the case of the so-called surface excitations (n,
=0) for which Eq. (80) predicts the dispersion law
= Jlwy, . The frequency of these modes is systematically
smaller than the harmonic-oscillator result /wy,. Notice
that in the dipole case (n,=0, /=1) the prediction (80)
coincides with the oscillator frequency, in agreement
with the general considerations discussed in the previous
section.

As concerns compressional modes (n,#0), the lowest
solution of Eq. (79) is the monopole oscillation, also
called the breathing mode, characterized by the quantum
numbers n,=1 and /=0. The formula (80) gives the re-
sult 5wy, , higher than the corresponding prediction of
the noninteracting model, which gives 2wy, .

For a fixed value of N the accuracy of prediction (80)
is expected to become lower and lower as n, and / in-
crease. In fact, for large n, and / the oscillations of the
density have shorter wavelength and neglecting the
kinetic-energy pressure in Eq. (77) is no longer justified.
In analogy with the case of uniform Bose gases, the con-
dition for the applicability of the hydrodynamic theory
of superfluids is expected to be ZAw<u. However, as
discussed in Sec. IV.E, more severe restrictions are im-
posed when one considers surface excitations.

The result (80) reveals that, in the Thomas-Fermi
limit Na/ay,>1, the dispersion relation of the normal
modes of the condensate has changed significantly from
the noninteracting behavior, as a consequence of two-
body interactions. However, it might appear surprising
that in this limit the dispersion does not depend any
more on the value of the interaction parameter a. This
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differs from the uniform case where the dispersion law,
in the corresponding phonon regime, is given by w=cgq
and depends explicitly on the interaction through the
velocity of sound. The behavior exhibited in the har-
monic trap is well understood if one notes that the val-
ues of g are fixed by the boundary and vary as 1/L
where L is the size of the system. While in the box this
size is fixed, in the case of harmonic confinement it in-
creases with N due to the repulsive effect of two-body
interactions: L~ (Na/an,)**(mwy,) 2. On the other
hand, the value of the sound velocity, calculated
at the center of the trap, is given by ¢
=(Nalan)?(wy,/m)"? and also increases with N. One
finally finds that in the product cq both the interaction
parameter and the number of atoms in the trap cancel
out, so that the collective frequency is proportional to
the oscillator frequency wy,,.

The results for the spherical trap can be generalized to
the case of anisotropic configurations. Let us consider
the case of a harmonic-oscillator trap with axial symme-
try along the z axis. In this case the differential Eq. (79)
takes the form

52

m
mW5n=V~H/.L—?(wiri+w§ZZ)

V5n], (82)

where we have used mc?(r) = pu— Vy(r). [We notice, in
passing, that the corresponding Eq. (21) in Stringari
(1996b) was misprinted, since it contains the chemical
potential counted twice.]

Because of the axial symmetry of the trap the third
component m of the angular momentum is a good quan-
tum number. However, in contrast to the spherical case,
the dispersion law depends on m. Explicit results are
available in some particular cases. For example, quadru-
pole solutions of the form dn=r?Y,,,(6,¢) satisfy Eq.
(82) for m==2 and m=*1. The resulting dispersion
laws are

0 (I=2m=+2)=20> (83)
and
W (I=2m==%1)=0] + 0. (84)

Conversely, the /=2, m=0 mode is coupled to the
monopole /=0 excitation and the dispersion law of the
two decoupled modes is given by (Stringari, 1996b)

3 1
wz(m=0)=2wi+ zwilz \/9w§—16w§wi+16w1.
(85)

When w,=w, one recovers the solutions for the quad-
rupole and monopole excitations in the spherical trap.
The occurrence of analytic solutions for the excitation
spectrum, like Egs. (80) and (82)—(85), is the result of
nontrivial underlying symmetries of the Hamiltonian
that have been exploited by Fliesser ef al. (1997). The
result (85) can be generalized to a triaxially deformed
trap of the form (1). In this case, the collective frequen-
cies are given by the solution of the equation
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FIG. 16. Oscillations of the axial width of the condensate in
the cigar-shaped trap at MIT. The excited collective motion is
the low-lying m=0 mode. Oscillations are shown at low (a)
and high (b) temperature. Points show the axial width deter-
mined from fits to phase-contrast images, similar to the ones in
Fig. 2. Lines are fits to a damped sinusoidal oscillation. From
Stamper-Kurn, Miesner, Inouye et al. (1998).

6_n~ 4/ 2, 2, 2 20,2 .2, 2 2, 2 2
w’—3w (wx+wy+wz)+8w (wxwy-l—wywz-i-wza)x

— 200’0’ w?=0. (86)

2%y%z

From Fig. 14 one can see that the experiments at
JILA do not fully fall in the asymptotic Na/a,,>1 re-
gime, where the frequencies are given by Egs. (83)—(85).
Conversely, the experimental results obtained on so-
dium vapors at MIT (Stamper-Kurn, Miesner, Inouye
et al., 1998) represent a very clear example of excitations
belonging to the Thomas-Fermi regime. In this experi-
ment the magnetic trap is highly asymmetric, with \
=w,/w, =17/230 (cigar-shaped geometry). Further-
more, the number of atoms is very high, so that the con-
dition Na/a;,>1 is well satisfied and the energies of the
collective oscillations along the axial direction are much
smaller than the chemical potential, u~200fw,. This
explains the excellent agreement between the observed
frequency for the lowest axial m =0 mode of even parity
[w/w,=1.569(4)] and the theoretical prediction (w/w,
=5/2=1.581) given by Eq. (85) with w,<w, . In Fig.
16 we show the oscillations observed in the MIT experi-
ment (see also Fig. 2). These measurements correspond
to nondestructive in situ images of the oscillating con-
densate, while the ones at JILA (Jin et al, 1996 and
1997), as well as the first experiments carried out at MIT
(Mewes et al., 1996b) were taken after switching off the
trap and letting the gas expand.

For highly deformed traps it is possible to obtain
simple analytic results also for the excitations with
higher quantum numbers. For example, in the case of
cigar-shaped traps (w,<w,), one finds the dispersion
law (Fliesser et al., 1997; Stringari, 1998):

2y L 2
® (k)—zk(k+3)wz, (87)
where k is the relevant quantum number characterizing

the spatial shape of the density oscillation 6n(z)
=(zF+azF"'+---). Equation (87) is valid if w(k)
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<w, . It includes, as special cases, the dipole (k=1,w
=w,) and ‘“quadrupole” (k=2,0=52w,) modes al-
ready discussed. It also permits one to understand the
transition between the discretized (small k) and “con-
tinuum” (k>1) regimes, through the identification k
=gz where q is the wave vector of ‘“one-dimensional”
phonons propagating with sound velocity yu/2m. As al-
ready discussed, these phonons can be considered one-
dimensional only if the conditions gZ>1 and gR, <1
are satisfied. The first condition implies large values of &,
the second one is equivalent to imposing w<w), .

Analogously for disk-shaped traps (o, <w.) the dis-
persion law of the lowest modes takes the analytic form
(Stringari, 1998):

4
w’(n,,m)= gnf-k gn,m+2n,+m wi, (88)
where n,=0,1, ... is the number of radial nodes and m
is the z component of the angular momentum.

C. Sum rules and collective excitations

In the previous section we discussed the excitations of
the condensate when atoms interact with repulsive
forces (a>0). In the opposite case of attractive interac-
tions (a<0), one expects a different behavior. For ex-
ample, interesting effects can originate from the fact that
the system becomes more and more compressible when
approaching the critical number N for collapse. In
terms of the excitation spectrum, this means a lowering
of the frequency of the monopole oscillation. For repul-
sive forces, we previously discussed the Thomas-Fermi
Nalay,>1 limit, in which the time-dependent GP equa-
tion takes the form of the zero-temperature hydrody-
namic theory of superfluids. When the interaction is at-
tractive, the large-NV limit is never reached, since the
collapse occurs at Na/ay, of the order of 1, and one has
to solve numerically the GP equation (see, for example,
Dodd et al., 1996) or use different theoretical schemes,
as shown in the following.

A useful physical insight on the behavior of collective
oscillations for both positive and negative a can be ob-
tained using the formalism of linear response and sum
rules (see, for instance, Bohigas, Lane, and Martorell,
1979; Lipparini and Stringari, 1989). This approach al-
lows one to evaluate the energy-weighted moments,
m,=[ySp(E)EPdE, of the strength distribution func-
tion (dynamic form factor) associated with a given op-
erator F:

SF<E>=§ (| F|0)>8(E—E ), (89)

where the quantity E;y=(E;— E,) is the excitation en-
ergy of the eigenstate |j) of the Hamiltonian. Conse-
quently, the method provides information on the dy-
namic behavior of the system. Quantities like m, . ;/m,
or (m,,/m ,,)1/2 correspond to rigorous upper bounds
for the energy of the lowest-state excited by the opera-
tor F. They are close to the exact energy when this state
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is highly collective, that is, when the strength distribu-
tion is almost exhausted by a single mode. This is often
true in the case of trapped gases, as we will see below.
A major advantage of sum rules is that they can be
often evaluated in a direct way, avoiding the full solu-
tion of the Schrodinger equation for the eigenstates of
the Hamiltonian. For example, using the completeness
of the eigenstates |j), the energy-weighted moment, m,
can be easily transformed into the calculation of com-
mutators involving the operator F and the Hamiltonian:

1

Furthermore, if the operator F depends only on spatial
coordinates then only the kinetic energy gives a contri-
bution to m;, whose calculation becomes straightfor-
ward. In a similar way, one can write the cubic energy-
weighted moment m3; in  the form mg
={[[F",H],[H,[H,F]]]). Unlike m, and m5, the in-
verse energy-weighted moment, m _;, cannot be ex-
pressed in terms of commutators; it can be however
written in the useful form

1
m*IZEX’ (91)

where y is the linear static response of the system.

Let us first consider the case of compressional modes.
The natural monopole operator is given by the choice
F=3¥r? and, from Eq. (90), one gets the result m,
=2N#1%(r?)/m for the energy-weighted sum rule. Fur-
thermore, in the monopole case one can easily evaluate
also the inverse energy-weighted sum rule through Eq.
(91). In fact, the static response y,, (monopole com-
pressibility) is fixed by the linear change 8(r?)=ey,, of
the mean square radius induced by the external field
— er?. Adding this field to the Hamiltonian is equivalent
to renormalizing the trapping harmonic potential and
hence, for isotropic confinement, one can write

N )

m (?(I)ho ’ (92)

XM=
where wy, is the frequency of the harmonic oscillator.
Using the properties of the Gross-Pitaevskii Eq. (35),
one can express exactly the derivative &(r’)/dwi, in
terms of the square radius (r?) and its derivative with
respect to N. One finds (Zambelli, 1998)

N N ¢
n_ Y9 02
mat, T2 aN

XM= s (93)
where the term depending on the derivative arises from
two-body interactions; in the case of an ideal gas, this
term vanishes and the mean square radius, (r?)
=(3/2)ai,, is independent of N.

Using the moments m; and m_; one can define an
average excitation energy fiw through the ratio

_m
(ﬁw)z_m ’ (94)

-1
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yielding the useful result (Zambelli, 1998)
(r*)
N 9 ’
n_ N % 2
() =5 2 ()

In the noninteracting case, one recovers wy =2wy,-
When Nal/ay, is large and positive, the Thomas-Fermi
approximation (50) for the density provides the analytic
behavior of the radius, (r?)«N?", and hence the result
wy= 5o, already discussed in the previous section.
For negative a and close to the critical size N, the
monopole frequency goes to zero because the compress-
ibility of the system becomes larger and larger. Actually
the N dependence of w, near N can be determined
analytically. For example, using the Gaussian variational
procedure developed in Sec. III.C, one finds the result
()= (r?)e) = (") 8I5(1= NIN &) 2, where (r%) is
the square radius of the condensate at the critical value
N,. As a consequence of this peculiar N dependence,
the monopole compressibility diverges near N, and the
monopole frequency vanishes as (Singh and Rokhsar,
1996; Ueda and Leggett, 1998; Zambelli, 1998)

(95)

w%=4wﬁ

N 1/4
— 141 _
Wy = who( 160) ( 1 N_> . (96)

By using the numerical solution of the Gross-Pitaevskii
equation to calculate the N dependence of the square
radius one finds a slightly smaller value for the numeri-
cal coefficient in Eq. (96), namely 3.43 instead of 3.56. It
has been suggested that the behavior of the monopole
frequency near N, might play an important role in the
decay mechanism of the condensate for N very close to
N, due to quantum tunneling (Ueda and Leggett,
1998).

In Fig. 17 we show the frequency w,, obtained from
Eq. (95) as a function of the parameter Na/ay, (solid
line). The square radius (r?) has been calculated by solv-
ing numerically the stationary GP Eq. (39) in a spherical
trap. As already said, the ratio (94) between moments of
the strength distribution function Sz(w) provides a rig-
orous upper bound to the lowest monopole frequency.
The comparison with the numerical solutions of the
time-dependent GP equation (circles) shows that the
sum rule estimate actually gives an excellent approxima-
tion to the collective frequency for both positive and
negative values of a, practically indistinguishable from
the exact result. This means that the strength distribu-
tion of the monopole operator F almost coincides with a
6 function located at the energy of the lowest compres-
sional mode. For the same reason, also the ratio mi3/m;
turns out to be very close to m/m _; (Zambelli, 1998).

Unlike the monopole frequency, the quadrupole fre-
quency increases with N when a<<0, due to the increase
of the kinetic energy of the condensate. This behavior is
well understood by calculating the quadrupole fre-
quency through the ratio (Aw)?>=m3/m,, where m; and
my are the energy and cubic energy-weighted moments
for the natural quadrupole operator F =Ef-v=1r2Y2m. By
explicitly working out the commutators of the two sum
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FIG. 17. Frequencies of the monopole and quadrupole excita-
tions of a condensate in a spherical trap as a function of the
parameter Na/ay,, for positive and negative values of a. The
solid line for the monopole mode is obtained from the ratio
(my/m_;)"2, as in Eq. (95). For the quadrupole mode it cor-
responds to the ratio (m5/m;)"?, as in Eq. (97). Circles and
squares are the eigenenergies of the linearized time-dependent
GP Egs. (66) and (67).

rules one finds the following result for the quadrupole
frequency (Stringari, 1996b):

2 _ 2
wQ_thO

Ekin)
+ .
1 Ero 97)
In the noninteracting gas one has E;,= E},, and Eq. (97)
gives the harmonic-oscillator result wp=2wy,. In the
Thomas-Fermi limit Na/ap,>1, the kinetic-energy term
is negligible and one finds the value wy=v2wy,, while
for negative a the kinetic-energy term is larger than Ey,
and one finds an enhancement of the quadrupole fre-
quency. The numerical results are reported in Fig. 17.
Also in the quadrupole case the sum-rule estimate (97)
turns out to be very close to the exact numerical solution
of the linearized time-dependent GP Egs. (66) and (67),
indicating that the lowest quadrupole mode almost ex-
hausts the strength distribution of F, as already found
for the monopole mode.

