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A tutorial discussion of the propagation of waves in random media is presented. To a first
approximation the transport of the multiple scattered waves is given by diffusion theory, but
important corrections are presented. These corrections are calculated with the radiative transfer or
Schwarzschild-Milne equation, which describes intensity transport at the ‘‘mesoscopic’’ level and is
derived from the ‘‘microscopic’’ wave equation. A precise treatment of the diffuse intensity is derived
which automatically includes the effects of boundary layers. Effects such as the enhanced backscatter
cone and imaging of objects in opaque media are also discussed within this framework. This approach
is extended to mesoscopic correlations between multiple scattered intensities that arise when
scattering is strong. These correlations arise from the underlying wave character. The derivation of
correlation functions and intensity distribution functions is given and experimental data are discussed.
Although the focus is on light scattering, the theory is also applicable to microwaves, sound waves, and
noninteracting electrons. [S0034-6861(99)00601-7]
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I. INTRODUCTION

Transport of waves through opaque media is a subject
of interest in daily life. Examples are light transported
through fog, clouds, milky liquids, white paint, paper,
and porcelain, as well as electromagnetic waves trans-
ported through stellar atmospheres and interstellar
clouds. Nowadays the transport of visible light through
human tissue is being used as a noninvasive technique to
detect, for instance, breast cancer.

Some basic properties of diffuse light are well known.
On a cloudless day we see the immediate radiation from
the sun. When a cloud passes in front of the sun, the
light first becomes weaker and diffuse. When the cloud
has become thick enough, the sun becomes invisible; this
happens when the cloud thickness is of the order of a
mean free path. On a cloudy day there is no direct view
of the sun, but there is still light: it is diffuse light coming
from many directions. It has propagated diffusely
through the cloud and leaves it in random directions,
partly in the direction we are looking.

The study of diffuse wave transport was first under-
taken by astrophysicists. They wanted to understand
how radiation created in the center of stars is affected
when it traverses as interstellar cloud. Well-known
books in this field were written by Chandrasekhar
(1960) and Van de Hulst (1980). For more mundane ap-
plications, such as the detection of a school of fish using
acoustic waves, see Ishimaru (1978).

It is the purpose of this review to present a compre-
hensive, self-contained text intended for laboratory ap-
plications of diffuse wave transport. We explain how the
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transfer equation follows from the wave equation and
how radiative corrections can be calculated. Though the
approach can be applied to any geometry, we shall focus
mainly on slab geometries.

In Sec. II we discuss some general aspects of wave
scattering, such as diffusion and Anderson localization.
In Sec. III we review the basic concept of the radiative-
transfer equation. Next we begin a detailed analysis in
Sec. IV with the underlying wave equation in the scalar
approximation. We explain the notions of the t matrix
and the cross section. In Sec. V we consider the ampli-
tude or dressed Green’s function. We discuss how ex-
tinction is related to the self-energy. Next we consider
propagation of intensity via the Bethe-Salpeter equa-
tion. We use the simplest case, the ladder approxima-
tion, to derive a transport equation equivalent to the
radiative transfer equation. This equation then describes
not only diffusion in the bulk, but also the precise be-
havior at the boundaries. Various experimentally rel-
evant situations are considered in detail: transport in a
bulk medium, through very thick (semi-infinite) and
through finite slabs; the enhanced backscatter cone; ex-
act solutions of the Schwarzschild-Milne equation; the
regime of large index mismatch; semiballistic transport;
and imaging of objects hidden in opaque media (Secs.
VI–XIII).

With these ingredients we consider in the latter half of
the article correlations of intensities. This leads to three
kinds of observable correlation functions, the angular
correlation function C1 , the correlation of total trans-
mission C2 , and the correlation of the conductance C3 .
We explain how these functions are calculated and then
consider correlations between three intensities (third cu-
mulants) and the full distribution of intensities.

A. Length scales

The diffuse regime is formulated in the three inequali-
ties (Kaveh, 1991)

l!l!L!Labs , L inc , (1)

where l is the wavelength, l the mean free path, L the
sample size, Labs the absorption length (for optical sys-
tems), and L inc the incoherence length (for electronic
systems). The first inequality ensures that localization
effects (see below) are small; the second inequality im-
plies that many scatterings occur if the wave traverses
the system; the third inequality ensures that not all ra-
diation is absorbed.

The description of radiation transport can occur on
roughly three length scales:

• Macroscopic: On scales much larger than the mean
free path the average intensity satisfies a diffusion equa-
tion. The diffusion coefficient D enters as a system pa-
rameter that has to be calculated on mesoscopic length
scales.

• Mesoscopic: On length scales of the mean free path
l, the problem is described by the radiative transfer
equation or Schwarzschild-Milne equation. This is the
Boltzmann-type equation for the system. At this level
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one needs as input the mean free path l and the speed of
transport v , which should be derived from microscopics.
In the diffusive regime this approach leads to the diffu-
sion coefficient D5vl/3.

• Microscopic: The appropriate wave equation, such
as Maxwell’s equations, the Schrödinger equation, or an
acoustic-wave equation, is used on this length scale. The
precise locations and shapes of scatterers are assumed to
be known. Together with the wave nature they deter-
mine the interference effects of scattered waves. In light-
scattering systems the scatterers often have a size in the
micron regime, comparable to the wavelength l, which
could lead to important resonance effects. The mesos-
copic or Boltzmann description follows by considering
the so-called ladder diagrams.

The microscopic approach will be the starting point
for this review. Fundamental quantities, such as the self-
energy and the Hikami box, can only be calculated on
this level. The drawback of the microscopic approach is
that it is too detailed. In practice the precise shapes and
positions of the scatterers often are not known and a
mesoscopic or macroscopic description is necessary.

B. Weak localization, closed paths,
and the backscatter cone

The diffusion equation is a classical equation that fully
neglects interference effects inherent in wave propaga-
tion. At this level of description there is no difference
between diffusion of particles and of wave intensity.
Whereas a transmission pattern of monochromatic (la-
ser) light through an opaque medium is known to consist
of speckles (bright spots on a dark background), the dif-
fusion equation and the radiative transfer equation de-
scribe only the average intensity.

The wave nature of light immediately leads to a re-
duction in transmission due to interference effects. Fol-
lowing Rayleigh (1880) we suppose that the transmission
amplitude E for a certain experiment is composed of
many terms Cp arising from physically different interfer-
ence paths p.

Some paths have closed loops, i.e., loops that return to
the same scatterer. When such loops contain two or
more common intermediate scatterers, they can be tra-
versed in two directions. Let us consider one of these
loops Cp , and denote the contribution of the second,
reversed loop by Dp . Summing over all paths we have

E5(
p

~Cp1Dp!. (2)

The intensity is

E25(
p

~Cp* Cp1Dp* Dp!1(
p

~Cp* Dp1Dp* CP!

1 (
pÞp8

~Cp* 1Dp* !~Cp81Dp8!. (3)

When applied to electrons, quantum mechanics tells us
that the C* C and D* D terms are probabilities, while
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C* D and D* C terms are interference contributions.
Naively, one expects the second and third terms to be
small. Thus in Boltzmann theory only probabilities are
taken into account, that is to say the first term.

However, if there is time-reversal invariance, the sec-
ond term (p(Cp* Dp1Dp* Cp) will be equally large: there
is a factor of 2 for each closed loop. As a result, for the
wave intensity there is a larger probability of return.

In optics there is a simply measurable effect due to
this, namely the enhanced backscatter cone. When the
incoming and outgoing light are in exactly the same di-
rection, the light path may be considered closed. As pre-
dicted by Barabanenkov (1973) and detected by several
groups (Kuga and Ishimaru, 1985; Van Albada and La-
gendijk, 1985; Wolf and Maret, 1985) the average inten-
sity in the backscatter direction has a small cone of
height almost one and an angular width of du;l/l . This
observation has given an enormous push to research on
weak-localization phenomena in optics.

This effect, the so-called weak-localization effect, oc-
curs if l/l!1 and is the precursor of the so-called
strong-localization effects that occur if l/l;1. Both ef-
fects are also known as ‘‘mesoscopic,’’ indicating length
scales between macroscopic (the diffusion equation) and
microscopic (individual scattering events). Indeed, in
electron systems these effects only show up in rather
small samples due to inelastic scattering. For optical sys-
tems there is no such size restriction. The study of me-
soscopic effects began in the field of electronic systems,
and we shall use many results derived there.

For electronic systems weak-localization effects were
first analyzed by Altshuler, Aronov, and Spivak (1981)
in order to explain the Sharvin-Sharvin fluctuations of
resistance as a function of the applied magnetic field
(Sharvin and Sharvin, 1981). These so-called ‘‘mag-
netofingerprints’’ show a seemingly chaotic conductance
as the applied field is varied, but are perfectly reproduc-
ible as they are solely determined by the location of the
scatterers. (Only at very low temperatures is electron
scattering dominated by impurity scattering; at higher
temperatures scattering arises mainly from phonons.)

C. Anderson localization

If scattering is very strong, the ‘‘weak-localization’’ ef-
fects become of order unity, i.e., l;l (l/l is of the order
of 0.001–0.01 for visible light in standard laboratory situ-
ations). According to the criterion of Ioffe and Regel
(1960) the diffusion constant will tend to zero at that
point. The scattering process that causes the enhanced
backscatter also reduces the diffusion constant. The am-
plitudes that make up the intensity split and one of the
amplitudes visits some of the scatters in reverse se-
quence, thus forming a loop. The diffusion constant is
lowered by these processes. (The loop is somewhat simi-
lar to the renormalization of the effective mass in field
theories.) If scattering is increased, the contribution of
these loops becomes more and more important. It is not
simply that the diffusion constant tends linearly to zero
as scattering increases. Rather, the return probability of
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the intensity becomes higher and higher, reducing the
diffusion constant in a stronger fashion. The diffusion
constant can thus become zero at finite scatterer
strength, meaning that the wave can no longer escape
from its original region in space. This is the transition to
the well-known Anderson localization (Anderson,
1958).

In the Anderson-localization regime there are only lo-
calized states. In the delocalized regime there exist ex-
tended states, responsible for diffusion. In the localized
regime the intensity typically decays exponentially over
one localization length, whereas in the diffuse regime
the wave function extends up to infinity. There are thus
two different phases, the diffuse, metallic regime and the
localized, insulating regime. In three dimensions a phase
transition from the extended to the localized state can
occur. In one and two dimensions the states are always
localized, provided the waves are noninteracting (for
electrons spin-orbit scattering also has to be absent). Yet
for a finite sample the localization length can be much
larger than the system size, in which case the states ap-
pear to be extended and the conductance does not van-
ish. Note that the localization is solely the result of the
interference of the waves scattered by the disorder.
[This is not the only scenario for a metal-insulator tran-
sition in electron systems. Due to their fermionic nature
and interactions, electron systems allow for a whole
range of possible transitions between the conducting and
insulating regimes; see Mott (1990)]. Anderson localiza-
tion is also called strong localization.

The precise behavior near and at the transition is not
fully understood. The standard diagrammatic perturba-
tion technique we use, works well for the description of
diffusion and low-order corrections, but it is not suited
for the study of the transition. Therefore various tech-
niques have been developed to study behavior near the
transition and the phase transition itself.

An important step was the scaling theory of localiza-
tion put forward by Abrahams, Anderson, Licciardello,
and Ramakrishnan (1979), which states that near the lo-
calization the only parameter of importance is the di-
mensionless conductance g (the conductance measured
in units of e2/h). The scaling of g as a function of sample
size was studied earlier (Thouless, 1974, 1977; Wegner,
1976). Abrahams et al. extended those ideas and derived
renormalization-group equations. They concluded that
in one and two dimensions there is no real phase transi-
tion; the states are always localized. In three dimensions
a phase transition can occur.

Classical diffusive transport is described by the ladder
diagrams. The so-called maximally crossed diagrams are
the next most important diagrams in the diffuse regime.
They describe the leading interference terms responsible
for the backscatter cone and reduction of the diffusion
constant. Vollhardt and Wölfle summed self-consistently
combinations of the ladder diagrams and the maximally
crossed diagrams in the diffuse regime (Vollhardt and
Wölfle, 1980a, 1980b, 1992). They found that the diffu-
sion constant vanishes at a strong enough scatterer
strength, thus providing a microscopic picture of the
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Anderson transition. As the maximally crossed diagrams
yield loops of intensity, the approach can be seen as a
self-consistent one-loop summation. Although a self-
consistent approach will certainly not include all dia-
grams of higher order, the method works fine even close
to the transition (Kroha, 1990; Kroha, Kopp, and Wölfe,
1990) because the first few higher-order correction terms
vanish.

Another approach is to perform an exact average over
the disorder within a field-theoretic approach. Next, one
integrates over the fast fluctuations and is left with the
slow variables of the system. This technique yields the
so-called nonlinear sigma model (Wegner, 1979; Hikami,
1981; Efetov, 1983; Altshuler, Kravtsov, and Lerner,
1991). With the resulting action it is possible to generate
systematically all corrections to the diffusion process (in
21e dimensions), allowing for an explicit foundation of
the scaling theory.

A recent approach is that of the random-matrix
theory. The basic assumption here is that the total scat-
tering matrix of the system, although very complicated,
can be described by random matrix elements respecting
the symmetries of the system. Surprisingly, this method
works well, and from the assumption of the random en-
semble it predicts many features of the systems correctly
and in a simple way. It is, unfortunately, only applicable
to quasi-one-dimensional situations. An overview of the
theory and applications of random-matrix theory is
given by Stone, Mello, Muttalib, and Pichard (1991) and
Beenakker (1992).

Although some years ago there was hope that the
Anderson transition might soon be reached for light
scattered on disordered samples, it had not yet been ob-
served when this review was written. One did observe
that in time-resolved transmission measurements the av-
erage transmission time became very long. This was in-
terpreted as an indication that the mean free path was
very small, which would mean that the light was close to
localization. It turned out, however, that the long trans-
mission times were due to the light’s spending much
time inside the scatterers. This meant that the Anderson
localization was still out of reach (Van Albada, Van
Tiggelen, Lagendijk, and Tip, 1991).

D. Correlation of different diffusions

Another interaction effect is the interference of one
diffuse intensity with another that has, for instance, a
different frequency or position. In this work we shall
concentrate on such processes, which lead to correla-
tions in, for instance, the transmitted beams. There are
advantages to studying the correlations above the loop
effects. The correlations can be measured more accu-
rately and easily in experiments than can renormaliza-
tion effects. Secondly, it is an interesting feature of op-
tical systems that there are three different transmission
measurements:

• Coming in with a monochromatic beam in one di-
rection (we call this ‘‘channel a’’) one can measure the
intensity in the outgoing direction b and define the an-
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gular transmission coefficient Tab . Its correlation func-
tion is called the C1 correlation and is of order unity,
describing the large intensity difference between dark
and bright transmission spots.

• One can also measure all outgoing light. In practice
one uses an integrating sphere. This leads to the mea-
surement of the total transmission,

Ta5(
b

Tab . (4)

Its correlation function is called the C2 correlation func-
tion.

• Finally, one can also add the results coming in from
all possible directions, either by repeating the experi-
ment under many different incoming angles or by using
diffuse incoming light. This leads to a quantity

T5(
a

Ta5(
ab

Tab , (5)

called the conductance in analogy with electronic sys-
tems. Its fluctuations are called C3 fluctuations in optics.
In electronics (where, for instance, the magnetic field is
varied), they are called universal conductance fluctua-
tions (UCF). Notice that these fluctuations are not tem-
poral but static, since the scatterers are fixed. Both C2
and C3 correlations are low-order corrections in 1/g ,
which acts as the small parameter giving the relative
strength of the interference effects.

There are various books and proceedings on localiza-
tion and mesoscopics in electron systems (Nagaoka and
Fukuyama, 1982; Ando and Fukuyama, 1988; Kramer
and Schön, 1990; Van Haeringen and Lenstra, 1990,
1991, Altshuler, Lee, and Webb, 1991; Hanke and Ko-
paev, 1992) and classical waves (Kirkpatrick, 1985;
Sheng, 1990; Soukoulis, 1993). Many aspects of the
Anderson transition have been discussed by Lee and
Ramakrishnan (1985).

II. MACROSCOPICS: THE DIFFUSION APPROXIMATION

A. Transmission through a slab and Ohm’s law

Consider the propagation of light through a slab of
thickness L (‘‘plane-parallel geometry’’). As indicated in
Fig. 1 a plane wave impinges on the surface of an
opaque medium at an angle ua . The index of refraction
of the medium is n0 , and that of the surroundings is n1 .
The ratio of the indices of refraction,

m5
n0

n1
, (6)

is larger than unity if a dry substance is placed in air
(n1'1). If the substance is placed in a liquid, one may
have m,1. If mÞ1 the refracted beam inside the me-
dium will have an angle ua8 different from ua .

Due to multiple scattering the incoming beam decays
exponentially,

I in~z !5I0e2z/l cos ua, (7)
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where the cosine is a geometrical factor expressing the
total path length in terms of z. This exponential decay is
known as the Lambert-Beer law. It describes the decay
of direct sunlight in clouds or of car headlights in fog.
The light source becomes invisible when the thickness of
the diffuse medium is greater than one mean free path.
The decay of direct-light intensity occurs because it is
transformed into diffuse light.

The scattering of the incoming beam into diffuse light
occurs in a skin layer with characteristic thickness of one
mean free path. Later on this will be discussed at greater
length when we solve the Schwarzschild-Milne equation.
In the diffusion approach one simply assumes that the
incoming beam is partly reflected and partly converted
into a diffuse beam in the skin layer. Next one assumes
that effectively diffuse intensity enters the system in a
trapping plane located at distance z0;l outside the scat-
tering medium. The value of z0 is phenomenological,
but a precise analysis of the Schwarzschild-Milne equa-
tion reveals that this picture is valid. One usually takes
z050.7104l , the exact value for isotropic point scatter-
ing of scalar waves. Van de Hulst (1980) investigated
many possible cross sections and always found values
very close to this. Amic, Luck, and Nieuwenhuizen
(1996) considered the limit of very strong forward scat-
tering and found that z0 lies only 1.1% above the quoted
value for isotropic scattering.

Once the light has entered the bulk, the diffuse inten-
sity obeys the diffusion equation

]

]t
I~r,t !5D¹2I~r,t !. (8)

In the steady state the time derivative vanishes and the
diffusion coefficient plays no role. For a slab geometry
with plane waves there is no x,y dependence, and we
have to solve I9(z)50. The trapping-plane boundary
conditions are I(2z0)5I0 , I(L1z0)50. The solution is
a linear function of z,

I~z !5I0

L1z02z

L12z0
. (9)

FIG. 1. Schematic representation of multiple scattering in a
slab. A plane wave, impinging at an angle u with respect to the
z axis, is refracted to an angle u8 inside the multiple-scattering
medium, while it is partly specularly reflected. After diffusive
transport in the bulk, a wave arriving under angle ub8 at one of
the boundaries partially leaves the medium under angle ub and
is partially reflected internally.
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The transmitted intensity is essentially equal to this ex-
pression at z5L (at a distance z0;l from the trapping
plane at L1z0) and equal to z0 times the derivative at
that point; this estimate will turn out to be qualitatively
correct,

T5
I~z5L !

I0
52

z0

I0

dI~z !

dz U
z5L1z0

5
z0

L12z0
'

z0

L
. (10)

Without having paid attention to details we find the be-
havior T;l/L , equivalent to Ohm’s law for conductors.
Generally a conductor has conductance e2/h per chan-
nel. Here there are A/l2 channels of which a fraction T
is open. This yields the conductance

S;
e2

h

A

l2 T;
e2lA

hl2L
. (11)

B. Diffusion propagator for slabs

In the presence of absorption the diffusion equation
reads

] tI~r,t !5D¹2I~r,t !2Dk2I~r,t !1S~r,t !, (12)

where S is a source term, the second term on the right-
hand side describes absorption, and the absorption
length is Labs51/k . In a bulk system the solution with
initial conditions I(r,0)5d(r) and S50 reads

I~r,t !5~4pDt !23/2e2~r2/4Dt !2Dk2t. (13)

Its Fourier-Laplace transform,

I~q,V!5E d3r e2iq•rE
0

`

dt e2iVtI~r,t !, (14)
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takes the form

I~q,V!5
I~q,t50 !

Dq21Dk21iV
. (15)

For k50 these expressions diverge in the limit q, V
→0. This divergency is called the ‘‘diffusion pole’’ or
‘‘diffuson.’’

For a slab geometry there will only be translational
invariance in the r5(x ,y) plane. Suppose we have a
source S(r)5S̃(x ,y)d(z2z8). Denoting the perpen-
dicular wave vector by q' we have for diffusion from z8
to z

I9~z ,z8!5M2I~z ,z8!2
S̃~q'!

D
d~z2z8!, (16)

with the ‘‘mass’’ M defined by

M25q'
2 1k21i

V

D
. (17)

M is the inverse depth at which a given intensity contri-
bution ca* cb of an incoming beam c5(aca has decayed
by a factor 1/e , due to spatial dephasing of the ampli-
tudes (encoded in q'), temporal dephasing (expressed
by V), or absorption (expressed by k).

By realizing that the diffusion equation (16) is just a
wave equation with complex frequency, one sees that
the solutions to the diffusion equation are a linear com-
bination of hyperbolic sines and cosines. (The solution
can also be obtained using the method of ‘‘image
charges’’ known from electrostatics.) The diffuse-
intensity propagator has the form (Zhu, Pine, and Weitz,
1991; Lisyansky and Livdan, 1992)
I~z ,z8;q' ;V!5
S̃~q'!

D
@sinh Mz,1Mz0 cosh Mz,#@sinh M~L2z.!1Mz0 cosh M~L2z.!#

~M1M3z0
2!sinh ML12M2z0 cosh ML

, (18)
where

z,5min~z ,z8!, z.5max~z ,z8!. (19)

In the stationary limit, in the absence of absorption (V
5k50, q'50→M50), Eq. (21) reduces to a tent-
shaped function,

I~z ,z8;q'50;V50 !5
S̃~q'!

D
@z,1z0#@L2z.1z0#

L12z0
.

(20)

The propagator describes the diffuse propagation
from one point in the slab to another. With roughly
equal indices of refraction inside and outside the sample,
the extrapolation length z0 is a few mean free paths and
thus the terms involving z0 yield contributions of order
l/L . For optically thick samples (L@l), this is negligible
and one has

I~z ,z8;q' ;V!

5
S̃~q'!

D

sinh~Mz,!sinh~ML2Mz.!

M sinh~ML !
. (21)

The diffusion equation does not hold if the intensity
gradient is steep, i.e., if ql;1. It therefore cannot de-
scribe properly the diffuse intensity near the surface of
the medium. Nevertheless, in a heuristic manner one of-
ten makes the following assumptions in the diffusion ap-
proach (Ishimaru, 1978): (1) The diffuse intensity from
an outside plane-wave source is assumed to be given by
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substituting z5l in Eq. (18), as if all diffuse intensity
originated from this z5l plane. Likewise, the coupling
outwards is obtained by taking z85L2l . In this way
two extra propagators, the incoming (z,0, 0,z8,L)
and the outgoing (0,z,L , z8.L) are constructed
from the internal diffusion (0,z , z8,L). (2) The
boundary conditions are (Zhu et al., 1991)

I~z ,z8;M !uz501 ,L25z0]zI~z ,z8;M !uz501 ,L2 . (22)

The form of Eq. (18) fulfills these conditions. The ex-
trapolation length z0 is determined by the reflectance at
the surface. In the following we calculate it precisely.

III. MESOSCOPICS: THE RADIATIVE
TRANSFER EQUATION

The study of multiple light scattering was initiated in
astrophysics with the goal of deriving, on the basis of
energy conservation, the radiative transfer equation.
This is the ‘‘Boltzmann’’ transport equation of the prob-
lem (i.e., the mesoscopic balance equation that neglects
all memory effects). It has been solved in particular for
slabs (plane-parallel geometries). This approach has
been described by Chandrasekhar (1960) and van de
Hulst (1980). An elegant method was introduced by
Ambartsumian (1943); it is based on the observation
that for semi-infinite slabs quantities are invarient if ex-
tra layers are added. It will be shown below that the
radiative transfer equation can also be derived from the
ladder approximation to the Bethe-Salpeter equation. In
other words: there exists a microscopic derivation of the
radiative transfer equation. Once this is shown, more
details can be incorporated in the microscopics, and
more subtle effects, such as backscatter and correlations,
can be derived microscopically in a way closely related
to the radiative transfer equation.

A. Specific intensity

The specific intensity I(r,n)5I(r,u ,f) is defined as
the radiation density emitted at position r in direction
n5(sin u cos f,sin u sin f,cos u) in a system with density
n of scatterers. Let dU be the radiation energy in a given
frequency interval (v2 1

2 Dv ,v1 1
2 Dv), transported

through a surface ds in directions lying within a solid
angle dn centered on n, during a time interval dt. This
energy is related to the specific intensity as (Chan-
drasekhar, 1960)

dU5I cos UDv ds dn dt , (23)

where U is the angle between the director n of the emit-
ted radiation and the normal of ds . The energy depends
in general on the position r5(x ,y ,z), the direction n,
the frequency v, and the time t.

We are mainly interested in stationary, monochro-
matic situations for a slab with axial symmetry. Then I
depends only on z and m5cos u, where u is the angle
between the z axis and the direction of emitted radia-
tion. We consider propagation in a medium with density
n of rotationally symmetric scatterers with extinction
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cross section sex and phase function p(n,n8)5p(n•n8)
5p(cos U). Thus p(n•n8)dn8 dn is the fraction of radia-
tion entering inside a narrow cone of width dn8 around
incoming direction n8 and leaving inside a narrow cone
dn around n. For spherically symmetric scatterers p is a
function of n8•n5cos U.

If radiation propagates over a distance ds, there is a
loss of intensity due to scattering into other directions,
and due to absorption (both are incorporated in sex),

dI52nsexIds . (24)

There is also a gain term nsexJds with the source func-
tion J,

J~r;u ,f!

5E
0

pE
2p

p

p~u ,f ;u8f8!
sin u8du8df8

4p
I~r;u8,f8!.

(25)

J describes the radiation arriving at r in direction n8 and
scattered there in direction n. The radiative-transfer
equation expresses the net effect of the gain-loss mecha-
nism,

1
nsex

dI
ds

5J2I. (26)

Here it is derived from phenomenological consider-
ations; later we shall provide a microscopic derivation.

The loss term 2I leads to the Lambert-Beer law. In-
deed, for a unidirectional beam I(0,n)5I0d(n2n0),
simple integration yields I(r,n)5I0d(n2n0)exp(2r/lsc)
1‘‘scattered,’’ which is again the Lambert-Beer law
with scattering mean free path

lsc5
1

nsex
. (27)

B. Slab geometry

For homogeneous illumination of a slab 0<z<L ,
physical quantities depend only on the depth z. It is use-
ful to introduce the ‘‘optical depth’’

t5
z

lsc
. (28)

The optical thickness of the slab is then

b5
L

lsc
. (29)

Let u be the angle between the direction of radiation
and the positive z axis, and f its angle with respect to
the positive x axis. This allows us to introduce the di-
mensionless form of the radiative transfer equation,

m
dI~t ,m ,f!

dt
5J~t ,m ,f!2I~t ,m ,f!, (30)

where

m5cos u . (31)
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For a plane wave with intensity I0 incident under an
angle na(ua ,fa) on the interface z50, the boundary
condition is I(0,m ,f)5I0d(m2ma)d(f2fa), where
ma5cos ua.0.

1. Isotropic scattering

The radiative transfer equation (30) can be written as
an integral equation. For a slab this is usually called the
Schwarzschild-Milne equation or, for short, the Milne
equation. Let us consider a semi-infinite medium. For
m,0, Eq. (30) yields for the radiation in the 2z direc-
tion (backward direction)

I~t ,m ,f!5E
t

`

J~t8,m ,f!e2~t82t!/umu dt8

umu
, (32)

while for m.0 the specific intensity in the 1z direction
satisfies

I~t ,m ,f!5I~0,m ,f!e2t/m

1E
0

t

J~t8,m ,f!e2~t2t8!/m
dt8

m
. (33)

Of special interest is the case of isotropic scattering or
s-wave scattering for which

p~cos U!51. (34)

Isotropic scattering occurs for electron scattering from
small impurities. For isotropic scattering J does not de-
pend on m and f. It is common to introduce the dimen-
sionless intensity

G~t!5
1
I0

E dm8df8I~t ,m8f8!, (35)

which here equals 4pJ/I0 . Combining the last two
equations yields for a plane-wave incident in direction
(ma ,fa)

G~t!5e2t/ma1E
0

`

dt8E
0

1 dm

2m
e2ut82tu/mG~t8!. (36)

This Boltzmann equation will also be found from the
ladder approximation to the Bethe-Salpeter equation,
which provides a microscopic foundation. Corrections to
the ladder approximation then yield the limit of validity
of the Boltzmann approach.

