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Granulated materials, like sand and sugar and salt, are composed of many pieces that can move
independently. The study of collisions and flow in these materials requires new theoretical ideas
beyond those in the standard statistical mechanics or hydrodynamics or traditional solid mechanics.
Granular materials differ from standard molecular materials in that frictional forces among grains can
dissipate energy and drive the system toward frozen or glassy configurations. In experimental studies
of these materials, one sees complex flow patterns similar to those of ordinary liquids, but also
freezing, plasticity, and hysteresis. To explain these results, theorists have looked at models based
upon inelastic collisions among particles. With the aid of computer simulations of these models they
have tried to build a ‘‘statistical dynamics’’ of inelastic collisions. One effect seen, called inelastic
collapse, is a freezing of some of the degrees of freedom induced by an infinity of inelastic collisions.
More often some degrees of freedom are partially frozen, so that there can be a rather cold clump of
material in correlated motion. Conversely, thin layers of material may be mobile, while all the
material around them is frozen. In these and other ways, granular motion looks different from
movement in other kinds of materials. Simulations in simple geometries may also be used to ask
questions like When does the usual Boltzmann-Gibbs-Maxwell statistical mechanics arise?, What are
the nature of the probability distributions for forces between the grains?, and Might the system
possibly be described by uniform partial differential equations? One might even say that the study of
granular materials gives one a chance to reinvent statistical mechanics in a new context.
[S0034-6861(99)00701-1]
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I. INTRODUCTION: A BASIC DESCRIPTION
OF STATISTICS AND FLOW

Granular materials show a wonderfully diverse set of
behaviors.1 Make a sand castle, and the material appears
solid. Push on the castle and it can fall down in an
avalanche-like pattern. Sometimes the avalanche moves
the bulk of the material, sometimes it is confined to a
thin layer on the surface. Shake up crushed ice in a mar-
tini shaker, and it moves like a gas. Try to pour salt
through an orifice, and it has a characteristic tendency to
choke up and clog the orifice. Gas, liquid, solid, plastic
flow, glassy behavior—a granular material can mimic

*Electronic address: LeoP@UChicago.EDU
1For recent reviews see Behringer and Jenkins (1997). For a

more specialized view, close to the outlook of the present
work, see Jaeger, Nagel, and Behringer (1996a and 1966b).
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them all. In addition, the properties of a granular mate-
rial can depend upon its history. Tamped sand is differ-
ent from loose sand.

But in many ways, a granular material is like an ordi-
nary fluid. Both types of material are composed of many
small particles, and each has a bulk behavior that hides
the material’s graininess. It is thus natural to ask
whether the same equations, concepts, and theories that
work for molecular material also apply to the granular
form of matter.

So let us go back to the fundamental statistical de-
scription of matter as developed by Boltzmann, Max-
well, Gibbs, and many others. The macroscopic state of
a statistical system is described by a probability distribu-
tion, which contains a set of parameters like the tem-
perature, chemical potential, and velocity of the system.
The number of such parameters is equal to the number
of independent conserved quantities. For the standard
one-component fluid, the parameters can be taken to be
the mass density r, the average velocity of the system u,
and the temperature T. We use the symbols ra to denote
the densities of the different conserved quantities, and
the symbols ma to denote the macroscopic parameters.

In part, the conserved quantities and the parameters
are observable in the thermodynamics of the system.
They are also visible in the dynamics. We concentrate
upon the slow dynamics that arise when the time varia-
tion within the material is very slow in comparison to
the typical collision and relaxation time of the constitu-
ent particles. We also require that spatial variations be
slow in comparison to mean free paths and to the size of
any one of the constituent particles. One source of pos-
sible slow motion is the gradual flow of conserved quan-
tities from one part of the system to another. These mo-
tions may be described by saying that each part of the
system is in a local thermodynamic equilibrium and then
43571(1)/435(10)/$17.00 ©1999 The American Physical Society
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using the conservation laws as flow equations. Addi-
tional slow motions may arise when there is a broken
symmetry in the system. We shall not worry much about
the broken symmetries here. A less well understood
source of slow relaxation is glassy behavior, with its par-
tial freezing of degrees of freedom and its concomitant
very slow relaxation to full equilibrium. We shall see a
considerable glassiness in granular systems.

To derive equations for the slow flow, one starts from
the conservation laws and uses the local equilibrium to
derive what are described as the hydrodynamic equa-
tions for the system. For each conserved quantity there
is a corresponding current ja(r,t) describing its flow.
The hydrodynamic equations are the set of conservation
laws:

]

]t
ra~r,t !1¹+ja~r,t !50 (1)

supplemented by thermodynamic relations and constitu-
tive equations that define how the density and current
depend upon the thermodynamic parameters ma . We
assume and assert that the densities are local functions
of the parameters, e.g., that the energy density at r,t
depends only upon the mass density, temperature, and
velocity at the same point in space-time. We further take
the currents to be only functions of the local parameters
and their gradients. For example, Galilean invariance
gives the mass current as ru, while a constitutive equa-
tion gives the heat current as 2k¹T , where k is the
thermal conductivity.

