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The fundamental issues of symmetry related to chirality are discussed and applied to simple situations
relevant to liquid crystals. The authors show that any chiral measure of a geometric object is a
pseudoscalar (invariant under proper rotations but changing sign under improper rotations) and must
involve three-point correlations that only come into play when the molecule has at least four atoms.
In general, a molecule is characterized by an infinite set of chiral parameters. The authors illustrate the
fact that these parameters can have differing signs and can vanish at different points as a molecule is
continuously deformed into its mirror image. From this it is concluded that handedness is not an
absolute concept but depends on the property being observed. Within a simplified model of classical
interactions, the chiral parameter of the constituent molecules that determines the macroscopic pitch

of cholesterics is identified. [S0034-6861(99)00255-X]

CONTENTS

I. Introduction 1745
II. Chiral Parameters 1748
A. Chirality is the absence of symmetry 1748
B. Construction of pseudoscalars 1748
1. Nonpolar molecules 1749
2. Ferroelectric liquid crystals 1750
III. “Rubber Glove” Molecules 1751
IV. Prediction of the Cholesteric Pitch 1752
V. Discussion and Conclusion 1755
Acknowledgments 1755
Appendix: Expression for the Torque Field 1755
Glossary 1756
References 1756

I. INTRODUCTION

Since the birth of stereochemistry more than 150
years ago with Pasteur’s discovery of handedness in mol-
ecules (Pasteur, 1848) interest in chiral molecules has
continued unabated. The term chirality was first coined
by Lord Kelvin (Thomson, 1893):

“I call any geometrical figure, or group of points,
chiral, and say it has chirality if its image in a plane
mirror, ideally realized, cannot be brought to coin-
cide with itself.”

Chirality permeates the entire fabric of the biological
world. Indeed, life as we know it could not exist without
chirality. The function of fundamental components of
the cell such as actin, myosin, proteins, and lipids, relies
upon their being chiral. The handedness of a molecule
can affect its odor, potency, and toxicity. Thus the syn-
thesis of a single enantiomer of a compound is crucial
for the delivery of safe and effective pharmaceuticals
and food additives.

Since chirality is the absence of inversion symmetry, a
structure is either chiral or it is not. However, just as the
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degree of order of a ferromagnet, which is either or-
dered or not ordered, can be quantified, so can the
chirality of a structure. A major theme of this collo-
quium is the development of quantitative measures of
chirality and its impact on physically measurable prop-
erties of materials. There is an agreed-upon convention
for answering the question of whether or not a molecule
is chiral. It involves identifying chiral carbons (to be dis-
cussed in more detail below) to which a handedness
can be assigned via the Cahn-Ingold-Prelog rule (Mc-
Murry, 1992), which orders the chemical groups at-
tached to the carbon according to their molecular
weight. The identification of the handedness in this way,
however, gives no indication of the magnitude, or even
the sign of the optical rotatory power this molecule will
exhibit in solution. Indeed the magnitude and sign of the
rotatory power depends on wavelength (though it is usu-
ally quoted in handbooks for the D-line of Na). Rota-
tory power provides only one quantitative measure of
chirality, which could be used, for instance, to assess
whether one substance is more or less chiral than an-
other. Similarly when a liquid crystal forms a cholesteric
it is obviously chiral. It can be more or less chiral de-
pending on whether the pitch is shorter or longer, re-
spectively. There are many other such quantitative mea-
sures. In this colloquium, we shall define quantitative
indices of chirality based on molecular geometry and
show how they enter the determination of a particular
observable, the pitch of a cholesteric liquid crystal.
Microscopic chiral constituents have a profound effect
on the macroscopic structures they form, striking ex-
amples of which are common in liquid crystals (de
Gennes and Prost, 1993). The simplest liquid crystalline
phase is the nematic phase, characterized by long-range
uniaxial orientational order of anisotropic molecules
called nematogens, as shown in Fig. 1(a). The centers of
mass of the constituent molecules are distributed homo-
geneously as in an isotropic fluid, but one of their anisot-
ropy axes aligns, on average, along a common unit vec-
tor m called the director. Strongly biaxial molecules (Fig.
2) can in principle condense into a biaxial rather than a
uniaxial nematic phase with long-range biaxial orienta-
tional order (de Gennes and Prost, 1993). In this phase,
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FIG. 1. Uniaxial and biaxial nematics. (a) Schematic represen-
tation of a nematic liquid crystal in which long molecular axes
align on average along a spatially uniform director n. The nem-
atogens of this phase can be either uniaxial [like Fig. 2(a)] or
biaxial [like Fig. 2(b)]. In the latter case, the long axis is the ¢
axis of length 2¢. (b) Schematic representation of the plane
perpendicular to n in a biaxial nematic. The b axes of nemato-
gens align on average along e perpendicular to n. (c) Sche-
matic representation of the plane perpendicular to m in a
uniaxial nematic composed of biaxial molecules. There is no
long-range biaxial order but there are short-range orienta-
tional correlations that persist out to a correlation length ¢&.
The angle ¢ measures the orientation of the ‘‘biaxial” axis of
each molecule with respect to the x axis.