The precise solution of Eq. (36) can be obtained nu-
merically. See Van de Hulst (1980) and Kagiwada,
Kalaba, and Ueno (1975) for details. We have plotted it
in Fig. 2 for a relatively thin slab (L54l), using the data
from Table 17 in Van de Hulst (1980). The albedo is
unity, and there is no index mismatch. The form of the
solution near the incoming surface is quite different for
the three cases drawn: ma51, or perpendicular inci-
dence; ma50.1 (angle with the z axis is 84 degrees); and
diffuse incidence uniformly distributed over all angles.
At the outgoing surface all solutions are alike: there is
only a small deviation from the straight line crossing
zero at L1z0 .
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
2. Anisotropic scattering and Rayleigh scattering

For acoustic or electromagnetic waves scattered from
particles much smaller than the wavelength there is no
s-wave scattering. Instead, one has to leading order the
dipole-dipole or p-wave scattering. It is expressed by the
phase function for Rayleigh scattering,

p~cos U!5
3
4

~11cos2 U!. (37)

Scattering from spherically symmetric particles is usu-
ally anisotropic, but cylindrically symmetric with respect
to the incoming direction. For arbitrarily shaped scatter-
ers this symmetry holds only after averaging over their
possible orientations. In such situations the phase func-
tion p(cos U) depends only on f2f8, and the average
over f can be carried out. This leads to the projected
phase function, with m5cos u,

p0~m ,m8!5E df

2p
p~uf ;u8f8!

5E df

2p

df8

2p
p~uf ;u8f8!. (38)

For Rayleigh scattering one has, using the equality
cos U5n•n85sin u sin u8 cos(f2f8)1cos u cos u8,

p0~m ,m8!5
3
8

~32m22m8213m2m82!. (39)

Because of the form of the J integral, it is useful to
introduce

G~t!5
2p

I0
E

21

1
dm I~t ,m!,

D~t!5
2p

I0
E

21

1
dm m2I~t ,m!. (40)

The radiative-transfer equation yields the coupled inte-
gral equations:

FIG. 2. Solution of the Schwarzschild-Milne equation as taken
from Table 17 in Van de Hulst (1980) for a slab of thickness
L54l with no internal reflection, a51. The precise solution
near the incoming plane strongly depends on m5cos u8, where
u8 is the angle of the incoming beam. Apart from a multipli-
cation factor, the bulk behavior is the same; all lines extrapo-
late to L1z0 (thin dashed line).
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G~t!5e2t/ma1~ 9
16 E12 3

16 E3!G1~ 9
16 E32 3

16 E1!D ,

D~t!5ma
2e2t/ma1~ 9

16 E32 3
16 E5!G1~ 9

16 E52 3
16 E3!D .

(41)

Here we introduced the exponential integrals Ek ,

Ek~t!5E
0

1 dm

m
mk21e2t/m5E

1

` dy

yk e2ty, (42)

and the product:

~Ef !~t!5E
0

`

dt8E~ ut2t8u!f~t8!. (43)

Equations (41) involve two coupled functions and rep-
resent the simplest extension of isotropic scattering.
They have been analyzed by Van de Hulst (1980).

3. The transport mean free path and the absorption length

We have discussed how unscattered intensity decays
exponentially as a function of the distance from the
source. This occurs because more and more light is scat-
tered out of the direction of the beam. The characteristic
distance between two scattering events is the scattering
mean free path lsc . Now suppose that scattering is rather
ineffective, so that at each scattering the direction of
radiation is not changed much. The diffusion constant
must then be large. In other words, the factor l in the
identity D5 1

3 vl cannot be the scattering mean free
path. Intuitively one expects that l is the distance over
which the direction of radiation gets lost. This length
scale is called the transport mean free path. We show
now how it follows from the radiative transfer equation.

The time-dependent radiative transfer equation has
the form

tsc

]

]t
I~r,n,t !1lscn•¹I~r,n,t !

5E dn8

4p
p~n,n8!I~r,n8,t !2I~r,n,t !, (44)

where tsc is the mean time between two scatterings. We
can now introduce the local radiation density I and the
local current density J as

I~r,t !5E dnI~r,n,t !, J~r,t !5
lsc

tsc
E dnI~r,n,t !n.

(45)

Integration of Eq. (44) yields the continuity equation

] tI~r,t !1¹•J~r,t !52
12a

tsc
I~r,t !. (46)

Here we introduce the albedo (from the Latin albus,
white), the whiteness of the scatterer,

a5E dn
4p

p~n,n8!. (47)

For a51 there is no absorption. If we multiply Eq. (44)
by n and integrate over n we obtain
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tsc
2

lsc
] tJ1

tsc

lsc
J1lsc¹•E dnI~r,n,t !nn

5E dn dn8p~n,n8!I~r,n8,t !n. (48)

If scattering is (on the average) spherically symmetric,
the integral *dnp(n,n8)n can only be proportional to
n8. If one takes the inner product with n8, one finds the
average cosine of the scattering angle,

^cos U&5^n•n8&

5E dn
4p

p~n,n8!n•n8

5E dn
4p

p~cos U!cos U

5E
21

1 dm

2
p~m!m . (49)

Therefore Eq. (48) can be written as

tsc
2

lsc
] tJ1

tsc

lsc
~12^cos U&!J52lsc¹•E dnI~r,n,t !nn.

(50)

The right-hand side depends on I and J. If one assumes
that the intensity distribution is almost isotropic, then
the current is much smaller than the density. This allows
one to make the approximation (Ishimaru, 1978)

I~r,n,t !'I~r,t !1
3tsc

lsc
n•J~r,t !1¯ , (51)

since higher-order terms are smaller. Under these ap-
proximations it follows that

tsc
2

lsc
] tJ1~12^cos U&!

tsc

lsc
J52

lsc

3
¹I . (52)

For processes that change slowly in time we thus find

J~r,t !52D¹I~r,t !. (53)

When inserted in the continuity equation, Eq. (53) leads
to the desired diffusion equation for the density. Thus
under the above assumptions the radiative transfer
equation leads to the diffusion equation,

] tI~r,t !5D¹2I~r,t !2
12a

tsc
I~r,t !

[D¹2I~r,t !2Dk2I~r,t !. (54)

The diffusion constant D is given by

D5
lsc

2

3tsc~12^cos U&!
[

1
3

vl tr , (55)

where v5lsc /tsc is the transport speed. We wish to stress
that in principle tsc has two contributions: the time to
travel from one scatterer to the next and the dwell time
spent in the neighborhood of one scatterer (Van Albada
et al., 1991). In Eq. (55) the transport mean free path
occurs as
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l tr5
1

12^cos U&
lsc . (56)

It is the mean distance after which the direction of ra-
diation gets lost. For strongly forward scattering ^cos U&
will be close to unity so that the transport mean free
path becomes large. In this exercise we also found an
explicit expression for the absorption length Labs and
the inverse absorption length k,

Labs[
1
k

[A lscl tr

3~12a !
. (57)

C. Injection depth and the improved
diffusion approximation

In the previous section we avoided the problem of
how an incoming plane wave becomes diffusive inside
the medium. We introduced a ‘‘trapping plane’’ at the
injection depth z0;l . The precise statement is that the
solution of the transfer equation, or Milne equation, of a
semi-infinite medium starting at z50 behaves as I(z)
5z1z0 for z@l ; formally this expression vanishes at
2z0 outside the medium. This can also be expressed as

I~0 !5z0I8~0 !. (58)

If there is an index mismatch between the system and
its surroundings, the walls of the system will partially
reflect the light. Therefore the light will remain longer in
the system. The transmission coefficient will become
smaller by a factor of order unity. This effect is of prac-
tical importance, as the scattering medium usually has a
different index of refraction from its surroundings, usu-
ally air or liquid. Only in the special case of index-
matched liquids is the mismatch minimized.

The first to point out the importance of internal re-
flections were Lagendijk, Vreeken, and De Vries (1989).
They also noted that z0 changes. For a one-dimensional
medium they give the expression

z05
11R̄

12R̄
lsc , (59)

in which R̄ is the mean reflection coefficient.
For the three-dimensional situation, an analogous re-

sult was worked out by Zhu et al. (1991): For a system in
which only the z dependence is relevant, Eq. (51), relat-
ing the specific intensity I to the radiation density I and
the current density J, reads

I~z ,m!5I~z !1
3

v
mJz~z !, (60)

with velocity v5lsc /tsc , where tsc is the scattering time.
It follows that

Jz~z !5
v

4p E
21

1
m dmE

0

2p

df I~z ,m!. (61)

From this one reads off that the radiation current per
unit of solid angle dV5dm df equals
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dJz

dV
5v•m•

I
4p

5
1

4p
$mvI~z !13m2J~z !%. (62)

The total radiation at depth z50 in the positive z direc-
tion is thus

J1z~0 !5
v

4p E
0

1
m dm 2pI~0,m!

5
v
4

I~0 !1
1
2

Jz~0 !

5
v
4

I~0 !2
vl tr

6
I8~0 !, (63)

where the diffusive current (53) has been inserted.
In the absence of internal reflections dJz /dV must

vanish for all m.0. If we impose that J1z vanishes and if
we compare with Eq. (58), we obtain

z05
2
3

l tr . (64)

For isotropic scattering this expression is not far from
the exact value z050.710 44l that follows from the ra-
diative transfer equation (see Sec. X).

Let us now assume that the refractive index of the
scattering medium n0 differs from that of its surround-
ings n1 . The ratio

m5
n0

n1
(65)

exceeds unity for a dry medium in air, but can be smaller
than unity if the medium is in between glass plates with
a high refractive index. In both cases internal reflections
will appear at the interface. The reflection coefficient is
given by

R~m!5Um2Am22212m2

m1Am22212m2U2

. (66)

R(m) equals unity in the case of total reflection, namely,
when the argument of the square root becomes negative.
We can now calculate the current that is internally re-
flected at the interface z501:

J1z
refl52E

21

0
dmE

0

2p

df R~m!
dJz

dV

52E
21

0 dm

2
R~m!@vmI~0 !13m2Jz~0 !#

5
v
2

C1I~0 !2
3
2

C2Jz~0 !

5
v
2

C1I~0 !1
vl tr

2
C2I8~0 !, (67)

where

C15E
0

1
dm mR~m!, C25E

0

1
dm m2R~m!. (68)
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By equating this angular average to the angular average
in Eq. (63), Zhu, Pine, and Weitz derive Eq. (58) with

z05
2
3

113C2

122C1
l tr . (69)

It was later pointed out by Nieuwenhuizen and Luck
(1993) that this result becomes exact in the limit of large
index mismatch (m→0 or m→`). The reason is that
then the interfaces are good mirrors, so that the outer
world is not seen, and hence close to the mirrors the
intensity is diffusive.

In the derivation of Eq. (69) the phase function has
only been used in the expression for the diffusion coef-
ficient. This led to the occurrence of the transport mean
free path. One would therefore expect that Eq. (69) re-
mains valid for arbitrary anisotropic scattering in the
limit of large index mismatch. This can be explained as
follows: The interfaces act as good mirrors. Therefore
many scatterings also occur close to the wall before the
radiation can exit the medium. After many scatterings
the radiation has become isotropic. Evidence for this
point will be given in Sec. X.D.

IV. MICROSCOPICS: WAVE EQUATIONS, t MATRIX,
AND CROSS SECTIONS

A. Schrödinger and scalar wave equations

Light scattering is described by the Maxwell equa-
tions. The vector character of the amplitudes leads to a
tensor character of the intensity. In regard to sound
waves or Schrödinger waves, this introduces extra com-
plications, which we do not address here. For discussions
of the vector case see, for example, Van de Hulst (1980),
MacKintosh and John (1988), Peters (1992), and Amic,
Luck, and Nieuwenhuizen (1997). The vector character
is especially important in the case of multiple scattering
of light in a Faraday-active medium in the presence of a
magnetic field. For fundamental descriptions, see MacK-
intosh and John (1989) and Van Tiggelen, Maynard, and
Nieuwenhuizen (1996). This field also includes the so-
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called photonic Hall effect, a light current that arises,
under these conditions, perpendicular to the magnetic
field. From studies of the diffuse intensity Nieuwenhui-
zen (1993) proposed that such a mechanism should exist.
This was indeed shown by Van Tiggelen (1995) and con-
firmed experimentally by Rikken and Van Tiggelen
(1996). Another interesting application is multiple scat-
tering of radiation emitted by a relativistic charged par-
ticle in a random environment; see Gevorkian (1998) for
diffusion and Gevorkian and Nieuwenhuizen (1998) for
enhanced backscatter.

Acoustic waves and spinless electrons are described
by scalar waves and for various aspects this turns out to
be a good approximation for light as well. The Schrö-
dinger equation reads, in units in which \2/2m51,

2¹2C1VC5EC . (70)

As potential we choose a set of point scatterers,

V~r!52(
i

ud~r2Ri!. (71)

Here 2u is the bare scattering strength and Ri are the
locations of the scatterers.

Acoustic waves are described by the classical wave
equation

¹2C2
«~r!

c2

]2

]t2 C50, (72)

where « is the normalized local mass density and c is the
speed of sound in a medium with «51. We shall apply
the same equation to light, thereby neglecting its vector
character. « is then the dielectric constant, and c is the
speed of light in vacuum where «51. For monochro-
matic waves C(r,t)5C(r)eivt, the time derivatives are
replaced by frequency iv . In practice this applies to a
stationary experiment with a monochromatic beam. For
classical waves we can also introduce point scatterers by
setting «(r)511S i ad(r2Ri), where a is the polariz-
ability of the scattering region that we approximate by a
point. The Schrödinger equation and the scalar wave
equation then both take the form
2¹2C2u(
i

d~r2Ri!C5k2C , where H u5constant in the Schrödinger equation; k5AE ,
u5ak2 in the classical wave equation; k5v/c . (73)
Many static results can be derived without specifying the
kind of waves being discussed. However, the dynamics
of acoustic waves will be different from those of Schrö-
dinger waves due to the frequency dependence of u.

B. The t matrix and resonant point scatterers

To elucidate the notion of the t matrix, we begin our
microscopic description with a simple example: scatter-
ing of an incoming beam from one scatterer in one di-
mension. The quantum-mechanical wave equation in d
51 with a scatterer in x5x0 reads

2C9~x !2ud~x2x0!C~x !5EC~x !, with E5k2.
(74)

Assuming that a wave eikx comes in from x52` , we
look for a solution of the form

C5 H eikx1Ae2ik~x2x0!, x<x0 ,
Beik~x2x0!, x>x0 . (75)
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The constants A and B are determined by the continuity
of c and the cusp in c8 at x5x0 . The solution can then
be represented as

C5eikx2
u

u12ik
eikux2x0ueikx0

5eikx1G~x ,x0!teikx0. (76)

The first term is just the incoming wave. The second
term represents the wave at the scatterer in x0 , where it
picks up a scattering factor t,

t5
u

12iu/~2k !
, (77)

and is transported to x by the medium without scatter-
ers. The Green’s function in the medium without scat-
terers, defined as (2]2/]x22k2)G(x ,x8)5d(x2x8),
reads

G~x ,x8!5
eikux2x8u

22ik
. (78)

Note that we have chosen the sign of ie such that the
Fourier representation of the pure Green’s function
reads G(p)51/(p22k22ie).

C. The t matrix as a series of returns

In the above example Eqs. (77) and (78) show that the
t matrix can be expressed as

t~x0!5
u

12uG~x0 ,x0!
. (79)

Expansion in powers of u yields the ‘‘Born series,’’ a
series that has a clear physical interpretation: the term
of order uk describes waves that arrive at the scatterer,
return to it k21 times, and then leave it for good:

t5u1uGu1uGuGu1uGuGuGu1¯ (80)

(81)

The curved lines in the equation indicate that scattering
occurs from the same scatterer (so far there is only one).
The t matrix is indicated by a d. For an extended scat-
terer this expression reads

t~r,r8!52V~r!d~r2r8!1V~r!G~r,r8!V~r8!

2E d3r9V~r!G~r,r9!V~r9!G~r9,r8!V~r8!1¯ .

(82)

Except for the case of point scatterers, this iterative so-
lution of the single-scatterer problem is not very helpful.
The problem of vector wave scattering from a sphere
was solved by Mie (1908), but the result is quite in-
volved, too involved for our multiple-scattering pur-
poses. The approach shows, however, that the t matrix
depends on the Green’s function G, which describes
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propagation in the medium without that scatterer. How-
ever, the Green’s function will depend on further details
of the scattering medium, such as the presence of walls
or other scatterers. Generally, it cannot be taken from
the literature but has to be calculated for the problem
under consideration: the t matrix describes scattering in a
local environment. The standard infinite-space t matrix
found in the literature applies only to that specific situ-
ation.

D. Point scatterer in three dimensions

In three dimensions the Green’s function reads

G~r,r8!5
eikur2r8u

4pur2r8u
'

1
4pur2r8u

1
ik

4p
1O~ ur2r8u!,

(83)

which is closely related to the Yukawa potential for
hadron-hadron interactions. The divergence at r85r will
cause some problems in taking the point limit.

1. Second-order born approximation

For weak scatterers one often truncates the Born se-
ries. A complication is that the Green’s function in three
dimensions diverges for r→r8, which makes the Born
series (80) ill defined for point scatterers. In reality these
divergences are cut off by the physical size of the scat-
terer, so they play no role for weak scattering. One thus
keeps the first-order term and the imaginary part of the
second-order term; the regularized real part of the
second-order Born term will be small compared to the
first-order term. This leads to the second-order Born ap-
proximation

t5u1iu2 Im G~r,r!. (84)

For the system under consideration this becomes

t5u1iu2
k

4p
. (85)

The fact that Im t.0 signifies that the t matrix still de-
scribes scattering [see Eq. (106)]. More detailed aspects
of the scatterer, such as resonances, are not taken into
account. For electrons the second-order Born approxi-
mation is often applied. Instead of working with point
scatterers one usually considers a Gaussian random po-
tential with average zero ^V(r)&50 and correlation
^V(r)V(r8)&5u2d(r2r8). This leads exactly to t
5iu2 Im G(r,r)5iu2k/4p . For light, however, the
second-order Born approximation is less applicable if
resonances occur.

2. Regularization of the return Green’s function

For finite-size scatterers the divergence of the Green’s
function at coinciding points is not a severe problem.
The physical scatterer always has some finite radius 1/L
that cuts off any divergency. When we wish to consider
point scatterers, the divergence does cause a mathemati-
cal problem. In contrast to high-energy physics, cutoffs
in condensed-matter physics represent physical param-
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eters. Indeed, we shall identify L as an internal param-
eter of the point scatterer, which fixes the resonance fre-
quency.

The return Green’s function G(r→r8) resulting from
Eq. (83) diverges. It should be regularized as

Greg~r,r!5L1 lim
r8→r

FG~r ,r8!2
1

4pur2r8uG
5L1

ik

4p
. (86)

Another method, often used in quantum field theory, is
to introduce a large-momentum cutoff,

G~r,r!5E d3p
~2p!3 G~p!

5E d3p
~2p!3

1
p2 1E d3p

~2p!3 H G~p!2
1
p2J

Greg~r,r!5L1E d3p
~2p!3 H G~p!2

1
p2J

5L1
ik

4p
. (87)

This subtraction is also possible if there are other scat-
terers or walls. Different regularization schemes define
different point scatterers. The physical result is largely
insensitive to such details.

3. Resonances

If we insert the regularized return Green’s function in
Eq. (79), we can write the t matrix in the same form as in
the d51 case, by introducing the effective scattering
length Ueff ,

t5
u

12uGreg~r,r!

5
u

12u~L1ik/4p!

[
Ueff

12Ueff~ ik/4p!
, (88)

where

Ueff[
u

12uL
. (89)

For Schrödinger waves, the regularization brings only a
shift in u as compared to the second-order Born ap-
proximation. This has no further consequences, since u
and L are constants, and so is Ueff . For scalar waves
there is an important difference, since then u is fre-
quency dependent [cf. Eq. (73)]: u5ak2. Let us call k*
the wave number at resonance. If we identify1 L
[1/(ak

*
2 ), we get

1That can be done provided a.0, that is to say, when
«scatterer.«medium .
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t5
ak2k

*
2

k
*
2 2k22ivk

*
2 k3/4p

, (90)

Ueff5
ak2

12k2/k
*
2 . (91)

One sees that Ueff→` for k→k* . Then t becomes equal
to t* 54pi/k52il . As l@1/L this shows resonance
with strong scattering: the effective scattering length utu
52l is much larger than the physical size of the scat-
terer ;1/L .

The resonance is an internal resonance of the scat-
terer, comparable with the s resonance of a Mie sphere.
It is strongly influenced by the environment in which the
sphere is embedded. For small frequencies t'ak2, lead-
ing to the Rayleigh law s;v4 for v→0.

4. Comparison with Mie scattering for scalar waves

We compare the above result of regularization with
an exact result. The t matrix for scalar s-wave scattering
reads [see, for example, Merzbacher (1970), p. 238]

t5
4pe22ika

mk cot~mka !2ik
2

4pe2ika sin ka

k
, (92)

where a is the radius of the sphere and m the ratio be-
tween refractive indices of the sphere and the outside.
The first resonance occurs at wave number k*
5p/(2ma). It becomes sharp if one takes small a, large
m, such that k* remains fixed. For k close to k* one gets

t54pF p4

32m2a3 S 1
k22

1

k
*
2 D 2ikG21

. (93)

For our point scatterer (88) we have

t5
Ueff

12iUeffk/4p

54pF4p

a S 1
k22

1

k
*
2 D 2ikG21

, (94)

where the scattering length is

a5E d3r@e~r !21#

5E
r,a

d3r@m221#

5
4pa3

3
~m221 !. (95)

In the limit of small a this becomes a53pa3m2/3. Com-
paring Eq. (93) with Eq. (94) we find the prefactors
4p/a and p4/32m2a3. The difference is a factor p4/96
'1.0147, thus the results coincide within 2%. In Eq. (86)
we called 1/L a measure of the radius of the scatterer.
We find, if m@1,

1
L

5
k

*
2 ~m221 !a3

3

'
p2

12
a'0.822a . (96)
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Indeed 1/L is a good measure of the radius. We have
thus found a simple expression for the t matrix which
incorporates the essential physics near the s-wave reso-
nance. Finally, we mention that Mie scatterers absorb
radiation if the refractive index has a small imaginary
part. For point scatterers absorption is described by giv-
ing u a small negative imaginary part.

E. Cross sections and the albedo

In the literature several cross sections are encoun-
tered. Here we discuss the three most important. Let a
plane wave be incident in direction n8. As mentioned
above, the total wave scattered from one scatterer is

C~r!5eikn8•r1E d3r8d3r9G~r,r8!t~r8,r9!eikn8•r9,

(97)

with a real-space representation of the t matrix [see Eq.
(82)]. Its Fourier transform is called the off-shell t ma-
trix,

t~p,p8!5E d3r d3r8e2ip•r1ip8•r8t~r,r8!. (98)

Let us assume that the center of the scatterer is located
at the origin. Far away it holds that

G~r,r8!'
eikr2ikn•r8

4pr S n[
r
r D . (99)

We insert this in Eq. (97) and with Eq. (98) we find that
the scattered wave has the form

Csc~r!'
eikr

4pr
t~kn,kn8!. (100)

The scattering cross section is defined as the scattered
intensity integrated over a sphere, normalized by the in-
coming intensity

ssc5E
4p

r2dnUt~kn,kn8!

4pr U2

5
1

~4p!2 E
4p

dnut~kn,kn8!u2. (101)

Notice that the t matrix is only needed for momenta
upu5k (‘‘far field,’’ ‘‘on the mass shell,’’ ‘‘on-shell t ma-
trix’’). One often denotes it by t(n,n8). An isotropic
point scatterer thus has scattering cross section

ssc5
t̄ t

4p
. (102)

The second important quantity is the extinction cross
section. It tells how much intensity is lost from the in-
coming beam. Let us assume that a plane wave is inci-
dent along the z axis from z52` . We consider the in-
tensity in a small solid angle around the z axis for large
positive z. Because then r'z1(x21y2)/2z , the total
wave is given by
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C~r!5eikz1t~n,n!
eikz

4pz
eik~x21y2!/2z. (103)

The intensity for large z is

C* C511Re
t~n,n!

2pz
eik~x21y2!/2z. (104)

We integrate this over x and y inside an area A perpen-
dicular to the z axis. The condition that x and y be much
smaller than z makes the integrals Gaussian, after which
the z dependence disappears:

E
A

dx dy C* C5A2sex . (105)

The extinction cross section is the surface over which the
incoming beam has to be integrated to collect an equal
amount of intensity. It is equal to

sex~n!5
Im t~n,n!

k
. (106)

For a point scatterer one has t(n,n)5t . The albedo of
the scatterer is the ratio of scattered and extinct inten-
sity,

a5
ssc

sex
5

k t̄ t

4p Im t
. (107)

For pure scattering a51; this is called the optical theo-
rem. If absorption is present the absorption cross section
can be defined as sabs5sex2ssc . The albedo then
equals

a5
ssc

ssc1sabs
. (108)

For an extended spherical scatterer the extinction
cross section is angle dependent. One defines the earlier
encountered phase function in terms of the t matrix as

p~cos U!5p~n•n8!5
kut~n,n8!u2

4p Im t
, (109)

with

E dn
4p

p~n,n8!5a . (110)

Note that, because of the far-field construction, the op-
tical theorem cannot be applied immediately in a system
with many scatterers. Instead one has to impose the
Ward identity, which is its generalization.

V. GREEN’S FUNCTIONS IN DISORDERED SYSTEMS

After our microscopic treatment of a single scatterer,
we now consider scattering from many scatterers. The
Green’s function of a given sample depends on the real-
ization of disorder: the location and the orientation of
scatterers. Averaged over disorder it is called the ampli-
tude Green’s function. It describes, on the average, un-
scattered propagation, such as an incoming beam or the
wave scattered from any given scatterer. It should be
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contrasted with the diffuse intensity, which is the (mul-
tiple) scattered intensity that will be discussed below.
For an introduction to Green’s functions in disordered
systems see Economou (1990).

A. Diagrammatic expansion of the self-energy

The amplitude Green’s function is related to two im-
portant concepts: the density of states and the self-
energy. Let us consider waves with frequency v5ck0 . It
will be seen that the presence of many scatterers will
change the ‘‘bare’’ wave number k0 into the ‘‘effective
wave number’’

K5k1
i

2lsc
. (111)

This describes a phase velocity vph5v/k5ck0 /k .
For an electron in a random potential the definition of

the amplitude Green’s function is

Gr,r85)
r9

E dVr9p~Vr9!gr,r8 , (112)

with

gr,r85S 1
p22E1V D

r,r8

. (113)

The effect of the random potential is to introduce in the
bare Green’s function g(p) the self-energy S,

G~p !5
1

p22E2S~p !
. (114)

Exact averaging over the disorder is only possible in par-
ticular cases in one dimension and cannot be done in
general.2 Therefore we employ a diagrammatic approxi-
mation to calculate the self-energy. Suppose that we
have a system with randomly located strong scatterers
(water drops in fog, lipid particles in milk, TiO2 particles
in a liquid or solid sample). In the limit of point scatter-
ers the potential becomes V(r)52S i51

N ud(r2Ri). The
Green’s function of this problem is represented dia-
grammatically in Fig. 3.

G0 denotes a bare propagator, that is to say, the
propagator in the medium without scatterers. The quan-
tity needed is g, the Green’s function of the random
medium, also called the dressed propagator. To calcu-
late all diagrams would amount to solving the problem

2Exactly solvable models exist in one dimension. B. I. Halp-
erin considers Gaussian white-noise potential on a line (Halp-
erin, 1965); Th. M. Nieuwenhuizen considers exponential dis-
tributions on a one-dimensional lattice (Nieuwenhuizen, 1983
1984).