All this is classical and gives us the usual hydrody-
namic equations as partial differential equations in space
and time. There are no long-range effects, that is, no
integrals over space. There are no memory effects, that
is, no integrals over previous history. The entire descrip-
tion is in the few partial differential equations and their
boundary conditions.

Along with this nonequilibrium theory, we inherit
from the old masters an equilibrium theory in which the
probability of anything is given by the Gibbs form of
Maxwell-Boltzmann statistics, i.e., the probability is an
exponential linear in such conserved quantities as the
energy and momentum. The parameters ma are the ad-
justable constants in these probability functions, which
are then used to set the average values of the various
conserved quantities.

II. EXPERIMENTS ON SHAKEN SAND

Many authors have done studies of the effects of shak-
ing a granular material, perhaps composed of glass
beads, or grains of sand, or rice, or coal. [See, for ex-
ample, Larouche, Douady, and Fauve (1989); Knight,
Jaeger, and Nagel (1993); Pak, Doorn, and Behringer
(1993); Melo, Umbanhowar, and Swinney (1994, 1995);
Metcalf, Knight, and Jaeger (1997)]. In these experi-
ments, there are many many individual constituents,
each one in motion and bumping into its neighbors. The
objects are small and the relaxations are rapid. At first
sight it would appear to be quite easy to satisfy the con-
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
ditions for the derivation of hydrodynamic equations,
which are mostly concerned with the slowness of varia-
tions in space and time. Maybe hydrodynamics does de-
scribe motion in granular materials. Indeed experiments
in fluid and in granular materials look similar. Many
people, going back to Faraday2 (1831), have seen local-
ized and delocalized excitations on the surface of a con-
tainer of shaken sand. These patterns of motion look
quite similar to the Faraday crispation patterns devel-
oped on the surface of a shaken fluid. Even the new
localized sand excitations called oscillons (Umban-
hower, Melo, and Swinney, 1996) look very similar to
localized excitations seen in water by Lathrop and
Putterman.3

However, there is a major difference between mol-
ecules and grains. An ordinary fluid conserves energy
within the observed degrees of freedom. Thus, if one
puts heat into a fluid, this heat contributes to the kinetic
energy of each of the molecules as part of the process of
raising the temperature of the fluid. This added energy is
never lost, except perhaps by a slow leakage through the
walls of the vessel. Thus a macroscopic flow, once
started, is likely to continue for a long time. Moreover,
the relative motion of the basic particles, called heat,
will never die away.

In contrast, in a granular material, some energy can be
lost to heat in each collision. Heat energy is stored in the
(unobserved) molecules within the grains, and not as ki-
netic energy of the observed grains. From the point of
view of the grains, the system dissipates energy very rap-
idly. If left alone, the system would get stuck in a solid
or glassy configuration and relative motion would come
to a virtual or complete halt. This complete relaxation
might happen in one region of the material and not in a
neighboring one. Thus sand may never show the relax-
ation to overall uniform equilibrium that is required in
the usual derivations of hydrodynamic equations (Chap-
man and Cowling, 1990). Because of this failure, we can-
not be at all sure that hydrodynamic equations describe
the behavior of granular materials in any general way.

But it would be nice if a set of stable hydrodynamics
equations did apply. We would like to be able to de-
scribe the granular material by a small set of local vari-
ables. Perhaps the variables would be a local velocity, a
density, and an effective temperature, as in an ordinary
one-component fluid. We would further wish that we
could write a set of local equations connecting the local
values of these quantities. These local equations would,
in our dreams, be partial differential equations, maybe
very closely similar to those of ordinary hydrodynamics.
Then the equations would be supplemented by bound-
ary conditions, and we would have a complete descrip-
tion of the space and time development of the system
(Haff, 1983; Jenkins and Savage, 1983; Jenkins, 1992;

2Faraday (1831) himself credits Chladni for the discovery of
sand patterns. More information on Chladni can be found in
Waller (1961).

3Private communications.
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Hayakawa, Yue, and Hong, 1995; Sela and Goldhirsch,
1996; Grossman, Zhou, and Ben-Naim, 1997). Are our
dreams connected to reality?