one molecular axis aligns along n, and a second orthogo-
nal axis aligns on average along a second vector e per-
pendicular to n as shown schematically in Fig. 1(b). Bi-
axial molecules can also condense into a uniaxial
nematic phase with short-ranged biaxial correlations
rather than long-range biaxial order, as depicted in Fig.
1(c).

If these nematogens are chiral or if chiral molecules
are added to an achiral uniaxial nematic, the director n
will twist, creating the simplest twisted phase: the cho-
lesteric or twisted nematic phase, the first liquid-
crystalline phase to be discovered (Reinitzer, 1888). This
phase is depicted schematically in Fig. 3. The director at
position x=(x,y,z) rotates in a helical fashion:

n(x)=(cosqz,singz,0). (1)

In equilibrium the twist wave number g assumes a pre-
ferred value ¢q,, which corresponds to a pitch P
=2m/q,. Typically, the pitch can vary from hundreds of
nanometers to many microns or more, depending on the
system. Cholesterics with pitches on the order of 500 nm
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FIG. 2. Molecular models with decreasing symmetry. Repre-
sentations of (a) linear, (b) biaxial planar, and (c) chiral mol-
ecules. The molecule in (c) is a twisted “H”” obtained from (b)
by twisting about the long molecular axis (¢ axis). It is both
nonuniaxial and nonplanar, as required for a chiral molecule.

Rev. Mod. Phys., Vol. 71, No. 5, October 1999

n
Vd ]
—_—Z
— 27}

FA—rX—

FIG. 3. Schematic representation of a cholesteric liquid crys-
tal, showing the helical twisting pattern of the local director n
along the pitch axis (z in this case). The director rotates by 7 in
half a pitch P/2.

Bragg scatter visible light and appear iridescent. If
chirality is added to a biaxial nematic, a cholesteric
structure similar to that shown in Fig. 3 results, though
the local molecular order will be strongly biaxial. Other
liquid-crystalline phases with macroscopic chiral struc-
ture include the blue phase, in which the director twists
in all directions to produce a three-dimensional periodic
crystal, and the smectic-C* phase. The dipole moments
of the molecules in the latter phase become ordered as a
consequence of their chirality and make this phase
ferroelectric. Technologies based on these ferroelectric
liquid crystals show great promise for fast-switching,
high-resolution displays.

Models of chiral molecules are shown in Fig. 4. Of
particular importance in chemistry is the tetrahedrally
coordinated molecule, shown schematically in Fig. 4(a),
consisting of a central carbon atom with each of its four
bonds connected to a different chemical unit. If any two
of these chemical units are equivalent, then the molecule
has a mirror plane and is not chiral. If all the chemical
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FIG. 4. Examples of chiral structures created from achiral
ones: (a) Left, an achiral molecule in the shape of a tetrahe-
dron with four equal masses at its vertices; right, a similar chi-
ral molecule with four unequal masses at its vertices. (b) Left,
an achiral planar sheet; right, a helix formed by twisting a
sheet about a cylinder. (c) Left, an achiral propeller with all
blades perpendicular to the hexagonal core; right, a chiral pro-
peller with all blades rotated away from the normal to the
hexagonal plane. (d) Left and middle, cylinder with achiral
decorations; right, chiral cylinder with helical decorations.
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units are different then the molecule is chiral and the
central carbon atom is referred to as a chiral center.
More complex molecules may have many such chiral
centers. If all atoms of a molecule lie in a single plane,
that plane is a mirror plane, and the molecule is achiral;
therefore chiral molecules must be three dimensional.
The converse does not hold: not all three-dimensional
molecules are chiral. For instance, structures that have
continuous rotational symmetry about an axis (C..) are
not chiral. The simplest nonuniaxial structures have
second-rank mass-moment tensors with three inequiva-
lent principal axes and are biaxial. Figure 2 shows model
linear, biaxial planar, and chiral molecules. The twisted
“H” in Fig. 2(c) is both biaxial and chiral.