FIG. 3. The dressed Green’s function contains all possible
scattering paths with bare propagation between the scatterers.
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exactly, which is usually not possible. We shall therefore
assume that the density of scatterers n is small. This will
allow us to set up a perturbative expansion of S. We
average over all disorder configurations, that is to say,
all positions (and orientations) of the N scatterers in the
volume V . We sort the diagrams (see Fig. 4) and get

G5^g&5G01G0SG01G0SG0SG01¯

5G01G0SG (115)

5
1

G0
212S

5
1

2¹22k0
22S

. (116)

The relation (115) is the Dyson equation. The lowest-
order approximation to S was already calculated in Sec.
IV, as it is proportional to the t matrix. Due to the av-
eraging over the scatterer positions, there is a also a
density dependence, which can be calculated from the
first-order Born term,

2S~1 !52uE d3R1

V
¯

d3RN

V (
i51

N

d~r2R1!

52u(
i51

N E d3Ri

V
d~r2Ri!

52
uN

V
52nu . (117)

The same argument holds for all orders in the Born se-
ries, so one obtains to O(n)

S5nt . (118)

This lowest-order approximation is also known as the
independent-scatterer approximation. In Fig. 4 it corre-
sponds to the approximation S5d . The effective wave
number is extracted by comparing the dressed and bare
propagators

K5Ak0
21S[k1

i

2l
, (119)

FIG. 4. Average Green’s function (heavy line): Thin lines, the
bare Green’s function; dashed lines indicate that scattering
takes place from the same potential, see Eq. (81). The self-
energy S contains only irreducible diagrams. It generates the
amplitude Green’s function according to the lowest line.
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which leads to the complex index of refraction

m5
K

k0
'A11~nt/k0

2!. (120)

B. Self-consistency

It is impossible to calculate all diagrams. Often, how-
ever, it is feasible to take into account without much
extra effort, all higher-order contributions of a certain
type. For the self-energy we can take t5u/@1
2uG(r ,r)# , instead of t5u/@12uG0(r ,r)# . This is
called a self-consistent approach. Now the last diagram
in the series for S of Fig. 4 is included. Similar terms
with any number of intermediate dots are also ac-
counted for. (One has to be careful, however, to avoid
overcounting of diagrams). Nevertheless, some two-
scatterer diagrams have still been neglected at this self-
consistent one-scatterer level.

Physically the self-consistent method is very natural: it
describes that propagation from one scatterer to another
does not happen in empty space, but in a space filled
with other scatterers. Therefore self-consistency is a fun-
damental concept, and it will satisfy conservation laws
(Ward identities). Indeed, without self-consistency there
is no exact cancellation in the Ward identities. For in-
stance, in the second-order Born approximation one will
derive Eq. (128) with 12a;u3, formally describing the
absorption or even the creation of intensity, in situations
in which intensity should be strictly conserved. In order
to work with such approaches one must neglect u3

terms. In the more physical self-consistent approach
such ad hoc manipulations are not needed and not al-
lowed.

The self-consistent t matrix in the independent-
scatterer approximation,

t5
u

12uL2~ i/4p!uAk0
21nt

, (121)

can lead to a real value of t. This amounts to a gap in the
density of states (Polishchuk, Burin, and Maksimov,
1990). Probably there is no real gap, but rather a small
density of states, which may lead to Anderson localiza-
tion (Polishchuk et al., 1990).

VI. TRANSPORT IN INFINITE MEDIA:
ISOTROPIC SCATTERING

Just as the amplitude Green’s function follows from
solving the Dyson equation, the intensity follows from
solving the Bethe-Salpeter equation. In this section we
restrict ourselves to an approximate form of this equa-
tion, the so-called ladder approximation. It will be seen
that this corresponds to the independent-scatterer ap-
proximation at the intensity level. The ladder approxi-
mation allows a microscopic derivation of the radiative
transfer equation discussed in Sec. III.

In infinite media there are no boundaries, which sim-
plifies the analysis. In practice this situation applies to
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cases in which the distance to boundaries is many mean
free paths, so in the bulk of the multiple-scattering me-
dium. We first consider this situation and derive the dif-
fusion equation from microscopics. In doing so, we find
expressions for the diffusion coefficient and the speed of
transport.

A. Ladder approximation to the Bethe-Salpeter equation

For the transport of energy we must consider the in-
tensity. We have to multiply the Green’s function by its
complex conjugate. In other words, we must multiply
the retarded Green’s function by the advanced one. This
must be done before averaging over disorder. We indi-
cate this in Fig. 5 by drawing the expansion for g (first
line) and drawing the one for g* below it.

When scattering from a certain scatterer occurs more
than once, we indicate this again by dashed lines. Visits
to scatterers are included in g or g* , as before, but it
may also happen that both g and g* scatter from a com-
mon scatterer. This leads to the connection lines be-
tween the upper and lower propagators in the figure.

Of special importance are the ladder diagrams, de-
picted in Fig. 5(a), which describe the diffuse intensity in
the independent-scatterer approximation. They lead to
the classical picture of propagation of intensity from one
common scatterer to another. As the intermediate
propagation takes place in a medium with many other
scatterers, each intermediate g or g* line visits many
new scatterers: they are the dressed propagators of the
previous section.

Alternative names for the ladder diagrams are ladder
sum, diffusion, and particle-hole channel. They are con-
structed in three steps: (i) Sum all immediate returns to
the scatterers. As was explained in Sec. IV, this replaces
the bare scattering potential u by the t matrix. (ii) Keep
only those diagrams in which g and g* visit a certain
series of common scatterers once and only once and in
the same sequence. The intensity g* g propagates from
one scatterer to another. (iii) Use the dressed Green’s
function as an intermediate propagator; in between the

FIG. 5. Various intensity diagrams. (A) The ladder diagrams.
Upper line: A typical ladder diagram before averaging. The
crosses are scattering potentials, the Green’s functions are
bare. Lower line: Averaging over the possible scattering dia-
grams leads to the ladder diagrams, here a diagram with three
common scatterers, in which the circles represent t matrices
and the Green’s functions are dressed. The ladder sum con-
tains diagrams with an arbitrary number of common scatterers.
(B) Some scattering diagrams that are not elements of the lad-
der diagrams. Upper portion is a maximally crossed diagram,
responsible for the enhanced backscatter cone; lower diagram
is of second order in the density.
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common scatterers both g and g* visit any number of
other scatterers.

Let I(r)5uC(r)u2 denote the intensity arriving at
point r. According to Fig. 5 it can be decomposed into
terms without scattering, terms with one common scat-
tering, terms with two, etc.:

I~r!5uC in~r!u21n t̄ tE d3r8uG~r2r8!u2uC in~r8!u2

1~n t̄ t !2E d3r8d3r9uG~r2r8!u2

3uG~r82r9!u2uC in~r9!u21¯ (122)

which can be written as an integral equation,

L~r!5n t̄ tuC in~r!u21n t̄ t

3E d3r8G~r2r8!G* ~r2r8!L~r8!, (123)

where L(r)5n t̄ tI(r). The ladder propagator L(r) is the
intensity that leaves point r after being scattered.

In the second-order Born approximation the same
scatterer is, at most, visited twice consecutively, with the
result that the t matrices in the above ladder equations
are replaced by the scattering potentials u.

B. Diffusion from the stationary ladder equation

In the bulk, that is to say, far from boundaries, the
source term in the ladder equation vanishes. Equation
(123) therefore takes the form

L~r!5n t̄ tE uG~r8!u2L~r1r8!d3r8. (124)

Now assume that L(r) varies slowly on the scale of one
mean free path and expand

L~r81r!5L~r!1r8•¹L~r!1
1
2

r8r8:¹¹L~r!, (125)

where the colon denotes a tensor contraction. Inserting
this in Eq. (124) yields three contributions. The first
term is

n t̄ tL~r!E d3r8
e2r8/l

~4pr8!2 5n t̄ t
l

4p
L~r!5aL~r!.

(126)

In the prefactor we have recognized the albedo a (see
Sec. IV). The second term vanishes due to symmetry.
The third term yields

1
2

n t̄ tE d3r8G* ~r8!G~r8!r8r8:¹¹L~r!

5
1
2

nt t̄ 3
1
3

32l3¹2L~r!. (127)

Inserting this in Eq. (124) yields the stationary diffusion
equation
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¹2L~r!5
3~12a !

l2 L~r!, (128)

in agreement with Eqs. (52) and (57), since for isotropic
scattering it holds that lsc5l tr .

C. Diffusion coefficient and the speed of transport

Here we give a simple derivation of the nonstationary
diffusion equation. In doing so, we automatically en-
counter the speed of transport. We again consider iso-
tropic scatterers. In an infinite system it is useful to con-
sider the Fourier-Laplace-transformed ladder equation

L~q,V!5S~q,V!1n t̄ ~v2!t~v1!E d3p
~2p!3 G~p1 ,v1!

3G* ~p2 ,v2!L~q,V!

[S~q,V!1M~q,V!L~q,V!

5
S~q,V!

12M~q,V!
, (129)

where S is the transformed source term; its precise form
is of no interest here. We introduce

p65p6
1
2

q, v65v7
1
2

V . (130)

The parameters p and v are ‘‘internal’’ or ‘‘fast’’ vari-
ables, which involve one period of the wave. q and V are
macroscopic or slowly varying parameters. They de-
scribe variations over distances much larger than the
wavelength and times much larger than the oscillation
period.

At V50, the bulk kernel has the property

M~q,V50 !5n t̄ tE d3p

~2p!3 G~p1q!G* ~p!

5
arctan~ql !

ql
. (131)

We want to know the behavior for large distances and
times and therefore for small q and V. We expand to
orders V and q2. Denoting G[G(p,v), it holds that
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GS p1
1
2

q,v2
1
2

V D'S p21p•q1
1
4

q22
v2

c2 1V
v

c22nt1V
n

2
dt

dv D 21

'G1F2~p•q!2
1
4

q22VS v

c2 1
n

2
dt

dv D GG21~p•q!2G3. (132)

Inserting this in Eq. (129) implies for the kernel

M~q,V!5n t̄ tH 12
1
2

VS d log t

dv
2

d log t̄

dv
D J H I112VS v

c2 1
n

2
dt

dv D I211VS v

c2 1
n

2
d t̄

dv
D I122

q2

4
~I121I21!

1
k0

2q2

3
~I311I132I22!J . (133)
Here we have defined the integrals

Ikl5E d3p
~2p!3 Gk~p!G* l~p!. (134)

They are calculated in the Appendix. Inserting their val-
ues yields

M~q,V!5a2iVtsc2
1
3

q2l2. (135)

As discussed by Van Albada et al. (1991), t has two con-
tributions,

t5
l

c
1tdw[tsc1tdw . (136)

The first term is the ‘‘scattering time’’ or ‘‘time of
travel’’ tsc5l/c . The explicit expression for the ‘‘dwell
time’’ tdw follows as

tdw5Im
d log t

dv
1

2p

k0 t̄ t
Re

dt

dv
. (137)

We insert the t matrix of a point scatterer, Eq. (88),
yielding

tdw5 t̄ tS 1

4pcUeff

1
k0Ueff8

4pUeff
2 D

1
2p~ t̄ t !2

k0 t̄ t
S Ueff8

Ueff
4 2

k0
2Ueff8

16p2Ueff
2 2

k0

8p2cUeff
D

5
k0 t̄ t

8pUeff
2 S 11F 4p

k0Ueff
G 2D dUeff

dv
. (138)

Notice that the terms without Ueff8 have compensated for
each other. This cancellation follows more generally
from a Ward identity (Van Albada et al., 1991). For
electrons in a random potential, tdw therefore vanishes.

For acoustic waves and light waves the situation is
more interesting. Since Ueff depends explicitly on fre-
quency, Ueff8 does not vanish. Both terms are additive,
leading to a finite dwell time tdw . Using Eq. (91) this
yields at resonance
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tdw5
2p

v
•

1
ak3 5

period
coupling

. (139)

This dwell time becomes longer when the coupling to
the environment, that is, the normalized scattering
strength k3a54pk3a3(m221)/3, becomes weaker.
Therefore this is an important experimental effect. The
speed of transport,

v5c
tsc

tsc1tdw
, (140)

can be substantially smaller than the speed of light when
realistic values of n are inserted in this formula.

For resonant atoms at fixed positions, the reduction of
speed may be as large as 106 (Vdovin and Galitskii,
1967; Nieuwenhuizen, Burin, Kagan, and Shlyapnikov,
1994). As a final result the diffusion coefficient D
5vl/3 reduces, as is observed experimentally. For the
general situation and for more details, see Van Albada
and Lagendijk (1985) and Lagendijk and Van Tiggelen
(1996).

With this result for t we find for the ladder propagator
(129) at small q, V

L~q,V!5
3S~q'0,t50 !

l2

1

q21k21iṼ
, (141)

involving the reduced external frequency

Ṽ[
V

D
. (142)

This is exactly the propagator of Sec. II with absorption
length Labs[1/k[l/A3(12a).

One often considers the Schwarzschild-Milne equa-
tion with a stationary d source, S(r,t)5n t̄ td(r)
54pl21d(r). In the diffusion approximation this yields

L~q,V!5
12p

l3

1

q21k21iṼ
. (143)

This form is commonly called the ‘‘diffuson.’’
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VII. TRANSPORT IN A SEMI-INFINITE MEDIUM

In this section we consider in detail the transport
equation for a very thick slab. We follow the approach
of Nieuwenhuizen and Luck (1993). We shall also con-
sider the case of a mismatch in refractive index between
the medium and the outside.

A. Plane wave incident on a semi-infinite medium

In many situations the index of refraction of the scat-
tering medium differs from that of its surroundings. An
example is TiO2 particles suspended in a liquid. The
boundaries between media of different indexes act
partly as mirrors. They cause a direct reflection of the
incoming light and reinject part of the multiple-scattered
light that tries to exit the system. As long as the system
is optically thick, they lead to effects of order unity, no
matter how small the ratio l/l . Thus they are important
in a quantitative analysis.

We shall calculate the angle-resolved intensity profile
for a plane wave incident on a perfectly flat interface.
This will create a specular reflection at the interface.
The situation of nonspecular reflections from nonideal
interfaces also has some practical relevance.

Consider a semi-infinite medium. For z.0 there is a
scattering medium with refractive index n0 . For z,0
there is a dielectric with index n1[n0 /m . Our notation
is indicated in Fig. 1. The system is governed by Eq.
(73). We first determine the incoming wave in the scat-
tering medium. We consider a system with scatterers in
the half-space z.0. We replace the action of the scat-
terers by a self-energy term. The average wave equation
reads, after Fourier transformation of the transverse
vector to q'5(qx ,qy),

d2

dz2 C~z !1P2C~z !50, z.0, (144)

d2

dz2 C~z !1p2C~z !50, z,0, (145)

P25k0
22q'

21nt , p25k1
22q'

2. (146)

A plane wave of unit amplitude, incident from z,0,
causes a reflected wave for z,0 and a refracted wave
for z.0:

C in~r!5eik'
a
•r1ipaz2

Pa2pa

Pa1pa
eik'

a
•r2ipaz ~z,0 !

5
2pa

Pa1pa
eik'

a
•r1iPaz ~z.0 !. (147)

The prefactors in Eq. (147) follow from the require-
ment of continuity of C and its derivative. To lowest
order in the density we find for the real and imaginary
parts of P

P5k0 cos u81i
1

2l cos u8
, (148)

where u8 is the angle of the refracted incoming wave
with respect to the z axis.
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The source term in the scattering medium, the unscat-
tered incoming intensity, can be written as

I in5uC inu25U 2pa

Pa1pa
U2

e2z/l cos ua5
pa

Pa
Tae2z/lma.

(149)

Inside the random medium the unscattered intensity is
damped exponentially (the Lambert-Beer law). To lead-
ing order in 1/kl ,

Ta5
4paPa

~Pa1pa!2 512R~ma!,

R~m!5Um2Am22111/m2

m1Am22111/m2U2

, (150)

where R(m) is the angular reflection coefficient for sca-
lar waves, and R51 for total reflection, which occurs
when m.1/A12m2. For vector waves the same equa-
tion applies in the s-wave channel (Amic et al., 1997). In
this expression for R(m) the imaginary part of Pa , of
order 1/kl , has been neglected. It has been shown by
Nieuwenhuizen and Luck (1993) that we must neglect
this to ensure flux conservation.

We use the optical depth t5z/l (not to be confused
with the average time per scattering t5tsc1tdw) and
introduce G(t) as

I~z !5
l

4p
L~z5tl !5

pa

Pa
TaG~t!. (151)

G is the diffuse intensity per unit of intensity entering
inside the medium. In terms of G the ladder equation
becomes dimensionless:

G~t!5e2t/ma1E
0

`

dt8M~t ,t8!G~t8!, (152)

where M(t ,t8) follows from the square of the amplitude
Green’s function. In contrast to Eq. (36) G now consists
of two terms for z ,z8.0: a direct term and a term in-
volving reflection for the boundary z50:

G~z ,z8,q'!5
i

2P H eiPuz2z8u1
P2p

P1p
eiP~z1z8!J .

(153)

We shall later need G for z,0, z8.0 for which

G~z ,z8,q'!5
i

P1p
e2ipz1iPz8. (154)

Thus inside the random medium, uGu2 has four terms.
The cross terms oscillate quickly and can be omitted.
We keep the previous bulk contribution to the kernel
MB and the new layer kernel ML , M5MB1ML . For
the bulk kernel we find

MB~z ,z8!54pE d2ruG~z ,r ;z8,r8!u2. (155)

It holds that

MB~z ,0!5E dx dy
1

4p

e2Ax21y21z2/l

x21y21z2 . (156)
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Since

r25z21r25z2/m2⇒r dr52z2dm/m3, (157)

one gets

MB~z ,0!54pE dx dy
1

~4pr !2 e2z/lm

5E
0

` r dr

2r2 e2z/lm

5E
0

1 dm

2m
e2z/lm, (158)

yielding for the bulk kernel [cf. Eq. (36)]

MB~t ,t8!5E
0

1 dm

2m
e2ut2t8u/m

5
1
2

E1~ ut2t8u!, (159)

where E1 is an exponential integral. In the same fashion
the layer term is

ML~t ,t8!54pE dx dyU i

2P

P2p

P1p
eiP~z1z8!U2

5E
0

1 dm

2m
e2~t1t8!/mR~m!. (160)

It consists of three effects: an exponential decay of in-
tensity that goes from the point r8 with angle u towards
the wall having an optical path length t8/m ; a reflection
factor R(m); a further decay over an optical path length
t/m between the wall and the observation point r.

We now calculate the angle-resolved reflection. For a
plane-wave incidence the solution of Eq. (123) is
L(z ,r)5L(z). We can write for the reflected intensity
at point (z8,r8), with z8.0,

IR~z8,r8!5E dz d2rL~z ,r!uG~z ,r ;z8,r8!u2. (161)

Here L(z) is related to G(t) via z5lt and Eq. (151).
It is useful to consider first a finite area A and to

continue this area periodically. We can then integrate
out the r dependence; later we shall take the limit A
→` . Using the periodicity of the surface one can ex-
press the Green’s function as

G~z ,r ;z8,r8!5
1
A (

q'

G~z ;z8;q'!eiq'•~r2r8!. (162)

Since the incoming plane wave is infinitely broad, the
diffuse intensity I does not depend on r. The integration
over r is simple:

E d2ruG~z ,r ;z8,r8!u25
1
A (

q'

GG*

'E d2q'

~2p!2 uG~z ,z8,q'!u2.

(163)
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The last step holds in the limit A→` . If we denote the
outgoing q' by q'

b , we can express d2q' as

d2q'
b 5q'

b dq'
b dfb5k1

2 sin ub cos ubdubdfb

5k1
2 cos ubdVb . (164)

Inserting Eqs. (164) and (163) in Eq. (161) yields a result
that is independent of the observation point (z8,r8):

IR~z8,r8!

5E dzE k1
2 cos ub

4p2 dVb

1
uPb1pbu2 L~z !e2z/l cos ub8,

(165)

where ub8 is the direction of the radiation in the medium,
which is refracted into the outgoing direction ub (see
Fig. 1); we also recall that mb5cos ub8 . We finally find for
the angle-resolved reflected diffuse intensity.

AR[
dR~a→b !

dVb
5

dIR

dVb

5
k1

2 cos ub

4p2

Tb

pbPb
E dz L~z !e2z/l cos ub8. (166)

Using Eqs. (151) and (146) at nt→0, one can express the
numerical prefactor of the integral

Tb

4Pbpb
5

k1
2

~2p!2 cos ub4p
paTa

Pa

5
k1

2pa

4ppb
cos ub

TaTb

PaPb

5
k1

2

4p

cos ua

cos ub
cos ub

TaTb

k0mak0mb

5
cos ua

4pm2

TaTb

mamb
. (167)

For the angle-resolved diffuse reflection of a semi-
infinite medium we thus find

AR~ua ,ub!5
cos ua

4pm2

TaTb

mamb
g~ma ,mb!, (168)

with the generalized bistatic coefficient.

g~ma ,mb!5E
0

`

dt GS~ma ,t!e2t/mb

5E
0

`

dt dt8GS~t ,t8!e2t/mae2t8/mb. (169)

In the absence of index mismatch (m51) one has Ta ,b
51, ma ,b5cos ua,b , so the prefactor in Eq. (168) be-
comes 1/(4p cos ub). Figure 6 shows numerical results
for AR for perpendicular incidence (ua50); see Nieu-
wenhuizen and Luck (1993).

B. Air-glass-medium interface

We now consider a semi-infinite scattering medium,
separated from the air by another dielectric, such as
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glass, of thickness d. For z,2d there is air, for 2d
,z,0 glass, and for z.0 the scattering medium. A
plane wave of unit amplitude comes in from z52` with
wave vector (q' ,kz). The perpendicular component q'

is conserved at the interfaces. We denote by pi the z
component of the wave vectors in the three sectors i
50,1,2, where i50 corresponds to the scattering me-
dium, i51 to air, and i52 to glass. The wave numbers in
the three media are k05v/c0 , k15v/c1 , and k2
5v/c2 , respectively, where ci is the speed of propaga-
tion in the medium i. The incoming, refracted, and
specularly reflected waves are given by

C~r !5H eiq'•r1ip1z1reiq'•r2ip1z ~z,2d !

t1eiq'•r1ip2z1r1eiq'•r2ip2z ~2d,z,0 !

teiq'•r1ip0z ~z.0 !.

Here r is the reflection amplitude of the system, t the
transmission amplitude, and pi5Aki

22q'
2. Continuity

requirements at z52d and z50 yield r, r1 and t, t1 :

r5
~p01p2!~p12p2!2~p02p2!~p11p2!e2ip2d

~p01p2!~p11p2!2~p02p2!~p12p2!e2ip2d ,

t5
4p1p2ei~p22p1!d

~p01p2!~p11p2!2~p02p2!~p12p2!e2ip2d .

(170)

The reflection and transmission coefficients of the
double interface are

uru2;
p0

p1
utu2, (171)

respectively. As we assume the thickness of the glass
plate is not smooth within one wavelength, these expres-
sions must be averaged over the spread in thickness.
This amounts to averaging over the phase 2p2d[w and
leads to the average transmission and reflection coeffi-
cients

FIG. 6. Angle-resolved reflection coefficient for perpendicular
incidence on a semi-infinite medium, for different values of the
index ratio m. For m,1 no radiation can exit the random
medium at an angle exceeding the Brewster angle.
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T3512R35
p0

p1
E

2p

p dw

2p
utu2. (172)

The integrand is of the form A/(B2C cos f). The final
result is

T3512R35
4p0p1p2

~p01p1!~p0p11p2
2!

. (173)

We can check this in special cases. Inserting p25p15p
and p05P indeed reduces to the previous result for two
media.

We can describe this system by replacing T(m) in pre-
vious equations by T3(m) and replacing the reflection
coefficient R(m) in the Milne kernel by R3(m). As be-
fore, m[p0 /k0 is the cosine of the angle u8 between the
radiation and the z axis.

The specular reflections in the glass have now been
taken into account. For a not too narrow beam this is
useful for thin glass plates. For a not so broad beam
impinging on a medium with thick plates, multiple re-
flections from the glass interfaces can result in compo-
nents that fall outside the incoming beam and even out-
side the medium (Ospeck and Fraden, 1994).

C. Solutions of the Schwarzschild-Milne equation

We consider properties of the transport equation in a
semi-infinite space (Nieuwenhuizen and Luck, 1993).
The Milne equation (152) has a special solution
GS(ma ;t), while the associated homogeneous equation
without source term has a solution GH(t). We are inter-
ested in the asymptotic behavior of GS(ma ;t) and
GH(t). Deep in the bulk (t@1) one expects a slow
variation of G(t8) at the scale of one mean free path
@ ut2t8u5O(1)# and one can expand

G~t8!5G~t!1~t82t!G8~t!1
1
2

~t82t!2G9~t!1¯ .

(174)

When this is inserted in Eq. (152), one finds for t@1

G~t!'G~t!1
1
3

G9~t!1¯ (175)

where for large t

1
2 E

0

1 dm

2m E
0

`

dt8e2ut2t8u/m~t2t8!2'
1
3

. (176)

The term O(G8) vanishes due to symmetry of the (t8
2t) integral. Equation (175) thus yields again the diffu-
sion behavior G9(t)'0. We therefore consider the ho-
mogeneous solution GH and the special solution GS with
the asymptotic behaviors

HGH~t!'t1t0

GS~t ;ma!'t1~ma!
~t→`!. (177)

Corrections occur due to the interface and decay expo-
nentially in t. For a numerical solution one may intro-
duce dGS(t)5GS(t)2t1(ma) and dGH(t)5GH(t)2t
2t0 and integrate them from t5` . The requirement
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that they vanish there determines t0 and t1 . The con-
stant t0 depends only on the index ratio m, while t1(ma)
also depends on the direction of the incoming beam.

We define the Green’s function GS(t ,t8) as the solu-
tion of the inhomogeneous equation

GS~t ,t8!5d~t2t8!1E
0

`

dt9$MB~t ,t9!

1ML~t ,t9!%GS~t9,t8!, (178)

subject to the boundary condition GS(` ,t8),` . This
function is symmetric, GS(t ,t8)5GS(t8,t), and has the
limit

lim
t8→`

GS~t ,t8!5
1
D

GH~t!. (179)

The latter equality can be proven by taking the limit
t8→` in Eq. (178). The delta function vanishes and the
remaining equation is the same as the one for GH(t).
Therefore GS(t ,t8→`) is proportional to GH(t). The
multiplicative prefactor can be fixed by expanding
GS(t ,t8) in t82t and inserting this in the right-hand
side of Eq. (178). Using Eq. (176) again, one finds for
t ,t8@1

05d~t2t8!1
1
3

d2

dt2 GS~t ,t8!. (180)

The solution is GS(t ,t8)53 min(t,t8) in the regime
(t ,t8,ut2t8u@1). The diffusion coefficient D in Eq.
(179) reads 1/3 in reduced units, that is to say, D5vl/3
in physical units.

From Eq. (178) it follows that

GS~t ;m!5E
0

`

dt8GS~t ,t8!e2t8/m (181)

and, in particular, using Eqs. (177) and (179),

t1~m!5 lim
t→`

GS~t ;m!5
1
D E

0

`

GH~t!e2t/mdt . (182)

The physical interpretation of t1(m) is the limit intensity
(z5tl→`) of a semi-infinite medium.

Numerical values of the injection depth t0 , the nor-
malized limit intensity t1(1), and the normalized bi-
static coefficient g(1,1) can be found in Table I for vari-
ous values of the index ratio m.

TABLE I. Numerical values of several fundamental quantities
in radiative transfer theory for typical values of the index ratio
n.

m t0 t1(1) g(1,1) DQl

2 6.08 21.7 21.5 0.136
3/2 2.50 10.8 10.6 0.269
4/3 1.69 8.34 7.94 0.343

1 0.710 446 5.036 48 4.227 68 1/2
3/4 0.815 5.39 4.63 0.479
2/3 0.881 5.60 4.85 0.465
1/2 1.09 6.25 5.55 0.427
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Nieuwenhuizen and Luck (1993) verified explicitly
that in this approach flux is conserved. This derivation
will not be reproduced here. We refer the interested
reader to the original paper.