Before we look at the experimental answers to this
question we should contrast hydrodynamic behavior
with the possible alternative behaviors that might arise.
The hydrodynamic situation occurs when the system is
fully defined by a set of partial differential equations and
their boundary conditions. We also have to specify the
values of some small set of state variables at some initial
time. Except for the description of walls that define the
container, there is no explicit coordinate dependence in
the equations. All coefficients in the equations are com-
pletely independent of time. These hydrodynamic equa-
tions remain uniformly valid throughout space and time.
Unless the partial differential equations themselves de-
velop troubles in the form of singularities or infinities
(Kadanoff, 1997), the equations will hold everywhere.
We call the situation in which the system is described by
uniform and uniformly valid partial differential equa-
tions hydrodynamic behavior, or more precisely uniform
and local hydrodynamics.

In the next level of complexity, instead of partial dif-
ferential equations, the system is described by integral
equations. If there are time integrals, we say that the
system has a history dependence; if there are space in-
tegrals, we say that it is nonlocal. Either way, the equa-
tions are more complex than in the hydrodynamic situ-
ation. Another kind of complexity arises when the
system is quite sensitive to local fluctuations. In this situ-
ation, small fluctuations can give large and unpredict-
able deviations from uniformity. These nonuniform
cases can be found in turbulence, flame fronts, and other
chaotic situations. When, as in the case of granular ma-
terials, there is an inherent nonuniformity in the system
itself, any mechanism for magnifying fluctuations can
give us all kinds of complications. On large scales, the
equations describing the system may end up as complex
as a set of nonlinear partial differential equations con-
taining stochastic coefficients and/or forcing. [See, for
example, Shinbrot (1997).] That kind of situation can be
as complex as anything in quantum field theory. So ask
once more, What kind of problem is posed by a granular
material?

III. SHAKEN MOTION: SOME EVIDENCE AGAINST
SIMPLE HYDRODYNAMICS

In this section, I look at some of the evidence that
suggests that granular materials might not be describ-
able by uniform and local hydrodynamic equations. I am
going to follow over some of the ground covered by
recent review papers (Jaeger, Nagel, and Behringer,
1996a, 1996b) but emphasize different aspects of the
data.

There is a very interesting series of experiments in
which sand is brought into motion by successive vertical
shakes (Jaeger, Knight, Liu, and Nagel, 1994). An accel-
eration of more than 1 g sends the sand near the top of
the container flying. One then asks two questions:
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
1. What is the pattern of the grains during a shake?
2. What is the long-term pattern of motion? Specifically,
can one give a qualitative description of how the various
grains will move over the long term? Naturally, the long-
term motion is an expression of the composite effects of
the short-term motion.

A. Rapid variation

We have information about this situation from both
experiments (Jaeger and Nagel, 1992) and simulations
(Grossman, 1997a, 1997b). We look in detail at the re-
sults of a simulation done by Grossman. This simulation
shows many of the same features as the experiment it
was intended to model. We want to know whether the
motion during a shake and the long-term motion are
hydrodynamic in character.

Figure 1 shows sand flying at the maximum of two
successive shakes. The balls are colored in black and
white so that one can follow the net motion integrated
over one full shake. Note that the top is flying free and
that there is considerable motion in boundary layers at
the side walls. Integrated over the entire shake, there is
little net motion in the central bulk of the material. Re-
call that the derivation of hydrodynamic equations re-
quires slow variation in space. However, the ‘‘convec-
tion experiment’’ of Fig. 1 involves motion in a thin
boundary layer, where—in fact—the motion is most
rapid (Hayakawa, Yue, and Hong, 1995). In both the
real experiment and the simulation, the layer is only a
few grains thick. This thickness is not suitable for the
development of a uniform, hydrodynamic description. It
may well be that, in most granular flows, thin layers of
distinctive behavior will dominate the flow of hydrody-
namic materials and ruin the possibility of a uniform
hydrodynamic theory, [for further work on shaking and
fluidization, see Clément and Rajchenbach (1991); Gal-
las, Hermann, and Sokolowski (1992); Esipov and

FIG. 1. The positions of grains of sand at the same phase in
the motion of two successive shakes. In plate (a), the particles
are colored in black or white depending on their position at
that time. These same particles are depicted in plate (b). No-
tice the downward motion in a boundary layer very near the
wall.
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Pöschel (1997)]. Such boundary layers can also appear
on free surfaces [see de Gennes (1997) and Boutreus
and de Gennes (1997)].

The time dependence also shows rapid variation. Fig-
ure 1 shows that the grains are thrown into the air where
they move freely for a time comparable with their relax-
ation time at that density. Is such free-particle motion
hydrodynamic? This free motion further casts doubt on
the validity of hydrodynamic theory for this situation.

In fact, the possibility of hydrodynamic breakdown
via short-wavelength behavior is well known in another
context. If you shear a granular material, or indeed an
ordinary solid, sufficiently hard it can produce thin lay-
ers of weakly bound material (Oda, Iwasbhita, and
Kakiuchi, 1997). These so-called shear bands have been
conjectured to play a role in earthquake fault zones.