We have here applied the sum-rule approach to the
case of spherical traps, but the same analysis can be eas-
ily generalized to more complex geometries, the main
physical arguments remaining unchanged. Calculations
of sum rules for axially symmetric traps have been car-
ried out by Kimura and Ueda (1998), finding accurate
predictions for the collective frequencies.

D. Expansion and large-amplitude oscillations

So far we have discussed the behavior of normal
modes of the condensate and sound propagation. It is
also interesting to investigate nonlinear features associ-
ated, for example, with the dynamics of the expansion of
the gas, following the switching off of the trap, as well as
with the frequency shifts of large amplitude oscillations.
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The dynamics of the expansion is an important issue
because much information on these Bose condensed
gases is obtained experimentally from images of the ex-
panded atomic cloud. This includes in particular the
temperature of the gas (which is extracted from the tail
of the thermal component), the release energy, and the
aspect ratio of the velocity distribution. Nonlinear phe-
nomena are also crucial in the analysis of the large-
amplitude oscillations which are produced and detected
in current experiments. Phenomena like mode coupling,
harmonic generation, frequency shifts, and stochastic
behavior may become interesting subjects of research in
these systems.

From the theoretical viewpoint one can again attack
the problem starting from the time-dependent Gross-
Pitaevskii equation. Indeed, the GP Eq. (35) for the or-
der parameter of the condensate can be applied to the
nonlinear regime and it is important to check the valid-
ity of its predictions through a direct comparison with
experiments. In Sec. IV.A we have linearized this equa-
tion in order to obtain the coupled equations (66) and
(67) for the excitations. The numerical solution in the
nonlinear regime is also feasible (Holland and Cooper,
1996; Ruprecht et al., 1996; Holland et al., 1997; Smerzi
and Fantoni, 1997; Brewczyk et al., 1998; Morgan et al.,
1998). For instance, Holland et al. (1997) obtained re-
sults for the density and energy of the expanding gas of
87Rb in good agreement with the first measurements at
JILA. In the inset of Fig. 10 their results for the axial
and radial widths are plotted as a function of expansion
time.

When the number of atoms in the trap is large, the
time-dependent GP Eq. (35) reduces to the equations of
continuity (76) for the density and the Euler Eq. (78) for
the velocity field. These equations can be used to inves-
tigate nonlinear phenomena in a simplified way. Let us
write the external potential in the form V (r)
=(m/2)2,w7r?, with r;=x,y,z. In general, the trapping
frequencies can depend on time, w;= w;(¢); their static
values, wp;=w;(0), fix the initial equilibrium configura-
tion of the system, corresponding to the Thomas-Fermi
density (50). One can easily prove that the equations of
motion admit a class of analytic solutions having the
density in the form

n(r,0)=ag(t)—a()x*—a,(t)y*—a ()27, (98)
within the region where n(r,t) is positive and n(r,t)
=0 elsewhere, and the velocity field as

! : 2 )
vt =5 Vadx’ a0y T a.(02?]. (99)

These results, combined with Eq. (75), allow one to ob-
tain an explicit expression for the order parameter (73).
In particular, its phase S takes the form
S(r0)= o : : 2 100
(r,0) =S ladDx"+ ay()y +a.()z7]. (100)
Notice that, while the velocity field (99) is governed by

the classical Egs. (76) and (78), the phase of the order
parameter depends explicitly on the Planck constant 7.

Rev. Mod. Phys., Vol. 71, No. 3, April 1999

The results (98) and (99) include the ground-state so-
lution (50) in the Thomas-Fermi limit. This is recovered
by putting a;=0 and a;=mw),/(2g), with i=x,y,z,
while ap=pu/g. In general, one can insert expressions
(98) and (99) into Egs. (76) and (78), getting six coupled
differential equations for the time-dependent coeffi-
cients a;(t) and «;(t), while the relation a
=(15N/8m)**(a,a,a,)'” is fixed, at any time, by the
normalization of the density to the total number of par-
ticles. Instead of writing these equations, we note that
the assumptions (98) and (99) for the density and veloc-
ity distributions correspond to assuming a scaling trans-
formation of the order parameter. This means that, at
each instant, the parabolic shape of the density is pre-
served, while the classical radii R;, where the density
(98) vanishes, scale in time as

2u
Ri()=R{(0)b(1)= /7 bi(1).

0i

(101)

The relation among the coefficients a; of Eq. (98) and
the variables b; is found to be al:mw%i/(Zgbxbybzb,2
and Egs. (76) and (78) then give a;=b;/b; and

2
Wo;

Byt wlb— Y
bbb,

0. (102)
These are three coupled differential equations for the
scaling parameters b;(t), which in turn give the time
evolution of the classical radii R;(t) of the order param-
eter. The second term in Eq. (102) comes from the con-
fining potential, while the third one originates from the
atom-atom interaction. Equation (102) has been derived
and used by different authors (Castin and Dum, 1996;
Kagan, Surkov, and Shlyapnikov, 1996, 1997a, 1997b;
Dalfovo, Minniti, and Pitaevskii, 1997; Dalfovo, Minniti,
Stringari, and Pitaevskii, 1997). Their major advantage is
that they are ordinary differential equations, very easy
to solve, giving results close to the solutions of the time-
dependent GP equation in most situations. Kagan,
Surkov, and Shlyapnikov (1996) have shown that in 2D
the scaling transformation of the order parameter, start-
ing from the stationary configuration at the initial time,
actually corresponds to an exact solution of the GP
equation.

Equation (102) can be used to simulate the expansion
starting from a gas in equilibrium in the trap, by drop-
ping at a certain time, =0, the term linear in b; associ-
ated with the confining potential. For an axially symmet-

ric trap one can define b, =b,=b, and introduce a

dimensionless time 7=w,f, with ©, =w0)=w,
=\"'wy,. Then Eq. (102) takes the form
d? 1 d? \?

——b,=—=— and ——5b,=57. 103

dr " bib, dr "% bib’ (103)
By solving these equations, one can look, for instance, at
the time evolution of the aspect ratio R, /Z=\b, /b,.
When 7is large, both b, and b, increase linearly with 7
and the parameters a, and «,, characterizing the veloc-
ity field (99), behave as 1/¢t, consistently with the classi-
cal equation of motion for free particles, v=r/¢. In Fig.



488 Dalfovo et al.: Bose-Einstein condensation in trapped gases

aspect ratio
(]

! 5’Rb (Konstanz) i

Na (MIT)

O 1 1 1 1 1 1 1 1
0 10 20 30 40 0 10 20 30 40

time (ms)

FIG. 18. Aspect ratio, R, /Z, of a freely expanding condensate
as a function of time. The experimental points in part (a) cor-
respond to ¥Rb atoms initially confined in a trap with \
=0.099 (Ernst, Schuster et al., 1998). The points in part (b) are
measurements on sodium atoms, initially in a trap with A\
=0.065 (Stamper-Kurn and Ketterle, 1998). The solid lines are
obtained by solving Eq. (103), which are equivalent to the
time-dependent GP equation in the Thomas-Fermi approxima-
tion. The dashed lines correspond to the A <1 limit of the same
equations, that is to Eqgs. (104) and (105), and are almost in-
distinguishable from the solid lines. The dot-dashed lines are
the predictions for noninteracting atoms. Theoretical curves
have no fitting parameters. In part (a), they have been cor-
rected to include the effect of the observation angle, as ex-
plained by Ernst, Schuster et al. (1998).

18 we show the results of this calculation in two cases
where accurate experimental data are available: atoms
of ¥Rb released from a trap with w, =27 X247 Hz and
w,=2m7X24 Hz at Konstanz (Ernst, Schuster et al.,
1998), and sodium atoms released from a trap with
w, =2wX248 Hz and w,=2wX1623 Hz at MIT
(Stamper-Kurn and Ketterle, 1998). Both traps are cigar
shaped and the number of atoms is large enough for
applying the Thomas-Fermi approximation. The agree-
ment between theory (solid lines) and experiments
(points) is remarkable. It is also worth mentioning that,
as shown by Castin and Dum (1996), the two Egs. (103)
can be solved analytically for A <1, leading to the useful
expressions

b (r)=\1+7, (104)
b,(7)=1+\?[ rarctan 7—Iny1+ 7*]. (105)

The corresponding aspect ratio is plotted in Fig. 18 as a
dashed line. As one can see, the analytic small-\ limit
practically coincides with the exact solution of Eq. (103)
for the two traps here considered. Moreover, from ex-
pressions (104) and (105) one also gets the asymptotic
value lim,_..(R,/Z)=2/(w\). In the case of Fig. 18,
this asymptotic limit is approximately 6.5 and 9.7 for the
Konstanz and MIT data, respectively, but is far from
being attained even after tens of milliseconds, in fact, it
takes a relatively long time to reach the regime of con-
stant speed for the motion along the direction of weaker
initial confinement, due to the slow acceleration induced
by the mean-field potential.
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The general agreement between theory and experi-
ments in Fig. 18 is even better appreciated if one consid-
ers the predictions for the expansion of noninteracting
particles. The aspect ratio obtained from the dispersion
of a free atomic wave packet is represented by the two
dot-dashed lines. The asymptotic limit for 7—oe is A ™12,
The comparison with the behavior of the interacting gas
shows, once again, the important role of the atom-atom
interaction.

The same formalism allows one to calculate the time
evolution of the various contributions to the release en-
ergy of the condensate. In terms of the scaling param-
eters b; the release energy takes the form

2ul 1 1« b?
Era==" bxbyszrfzi g) (106)

This quantity is conserved during the expansion. At ¢

=0, when b;=1 and b;=0, the release energy is equal to
(2/7). During the expansion the mean-field energy
(first term in the bracket) is converted into Kinetic en-
ergy (second term). After a certain time, which can be
estimated using Eq. (106), the mean-field energy be-
comes negligible, since the system is more and more di-
lute, and the expansion proceeds at constant speed in
each direction.

The same Eq. (102) allows one to also study the ef-
fects of a sinusoidal driving force which simulates the
modulation of the confining potential used in experi-
ments to generate collective modes in the trap. In the
small-amplitude limit, Eq. (102) yields the frequencies of
the normal modes in the regime of collisionless hydro-
dynamics already discussed in Sec. IV.B. In particular
for axially symmetric traps, expression (98) includes the
lowest m=0 and m=2 modes, which have been mea-
sured experimentally, while other modes could be inves-
tigated by adding terms in xy, xz, and yz. When the
amplitude of the oscillations grows, the frequency of the
modes can shift and the modes themselves can couple.
For the experiments carried out at JILA and MIT (Jin
etal., 1996 and 1997; Stamper-Kurn, Miesner, Inouye
et al., 1998) both the frequency shift and the mode cou-
pling are small. An example is given in Fig. 19, where we
show the frequency of the lowest m =0 mode, observed
in the cigar-shaped MIT trap (Stamper-Kurn and Ket-
terle, 1998; Stamper-Kurn, Miesner, Inouye et al., 1998),
as a function of its amplitude. The solid line is the pre-
diction of Eq. (102). The overall agreement is good for
both the zero-amplitude frequency and its shift. It is
worth recalling that the theory has no fitting parameters.

An effect that deserves to be mentioned is the large
enhancement of nonlinear effects for special values of
the asymmetry parameter \. First, one notes that the
frequencies of the collective modes depend on the shape
of the trapping potential and hence on A. For certain
values of this parameter, it may happen that different
modes have the same frequency; this has been shown to
occur, in the linear regime, for |m|>2 by Ohberg et al.
(1997) and a systematic investigation of the level cross-
ing has been done by Hutchinson and Zaremba (1997).



Dalfovo et al.. Bose-Einstein condensation in trapped gases 489

29 T T T T T

N
@
T
1

frequency (Hz)
fav)
3

N
[=3)

25 1 I 1\ I I
0 0.1 0.2 0.3 0.4 0.5 0.6

relative amplitude

FIG. 19. Frequency of the low-lying m =0 mode measured at
MIT (Stamper-Kurn, Miesner, Inouye et al, 1998; Stamper-
Kurn and Ketterle, 1998) as a function of the amplitude of the
oscillation. The solid line is the prediction of Eq. (102).

In the nonlinear regime, one finds strong mode coupling
via harmonic generation when the frequency of a mode
becomes equal to the one of the second harmonics of
other modes (Dalfovo, Minniti, and Pitaevskii, 1997,
Graham et al., 1998). The conditions for this degeneracy
can be found numerically from Eq. (102). In the limit of
small amplitude one can also expand the solutions find-
ing analytical results (Dalfovo, Minniti, and Pitaevskii,
1997). In particular, one gets a quadratic shift in the
form

w(A)=w(0)[1+8(\)A?], (107)

where A is the relative amplitude of the oscillation and
S&(\) is an analytic coefficient depending on the anisot-
ropy of the trapping potential and on the mode consid-
ered. For instance, in the case of the m =2 mode, one
finds

(16—5\?%)

The divergence at A=1/16/7 is due to the degeneracy
between the frequencies of the high-lying m=0 mode
and the second harmonic of the m =2 mode. In this case,
it is difficult to drive the system in a pure mode and,
even for relatively small amplitudes, the motion is rather
complex and the resulting trajectories can exhibit a cha-
otic behavior. The coefficient 8(\) can be calculated also
for other modes. For the low-lying m =0 mode, for in-
stance, similar divergences are found when A= (125
+29)/\72 (i.e., A=0.683 and A\~1.952). They occur
because the frequency of the high-lying mode becomes
equal to the second harmonics of the low-lying mode. It
would be very interesting to experimentally study the
system in these conditions.

As a final remark we note that, by means of a varia-
tional approach based on Gaussian wave functions,
Pérez-Garcia et al. (1996, 1997) have derived equations
of motion of the form (102), but with an additional term
included, proportional to 1/b?, accounting for the quan-
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tum pressure in the Gross-Pitaevskii equation. Even
though the equilibrium configuration in the Thomas-
Fermi regime Na/ap,>1 is not exactly recovered, be-
cause of the Gaussian ansatz, these equations represent
a good approximation to the GP equation for finite N,
interpolating between the noninteracting and strongly
interacting systems. The frequencies of the lowest m
=0 and m =2 modes, calculated with the parameter of
the JILA trap, differ from the exact solutions of Egs.
(66) and (67) by less than 1% over all the relevant range
of N. Since this method includes quantum-pressure ef-
fects, it can be used to explore the nonlinear dynamics of
the gas also in the case of attractive forces (Pérez-Garcia
et al., 1997).

E. Density of states: collective
vs single-particle excitations

In the previous sections we have discussed several fea-
tures of collective excitations, pointing out the crucial
role played by two-body interactions. We may ask
whether these collective modes are relevant for the sta-
tistical properties of these many-body systems. One
knows, for instance, that the thermodynamic behavior of
superfluid “He is dominated by the thermal excitation of
phonons and rotons up to the critical temperature. For
the trapped gas the situation is very different. First, the
system is very dilute and one expects that the effects of
collectivity shall be less relevant except at very low tem-
perature. Second, the harmonic confinement leaves
space for excitations of single-particle nature which ac-
tually dominate the thermodynamic behavior even at
low temperature.