In spite of its practical importance, there is no univer-
sal quantitative description of molecular chirality, nor is
there an accepted procedure for identifying the chiral
part of an intermolecular interaction. As a result, only
recently has real progress been made in addressing
straightforward and apparently simple issues such as the
relation between the cholesteric pitch and molecular ge-
ometry. Ideally one would like to introduce a parameter
that measures the chiral strength or degree of chirality
of a given molecule. A nonvanishing value of this pa-
rameter, which we shall refer to as a chiral strength pa-
rameter or simply a chiral parameter, would distinguish
a chiral molecule from an achiral one, just as the dipole
moment distinguishes a polar molecule from a nonpolar
one. In addition, such a chiral parameter would play a
crucial role in determining macroscopic chiral proper-
ties, such as the optical rotary power, the wave vector
for cholesteric ordering, and other macroscopic chiral
indices. Unfortunately, there appears to be no such
simple description of chirality and chiral parameters. As
we shall show, just as a charge distribution can be de-
scribed by an infinite hierarchy of multipole moments,
so a chiral molecule can be described by an infinite hi-
erarchy of chiral parameters. If any one of these param-
eters is nonzero, then the molecule is chiral. Also, since
different macroscopic properties will, in general, depend
on different microscopic chiral parameters, we do not
expect strong correlations between the various macro-
scopic manifestations of chirality.

Even if one were equipped with a complete under-
standing of the nature of interactions between chiral
molecules, the calculation of macroscopic parameters
like the cholesteric pitch would not be completely
straightforward. An argument due to Straley (1974), il-
lustrated in Fig. 5, makes it clear why molecular chirality
causes macroscopic rotation: when two screwlike mol-
ecules are brought close together, their grooves inter-
lock to produce a finite rotation angle A between long
molecular axes. A simple estimate of the pitch based on
this picture is P~ (2/A 0)! where [ is the molecular di-
ameter. Taking a rough estimate of A§~10°-20° and a
molecular size of roughly 1 nm, one finds that P
~10nm, two or three orders of magnitude smaller than
typical pitches. Indeed some chiral systems (Fraden,
1995) are labeled nematic rather than cholesteric, pre-
sumably because their pitches are too long to be mea-
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FIG. 5. This figure shows how steric interactions between two
chiral molecules produce a net relative rotation of their long
axes. The “‘barber pole” stripes on the model cylindrical mol-
ecules represent protrusions such as are found on a screw. If
the protrusions on one molecule (the shaded regions) are
forced to fit “hand in glove” into the grooves on another (the
unshaded regions) then, as we show on the right, when one
molecule is placed upon another, the protrusions on one mol-
ecule align with the grooves on the other. The result is that the
long axes of the two molecules acquire a relative twist deter-
mined by the pitch of the stripes. In (a) we show molecules
with a tight right-handed pitch as determined by the geometri-
cal right-hand rule. The relative twist of two neighboring mol-
ecules is right handed according to the right-hand rule. (b)
shows molecules with a weak right-handed pitch. The relative
twist of neighboring molecules is now left handed. These ex-
amples show that the “handedness” of individual molecules
does not determine the handedness of the collective structure.

sured experimentally. Thus a quantitatively correct cal-
culation of the cholesteric pitch cannot be based solely
on molecular parameters and presents a challenge to
theorists. As we demonstrated previously (Harris, Ka-
mien, and Lubensky, 1997), for central-force or steric
models, g, vanishes (infinite pitch) unless biaxial corre-
lations between the orientations of adjacent molecules
(such as are illustrated in Fig. 1) are taken into account.
Quantum interactions, however, do not require such
correlations and hence can give a nonzero value of g
even within mean field theory.

The purpose of this colloquium is to present recent
progress both in quantitatively characterizing molecular
chirality and in calculating the cholesteric pitch from mi-
croscopic interactions. In Sec. II we start by making
some naive qualitative comments about the nature of
chiral symmetry. The central idea is that an achiral ob-
ject has higher symmetry than a chiral one. We develop
a systematic procedure for generating a countably infi-
nite set of chiral molecular parameters that all vanish
when the molecule is achiral. Next, in Sec. III, to illus-
trate our chiral parameters we consider a topological
“rubber glove,” a chiral structure that can be converted
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to its mirror image via distortions through a continuum
of intermediate states, all of which are chiral. This dem-
onstration shows clearly that handedness is not an abso-
lute concept, but depends on the property under consid-
eration. In Sec. IV we describe a calculation of the
cholesteric pitch from a classical model of central forces
between atoms. This calculation shows that biaxial cor-
relations play a critical role in determining the pitch P.
In fact, if these biaxial correlations do not exist, each
molecule rotates freely and appears, on average,
uniaxial and thus achiral. In accord with our discussions
of chiral parameters in Sec. II, we expect that other mac-
roscopic chiral response functions, such as the rotatory
power, will depend on other chiral structure parameters.
Indeed, it is likely that an understanding of many such
indices of molecular chirality is required to interpret the
dramatic frequency dependence of these susceptibilities.