B. History dependence

In addition, there are classical experiments on granu-
lar materials which show that the state of these materials
is quite dependent on their past history. Such history
dependence is possible for glasses or spin glasses or fro-
zen materials, but it is not consistent with equilibrium
statistical mechanics. I describe one of these experi-
ments here (Knight, Fandrich, Lau, Jaeger, and Nagel,
1995). Imagine that you fill a tall glass vessel with granu-
lar material and measure the density of the material by
placing the glass tube inside a set of capacitor plates.
The capacitance gives a direct measurement of the rela-
tive volume of interior filled by air and by the grains.
You start out by fluffing up the granular material by
swirling it around with compressed gas, and then you
shake the tube in a vertical motion many, many times.
The entire experiment is described by two variables: G
the maximum acceleration relative to g and t the number
of shakes.

Figure 2 shows typical pictures of the density as a

FIG. 2. Compaction of a granular material. See Nowak et al.
(1995). A granular material is initially ‘‘fluffed up’’ by shaking
it with a stream of nitrogen gas. Then it is shaken with a maxi-
mum acceleration G, measured in g’s. As the shaking goes on it
compacts more and more. The data points show how the den-
sity r depends upon the number of shakes t. The curves are
constructed as the best fit to Eq. (2).
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function of the number of shakes. The system starts with
a low density. For a very long period, including many
shakes, the density slowly rises. In between the shakes,
the material does not move. So time-independent be-
havior is observed at many different densities. The den-
sities are determined by the prior history of the sample.
We see then that the system has a history dependence in
which slow changes over long periods can have a
marked effect. This dependence is particularly impor-
tant because the material’s flow properties are very sen-
sitive to the density, with higher densities producing en-
hanced resistance to flow (Ristow, Strassburger, and
Rehberg, 1997).

The data in Fig. 2 are fit by curves described by Eq.
(2) (Nowak, Knight, Ben-Naim, Jaeger, and Nagel, 1995;
Ben-Naim, Knight, Nowak, Jaeger, and Nagel, 1998).
This fit shows that in the long run the density will rise to
an ‘‘equilibrium’’ value which depends on the accelera-
tion G. The slow rise and the G dependence show that
the density does not just depend upon the conditions at
one time. Instead, it has an important history depen-
dence. This kind of dependence is not found in any or-
dinary liquid.

Ben-Naim developed a theory4 of automobile parking
that effectively explains the shake dependence of Fig. 2
(Nowak, Knight, Ben-Naim, Jaeger, and Nagel, 1995). In
this theory a parking spot appears via the collection of
many bits and pieces of empty space until, by a random
process, sufficient space is assembled to make a full
parking spot. Thus, for high density, the time to park
varies exponentially with the available space. Con-
versely, the density varies in a logarithmic law involving
time. When translated into the granular-compaction
process, this model suggests a law for compaction which
gives the density as a function of the number of shakes t
(or equivalently the time since the material was last
fluffed up) as

r~`!2r~ t !5A/log~11t/t!, (2)

where A, r(`), and t are all parameters that can depend
upon G. As one can see from Fig. 2, the phenomenologi-
cal theory does fit the observed facts. A little later
Gavrilov (1997)5 developed a parallel theory based upon
highway congestion, which measures the number of clus-
ters of different sizes. His theory gave a result like Eq.
(2) and also described the fluctuations in density after
the system reached steady state (Gavrilov, 1998).

This and analogous results leave the theory in a very
uncomfortable position. On the one hand, we would like
a hydrodynamic theory that is local in space and time.
On the other hand, we see that the system can come to a

4Ben-Naim’s theory was developed in Boston, where one can
have ample time to speculate on mechanisms for producing
suitable parking spots. A competitive theory was developed by
Gavrilov (1997).

5Gavrilov, a graduate student at Chicago, developed his
(1997) theory of clustering by observing traffic patterns from a
train window. He then applied this theory to granular materi-
als (unpublished.)
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stop with a wide range of different densities. Hence the
density, at least, is history dependent. It is hard to make
a system of partial differential equations that comes to a
stop in this way. Thus it is quite possible that no differ-
ential equation theory will apply to this system. In the
models, the relaxation of a shaken system comes from
the filling in of defects and vacancies in the material. To
describe processes like these, we need some statistical
theory of defect production and removal (Shinbrot et al.,
1997; Venkataramani, 1998). Hydrodynamic equations
for a uniform system do not provide for these kinds of
statistical processes. The theories of Ben-Naim and
Gavrilov thus suggest that we have to reach beyond hy-
drodynamics to include stochastic processes as part of
the basic equations of the system. When such processes
act in space and time, they can produce very rich behav-
ior, so that the resulting theory may be extremely diffi-
cult.