The simplest way to understand the role of these
single-particle excitations is to look at the spectrum ob-
tained by solving numerically the two Bogoliubov-like
Egs. (66) and (67). In Fig. 20 we show the eigenstates
evaluated for a condensate of 10* atoms of ®Rb in a
spherical trap (Dalfovo, Giorgini ef al, 1997). Each
state, having energy ¢ and angular momentum /, is rep-
resented by a thick solid bar. For a given angular mo-
mentum, the number of radial nodes, i.e., the quantum
number 7, , increases with energy.

By looking at the eigenstates at high energy and mul-
tipolarity in the spectrum of Fig. 20, one notes that the
splitting between odd and even states is approximately
hwp, and the spectrum resembles the one of a 3D har-
monic oscillator. Actually, the states with the same value
of (2n,+1) would be degenerate in the harmonic-
oscillator case, while here they have slightly different
energies, the states with lowest angular momentum be-
ing shifted upwards as a result of the mean field pro-
duced by the condensate in the central region of the
trap. Indeed the high-energy part of the spectrum is ex-
pected to be well reproduced by a single-particle de-
scription in mean-field approximation. The single-
particle picture is obtained by neglecting the coupling
between the positive (#) and negative (v) frequency
components of the order parameter (65) in the
Bogoliubov-type Egs. (66) and (67), which is responsible



490 Dalfovo et al.: Bose-Einstein condensation in trapped gases

20

-
W\
T

energy (units of hvy,)
=
T

wn
T

= N=10000

0 4 8 12 16 20
angular momentum

FIG. 20. Excitation spectrum of 10000 atoms of ¥Rb in a
spherical trap with a,,=0.791 um. The eigenenergies of the
linearized time-dependent GP Egs. (66) and (67) are repre-
sented by thick solid bars. Dashed bars correspond to the
single-particle spectrum of Hamiltonian (109). The thin hori-
zontal line is the chemical potential, u=28.41 in units of A wy,,
which is fixed by the solution of the stationary GP Eq. (39).

for the collectivity of the solutions. This corresponds to
setting v=0 in Eq. (66), which then reduces to the ei-
genvalue problem (Hg,—u)u=rhou, for the single-
particle (sp) Hamiltonian

H =~ (h%12m)V2+V o (r) +2gn(x). (109)

In this case, the eigenfunctions u(r) satisfy the normal-
ization condition fdru} (r)u;(r)=4;. This approxima-
tion is directly related to Hartree-Fock theory, as we will
discuss in Sec. V.B.

Once the condensate density and the chemical poten-
tial are calculated from the stationary GP Eq. (39), the
single-particle excitation spectrum of the Hamiltonian
(109) can be easily calculated. The eigenstates are shown
as dashed horizontal bars in Fig. 20. One sees that the
general structure of the spectrum is very similar to the
one obtained with the Bogoliubov-type Egs. (66) and
(67) apart from the states with low energy and multipo-
larity. The lowest levels, with energy well below u and
small angular momentum, are, in fact, the collective
modes discussed in the previous sections (for instance,
the lowest states with n,=0 are the monopole, dipole,
and quadrupole modes for which the theory, in the limit
Nalap,>1, predicts 82\/§ , 1, and v2, respectively, in
units of wy,,). The single-particle spectrum, which does
not account for collective motion of the condensate, fails
to describe these states. It is worth noticing, however,
that even below u there are many states, with relatively
high /, which are well approximated by the single-
particle Hamiltonian (109). Actually, the numerical
analysis reveals that, for these states, the condition |v|
<|u| is well satisfied (Dalfovo, Giorgini ef al., 1997,
You, Hoston, and Lewenstein, 1997). These excitations
are mainly located near the surface of the condensate,

Rev. Mod. Phys., Vol. 71, No. 3, April 1999

where H g, has a minimum. The existence of such a mini-
mum is evident in the large-N limit, where the Thomas-
Fermi approximation for the condensate density is accu-
rate. In this case, one has

1
Hg,—p=—(h22m)V?+ s mop|r’— R?,

> (110)

where R=[2u/(m wﬁo)]“2 is the classical radius of the
condensate and we have taken, for simplicity, a spherical
trap. Of course, for finite values of N the minimum of
the single-particle potential is rounded.

The fact that the Bogoliubov-type spectrum exhibits
states of single-particle nature localized near the surface
represents an important difference with respect to the
uniform Bose gas, where no single-particle states are
present at energy lower than the chemical potential. The
transition between the collective and single-particle
character can be understood in terms of length scales. In
fact, an excitation inside the condensate can no longer
be phononlike when its wavelength is of the order of, or
shorter than, the healing length £ [see Sec. III.B and Eq.
(46)]. This happens for states with a large number of
radial nodes and energy larger than u. Conversely, for
states localized mainly at the surface, the appropriate
length scale is the surface thickness d, introduced in Sec.
IIL.D [see Eq. (54)]. In this case, excitations cannot be
collective, and hence cannot be described by the equa-
tions of collisionless hydrodynamics, if their wavelength
is smaller than d. This happens when their angular mo-
mentum is larger than /~R/d~ N*'5. This critical value
of [ corresponds to an energy of the order of
w(an,/R)*3, so that the transition from the collective to
the single-particle behavior occurs at energies smaller
than u in states with high multipolarity. These states can
be viewed as atoms rotating in the outer part of the
condensate (Dalfovo, Giorgini efal, 1997; Lundh,
Pethick, and Smith, 1997).

In order to discuss the relevance of single-particle ex-
citations in the statistical behavior of these trapped Bose
gases it is useful to evaluate the density of states. For a
finite system one can easily count the number of avail-
able states, with energy ¢’ and angular momentum /,
each one multiplied by its degeneracy (2/+1), up to a
given energy &:

N(g)= 2, (21+1).
g'<e

The density of states is the derivative of Eq. (111). In
Fig. 21 we show the quantity N(&) obtained by summing
the levels of the two spectra of Fig. 20. The agreement
between the results of the Bogoliubov-type equations
(solid circles) and of the single-particle theory (open
circles) is remarkable even at low energy, indicating that
the effects of collectivity are not relevant in the sum
(111). Indeed, the number of states which are badly re-
produced by the single-particle Hamiltonian is small and
their degeneracy factor (2/+1) is also small, so that
their contribution to the sum (111) is negligible. The

(111)
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FIG. 21. Number of states N(e) vs energy. Solid circles are
obtained by counting the Bogoliubov-type states in the spec-
trum shown in Fig. 20 (thick solid bars). Open circles corre-
sponds to counting the single-particle states in the same figure
(dashed bars). Both calculations are compared with the predic-
tions of the semiclassical approximation (112) (solid line), as
well as with the ones of the noninteracting harmonic oscillator
(dashed line) and of the collisionless hydrodynamic equations
in the Thomas-Fermi regime (dot-dashed line). Chemical po-
tential is ©=8.41 in this scale.

effects of two-body forces on the density of states are
nevertheless sizable, as emerges from the comparison
with the prediction of the noninteracting model (dashed
line). We also report the results obtained using the dis-
persion relation (80) for the excitations in the Na/ayp,
>1 limit. This gives a poor approximation for N(eg),
revealing that the hydrodynamic picture becomes com-
pletely inadequate for excitation energies of the order
of u.

The number of states N (&) associated with the single-
particle Hamiltonian (109) can also be calculated using
the semiclassical approximation. In this case one counts
the available states through a simple integration over
phase space

j— € ! dr dp ! sp

N(s)—J'O de fmé(s —&P(p,r)), (112)
where e®(p,r)=p22m+V (r)+2gn(r)—u is the
semiclassical energy corresponding to the Hamiltonian
Hg,— p. In Fig. 21 the prediction of Eq. (112) is shown
as a solid line. The semiclassical approximation is ex-
pected to be valid only for e>% w;,. However, the low-
energy states which are not reproduced by this approxi-
mation give a negligible contribution to N(e) and the
semiclassical prediction is practically indistinguishable
from the Bogoliubov spectrum in the whole range of
energies.

As we will see in Sec. V, the relevance of single-
particle excitations in determining the density of states
makes Hartree-Fock theory and the semiclassical ap-
proximation very effective tools for the investigation of
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FIG. 22. Column density of atomic clouds from phase-contrast
images at several values of temperature in the MIT trap. From
Stamper-Kurn and Ketterle (1998).

the thermodynamic properties of these trapped gases, as
well as their dynamic behavior at finite temperature.

V. EFFECTS OF INTERACTIONS: THERMODYNAMICS
A. Relevant energy scales

The occurrence of Bose-Einstein condensation is re-
vealed by an abrupt change in the thermodynamic prop-
erties of the system below the critical temperature. In
the presence of harmonic trapping, a sharp peak appears
in both the density and velocity distributions superim-
posed on the broader distribution of the thermal com-
ponent. By further lowering the temperature the height
of the condensate peak increases, while the tails of the
thermal component are reduced, until they completely
disappear at very low temperatures, as shown in Fig. 22.
At the transition, the temperature dependence of the
energy shows a sudden change in slope, which reflects
the occurrence of a maximum in the specific heat.

In Sec. II we discussed the thermodynamic behavior
of the noninteracting gas. In this model, BEC takes
place below the critical temperature k7"
=fhwp [ N/{(3)]"3. The fraction of atoms in the conden-
sate and their energy obey the simple laws Ny/N=1
—(T/T%? and E=T*, respectively [see Egs. (15) and
(17)]. A major question is to understand whether the
predictions of the ideal gas are adequate and under
which conditions the effects of interactions become siz-
able. This is the main purpose of the present section.

The effects of two-body interactions in a dilute Bose
gas are expected to be significant only in the presence of
the condensate, since only in this case can the density
become relatively high due to the occurrence of the
peak in the center of the trap. A first important conse-
quence of repulsive forces is the broadening of the con-
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densate peak. This effect, already discussed in Sec. III at
zero temperature, provides a dramatic change in the
density distribution also at finite 7" and its experimental
observation is an important evidence of the role played
by two-body forces. The opposite happens in the pres-
ence of attractive forces, which produce a further nar-
rowing of the peak and a consequent increase of the
peak density. In the following we will mainly discuss the
case of systems composed by a large number of particles
interacting with repulsive forces.

Let us discuss the effects of a repulsive interaction by
estimating the relevant energies of the system. At zero
temperature the interaction energy per particle can be
simply estimated using the Thomas-Fermi approxima-
tion E;, /N=(2/7)u where pu=(1/2)hon(15Nalay,)*??
is the value of the chemical potential [see Eq. (51)]. It is
useful to compare E;, /N, or equivalently u, with the
thermal energy k7. If k3T is smaller than u, then one
expects to observe important effects in the thermody-
namic behavior due to interactions. If instead kT is
larger than w, interactions will provide only perturbative
corrections. Thus for repulsive forces the chemical po-
tential provides an important scale of energy lying be-
tween the oscillator energy and the critical temperature:
hop<u<kpg Tg. A useful parameter is the ratio

P a \25
= =a N”ﬁ—) 113
U ( (113)
between the chemical potential calculated at 7=0 in
Thomas-Fermi approximation and the critical tempera-
ture for noninteracting particles in the same trap. Here
a=15"3[¢£(3)]"3/2=1.57 is a numerical coefficient. If
one uses the typical values for the parameters of current
experiments, one finds that #» ranges from 0.35 to 0.40.
Thus one expects that interaction effects will also be
visible at values of T of the order of T?.

It is worth discussing the dependence of the param-
eter » on the relevant parameters of the system. First,
one should point out that this dependence is different
from that of the interaction parameter Na/a;, already
introduced in Sec. III to account for the effects of two-
body interactions in the GP equation for the condensate.
The parameter Na/ay, determines the value of the
chemical potential in units of the oscillator energy, while
7 fixes it in units of the critical temperature. This brings
a different dependence of » on N which turns out to be
very smooth (7~NY). Thus in order to change the
value of this parameter, and consequently the effects of
interactions on the thermodynamic behavior, it is much
more effective to modify the ratio a/ay, between the
scattering and oscillator lengths rather than the value
of N.

Another important feature of the parameter # is that
it can be expressed explicitly in terms of the traditional
“gas parameter” a°n, through the relation 7
=224[a’n;-(0)]"° [see Eq. (63)]. Notice that in this
formula n7_y(0) is the density at the center of the trap
evaluated at zero temperature. Due to the 1/6 power
entering this relation, the value of # can be easily of the
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order of 1 even if the gas parameter is very small. For
example, taking a*n=10"° one finds =0.33. Equation
(113) can be also written in terms of the ratio between
the transition temperature kgzT° and the
energy h2ma®; one has, in  fact, 7
=1.59(kzT%)"*(#2/ma®)~'S. This expression reveals
that in the thermodynamic limit, where N—® and wy,
—0 with N wﬁo kept fixed, the parameter # has a well-
defined value.

In the absence of the condensate (7>T7,) interaction
effects are less important because the system is very di-
lute. In this case, one can estimate the interaction energy
using the expression E;,/N=gN/ R3T where Ry
=(2kTImwi,)"? is the classical radius of the thermal
cloud. For temperatures of the order of 7', one finds

E; a
mt 1/6 7]5/2‘

NkBT(c) Qo (114)

This ratio depends on the interaction parameter 7%
through a higher power law as compared to the analo-
gous ratio for the energy of the condensate, which is
linear in 7 [see Eq. (113)], and the effect of E;, is hence
much smaller for noncondensed atoms.

The above discussion emphasizes the importance of
the dimensionless parameter (113) which can be used to
discuss the effects of interactions on the thermodynamic
behavior of the system both at low and high tempera-
tures. Actually, in Sec. V.D we will show that in the
thermodynamic limit the system exhibits a scaling be-
havior on this parameter.

B. Critical temperature

The first quantity we discuss is the critical tempera-
ture. As anticipated in the previous section, at the onset
of BEC the system is very dilute and one does not ex-
pect atom interactions to give large corrections to ther-
modynamics. Nevertheless, the role of interactions on
critical phenomena is an important question from a con-
ceptual viewpoint. It is interesting to understand, in par-
ticular, the differences between the behavior of uniform
and nonuniform Bose gases. As concerns the compari-
son with experiments, one should, however, note that
finite size corrections to 7. [see Eq. (20)] cannot, in gen-
eral, be ignored, being in many cases of the same order
as the ones due to interactions.

In the noninteracting model the system can be cooled,
remaining in the normal phase, down to the temperature
7Y, which satisfies the condition n(0)\3=¢(3/2)=2.61.
Here N\ y=[27h%/(mkzT)]"? is the thermal wavelength
and n(0) is the density at the center of the trap which, at
the critical temperature, is given by the thermal density
(18). The presence of repulsive interactions has the ef-
fect of expanding the atomic cloud, with a consequent
decrease of density. The opposite happens for attractive
forces, which tend to compress the system. Lowering
(increasing) the peak density has then the consequence
of lowering (increasing) the value of the critical tem-
perature. This effect is absent in the case of a uniform
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gas where the density is kept fixed in the thermodynamic
limit. It consequently represents a typical feature of
trapped Bose gases that is worth discussing in some de-
tail.