Il. CHIRAL PARAMETERS

As mentioned in the Introduction, one expects the
chiral interaction between molecules to involve param-
eters characterizing the chiral strengths of the mol-
ecules. However, there is no obvious precise quantita-
tive formulation of parameters that characterizes the
degree to which a given molecule is chiral. Only a hand-
ful of chiral strength parameters have been proposed.
For instance, Osipov et al. (1994) developed a measure
of molecular chirality by considering the symmetry of
response functions describing the electromagnetic be-
havior of chiral molecules. We also introduced a chiral
strength parameter in a previous calculation (Harris,
Kamien, and Lubensky, 1997) of the chiral wave vector
qy- We review this calculation of g in Sec. IV. Both of
the above chiral parameters are nonlocal (in a sense to
be made more precise later), a feature that we shall see
is generic. In the following we give a more systematic
discussion of the structure of such chiral strength param-
eters.

A. Chirality is the absence of symmetry

A preliminary remark is that “‘chiral symmetry” is ac-
tually an absence of symmetry, i.e., the absence of sym-
metry under improper rotations. Thus a chiral object has
lower symmetry than an achiral object that is invariant
under chiral operations. This situation contrasts with
“spherical symmetry,” which implies the existence,
rather than the nonexistence, of symmetry elements. Ac-
cordingly, it is instructive to compare the way spherical
symmetry is destroyed when a sphere is distorted to the
way achiral symmetry is destroyed when an achiral ob-
ject is chirally distorted. To start, we consider distortions
of a sphere centered at the origin. Initially, the sphere of
radius rq is a surface described by

r=rg, 2)

where r is the radial coordinate from the origin. When
the sphere is distorted, the radial coordinate of its sur-
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face will depend on the usual angles 6 and ¢ and can be
expanded in spherical harmonics:

® m=n

r:r0+2 E aannm(ead))a (3)
n=1 m=-n
where a,,,=a; _,(—1)".

Usually one characterizes distortions by the values of
the a,,,’s for the smallest value of n for which one of
these is nonzero. The first-rank tensor a;,, describes
translations of the sphere, which do not alter the sym-
metry and which we ignore. Thus the lowest-order dis-
tortions are characterized by a,,,, which in a Cartesian
representation is a symmetric, traceless, second-rank
tensor. In general, a complete specification of the shape
of an aspherical surface requires the values of the infi-
nite set of a,,,. Since the a,,,’s mix with each other
under rotation, it is desirable to construct rotationally
invariant measures of asphericity. A useful class is the
quantities

=2 Ay (4)

which provide rotationally invariant characterizations of
the magnitude of the asphericity associated with
nth-rank tensor distortions. It is entirely possible for o,
to vanish while higher-order ¢, do not. In this case the
distortion is characterized by the lowest-order, nonvan-
ishing value of o, .

With the above discussion in mind, we consider chiral-
ity. An object can be described by the multipole mo-
ments of its density, p(7,8,¢), namely

hﬁlmNEJ drp(r’07¢)rNYlm(97¢)7 (5)

where b, y=(—1)"P, _,.n since p(r,0,¢) is real. The
moments p;,,y for a given N define a tensor parameter
that transforms under a (2/+1)-dimensional represen-
tation of the rotation group. The alternative Cartesian
representation in terms of symmetric, traceless tensors
Py ! of rank [ is used extensively in treatments of
liquid-crystalline order, and we shall employ them when
appropriate. For a molecule consisting of point atoms,
the density consists of a sum of Dirac delta functions
locating each atom. This provides a natural framework
to study interactions between molecules, in which con-
nection the central quantities are p;,,5 . The question we
wish to address here is how these moments, or appropri-
ate functions of them, characterize chirality. We start by
discussing the analogs of the parameters o, in order to
characterize the magnitude of chirality.