IV. STATISTICAL DYNAMICS

A. Bunching

Let us start again. Let us look at simulations of iso-
lated systems containing a relatively large number of
particles. For the moment, we take these particles to
have center-of-mass motion but no spinning motion.
They all have equal masses. (In this paper, we shall take
the masses of all particles to be equal to one.) The pe-
culiar properties of granular materials are represented
by having the particles lose a little energy in each colli-
sion. Specifically take the overall collision to conserve
momentum and to conserve for each particle the com-
ponent of the velocity perpendicular to the line of cen-
ters. In an elastic collision, described in the center-of-
mass system, the components of each particle’s velocity
along the line of centers is reversed. In our case, we shall
take the velocity to be diminished by a factor r, called
the coefficient of restitution, so that the new normal
component is related to the old, vn , by

vn852rvn 21<r<1. (3)

The last condition is required to make the energy con-
tinually decrease. The usual elastic case is r51.

Figure 3 shows two simulations due to McNamara and
Young (1996), in which they look at inelastic collisions
among 1024 particles in a two-dimensional box with pe-
riodic boundary conditions. The simulation is of the
‘‘event-driven’’variety (Rapaport, 1980). The program
looks ahead to the next collisions that can occur, picks
the one that actually occurs first, readjusts the velocities
of the two colliding particles, and then looks ahead once
again with the appropriately adjusted set of possible col-
lisions. In the simulation, the particles start out with ran-
domly chosen positions and velocities picked from a
Gaussian ensemble. As time goes on the particles slow
down considerably, but this slowing does not compro-
mise the effectiveness of the computer program. Com-
pare the simulations. Both pictures show the situation
after a large number of collisions. In both cases, the par-
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
ticles shown in black are those which have participated
in one of the last 200 collisions.

In case (a), the system is almost elastic. Only weak
correlations develop among the particles and the recent
collisions. In case (b) there is more inelasticity and the
particles are more bunched up in space. Figure 4 shows a
simulation with considerably more particles carried out
by Goldhirsch and Zanetti (1993). It has the same r
value as in Fig. 3(b). Notice once more the very consid-
erable bunching up of the particles. In fact, these au-
thors argue that the bunching is the result of a hydrody-
namic instability in which regions of reduced
temperature have reduced pressure, which then fills
them with more particles so as to equalize the pressure.
But then these regions have more frequent collisions,
which reduces the temperature still further, and so forth
until some small region has a very high density. Since
hydrodynamics fails when the system’s dynamics pro-
duces very rapid variations in space or time, one can

FIG. 3. Simulations of granular motion. Taken from Mc-
Namara and Young (1994). Here there are 1024 inelastic disks
with periodic boundary conditions. The cases are (a) r50.99
and (b) r50.6. In both cases the system is run from random
initial data until there are a large number of collisions per
particle. The particles marked in black have taken part in the
last 200 collisions. Note the clumping of particles and colli-
sions.

FIG. 4. Another picture of granular motion. From Goldhirsch
and Zanetti (1993). Here there are 40 000 particles with r
50.6. Notice the very evident clustering.
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worry that the bunching shown in Figs. 3(b) and 4 might
invalidate any hydrodynamic-style theory of the granu-
lar material.

B. Inelastic collapse

There is another, independent, symptom of the indefi-
nite bunching of particles and collisions. As pointed out
by Haff (1983), Bernu and Mazighi (1990), and Mc-
Namara and Young (1992), subsets of the particles in
this hard-sphere granular system can undergo an infinite
number of collisions in a finite period of time. One can
in fact see this phenomenon in Fig. 3(b). Notice how the
dark particles, those which have participated in the last
200 collisions, form a weakly curved connected region.
These particles will soon collide an infinite number of
times, so that all their motion in the lateral directions
will go to zero. In the meantime, however, the motion in
the transverse directions will continue, and after a time
the particles will move apart. However, before this hap-
pens much of the energy of their relative motion will
have been lost. This phenomenon of infinitely repeated
collisions is called inelastic collapse.

There has been some controversy about the impor-
tance of such collapse for real granular materials.6 We
shall discuss this further below. However, before passing
judgment upon its significance, we should try to under-
stand the collapse by studying it in the simplest possible
situations.

Imagine a ball in vertical motion. It is pulled down by
gravity and is bounced up by partially inelastic collisions
with a table top. This is a high-school physics problem,
with a tiny modification for inelasticity. Say that the
speed just after the mth bounce is sm . The speed on the
next bounce is assumed to be given by an expression like
that used in Eq. (3), namely,

sm115rsm . (4)

Here the coefficient of restitution r is restricted to be
between zero and one. The speeds approach zero as a
geometric series, sm5s0rm, while the heights of the nth
bounce obey hm5sm

2 /(2g);r2m and so the time be-
tween collisions, being proportional to hm /sm goes to
zero as rm. Thus we have an infinite number of collisions