VIII. TRANSPORT THROUGH A SLAB

We now discuss the transmission properties of an op-
tically thick slab with isotropic scatterers. We derive the
‘‘ohmic’’ or diffusive scaling behavior T;l/L mentioned
in Sec. II and give the full angular dependence of the
transmission and reflection. This result is then used to
calculate the resistance of an idealized conductor, see
also Sec. XVI.A.

A. Diffuse transmission

We consider a medium with finite thickness L@l . The
medium has optical thickness b5L/l@1. For the mo-
ment we wish to neglect boundary effects. Therefore we
are restricted to positions not too close to the boundary
(10 mean free paths is a good measure, as the correc-
tions decay exponentially). The solution for G(t) is a
linear combination of the special and the homogeneous
solutions,

G~t!5GS~t!2aGH~t! for 0<t<10

5t1~m!2a~t1t0! for t.10. (183)

Near the other boundary it holds similarly that

G~t!5a8GH~b2t! for 0<b2t<10

5a8~b2t1t0! for b2t.10. (184)

As they have the same functional form, both shapes can
be matched in the bulk of the sample. This yields

a5a85
t1~m!

b12t0
. (185)

Inserting this value in Eqs. (183) and (184) gives the
intensity anywhere in the slab, expressed in terms of GS
and GH of the semi-infinite problem. Notice the impor-
tant role played by the diffusive behavior in the bulk.
The Schwarzschild-Milne equation has brought the pre-
cise behavior at scales of one mean free path from the
boundaries.

To calculate the angular transmission profile, we fol-
low the derivation for the diffuse reflection [see Eq.
(168)]. The expression for the differential transmission
coefficient per unit solid angle dVb of a beam incident
under angle ua is given analogously as

dT~a→b !

dVb
5

cos uaTaTb

4pm2mamb
E

0

b
dt G~t!e2~b2t!/mb.

(186)

Using the solution for G(t) we rewrite the integral
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E
0

b
dt G~t!e2~b2t!/mb'aE

2`

b
dt GH~b2t!e2~b2t!/mb

5aE
0

`

dt GH~t!e2t/mb

5
t1~ma!

b12t0
t1~mb!D , (187)

where we used Eq. (182). We have derived the angle-
dependent differential transmission coefficient for a slab
of optical thickness b5L/l ,

dT~a→b !

dVb
[

AT~ua ,ub!

b12t0

[
cos uaTaTb

12pm2mamb~b12t0!
t1~ma!t1~mb!.

(188)

As the intensity at the side of incidence (z50) equals
G(t)5GS(t)2aGH(t), it is clear that the transmission
term aGH(b2t) arises at the cost of the reflection.
Therefore flux conservation is also satisfied for an opti-
cally thick slab.

In Fig. 7 we show AT(ua ,ub), the normalized angle-
resolved transmission for perpendicular incidence (ua
50), for several values of the index ratio m.

B. Electrical conductance and contact resistance

For metallic conductors in the mesoscopic regime the
conductance is given by the Landauer formula (Land-
auer, 1975):

G5
2e2

h (
a ,b

Tab
flux , (189)

where h/e2'25kV is the quantum unit of resistance.
This equation simply counts the weight of the channels
that contribute to transmission. In the above description

FIG. 7. Angle-resolved transmission coefficient for perpen-
dicular incidence on a thick slab. The ratio of refractive indi-
ces, m, has been indicated.
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the wave number k0 can be replaced by the Fermi wave-
number vector kF . The analog of the contrast in refrac-
tive index is now the potential difference between the
conductor and the contact regions (V1ÞV0). In our for-
malism the conductance is given by

G5
2e2

h (
a ,b

Tab
flux5

2e2

h (
a ,b

Tab

cos ub

cos ua

5
2e2

h

kF
2 A

3p~b12t0!
, (190)

with Tab5AT(ua ,ub)/(b12t0). From this one gets

G5
AsB

L12z0
, sB5

2e2kF
2 l

3ph
, (191)

where z05t0l and sB is the ‘‘Boltzmann’’ value for the
bulk conductivity. We distinguish a bulk resistance and a
contact resistance Rc ,

R5
1
G

5
L

AsB
12Rc , Rc5

3p\

2e2AkF
2 t0 . (192)

The number of modes can be estimated as N'AkF
2 . The

above expression shows that Rc is proportional to the
dimensionless thickness t0 and inversely proportional to
the number of channels. The nontrivial part is coded in
t0 . It depends on the potential drop V2V1 , but not on
the density of scatterers. Because

kF
2 2V15k1

2, kF
2 2V05k0

2, (193)

we can make an analogy with light scattering by putting
k0

25m2k1
2:

m2⇒
kF

2 2V0

kF
2 2V1

. (194)

IX. THE ENHANCED BACKSCATTER CONE

So far we have seen effects that are largely diffusive
and that could to some extent also be derived from par-
ticle diffusion. The enhanced backscatter cone is the
clearest manifestation of interference due to the wave
nature of light. The wave character manifests itself most
clearly in loop processes. The advanced and retarded
waves can go around in two ways, in the same direction
and in opposite directions. This leads to an enhanced
return to the origin, which is the basic mechanism for
Anderson localization (Sec. I).

The optically enhanced backscatter in the exact back-
scatter direction has the same characteristics as a closed
loop. It brings two possibilities, thus a factor of 2, for all
scattering series involved. For Faraday-active media it
will be suppressed in a magnetic field. Away from the
backscatter direction there is partial extinction.

A. Milne kernel at nonzero transverse momentum

We follow the discussion of Nieuwenhuizen and Luck
(1993). The backscatter diagrams are closely related to
the standard ladder diagrams. The only difference is the
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crossed attachment of the incoming and outgoing lines
to the first and last scatterers. These diagrams are called
maximally crossed diagrams (Fig. 8).

Let the incoming wave be denoted by a and the out-
going wave by b. Their wave vectors have components
(k'

a ,pa), (k'
b ,pb). The product of incoming and outgo-

ing waves at the first scatterer is

C* C5
paTa

Pa
ei~k'

a
2k'

b
!•r1i~pa2pa* !z, (195)

with r5(x ,y). We define the transverse wave vector

Q[~k'
a 2k'

b !. (196)

For perpendicular incidence one has (ua50; k'
a 50).

We consider the regime of angles close to the backscat-
ter direction (ub.0). Then it holds that uQu.k1ub so
that

C* C5
T~1 !

m
eiQ•re2z/l. (197)

Consider the diffuse intensity I in the backscatter
cone. It is given by

I~r!5
T~1 !

m
eiQ•re2z/l1

4p

l E dr8uG~r2r8!u2I~r8!.

(198)

Notice that dependence occurs only in the source term
of this integral equation. Inserting I(r)5eiQ•rI(z ,Q)
yields the Milne equation for I(z ,Q),

I~z ,Q !5
T~1 !

m
e2z/l1E dz8

l
MC~z ,z8,Q !I~z8,Q !,

(199)

with the Q-dependent Milne-cone kernel

MC~z ,z8,Q !54pE d2r8eiQ•~r82r!uG~r,r8!u2. (200)

The normalized intensity of the maximally crossed dia-
grams satisfies

GC~t ,Q !5
mI~z ,Q !

T~1 !
,

GC~t ,Q !5e2t1E dt8MC~t ,t8,Q !GC~t8,Q !. (201)

The Milne kernel again has a bulk and a layer term,

MC~t ,t8,Q !5MB~t ,t8,Q !1ML~t ,t8,Q !. (202)

Inserting uG(r)u25e2r/l/(4pr)2 yields

MB~z ,z8,Q !54pE r dr df
1

~4p!2@~z2z8!21r2#

3eiQr cos fe2A~z2z8!21r2/l. (203)

FIG. 8. Maximally crossed diagrams.
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In terms of the variables t5z/l and m5cos u8, where u8
is the angle between r and the z axis, we find that

A~z2z8!21r2

l
5

ut2t8u
m

,
r dr

l2 52
ut2t8u2

m3 dm .

Inserting this in Eq. (203) yields

MB~ ut2t8u,Q !

5E
0

1 dm

2m E
2p

p df

2p
eiQl cos fut2t8uAm2221e2ut2t8u/m

5E
0

1 dm

2m
J0~Qlut2t8uAm2221 !e2ut2t8u/m,

(204)

where J0 is the zero-order Bessel function. A similar
analysis yields for the layer term

ML~t1t8,Q !5E
0

1 dm

2m
R~m!J0„Ql~t1t8!

3Am2221…e2~t1t8!/m. (205)

This form is useful at small and large Q.

B. Shape of the backscatter cone

The intensity in the backscatter direction consists of
two parts: a diffuse background AR, discussed in Sec.
VII, and a contribution AC from the maximally crossed
diagrams. In the case of perpendicular incidence we
have found for the background contribution Eq. (168)

AR~0,0!5
T~1 !2g~1,1!

4pm2 , (206)

where the normalized bistatic coefficient g is given by

g~ma ,mb!5E
0

`

dt e2t/mbGS~t ,ma! (207)

5E
0

`

dtE
0

`

dt8e2t/mb2t8/maGS~t ,t8!.

(208)

The contribution of the maximally crossed diagrams,
normalized by the diffuse background, is given by

AC~Q !5
gC~Q !2gTR

g~1,1!
, (209)

where gTR is the amplitude of the paths that are identi-
cal to their time-reversed analogs. Such paths do not
yield a time-reversed contribution, and this should thus
be subtracted from the first term. For low scatterer den-
sity, gTR consists of the single scattering event (in, scat-
ter, out). This process yields [cf. Eq. (169)]

gTR5E
0

`

dtE
0

`

dt8e2t2t8d~t2t8!5
1
2

. (210)

The nontrivial term is defined as
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gC~Q !5E
0

`

dt e2tGC~t ,Q !

5E
0

`

dtE
0

`

dt8e2t2t8GC~t ,t8,Q !, (211)

where GC is the solution of Eq. (201) with source d(t
2t8) instead of e2t and vanishing for t→` . In Fig. 9 we
present the numerical results for AC(Q) for several val-
ues of the index ratio m.
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C. Decay at large angles

From Eqs. (204) and (205) it follows that MB and ML
decay quickly as functions of t when Q is large. Physi-
cally this happens because the enhanced backscatter is
suppressed at large angles due to dephasing. For large
angles we can therefore restrict Eq. (211) to low-order
scattering. To second order we have GC(t ,t8;Q)5d(t
2t8)1MC(t ,t8;Q). This yields
gC~Q !5
1
2

1E
0

`

dt dt8e2t2t8@MB~ ut2t8u;Q !1ML~t1t8;Q !# . (212)

For the bulk term

E
0

`

dt dt8e2t2t8MB~ ut2t8u;Q ! 5
~204!E

0

1 dm

2m E
2p

p df

111/m2iQl cos fA1/m221

5E
0

1 dm

2
1

A~m11 !21Q2l2~12m2!
'

Q large p

4Ql
. (213)

Inserting Eq. (205) yields for the layer term in Eq. (212)

E
0

`

dt dt8e2t2t8ML~t1t8;Q !5E
0

1 dm

2 E
2p

p df

2p
R~m!

m

~m112iQl cos fA12m2!2

5
1
2 E

0

1
dm mR~m!

m11

@~m11 !21Q2l2~12m2!#3/2 . (214)
The integrand decays quickly for large values of
Q2l2(12m2). Setting m512x/(Q2l2) we obtain for the
layer term

R~1 !

Q2l2 E
0

` dx

~412x !3/2 5
R~1 !

2Q2l2 . (215)

This yields

AC~Q !.
T~1 !2

4pm2 S p

4Ql
1

R~1 !

2Q2l2D (216)

for large Q. The effect of the layer term is essentially the
square of the bulk term. This is because the paths in-
volved are essentially twice as long (Fig. 10).

D. Behavior at small angles

Assuming a linear Q dependence, we expand GC
around Q50,

GC~t ;Q !.GC~t ;Q50 !2QG̃C~t ;Q !. (217)

Inserting this in Eq. (201) and subtracting the Q50
terms yields, to leading order in Q,

G̃C~t ;Q !5E
0

`

dt8MC~t ,t8;Q !G̃C~t8;Q !. (218)
As this is a homogeneous equation, it holds that
G̃C(t ;Q)5aGH(t ;Q), so that Eq. (217) becomes

GC~t ;Q !5GS~t!2aQGH~t! '
t@1

t1~1 !2aQlt . (219)

Deep inside the scattering medium (t@1) the diffusion
approximation holds, implying

GC9 ~t ;Q !5Q2l2GC~t ;Q !⇒GC~t ;Q !5ãe2Qlt. (220)

Matching this for small Qlt with Eq. (219) one finds ã
5a5t1(1). Using Eq. (207) this yields

gC~Q !5gC~0 !23Qlt1
2~1 !

5gC~0 !S 12
Q

DQ D , (221)

where we used Eq. (182) with D5 1
3 . The normalized

opening angle DQ is

DQ53
gC~0 !

lt1
2~1 !

. (222)

Note that gC(0)[g(Q50;ma5mb51). The linearity of
the peak of the cone is a result of diffusion, that is to say,
of long light paths. The complicated expression for the
opening angle shows that the skin layer plays an impor-
tant quantitative role. The reason for this is obvious: the
light has to traverse it.
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X. EXACT SOLUTION OF THE SCHWARZSCHILD-MILNE
EQUATION

Some useful formulas were given in previous sections
for calculation of the diffuse intensity. However, the
Schwarzschild-Milne equation can be solved exactly in
the absence of internal reflections (Chandrasekhar,
1960). We summarize the approach of Nieuwenhuizen
and Luck (1993) here and generalize the Schwarzschild-
Milne equation to include internal reflections.

A. The Homogeneous Milne equation

The starting point of this analysis is the integral form
of the radiative transfer equation, i.e., the
Schwarzschild-Milne equation, Eq. (152). In the absence
of internal reflections, ML50, the remaining kernel MB
depends only on the difference (t2t8), giving the Milne
equation the structure of a convolution equation. Be-
cause of its half-space geometry the problem is still non-
trivial.

We consider first the homogeneous Milne equation.
Its solution GH(t) has the asymptotic behavior GH(t)
5t1t0 [Eq. (177)]. We define the Laplace transforms of
MB(t ,0) and of GH(t) as

m~s !5E
2`

`

MB~t ,0!estdt ~21,Re s,1 ! (223)

gH~s !5E
0

`

GH~t!estdt5Dt1~m521/s ! ~Re s,0 !.

(224)

In the case of isotropic scattering the Milne kernel equa-
tion (158) leads to

m~s !5
1
2s

ln
11s

12s
. (225)

The small-s behavior of m(s)

m~s !511Ds21O~s4! ~s→0 ! (226)

FIG. 9. Backscatter cone of a semi-infinite medium at normal
incidence for several values of m. The diffusive background
was subtracted.
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determines the dimensionless diffusion constant D
51/3.

It turns out that the problem can be solved for any
symmetric Milne kernel. The homogeneous Milne inte-
gral equation is equivalent to

f~s !gH~s !5E
2i`

i` dt

2pi

m~ t !gH~ t !

t2s
(227)

~21,Re t,Re s,0 !,

with f(s)512m(s), and the asymptotic behavior Eq.
(177) is equivalent to

s2gH~s !512t0s1O~s2! ~s→0 !. (228)

Equation (227) can be solved in closed form, for an
arbitrary bulk kernel. Let us consider first the following
‘‘rational case,’’ in which MB(t ,0) is a finite superposi-
tion of N decaying exponentials, namely,

MB~t ,0!5 (
a51

N wapa

2
e2pautu, (229)

with weights wa.0 and decay rates (inverse decay
lengths) pa.0. We then have

m~s !5 (
a51

N wapa
2

pa
22s2 ,

f~s !52s2 (
a51

N wa

pa
22s2 . (230)

By comparing with Eq. (226), we obtain the normaliza-
tion conditions (awa51, (awa /pa

25D . Equation (227)
can be evaluated by means of residue calculus. It loses
its integral nature and becomes

f~s !gH~s !52 (
a51

N wapagH~2pa!

2~pa1s !
. (231)

In order to solve Eq. (231), we first write the rational
function f(s) in factorized form,

FIG. 10. The effect of internal reflection on the backscatter
cone. At large angles the backscatter cone is mainly deter-
mined by second-order scattering. The term with internal re-
flection has a larger optical path and therefore decays faster.
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f~s !5
Pa51

N21~12za
2 /s2!

Pa51
N ~12pa

2/s2!
. (232)

The (N21) zeros of @f(s)/s2# in the variable s2 have
been denoted by za

2 , with Re za.0, for 1<a<N21.
The normalization of Eq. (232) has been fixed by using
f(`)51.

An alternative expression for the diffusion constant D
is derived by setting s equal to zero in Eq. (232) and
comparing with Eqs. (226) and (230). We get

D5
Pa51

N21za
2

Pa51
N pa

2 . (233)

The solution of Eq. (231) is of the form

f~s !gH~s !5
N0~s !

Pa51
N ~pa1s !

(234)

with N0(s) a polynomial of degree (N21), which can
be determined as follows. Consider the value s52za :
we have f(2za)50, whereas gH(2za) is finite. Equa-
tion (234) shows therefore that s52za is a zero of the
polynomial N0(s). Since there are exactly (N21) such
values, the solution Eq. (234) is determined up to a nor-
malization, which can be fixed by using Eq. (228). We
thus obtain

s2gH~s !5
Pa51

N ~12s/pa!

Pa51
N21~12s/za!

. (235)

This equation can be recast for Re s,0 as

s2gH~s !5expH (
a51

N

ln~12s/pa!2 (
a51

N21

ln~12s/za!J .

(236)
The sum over the poles and zeros of the function
@f(s)/s2# , with positive real parts, can be rewritten as
the following complex integrals:

s2gH~s !5expH E
2i`

1i` dz

2pi Ff8~z !

f~z !
2

2
zG ln~12s/z !J

5expH 2sE
2i`

1i` dz

2piz~z2s !
lnF2

f~z !

Dz2 G J .

(237)

This result gives the solution of the problem for an ar-
bitrary bulk Milne kernel.

The thickness t0 of the skin layer can be evaluated by
comparing the results of Eqs. (235) and (237) with the
expansion (228). We get

t05 (
a51

N 1
pa

2 (
a51

N21 1
za

5E
2i`

1i` dz

2piz2 lnF2
f~z !

Dz2 G . (238)

The value for the case of point scattering is obtained by
inserting into Eq. (238) the expression for f(z) coming
from Eq. (225). By making the change of variable z
5i tan b, we get
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t05
1
p E

0

p/2 db

sin2 b
ln

tan2 b

3~12b cot b!

50.710 446 090. . . . (239)

We recover a well-known numerical value (Chan-
drasekhar, 1960; Van de Hulst, 1980; Van de Hulst and
Stark, 1990).

B. The inhomogeneous Milne equation

The above method can be generalized to the inhomo-
geneous situation (Nieuwenhuizen and Luck, 1993). For
point scattering one obtains the result

t1~m!5m) expH 2
m

p E
0

p/2
db

ln~12b cot b!

cos2 b1m2 sin2 bJ .

(240)

This quantity is maximal at normal incidence (m51),
where it assumes the somewhat simpler form

t1~1 !5) expH 2
1
p E

0

p/2
db ln~12b cot b!J

55.036 475 57. . . . (241)

Finally, it is worth noticing that Eq. (236) also implies
the following remarkably simple result:

g~ma ,mb!5
t1~ma!t1~mb!

3~ma1mb!
, (242)

which is particular to the situation in which there are no
internal reflections. In the presence of mismatch the
functional form changes. See Eq. (286) for the limit of
strong mismatch.

C. Enhanced backscatter cone

Exact results can also be derived for the backscatter
cone in the absence of internal reflections. Consider, for
the sake of simplicity, the enhanced backscatter of a
normally incident beam (ma51). The Q-dependent
Milne equation (201) can be solved by means of the
Laplace transformation.

In the case of point scattering, one gets for the back-
scatter amplitude (Gorodnichev, Dudarev, and Rogoz-
kin, 1990)

gC~Q !5
1
2

expH 2
2
p E

0

p/2
db ln

3S 12
arctan AQ2l21tan2 b

AQ2l21tan2 b
D J . (243)

For small values of the reduced wave vector Q, the
result Eq. (243) assumes the general form Eq. (221), cor-
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responding to the triangular shape of the backscatter
cone. The value for Q50 reads

g~1,1!5
@t1~1 !#2

6
54.227 681 04, (244)

in agreement with Eq. (242). In agreement with Table I,
one has DQ51/2l [see Eq. (221)].

We end this section by mentioning the expression for
the backscatter cone amplitude for isotropic scattering
by point scatterers with an arbitrary albedo,

gC~a ;Q !5
a

2
expH 2

2
p E

0

p/2
db

3lnS 12a
arctan AQ2l21tan2 b

AQ2l21tan2 b
D J .

(245)

This result shows that, as soon as the scattering albedo a
is smaller than unity the backscatter amplitude is an ana-
lytic function of Q2, i.e., the cusp at Q50 disappears.
This confirms the physical intuition that the triangular
shape of the cone is due to the existence of arbitrarily
long diffusive paths. It is therefore a characteristic of the
problem with unit albedo, i.e., with no absorption, in a
half-space geometry. When the reduced wave vector Q
and the strength of absorption (12a) are both small, we
observe the following scaling behavior:

gC~a ;Q !'
gC~1;0 !

112AQ2l213~12a !
. (246)

The denominator of this expression is not reproduced
quantitatively by the diffusion approximation [see, for
example, Eq. (71) of Van der Mark, Van Albada, and
Lagendijk (1988)], although it pertains to the long-
distance physics of the problem. We also notice that the
prefactor of the square root is nothing but the reciprocal
of the value (222) of lDQ . Indeed, Eq. (242) yields
gC(0)[g(1,1)5t(1)2/6, by which Eq. (222) reduces to
DQ51/(2l).

D. Exact solution for internal reflections in diffusive media

The solution for internal reflections, mÞ1, can be sim-
ply expressed in the solution without internal reflections,
m51. Let us look at GH

(m) , the homogeneous solution
for the situation with index ratio m. If we define
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gH~m!5
R~m!

2m E
0

`

dt8e2t8/mGH
~m !~t8!, (247)

then we get from the homogeneous version of Eq. (152)

GH
~m !~t !5MB* GH

~m !~t !1E
0

1
dm gH~m!e2t/m. (248)

We observe that comparison with Eq. (152) immediately
gives the solution

GH
~m !~t !5GH

~1 !~t !1E
0

1
dm gH~m!GS

~1 !~t ;m!. (249)

Using the definition Eq. (247) we have to solve the in-
homogeneous equation

gH~m!5
R~m!t1

~1 !~m!

6m

1
R~m!

2m E
0

1
dm8g~1 !~m ,m8!gH~m8!, (250)

where we used the identities (Nieuwenhuizen and Luck,
1993)

E
0

`

dt GH
~1 !~t !e2t/m5

1
3

t1~m!, (251)

g~m !~mb ,ma!5E
0

`

dt GS
~m !~t ,ma!e2t/mb. (252)

In a similar fashion we find for the special solution

GS
~m !~t ;ma!5GS

~1 !~t ;ma!

1E
0

1
dm gS~m ,f ,ma!GS

~1 !~t ;m! (253)

with

gS~m ;ma!5
R~m!

2m
g~1 !~m ;ma!1

R~m!

2m

3E
0

1
dm8g~1 !~m ,m8!gS~m8;ma!. (254)

Following the same steps we obtain the enhanced back-
scatter intensity. We must solve
g~m ,f ;ma ,Q !5
R~m!

2m
g~1 !S m

11iQlA12m2 cos f
,ma ;Q D 1

R~m!

2m E
0

1
dm8E

2p

p df8

2p

3g~1 !S m

11iQlA12m2 cos f
,

m8

11iQlA12m82 cos f8
;Q D g~m8,f8;ma ,Q !, (255)
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where (Luck, 1997)

g~1 !~ma ,mb ,Q !5
t1

~1 !~ma ,Q !t1
~1 !~mb ,Q !

3~ma1mb!
(256)

involves

t1
~1 !~m ;Q !5m) expH 2

m

p E
0

p/2 db

cos2 b1m2 sin2 b

3lnS 12
arctan AQ2l21tan2 b

AQ2l21tan2 b2 D J .

(257)

We find the following expressions for the dimension-
less injection depth t0 , the limit intensity t1 , the differ-
ential reflection dR/dV , and B(Q), the intensity of the
backscatter cone normalized to the diffuse background,
at outgoing angle ub coded in Q5kl(ua2ub):

t0
~m !5t0

~1 !1E
0

1
dm gH~m!t1

~1 !~m!, (258)

t1
~m !~ma!5t1

~1 !~ma!1E
0

1
dm gS~m ;ma!t1

~1 !~m!, (259)

dR

dVb
~ub ;ua!5

cos ua

4pm2

T~ma!T~mb!

mamb
g~m !~ma ,mb!,

g~m !~ma ,mb!5g~1 !~ma ,mb!

1E
0

1
dm gS~m ;ma!g~1 !~m ,mb!, (260)

B~ma ,Q !5
1

g~m !~ma ,ma! H g~1 !~ma ,ma ;Q !

2
ma

2
1E

0

1
dmE

2p

p df

2p

3g~1 !S m

11iQlA12m2 cos f
,ma ;Q D

3g~m ,f ;ma ,Q !J , (261)

respectively. The subtracted term in B(Q) comes from
single scattering, which does not contribute to enhanced
backscatter.

Equations (250), (254), and (255) can be solved nu-
merically. In many cases only a few iterations are
needed. For m close to unity the leading corrections for
t0 and t1(m) are given by the first term in the equation
for the g’s.

Explicit results can be obtained in the limit of large
index mismatch (Nieuwenhuizen and Luck, 1993). The
point is that for R(m)51 the integral kernel becomes
(1/2m)g(1)(m ,m8), which has a unit eigenvalue with
right eigenfunction g(m8)51 and left eigenfunction
g(m)52m . For a large index mismatch this eigenvalue
will bring the leading effects. The results will be dis-
cussed in the next section.
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E. Exact solution for very anisotropic scattering

As discussed in Sec. III the main effect of anisotropic
scattering is that the scattering mean free path l51/ns is
replaced by the transport mean free path l tr5l/(1
2^cos Q&)5lttr . As a result, the injection depth decom-
poses as z05t0l tr ; likewise the opening angle of the
backscatter cone is proportional to 1/l tr .

For anisotropic scattering the transport equation can-
not be solved exactly in general. Several special cases
were discussed by Van de Hulst (1980). He found that in
the absence of index mismatch the effects of anisotropy
are typically not very large. Amic et al. (1996) showed
that the limit of strongly forward scattering can be
solved exactly. This extremely anisotropic case is ex-
pected to set bounds for more realistic anisotropic scat-
tering kernels. The approach of Amic et al. (1996) goes
along the lines of previous sections. However, certain
constants occurring there are replaced by functions of an
angle, which are only partly known. For details of the
lengthy derivation we refer the reader to the original
paper. The main results are presented in Table II, com-
pared with the case of isotropic scattering.

We can compare the universal results in the very an-
isotropic scattering regime, for some of the quantities
listed in Table II, with the outcomes of numerical ap-
proaches. Van de Hulst (1980) has investigated the de-
pendence of various quantities on anisotropy for several
commonly used phenomenological phase functions, in-
cluding the Henyey-Greenstein phase function

p~U!5
12g2

~122g cos U1g2!3/2 . (262)

The data on the skin layer thickness show that, as a
function of anisotropy, t0 varies from 0.7104 (isotropic
scattering) to 0.7150 (moderate anisotropy), passing a
minimum of 0.7092 (weak anisotropy); see Van de Hulst
(1980). The trend shown by these data suggests that the
universal value 0.718211 is actually an absolute upper
bound for t0 . Numerical data concerning t1(1) are also
available. Van de Hulst (1997) has extrapolated two se-
ries of data concerning the Henyey-Greenstein phase
function, which admit a common limit for very aniso-
tropic scattering (g→1). This limit reads in our notation
t1(1)/451.284 645, whereas Van de Hulst (1997) gives
the two slightly different estimates 1.27360.002 and
1.27460.007. The agreement is satisfactory, although
one cannot entirely exclude the possibility that the ob-
served 0.8% relative difference is a small but genuine
nonuniversality effect. Indeed, the Henyey-Greenstein
phase function might belong to another universality
class that is inappropriate for the approach of Amic
et al. (1996). The same remark applies to a less complete
set of data (Van de Hulst, 1997) concerning the intensity
g(1,1) of reflected light at normal incidence.