B. Construction of pseudoscalars

Bearing in mind that chirality requires the absence of
inversion symmetry, we propose to characterize the
magnitude of chirality by an infinite sequence of pseu-
doscalars. First, note that Lord Kelvin’s definition may
alternatively be stated as ‘“‘an object is achiral if there
exists a rotation € such that the object is invariant un-
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der the operation QS,, where S, is spatial inversion.”
Since spatial inversion is a mirror operation followed by
a 7r rotation about an axis perpendicular to the plane of
the mirror, this definition of chirality is equivalent to
Lord Kelvin’s. A scalar is invariant under both rotations
and inversion while a pseudoscalar is only invariant un-
der rotations—it changes sign under inversion. Thus any
pseudoscalar parameter i, that we construct from the
multipole moments of the density will necessarily vanish
when the molecule is achiral. Furthermore, the degree
of chirality can be characterized by the magnitudes of
the set of ¢, just as the degree of asphericity was char-
acterized by the various o,, .

The construction of pseudoscalars can be done sys-
tematically by considering the representation theory of
the three-dimensional rotation group O(3). This proce-
dure amounts to nothing more than considering the
quantum-mechanical addition of angular momentum.
To each representation we will attach its transformation
properties under inversion (i.e., parity). Pseudoscalars
will transform as one-dimensional representations with
odd parity. Denoting the d-dimensional representation
with parity p as d”, we note that the rank-/ representa-
tions generated by the multipole expansion are

17,3°,5%,..,2+) ... (6)

To construct a pseudoscalar we must form tensor prod-
ucts of different representations. While the resulting
representations obey the rules for addition of angular
momentum, the parity of the new representation is sim-
ply the product of the parities of the two representa-
tions. For instance, since two spin-1 states (with odd par-
ity) can be combined to form a spin-2, spin-1, or spin-0
state (all with even parity), we have

37 @3 =5"a3" @1 . (7)

This gives us our first representation that is not a multi-
pole representation: 3, a pseudovector. Forming the
triple tensor product,

I R 3 =7Te5e5e3 o3 el ol, (8
we arrive at our first pseudoscalar 1, which we recog-
nize as the vector triple product A-(BXC). The above
discussion suggests that any pseudoscalar must involve a
product of at least three of the multipole moments
Pinn - It is, in fact, always the case that a 1™ can only be
constructed from the tensor product of d*®d~. Since
the multipole moments do not include both d* and d~,
one must construct one of these via tensor products.
Thus any pseudoscalar must involve a product of at least
three of the multipole moments. This implies that a chi-
ral parameter for a given object can be expressed as an
integral over at least three position vectors in that ob-
ject, and in this sense, chirality is a nonlocal property.

1. Nonpolar molecules

In this subsection we confine our attention to the case
in which vector representations can be eliminated by
proper choice of the center of the molecule. Specifically,
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in this case we do not allow molecules to have a dipole
moment. (That case will be considered in the next sub-
section.) To illustrate this theoretical discussion, let us
look for the lowest-order (in powers of components of r)
pseudoscalar that can be constructed from the simple
mass-weighted distance moments

Pim= E |r)(|lYlm(0X’¢X) (9)
xeX

of a homoatomic molecule, where the sum is over atoms
x in the molecule X. Throughout, we shall label mol-
ecules with capital Roman letters and their constituent
atoms by Greek letters. The center of mass of molecule
A will be R, and each atom « will be displaced from
there by r,,. For simplicity we focus only on p,,
=D}, - Our discussion could be embellished by consid-
ering p;,,,y for other values of N. If we measure the den-
sity relative to the center of mass, then py,,=0 for all m.
Thus the multipole expansion only provides us with d
=5 or larger-dimensional representations. Since we
have restricted ourselves to a single tensor for each
d-dimensional representation, 5*®5" will not contain
any pseudotensors, and the lowest-order pseudotensor
we can construct is contained in 5*®7~. We could now
try to construct a pseudoscalar by contracting the result-
ing tensors with 5°, but, again because we are consider-
ing only the moments p,,,, we would get zero just as we
would get zero for the triple product AXB-A=0 in the
vector case. A nonzero pseudoscalar only results when
5*®7" is contracted with a tensor different from the 5*
and the 7. Thus the lowest-order pseudoscalar we seek
isin 57 ®7 ®9". In terms of spherical harmonics we set

Yo >, C(234mN) P2nP3nPim s » (10)

where C(234;mn) are the appropriate Clebsch-Gordan
coefficients. It is convenient to choose the normalization
so that in the Cartesian representation this is

_ ij ki il
Yo=p3p3 " €irpply " - (11)
Note the presence of the antisymmetric symbol €;;, in
this expression. It is required to produce a scalar from
two even-ranked and one odd-ranked tensor.