The shift in the critical temperature due to the mecha-
nism described above can be easily estimated by treating
the interaction in mean-field approximation. The sim-
plest scheme is Hartree-Fock (HF) theory, which con-
sists in assuming the atoms to behave as ‘‘noninteract-
ing” bosons moving in a self-consistent mean field:

h2v? h2v?

Hyp=— > =+ Verl(t)=— 5=

2m +Vext(r)+2gn(r)7

(115)

where the last term, 2gn(r) is a mean field generated by
the interactions with the other atoms. This method has
been first applied to the study of trapped Bose gases by
Goldman, Silvera, and Leggett (1981) and Huse and Sig-
gia (1982) and it has since been adopted in many papers
(Bagnato, Pritchard, and Kleppner, 1987; Oliva, 1989;
Chou, Yang, and Yu, 1996; Giorgini, Pitaevskii, and
Stringari, 1996, 1997a, 1997b; Minguzzi, Conti, and Tosi,
1997; Shi and Zheng, 1997b).

In Eq. (115) the quantity n(r) is the total density of
the system, the sum of the density of both the conden-
sate and thermal components. The single-particle ener-
gies and the density n(r) are obtained by solving a
Schrodinger equation with a density-dependent effective
potential. In the presence of Bose-Einstein condensa-
tion, the equations for the single-particle excitations are
coupled to the equation for the order parameter and the
whole set of equations must be solved using a self-
consistent procedure. At zero temperature, the Hamil-
tonian Hp coincides with the single-particle Hamil-
tonian (109), which describes the excitations of time-
dependent Gross-Pitaevskii theory after neglecting the
quasi-particle amplitude v; in the equations of motion
(see discussion in Sec. IV.E).

In the semiclassical approximation (see Sec. II.B) one
can easily calculate the thermal averages over the eigen-
states of the Hamiltonian (115). The thermal density of
the system is given by the ideal gas formula (18):

”T(l'):)\}3g3/2(e*[Veff(f)*#]/kBT), (116)

where we have replaced V., with [V 4—pu]. Bose-
Einstein condensation starts at the temperature for
which the normalization condition

N:j dl’l’lT(l‘,Tc 7/-Lc) (117)

can be satisfied with the value of the chemical potential
M. corresponding to the minimal eigenvalue of the
Hamiltonian (115). For large systems the leading contri-
bution arises from interaction effects

me=2gn(0), (118)

where, working to the lowest order in g, one can calcu-
late the central density n(0) using the noninteracting
model. Equation (118) ignores finite-size effects, given
by Eq. (10) for the ideal gas.
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By expanding the right-hand side of Eq. (117) around
m.=0 and T,.= T? one obtains the following result for
the shift 6T,=T.—T? of the critical temperature
(Giorgini, Pitaevskii, and Stringari, 1996):

oT. a
=-13—N'"
T(c) Ao

(119)

Equation (119) shows that, to lowest order in the cou-
pling constant, the shift of 7 is linear in the scattering
length and is negative for repulsive interactions (a
>0). In this case, the ratio (119) can be expressed in
terms of the parameter 7 defined in Eq. (113), and one
has 8T,./T"=—0.437%2. For a typical configuration with
7n=0.4, the shift is ~4%; this can be compared with the
shift (20) arising from the finite-size correction. Unlike
the shift (119) due to interactions, the finite-size effect
(20) depends on the anisotropy of the trap and decreases
with N. Taking, for example, N =10° and A=+8 one
finds that finite-size effects provide a negative correction
of ~2%. For larger values of N these corrections be-
come negligible and one can safely use prediction (119).
For attractive interactions (¢<0), Eq. (119) predicts in-
stead a positive shift. However, in this case, finite-size
effects are always important because the value of N can-
not be large.

First measurements of the critical temperature (En-
sher et al., 1996), as shown in Fig. 5, indicate the occur-
rence of a negative shift with respect to 7° by about 6%,
in agreement with the theoretical predictions. However,
the experimental uncertainties are at present too large
to draw definitive conclusions from this comparison.

Let us conclude this section by recalling that in the
mean-field approach, discussed above, the relation be-
tween 7. and the critical density in the center of the trap
remains the same as for the noninteracting model:
n(O))\3TC: £(3/2)=2.61 [see Eq. (116)] and it is interest-
ing to look for effects which violate this relation. These
can be either finite-size or many-body effects beyond
mean-field theory. These latter effects have been re-
cently calculated in the uniform gas through a path-
integral Monte Carlo simulation of the homogeneous
hard-sphere Bose gas (Gruter, Ceperley, and Laloe,
1997). This work has shown that the critical temperature
T. as a function of the gas parameter na’ first in-
creases from the noninteracting value T°=(27#h?/
mkg)[n/Z(3/2)]1??, reaches a maximum for na’=0.01
where T,/ T(C)zl.06, and finally decreases for larger val-
ues of na®. For the densities relevant for the experi-
ments in traps these effects on 7', are much smaller than
the mean-field correction (119).

C. Below T,

Below the critical temperature 7., Bose-Einstein con-
densation results in a sharp enhancement of the density
in the central region of the trap. This makes interaction
effects much more important than above 7., as dis-
cussed in Sec. V.A. In this section we will be dealing
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only with systems interacting with repulsive forces and
we will consider the limit of large N where finite-size
effects can be ignored. The main purpose is to develop a
perturbative scheme that permits one to obtain simple
analytic formulas for the temperature dependence of the
condensate fraction and of the energy of the system,
providing a useful guide to understand the role of two-
body interactions. We will use the finite-temperature
Hartree-Fock scheme already presented in the previous
section. An important result emerging from this analysis
is that, to lowest order in the coupling constant, the cor-
rections to the thermodynamic quantities due to interac-
tion effects are linear in the parameter 7 defined in Eq.
(113). A more complete analysis of the thermodynamic
behavior, based on self-consistent numerical calculations
will be presented in Sec. V.D.

A first important problem concerns the temperature
dependence of the order parameter and of the chemical
potential. As long as Ny(T)a/ap,>1 and one ignores
the interaction with the thermal component, the
Thomas-Fermi approximation (50) to the GP equation
provides a good description for the condensate also at
T>0. Equation (51) then permits one to estimate the
temperature dependence of the chemical potential
whose value is fixed by the number of atoms in the con-
densate. One can write

kgT® —  kgT? |\ N

2/5
) =n(1-1)*°. (120)

In order to express the condensate fraction in terms of
the reduced temperature t=T/T? we have used the non-
interacting prediction Ny=N(1—¢). Inclusion of cor-
rections to this law would yield higher-order effects in
the interaction parameter. Equation (120) provides a
useful estimate of u, which is expected to be accurate in
the range pu<T< TS. For smaller temperatures, Eq.
(120) misses the thermal contributions arising from col-
lective excitations. These effects represent, however,
very small corrections and will be ignored in the present
discussion.

Concerning the uncondensed atoms, at high tempera-
ture they can be treated as free particles governed by
the effective mean-field potential V q(r) given by Eq.
(115). The form of this potential can be simplified by
ignoring the contribution to the density #n(r) due to the
dilute thermal component and by evaluating the conden-
sate density in the Thomas-Fermi approximation. This
yields the simple result Vi u(r) — u=|Vuq(r)—u| [see
also Eq. (115)]. In practice most of the thermal atoms
occupy regions of space lying outside the condensate
where V. >u and V 4=V, . As a consequence, to a
first approximation, the effective potential felt by ther-
mal atoms is the same as without interaction. However,
this does not mean that interaction effects are negligible.
In fact, these atoms have a chemical potential (120)
quite different from the noninteracting value and the
corresponding contribution to the thermodynamic aver-
ages is modified.
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Let us first discuss the problem of thermal depletion.
Using the semiclassical picture one can write

N —f drdp 2 Ik, T]—111
= W{GXP[(P m+Ve(r)—u)/kgT]—1} .
(121)

Explicit integration of Eq. (121), using the Thomas-
Fermi approximation for the effective mean-field poten-
tial, V(r) — =V ex(r) — u|, leads to the result
No _ ;42 3\2/5
N L1t K (1=1)">,
valid to the lowest order in the interaction parameter #.

Equation (122) shows that the effects of the interac-
tion depend linearly on # and are consequently expected
to be much larger than the ones in the shift of the critical
temperature (119) which behave like 7°. For example,
taking »=0.4 and r=0.6 one finds that interactions re-
duce the value of N by 20% as compared to the predic-
tion of the noninteracting model. It is worth noting that
the quenching of the condensate represents a peculiar
behavior of trapped Bose gases and takes place because
the thermal component of the gas is, in large part, spa-
tially separated from the condensate. In a uniform sys-
tem one has an opposite mechanism. In fact, in this case,
the condensate and the thermal components completely
overlap and the effective potential is enhanced due to
the interaction term 2gn [see Eq. (115)]. This effect is
only partially compensated by the presence of the
chemical potential and the final result is a suppression of
the thermal component.

In a similar way one can calculate the energy of the
system. The main effects of temperature and interac-
tions are twofold: on the one hand, the number of atoms
in the condensate is reduced at finite temperature and
the density in the central region of the trap decreases.
As a consequence the atom cloud becomes larger but
more dilute and the interaction energy is reduced as
compared to the zero-temperature case. On the other
hand, the particles out of the condensate are thermally
distributed with a modified Bose factor as in Eq. (121).
By explicitly calculating the two contributions, one finds
that the total energy of the system exhibits the following
temperature dependence:

E  304)
NikgT? ~ 23) !

Notice that the contribution of the interaction, which is
again linear in 7, can be obtained directly starting from
result (120) for the chemical potential, through the use
of general relations of thermodynamics. Analogously to
Egs. (120) and (122), expression (123) is valid in the
temperature regime u<7<T, and to the lowest order
in the parameter 7.

Another useful quantity is the release energy, which
corresponds to the energy of the system after switching
off the trap. Using the same approximations as discussed
above, one can easily also calculate this quantity, for
which one finds the result

(122)

1
4y 7 (1 —)P3(5+16%).  (123)
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FIG. 23. Energy per particle as a function of T/T? for 7
=0.4. The solid line refers to the perturbative expansion (123);
the dashed line is the result of the self-consistent calculation
based on the Popov approximation [see Egs. (127)—(129)].

E _E_Eho
NkpT?  NkgT®
3§(4) 4 1 3\2/5 17 3
—mt +777(1—l‘) 2+7t . (124

The release energy can be extracted from time-of-flight
measurements and, consequently, Eq. (124) provides a
useful formula to check the effects of two-body interac-
tions directly from experiments.

The formulas presented in this section account for
first-order effects in the coupling constant . Their va-
lidity is ensured only for relatively high temperatures
and weakly interacting gases. In order to appreciate the
accuracy of these predictions, in Fig. 23 we compare the
energy predicted in Eq. (123) with the one obtained by
means of a self-consistent calculation based on the
Popov approximation (see Sec. V.E). The agreement is
excellent over a wide range of temperatures except, of
course, very close to T? where higher orders in 7 give
the leading contribution of two-body interactions to
thermodynamics.

Expansions similar to the ones discussed in this sec-
tion can be carried out also in the opposite limit of low
temperature ¢<<#, which is the analog of the phonon
regime of uniform superfluids. Though this regime is not
easily reachable in current experiments, its theoretical
investigation is rather interesting. The low-temperature
properties of trapped Bose gases are deeply influenced
by the thermal excitation of the single-particle states lo-
calized near the surface of the condensate, already dis-
cussed in Sec. IV.E (see also Giorgini, Pitaevskii, and
Stringari, 1997b).

D. Thermodynamic limit and scaling
The thermodynamic limit for the noninteracting gas
confined in harmonic traps has been discussed in Sec.

II.B. This limit is reached by letting the total number of
particles N increase to infinity and the oscillator fre-
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quency wy,, decrease to zero, with the product w, N
kept fixed. Here wy, is the geometrical average of the
three frequencies. This procedure provides a natural ex-
tension of the usual thermodynamic limit used in uni-
form systems where one takes N—o, V—oo, and keeps
the density n=N/V fixed. In harmonic traps the quan-
tity o, N> represents, together with 7, the relevant
thermodynamic parameter of the system and replaces
the role played by the density in uniform systems. In
particular, it fixes the value of the critical temperature
kBngﬁwhon/[g(z»)]lB. In the thermodynamic limit
all the thermodynamic properties of the noninteracting
model can be expressed in terms of the critical tempera-
ture 70 and the reduced temperature t=T/T?. Of
course, dimensionless quantities, like the condensate
fraction or the entropy per particle, will depend only
on t.

The thermodynamic limit discussed above applies also
in the presence of repulsive interactions. As discussed in
Sec. V.A the parameter 7 depends on N and wy, only
through the transition temperature T? and is conse-
quently well defined in the thermodynamic limit. It is
also worth noticing that the dimensionless parameter
Nalay,, which characterizes the effects of two-body in-
teractions in the Gross-Pitaevskii equation for the
ground state behaves as Na/ap,~N>®%>2. Thus, in the
thermodynamic limit, the condition Nya/a;,,>1, which
ensures the validity of the Thomas-Fermi approximation
for the condensate, is always guaranteed below T, .

The above discussion suggests that in the thermody-
namic limit the relevant functions of the system will de-
pend on Tg, t, and 7 (Giorgini, Pitaevskii, and Stringari,
1997a). In the previous section we have already antici-
pated such a behavior by calculating some relevant ther-
modynamic functions to the lowest order in 7, as done in
Egs. (120) and (122)—(124). This points out a scaling
behavior exhibited by these systems. Different configu-
rations, corresponding to different values of N, m, trap-
ping frequencies, and scattering length, will be charac-
terized by the same thermodynamic behavior provided
they correspond to the same value of 7.

The scaling behavior can be proved in a general way
by noting that in the limit w,,— 0 the size of the system
increases and the density n(r) changes very slowly. As a
consequence in the thermodynamic limit the density is
fixed by the condition (58) of local equilibrium, w(7T)
:/ulocal(n—’ T)+ Vext(r)7 where /ulocal(n_’ T) is the chemi-
cal potential of an interacting uniform system at density
n=n(r). By inverting the above condition one can write
the density of the gas in the form n(r)=nlu
—Veu(r),T], where n(u,T) is the density of the uni-
form gas as a function of chemical potential and tem-
perature. Notice that the inversion of the function
Mocal(7) Tequires that w,.; be a monotonous function
of the density. This condition is satisfied by interacting
systems where the stability condition implies du/dn>0.
The total number of atoms N is obtained by integrating
the density over space coordinates. Introducing the new
variable ¢é=V(r), one can write
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2\ [
szw(m 2) [Caemu-em)ve (125)
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The parameters of the trap enter the above equation
through the combination wp, N3 T(C). On the other
hand, the integral on the right-hand side requires the
knowledge of the density of the uniform system as a
function of chemical potential and 7. Equation (125)
shows that the knowledge of the thermodynamic behav-
ior of the interacting uniform system would permit one,
in principle, to determine the thermodynamics of the
trapped gas (Damle et al., 1996). For a dilute Bose gas,
where the interaction is accounted for by a single param-
eter (the scattering length a), the integral (125) depends
on the quantities u, T, and #%/ma?, the latter being the
only energy one can construct with the mass m and the
scattering length a. As a consequence, inversion of Eq.
(125) yields the following general dependence for the
chemical potential u=u(T,T° %%/ ma®). Due to dimen-
sionality arguments the above expression can be always
written in the form

u=kgT, f(1,7). (126)

Here fis a dimensionless function depending on the re-
duced temperature t=T/T° and on the scaling param-
eter 7, fixed by the ratio between k3T and #%/ma® [see
discussion after Eq. (113)]. A similar scaling behavior
applies to the other thermodynamic functions.