In the presence of index mismatch the very aniso-
tropic scattering limit can be solved exactly along the
same lines as for isotropic scattering. The formalism be-
comes very cumbersome, however. In the limit of a large
index mismatch the leading behaviors are expected to be
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TABLE II. Anisotropic vs isotropic scattering. t0l tr is the thickness of a skin layer; t1(1) and g(1,1) yield the transmitted and
reflected intensities, respectively, in the normal direction; B(0) is the peak value of the enhancement factor at the top of the
backscatterer cone; t trDQ5k1l trDu is the dimensionless width of this backscatter cone. The third row gives the relative difference
in the two cases.

t0 t1(1) g(1,1) B(0) t trDQ

Isotropic (t tr51) 0.710 446 5.036 475 4.227 681 1.881 732 1/2
Very anisotropic (t tr@1) 0.718 211 5.138 580 4.889 703 2 0.555 543
Difference (%) 1.1 2.0 15.7 6.3 11.1
the same as for isotropic scattering. The reason is that a
large mismatch implies that the radiation that has en-
tered the scattering medium will often be reflected inter-
nally before it can exit the medium. Therefore it under-
goes many scatterings, so it loses the nature (anisotropic
or not) of the individual events. This was verified explic-
itly by Amic et al. (1996).

XI. LARGE INDEX MISMATCH

We have seen that the occurrence of internal reflec-
tions complicates the solution of the Schwarzschild-
Milne equation. Yet in the limit of a large index mis-
match the boundaries will act as good mirrors. They
reinject the radiation so often that it is also diffusive
close to the boundaries. It turns out that, to leading or-
der, the radiative transfer problem is greatly simplified.

Following Nieuwenhuizen and Luck (1993) we con-
sider the Schwarzschild-Milne equation in the regime of
large index mismatch (m→0, or m→`). In both cases
the reflection coefficient R(m) is close to unity and the
effect of T(m)512R(m) is small. We can thus expand
in powers of T. We first consider the Green’s function of
the Schwarzschild-Milne equation, Eq. (178), and write
the kernel as

M~t ,t8!5MB~t2t8!1ML~t1t8! (263)

5MB~t2t8!1MB~t1t8!2N~t1t8! (264)

N~t1t8!5E
0

1 dm

2m
e2~t1t8!/mT~m!, (265)

where N is of order *dm T(m)!1. This allows an expan-
sion of Eq. (178) in powers of N. If N50 (which hap-
pens for m→0 or m→`), the kernel M has unit eigen-
value, and Eq. (178) has eigenfunction GS(t)5CS
5const., showing that for a medium with perfect mirrors
the intensity inside is independent of the conditions out-
side. For small N the value of CS will depend sensitively
on N. Let us write the Green’s function for N!1 as

GS~t ,t8!5CS1G0~t ,t8!1G1~t ,t8!,

CS@1, G0'1, G1!1. (266)

We insert this in Eq. (178):
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CS1G01G15d~t2t8!1CS1E
0

`

dt9$MB~t2t9!

1MB~t1t9!%~G01G1!

2E
0

`

dt9N~t1t9!~CS1G01G1!.

(267)

Comparing terms of equal order yields

CS5CS , (268)

G0~t ,t8!5d~t2t8!1E
0

`

dt9$MB~t2t9!1MB~t1t9!%

3G0~t9,t8!2CSE
0

`

dt9N~t1t9!, (269)

G1~t ,t8!5E
0

`

dt9$MB~t2t9!1MB~t1t9!%

3G1~t9,t8!2E
0

`

dt9N~t1t9!G0~t9,t8!,

(270)

where we have neglected terms of order NG1;T 2. In-
tegrating these results over t yields an expression for CS
and a compatibility condition to ensure that G0 has a
unique solution:

CS5H E
0

`E
0

`

dt dt9N~t1t9!J 21

, (271)

E
0

`

dt dt9N~t1t9!G0~t9,t8!50 for all t8. (272)

We can simplify the expression for CS by introducing
the angle-averaged flux-transmission coefficient T:

CS5H E
0

`E
0

`

dt dt9E
0

1 dm

2m
e2~t1t9!/mT~m!J 21

52H E
0

1
m dm T~m!J 21

[
4
T , (273)

where

T[2E
0

1
m dm T~m!52E

0

p/2
cos u sin u du T~cos u!.

(274)
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Note that m5cos u stands for the projection factor of
flux in the z direction. The expression for T can be
worked out explicitly using

T~m!5
4mAm2211m22

~m1Am2211m22!2
. (275)

For m,1 we introduce e25m2221,

T52E
0

1
m dm

4mAm21e2

~m1Am21e2!2
. (276)

When we substitute f5sinh21(m/e) this becomes

T58e2E
0

f1

df
sinh2 f cosh2 f

e2f (277)

52e2E
0

f1

df sinh2 2fe22f

5
e2

2 E
0

f1

df@e2f22e22f1e26f# (278)

5
e2

2 H e2f1

2
1e22f12

e26f1

6
2

4
3J . (279)

Using

sinh f15
1

e
5

m

A12m2
, cosh f15

1

A12m2
, (280)

we find exp(2f1)5(11m)/(12m). This yields

T5
4m~m12 !

3~m11 !2 ~m<1 !. (281)

The leading behavior for m→0 could have been found
more quickly by taking the leading behavior of the nu-
merator and denominator of Eq. (276),

T'2E
0

1
m dm

4me

e2 5
8
3

m ~m→0 !. (282)

Now we do the same for m.1. We must not forget
the Brewster angle: for m,A12m22 there occurs total
reflection. We now introduce e2512m22 and carry out
the integration from e to 1:

T58E
e

1
m2dm

Am22e2

~m1Am22e2!2
(283)

5
4~2m11 !

3m2~11m !2 ~m>1 !. (284)

The leading behavior for large m could again have been
found by keeping leading terms:

T'
8

3m3 ~m→`!. (285)

Further we notice that T51 for m51, as it should be.
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A. Diffuse reflected intensity

We can now derive simply the leading behavior of the
generalized bistatic coefficient:

g~ma ,mb!5E
0

`

dt dt8GS~t ,t8!e2t/mbe2t8/ma (286)

5E
0

`

dt dt8CSe2t/mbe2t8/ma1O~T 0! (287)

5
4mamb

T 1O~T 0!. (288)

We can use this to find an approximation for the re-
flected intensity AR(ua ,ub) in the case m@1,

AR5
cos ua

4pm2

TaTb

mamb
g~ma ,mb!. (289)

When m@1, T(m)'4m/m (since u cannot exceed the
Brewster angle, which is small at large m), implying

AR5
cos ua

4pm2

4 cos ua

m

4 cos ub

m

4
T

'
6

pm
cos2 ua cos ub . (290)

B. Limit intensity and injection depth

The limit intensity t1(m) of a semi-infinite space can
also be calculated. From Eq. (182) it follows that

t1~m!5E
0

`

dt8GS~` ,t8!e2t8/m (291)

5
1
D E

0

`

dt8GH~t8!e2t8/m (292)

5 lim
mb→`

g~m ,mb!

mb
(293)

5
4m

T . (294)

The injection depth z05t0l can also be calculated. If we
take the (diffusion) approximation GH5t01t't0 and
insert it in the above equality we find

t1~m!5
t0

D
m5

4m

T , (295)

t0'
4

3T . (296)

Just as in the calculation of GS we can write the ho-
mogeneous solution GH as the sum of three parts:

GH~t!5
4

3T1G0~t!1G1~t!, (297)

G0~t!5O~1 !, G1~t!5O~T!. (298)

We further require that G0 behave as t1t00 for t→` .
The constant t00 is a O(1) correction to t0 . For m→`
we can use definition Eq. (265) and m'1, since the
Brewster angle is small:
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N~t1t8!5E
0

1 dm

2m
e2~t1t9!/mT~m!'

T
4

e2~t1t8!.

(299)

Inserting this in the equation for GH and comparing
terms up to order T 2, we obtain

G052e2t1E
0

`

dt8@MB~t2t8!1MB~t1t8!#G0 , (300)

while the equation for G1 yields the compatibility rela-
tion

E
0

`

dt e2tG0~t!50. (301)
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These equations cannot be solved analytically. Numeri-
cal analysis yields t00521.0357 (Nieuwenhuizen and
Luck, 1993), implying

t0
exact5

4
3T21.03571O~T ! ~m→`!. (302)

In the limit m→0 the transmission coefficient is uni-
formly small, T(m)'3Tm/2. Therefore the term of Eq.
(178) arising from the kernel N, defined in Eq. (265),
becomes equal to
2
3
2
TE

0

`

dt9E
0

1 dm

2m
e2~t1t9!/mm

4
T523E

0

1
m dm e2t/mE

0

1
dm8m8E

0

`

dt e2t/m8J0~t ,m8!

50⇒E
0

1
dm mE

0

`

dt e2t/mG0~t!. (303)
The diffusive shape t1t00 is the exact solution of this
equation, with t00523/4. This leads to

t0
exact5

4
3T2

3
4

1O~T ! ~m→0 !. (304)

In Fig. 11 numerical values of t1(1), g(1,1), and 3t0
have been plotted as a function of m. The solid line is
4/T, while the dashed line is Eqs. (302)1(304). Notice
that these asymptotic expressions work quite well up to
m51.

C. Comparison with the improved diffusion approximation

We can compare the exact results for t0 with the im-
proved diffusion approximation of Sec. III C. For m
→` we can approximate C1 and C2 [see Eq. (68)] as

C15
1
3

~12T!, C2'
1
3

2E
0

1
m dm T~m!5

1
3

2
1
2
T.

(305)

From Eq. (69) it follows that

t0
diff'

4
3T21, (306)

which is very close to the exact value in Eq. (302). No-
tice that the same result follows when one inserts the
diffusion approximation G0(t)5t1t00 (for all t) in Eq.
(301).

For m→0, deviations from the diffusion approxima-
tion show up only to second order in T,

t0
diff5t0

exact5
4

3T2
3
4

1O~T ! ~m→0 !. (307)
To find correction terms in powers of T is essentially as
complicated as solving the Milne equation at finite m.
For m51 (no internal reflections), the exact value is
known: t0

exact50.710 44. This can be compared with the
result for the diffusion approximation found in Sec.
III.C,

t0
exact50.710 44, (308)

t0
diff5

2
3

50.666 666. (309)

D. Backscatter cone

We now determine the shape of the backscatter cone
in the presence of strong internal reflections, in the re-
gime m@1. We have to solve

GC~Q ,t!5e2t1E
0

`

dt8@MB~Q ,t2t8!

1MB~Q ,t1t8!#GC~Q ,t8!

2E
0

`

dt8N~Q ,t1t8!GC~Q ,t8!. (310)

For small Q the solution will have the form

GC~Q ,t!'gC~Q !e2Qt. (311)

Integrating Eq. (310) over t, using for the bulk kernel
MB an eigenvalue 12 1

3 Q2, and neglecting the Q depen-
dence of N, we find
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0511E
0

`

dt dt8@MB~Q ,t2t8!2MB~0,t2t8!1MB~Q ,t1t8!2MB~0,t1t8!#gC~Q !e2Qt8 (312)

2E
0

`

dt dt8N~0,t1t8!gC~Q !e2Qt (313)

511E
0

`

dt@21112 1
3 Q2#gC~Q !e2Qt2

T
4

gC~Q !, (314)
yielding

gC~Q !5
4

T1 4
3 Q

5
4
T

1
11Qt0

5
3

Q11/t0
. (315)

In passing, we have recovered the triangular shape of
the backscatter cone.

Recently the width of the backscatter cone has been
determined experimentally (Den Outer and Lagendijk,
1993). The index ratio m was varied using several types
of glass containers. The measurements were compared
with the theories of Lagendijk et al. (1989), of Zhu et al.
(1991), and of Nieuwenhuizen and Luck (1993). The first
two results have already been discussed in Sec. III.C.
The experiments confirmed the theories of Zhu et al.
(1991) and of Nieuwenhuizen and Luck (1993).

At first sight it may look strange that an experiment
with light (vector waves) can be described by a scalar
theory. Nieuwenhuizen and Luck (1993) pointed out,
however, that for large m only diffusive aspects survive.
More subtle properties, such as anisotropic scattering
and the vector character lead to subdominant effects.
The latter was verified explicitly by Amic et al. (1997),
indicating why the experiments of den Outer and La-
gendijk (1993) are described so well by scalar theories.

FIG. 11. Comparison of exact values and diffusion approxima-
tion for t1(1), g(1,1), and 3t0 : solid line, 4/T; dashed line, Eqs.
(302)1(304). Even for m close to unity the asymptotic results
are quite good.
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XII. SEMIBALLISTIC TRANSPORT

Wave propagation through waveguides, quantum
wires, films, and double-barrier structures with a modest
amount of disorder can be considered within the same
approach. The so-called semiballistic regime occurs
when in the transverse direction(s) there is almost no
scattering, while in the long direction(s) there is so much
scattering that the transport is diffusive. Various appli-
cations were noted by Nieuwenhuizen (1993) and dis-
cussed in detail by Mosk, Nieuwenhuizen, and Barnes
(1996). The scattering was considered both in the
second-order Born approximation and beyond that ap-
proximation. In the latter case it was found that attrac-
tive point scatterers in a cavity always have geometric
resonances, even for Schrödinger wave scattering.

In the limit of long samples, the transport equation
has been solved analytically including geometries such
as waveguides, films, and tunneling geometries (for ex-
ample, Fabry-Pérot interferometers and double-barrier
quantum wells). The agreement with numerical data and
with experiments is quite satisfactory. In particular, the
analysis proved that the large, gate-voltage-independent
resonance width of GaAs double-barrier systems, ob-
served by Guéret, Rossel, Marclay, and Meier (1989)
can be traced back to scattering from the intrinsically
rough GaAs-AlGaAs interfaces.

In the analysis of these systems, the Schwarzschild-
Milne equation is decomposed on the cavity modes, thus
becoming an evolution equation in the z direction for a
matrix. The very same ideas as explained above are used
in the solution. Due to the complication of the formal-
ism we shall not present details here. We refer the
reader to the original works and the references therein.

XIII. IMAGING OF OBJECTS IMMERSED
IN OPAQUE MEDIA

A field of much current interest is the imaging of ob-
jects immersed in diffuse media for the purpose of medi-
cal imaging. The advantage of imaging with diffuse light
is that it is noninvasive and, in contrast to conventional
x-ray tomography, it does not cause radiation damage.
One application is the detection of breast cancer, an-
other the location of brain regions damaged by stroke (a
lot of blood, hence more absorption) or affected by Par-
kinson’s disease (less-than-average blood level, hence
greater transparency). In these cases one can shine light
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at many locations, and measure the scattered light at
many exit points. This information can in principle be
used to determine the structure of the scattering me-
dium and to detect possibly abnormal behavior. It is
therefore important to know the scattering properties of
idealized objects hidden in opaque media. We shall dis-
cuss here some instructive cases.

For light waves human tissue is a multiple-scattering
medium like those discussed so far, yet the absorption
length is short, typically a few tenths of a millimeter.
The diffuse transmission through tissue must already
have been noticed by our ancestors when they held their
hands in front of a candle. On distances much larger
than the mean free path, light transport is diffusive and
is therefore governed by the Laplace equation. This ob-
servation facilitates an analogy with electrostatics: an
object deep inside an opaque medium is analogous to a
charge configuration at large distance. It is well known
that the latter can be expressed in terms of its charge
and dipole moment, while higher multipole moments
are often negligible. A similar situation occurs in an
opaque medium: small objects far from the surface can
be described adequately by their charge (which vanishes
if there is no absorption) and their dipole moment
(which describes to leading order scattering from the
object). At large distances the effect of, for instance, a
charge will depend on the geometry of the system. As in
electrostatics, mirror charges and mirror dipoles can be
used in simple geometries. However, solving the bound-
ary problem of complicated geometries like a human
head is a hard problem. Close to the object, say, within a
few mean free paths, the full radiative transfer is
needed, making the problem more complicated than dif-
fusion theory.

Den Outer, Nieuwenhuizen, and Lagendijk (1993)
studied the diffuse image of an object embedded in a
homogeneous turbid medium and found that it is well
described by the diffusion approximation. This frame-
work leads to a prediction of the diffuse image of the
object, i.e., the profile of diffuse intensity transmitted
through a thick slab near the embedded object. The
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
shapes of the predicted profiles are universal, since they
depend only on large distance properties of the problem,
and were convincingly observed experimentally for the
case of a pencil (absorbing cylinder) and a glass fiber
(transparent cylinder). Further results on imaging of ob-
jects within the framework of the diffusion approxima-
tion can be found in Schotland, Haselgrove, and Leigh
(1993), Feng, Zeng, and Chance (1995), Zhu, Wei, Feng,
and Chance (1996), and Paasschens and ’t Hooft (1998).

A. Spheres

In the diffusion approximation the problem is
straightforward. Close to the object (though still many
mean free paths away) the intensity can be written as

I~r!5I0~r!1dI~r!, (316)

where I0(r) is the intensity profile in the absence of the
object. Luck and Nieuwenhuizen (1998) have introduced
the following notation for the disturbance of the inten-
sity:

dI~r!5~q1p•¹!
1

ur2r0u
5

q

ur2r0u
2p•

r2r0

ur2r0u3 .

(317)

Here q is called the ‘‘charge’’ and p the ‘‘dipole mo-
ment’’ of the object. The linearity of the problem and
the isotropy of the spherical defect imply that the charge
q is proportional to the local intensity I0(r0) in the ab-
sence of the object, while the dipole moment p is pro-
portional to its gradient. We therefore set

q52QI0~r0!, p52P¹I0~r0!, (318)

where Q is called the capacitance of the spherical object,
and P its polarizability. These two parameters are intrin-
sic characteristics of the object. The capacitance Q is
nonzero (and positive) only if the sphere is absorbing.

For plane-wave incidence on a slab geometry one has
the familiar expression I0(r)5(L2z)I0 /L . A double
set of mirror charges is needed to make I2(L
2z)I0 /L vanish at z50 and z5L for all r:
I5
L2z

L
I01q (

n52`

` H 1

@~z2z012nL !21~r2r0!2#1/22
1

@~z1z012nL !21~r2r0!2#1/2J (319)

2p (
n52`

` H z2z012nL

@~z2z012nL !21~r2r0!2#3/2 1
z1z012nL

@~z1z012nL !21~r2r0!2#3/2J . (320)

The intensity T(x ,y) transmitted through the sample and emitted on the right side (z5L), at the point r5(x ,y), is
proportional to the normal derivative of the diffuse intensity at that point:

T~x ,y !52Kl
]I~x ,y ,z !

]z U
z5L

. (321)

When there is no embedded object, the transmission is uniform T05KI0l/L . In the presence of an object one finds
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T~r!5T0S 122Q~L2z0! (
n52`

1` L2z012nL

@~L2z012nL !21~r2r0!2#3/2 22P (
n52`

1` 2~L2z012nL !22~r2r0!2

@~L2z012nL !21~r2r0!2#5/2D .

(322)
The information on the type of scatterer is coded in its
capacitance Q and polarizability P. In experiments on
pencils and fibers, 22d analogs of these profiles have
been clearly observed (Den Outer et al., 1993). In the
same fashion the reflected intensity can be estimated by
taking the derivative in Eq. (321) at z50. The rest of
this section is devoted to determining Q and P in ideal-
ized situations. This amounts to solving the scattering
problem with the radiative transfer equation in the pres-
ence of an object placed at r0 .

For large objects the diffusion theory can be used,
which simplifies the problem. Following Den Outer et al.
(1993) we consider a macroscopic object of radius R,
having diffusion coefficient D2 and inverse absorption
length k, while the medium is nonabsorbing and has dif-
fusion coefficient D1 . At the boundary of the object one
has

Iout~R1!5I in~R2!, (323)
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D1

]Iout

]n U
R1

5D2

]I in

]n U
R2

. (324)

Near the object one has

I in5A sinhc~kr !2
3B

k2r
@sinhc~kr !

2cosh~kr !#
z2z0

r
, (325)

where sinhc(x)[sinh(x)/x. Matching the solutions gives

Q5R
D2~cosh kR2sinhc kR !

D1 sinhc kR1D2~cosh kR2sinhc kR !
.

(326)

For a totally absorbing sphere (k→`) the result Q5R
follows immediately by requiring in Eq. (316) that
I(R)50. The polarizability reads
P5R3
D1~sinhc kR2cosh kR !2D2~2 cosh kR22 sinhc kR2kR sinh kR !

2D1~sinhc kR2cosh kR !1D2~2 cosh kR22sinhc kR2kR sinh kR !
. (327)
In the absence of absorption this reduces to

Q50, P5R3
D12D2

2D11D2
. (328)

Lancaster and Nieuwenhuizen (1998) consider the
limit of small objects: a point scatterer with scattering
cross section ssc extinction cross section sex and albedo
ae5ssc /sex. If diffuse intensity hits the scatterer once,
but does not return to it, Q and P read

Q15
3

4p

sabs

l
, P15

1
4p

sexl , (329)

where sabs5sex2ssc. The intensity can also return an
arbitrary number of times to the scatterer. For point
scatterers this boils down to a geometric series expan-
sion for Q and P,

Q5
Q1

11Q1B1
, P5

P1

11P1B2
, (330)

where B1 and B2 are integrals describing the propaga-
tion of the diffuse intensity through the medium and the
effect of hitting the scatterer another time. These inte-
grals are actually divergent in the limit kl→` , which
introduces extra internal parameters of the point scat-
terer.

In contrast to extended objects, for point scatterers
the maximally crossed diagrams also contribute. The
reason is that the exit and return points coincide, so
there is no dephasing. The analysis finally yields

Q5
Q1

11Q1~2B12B1
~1 !!

,

P5
P1

11P1~2B22B2
~1 !!

, (331)

which retains the structure of Eq. (330). Note that there
is an additional factor 2, except for the diagrams with
one intermediate common scatterer, an effect that is ac-
counted for by subtracting B1,2

(1) . This is very similar to
the fact that the single-scatterer diagram does not con-
tribute to the enhanced backscatter cone; see Eq. (209).
Lancaster and Nieuwenhuizen (1998) also considered
more realistic situations in an approach involving a
partial-wave expansion.

For extended objects it is a highly nontrivial task to go
beyond the diffusion approximation. Luck and Nieu-
wenhuizen (1998) considered the application of the ra-
diative transfer equation to such cases, for which one
has to solve the analog of the scattering problem of
quantum mechanics. This is generally a hard and still
unsolved problem. However, there are three cases in
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TABLE III. Capacitance Q and polarizability P of small and large spheres and cylinders immersed in
an opaque medium. In column for large radius the diffusion approximation is given by the term
outside the brackets. For narrow and wide cylinders the effective radius and the polarizability are
presented.

Object
Small-radius behavior

(R!l)
Large-radius behavior

(R@l)

Absorbing sphere Q'
3R2

4l
Q'RS12

t0l

R D, t0'0.710 446

Transparent sphere P'2
R3

3 S 11
3R

4l D P'2R3S 12
3t01l

R D , t01'0.4675

Reflecting sphere P'
R2l

4
P'

R3

2 S 11
6l2

5R2D
Absorbing cylinder Reff'al SRl D

16/3p2

e24l/3R,

a'1.20

Reff'RS12
t0l

R D, t0'0.710 446

Transparent cylinder P'2
R2

2 S 11
R

l D P'2R2S 12
2t01l

R D , t01'0.2137

Reflecting cylinder P'
3Rl

8
P'R2S 11

4l2

5R2D
which the inside of the scatterer plays a trivial role: a
totally absorbing (black) object (having k5`), a trans-
parent, nonabsorbing object (having k50, D25`), and
a totally reflecting, nonabsorbing object (having k5D2
50). For spheres and cylinders of these types, the scat-
tering problem can be reduced to an integral equation in
one variable, which is solved exactly in the limits of
small and large objects. In the latter case the results of
diffusion theory are recovered, and the first-order cor-
rections to diffusion theory are found; see Table III and
Figs. 12 and 13. The same approach can be extended, in
principle, to more general cases.

B. Cylinders

The use of the radiative transfer approach can be ex-
tended to other objects (Luck and Nieuwenhuizen,
1998). Consider a cylinder with radius R with its axis
parallel to the x axis. Assume the sample is infinitely
long in the x direction, so that both I0(r) and the distur-
bance dI(r) depend only on the two-dimensional per-
pendicular component r'5(y ,z). Equation (317) is re-
placed by

dI~r'!5~q1p•¹!ln
R̃

ur2r0u
5q ln

R̃

ur2r0u

2
p•~r'2r0,'!

ur2r0u2 . (332)

The length scale R̃ , called for by dimensional analysis, is
determined by conditions at the boundaries of the
sample, so that it is in general proportional to the
sample size. This sensitivity of dI(r) to global properties
of the sample arises because the logarithmic potential of
a point charge in two-dimensional electrostatics is diver-
., Vol. 71, No. 1, January 1999
gent at long distances. As a consequence, the capaci-
tance Q is not intrinsic to the cylinder. An intrinsic
quantity is its effective radius Reff , defined by the condi-
tion that the cylindrically symmetric part of the total
intensity, including the charge term, vanish at a distance
r5Reff from the axis of the cylinder. We thus have
I0(r0)1q ln(R̃/Reff)50, hence, with q52I(r0)Q ,

Q5
1

ln~R̃/Reff!
. (333)

We observe that Reff and R̃ have the dimension of a
length, while the polarizability P has the dimension of
an area. As a consequence, the orders of magnitude
Reff;R and P;R2 can be expected for a cylinder of
radius R. For the same physical situations as above,
more accurate predictions can be found in Table III. For
a cylinder in a slab geometry the transmitted intensity
T(y) finally reads in terms of Q and P

T~y !5T0F12QpS 12
z0

L D sin~pz0 /L !

cos~pz0 /L !1cosh~py/L !

2P
p2

L2

11cos~pz0 /L !cosh~py/L !

@cos~pz0 /L !1cosh~py/L !#2G , (334)

where

R̃5
2L

p
sin

pz0

L
(335)

is indeed of order L, but also depends nontrivially on
the aspect ratio z0 /L . These shapes have been observed
in the experiments of Den Outer et al. (1993).
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XIV. INTERFERENCE OF DIFFUSIONS: HIKAMI VERTICES

So far our discussion has focused on the intensity as-
pects of wave transport. We now consider interference
effects, which are due to the inherent wave nature of the
problem. First we have to introduce the concept of in-
terference vertices. These vertices describe the interac-
tion between diffusions. The vertices are named after
Hikami, who used them in 1981 (Hikami, 1981) for the
calculation of weak-localization corrections to the con-
ductance. Their original introduction dates back two
years earlier to the work of Gor’kov, Larkin, and
Khmel’nitskii (1979). Remember that each diffusion
consists of two amplitudes. The vertices describe the ex-
change of amplitudes between diffusions, which leads to
correlations between the diffusions. It is also possible to
represent these processes using the standard impurity
diagram technique, as described for instance by Abriko-
sov, Gor’kov, and Dzyaloshinski (1963), but the interfer-
ence vertices prove to be more convenient.

A. Calculation of the Hikami four-point vertex

We start with the simplest vertex: the four-point ver-
tex, in which two diffusions interchange an amplitude.
The technique for calculating the vertex by means of
diagrams is well known (Abrikosov et al., 1963): First,
draw the diagrams; second, write down a momentum for
each line and use momentum conservation at each ver-
tex; and finally, integrate over the free momenta. The
first step, writing down all leading diagrams, requires
some care. In Fig. 14 we have drawn the diagrams in the
Hikami box to second-order Born approximation. It is
important to include all leading diagrams, as there will
be a cancellation of leading terms. These cancellations
are imposed by energy conservation. In the second-
order Born approximation one neglects scattering more
than twice from the same scatterer; the (dashed) inter-
action line indicates that the propagators scatter once on
the same scatterer. Scattering processes involving just

FIG. 12. Plot of the size factor Q/Qdiff of the capacitance of an
absorbing sphere vs the ratio R/l ; solid line, outcome of the
numerical analysis; dashed lines, small-radius and large-radius
behaviors of Table III.
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one propagator have already been included, as the
propagators are dressed. We have not drawn all dia-
grams, as one can imagine. First, the box is attached to a
diffusion ending with a scatterer (which is consistent
with the way we have defined the diffusions). As a re-
sult, common scatterings between propagators on the
same leg are not allowed in the vertex because they are
already included. Second diagrams with two or more
scatterers and parallel dashed lines are subleading. They
contain loops with two propagators of the same type,
i.e., integrals like *d3pG(p1q)G(p), which turn out to
be of higher order in 1/(k0l). Third, diagrams with two
crossed dashed lines are also subleading. Finally, we
again work in the independent-scatterer approximation.