We can calculate i, for the “twisted H” molecule,
M, shown in Fig. 2, with four identical atoms at

Ml:{(avb’c)v(av_bv_c)9(_a9b9_c)’(_a’_bsc)}'

(12)
This molecule is chiral if abc#0 and if |a|#|b|#|c|
#|al. Since i is a rotational invariant, it may be evalu-
ated in any convenient coordinate basis. We find

Yo=Ko(a’>—b?)(b*—c?)(c*—a®)abc, (13)

where K| is a numerical constant. Note that ¢, does
indeed vanish when the parameters assume the special
values for which the molecule has the higher achiral
symmetry. Moreover, since the mirror image of M| may
be obtained by exchanging any two of a, b, and ¢ or by
reversing any one of their signs, we see that under inver-
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sion ¥y— — ¢y, and it is indeed a pseudoscalar. This
ninth-order multinomial is the lowest-order expression
constructed from p;,,, which must vanish for an achiral
object. However, just as in the discussion of asphericity,
it is possible to consider a class of chiral molecules for
which ¢, vanishes but which requires an even higher-
order multinomial to characterize its chirality. Consider
a 12-atom molecule, M,, obtained by taking the atoms
as in the “twisted H” together with the eight atoms ob-
tained by cyclic permutation, so that identical atoms are
now at

M,={(a,b,c),(a,—b,—c),(—a,b,—c),(—a,—b,c),
(b,c,a),(—b,—c,a),(b,—c,—a),(—b,c,—a),

(c,a,b),(—c,a,—b),(—c,—a,b),(c,—a,—Db)}.
(14)
To show that ¢, vanishes for M,, it suffices to verify
that p,,,=0 for all m. (This result is most easily verified
using the Cartesian representation for pj.) However,
except for the special values of the parameters (i.e., a
=0,b=0,c¢=0, |a|=]|b]|, |b|=|c|, or |c|=]al), this object
is clearly still chiral since it is the union of three identical
chiral objects. To describe its chirality the lowest-order
pseudoscalar constructed from the moments p,, is

¢1=2V C(346; uV) P3P 4vPG +v » (15)
w

which we evaluate to be
y=Kiabc(a®>—b*)(b>—c?)(c?—a?)
—4a’b?—4b%c?—4c%a?), (16)

where K is a numerical constant. As was the case for
Yy, this chiral strength parameter vanishes when the
“twisted H”’ is made to be achiral.

It is clear that we can construct an infinite sequence of
chiral parameters from the p;, that vanish for achiral
objects. For example, when J, K, and L are all different
integers whose sum is odd, each of the quantities

X(a*+b*+c*

'ﬁJKL:% C(JKL;mn)pmprnPl m+n (17)

is a chiral parameter, which is nonzero only for chiral
molecules.

If we consider different tensors of a given rank, we
can construct other sets of chiral parameters not encom-
passed by i,k . For example, if there are two distinct
second-rank tensors y§ and 75, then we can construct
the chiral parameter

=7 217'2]mfukpédm‘xg1 C(223;mn) Yo T2nPim+n- (18)

When 7’2’ = 72 , ¥, vanishes because € is antisymmetric
in all indices. The tensors yéf could, for example, be con-
structed from p,,, and p,,,n for N#[. Alternatively, two
different tensors could be constructed from the second-
rank mass-moment tensor
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1
pIZJ_E (I" r/_gr)(él]) (19)
XEX
To do this, we express pj in the basis of its orthonormal
principal axes emblazoned on the molecule e;, e,, and
e;, where e;=e;Xe, is associated with the largest-
magnitude eigenvalue of p4. Then we decompose p¥
into its uniaxial (Q"”) and biaxial (B”) components as

pY=SQ"+B(e\e}—eheh)=SQ"+ B, (20)
where
3 1
=§§ (r,-e3) —gri, (21a)
1 2 2
B=32 [(roe)’=(r, )], (21b)
X
and
. 1
QU=|ekes— 35l~]~ . (21¢)

Note that B, the biaxial part of pJ , vanishes when the
molecule is un1ax1al Setting y§=Q", /=B and pj*
=Sk we obtain

Yr=Q" "B Sk (22)

as a chiral strength parameter, which plays a role in our
calculation of the cholesteric pitch g to be presented in
Sec. IV. For the “twisted H> molecule, we have

Yr=Chabc[la’+c?—2b%|+a’—c?] for a’<b’<c?,

(23)
where C, is a numerical constant. Expressions for ¢, in
regimes other than a><b?<c? can be obtained by suit-
ably permuting variables. One may verify that when Eq.
(23) is valid, ¢, vanishes when the molecule is achiral,
i.e., when a’=b%<c? or a’<b?=c2.