The above discussion applies to the thermodynamic
limit where N—o. An important question is to under-
stand whether in the available experimental conditions,
where N ranges between 10* and 107, this limit is
reached in practice or finite-size effects are still signifi-
cant. In Fig. 24 we show, as an example, the behavior of
the condensate fraction. This quantity depends, in the
thermodynamic limit, only on the variables ¢t and #. In
the figure we plot the numerical results obtained from a
self-consistent mean-field calculation based on the
Popov approximation (see Sec. V.E) for two very differ-
ent configurations, both corresponding to the same
value of 7=0.4. Open squares correspond to N=5
X 10* rubidium atoms in a trap with a/a,,=5.4x1073
and N=8, while solid squares correspond to N=5
X107 sodium atoms in a trap with a/a,,=1.7x10"% and
A=0.05. One sees that both sets of data coincide with
the asymptotic scaling function (solid line), calculated
with the same value of #», by taking the thermodynamic
limit in the equations of the Popov approximation
(Giorgini, Pitaevskii, and Stringari, 1997b). The figure
points out, in an explicit way, how very different con-
figurations can give rise to the same thermodynamic be-
havior, if the corresponding scaling parameter 7 is the
same. It is also interesting to notice that the scaling be-
havior is reached faster in the presence of two-body in-
teractions than for noninteracting particles. In the latter
case, in fact, finite-size effects, which are responsible for
the deviations from the scaling law (1—¢°) (dashed
line), are more visible (open and solid circles).

The scaling behavior is also very well reproduced by
the other thermodynamic quantities. For this reason, in
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FIG. 24. Theoretical predictions for the condensate fraction vs
T/T" for interacting (squares) and noninteracting (circles) par-
ticles in two different traps. Concerning interacting particles,
we show here the results obtained from a self-consistent mean-
field calculation, within Popov approximation, for N=>5X10*
rubidium atoms in a trap with a/a,,=5.4x1073 and A= V8
(open squares) and for N=5X 107 sodium atoms in a trap with
alay,=1.7x107% and A=0.05 (solid squares). The numerical
results are compared with the prediction of the scaling limit for
7=0.4 (solid line). Open and solid circles correspond to N
=5x%10% and N=5X 107 noninteracting particles, respectively,
in the same two traps as the corresponding open and solid
squares. The dashed line is the 1—¢> curve of the noninteract-
ing model in the thermodynamic limit.

the next section, we will discuss the behavior of interact-
ing Bose gases confined in harmonic traps calculating
directly the various physical quantities in the thermody-
namic limit.

E. Results for the thermodynamic functions

In Sec. V.C we have used Hartree-Fock theory to es-
timate the temperature dependence of the chemical po-
tential, condensate fraction, and release energy to lowest
order in the scaling parameter ». The full equations of
Hartree-Fock theory can be solved numerically in a self-
consistent way (Minguzzi, Conti, and Tosi, 1997,
Giorgini, Pitaevskii, and Stringari, 1997b; Shi and
Zheng, 1997b) going beyond the perturbative scheme.
Hartree-Fock theory is expected to be quite accurate at
high temperature except, of course, very close to T,
where mean-field theories are inadequate (Shi, 1997; Shi
and Griffin, 1998). The accuracy of Hartree-Fock at high
T is justified by the crucial role played by single-particle
excitations, as we have already seen in Sec. IV.E for the
density of states. This theory is instead less accurate at
low T, since it ignores the effects of collectivity that
characterize the low-energy part of the excitation spec-
trum. Such collective effects instead are properly in-
cluded in time-dependent Gross-Pitaevskii theory, as
discussed in Sec. IV.A. A mean-field scheme, describing
correctly both the high- and low-temperature regimes, is
provided by the so-called Popov approximation (Popov,
1965, 1987; Griffin, 1996; Shi, 1997) whose application to
interacting bosons in harmonic traps has been consid-
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ered by several authors in the last few years. This mean-
field scheme is based, on the one hand, on a finite-T
extension of the Gross-Pitaevskii equation, in which the
interaction between condensed and noncondensed at-
oms is explicitly accounted for, and, on the other hand,
on Bogoliubov-type equations for the excitations of the
system. The corresponding equations have the form

292

( o + Vext(l’)+g[n0(l')+2n7~(l’)]> d=u¢ (127)
and

h2v2

2m

giu;i(r)=

+ Vex(r) — M+2gn(r)) u;(r)

+gno(r)v,(r), (128)
h2v2

—ewi(n=| — 5+ vm<r>+n+2gn<r>) i(1)

+gno(r)u;(r), (129)

where ny(r)=|¢(r)|? is the condensate density, while
the thermal density 7 is calculated through the relation
nTZEj(|u|]2+ |v|]2)[exp(,88j)—1]71 withu;, v;, and ¢; so-
lutions of Eqs. (128) and (129). These quantities are now
temperature dependent. The sum n(r)=ny(r) +ny(r) is
the total density. The functions u;, v; entering Eqgs.
(128) and (129) are normalized according to condition
(69). Notice that in this approximation the thermal com-
ponent is treated as a thermal bath generating an addi-
tional static external field in the equation for the con-
densate. One also ignores here the 7=0 quantum
depletion 71,,(r)=3|v;(r)|*, which has been shown to
be very small in these trapped gases (see Sec. IILE).
Finally, at low temperature, when 7n 7 is negligible com-
pared with ny, Eq. (127) coincides with the stationary
GP Eq. (39), while Egs. (128) and (129) reduce to Egs.
(66) and (67).

From the solution of Egs. (127)—(129) one obtains
density profiles in good agreement with experimental
data. As an example, we take two of the density profiles
already shown in Fig. 22 and we plot them again in Fig.
25 together with the theoretical prediction from Egs.
(127)—(129), using the number of particles N and the
temperature 7 as fitting parameters. The same equations
have been used also for fitting the experimental data by
Hau et al. (1998).

Using the distribution function of the excited states,
sz[exp(,Bs]-)—l]’l, and the combinatorial expression
for the entropy, S=kzZ{Be;f;—In[1—exp(—pBs))]}, one
can work out all the thermodynamic quantities
(Giorgini, Pitaevskii, and Stringari, 1997b). The com-
parison between the predictions of Hartree-Fock and
Popov theories has revealed that there are no significant
differences between the two approaches for most ther-
modynamic quantities. Only on increasing the value of
the interaction parameter n can one observe some dif-
ferences. This is further evidence of the negligible role
played in thermodynamics by the collective modes of
the condensate, which are ignored in the Hartree-Fock
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FIG. 25. Axial profiles of a cloud of sodium atoms. The thick
solid lines are two of the profiles already shown in Fig. 22,
obtained at MIT (Stamper-Kurn and Ketterle, 1998) from
phase-contrast images at different temperatures: 7=0.7 uK
(lowermost), T=1.2 uK (uppermost). Dot-dashed lines are
theoretical predictions obtained from Egs. (127)—(129), using
N and T as fitting parameters: the lower curve corresponds to
N=14x10" and T=0.8 uK, and the upper one to N=2.3
%107 and T=1.1 uK. In both cases, a difference in tempera-
ture of about 10% between the experimental estimate and the
result of the fit is consistent with the experimental uncertainty.

scheme. This behavior, in accordance with the analysis
of the density of states made in Sec. IV.E, represents a
significant difference with respect to the case of uniform
superfluids.

In the following we present results for various ther-
modynamic quantities (chemical potential, condensate
fraction, and release energy) obtained using the Popov
approximation in the thermodynamic limit. As discussed
in the previous section, this limit is well achieved in the
configurations realized in present experiments. The re-
sults are consequently presented as a function of the
reduced temperature ¢ for different values of the scaling
parameter 7. We have considered the value 7=04,
which corresponds to the typical configurations realized
in actual experiments, and the value 7=0.6, which
would correspond to a more correlated gas.

First, in Fig. 26 we show the chemical potential in
units of k53 T? as a function of the reduced temperature .
Notice that for r—0 the plotted quantity coincides, by
definition, with the parameter 7 [see definition (113)]. In
the classical limit, 7> T(C), the chemical potential ap-
proaches the ideal-gas value w/k =t In[£(3)/£].

The results for the condensate fraction Ny/N are
given in Fig. 27. The open circles are the experimental
points (Ensher et al., 1996). In the experiment the num-
ber of atoms N varies with ¢ and the corresponding value
of 7 ranges from 0.39 to 0.45. The data are compared
with the predictions of the mean-field theory for %
=0.4 (solid line) and the noninteracting gas model (dot-
ted line). The experimental points are shifted from the
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FIG. 26. Chemical potential as a function of 7/T? in the ther-
modynamic limit. Solid line: #=0.4, dashed line: »=0.6. The
dotted line refers to the noninteracting model (7=0).

noninteracting case to lower temperature, but not as
much as predicted by mean-field theory. However, the
experimental uncertainties are still too large to draw any
definitive conclusion.

In Fig. 28 we show the results for the release energy.
The dots are the experimental data (Ensher et al., 1996)
which, below 7., lie well above the noninteracting
curve, showing again a clear evidence for the effects of
two-body interactions. We notice that, by differentiating
the total energy with respect to 7, one could calculate
the specific heat. In the present experiments however,
this quantity is not directly available because only the
release energy is measured. What one can see from a fit

No/N

O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

T/T."

FIG. 27. Condensate fraction as a function of T/T? in the
thermodynamic limit. As in Fig. 26, the curves are the theoret-
ical predictions for 7=0.4 (solid line), »=0.6 (dashed line),
and the noninteracting case 7=0 (dotted line). Open circles
are the experimental data by Ensher et al. (1996), correspond-
ing to nin the range 0.39-0.45. Solid circles with error bars are
the path-integral Monte Carlo results by Krauth (1996), with
7n=0.35.
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release energy

FIG. 28. Release energy as a function of 7/7? in the thermo-
dynamic limit. The curves refer to the same values of # as in
Fig. 26. Circles are the experimental data by Ensher et al
(1996).

to the experimental data of the release energy is the
occurrence of a characteristic bump in the derivative
near the transition temperature (Ensher et al, 1996);
this behavior is in good agreement with the prediction
obtained by taking the derivative of the theoretical
curves in Fig. 28.

Finally, the above results of the mean-field theory at
finite temperature can be also compared with the ones
of quantum Monte Carlo calculations (Krauth, 1996;
Holzmann, Krauth, and Naraschewski, 1998). It is worth
noticing that the possibility of making a close compari-
son between exact Monte Carlo simulations, experimen-
tal data, and mean-field calculations is a rather rare
event in the context of interacting many-body systems
and represents a further nice feature of BEC in traps. In
Fig. 27, the condensate fraction obtained with path-
integral Monte Carlo calculations by Krauth (1996) is
represented by solid circles with error bars. The simula-
tion has been done with 10000 atoms interacting
through an hard-core potential, and corresponds to 7
=0.35. The results are very close to the mean-field pre-
diction. The value of 7 used for the solid curve is actu-
ally 0.4, since this value is closer to the experimental
situation, but the same calculation for »=0.35 gives an
even better agreement, crossing precisely the three
Monte Carlo data at high temperature. A detailed com-
parison between Monte Carlo results and mean-field
theory has been recently performed by Holzmann,
Krauth, and Naraschewski (1998), including the analysis
of the density profiles of the gas at different tempera-
tures.

F. Collective modes at finite temperature

In Sec. IV we have studied the collective excitations
of a trapped Bose gas at zero temperature. In this case,
all the atoms are in the condensate and there are no
collisions. In the collisionless regime the force acting on
a given particle comes from the mean field created by
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the other particles; this field generates a collective oscil-
lation of the system, which is sometimes called Bogoliu-
bov sound and is the analog of zero sound for normal
Fermi liquids.

At finite temperature the situation is more compli-
cated. On the one hand, both the condensate and the
thermal cloud can oscillate. On the other hand, colli-
sions between excitations can play an important role and
one must distinguish between a collisional and a colli-
sionless regime.

So far the temperature dependence of these oscilla-
tions has been analyzed experimentally both at JILA
and MIT. In the first case, Jin et al. (1997) investigated
the m=0 and m=2 modes for a system of ~10*Rb at-
oms in a trap with asymmetry parameter A = 8. At low
temperatures (7<0.47") they found that the oscilla-
tions of the condensate have frequencies in good agree-
ment with the predictions of the T=0 Gross-Pitaevskii
equation (see Sec. IV), while at higher temperatures the
frequency exhibits an unexpected temperature depen-
dence with very different behavior for the two modes. In
the second case, Stamper-Kurn, Miesner, Inouye et al.
(1998) studied the low-lying m=0 mode for a much
larger system (N~ 107 Na atoms) in a cigar-shaped trap
with A <1. Similarly to the JILA group, they observed a
shift of the collective frequency with respect to the T
=0 value. Both groups also measured the damping of
the collective modes of the condensate, finding a rather
strong T dependence. They also observed the oscilla-
tions of the thermal cloud below and above the critical
temperature.

Mean-field approaches have been used to predict the
properties of the collective excitations in the collision-
less regime. This regime is achieved at low temperatures
and for low densities of the thermal cloud. In this case,
the oscillations of the condensate behave similarly to the
T=0 case and can still be called Bogoliubov’s sound
modes. Several authors have used finite-T extensions of
the time-dependent Gross-Pitaevskii equation in
the Popov approximation [see Egs. (127)—(129)]
(Hutchinson, Zaremba, and Griffin, 1997; Dodd, Ed-
wards, Clark, and Burnett, 1998; Dodd, Burnett, Ed-
wards, and Clark, 1998). This approach, in which the
thermal component is treated as a static thermal bath,
does not account for any damping mechanism. In order
to include damping, a dynamic description of the oscil-
lations of both the condensate and the thermal cloud is
needed (Minguzzi and Tosi, 1997; Giorgini, 1998). The
dynamic coupling between the motion of the two com-
ponents might also be important in the determination of
the temperature dependence of the frequency shift.
There are still open questions on this problem and sev-
eral aspects of the theory are expected to be clarified in
the near future.