As an example we calculate the second diagram on
the right-hand side of Fig. 14. As usual in the diffusion
approximation, the diffuse intensity is assumed to be
slowly varying, which allows us to expand the Green’s
functions as

G~p1q,v1 1
2 Dv!

'Fp212p•q1q22
w2

c2 2Dv
v

c22nt G21

'G2S 2p•q1q22Dv
v

c2DG214~p•q!2G3,

(336)

with the shorthand notation G5G(p,v). The momenta,
numbered according to Fig. 14, point towards the vertex.
We number the Green’s functions also according to the
figure. Note that this particular diagram is a product of
two loops. To lowest order in q2 we have

FIG. 13. Plot of the size factor P/Pdiff of the polarizability of a
transparent sphere (lower curves) and a reflecting sphere (up-
per curves): Solid lines, outcome of the numerical analysis;
dashed lines, small-radius and large-radius behaviors of Table
III.
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H4
~b !5nu2E d3p

~2p!3 G1~p1q1 ,v1v1!G3~p2q4 ,v1v3!G4* ~p,v1v4!

3E d3p8

~2p!3 G1~p82q2 ,v1v1!G3~p81q3 ,v1v3!G2* ~p8,v1v2!

5nu2F I2,11
4k2

3
~q2

21q3
22q2•q3!I4,11

k

c
~v11v322v4!I3,1G@I2,11¯# , (337)
where the qi are the momenta of the diffusions, the v i
are the frequency differences of the diffusions, and u is
the scatter potential. The I integrals are given in Appen-
dix A. We take absorption terms into account to lowest
order, i.e., only in the leading contributions, the I2,1
terms. This yields

H4
~b !5

2l3

16pk2 1
l5

48pk2 S 2q2•q32q1•q41( qi
21k2 D

1
2il4

16pk2c
~v11v32v22v4!. (338)

Here we made use of the fact that in second-order Born
approximation nu254p/l .

A similar calculation gives H4
(a) and H4

(c) . Defining
the reduced frequencies of the legs as Ṽ152(v1

2v4)/D , Ṽ252(v12v2)/D , Ṽ352(v32v2)/D , and
Ṽ452(v32v4)/D , we find for the sum of the three
diagrams

H45H4
~a !1H4

~b !1H4
~c !

5
l5

96pk2 F22q1•q322q2•q4

1(
i51

4

~qi
21k i

21iṼ i!GdS ( qi D . (339)

This is the main result of this section. Note that the lead-
ing, constant terms proportional to l3/k2 have canceled,
which is closely related to the current conservation laws
(Kane, Serota, and Lee, 1988).

In Eq. (339) it is important to keep track of the q2

terms. When the vertex is attached to a diffusion, the qj
2

terms together with k and Ṽ yield, according to the dif-
fusion equation, (qj

21k21iṼ j)Lj512p/l3. The constant
factor on the right-hand side corresponds to a delta

FIG. 14. Hikami four-point vertex. It describes the exchange
of amplitudes of two incoming diffusons 1 and 3 into two out-
going diffusons 2 and 4. The dots linked with the dashed line
denote an extra scatterer on which both amplitudes scatter.
The solid lines are dressed amplitude propagators.
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function in real space. If we attach external diffusions to
the Hikami box, this delta function is nonzero at roughly
one mean free path from the surface and its contribution
can be neglected, as its effect is of order l/L . As a result,
the absorption part and the frequency-dependent part
vanish:

H4~q1 ,q2 ,q3 ,q4!52h4~q1•q31q2•q4!dS ( qi D ,

(340)

where we have denoted h45l5/(48pk2). In most calcu-
lations, however, we use a Fourier transform in the z
direction, because in our slab geometry the (qx ,qy ,z)
5(q' ,z) representation is the most convenient. Then
the qz terms become differentiations:

H45
h4

2 F2]z1
]z3

12]z2
]z4

22q'1
•q'3

22q'2
•q'4

1(
i51

4

~2]zi

2 1q' i

2 1k i
21Ṽ i!G . (341)

The differentiations work on the corresponding diffu-
sions and afterwards zi should be set equal to z. For-
mally one has

H4~z ;z1 ,z2 ,z3 ,z4!L1~z1!L2~z2!L3~z3!L4~z4!

5
h4

2
@2]z1

]z3
1¯#L1~z1!L2~z2!L3~z3!L4~z4!uzi5z ,

(342)

but we just write this as H4(z)L1(z)L2(z)L3(z)L4(z).
Note that the vertices yield the spatial derivatives of the
diffusions, that is, their fluxes. This observation is help-
ful in estimating the influence of internal reflections,
which reduce the spatial derivatives of the diffusions.

B. Six-point vertex: H6

We shall also need a second-order diagram for the
six-point vertex H6 . Six diffusions are connected to this
diagram (Fig. 15). This diagram was calculated by
Hikami (1981). Again, the dressings of the diagrams
have to be added to the bare diagrams. Taking rotations
of the depicted diagrams into account, there are 16 dia-
grams in the second-order Born approximation. (It is
not allowed to dress the bare six-point vertex with a
scatterer that connects two opposite propagators. This
dressing gives a leading contribution also, but the result-
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ing diagram is the same as a composed diagram with two
four-point vertices. Therefore it should not be included
here, but it will enter in diagrams with two H4 vertices.)
One finds

H65
2l7

96pk4 Fq1•q21q2•q31q3•q41q4•q51q5•q6

1q6•q11(
i51

6 S qi
21

1
2

k i
21

i

2
Ṽ iD GdS ( qi D .

(343)

Apart from the frequency and absorption terms in-
cluded here, Hikami’s original expression can be derived
from Eq. (343) using momentum conservation.

C. Beyond the second-order Born approximation

Going beyond the second-order Born approximation
in the calculation of the diffusion diagrams meant that in
the diagrams the t matrix replaced the potential u. This
resulted in a replacement of the mean free path: it be-
came l[nt t̄ /4p instead of l[nu2/4p . However, for the
vertices the situation is more subtle. In the previous cal-
culations we worked to second order of the scattering
potential, thus neglecting diagrams with more than two
scatterings on the same scatterer. Including all orders
there are eight diagrams, as in Fig. 16.

The calculation is very similar to that of the second-
order Born approximation above. The only difference is
that instead of u, the t matrices t and t̄ occur (t on G’s, t̄
on G* ’s). After summing the expressions for the eight
diagrams, one finds the same result for the Hikami box
as was found previously in second-order Born approxi-
mation, Eq. (339). However, the definition of the mean
free path is different: l5nt t̄ /4p instead of l5nu2/4p .
We conclude that, although extra diagrams were
present, only the mean free path was renormalized in
extending from second-order Born to the full Born se-
ries. This can also be shown more generally in the non-
linear sigma model (Lerner, 1996). For the six-point ver-
tex it was not checked explicitly whether the second and
full Born approximations give the same result (there are
at least 64 diagrams), but we have no doubt they will.

D. Corrections to the conductivity

In the original works of Gor’kov et al. (1979) and
Hikami (1981), the vertices were introduced to calculate
weak-localization corrections to the conductivity. We

FIG. 15. Six-point vertex H6 , describing the interaction of six
diffusons. We did not draw possible rotations of the three right
diagrams. In total there are sixteen diagrams.
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have already mentioned that the maximally crossed dia-
grams give the largest correction to the conductivity, in-
creasing the return probability of the intensity. In the
Hikami-vertex formalism these diagrams are drawn in
Fig. 17. The correction to the diffusion constant diverges
with the sample size in one and two dimensions. This
divergence indicates the absence of extended states in
one and two dimensions no matter how small the disor-
der. In three dimensions, however, there is a transition
to a localized state at a finite level of disorder. In this
work we do not consider such loop effects. We suppose
that we are far from localization, so that we can restrict
ourselves to the leading processes, and the vertices show
up only in the interaction between different diffusions.

XV. SHORT RANGE, LONG RANGE, AND CONDUCTANCE
CORRELATIONS: C1 , C2 , AND C3

A nice feature of optical mesoscopic systems, as com-
pared to electronic systems, is that they permit separate
measurement of certain parts of the transmission signal.
Depending on whether integration over incoming or
outgoing directions is performed, one measures funda-
mentally different quantities. In electronic systems one
usually measures the conductance of the sample. This is
done by connecting incoming and outgoing sides to a
clean electron ‘‘bath.’’ All electrons are collected and all
angular dependence is lost. In contrast, in optical sys-
tems one usually measures the angular resolved trans-
mission, but angular integration is possible. The correla-
tion functions of the different transmission quantities,
their magnitudes, their decay rates, and the underlying
diagrams are all very different.

In this section we shall discuss correlation functions
for all three transmission quantities. See also the review
by Berkovits and Feng (1994) for the physical meaning
of the correlations. We try to provide all quantitative
factors relevant for an experiment. In later sections the
same approach will be extended to higher-order corre-
lations.

FIG. 16. Four-point vertex, beyond the second-order Born ap-
proximation. Instead of three, there are now eight diagrams to
be calculated. The resulting expression, however, is apart from
a renormalization of the mean free path the same as in the
second-order Born approximation.
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A. Angle-resolved transmission: the speckle pattern

If a monochromatic plane wave shines through a dis-
ordered sample, one sees large-intensity fluctuations in
the transmitted beam, so-called ‘‘speckles.’’ The speckle
pattern is wildly fluctuating (as a function of the fre-
quency of the light or the outgoing angle). The typical
diameter of a speckle spot on the outgoing surface is l.
We are interested in the correlation between speckle
patterns of two different beams. The beams may have
different incoming angles, different frequencies, or dif-
ferent positions.

We denote the transmission from the incoming chan-
nel a (wave coming in under angles ua , fa) to the out-
going channel b (waves transmitted into angles ub , fb)
as Tab . There are short-, long-, and ‘‘infinite’’-range
contributions to the correlation function of the speckles.
The frequency correlation functions can be classified as

^Tab~v!Tcd~v1Dv!&

^Tab~v!&^Tcd~v1Dv!&
511C1

abcd~Dv!

1C2
abcd~Dv!

1C3
abcd~Dv!. (344)

Feng, Kane, Lee, and Stone (1988) originally put this
expression forward as an expansion in 1/g , where C1
was of order one, C2 of order 1/g , and C3 of order 1/g2.
We return to this expansion below. We present a
sketchy picture of the diagrams of the different correla-
tions in Fig. 18. The largest contributions to transport
are from the independent diffusions, yet correlations are
present, mixing diffusions with different frequencies or
angles.

The unit contribution in Eq. (344) comes from the
uncorrelated product of average intensities. The C1 term
in the correlation function is the leading correlation if
the angle-resolved transmission Tab is measured. It is
unity if the two incoming directions a and c are the
same, the outgoing directions b and d are the same, and
Dv is zero. If one changes the frequency of the incoming
beam, the speckles of the outgoing beam deform and
eventually the correlation vanishes exponentially. This
effect is the short-ranged C1 contribution. Also of inter-
est is the case of the angular C1 correlation with the
frequency fixed: If the angle of the incoming beam is
changed, the speckles change due to two effects. First,
the speckle follows the incoming beam. This is also

FIG. 17. First-order correction to the conductivity in the
Hikami formalism. At the right we have written out the verti-
ces in the second-order Born approximation. On the second
line the first diagram in the right-hand side of the upper line is
drawn in a different way, showing it is a loop effect.
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
known as the memory effect, which one can even see by
the naked eye. Second, the speckle pattern also deforms,
i.e., it decorrelates; this is again the C1 correlation. The
C1 correlation is a sharply peaked function, nonzero
only if the angle of the incoming and outgoing channel
are changed by the same amount. Diagrammatically, the
C1 factorizes in two disconnected diagrams; see Fig. 18.

Theoretical studies of C1 were first done by Shapiro
(1986). Experimental work on C1 as a function of angle,
explicitly showing the memory effect, was done by Fre-
und, Rosenbluh, and Feng (1988). Van Albada, De
Boer, and Lagendijk (1990) studied the frequency de-
pendence of C1 . Later, the effects of absorption and,
especially, internal reflection were studied (Freund and
Berkovits, 1990; Van Rossum and Nieuwenhuizen,
1993).

B. Total transmission correlation: C2

The C2 correlation stands for the long-range correla-
tions in the speckle pattern. Consider again a single-
direction-in/single-direction-out experiment. Again the
two incoming angles are the same (a5c), yet this time
we look at the cross correlation of two speckles far
apart. As there is an angle difference in the outgoing
channel, but not in the incoming beam, the C1 term is
now absent. Instead there is a much weaker correlation.
As the frequency shifts, this correlation decays algebra-
ically. This is the C2 contribution. It describes correla-
tions between speckles that are far apart. In a single-
channel-in/single-channel-out experiment it is only
possible to see the weak effects of these higher-order
correlations in very strongly scattering media, i.e., if the
system is rather close to Anderson localization. This
type of experiment was done by Genack and Garcia

FIG. 18. Schematic picture of the different correlation func-
tions present in the transmission of two intensities. The arrows
distinguish between advanced and retarded propagators.
Propagators with equal transverse momentum or frequency
have the same style of line (dashed or solid). The hatched box
contains in principle all contributions to ^TabTcd&. The main
part just factorizes, but correlations are present. The C1 corre-
lation involves a simple interchange of amplitudes. The C2 and
C3 correlation involve a Hikami box (circled H); they are a
perturbative effect for weak scattering.
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(1993). The C2 term can be measured more easily in a
setup using one incoming channel and integrating over
all outgoing channels. In an experiment the outgoing
light is collected with an integrating sphere. Therefore
one measures the total transmission Ta5SbTab . In this
setup the C2 correlation function, which has a much
smaller peak value but is long ranged, contributes for all
outgoing angles. The C2 term is now the leading corre-
lation as the sharply peaked C1 term is overwhelmed. A
precise estimate of the C1 contribution in C2 was made
by Van Rossum, De Boer, and Nieuwenhuizen (1995).
Only outgoing diffusions with no transverse momentum
and no frequency difference in their amplitudes are
leading in the total transmission, as then the phases of
the outgoing amplitudes cancel. From Fig. 18 one sees
indeed that it holds for the C2 diagram (outgoing lines
of similar style pair), but not for the C1 diagram. The
long-range character of the C2 arises due to interference
of the diffuse light paths. It is of order g21 and corre-
sponds to a diagram in which the two incoming diffu-
sions interact through a Hikami vertex, where the diffu-
sions exchange amplitudes.

The long-range C2 correlation function was first stud-
ied by Stephen and Cwilich (1987). Zyuzin and Spivak
(1987) introduced a Langevin approach to simplify the
calculation of correlation functions. Pnini and Shapiro
(1989) applied this method to calculate the correlation
functions of light transmitted through and reflected from
disordered samples. The C2 correlation functions were
measured in several experiments. For optical systems
Van Albada et al. performed measurements (Van Al-
bada et al., 1990; De Boer, Van Albada, and Lagendijk,
1992). Microwave experiments were performed by Gen-
ack, Garcia, and Polkosnik (1990) and Garcia, Genack,
Pnini, and Shapiro (1993). In several papers effects of
absorption and internal reflections were studied; see
Pnini and Shapiro (1991), Lisyansky and Livdan (1992),
Zhu et al. (1991), and Van Rossum and Nieuwenhuizen
(1993). It was shown that absorption and internal reflec-
tion, neglected in the earliest calculations, significantly
reduce the correlations.

C. Conductance correlation: C3

Finally, the C3 term in Eq. (344) is dominant when the
incoming beam is diffuse and one collects all outgoing
light. Experimentally one can do this using two integrat-
ing spheres. Then one measures, just as in electronic
systems, the conductance g5^T&5(a ,bTab . In that
measurement contributions to the correlation are domi-
nant, where the angles a and c are arbitrarily far apart.
Though C3 is of order g22, it dominates over the C1 and
C2 terms, as it has contributions from all incoming and
outgoing angles. Therefore it is sometimes called the
‘‘infinite’’-range correlation. In contrast to the ampli-
tudes for the C2 term, the amplitudes of the incoming
diffusions now must have opposite phases, as can be
seen in a diagram where the two incoming diffusions
interact twice (see Fig. 18). Note that a loop occurs.
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Apart from the normalization to the average, C3 equals
the universal conductance fluctuations, or UCF.

The UCF were an important discovery in the study of
mesoscopic electron systems. The electronic conduc-
tance of mesoscopic samples shows reproducible
sample-to-sample fluctuations. This was observed in ex-
periments on mesoscopic electronic samples by Um-
bach, Washburn, Laibowitz, and Webb (1984). The the-
oretical explanation was given by Altshuler (1985) and
by Lee and Stone (1985). For reviews on the subject see
Lee, Stone, and Fukuyama (1987) and the book edited
by Altshuler et al. (Altshuler, Lee, and Webb, 1991).
The discovery of these fluctuations showed that interfer-
ence effects are important in electronic systems, even far
from the localization transition. The variance of the fluc-
tuations is independent of the sample parameters such
as the mean free path, the sample thickness, and, most
remarkably, the average conductance. Therefore the
fluctuations are called universal conductance fluctua-
tions. The conductance fluctuates when the phases of the
waves in the dominant paths change. This happens, of
course, if one changes the position of the scatterers, e.g.,
by taking another sample. One may also keep the scat-
terers fixed but apply a magnetic field or vary the Fermi
energy. In all these cases one modifies the phases of
scattered waves, so that different propagation paths be-
come dominant. The fluctuations are much larger than
one would obtain classically by modeling the system by a
random resistor array, in which interference effects are
neglected. A classical approach is valid only on a length
scale exceeding the phase coherence length, where the
fluctuations reduce to their classical value.

Unfortunately, despite some advantages of optical
systems, the analog of the UCF has not yet been ob-
served in them. Such experiments turn out to be diffi-
cult. Although the magnitude of the fluctuations is uni-
versal, they occur on a background of order g, where g is
the dimensionless conductance (in optical experiments
one typically has g;103). The value of the fluctuations
relative to the background is thus 1/g , so that the C3
correlation function is of order 1/g2, typically of order
1026. For electrons this problem does not occur, as
smaller values of g are achievable. In the electronic case
there have been many observations of the universal con-
ductance fluctuations.

A promising candidate for measuring C3 is the micro-
wave experiment of Stoytchev and Genack (1997). In
such a setup one has good control over the channels.
Moreover, one is able to study materials with large dis-
order, i.e., down to g53.

In principle the C2 and C3 correlations are present as
sub-leading terms in the angular correlation function,
but there are also other contributions of order 1/g and
1/g2, respectively, to the correlation Eq. (344). The
weak-localization correction (see Sec. XIV.D) is an ex-
ample of a 1/g contribution to C1 . We have drawn a
1/g2 contribution to C2 in Fig. 19. Such corrections are
studied by Garcia et al. (1993). The interpretation of the
C’s as an expansion in 1/g is misleading. Rather, we de-
fine the C1 , C2 , and C3 as the leading terms in the
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correlation of Tab , Ta , and T, respectively. Equiva-
lently, C1 contains disconnected diagrams; incoming and
outgoing amplitudes automatically have the same pair-
ing. The C2 term contains connected diagrams swapping
the initial pairing, and C3 contains all connected dia-
grams in which incoming and outgoing pairings are iden-
tical.

XVI. CALCULATION OF CORRELATION FUNCTIONS

A. Summary of diffuse intensities

For the calculation of interference effects it is often
too complicated to take the precise behavior near the
boundaries into account. We therefore approximate the
diffuse intensity with its bulk behavior, yet we will use
the prefactors and angular dependence, especially t0
and t1 , found with the radiative transfer approach.

The diffuse intensity created from a beam impinging
in direction a is

Lin
a ~z !5

4pt1~ma!T~ma!

klAma

L2z

L
. (345)

For uniform illumination of the sample the source term
in the transport equation becomes

S~z !5(
a

Sa5AE
0

k dq'a

2p
q'a

Sa

5
2k

l E
0

1
dm T~m!e2z/lm. (346)

Using this source term in the Schwarzschild-Milne equa-
tion gives the diffuse intensity for a uniform illuminated
sample:

Lin~z !5
4k

l

L1z02z

L12z0
. (347)

Defining

FIG. 19. A contribution of order 1/g2 to the C2 correlation.
The boxes are Hikami boxes, the parallel lines are the diffu-
sons. By following the amplitudes, one can check that the in-
coming pairings ij* and ji* change on the outgoing side into
pairings ii* and jj* . This diagram is thus not contributing to
the C3 , which is also of order 1/g2 but requires diagrams with-
out amplitude exchange. The exchange in pairing of incoming
and outgoing amplitudes means that the diagram is a higher-
order C2 diagram.
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ea5
pT~ma!t1~ma!

kAma
, (348)

and comparing the prefactors, one has

Lin
a ~z !5eaLin~z !. (349)

Finally, for diffuse propagation between two points in
the slab one has

2
d2

dz2 Lint~z ,z8;M !1M2Lint~z ,z8;M !

5
12p

l3 d~z2z8!, (350)

with the solution

Lint~z ,z8;M !5
12p

l3

sinh Mz, sinh M~L2z.!

M sinh ML
.

(351)

For angle-resolved measurements the outgoing intensity
in a certain direction b is, in analogy with Eq. (349),

Lout
b ~z !5ebLout~z !5eb

k

l

z

L
. (352)

The angular transmission coefficient reads

^Tab&5
pt1~ma!t1~mb!T~ma!T~mb!l

3mambA~L12z0!
(353)

5eaeb^T& . (354)

The total transmission coefficient is

^Ta&5
t1~ma!T~ma!l

3ma~L12z0!
. (355)

The conductance [cf. Eq. (190)] reads

g[^T&5E d3rLout~z !S~z !

5
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2pl E
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`

Lout~z !dzE
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1
dm T~m!e2z/ml

5
k2Al

3p~L12z0!
5

4Nl

3~L12z0!
. (356)

B. Calculation of the C1 correlation

The calculation of C1 is rather simple, as it is just the
product of two independent diffusons with exchanged
partners. Both diffusons consist of one amplitude from
one beam and one complex-conjugated amplitude from
the other beam. Due to momentum conservation in each
diffuson, the perpendicular momentum difference of the
two incoming beams, q' , is equal to the difference of
the outgoing momenta. Therefore the C1 is only non-
zero if incoming and outgoing angles are shifted equally
during the experiment.

We calculate the normalized product of a diffuson
with ‘‘squared mass’’ M25q'

2 1k21iṼ and the
complex-conjugated diffuson. This yields
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C1~M !5UTab~M !

Tab~k!
U2

5ULab~M !

Lab~k!
U2

5
uMu2

k2 U ~11k2z0
2!sinh kL12kz0 cosh kL

~11M2z0
2!sinh ML12Mz0 cosh MLU2

.

(357)

In Fig. 20 this function is drawn for various situations. In
thick samples where Mz0!1 and no absorption is
present, the result reduces to (Feng et al., 1988)

C1~M !5U ML

sinh MLU2

. (358)

For large angle or frequency difference (uMuL@1), C1
decays exponentially, as C1(M);exp„22 Re(M)L….
The spatial correlations of beams can be extracted from
the Fourier transform of the angular correlation func-
tion.

C. Calculation of the C2 correlation

The diagram of the long-range correlation C2 is de-
picted in Fig. 21. Remember that C1 is zero if incoming
and outgoing angles are changed unequally, but C2 is
connected, allowing momentum flow from one diffuson
to the other. Therefore it is nonzero if one changes in-
coming and outgoing angles by a different amount. C2
stems from the interaction between two diffusons, which
exchange partners somewhere inside the slab. The
Hikami box describes this exchange. We have

C25
1

^Ta&^Tc&
E

0

L
dz Lin

a ~z ,M1!Lin
c ~z ,M3!H4~z !

3Lout~z ,M2!Lout~z ,M4!. (359)

We have labeled the incoming diffusons with odd num-
bers and the outgoing diffusons with even numbers, a
convention used throughout this work. Attaching diffu-
sons to the Hikami box allows a simplification of the
expression for the box. We calculate C2 by inserting
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M2,4
2 5q'

21k26iṼ , M15M35k . In the z-coordinate
representation the box reads (see Sec. XIV)

H4~z1 ,z2 ,z3 ,z4!5h4~]z1
]z3

1]z2
]z4

1q'
2!. (360)

The above calculation for C2 is similar to the one ob-
tained in the Langevin approach, as one can see by com-
paring Eq. (39) of Pnini and Shapiro (1989) to Eqs.
(360) and (359) in this section. In the Langevin approach
one assumes that there is a macroscopic intensity, which
describes the average diffusion and an uncorrelated
random-noise current superposed. In our approach we
have a slowly varying diffuse intensity, while the point-
like, uncorrelated random interactions originate from
the Hikami box.

We discuss some simplified cases. Consider first the
case of angular correlations and no absorption but tak-
ing the boundary effects into account:

C2~q'!5
3pL

k2lA
F2~q'L !, (361)

in which we define the dimensionless function F2 ,

FIG. 20. C1 angular correlation function plotted against the
scaled perpendicular momentum difference: solid line, small
z0 , no absorption; short dashed line, absorption (k52/L),
small z0 ; long dashed line, large skin layers (z05L/3), no
absorption.
F2~q'L !5@sinh 2q'L22q'1q'z0~6 sinh2 q'L22q'
2L2!14q'

2z0
2~sinh 2q'L2q'L !16q'

3z0
3 sinh2 q'L

1q'
4z0

4 sinh 2q'L#@2q'L$~11q'
2z0

2!sinh q'L12q'z0 cosh q'L%2#21, (362)
which decays like 1/q' for large q' (i.e., for large
angles). However, it still should hold that q'l!1, else
we probe essentially interference processes within one
mean free path from the surface, which is beyond this
approach. Neglecting boundary effects, z0!L , one re-
covers (Pnini and Shapiro, 1991)

F2~q'L !5
sinh~2q'L !22q'L

2q'L sinh2~q'L !
, (363)
with F2(0)5 2
3 . In Fig. 22 we have plotted the F2 func-

tion for various situations.
We have studied the correlation as a function of the

two-dimensional momentum q' . Similarly, we can study
the real-space correlations. The functional form in real
space is of roughly similar shape to Fig. 22, with typical
decay length L in the x,y direction (Stephen and
Cwilich, 1987). One can also obtain frequency correla-
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tions. Without absorption, neglecting boundary effects,
one finds (De Boer et al., 1992)

F2~Ṽ !5
2

A2ṼL
S sinh~A2ṼL !2sin~A2ṼL !

cosh~A2ṼL !2cos~A2ṼL !
D .

(364)

Of special interest is the top of the correlation func-
tion. By definition the top of the correlation function
corresponds to the second cumulant, or second central
moment, of the total transmission distribution function.
With a plane wave as incoming beam, all transverse mo-
menta are absent, so we also neglect absorption. These
assumptions correspond to all M being equal to zero in
Eq. (359). The diffusons are simple linear functions,
given by Eqs. (345) and (352). Neglecting internal reflec-
tions, one obtains for the second cumulant (Stephen and
Cwilich, 1987)

FIG. 21. Diagram of the long-range C2 correlation function.
The shaded box denotes the Hikami four-point vertex depicted
in Figs. 15 and 17.

FIG. 22. F2 , the normalized form of the angular correlation
function C2 , plotted against the scaled perpendicular momen-
tum difference: solid line, small z0 , no absorption [Eq. (363)];
short dashed line, absorption (k52/L), small z0 ; long dashed
line, large skin layers (z05L/3), no absorption.
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
^^Ta
2&&5

^Ta
2&2^Ta&

2

^Ta&
2

5
1
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3E
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dz H4Lin

a ~z !Lout~z !Lin
a ~z !Lout~z !

5
1

gL3 E
0

L
dz@z21~L2z !2#5

2
3g

, (365)

where double brackets denote cumulants normalized to
the average. The correlation is thus proportional to 1/g .
The inverse power of g counts the number of four-point
vertices; this power can be looked upon as the probabil-
ity that two intensities interfere.