One can construct different second-rank tensors in
other ways. For instance, in some phenomenological in-
termolecular potentials, the strength of the dispersion
interaction between a pair of atoms is estimated to scale
with the product of their atomic polarizabilities. In that
case, a polarizability-weighted second-distance moment
is generated by the multipole expansion of the intermo-
lecular potential. In general, a tensor with any weighting
that is distinct from the mass weighting can play the role
of the additional second-rank tensor needed to charac-
terize chirality. Such moments would have the form

Flmzzx WXYlm(exv¢X)’ (24)
where w Vx is a weight factor, which can differ from the
factor r in Eq. (9). For a molecule with p atoms, we
can 0bV10usly have up to p linearly independent second-
rank tensors. As we mentioned, moments similar to
these have been used in the study of optical properties
of chiral systems by Osipov et al. (1995).

2. Ferroelectric liquid crystals

There are cases in which one may invoke the vector
representation, even in liquid-crystalline systems. A par-
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ticularly interesting case is that of ferroelectric liquid
crystals (Meyer et al., 1975). These phases are composed
of mesogens that have an electric dipole moment. Recall
that the smectic-C liquid-crystalline phase is a one-
dimensional layered structure with layer normal N. In
each layer the nematic orientation n is not parallel to
N. Thus one can construct the pseudovector A
=(n-N)(nXN). It is clear that under parity A does not
change sign and that both the nematic (n— —n) and
layer normal (N— —N) inversion symmetries are pre-
served. However, if the molecules are chiral, as we have
seen, a nonvanishing pseudoscalar ¢ may be con-
structed. In this case P= /A is a true vector and can set
an unambiguous alignment direction (perpendicular to n
and N) for the molecular dipole moments.

In general, when electrostatic interactions are taken
into account, both signs of charge are present and there
is a nonzero dipole moment that no change of origin can
eliminate. In this case, we can again construct two dif-
ferent second-rank tensors, 7§ and 4, and then

. i _jk, Lk
l//fzz C(lzz’mn)plmTZn‘y’Z\‘,ernocpll72] Y2 €iji»

mn

(25)

is a pseudoscalar which includes the (dipole) charge mo-
ment pyq,,,

pi=2 q,r. (26)
XEX

In fact one could construct a pseudoscalar from a vector

triple product of three noncoplanar vectors obtained by

introducing three different weight factors into the sum
in Eq. (26).

lll. “RUBBER GLOVE” MOLECULES

We have argued that a quantitative characterization
of chirality does not rest on one parameter, but rather
on an infinite hierarchy of chiral moments. However,
one has a natural tendency to associate a specific hand-
edness with a given chiral molecule. We shall show that
even the “handedness” of a molecule depends on the
chiral property under consideration. This is, in fact, fa-
miliar from circular dichroism measurements: the differ-
ence in attenuation of left versus right-circularly polar-
ized light changes sign as a function of its wavelength.
Thus the handedness of an object is really in the eye of
the beholder.

To illustrate this idea, we consider a process in which
a chiral molecule is continuously deformed into its enan-
tiomer or mirror-image molecule. For the “twisted H”
molecule, we could do this by continuously varying the
parameter a until its final value becomes the negative of
its initial value. Obviously, when a passes through zero
the molecule is achiral and one might be tempted to say
that the plane a=0 in parameter space separates regions
of opposite handedness. However, as we shall show by
example, it is possible to continuously deform a chiral
molecule into its enantiomer without passing through an
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TABLE 1. Atoms and weightings W and W' for the chiral
parameters i, and ¢ of the “twisted H” molecule, M .