6For example, a referee of this paper said: ‘‘The issue of in-
elastic collapse is in one sense a computational artifact, in that
nothing physical happens. Rather, computations grind to a halt
as the number of collisions grows,’’ I neither fully hold to nor
fully deny this view. On the one hand, for dimensions greater
than one, there remains an unquenched component of velocity
perpendicular to the line of collisions. Thus, as stated, motion
continues after collapse. Further, collapse does not occur in
the same way if the particles have a soft—but dissipative—
interaction. On the other hand, the collapse time is an instant
of extremely singular velocity correlations. Mathematicians are
interested in questions about how singularities can arise from
classical mechanics. In addition, the collapse signals the onset
of strong correlations, which may be robust even if the collapse
is not.
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in a finite period of time. In this model, after a finite
time the ball comes to rest on the surface of the table.
Thus inelastic collapse does indeed occur in a very
simple everyday situation.

Another case open to analysis involves three particles
with equal mass which are free to move on a line (Con-
stantin, Grossman, and Mungan, 1995). Their velocities
are, in order of increasing x coordinate, u, v , and w.
Their entire motion can be described in terms of the
ratio of the relative velocities, h5(u-v)/(w-v). The
subsequent math is very easy once one sees how to set
up the problem. Assume that initially the two outer par-
ticles approach the inner one. The subsequent process is
one in which the outer particles collide successively with
the inner particle. If the particles with velocities u and v
collide, the subsequent value of h is

1/h85
11r

2r
2

1
rh

.

If the other two particles collide, the new value of h is
given by

h85
11r

2r
2

h

r
.

Given these relations, one can follow the entire subse-
quent motion and figure out the range of r and initial
values of h that will produce one collision, or two, or
ten, or an infinite number. The last is the case of col-
lapse. The net result is very simple: collapse can occur
for suitable values of h only when r stands in the range

0<r<724)50.073 . . . . (5)

The entire collapse is a kind of approach to a ‘‘fixed
point’’ in which the value of h which appears after the
nth u-v collision relaxes to an n-independent value for
large n. Thus, in the long run, the process simply repeats
itself.

As this calculation is extended to higher dimensions,
one finds that there are additional variables which de-
scribe the state of the system at the point of collapse
(Zhou and Kadanoff, 1996). First there is the angle u
between the particles’ lines of centers at the moment of
collapse. For each value of r, there is a range of u values
that will permit collapse. This range is shown in Fig. 5.
Notice that only small values of r permit collapse and
that the permissible range of u gets smaller and smaller
as r is increased.

A second set of new variables are the transverse com-
ponents of the momentum. In one region of Fig. 5, la-
beled stable collapse, nonzero values of these variables
will not upset the approach to a fixed point in which the
motion is repeated again and again over decreasing
scales of distance and lateral velocity. Another region,
labeled unstable collapse, requires these values to be set
to zero. If these transverse components are not set to
zero, the particles can have many collisions but will
eventually veer away from one another, preventing in-
elastic collapse.

Note that Fig. 5 in part explains why the collapsing
particles in Fig. 3(b) essentially lie on a straight line. For
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three particles, we see that the collapse occurs over the
largest range of r, when u is small. Thus collapse is fa-
vored when u is small. This requirement apparently ex-
tends itself to the many-particle case and produces the
roughly collinear observed behavior.

All this describes a situation in which the particles
cannot rotate. Schörghofer and Zhou (1996) extended
this calculation to include rotational motion. They found
that, when the particles rotate, high-u collapse configu-
rations become possible—and indeed quite probable—
for three particles. When they simulate collapse for a
many-particle configuration (see Fig. 6), they find that
the collapsing particles form a zig-zag pattern, reflecting
a high-u value during the collapse.

These and a variety of other calculations show that
collapse can be understood, and is indeed mostly under-
stood. However, this understanding does not contribute
much to our knowledge about either the nature of
granular motion or the overall effect of the collapse
upon that motion. Several workers in the field have ar-
gued that the collapse phenomenon is so dependent
upon the hard-sphere system that it is essentially uncon-
nected with the sorts of slowdowns and collapse that will
occur in real granular materials. If collapse is not very
robust, it will probably offer little insight into the inter-
esting things that happen in real materials. On the other
hand, collapse might be a robust symptom of the bunch-
ing and slowing down that certainly occurs in a granular
system. It might produce isolated regions in space-time
which are so frozen that they form defects in the hydro-
dynamics and, in fact, produce regions in which addi-
tional variables or information are necessary to com-
plete the hydrodynamics. The last word has not been
said about the importance or unimportance of this col-
lapse.