One obtains a general expression for C2 by inserting
the appropriate diffusons and the Hikami box Eq. (360)
into Eq. (359). The result is rather lengthy and is given
by van Rossum and Nieuwenhuizen (1993).

1. Influence of incoming beam profile

We now study the influence of the beam profile on the
correlation. In experiments the beam is often focused to
a small spot in order to minimize the dimensionless con-
ductance g and therefore to maximize the correlations.
Physically it is clear that the correlations increase if the
two incoming channels are closer to each other, i.e., if
the beam diameter is smaller. If the spot of the incoming
beam is finite, amplitudes with different angles, i.e., dif-
ferent transverse momenta, are present. They can com-
bine into incoming diffusons with perpendicular mo-
mentum. We suppose that the incoming beam has a
Gaussian profile. We decompose it into plane waves de-
fined in Eq. (147) (for convenience we assume the aver-
age incidence to be perpendicular),

c in5
2p

W (
a

f~q'a
!c in

a , f~q'!5
r0

A2p
e2q'

2r0
2/4,

(366)

where r0 is the beam diameter. In order to have two
diffusons with momenta q' and 2q' , we find that the
four incoming amplitudes combine to a weight function

E d2P1d2P3f~P1!f* ~P11q'!f~P3!f* ~P32q'!

5e2r0
2q'

2/4. (367)

We get the correlation function by integrating the
q'-dependent correlation function over the momentum
with the corresponding weight. Neglecting boundary lay-
ers we find for the top of the correlation (De Boer et al.,
1992).

^^Ta
2&&5

r0
2

4pg E d2q'e2r0
2q'

2/4F2~q'L !, (368)

with F2 as in Eq. (363). If the incoming beam is very
broad, r0@L , only the term F2(q'50)52/3 contributes
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and one recovers the plane-wave behavior ^^Ta
2&&

52/3g . The second cumulant decreases as 1/r0
2 at large

r0 . At smaller beam diameters the top of the correlation
is proportional to 1/r0 , and diverges in this approxima-
tion, in which q'l;l/r0!1.

2. Reflection correlations

We have seen that the transmission corresponds to
the diffusons, but in reflection there are two intensity
diagrams: the diffusons provide a constant background,
while the maximally crossed diagrams yield the en-
hanced backscatter cone, which is of importance only if
incoming and outgoing angles are the same. This leads
to more diagrams and to more peaks in the reflection
correlation than in the transmission correlation. For the
C1 correlation one can pair diffusons and maximally
crossed diagrams (Berkovits and Kaveh, 1990). Indeed,
in optical experiments two peaks were seen by Freund
and Rosenbluh (1991). The C2 term in reflection was
treated by Berkovits (1990). Measurement of C2 in re-
flection by collecting all reflected light is tricky, as it is
hard not to interfere with the incoming beam. Neverthe-
less, measurement may be possible as a long-range com-
ponent in the angle-resolved reflection (this, however,
requires quite small values of g). For neither C1 nor C2
in reflection does one expect a very good agreement
with theory, the problem being that the precise behavior
of the diffuson near the surface is important. The diffu-
sion approximation ql!1 is no longer valid, in particu-
lar if the indices of refraction match, as then the inten-
sity gradient near the surface is the largest. The
calculation of C1 is probably easily extended, but for C2
one also would need the Hikami box beyond first order
in ql.

D. Conductance fluctuations: C3

One might think that the calculation of the C3 or UCF
in the above Landauer approach would be straightfor-
ward. However, the calculation in the Landauer ap-
proach is quite cumbersome, as on short length scales
(of the order of the mean free path) divergences show
up when one treats the problem on a macroscopic level
using diffusons. As an alternative, the Kubo approach is
often used in mesoscopic electronic systems (Altshuler,
1985; Lee and Stone, 1985; Lee et al., 1987). The results
for the conductance obtained by either the Kubo or the
Landauer formalism should be identical (see Fisher and
Lee, 1981; JanXen, 1991). Yet the Kubo approach can-
not be applied directly to optical systems when absorp-
tion is to be included. Studies of C3 in the Landauer
approach were undertaken by Kane et al. (1988), Berko-
vits and Feng (1994), and van Rossum, Nieuwenhuizen,
and Vlaming (1995), who show explicitly that all diver-
gences cancel.

The C3 correlation function, defined in Eq. (344), in-
volves incoming diffusons Lin

a ,c and outgoing ones Lout
b ,d .

Due to the factorization of the external direction depen-
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dence [see Eqs. (349), (352), and (356)], this dependence
on external parameters cancels for C3 . We can write

C3
abcd~k ,Ṽ!5C3~k ,Ṽ!5

1

^T&2 (
q'

F~q' ,k ,Ṽ!,

(369)

where q' is the (d21)-dimensional transverse momen-
tum. The function F is the main object to be determined
in this section. We thus calculate it at fixed q' and with
external diffusons for diffuse illumination Lin and Lout ,
Eqs. (347) and (352). Depending on dimension we have

(
q'

F~q' ,k ,Ṽ!5F~0,k ,Ṽ! quasi 1D, (370)

5WE dq'

2p
F~q' ,k ,Ṽ! quasi 2D,

(371)

5W2E d2q'

~2p!2 F~q' ,k ,Ṽ! 3D. (372)

In contrast to C1 and C2 , as a result of the q' integral,
C3 will depend on the dimensionality of the system.

Let us work out in more detail the long-range dia-
grams of C3 , roughly depicted in Fig. 18. For all dia-
grams there are two incoming advanced fields, which for
the moment call i and j, and two retarded ones, i* and
j* . Consider an optical experiment with integrating
spheres at incoming and outgoing sides. The incoming
diffusons cannot have a momentum or frequency differ-
ence, and the pairing must be ii* and jj* . In Fig. 23(a)
the incoming diffusons interfere somewhere in the slab.
In diagrammatic language the diffusons interchange a
propagator so that the pairing changes into ij* and ji* .
Propagation continues with these diffusons, which, due
to the different pairings, can have nonzero frequency
difference and nonzero momentum. Only the outgoing
diffusons without a momentum or frequency difference
are dominant. Therefore somewhere else in the slab a
second interference occurs. Again exchanging an ampli-
tude, the original pairing, ii* and jj* , is restored and the
two diffusons propagate out [see Fig. 23(a)i]. Other con-
tributions occur as well, yet the incoming and outgoing
pairings are always ii* and jj* . In Fig. 23(a)ii the first
incoming diffuson meets an outgoing diffuson and ex-
changes amplitudes. These internal diffusion lines meet
at a second point where the original pairings are re-
stored. Clearly in this process the intermediate paths are
traversed in time-reversed order. Due to time-reversal
symmetry they give a contribution similar to Fig. 23(a)i.
In Fig. 23(b)i a diffuson breaks up such that one of its
amplitudes makes a large detour, returns to the breaking
point, and recombines into an outgoing diffuson. The
second incoming diffuson crosses the long path of the
amplitude, and one of its amplitudes follows the same
contour as the first diffuson. Finally, Fig. 23(c) depicts
the situation in which only one internal diffuson occurs.
Its endpoints must lie within a distance of a few mean
free paths. Because of the local character, this class does
not show up in the final result; we need it, however,
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since it contains terms that cancel divergences from the
other two classes.

E. Calculation of the C3 correlation function

The diagrams for the conductance fluctuations contain
a loop; the two internal diffusons have a free momen-
tum, over which one has to integrate. In Fig. 23(a) we
denote this momentum as q. Physically, one expects im-
portant contributions to the conductance fluctuations if
the distance between the two interference vertices
ranges from the mean free path to the sample size. Yet
the q integral diverges for large momentum, i.e., when
the two interference processes are close to each other.
The standard picture of diffuse transport with diffusons
and interference described by Hikami vertices, which
works so well for loopless diagrams such as the C2 cor-
relation function (Sec. XV) or the third cumulant of the
total transmission (Sec. XVII), is spoiled by these diver-
gences.

As an example we calculate the diagram presented in
Fig. 23(a)i. This diagram was first depicted by Feng et al.
(1988) and considered in detail by Berkovits and Feng
(1994). These authors pointed out that a short-distance
divergency appears. They found a cubic divergency in
three dimensions and, in general, a d-dimensional diver-
gency in d dimensions. Let us see how it appears. For
simplicity we consider a quasi-one-dimensional system
for which frequency differences and absorption are ab-
sent, so that the decay rate vanishes, i.e., M50 for all
diffusons. From Fig. 23(a)i one directly reads off its cor-
responding expression Fa .i ,

Fa .i5E E dz dz8Lin
2 ~z !H4~z !Lint

2 ~z ,z8!H4~z8!Lout
2 ~z !.

(373)

FIG. 23. Leading contributions to the conductance fluctuations
apart from short-distance processes. The incoming diffusons
from the left interfere twice before they go out on the right.
The close parallel lines correspond to diffusons; the shaded
boxes are Hikami vertices; q denotes the free momentum
which is to be integrated over.
After performing some partial integrations and using the
diffusion equation (350) one finds

Fa .i5
l4

4k4 d~0 !E dz Lin
2 ~z !Lout

2 ~z !1
h4l2

k2 E dz Lint~z ,z !

3@Lin8
2~z !Lout

2 ~z !1Lin
2 ~z !Lout82 ~z !

12Lin8 ~z !Lout8 ~z !Lin~z !Lout~z !#14h4
2E dz8

3E dz Lint
2 ~z ,z8!Lin8

2~z !Lout82 ~z8!, (374)

where the spatial derivative of L(z) is denoted as L8.
The divergency is clearly present in the d(0). It comes
about as follows: For the case of zero external momenta,
the Hikami box yields H4(q,0,2q,0)52h4q2, while the
internal diffuson has the form Lint(q)512p/(l3q2).
Omitting the external lines, we find that the diagram
leads to

E dq

~2p!
H4

2~q,0,2q,0!Lint
2 ~q !

5
l4

4k4 E d3q

~2p!3 q0

5
l4

4k4 d~r50 !. (375)

We label the expressions according to the diagrams in
Fig. 23, Fa , Fb , and Fc and sum them. For the 1D case
we find

Fa1Fb1Fc52
2
15

d~0 !L1
2
15

. (376)

The second term in Eq. (376) is exactly equal to the
well-known result for the UCF in one dimension. (Note
that the prefactors of the diffusons and the Hikami
boxes have canceled precisely. This is a manifestation of
the universal character of conductance fluctuations.) But
a singular part is annoyingly present. The term d(0) is a
linear divergency. In the three-dimensional case one has
to integrate over the transverse momenta, yielding a cu-
bic divergency.

The cancellation of this divergence is very involved
and requires a number of special short-range diagrams,
which resist a general classification or treatment (Van
Rossum, Nieuwenhuizen, and Vlaming, 1995). Here we
only make use of the fact that the special short-range
diagrams do, in the end, cancel the divergences, while
giving no long-range contribution. The nondivergent
part of the diagrams of Fig. 23 is the only remainder. It
reads
F~q' ,k ,Ṽ!54h4
2E E dz dz8Lint~z ,z8;M !Lint~z ,z8;M* !@Lin8

2~z !Lout82 ~z8!1Lin8 ~z !Lout8 ~z !Lin8 ~z8!Lout8 ~z8!#

1
h4

2

2 E E dz dz8@Lint
2 ~z ,z8;M !1Lint

2 ~z ,z8;M* !#
d2

dz2 @Lin~z !Lout~z !#
d2

dz82 @Lin~z8!Lout~z8!# ,

(377)
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in which again M25q'
2 1k21iṼ . The upper line of Eq.

(377) corresponds to the diagrams of Fig. 23(a), whereas
the lower line corresponds to the diagrams of Fig. 23(b).
Finally, using Eq. (372), we find that the value at vanish-
ing transverse momentum gives the variance of the con-
ductance in one dimension, whereas integration over the
transverse momentum yields the correlation in two and
three dimensions.

By using Eqs. (377) and (372) and inserting the appro-
priate diffusons, we can study various cases. Consider
the case of fully transmitting surfaces; neglecting absorp-
tion and frequency differences one finds

F~q'!5
3
2

212q'
2L222 cosh 2q'L1q'L sinh 2q'L

q'
4L4 sinh2 q'L

,

(378)

which decays for large momenta as q'
23, thus converging

in three or fewer dimensions. The subsequent integra-
tion over the loop momentum finally yields

^T2&c5
2
15

'0.133, quasi 1D (379)

5
3

p3 z~3 !
A

L
'0.116

A

L
, quasi 2D (380)

5
1

2p

A

L2 '0.159
A

L2 3D, (381)

in which z is Riemann’s zeta function. These values are
for wide slabs. For cubic samples Lee et al. (1987) find in
2D that ^T2&c50.186 and in 3D 0.296 (the value in 1D is
of course the same). One can also determine the fre-
quency dependence of the correlation using Eq. (377),
which is of importance as it determines the frequency
range of the light needed to see the fluctuations (Van
Rossum, Nieuwenhuizen, and Vlaming, 1995). By insert-
ing the appropriate diffusons one can also study the case
of partial reflection at the surfaces of the sample. It is
physically clear that the internal reflections lead to a less
steep diffuse intensity in the sample as a function of the
depth. The fluctuations are proportional to the space de-
rivatives and thus reduce. We present the results in Fig.
24, where we have plotted the correlation function for
various values of the ratio between extrapolation length
and sample thickness. One sees that the correlation is
lower than without internal reflections. We note that
neither the variance (the value at vanishing Ṽ), nor the
form of the correlations is fully universal.

XVII. THIRD CUMULANT OF THE TOTAL TRANSMISSION

So far we have considered correlations between inten-
sities defined as

^TabTcd&

^Tab&^Tcd&
511C11C21C3 . (382)

The C1(q' ,Ṽ), C2(q' ,Ṽ), and C3(Ṽ) correlation
functions describe correlations between two intensities.
By definition their value at zero frequency and zero mo-
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mentum difference, i.e., the peak value, is the second
cumulant of the distribution functions of the transmis-
sion quantities. An obvious question is how higher cu-
mulants behave. The size of the fluctuations and the
shape of the distribution relates to the ‘‘distance’’ from
the localization transition. Far from localization, diffu-
sion channels are almost uncorrelated and fluctuations
are small (except the optical speckle pattern in the
angle-resolved transmission). The correlation between
the channels increases if localization is approached. The
relevant parameter is the inverse dimensionless conduc-
tance 1/g , which can be interpreted as the probability
that two channels will interfere. Close to Anderson lo-
calization g approaches unity, and fluctuations increase.

A. Cumulants of the probability distribution

We first study the third cumulant of the total transmis-
sion. The total transmission is a constant superposed
with fluctuations. To first order in g21 the fluctuations
have a Gaussian distribution (De Boer et al., 1992;
Kogan, Kaveh, Baumgartner, and Berkovits, 1993). The
relative variance of this distribution, the top of C2 , is
proportional to g21, and thus a factor of g larger than
for the conductance fluctuations. This sensitivity of the
total transmission to interference processes and its
simple limiting behavior (as compared to the angle-
resolved transmission) make it an ideal quantity for
studying mesoscopic effects in its distribution. The third
cumulant of the distribution was determined in very pre-
cise experiments by De Boer, Van Rossum, Van Al-
bada, Nieuwenhuizen, and Lagendijk (1994). In this sec-
tion we calculate its theoretical value. Using the
diagrammatic approach we relate the third cumulant
normalized to the average total transmission, ^^Ta

3&&, to
the normalized second cumulant ^^Ta

2&&.
The moments of the probability distribution can be

extracted from the distribution P(Ta) as

^Ta
k&5E dTaP~Ta!Ta

k . (383)

FIG. 24. The C3 frequency correlation in 3D as a function of
frequency difference, with different internal reflection values:
upper curve, z050; middle curve, z05L/10; lower curve z0
5L/5; no absorption.
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In a diagrammatic approach the kth moment can be rep-
resented by a diagram with k diffusons on both incoming
and outgoing sides. The k51 term is the average total
transmission ^Ta&, as given by the Schwarzschild-Milne
equation in Eq. (355), it corresponds to a single diffuson
and is thus independent of channel-to-channel correla-
tions. The second moment can be decomposed in the
first two cumulants:

^Ta
2&

^Ta&
2 5

^Ta&
2

^Ta&
2 1

^Ta
2&cum

^Ta&
2 511^^Ta

2&&, (384)

where the double brackets denote cumulants normalized
to the average. Diagrammatically we depict the second
moment in Fig. 25. The decomposition in cumulants
proves useful, as each cumulant corresponds to a differ-
ent number of interactions between the diffusons. The
first term, in Fig. 25(a), contains no interference; it fac-
torizes in the average transmission squared. The second
term, Fig. 25(b), is the second cumulant ^^Ta

2&&. It gives
the variance of the fluctuations. This is just a special case
of the C2 correlation function, ^^Ta

2&&5C2(0).
Likewise, one can distinguish three different contribu-

tions to the third moment,

^Ta
3&

^Ta&
3 5113^^Ta

2&&1^^Ta
3&&. (385)

We have drawn the corresponding leading diagrams in
Fig. 26. The first term, Fig. 26(a), again corresponds to
transmission without interference. The second term, Fig.
26(b), is the product of a single diffuson and a second
cumulant diagram. From the figure it is clear that this
decomposition can be done in three ways, which deter-
mine the combinatorical prefactor of ^^Ta

2&& in Eq.
(385). The third contribution stands for the third cumu-
lant of the distribution and expresses the leading devia-
tion from the Gaussian distribution. This is the term we
are mainly interested in. It consists of two related dia-
grams: Fig. 26(c) and 26(d). The three intensities can
interfere twice two by two, or the intensities can interact
all three together, with a Hikami six-point vertex. Both
contributions will prove to be of the same order of mag-
nitude. The strength of the effect can be easily estimated
using the interpretation of 1/g as an interaction prob-
ability. By looking at the diagram, we see that the third
cumulant is proportional to the probability of two diffu-
sons meeting twice, and thus is of the order 1/g2. We
have thus found the estimate

^^Ta
3&&}^^Ta

2&&2. (386)

Finally, we note that there is another contribution to
both second and third cumulant. Because there is only a
finite number of channels in an experiment, the intensity
distribution will always have nonzero width. We have
verified that this effect brings a negligible contribution
to the measured second and third cumulants (Van Ros-
sum, de Boer, and Nieuwenhuizen, 1995).

B. The calculation of the third cumulant

Two processes contribute to the third cumulant. One
with two four-point vertices, which we term ^^Ta

3&&c ,
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and one with a six-point vertex ^^Ta
3&&d , where we have

chosen the subscripts according to Fig. 26.

1. Interference via two four-point vertices

First consider the diagram in Fig. 26(c). We have la-
beled the incoming diffusons with odd numbers, the out-
going ones with even numbers. Two incoming diffusons,
L1 and L3 , meet at position z; in a Hikami box they
interfere into L2 and an internal diffuson L78

int . L2 propa-
gates out, whereas L78

int interferes again at z8 with the
incoming diffuson L5 into two outgoing ones, L4 and L6 .
Apart from this process, three other sequences of inter-
ference are possible. This means that the diffusons can
also be permuted as (L1 ,L3 ,L5 ,L2 ,L4 ,L6)
→(L3 ,L5 ,L1 ,L4 ,L6 ,L2)→(L5 ,L1 ,L3 ,L6 ,L2 ,L4). We
denote the sum over these permutations as (per . As the
diagrams can also be complex conjugated, there is a
combinatorial factor of 2 for all diagrams. (Note that
this is different from the C2 calculation; the second cu-
mulant diagram is identical to its complex conjugate and
thus there is no such factor.) The expression for the dia-
gram of Fig. 26(c) is now

^^Ta
3&&c5^Ta&

232(
per

AE
0

L
dzE

0

L
dz8H4~z !H4~z8!L1~z !

3L2~z !L3~z !L4~z8!L5~z8!L6~z8!L78
int~z ,z8!.

(387)

It turns out that it is useful to rewrite the form of the
Hikami boxes as introduced in Eq. (339) into an equiva-

FIG. 25. The two contributions to the second moment of the
total transmission. (a) Independent transmission channels.
This process is of order unity and is almost completely reduc-
ible to the mean value squared. (b) Two interfering channels;
this is the second cumulant or C2 diagram of order 1/g . The
close parallel lines are diffusons.

FIG. 26. The three contributions to the third moment of the
total transmission: (a) independent transmission channels; con-
tribution is of order 1; (b) correlation which can be decom-
posed into the second cumulant, contribution is of order g21;
(c) and (d) contributions to the third cumulant, O(g22).
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lent expression, using momentum conservation, qa1qa8
1qb1qb850. In real space the use of momentum con-
servation corresponds to partial integration. The Hikami
box is again simplified using the fact that there are no
transverse momentum terms, or q' terms, for the outgo-
ing diffusons. Using the numbering in Fig. 26, we obtain

H4~z !52h4@2]z1
]z2

12]z2
]z3

# ,

H4~z8!5h4@2]z4
]z6

2]z8

2 1q'8
2# . (388)

Source terms, i.e., qi
2 terms, of the incoming and outgo-

ing diffusons were again neglected, but the source term
of the diffuson between the vertices is important. As one
sees with the diffusion equation (350), it produces
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~2]z8

2 1q'8
2!L78

in ~z ,z8!5
l3

12p
d~z2z8!. (389)

The contribution from the source term, i.e., H4(z8)}
2]z8

2 1q'8
2, H4(z)}]z1

]z2
1]z2

]z3
, is

2h4l2A

k2 E
0

L
dz@]z1

]z2
1]z2

]z3
1¯1]z6

]z1
#L1 .. .L6 .

(390)

Although this corresponds to a local process (just one z
coordinate is involved), it is of leading order. Together
with the expression coming from H4(z8), proportional
to ]z4

]z6
, we find for the total contribution of the pro-

cess in Fig. 26(c)
^^Ta
3&&c5

8h4
2

^Ta&
3 (

per
AE

0

L
dz L1~z !L28~z !L3~z !E

0

L
dz8L48~z8!L5~z8!L68~z8!]zLint~z ,z8!2

l7A

48pk4^Ta&
3

3E
0

L
dz@]z1

]z2
1]z2

]z3
1]z3

]z4
1]z4

]z5
1]z5

]z6
1]z6

]z1
#L1~z !L2~z !L3~z !L4~z !L5~z !L6~z !, (391)
where L8(z) denotes the z derivative of L(z). When
this is calculated for a plane wave, one finds

^^Ta
3&&c5

28
15g2 , (392)

which is indeed proportional to g22, as predicted.

2. Contribution of the six-point vertex

The other diagram contributing to the third cumulant
is depicted in Fig. 26(d). The hexagon is again the
Hikami six-point vertex H6 . It can be thought of in the
following way: the use of the Hikami box assumes that
the outgoing legs scatter at least once before they propa-
gate out or interfere again. This is a reasonable assump-
tion for the outgoing diffusons, but for the internal dif-
fuson L78

int it is also possible that coming from z it
interferes again at z8 directly, i.e., without scattering.
This process was not included in the calculation of the
previous subsection and has to be studied separately.
The unscattered intensity decays exponentially over one
mean free path. Therefore this process is important only
if z and z8 are within one mean free path of each other.
As the diagrams can also be complex conjugated, there
is also a factor of 2 for all diagrams.

After a Fourier transformation in the z direction the
six-point vertex yields a contribution to the third cumu-
lant

^^Ta
3&&d5

h4l2A

k2^Ta&
3 E

0

L
dz@]z1

]z2
1]z2

]z3

1]z3
]z4

1]z4
]z5

1]z5
]z6

1]z6
]z1

#

3L1~z !L2~z !L3~z !L4~z !L5~z !L6~z !, (393)
where again the notation of Eq. (342) is implied. We
used the fact that all outgoing diffusons have zero trans-
verse momentum. Therefore all q' i

q' j
terms are absent.

In case of an incoming plane wave we find a contribu-
tion to the third cumulant ^^Ta

3&&d524/(5g2). The con-
tribution from the source term, i.e., Eq. (390) of the pre-
vious subsection, exactly cancels the contribution from
the six-point vertex. The cancellation seems plausible, as
one does not expect short-distance properties to be im-
portant in the total process. Nevertheless, this cancella-
tion depends on the precise form of the Hikami four-
point vertex in Eq. (388). If we use other equivalent
forms of the Hikami box the contributions of the single
and double integral in Eq. (391) shift with respect to
each other and there is not a full cancellation. Of course,
neither the result for Eq. (391) nor the final result for
^^Ta

3&& relies on this choice. One obtains for the third
cumulant

^^Ta
3&&5^^Ta

3&&c1^^Ta
3&&d

5
8h4

2Ak2

^Ta&
3 (

per
E

0

L
dz L1~z !L28~z !L3~z !

3E
0

L
dz8L48~z8!L5~z8!L68~z8!]zLint~z ,z8!.

(394)

C. Influence of incoming beam profile

Now that we know the leading interference processes,
we can insert the diffusons and obtain the final value of
the third cumulant. We first consider the simple case of
incoming plane waves. As there can be no transverse
momentum difference in the incoming amplitudes, all
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q' i
vanish. As a result all diffusons are linear functions

of z. We find from Eq. (394)

^^Ta
3&&5

16
15g2 5

12
5 ^^Ta

2&&2 plane wave; r0@L .

(395)

In practice, however, one often deals with a Gaussian
beam with limited spot size, influencing the cumulants in
two ways. First, if the spot size decreases to values com-
parable to the sample thickness we have to convolute
over a range of incoming momenta, just as we did when
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calculating the second cumulant. Second, the Gaussian
profile contributes an extra geometrical factor, as will be
shown below. The expression for the diagrams with dif-
fusons with arbitrary momentum is calculated as follows.
Because of momentum conservation and phase condi-
tion on the outgoing diffusons, the transverse momen-
tum q'7

of the diffuson connecting the two four-boxes
must equal q'5

. The integration over the possible mo-
menta results again in a Gaussian weight function
exp„2r0

2(q'1

2 1q'3

2 1q'5

2 )/8…. The third cumulant is ob-
tained by inserting the momentum-dependent diffusons
into Eq. (394). This gives
^^Ta
3&&5

r0
4

16p2g2 E d2q'1
d2q'3

e2r0
2
@q'1

2
1q'3

2
1~q'1

1q'3
!2#/8F3~q'1

L ,q'3
L ,uq'1

1q'3
uL !, (396)

with

F3~x1 ,x3 ,x5!5(
per

S ~x11x3!2x5 cosh~x11x3!

~x11x31x5!2~x11x32x5!22
~x12x3!2x5 cosh~x12x3!

~x12x31x5!2~x12x32x5!22
~x11x3!x5 sinh~x11x3!

~x11x31x5!~x11x32x5!

1
~x12x3!x5 sinh~x12x3!

~x12x31x5!~x12x32x5!
1

~x11x3!cosh~x11x312x5!

4~x11x31x5!2 2
~x11x3!cosh~x11x322x5!

4~x11x32x5!2

2
~x12x3!cosh~x12x312x5!

4~x12x31x5!2 1
~x12x3!cosh~x12x322x5!

4~x12x32x5!2 D @x5 sinh~x1!sinh~x3!sinh2~x5!#21.

(397)
If the beam diameters are wide (r0@L), one finds
F3(0,0,0)5 16

15 , which means for the third cumulant
^^Ta

3&&54F3(0,0,0)/3g2, or

^^Ta
3&&5

16
5 ^^Ta

2&&2 ~Gaussian profile; r0@L !,

(398)

which differs by a factor of 4
3 from the plane-wave limit

Eq. (395). This is a geometrical effect, depending on the
profile of the incoming beam. In a real-space picture one
understands this effect most easily: The correlation de-
pends on the distance. It is strongest if the incoming
beams are close together. Therefore it is not surprising
to see the influence of their overlap. In the next section
we calculate this geometrical factor for higher cumulants
as well. For the experimentally relevant case when the
beam diameter is roughly equal to the thickness, it turns
out that the behavior of Eq. (398) is found for a large
range of beam diameters. The increase of the correlation
for smaller beams turns out to be roughly the same for
both the third cumulant and the second cumulant
squared.