Damping processes in the collisionless regime have
been investigated using perturbative approaches (Liu,
1997; Liu and Shieve, 1997; Pitaevskii and Stringari,
1997; Fedichev, Shlyapnikov, and Walraven, 1998). An
important mechanism of collisionless damping is pro-
vided by the Landau damping. In Fermi liquids, Landau
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FIG. 29. Temperature-dependent damping rates y measured
for the m=0 (triangles) and m=2 (circles) modes (Jin et al.,
1997). The solid line is the theoretical estimate (130) where we
have used the Thomas-Fermi approximation for the local
sound velocity, ¢ (T)=[ u(T)/m]"?, calculated in the center of
the trap, and expression (120) for the temperature dependence
of the chemical potential.

damping originates from the coupling between single-
particle excitations and zero sound at 7=0 (Pines and
Nozieres, 1966; Lifshitz and Pitaevskii, 1981, Chap. 30).
In a Bose gas, an analogous damping occurs because the
thermal bath of elementary excitations can absorb
quanta of the collective oscillation. Landau damping in-
creases with temperature, because of the larger number
of elementary excitations available at thermal equilib-
rium. For temperatures larger than the chemical poten-
tial it increases linearly with 7 and for a uniform system
the ratio between the imaginary, y= —Im(w), and real,
Re(w), parts of the collective frequency takes the ana-
lytic form (Szépfalusy and Kondor, 1974; Pitaevskii and
Stringari, 1997; Shi, 1997)

Y _3_’7TkBT(l
Re(w) 8 #c

(130)

This equation is valid for excitations with energy
f Re(w)<u<<kgT, which in a uniform system are
phonons propagating with the sound velocity c¢. Equa-
tion (130) can be used for a rough estimate of the damp-
ing of collective excitations in traps by taking for c¢ the
value of the sound velocity in the center of the trap. As
an example, in Fig. 29 we show the damping rate y mea-
sured for the m =0 and m =2 modes by Jin et al. (1997),
compared with the theoretical estimate (130). Taking
into account that this estimate, which is expected to ap-
ply at high temperatures, is very rough and that the ef-
fects of geometry and multipolarity are completely ne-
glected, the agreement between theory and experiment
can be considered reasonable. Recently, Fedichev,
Shlyapnikov, and Walraven (1998) have indeed argued
that Landau damping is strongly influenced by the ge-
ometry of the traps, being particularly effective in aniso-
tropic traps, due to the randomness of the excitation
spectrum.



500 Dalfovo et al.: Bose-Einstein condensation in trapped gases

At high temperature and/or high density, collisions
are more important and can affect the nature of collec-
tive excitations. In Bose superfluids the collisional re-
gime is described by the equations of two-fluid hydrody-
namics and is characterized by the occurrence of two
distinct oscillations: first and second sound. In liquid
“He, first sound is a density wave with in-phase oscilla-
tions of the superfluid and normal components, while
second sound is an almost pure entropy wave with op-
posite phase motion of the two components. For a dilute
Bose gas the situation is different because the interac-
tion between the condensate and the thermal cloud is
very weak. In particular, except at very low temperature,
first sound mainly involves the thermal cloud and re-
duces to the usual hydrodynamic sound above T ; con-
versely, second sound is essentially the oscillation of the
condensate and disappears above T. (Lee and Yang,
1959; Griffin and Zaremba, 1997). Similar features have
been pointed out also in the presence of harmonic trap-
ping (Zaremba, Griffin, and Nikuni, 1997; Shenoy and
Ho, 1998).

An important limiting case is represented by the col-
lective motion of the gas above the critical temperature,
where the gas exhibits an almost classical behavior. In
the collisional regime, one can then use the equations of
hydrodynamics for classical gases in order to obtain ex-
plicit results for the collective frequencies. For example,
the coupled quadrupole and monopole modes with m
=0 obey the following dispersion law (Griffin, Wu, and
Stringari, 1997; Kagan, Surkov, and Shlyapnikov,
1997a):

1
w2=§[5wﬁ +4w2E (250! +160i—3207 02)17].
(131)

If the trap is spherical (0w, = w_,= wy,), the two solutions
have frequency w=v2wy, (quadrupole) and w=2wy,
(monopole). Notice that the frequency of the surface
(quadrupole) mode is equal to the one of the oscillations
of the condensate at zero temperature, given by Eqg.
(83). In the limit of highly deformed cigar-shaped traps
(w,<w,), the lowest frequency of Eq. (131) becomes
w=V125w, .

This collisional regime, yielding the dispersion law
(131), is achieved if w7<<1, where 7is a typical collision
time. In the opposite limit (w7>1) one finds the colli-
sionless regime, where the gas oscillates with frequen-
cies fixed by the trapping potential, corresponding to the
predictions of the noninteracting model. Oscillations of
this type have been observed by Jin et al. (1997) for both
the gas above T, and the thermal component below T ;
the frequency of the m=0 and m=2 modes was found
to be roughly twice the trap frequency, in agreement
with the prediction for the ideal gas.

In the intermediate regime where w7~1 one expects
a smooth crossover from collisionless to collisional hy-
drodynamic modes. A useful interpolation formula is
provided by the law (Kavoulakis, Pethick, and Smith,
1998)
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2 2
w —w
w’= w2C+ %a”_c, (132)

predicted by general theory of relaxation phenomena
(Landau and Lifshitz, 1987, Chap. 81). Here o, and
wpp are the frequencies of the mode in the collisionless
and collisional hydrodynamic regimes, respectively.

An estimate of the collisional time 7 can be obtained
by again considering a classical picture of the system.
One finds 7=/, /vy, where v=+2kgT/m is the ther-
mal velocity and lmfp=(nro')71 is the mean free path
which is fixed by the s-wave cross section o=8ma® and
by the density. For frequencies of the order of the oscil-
lator frequency the condition w7<<1 is equivalent to re-
quiring that the mean free path be much smaller than
the thermal radius R;= \/ZkBT/mwhzo. Near 7. one
finds that the collisional frequency 1/7 behaves like
7’kyT,/h where 7 is the scaling parameter defined in
Eq. (113). Despite the smallness of the factor 7°, the
collisionless frequency can be of the same order of the
collective frequencies of the system because of the fac-
tor N contained in T, so that increasing N favors the
achievement of the collisional hydrodynamic regime.
Notice that the multipolarity of the excitation can play
an important role in characterizing the relaxation of the
collective oscillation. For example, the dipole mode can-
not have any relaxation mechanism in the presence of
harmonic trapping. The same happens in the case of the
monopole excitation if the harmonic trap is isotropic. In
both cases, the collisionless (w¢) and hydrodynamic
(wyp) frequencies coincide.

In Fig. 30 we plot the imaginary part of w against the
real part, as given in Eq. (132), for the case of the low-
lying m=0 mode observed in the cigar-shaped trap at
MIT (Stamper-Kurn, Miesner, Inouye et al., 1998). In
this experiment, the thermal cloud is found to oscillate
with a frequency of 1.78w,, which is larger than the hy-
drodynamic prediction {12/5w,, but lower than the
noninteracting value 2w, . A damping rate of about 20
s7! was also observed, corresponding to —Im(w)
=0.19w, . In Fig. 30 the experimental results are repre-
sented by the solid circle with error bars, which turns out
to be reasonably close to the theoretical curve, the dif-
ference being of the order of the experimental uncer-
tainty. The part of the curve near the maximum corre-
sponds to values of collision time such that Re(w)m~1
and this suggests that, differently from the JILA experi-
ment (Jin et al., 1997), the motion of the thermal cloud
in the MIT experiment is affected by collisions.

Finally, we mention that Stamper-Kurn, Miesner, In-
ouye et al. (1998) also observed the opposite phase di-
polar oscillation of the thermal cloud and the conden-
sate, occurring below T, (Zaremba, Griffin, and Nikuni,
1998). This mode exhibits strong damping.

VI. SUPERFLUIDITY AND COHERENCE PHENOMENA

Superfluidity is one of the most spectacular conse-
quences of Bose-Einstein condensation. However, the
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FIG. 30. The imaginary part of w against the real part, as given
by the interpolation formula (132), in the case of the low-lying
m=0 mode observed at MIT (Stamper-Kurn, Miesner, Inouye
et al., 1998). In the collisional hydrodynamic regime the fre-
quency of the mode is given by wyp=(12/5)"?w, [see Eq.
(131)], while in the collisionless regime it is given by the non-
interacting value wc=2w,. In both cases the motion is un-
damped [Im(w)=0]. Stamper-Kurn, Miesner, Inouye et al.
(1998) measured a frequency of about 30 Hz with a damping
rate of about 20 s™!; the corresponding values Re(w)~1.78w,
and —Im(w)~0.19w, are represented by the solid circle. The
theoretical curve near this point corresponds to collision time
such that Re(w)7~1.

explicit connection between superfluidity and BEC is
not trivial and has been the object of a longstanding and
deep investigation in the last decades, mainly for its im-
portance in understanding the physics of liquid helium.
In macroscopic bodies superfluidity shows up with many
peculiar features: absence of viscosity, reduction of the
moment of inertia, occurrence of persistent currents,
new collective phenomena (second sound, third sound,
etc.), quantized vortices, and others. Several properties
are usually interpreted as coherence effects associated
with the phase S of the order parameter whose gradient
fixes the wvelocity of the superfluid through vy
=(h/m)VS. A major question is to understand whether
some of these effects can be observed also in trapped
gases. Of course in a mesoscopic system one expects the
manifestations of superfluidity to be different from the
ones exhibited by macroscopic bodies. In particular, tra-
ditional experiments based on the study of transport
phenomena are not easily feasible in trapped gases. On
the other hand, interference patterns, associated with
phase coherence, have been already observed (An-
drews, Townsend et al., 1997) and successfully compared
with theory. This opens a promising field of research
based on the investigation of coherence phenomena, in-
cluding the realization of the so-called “‘atom laser.”
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A. Rotational properties: vortices and moment of inertia

Among the several properties exhibited by superflu-
ids, the occurrence of quantized vortices and the strong
reduction of the moment of inertia represent effects of
primary importance.

In a dilute Bose gas, the structure of quantized vorti-
ces can be investigated starting from the Gross-
Pitaevskii equation. Indeed one of the primary motiva-
tions of the theory was the study of vortex states in
weakly interacting bosons (Gross, 1961, 1963; Pitaevskii,
1961). These studies were further developed by Fetter
(1972), including higher-order effects in the interaction.

A quantized vortex along the z axis can be described
by writing the order parameter in the form

d)(r):(bv(rL 7Z)exp[iK(P]’ (133)
where ¢ is the angle around the z axis, « is an integer,

and ¢,(r, ,z)=+n(r, ,z). This vortex state has tangen-
tial velocity

f
v =

K. (134)

The number « is the quantum of circulation and the
angular momentum along z is N«#. The equation for
the modulus of the order parameter is obtained from the
GP Eq. (39). The kinetic energy brings a new centrifugal
term arising from the velocity flow that pushes the atoms
away from the z axis. The GP equation then takes the
form

{ RV R
- ——+ = (0rtwz
2m  2mr; 2L E

+g¢3(rl_ 7Z) ¢U(FL5Z):IU’¢U("L 71)' (135)

Due to the presence of the centrifugal term, the solution
of this equation for «#0 has to vanish on the z axis. An
example is shown in Fig. 31, where the solid line repre-
sents the condensate wave function, ¢,(x,0,0), for a gas
of 10* rubidium atoms in a spherical trap and with vor-
ticity k=1. In the inset, we give the contour plot for the
density in the xz plane, n(x,0,z)=|¢,(x.,0,2)|%.

For noninteracting systems the solution of Eq. (135) is
analytic and, for k=1, has the form

m

¢, (ry ,z)cr; exp —ﬁ(wuimzf) . (136)
In this case, the vortex state corresponds to putting all
the atoms in the m =1 single-particle state. Its energy is
then Nfiw, plus the ground-state energy. In Fig. 31, the
corresponding wave function is shown as a dashed line.
Similarly to what happens for the ground state without
vortices, the presence of repulsive forces dramatically
reduces the density with respect to the noninteracting
gas, the condensate wave function becoming much
broader.



502
0.3
= 70N
/ \
1 \
] A
o S
o 02 [~ ,I \
o | ‘
0 ! ;
= ’ ‘
Il X
o) S J
G4 : \
] ! \\
1
o : ;
g 0.1 :."_ ________ \
| .3
A Vo
I LS
! \ RN
H \ N
1 \ D
1 \ \.\
i S AN
0 L ] 1\‘-—« 1
0 1 2 3 4 5 6

x (units of ay,)

FIG. 31. Condensate with a quantized vortex along the z axis.
The order parameter ¢,(x,0,0) is plotted in the case of 10*
rubidium atoms confined in a spherical trap with ay,
=0.791 um. Distances are in units of the oscillator length ay,
and the curves correspond to (aj,/N)"?¢,(r), so that they are
normalized to 1 when ¢, is normalized to N. The dot-dashed
line is the solution of the stationary GP Eq. (39), or equiva-
lently of Eq. (135) with x=0; the solid line is the profile of a
vortex with k=1, from Eq. (135); the dashed line is the nonin-
teracting wave function (136). In the inset, the contour plot for
the density in the xz plane, n(x,0,z)=|¢,(x,0,z)|?, is given.
Luminosity is proportional to density, the white area being the
most dense.

The structure of the core of the vortex is fixed by the
balance between the kinetic energy and the two-body
interaction term. For a uniform Bose gas, the size of the
core is of the order of the healing length ¢
=(8mna)~ ', already introduced in Sec. IIL.B, where n
is the density of the system. For the trapped gas, an
estimate of the core size can be obtained using the cen-
tral value of the density in the absence of vortices for n.
If the trap is spherical, as in the case of Fig. 31, the ratio
between & and the radius R of the condensate takes the
form (Baym and Pethick, 1996)

£_ (i)z
R \R/”
where we have used the Thomas-Fermi approximation
for the central density and the radius R. For the conden-
sate in the figure, the radius is about 4.1 in units of ay,
and the ratio &R is then ~0.06. The actual core size
depends, obviously, also on the position on the z axis
and becomes larger when the vortex line reaches the
outer part of the condensate, where the density de-
creases. This can be clearly seen in the inset of Fig. 31.