V. LOW-DIMENSIONAL SYSTEMS

To go beyond the question of collapse, let us look at
what is happening to very simple examples of dissipative

FIG. 5. Permitted values of r and u for inelastic collapse. See
Zhou and Kadanoff (1996).
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systems. Start with a large number N of particles moving
along a line (Du, Li, and Kadanoff, 1995). In this one-
dimensional example, we shall pick the inelasticity, «
512r , to be a small number so that the system may be
expected to have a substantial similarity to a set of fully
elastic particles. The left-hand wall of the system will be
hot, defined so that any particle which hits it comes off
with a perpendicular component of velocity chosen from
the Maxwell-Boltzmann distribution7 v exp(2v2/2) (see
Fig. 7). The right-hand wall of the system is taken to be
a reflecting wall. A particle that hits it is reflected with-
out changing its speed.

Before we studied the simulation, we expected that
the system would relax to a situation like that in the
usual equilibrium statistical mechanics: a uniform distri-
bution in space with a Gaussian distribution in each
component of each particle’s velocity. The expectation
was that, as « got smaller, the fit to the usual statistical
mechanics would get better and better. Instead some-
thing entirely different happened. In the limiting situa-
tion in which N is big and N« is of the order of unity, the

7This probability distribution is not itself the Gaussian distri-
bution connected with the names of Maxwell and Boltzmann.
However, this distribution of wall-induced velocities produces
the appropriate distribution in phase space for the particles
moving away from the wall, prior to their first collision with
other particles.

FIG. 6. Collapse with rotation. From Schörghofer and Zhou
(1996). A simulation of elastic collision among particles that
are free to rotate, in a two-dimensional box with periodic
boundary conditions. The inset in the upper right-hand corner
shows a similar simulation without rotation. Notice that the
collapsed particles (in black) form a zig-zag pattern in the ro-
tating case and a much straighter pattern in the absence of
rotation. This result indicates large values of u in the rotating
case and smaller ones in the absence of rotation.
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system can do one of two things. It can undergo inelastic
collapse. We put those collapse behaviors aside and
study the noncollapse behavior. In this situation, the sys-
tem splits into two parts. One part is composed of a
single fast-moving particle near the hot wall; the other is
a group of slower particles huddled together near the
reflecting wall.

This situation is maintained through the collisions.
When the fast-moving particle, with speed of order one,
hits the first member of the clump, it transfers all its
momentum, save a fraction «, to the slower particle and
is itself slowed down to a speed of order «. This process
happens again and again, with the fast momentum being
reduced by a factor (12«)n'exp(2n«), after n colli-
sions. The momentum reaches the far wall, is reflected,
and returns by the same process. Finally, one particle
with momentum reduced by a factor exp(22N«) moves
leftward out of the pack. It is still hot, but leaves behind
it particles with speeds of order «. Thus the equilibrium
state of the system is one in which there is a clumping of
particles, but one particle is left out of the clump. This
behavior could not have been predicted from any hydro-
dynamic style of analysis.

One might have expected that the one-dimensional
problem would cause trouble. One can see this trouble
directly from the Boltzmann equation analysis of Mc-
Namara and Young (1992) or of Grossman and Roman
(1996) or from a consideration of the basics of statistical
mechanics. Recall that in statistical mechanics the equi-
librium state of any system is described as an exponen-
tial of linear combinations of conserved quantities. In
this exponential, there is one undetermined parameter
for each conserved quantity. For one dimension and «
50, each collision simply interchanges the velocities of
the colliding particles. Therefore the number of particles
with any given value of the momentum is conserved.
McNamara and Young (1992) set up a Boltzmann equa-
tion to describe this situation and then said that the
equilibrium solution of this Boltzmann equation is com-
posed of two pieces: any spatial distribution of particles
at rest and, on top of this, any distribution of particles in
velocity, all of these velocities being uniformly distrib-
uted through space. The first piece corresponds to our
clump; the second to our single particle in motion. Thus
the «→0 limit does reduce to statistical mechanics, but
to a very nonstandard statistical situation.

Next consider the same situation in two dimensions.
Once again there is a hot left wall, a reflecting right wall,

FIG. 7. A group of slightly inelastic particles in one dimension.
After Du, Li, and Kadanoff (1995). The particles end up in a
situation in which one particle moves fast and the others sit
almost still near the elastic wall.
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and reflecting walls on the top and the bottom. There
are two simple instructive cases, the first is a ‘‘pipe’’ that
is only a bit wider than a single particle, and the second
is a square box. The pipe is substantially different from
the one-dimensional case because the structure of the
equilibrium situation is changed entirely. As soon as
there is a transverse component of the velocity sharing
energy in a scattering event, the system loses all the
extra conservation laws that dominated the one-
dimensional situation.