Van Rossum, De Boer, and Nieuwenhuizen (1995) ex-
tensively compared theory with the experiment reported
by De Boer et al. (1994). Apart from the correction for
the finite beam diameter, as discussed above, two other
experimental corrections were included—internal reflec-
tions and contributions from disconnected diagrams. All
corrections to Eq. (398) turn out to be relatively small.
By presenting the results as the ratio between the sec-
ond cumulant squared and the third cumulant, errors in
the sample thickness and the mean free path cancel. For
the experimental data it was found that ^^Ta

3&&5(3.3
60.6)^^Ta

2&&2, in good agreement with Eq. (398).
Stoytchev and Genack (1997) performed microwave

scattering on systems with values of g approaching unity.
In that case the plane-wave prediction applies. They
found ^^Ta

3&&5(2.3860.05)^^Ta
2&&2, indeed in good

agreement with Eq. (395).
The extension of the calculation to higher cumulants

is straightforward. The nth cumulant will contain (n
21) Hikami four-point vertices. So the contribution is
^^Ta

n&&}g12n. But it is clear that the calculation becomes
laborious at large n. We take another approach to this
problem in Sec. XVIII.

D. Third cumulant of the conductance

The reader will not be surprised to learn that the third
cumulant of the conductance can also be calculated us-
ing a diagrammatic approach (Van Rossum, Lerner, Alt-
shuler, and Nieuwenhuizen, 1997). This third cumulant
is notable for vanishing in one dimension (Macêdo,
1994). We already saw that in the mesoscopic regime the
conductance shows universal fluctuations (UCF). The
conductance being a random variable showing large
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fluctuations, one should consider its full distribution. It
was soon clear that the first higher cumulants of the con-
ductance are proportional to (Altshuler, Kravtsov, and
Lerner, 1986)

^gn&cum}^g&22n, n,g0 , ^g&.1. (399)

Here g0 is the mean conductance at the scale l. In the
metallic regime far from localization, where ^g&@1, the
higher cumulants are probably small, and the distribu-
tion of the conductance is roughly Gaussian. However,
for n*g0 the decrease in magnitude of the cumulants, as
described by Eq. (399), is changed into a very rapid in-
crease (}exp@g0

21n2#). This leads to log-normal tails of
the distribution (Altshuler et al., 1986). With increasing
disorder, the log-normal tails become more important.
The full conductance distribution at the threshold of lo-
calization (^g&;1) is at present unknown, but it is quite
plausible that the whole distribution crosses over to a
log-normal shape in the strongly localized regime [see
Shapiro (1990) and Altshuler, Kravtsov, and Lerner
(1991) for a discussion]. Indeed, it is well known that in
the strongly localized regime in one dimension the con-
ductance is given by the product of transmission ampli-
tudes, yielding a log-normal distribution (Anderson,
Thouless, Abrahams, and Fisher, 1980; Abrikosov, 1981;
Economou and Soukoulis, 1981; Mel’nikov, 1981).

Although higher-order cumulants govern the tails of
the distribution, they do not affect it near the center. A
deviation from the Gaussian distribution near the center
is revealed, first of all, in the lowest nontrivial cumu-
lants. An important step in this direction was the calcu-
lation of the third cumulant of the distribution using
random-matrix theory by Macêdo (1994). He found for
the orthogonal (b51) and symplectic ensemble (b
54) that the third cumulant of the conductance is pro-
portional to 1/g2. Thus the leading term given by Eq.
(399) vanishes [see, for instance, Mehta (1967) for the
definitions of the ensembles]. For the unitary ensemble
(b52) even this sub-leading term vanishes, and the be-
havior is 1/g3 (Macêdo, 1994). The physical reason be-
hind this is not clear. [We recently learned that the same
result in quasi one dimension was found Tartakovski
(1996) using the scaling method described by Tartak-
ovski (1995).] However, random-matrix theory is only
valid in quasi-one-dimensional systems. Therefore it was
not known whether such a cancellation also occurred in
higher dimensions. If this is indeed the case, it might
indicate an overlooked symmetry of the system, as is
suggested by the fact that the leading-order contribution
to the third cumulant of the density of states vanishes in
two dimensions (Altshuler et al., 1986). The question we
thus wish to consider is whether or not a cancellation
occurs for the third cumulant of the conductance in two
and three dimensions.

We rewrite Eq. (399) into a relation for the relative
cumulants: ^gn&c /^g&n}^g&222n. The inverse powers of
^g& on the right-hand side can be interpreted as the num-
ber of Hikami four-boxes in the diagrams; hence the
third cumulant diagram contains four Hikami four-
boxes. Indeed, it proves impossible to draw ^g3&c dia-
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grams with three boxes. Diagrams with more boxes are
sub-leading as they are of higher power in 1/^g&. The
diagrams are represented in Fig. 27. In the figure there
are diagrams of the same order with one six-box and two
four-boxes. They can be obtained by contracting one dif-
fusion in the diagrams with four-boxes. In physical terms
the six-box diagrams correspond to processes in which,
after an interference process, the amplitudes do not
combine into a diffuson, but instead interact directly
again without being scattered.

The diagrams were evaluated using the Kubo ap-
proach, which offers the advantage that no divergences
emerge; treatment of absorption is difficult, though, as
indicated in the discussion on C3 . The evaluation of the
diagrams is a painful but straightforward exercise. The
diagrams have two or three free-momentum loops, of
which one is eliminated due to momentum conservation.
In one dimension, where the diffusons are simple linear
functions, the diagrams can be evaluated analytically.
Numerical evaluation of the integrals in d52 and d53
yield

^g3&c50 ~quasi 1D!,

^g3&c520.0020^g&21 ~quasi 2D, square!,

^g3&c510.0076^g&21 ~3D, cubic!. (400)

Thus the leading contribution to the third cumulant in
one dimension vanishes. This confirms the random-
matrix theory result (Macêdo, 1994) diagrammatically.
It is seen that there is no cancellation in higher dimen-
sions. The results for rectangular samples are given in
Fig. 28, where we multiplied the third cumulant by the
average of the dimensionless conductance. The third cu-
mulant for wide slabs (Lx@Lz , Ly@Lz) is propor-
tional to (LxLy /^g&). In the figure, due to the multipli-
cation by ^g&, there is proportionality to (LxLy)2/Lz

4 for
wide slabs. Note that the third cumulant passes through
zero when going from 2D to 3D at a sample size of
0.46Lz3Lz3Lz . For very narrow slabs the correct
quasi-2D limit is recovered.

The random-matrix result that the third cumulant
vanishes in one dimension is also found in the diagram-
matic approach. In two and three dimensions, however,
there is no cancellation; the leading contribution to the
third cumulant is negative in two dimensions and posi-
tive in three dimensions. The fact that the third cumu-
lant changes sign is surprising. The third cumulant is also
known as the skewness of a distribution. One would
have expected a positive third cumulant of the conduc-
tance in analogy with the third cumulant of the total
transmission, or if the distribution would be tending to
log-normal. Instead, we find that all possible values oc-
cur: negative, positive, and zero. Experiments measuring
the conductance distribution could shed some light on
this point.

XVIII. FULL DISTRIBUTION FUNCTIONS

In this section we calculate the full distribution of the
total transmission and the angle-resolved transmission;
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both can be mapped on the eigenvalue distribution of
the transmission matrix. Before we discuss the distribu-
tion in the mesoscopic regime, let us first consider the
‘‘classical’’ situation, which is the limit of large g. There
are no correlations between intensities. Here the angle-
resolved transmission, or speckle intensity, is distributed
according to Rayleigh’s law (Goodman, 1975),

P~Tab!5
1

^Tab&
e2Tab /^Tab&. (401)

Anyone who has ever seen a laser speckle pattern on the
wall will remember the wild pattern with both bright and
dark spots, due to this distribution. Rayleigh’s law can
be derived in the context of the ladder diagrams (Sha-
piro, 1986). The nth moment of the speckle intensities is
made up of n amplitudes and n complex-conjugated am-
plitudes. As stated before, there is no restriction on the
pairing of two amplitudes into a diffuson for this type of
measurement. The amplitudes $a1* ,a2* ,a3* , . . . ,an* % have
n! possibilities of pairing with the amplitudes
$a1 ,a2 ,a3 ,. . . ,an%. Thus

^Tab
n &5n!^Tab&n, (402)

which corresponds with Rayleigh’s law. Yet, as we know
from the example of a laser beam reflecting from a
rough wall, multiple scattering is not essential for Ray-
leigh’s law to operate. Indeed, Rayleigh’s original deri-
vation goes as follows (Goodman, 1975): The field c at a
given position on the outgoing side is the sum of many
fields, and therefore the real and imaginary parts each
have an independent Gaussian distribution. The inten-
sity I is the amplitude squared and thus has an exponen-
tial distribution,

P;e2@~Re c!21~Im c!2#/2s2
;e2I/^I&. (403)

Thus reflection from a rough wall will also work.
Kogan and Kaveh (1995) addressed the question of

the speckle statistics of (optically) very thin samples. In
optically thin samples a considerable fraction of the light
does not scatter at all, but is transmitted coherently. In
the limit of zero thickness, i.e., only coherent light, the
distribution becomes a delta function. In the intermedi-

FIG. 27. Set of diagrams for the third cumulant of the conduc-
tance. The wavy lines denote diffusons (in the Kubo ap-
proach).
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ate regime a simple counting argument yields the distri-
bution, which interpolates between the delta distribution
and Rayleigh’s law. In the opposite case of strong scat-
tering, the mesoscopic regime, interferences modify the
speckle distribution. The leading correction was derived
by Shnerb and Kaveh (1991). Genack and Garcia ob-
served a deviation from Rayleigh’s law at large intensi-
ties (Garcia and Genack, 1989; Genack and Garcia,
1993). A crossover to stretched exponential behavior
was derived by Kogan et al. (1993).

For the total transmission and the conductance, the
distributions are similar in the large-g limit. For both
quantities the outgoing diffusons are frequency and mo-
mentum independent, as we explained in Sec. XV. As
there is no interaction between the diffusons in this
limit, only one type of pairing is possible for both quan-
tities. This yields, in principle, a delta distribution if one
probes an infinite number of channels. In practice, of
course, only a limited number of channels are probed,
and the law of large numbers predicts a narrow Gauss-
ian distribution.

A. Eigenvalues of the transmission matrix

In mesoscopic systems the observables are random
quantities and are therefore not always characterized by
their mean values, but their entire distribution function
is of interest. This is particularly true in the distribution
of eigenvalues of the transmission matrix. Assuming that
all eigenvalues contribute equally to the conductance,
one would expect a Gaussian distribution. As there are
N eigenmodes, the eigenvalue distribution should be
peaked around g/N5l/L . But this picture proves
wrong, as was first observed by Dorokhov (1984) and
later by Imry (1986). It is not the eigenvalues, but the
inverse localization lengths 1/jn that are uniformly dis-
tributed (Pendry, MacKinnon, and Pretre, 1990; Stone
et al., 1991). As a result the eigenvalues have a ‘‘bimo-
dal’’ distribution, peaked around 0 and 1. The eigenval-
ues Tn of the transmission matrix t†t can be expressed as

FIG. 28. Third cumulant multiplied by the average conduc-
tance in a 3D sample, plotted against the transverse size Lx .
The geometry is Lx3Lz3Lz for the solid line. Note that the
sign changes in going from a quasi-2D to a 3D sample. The
dashed line corresponds to the geometry Lx3Lx3Lz .
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Tn5cosh22~L/jn!, (404)

implying that

^Tr~ tt†! j&5K (
n51

N

Tn
j L

5gE
0

1 dT

2TA12T
Tj. (405)

This distribution is plotted in Fig. 29. The first deriva-
tions of the distribution used random-matrix theory and
were therefore valid only in quasi 1D (Mello, Pereyra,
and Kumar, 1988). However, Nazarov (1994) showed
that it is true not only in quasi 1D, but also under very
general conditions. Note that the normalization of the
distribution is ill defined—the distribution should be un-
derstood in the sense that all its moments are defined.
This problem can be avoided by adjusting the lower
boundary of the integral to something other than 0. The
minimal value corresponds to the decay of unscattered
intensity. Therefore Tn>cosh22(L/l)'exp(22L/l), nor-
malizing the distribution Eq. (405). Although this cutoff
is important for the normalization of the distribution, its
influence on the momenta is very small, and we refrain
from it. The distribution Eq. (405) is valid only in the
regime where g is not too small. Loop effects near the
Anderson transition, where g;1, will change it, as we
discuss below.

The concept of open and closed channels explains the
physical meaning of this curious distribution function.
An eigenmode of the transmission matrix is, according
to this distribution, either essentially blocked or, with a
much smaller probability, essentially conducting. This
picture has been confirmed in various computer simula-
tions (Pendry et al., 1990; Pendry, MacKinnon, and Rob-
erts, 1992; Oakeshott and MacKinnon, 1994). The eigen-
value distribution also provides us with a nice picture
explaining why the correlations in mesoscopic systems
are so large. If all the channels are equally conducting,
fluctuations of the channels average out by the law of
large numbers. Yet if only a few channels are conduct-
ing, fluctuations in one channel will be clearly seen. The
probability distribution of the total transmission and de-
viations from Rayleigh’s law will be explained below us-
ing these concepts.

We should point out that for the UCF the same argu-
ment does not apply. The variance in the conductance
Nl/L is caused by the finiteness of the number of chan-
nels N. In the picture of either closed or open channels
the number of open channels Neff equals roughly Nl/L
!N . The conductance would thus fluctuate according
the law of large numbers with a variance: ^SnTn

2&5 2
3 g .

However, this is incorrect, as we know that ^SnTn
2&

;O(1); see Sec. XVI.D. For the UCF the interaction
between the eigenmodes is essential.

In practice it is difficult, if not impossible, to measure
the eigenmodes and eigenvalues directly. As they are
the eigenmodes of the very large random-transmission
matrix, they have a very complex structure. Neverthe-
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less, the eigenvalue distribution has observable conse-
quences. It was shown by Beenakker and Büttiker
(1992) that the shot noise of electronic conductors uni-
versally reduces by a factor of 3 because of this distribu-
tion. Shot noise occurs only in electronic systems and
thus is not of much interest for us. Instead, we shall
show that the total transmission and speckle-intensity
distribution function are related to the eigenvalue distri-
bution function.

B. Distribution of total transmission

We first calculate the probability distribution of the
total transmission. From the distribution without inter-
ference effects we saw that it has a simpler distribution
(in the sense of cumulants) than the speckle distribution.
We neglect corrections such as absorption, skin layers,
and disconnected diagrams. Consider again an incoming
plane wave in direction ma (m denotes again the cosine
with respect to the z axis). The wave is transmitted into
the outgoing channel b with transmission amplitude tab
and transmission probability Tab[utabu2. The speckle
and total transmission factorize as ^Ta&5eng and ^Tab&
5eaebg .

We consider the jth cumulant of Ta . In a diagram-
matic approach this object has j transmission amplitudes
tab and an equal number of Hermitian conjugates tba

†

5tab* . The explicit calculation of the second cumulant
C2 (Sec. XV) and third cumulant (Sec. XVII) showed
that the leading diagrams are connected and have no
loops.

Let us fix the external diffusions in the term
tab1

tb1a
† tab2

. . .tabj
tbja

† . Contributions to the sum over bi

come only from diagrams with outgoing diffusons that
have no transverse momentum. These are the diagrams
in which the lines with equal bi pair into diffusons. We
indicate this pairing of the outgoing diffusons with
brackets,

FIG. 29. Bimodal eigenvalue distribution of transmission ma-
trix. The average value occurs with only a small probability.
The eigenvalues are almost all either 0 or 1.
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~ tab1
tb1a

† !~ tab2
tb2a

† !. . .~ tabj
tbja

† !. (406)

The outgoing diffusons are now fixed. At the incoming
side it is convenient to keep the tab’s fixed, while the
tab

† ’s are permuted among them. This leaves j! possibili-
ties for the incoming side in total, but of these only (j
21)! permutations correspond to connected diagrams
(these diagrams contain j21 Hikami boxes. The C2 dia-
gram contained one box, the third cumulant diagram
two boxes). Next we factor out the incoming and outgo-
ing diffusons and group the remainder of the diagrams
into a skeleton K. Making use of Eq. (349) we obtain

^Ta
j &con5ea

j ~ j21 !!E dr1dr18 . . .drjdrj8Lin~r1!

3Lout~r18!. . .Lin~rj!Lout~rj8!K~r1 ,r18 , . . . ,rj ,rj8!.

(407)

The integral just describes

^Tr~ tt†! j&[Tr (
b1 ,a2 ,b2 ,.. . ,aj ,bj

^ta1b1
tb1a2

† ta2b2
. . .tajbj

tbja1

† &

5 (
a1 ,b1 ,.. . ,aj ,bj

^ta1b1
tb1a2

† ta2b2
. . .tajbj

tbja1

† &. (408)

There is only one way to attach incoming and outgoing
diffusons to K. The sums over the indices lead exactly to
the total flux diffusons in Eq. (407). One finds the fol-
lowing important relation between the moments of the
eigenvalue distribution and the connected total trans-
mission diagrams:

^Ta
j &con5~ j21 !!ea

j ^Tr~ tt†! j&. (409)

Normalizing with respect to the average, we introduce
sa5Ta /^Ta&. The generating function of the connected
diagrams is easily calculated:

Fcon~x ![(
j51

`
~21 ! j11xj

j! ^sa
j &con

5g log2~A11x/g1Ax/g !. (410)

Since the cumulants are given solely by connected dia-
grams, the distribution of sa follows as (Nieuwenhuizen
and Van Rossum, 1995)

P~sa!5E
2i`

i` dx

2pi
exp@xsa2Fcon~x !# . (411)

Let us examine some properties of this distribution.
For limiting values of sa we use a saddle-point analysis.
The saddle point is found by the condition (d/dx)@xsa
2Fcon(x)#50. Thus we find

sa5
log~A11x/g1Ax/g !

Ax/g~11x/g !
. (412)

The right-hand side of Eq. (412) diverges if x ap-
proaches 2g (from above) and decreases monotonically
for larger x. Thus for large sa@1 we find the saddle
point near x52g . By inserting the saddle point one
finds a simple exponential tail,
Rev. Mod. Phys., Vol. 71, No. 1, January 1999
P~sa!'expS 2gsa1g
p2

4 D , sa@1. (413)

The saddle point also dominates the shape for small
sa!1 (and large g). One finds essentially log-normal
growth:

P~sa!;expFg

4
2

g

4 S log
2
sa

1log log
2
sa

21 D 2G . (414)

In Fig. 30 the solid curves depict the distribution
equation (411) for some values of g. At moderate g we
can clearly see the deviation from a Gaussian. In inter-
esting, recent experiments on quasi-1d microwave scat-
tering, Stoytchev and Genack (1997) measured the total
transmission distribution for conductances as low as g
;3. Although one would expect important loop contri-
butions for such low values of g, excellent agreement
with the above prediction was found. To obtain the fit,
the value of g had to be extracted from the variance of
the distribution rather than from the measured conduc-
tance. This adjustment is probably necessary because of
the strong absorption occurring in waveguides. The ef-
fect of absorption was calculated by Brouwer (1997) for
a waveguide. For strong absorption the total transmis-
sion had a log-normal distribution, while the ratio of
!Ta

3@/!Ta
2@2 became 3.0 instead of 2.4.

C. Influence of beam profile

We have considered above the case of an incoming
plane wave. Again in optical systems a Gaussian inten-
sity profile is more realistic. For the third cumulant we
saw a nontrivial dependence on the incoming beam pro-
file, suggesting that higher cumulants are also sensitive
to this effect. For perpendicular incidence the incoming
amplitude is c in(r)5W21Saf(qa)c in

a (r), where c in
a (r)

is the plane wave of Eq. (147), and where

f~qa!5A2pr0 exp~2 1
4 r0

2qa
2!. (415)

We consider the limit in which the beam is much
broader than the sample thickness (r0@L) but still
much smaller than the transverse size of the slab (r0
!W). With a smaller beam diameter, the incoming
transverse momenta, which are of order 1/r0 , are of the
order of 1/L . The diffusons will then become the well-
known cosh functions (Sec. XVI.A). Here the momen-
tum dependence of the diffusons can be neglected; apart
from a geometrical factor, the diffusons are identical to
the plane-wave case. Due to the integration over the
center of gravity, each diagram involves a factor
AdSq ,Sq8 . In the jth-order term there occurs a factor

Fj5
A

A2j (
q1q18 . . .qjqj8

f~q1!f* ~q18!. . .f~qj!f* ~qj8!dSq ,Sq8

5E d2ruf~r!u2j. (416)

For a plane wave we have uf(r)u5AA , and Fj5A12j.
For our Gaussian beam we obtain
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Fj5
1
j S pr0

2

2 D 12j

. (417)

It is thus convenient to identify AG5 1
2 pr0

2 with the ef-
fective area of a Gaussian beam. (This definition is dif-
ferent from the one used in previous sections, where
AG5pr0

2). As compared to the plane-wave case, the
jth-order term is smaller by a factor of 1/j for a Gaussian
profile. This implies for the generating function of the
connected diagrams

Fcon~x !5gE
0

1 dy

y
log2SA11

xy

g
1Axy

g D . (418)

For small sa (and large g), there is again a log-normal
saddle point. For large sa , the dominant shape of the
decay is given by the singularity at x52g and again
yields P(sa);exp(2gsa). The shape of the distribution is
quite similar to the plane-wave case. Expanding the gen-
erating function we recover the results for the second
and third cumulant obtained in Secs. XV and XVII.

D. Speckle intensity distribution

We apply the same method to obtain the distribution
of the angular transmission coefficient. The angular and
total transmission distributions are related to each other
in a fairly simple way, because the interference pro-
cesses are dominated by the same type of diagrams:
loopless connected diagrams. The different distribution
for total transmission and speckle is the consequence of
a counting argument only. In the plane-wave situation
the average angular transmission reads ^Tab&5eaebg .
Let us count the number of connected loopless diagrams
that contribute to Tab

j 5tabtba
† tab . . .tabtba

† . Now not only
massless outgoing diffusons, but all pairings into outgo-
ing diffusons contribute. This yields an extra combinato-
rial factor j! in the jth moment:

^Tab
j &con5j!~ j21 !!ea

j eb
j ^Tr~ t†t ! j&. (419)

FIG. 30. Distribution of the total transmission vs normalized
intensity sa . Theory and microwave experiments for three dif-
ferent sample sizes (a,b,c) from Stoychev and Genack (1997).
For curve (c), the conductance is the lowest at 3.06 (absorption
corrected). Reproduced with kind permission of the authors.
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For the normalized angular transmission coefficient sab
5Tab /^Tab&, we define the generating function of the
connected diagrams as (Nieuwenhuizen and Van Ros-
sum, 1995)

Fcon~x ![(
j51

`
~21 ! j21xj

j!2 ^sab
j &con , (420)

with Fcon given by Eq. (410) for plane-wave incidence
and by Eq. (418) for a broad Gaussian beam, respec-
tively. In contrast to the total transmission distribution,
the cumulants are not only given by the connected dia-
grams. Kogan et al. (1993) showed that the extra sum-
mation of the disconnected diagrams corresponds to an
additional integral, which finally yields a Bessel function:

P~sab!5E
2i`

i` dx

pi
K0~2A2sabx !exp„2Fcon~x !….

(421)

The integral can be evaluated numerically. The speckle
intensity distribution is shown in Fig. 31 for an incoming
plane wave.

For large g and moderate sab , one has Fcon(x)'x
and we recover Rayleigh’s law: P(sab)5exp(2sab). The
leading correction is found by expanding in 1/g ,

P~sab!5e2sabF11
1

3g
~sab

2 24sab12 !G . (422)

A similar equation was derived previously by Shnerb
and Kaveh (1991).

For obtaining the tail of the distribution, one can
again apply steepest descent, which yields

P~sab!exp~22Agsab!. (423)

This stretched exponential tail of the distribution was
observed as early as 1989 by Garcia and Genack in mi-
crowave experiments, but unfortunately their dynamic
range was rather small. The fit of the stretched exponen-
tial was therefore rather imprecise. The maximum inten-
sity was five times the average where one does not ex-
pect to see the tail behavior, but rather observes a
crossover behavior. Using Eq. (418) one easily derives
the speckle distribution due to an incoming beam with
Gaussian profile. This leads to a different distribution
with the same asymptotic behavior.

E. Joint distribution

It turns out that the speckle distribution and the total
transmission distribution of a given incoming direction
are related. This is not surprising as a large total trans-
mission for a given incoming direction will also be re-
flected in the individual speckles. The moments of the
joint distribution are

^sab
k sa

l &con5~k1l21 !!k!^Tr~ tt†!k1l&. (424)

The combinatorial factor k! is for the speckle pattern,
the factor (k1l21)! is the number of possible pairings
of incoming beam. Defining sab as sab5sabsa , one ob-
tains ^sab

k sa
m&5k!(m21)!^Tn

m& with m5k1l . Thus
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P(sab ,sa)5exp(2sab)P(sa). This shows that sab and sa
are independent variables. Nevertheless, sab and sa are
dependent. Their joint distribution is

P~sab ,sa!5
exp~2sab /sa!

sa

3E dx

2pi
exp„xsa2Fcon~x !…. (425)

Integration over sa or sab yields the distribution P(sab),
or P(sa), respectively. This is somewhat surprising. In-
deed, as the right-hand side of Eq. (425) contains only
connected diagrams, and thus the same holds for the
left-hand side. This seems to contradict our earlier re-
mark that P(sab) contained both connected and discon-
nected diagrams. However, in deriving Eq. (425) we
have tacitly performed an analytic continuation for
negative l values. By performing the integration over sa
we find the correct expression for P(sab).

In conclusion we have derived the full distribution
function of both the total transmission and the angular
transmission coefficients by mapping it to the distribu-
tion of eigenvalues of Tab . But at least for the lowest
cumulants one can use this mapping the other way
around. First, experiments on the distribution functions
confirm the eigenvalue distribution. Secondly, from our
detailed evaluation of the low-order diagrams, i.e., the
second and third cumulants, we can gain insight on the
eigenvalue distribution. It is clear from those calcula-
tions that the eigenvalue distribution is also based on
loopless connected diagrams.

The effect of absorption has been neglected here. Our
explicit calculation of second and third cumulants and
the experimental data show that the effects of absorp-
tion and skin layers can be incorporated to a large ex-
tent by considering normalized cumulants, such as
^Ta

3&c /^Ta
2&c

2. Indeed, in the presence of strong absorp-
tion these dimensionless ratios are similar to the values
calculated without absorption (Stoytchev and Genack,
1997). A theoretical analysis of absorption effects has
been carried out by Brouwer (1997).

The distribution of the conductance cannot be calcu-
lated using the above technique. The correlations in the
conductance correspond to these in the eigenvalues.
These correlations were not included, as we used only
the distribution of a single eigenvalue, and not the joint
distribution of multiple eigenvalues.
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APPENDIX: LOOP INTEGRALS

The same loop momentum integrals recur often in the
diagram calculations:

Ik ,l[E d3p
~2p!3 Gk~p!G* l~p!, (A1)

where G(p)5@p22k22nt#21. For the simplest integral,
I1,1 , we find

I1,15E d3p
~2p!3 G~p!G* ~p!

5E
2`

` dp

~2p!2

p2

~p21m2!~p21m̄2!
, (A2)

where m252k22nt . The sum of the residues yields
1/@4p(m1m̄)# , and without absorption the optical theo-
rem gives

m1m̄5
n Im t

k
5

1
l

. (A3)

Therefore

I1,15
l

4p
. (A4)

The general Ik ,l integral can be found from the I1,1 inte-
gral using

FIG. 31. Distribution of speckles vs the normalized intensity
sab for an incoming plane wave, g52, 4, and 8 (upper to lower
curve at sab55). The dashed line corresponds to Rayleigh’s
law (g5`).
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Ik11,l5
21
2km

d

dm
Ik ,l ;

Ik ,l115
21
2lm̄

d

dm̄
Ik ,l . (A5)

For example, I1,252I2,152il2/(8pk) and I2,2
5l3/(8pk2). We shall also use

E d3p
~2p!3 ~p•q!2Gk~p!G* l~p!5

1
3

k2q2Ik ,l , (A6)

where the factor of 1/3 comes from the angular integral.
If absorption is present m1m̄5@ l(12k2l2/3)#21, and
thus

I1,15
1

4p~m1m̄ !
5

l

4p S 12
1
3

k2l2D . (A7)

In general there is a prefactor

In ,m}~12k2l2/3!n1m21, (A8)

where we have assumed that kl!1. However, this pref-
actor need only be included for terms not proportional
to q or Ṽ , as we work to first order of (Ml).
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