The energy of the vortex can be evaluated through the
energy functional (37). The difference between the en-
ergy of the vortex state and the one of the ground state
allows one to calculate the critical frequency needed to
create a vortex. In fact, in a frame rotating with angular

(137)
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FIG. 32. Critical angular velocity, in units of w, , for the for-
mation of a k=1 vortex in a spherical trap with N atoms of

8Rb and a,,=0.791 wm.

frequency (), the energy of a system carrying angular
momentum L is given by (E—QL,), where E and L,
are defined in the laboratory frame. At low rotational
frequencies this energy is minimal without the vortex. If
Q) is large enough the creation of a vortex can become
favorable due to the term —Q L. This happens at the
critical frequency

Q.= (k) '[(EIN),—(EIN)], (138)

where E, is the energy of the system in the presence of
a vortex with angular momentum N#«. In Fig. 32 we
plot the critical frequency for the creation of a vortex
with k=1 as a function of the number of atoms, for
rubidium in a spherical trap. As shown in the figure, the
predicted critical frequency is a fraction of the oscillator
frequency and, in typical experimental conditions, corre-
sponds to a few Hz. It decreases when N increases, be-
cause for large systems the energy cost associated with
the occurrence of a vortex increases as In N, while the
gain in L, is always linear in N. This behavior is simi-
lar to the one exhibited by uniform systems where, ap-
proximating the vortex core as a cylindrical hole of ra-
dius ¢, one can explicitly calculate the critical frequency;
one finds Q= (#/mR?)In(R/€), where R is the radius of
the region occupied by the vortex flow. Analogous ex-
pressions can also be derived in the presence of har-
monic trapping for large N. Baym and Pethick (1996)
and Sinha (1997) have shown that the critical frequency,
in units of wy,, goes as ~(an,/R)?In(R/€). Using the
asymptotic solution of the GP equation in the large-N
limit, Lundh, Pethick, and Smith (1997) have found a
useful analytic expression for the critical velocity in the
case of axially symmetric traps:

Sh_ O067IR,
2mRE T E

where R is the Thomas-Fermi radius of the cloud in the
xy plane, orthogonal to the vortex line, while the healing
length is defined by £=(8mna) 2, with n equal to the
central density of the gas without vortex. This formula
gives a critical frequency that significantly differs from

(139)

Q.=
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the numerical result shown in Fig. 32 only for N smaller
than about 2000, while for larger N it becomes more and
more accurate.

The above discussion regards the structure of vortices
for repulsive interactions. An intriguing problem is how
the angular momentum is distributed in systems with
attractive forces. This question was recently addressed
by Wilkin, Gunn, and Smith (1998), who showed that
the lowest eigenstates of fixed angular momentum do
not exhibit vortex configurations.

A major question concerning vortices in trapped Bose
gases is whether they can be observed in experiments.
So far, no evidence about their existence has been re-
ported. In principle, it should not be difficult to produce
them in a steadily rotating trap. The value of the critical
frequency is, in fact, easy to achieve in the laboratory.
However, when one stops the rotation it is not obvious
whether the vortex remains stable. The problem of sta-
bility of vortices is rather complex even in uniform su-
perfluids, like “He, where it has been the object of much
experimental and theoretical work (Donnelly, 1991). In
a recent paper, Rokhsar (1997) has argued that a vortex
placed at the center of a nonrotating harmonic trap is
unstable. Other discussions about the stability of vortex
configurations can be found in Benakli et al. (1997), Fet-
ter (1998), and Isoshima and Machida (1998).

Creating a vortex is only part of the problem. A sec-
ond important problem is its detection. The excitation
energy associated with a vortex is too small to be ob-
served with measurements of the release energy. In fact,
the increase in the energy per particle is ()., a quantity
much smaller than the energy per particle in the ground
state, given by (5/7)u. However, imaging the core of the
vortex during the expansion, after switching off the trap,
should be feasible, as recently suggested by Lundh,
Pethick, and Smith (1998). Promising perspectives are
also given by the effects of vortices on the shift of the
collective frequencies of the condensate. These can be
measured with high precision and the observation of a
breaking of degeneracy between states of opposite an-
gular momentum would represent a rather unambiguous
evidence of the presence and the quantization of the
vortex. The shift of the collective frequencies has been
already investigated by several authors. Sinha (1997)
used a large-N semiclassical expansion in the Gross-
Pitaevskii equation; Dodd, Burnett, Edwards, and Clark
(1997) carried out a direct numerical solution of the
same equation. Very recently, Zambelli and Stringari
(1998) have developed a sum-rule approach yielding an
explicit analytic expression for the splitting of the quad-
rupole modes, while Svidzinsky and Fetter (1998) have
developed a perturbative solution of the collisionless hy-
drodynamic equations. One should also recall that the
existence of vortices gives rise to a new series of collec-
tive excitations localized near the vortex core. Similar
modes are found in uniform superfluids. In that case, the
corresponding dispersion law of the lowest mode is
= (hk§/2m)ln(kz§), where k, is the wave vector associ-
ated with a periodic motion of the vortex line along the
z axis. The effects of thermally excited vortex waves in
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trapped gases have been explored by Barenghi (1996).
Another explicit proof of the existence of vortices would
be the observation of an asymmetry in the velocity of
sound when one considers wave packets propagating in
the same, or in the opposite direction with respect to the
vortex flow. Such a test on the quantization of the super-
fluid flow requires a ring-type geometry for the confine-
ment of the atomic cloud. The quantization of the super-
fluid flow in the ring could be also revealed using
interference experiments (see next section). By letting
the condensate expand one should, in fact, observe in-
terference fringes associated with the modulations of the
phase produced by the quantization of the circulation in
the ring. In a similar way, one could detect a quantized
vortex by looking at the phase slip in the interference
fringes produced by two expanding condensates (Bolda
and Walls, 1998).

We have already pointed out that if we induce at zero-
temperature rotations on an axially symmetric system
with angular frequency smaller than ()., then the system
remains in its ground state. In fact, only the normal
(nonsuperfluid) part of the system can participate in the
rotational motion and, consequently, axially symmetric
Bose systems can possess a moment of inertia only at
finite temperature. A deviation of the moment of inertia
from the rigid value represents an important manifesta-
tion of superfluidity. In liquid “He such deviation has
been directly observed below the lambda temperature,
where the system becomes superfluid (Donnelly, 1991).
Measuring the moment of inertia of a trapped gas is
actually a challenging problem, because direct measure-
ments of angular momentum are difficult to obtain.

The moment of inertia ® relative to the z axis can be
defined as the linear response of the system to a rota-
tional field H.=— wL,, according to the definition

(L)=w0, (140)

where L,=3,(x;,p? —y;p7) is the z component of the an-
gular momentum and the average is taken on the state
perturbed by H.,,. For a classical system the moment of
inertia takes the rigid value

0., =mN(r?). (141)

Vice versa, the quantum-mechanical determination of ©
is much less trivial. It involves a dynamic calculation
and, according to perturbation theory, can be written as

i|L,|i)? E;
3 e

rig

where |j) and |l> are eigenstates of the unperturbed
Hamiltonian, E; and E; are the corresponding eigenval-
ues, and Z is the partition function.

The moment of inertia can be easily calculated if one
considers the simplest case of an ideal gas trapped by a
harmonic potential. The result is (Stringari, 1996a)

O =egm(r})oNo(T)+m{r?)yN(T), (143)

where the indices (), and () mean the average taken
over the densities of the Bose condensed and noncon-
densed components of the system, respectively. The
quantity
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FIG. 33. Moment of inertia ® divided by its rigid value 0, as
a function of T/T?. Solid line: interacting gas in the thermody-
namic limit with »=0.4. The dashed and dot-dashed lines are
the predictions for 5x 107 and 5 10* noninteracting particles,
respectively, in a spherical trap.
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is the deformation parameter of the condensate given by
(0y—o,)/(w,+ w,). This quantity vanishes for an axi-
ally symmetric trap.

The physical interpretation of Eq. (143) is very clear.
In fact, the first term in the moment of inertia arises
from the atoms in the condensate, which contribute with
their irrotational flow and can hence be interpreted as
the superfluid component. The second term arises in-
stead from the particles out of the condensate which
rotate in a rigid way (normal component). These two
distinct contributions are at the origin of an interesting 7'
dependence of ©. In fact, above T, where Ny=0, the
moment of inertia takes the classical rigid value (141),
while at T=0, where all the atoms are in the condensate,
it is given by the irrotational value O ;.= e%@rig. In the
limit of small deformation (i.e., small €,), the deviation
of the moment of inertia from its rigid-body value is
given by the useful expression

g: NT('&)T
rig N0<ri>0+NT<ri>T'

It is worth discussing the behavior of the moment of
inertia in the thermodynamic limit N—, with Nwj,
kept constant. In this limit, the ratio (r2)y/(r>)s tends
to zero. In fact, the square radius of the condensate in-
creases as 1/w, , while the one of the thermal cloud as
kgT/ wi. In this limit, one then finds /0 ,—1 every-
where except at 7=0 where N;=0. This behavior is not
surprising. In fact if the radius of the condensate is much
smaller than the one of the thermal component, then
there is no distinction between © and 0, since, in both
cases, the leading contribution is given by the thermal
component. For finite values of N, the ratio ®/0 , goes
smoothly to zero as temperature decreases. An example
is shown in Fig. 33 for a spherical trap and two different

€ (144)

(145)
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values of N (dashed and dot-dashed lines).

How do two-body interactions change the above pic-
ture? Result (145) is expected to be valid also in the
presence of interactions, to the extent that the relevant
excitations are well described by a single-particle picture
and the condensate can still be identified with the super-
fluid component. For example, in Hartree-Fock theory
one obtains coupled equations for the condensate wave
function and the single-particle excited states. The irro-
tational flow for the condensate follows from the defini-
tion of the superfluid velocity as the gradient of the
phase of the order parameter. On the other hand, the
flow of the atoms out of the condensate is rigidlike if one
treats the thermally excited states in semiclassical ap-
proximation, as done in Sec. V [see Eq. (121)]. Only at
very low temperature, where the effects of collectivity
can be important and the superfluid component must be
distinguished from the condensate, is expression (145)
for the moment of inertia no longer correct.

Interactions can affect the value of the moment of
inertia by changing the temperature dependence of the
condensate, as well as the value of the square radii (r?).
The change in the radii is particularly significant at large
N. In fact, unlike for the noninteracting case, the ratio
(r*)o/{r*)7 does not vanish in the thermodynamic limit
and is fixed by the value of the scaling parameter 7. As
a consequence, interactions have the important effect of
reducing the value of the moment of inertia with respect
to the rigid value in the whole range of temperatures
below T'.. This behavior is explicitly shown by the solid
line in Fig. 33.

B. Interference and Josephson effect

An important consequence of phase coherence in
Bose-Einstein condensates is the occurrence of interfer-
ence phenomena. A beautiful example is the experiment
carried out at MIT (Andrews, Townsend et al., 1997),
where a laser beam was used to cut a cigar-shaped
atomic cloud into two spatially separated parts. After
switching off the confining potential and the laser, the
two independent atomic clouds expand and eventually
overlap. Clean interference patterns have been observed
in the overlapping region [see Fig. 34(b)].

From a qualitative viewpoint, one can imagine the ini-
tial condensates as two pointlike pulsed sources placed
at distance d on the z axis. Let us consider the interfer-
ence taking place in the region of space where the den-
sity of the gas is small enough and hence the condensate
wave function is a linear superposition of two de Broglie
waves. By using result (100) for the phase of each ex-
panding condensate, one finds that the relative phase of
the two waves behaves as [S(x,y,z+d/2)—S(x,y,z
—d2)]=(m/h)a,(t)zd. If the time delay ¢ between the
switching off of the trap and observation is large, one
has @ (t)—1/t. One then finds straight interference
fringes, orthogonal to the z axis, with wavelength given
by
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FIG. 34. Density pattern for the interference of two expanding
and overlapping condensates. (a) Theory by Rohrl et al
(1997), based on the solution of the time-dependent GP equa-
tion. (b) Experimental data by Andrews, Townsend et al.
(1997). (c) Theory including the effect of finite experimental
resolution.
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(146)

Using the spacing between the two initial condensates as
an estimate of the distance d one gets fringe periods in
reasonable agreement with the observed patterns (An-
drews, Townsend et al, 1997). Typical values are ¢
=40ms, d=40 um, and A=20 um.

Gross-Pitaevskii theory is a natural framework for in-
vestigating interference phenomena in a quantitative
way. In this theory, the phase coherence of the conden-
sate is assumed from the very beginning. The interfer-
ence patterns can be obtained by numerically solving the
GP Eq. (35) for two condensates. This has been done,
for instance, by Hoston and You (1996), Naraschewski
et al. (1996), Rohrl et al. (1997), and Wallis et al. (1997a,
1997b). Interference phenomena have also been investi-
gated without using the concept of broken gauge sym-
metry by Javanainen and Yoo (1996). In Fig. 34 the ex-
perimental results are plotted together with the
theoretical calculations by Rohrl et al. (1997). The good
agreement between theory and experiment reveals that
the concept of phase coherence, as assumed in GP
theory, works very well. This was not obvious a priori,
since the system is finite sized and interacting and hence
phase coherence is expected to be only approximate.

Another interesting manifestation of phase coherence
in trapped condensates is the possible occurrence of
Josephson-type effects, in analogy with well-known
properties of Josephson junctions in superconductors
and superfluids. The physical idea consists of consider-
ing a double-well trap, with a barrier between the two
condensates. If the chemical potential in the two traps is
different, a flux of atoms is generated. In Fig. 35 we
show a simplified scheme. If one assumes the barrier
between the two wells to be high enough, then Eq. (39)
has two natural solutions, ¢(r) and ¢,(r), localized in
each potential well, 1 and 2, and having chemical poten-
tials uq and w,. A difference between the chemical po-
tentials in the two traps can be achieved by filling them
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FIG. 35. Schematic geometry of a double-well trapping poten-
tial V., for the Josephson effect.

with a different number of atoms. The overlap between
the condensates occurs only in the classically forbidden
region, where the wave function is small and nonlinear
effects due to interactions can be ignored. Thus in this
region the linear combination

B(r,t)= ¢1(T)6XP( —i%lt) + d’z(r)exp( —i%)
(147)

is still a solution of the time-dependent Eq. (35). If the
two condensates are elongated in the z direction, the
current through the barrier can be written as

ih d
I(z,t)= %f dx dy( @(r,t) Eq&*(r,t)

d
— * -
¢* (r,0) o ¢(Lt)>- (148)
Using the wave function (147), the current can be easily
calculated and takes the typical Josephson form

I=1Iysin[ (= po)t/h] (149)

with Iy=(#%/m)[dx dy(¢,¢p5— ¢,d1). The calculation
of the critical current [ is a difficult task, since it corre-
sponds to a nonlinear 3D tunneling problem. If x; and
M, differ from the average value p by a small quantity
o and one treats the motion under the barrier in WKB
semiclassical approximation, the estimated current I
turns out to be proportional to exp(—S;), where S
=[2dz{2m[V (0,0,2) — n]/A*}"? and the integral is
taken between the points 1 and 2 located as in Fig. 35
(Dalfovo, Pitaevskii, and Stringari, 1996). Zapata, Sols,
and Leggett (1998) have recently applied the same for-
malism to realistic 3D configurations, deriving the Jo-
sephson current in the form I~(kzT%Hh)exp(—S,).
Their results suggest that Josephson effects might in-
deed be observed in experiments. At finite tempera-
tures, one should also include possible contributions
arising from the incoherent flux of thermally excited at-
oms; this ““‘normal” current is expected to be propor-
tional to du. In order to observe the Josephson effect
one must consequently work at low enough tempera-
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tures, where the system is fully superfluid. It is also
worth noticing that the geometry of the trapped gases
allows one to realize, qualitatively, new Josephson-type
effects, as suggested by Smerzi et al. (1997), Williams
et al. (1998), and Raghavan ef al. (1999). The propaga-
tion of density solitons across regions of phase disconti-
nuity in the collision of two condensates has been also
considered as an analogue of a Josephson-like effect
(Reinhardt and Clark, 1997).