Simulations by Grossman, Zhou, and Ben-Naim
(1997) show that both the pipe and the square box have
a much smoother behavior than that of the one-
dimensional case. No longer is there a single particle
that moves much faster than all of the others. Instead
there is a gradual and continuous falloff of temperature
as one moves away from the hot wall. It seems that this
situation can, in fact, be described by using quasi-
hydrodynamic equations connecting the density r, aver-
age velocity u5(u ,0), and temperature T. As usual, the
hydrodynamics is given in terms of conservation laws
(Haff, 1983; Savage, 1988), which form equations for the
time derivatives of densities of conserved quantities r,
momentum density5ru, and energy density rT
1ru2/2. In a steady situation the equation for mass con-
servation can be satisfied if the average velocity u is
zero. The equation for momentum conservation will be
true if the pressure is independent of position. The final
equation, for energy conservation, has the form in which
net heat flow from conduction is balanced against en-
ergy dissipation:

¹~k¹T !52~energy dissipation rate!. (6)

Here k is the thermal conductivity. Grossman, Zhou,
and Ben-Naim (1997) use kinetic theory to obtain a de-
termination of the unknown functions in the theory,
namely, the dependence of the pressure, the dissipation
rate, and the thermal conductivity upon r and u. The
simulations show that neither T nor r is position inde-
pendent, with the first one rising and the other falling
near the hot wall. The equation of state will determine
the pressure as a function of T and r, and the constancy
of the pressure will give one relationship between r and
T. These quantities will be fully determined when the T
equation [Eq. (6)] is solved with boundary conditions
provided by the known temperature on the hot surface
and a no-current-flow condition on the reflecting sur-
face. A few parameters are needed to generate kinetic
theory results for the pressure, the thermal conductivity,
and the energy dissipation via collisions. The net result
is a temperature that falls off as 1/cosh(an«1/2) away
from the hot plate, where n is the number of molecules
counted from the hot plate. Here « is the inelasticity
defined here as (12r2)/2 while a is a coefficient of order
unity. Correspondingly, as n increases the density rises
and then saturates. These results fit the simulational
data quite well.

The probability distributions for the velocity are not
of Gaussian form. They are skewed by the large energy
current that flows through the system. However, they
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obey a sort of scaling law so that the velocity divided by
AT has the same probability distribution throughout the
sample. Experiments by Kudrolli and Gollub (1997) and
Kudrolli, Wolpert, and Gollub (1997), conducted with
balls on a slanted table, show a qualitatively similar be-
havior to that found in the simulation. Thus, in a very
simple situation, hydrodynamics seems to work quite
well.8 However, there is still room for some doubt. The
authors forced the agreement by using two adjustable
parameters, one for each wall. This adjustment might be
necessary precisely because the system is far from an
equilibrium steady state, so that the usual conditions for
the derivation of hydrodynamic equations do not hold.

Clumping can ruin the hydrodynamic description. In
very recent work, Zhou (1998) have been studying a
pipe in which both right and left walls are hot. In this
system, the majority of the particles clump up in a mass,
which is separated from these walls by a smaller number
of fast-moving particles (see Fig. 8). This clump seems to
undergo Brownian motion, fed by momentum fluctua-
tions that are provided by the particles added at the hot
wall. The speed of the correlated motion can be very
much greater than the thermal velocity describing the
relative motion of the particles at the center of the
clump. The clump contains most of the particles, which
can move all together and quite rapidly. We can use
kinetic theory to calculate the motion of the clump, but
this calculation includes the clump’s Brownian motion.
That motion is left out in a purely hydrodynamic analy-

8For another, earlier, investigation which supports two-
dimensional hydrodynamics, see Louge, Jenkins, and Hopkins
(1993). A parallel publication, Louge (1994), suggests that
there are some difficulties with boundary conditions in the hy-
drodynamic formulation.

FIG. 8. Behavior of inelastic spheres confined between two
hot walls. From Zhou and Kadanoff (1998 unpublished). The
top picture shows the geometry and a disordered initial state.
The bottom picture is a sketch of the configuration reached
after a long time. The particles near the wall produce a hot gas,
with the temperature declining away from the hot walls. In the
central region, there is a clump of material with very low rela-
tive velocities. This clump moves as a unit and acts as a Brown-
ian particle, which has been formed in the midst of an inelastic
gas.
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sis of the sort done in the problem with one hot wall. We
are far from sure that any hydrodynamic description will
work even in this very simple situation. Thus we are left
with a distrust of uniform hydrodynamics as a possible
description for a granular system.

VI. CONCLUSIONS

Throughout this paper, our main question has been
Can a granular material be described by hydrodynamic
equations, most specifically those equations which apply
to an ordinary fluid? It seems to me that the answer is
‘‘no!’’ Glassy behavior is familiar, but it is not fully de-
scribed by any simple set of partial differential equa-
tions. It is also not fully understood. In fact, there are a
rich variety of familiar but weakly understood nonequi-
librium problems. These range from plastic flow to crack
propagation to charge density waves and to ordinary
and spin glasses. Granular materials form a particularly
rich example of this kind of system, with behaviors
which are, at this moment, not fully understood.
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