An open problem concerns the possible decoherence
mechanisms, which could affect, or even destroy, the
phase coherence in interference and Josephson-like ex-
periments through phase-diffusion processes. The fluc-
tuations of the phase can have either a thermal or a
quantum origin. Actually, even at T=0 the phase of the
condensate must diffuse, since having a fixed phase is
inconsistent with atom number conservation. Many au-
thors have investigated the problem of the quantum dif-
fusion of the phase by describing the system as a coher-
ent superposition of states with different N. This yields
fluctuations in the chemical potential and hence in the
phase of the order parameter. Discussions about this ef-
fect and on the general problem of phase coherence can
be found in: Barnett, Burnett, and Vaccarro (1996), Le-
wenstein and You (1996), Wright, Walls, and Garrison
(1996), Castin and Dalibard (1997), Dodd, Clark et al.
(1997), Wallis et al. (1997b), Imamoglu, Lewenstein, and
You (1997), Javanainen and Wilkens (1998), Leggett
and Sols (1998) [see also Parkins and Walls (1998) for
more discussions and references].

C. Collapse and revival of collective oscillations

In trapped gases one can predict another interesting
“mesoscopic”’ phenomenon having no classical analog,
namely the collapse and revival of collective excitations.
This process should not be confused with the decay of
coherence in the many-body wave function, which cor-
responds to the phase diffusion mentioned at the end of
the previous section and which is also sometimes called
“collapse” of the condensate. Conversely, the collapse-
revival of collective excitations originates from a
dephasing of an oscillation due to the quantum fluctua-
tion of the number of quanta. Indeed, a classical oscilla-
tion of the condensate can be viewed as a coherent su-
perposition of stationary states with different numbers
of quanta of the oscillator. Fluctuations in the number of
quanta cause a dephasing and a consequent decrease in
the amplitude (collapse) of the oscillation. Since there is
no dissipation of energy in this process, the oscillation
can eventually reappear (revival) after a certain time
interval. A schematic picture is shown in Fig. 36. Similar
processes of collapse-revival of coherent quantum states
have been already observed in atomic Rydberg wave
packets (Meacher et al., 1991, Yeazell and Stroud, 1991),
molecular vibrations (Vrakking, Villeneuve, and Stolow,
1996), as well as atoms and ions interacting with an elec-
tromagnetic field (Brune et al, 1996; Meekhof et al.,
1996).
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FIG. 36. Schematic picture for collapse revival of collective
excitations. The quantity £ is a generic oscillator coordinate
and the symbol (£ means an average over different replica of
the system prepared in the same conditions.

Let E be the energy associated with a classical oscil-
lation of the system induced, for example, by some ex-
ternal sinusoidal drive. By classical oscillation we mean
that the number n of quanta of oscillation is very large.
Let us further suppose the frequency w to be weakly
dependent on the amplitude as in Eq. (107). The energy
of the oscillation is proportional to the square of the
amplitude, ExA?, and the coefficient of proportionality
can be calculated, for instance, by solving the time-
dependent GP Eq. (35). Thus one can rewrite Eq. (107)
as

w=wy(1+«E), (150)

with |k|E<1. Now, one can use the semiclassical ap-
proximation in order to express the energy E in terms of
the number of quanta of oscillation, through #w
=(JdE,/on). One finds E,/h=nwy+n*(hojx/2). The

wave function describing the coherent state of
the oscillator can be written in the form ¢
=3, c 0, exp(—iE, t/h). The coefficients
1 (n—n)?
2
I e exp| — — 151

characterize a coherent Gaussian distribution, and 7 is
the average value of quanta, which is supposed to be
much larger than 1. Given a generic oscillator coordi-
nate £(¢), its average over this Gaussian superposition
of states can be easily estimated; it takes contributions
from n—n=*x1 transitions and the result is (&(7))
«3,|c,|? cos[(wy+Awikn)t]. For small enough values of
t, one can replace the summation over n by an integral
and one gets a Gaussian damping, or collapse, of the
oscillation according to (&)x<exp[—(t/7.)*], where

7. = wo( Ehwy/2)"?| (152)

defines the collapse time. The periodicity of (£(¢)) gives
also the revival time 7,=2m/(hwjk). One finds 7,
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~\(1/n)7,<7,. These expressions for the time scales
were derived by one of us (Pitaevskii, 1997), and the
theory of collapse-revival has been also developed by
Kuklov ef al. (1997) and Graham et al. (1998). The re-
vival time is in agreement with the theory of Averbukh
and Perelman (1989).

An explicit estimate of the collapse time (152) can be
obtained, for instance, using Gross-Pitaevskii theory
within the collisionless hydrodynamic scheme of Sec.
IV.D. One can solve the equations of motion for the
lowest m=0 and m=2 modes in an axially symmetric
trap and find the relation between the coefficients « and
S8(\) entering the expansions (150) and (107), respec-
tively (Dalfovo, Minniti, and Pitaevskii, 1997b). For the
m=2 mode in the first JILA trap, with about 5000 ru-
bidium atoms, one finds a collapse time of the order of 5
s, if the relative amplitude is about 20%. This time is
much larger than the lifetime reported in the experiment
by Jin et al. (1996, 1997), which is of the order of 100 ms
and hence clearly originates from other damping mecha-
nisms. The collapse time would be even longer for larger
N and this makes the collapse rather difficult to observe.
It is not hopeless, however, to observe such an effect at
very low temperatures where other damping processes,
like Landau damping, become much less effective, and
looking for special values of the anisotropy parameters,
where nonlinear effects and frequency shifts are larger,
as suggested in Sec. IV.D.

VIl. CONCLUSIONS AND OUTLOOK

In this paper, we have provided an introductory de-
scription of the properties of Bose condensed gases con-
fined in harmonic traps. The main message emerging
from our analysis is that, despite the dilute nature of
these gases, two-body interactions have crucial conse-
quences on most measurable quantities. This is the com-
bined effect of Bose-Einstein condensation and of the
nonuniform nature of the system. In particular the
ground-state (Sec. III) and the dynamic (Sec. IV) prop-
erties are affected by two-body forces in an essential
way. Interactions can be included using fundamental
many-body theories for the order parameter, depending
on a single interaction parameter, the s-wave scattering
length. Direct measurements of the density profiles, re-
lease energy, and collective frequencies have already
provided very accurate tests of the theoretical predic-
tions. Concerning thermodynamics (Sec. V) our analysis
has pointed out the possibility of defining the thermody-
namic limit for these nonuniform systems, including the
effects of two-body interactions. Such effects are less im-
portant than those of the ground state, since at finite
temperature the system is more dilute. Nevertheless sig-
nificant corrections to the critical temperature and to the
T dependence of the release energy can be predicted
and in some cases compared with experiments. In Sec.
VI we have discussed possible superfluid and coherence
phenomena exhibited by trapped Bose gases. This dis-
cussion could not be exhaustive because the evolution of
current research in this field is very rapid.
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The mean-field picture of these interacting Bose gases
turns out to be quite accurate in describing most of the
available experimental results. Deviations from the
mean-field predictions are expected to arise from ‘““cor-
relation” effects beyond Bogoliubov theory, when the
gas parameter n|a|® is not very small. They can also
originate from ‘“mesoscopic’ effects associated with the
fact that the concepts of order parameter and gauge
symmetry breaking are only approximate in finite sys-
tems and, in particular, the fluctuations of the phase are
not always negligible. There are no experimental evi-
dences so far for these effects, but accurate theoretical
predictions concerning both correlation and mesoscopic
effects might stimulate new important experiments in
the future.

In our review we have been able to cover only part of
the huge body of literature that arose after the experi-
mental discovery of Bose-Einstein condensation in 1995.
We would like to mention here some important issues
that we have not discussed and that have been recently
at the center of significant theoretical and/or experimen-
tal research.

Kinetics of the condensate: An important question, not
yet fully understood, is the kinetics of the condensate
nucleation. The process of condensation of a uniform
ideal gas was considered by Semicoz and Tkachev
(1995) on the basis of the Boltzmann equation. They
assumed that the distribution function depends only on
the energy of the atoms and found that this function
exhibits a divergence at zero energy after a finite time
interval, corresponding to the onset of Bose-Einstein
condensation. In previous investigations the mechanism
of condensation was predicted to occur only asymptoti-
cally. The next stage of the process is the growth of the
condensate. This was considered recently by Gardiner
et al. (1997) and Jaksch et al. (1998) on the basis of
quantum kinetic master equations. The kinetics of the
Bose gas near critical conditions for condensation has
also been studied by Monte Carlo simulations taking
into account the Bose statistics under the random-phase
approximation (Wu, Arimondo, and Foot, 1997). In a
very recent experiment at MIT (Miesner et al., 1998) the
formation and growth of the condensate has been inves-
tigated by means of imaging techniques. This work has
shown clear evidence for a behavior known as ‘‘bosonic
stimulation,” which corresponds to an enhancement of
the condensation rate induced by the condensate itself.
Explicitly, if N atoms are in the condensate the conden-
sation rate is proportional to (N+1). This gain mecha-
nism is familiar in the physics of optical lasers and, in the
case of trapped atoms, can lead to matter-wave amplifi-
cation. Another important question recently investi-
gated experimentally is the decay of the trapped gas due
to three-body recombination, yielding formation of mol-
ecules and loss of atoms from the trap (Burt et al., 1997,
Stamper-Kurn, Andrews et al., 1998). The correspond-
ing rate turns out to be different for a condensate and a
thermal cloud, confirming the theoretical predictions by
Kagan, Svitsunov, and Shlyapnikov (1985).
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FIG. 37. Oscillation in the width of the cloud in both the axial
and radial direction due to the instantaneous change in scat-
tering length in the experiment by Matthews et al. (1998).
Time is in units of , '=w['=9.4ms. The solid lines are the
time-dependent widths calculated using Eq. (102), with only
the amplitude of the oscillation and the initial size as free pa-
rameters.

Mixtures of condensates: Binary mixtures of conden-
sates can be obtained experimentally by trapping two
different atomic species (different isotopes or different
alkalis), or two different spin states of the same atoms at
the same time. The confining potential of the two con-
densates may be centered at the same point, or not.
Ground-state and dynamic calculations of two interact-
ing condensates have been carried out by Ho and
Shenoy (1996b) using the Thomas-Fermi approximation
and by Esry et al. (1997) by solving the GP equations.
Similar calculations have also been done by Graham and
Walls (1998) and by Pu and Bigelow (1998a, 1998b). In-
teresting behaviors can be predicted depending on the
values of the intraspecies and interspecies scattering
lengths. Hydrodynamic equations have been recently
derived by Ho and Shenoy (1998). From the experimen-
tal viewpoint, mixtures of this kind have been created
and observed at JILA (Myatt et al., 1997) with different
spin states of *’Rb. In a very recent experiment (Mat-
thews et al., 1998) all the atoms have been converted, via
two-photon transitions, into a different hyperfine state.
The system in the final configuration is no longer in
equilibrium and will start oscillating. From the analysis
of the subsequent oscillations (see Fig. 37) it has been
possible to determine with high precision the ratio of the
intraspecies scattering length relative to the final and
initial states. Using the same apparatus with a mixture of
the [F=1, mp=—1) and |F=2, my=1) spin states, it was
also possible to measure the relative phase of two con-
densates, thus realizing a “‘condensate interferometer”
(Hall et al., 1998). Suggestions have been made to use
the same mixture of states in order to observe nonlinear
Josephson-type oscillations (Williams et al., 1998).

Fermions: The study of degenerate Fermi gases in
traps is expected to be an important issue of future re-
search. Trapping of fermionic species has been reported
for SLi (McAlexander et al., 1995) and “°K (Cataliotti
et al., 1998). Sympathetic cooling of fermions by bosons
might yield low-temperature regimes overcoming the
problem of the suppression of collisional processes ex-
hibited by polarized Fermi gases at low temperature.
Degenerate Fermi gases behave quite differently from

Rev. Mod. Phys., Vol. 71, No. 3, April 1999

2 T T T T T LIy
A.'//
S
15 e b
>\ 7
uf s
= !
[ !
8 ’
/
[ 1 Fermi / T
7] ' /
© /
9 ’
/
o ’
05 F ,/ -
..~ Boltzmann e
' ,/ Bose
0 e e = ~T "~ - | 1 | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4
T/T°

FIG. 38. Release energy per particle of an ideal gas in the
thermodynamic ~ limit, in units of kgzT° with 77
=0.94% w,oN. Solid line: Fermi gas. Dashed line: Bose gas.
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bosonic systems. Effects of Fermi statistics can be ob-
served in the behavior of the release energy below the
Fermi temperature; for an ideal gas of N fully polarized
atoms, the latter is given by kzTr=(6NN)"hw, , with
the usual definition A\=w,/w, . Figure 38 shows how the
release energy of an ideal Fermi gas compares with the
corresponding behavior of an ideal Bose gas confined in
the same harmonic potential and with the same number
of atoms. At very low temperatures, interacting Fermi
gases can undergo a phase transition to a superfluid
phase. The resulting behavior in the presence of a har-
monic trap has been the object of several studies [see,
for instance, Baranov, Kagan, and Kagan (1996), Stoof
et al. (1996), Houbiers et al. (1997), and references
therein].

Optical confinement: The recent realization of
Bose-Einstein condensation in optical traps (Stamper-
Kurn, Andrews et al., 1998) is also expected to open im-
portant perspectives. On the one hand, one can obtain
higher densities, useful, for example, to study three-
body decay processes and more correlated configura-
tions. On the other hand, different geometrical configu-
rations can be achieved, like for example quasi-1D
structures. Finally, by releasing the condition of spin po-
larization imposed by magnetic trapping, this new
method of confinement will permit one to study, in a
systematic way, the magnetic properties of these gases,
including the spinor nature of the order parameter (Ho
and Shenoy, 1996a; Ho, 1998; Ohmi and Machida, 1998).
Spin domains in condensates of sodium, made by three
hyperfine states of the F=1 multiplet, have been re-
cently observed by Stenger et al. (1998), who have dem-
onstrated the antiferromagnetic character of the spin-
dependent interaction. A further advantage of the
optical traps is that they allow one to observe Feshbach
resonances for strong-field seeking states, as already
done by Inouye et al. (1998) with sodium. Feshbach
resonances are strong variations of the scattering length,
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induced by an external field, which occur when a quasi-
bound molecular state has nearly zero energy and
couples resonantly to the free states of the colliding at-
oms. The possibility of tuning the scattering length with
external magnetic fields provides new perspectives in the
manipulation of Bose condensates.
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