Position () W(x) W’ (x)
(a,b,c) 1 T+u
(a,—b,—c) 1 T4+u
(—a,b,—c) 1 1=p
(—a,—b,c) 1 1—u

achiral configuration. (Here ““deformation” is used in its
most general sense in which not only the coordinates,
but also the mass and other properties of atoms are var-
ied.) The existence of such a continuous deformation is
incompatible with the existence of an intrinsic definition
of right or left handedness. It is also clear that any single
measure of chirality will pass through zero at some point
in the process of deforming a molecule into its enanti-
omer. However, a molecule is achiral only if all of its
chiral moments are zero; the vanishing of a single chiral
moment alone does not make a molecule achiral. We
shall illustrate explicitly that there exist paths of defor-
mations between enantiomers along which there is no
point where all chiral moments vanish. Nevertheless,
along this path every chiral measure must and does van-
ish at some point. A molecule that can be deformed in
this way is known as a topological rubber glove, in anal-
ogy with a real rubber glove—it can be inverted one
finger at a time and thus always remains chiral (Walba
et al., 1995). In the context of our discussion we would
interpret this by saying that the eye automatically mea-
sures many indices of chirality, and as each finger is in-
verted some indices may pass through zero to change
sign until finally all indices have changed sign.

We can see this explicitly by keeping track of more
than one chiral parameter as the “twisted H” is inverted
continuously into its enantiomer. The two chiral param-
eters we shall monitor are i, and ¢ . ¢, is defined in
Eq. (10) and given explicitly in Eq. (13). ¢, is also de-
fined as in Eq. (10), except that now p,,, is replaced by
Pl W], where

pzm[WJ=X§X WO Ir,— P LW1'Y ,,(0,,0,),  (27)

where W(x) is a weighting function associated with the
atom y and r’[ W] is the W-weighted center of the mol-
ecule, chosen so that py,,[ W] vanishes. Various weight-
ing functions are shown in Table I. Until now we have
considered molecules composed of identical atoms, i.e.,
W(x)=1. Of course, the molecule need not have iden-
tical atoms, and, therefore, not all properties of the at-
oms need be the same. For instance, if all the atoms are
weighted equally, p;,,[ W] would correspond to a purely
geometric moment. However, if we were to weight the
atoms by their polarizabilities, then the moments would
be different. We have defined ¢, to reflect geometric
properties and ¢ to reflect others. We could have in-
stead introduced other weight functions that reflect the
valence, electronegativities, etc., of the atoms. Since dif-
ferent properties are not perfectly correlated, they may
require different weight functions. To construct the con-
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FIG. 6. Path I (AFE) and path II (ABCDE) between chiral
enantiomers (mirror images) A and E for a molecule consist-
ing of four atoms at the vertices of a twisted H for the param-
eters used in Fig. 7. Below each configuration we give (o,0'),
where o and o' are, respectively, the signs or zero value of i,
and ¢ . In configurations C and F, a=b. Path AFE passes
through the achiral configuration F. Path ABCDE passes
through chiral configurations only. Configuration C would
have a mirror plane (as does F) if the masses were all equal.

tinuous deformation between enantiomers, we only in-
voke “twisted H”” molecules that have atoms with polar-
izabilities 1+ u on sites 1 and 2 and 1 — u on sites 3 and
4. The point here is that the molecule is chiral if either
Wy or i is nonzero.

In the calculation of ¢ all displacements r, are evalu-
ated relative to the “center of polarizability”’ of the mol-
ecule, so that pj,,=0 for all m. We find that

Yo=Ko(1-p)2abe(b?~c?)
X[(cz—az)(az—bz)—%,u,za“]. (28)
When the molecule is tetrahedral (a=b=c), it is truly
achiral if any two of its atoms are identical. Indeed in
this case i, and ¢ (as well as all other chiral param-
eters) vanish.

Let us now consider a process in which the molecule is
distorted in the parameter space (g, b, w) from the initial
configuration A of Fig. 6 into its enantiomer, E, while
remaining chiral along the entire path of deformation.
Initially ©=0 and 0<a<b<c.

Note that any pseudoscalar must change sign under
reflection and therefore must pass through 0 somewhere
along the path between enantiomers. We shall consider
two paths between the molecule and its mirror image
described in Fig. 6: the first will be a path AFE through
an achiral point, the second a path ABCDE that goes
only through chiral states, along which ¢, and ¢ never
simultaneously vanish. Our deformation will rearrange
the molecule into its mirror image under the operation
(x,y,2)—(y,x,z) which takes (a,b,c) into (b,a,c). We
may parametrize AFE by
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FIG. 7. Plot of the chiral measure i, and ¢ along the path
ABCDE. Note that both parameters pass through zero on this
path, but they do not pass through zero at the same place. The
parameters used to obtain this plot are a(0)=0.99, b(0)
=1.01, c=1.2, and p(=0.15.

a(1)=a(0)+[b(0)—a(0)]z, (292)
b(1)=b(0)+[a(0)—b(0)]z, (29b)
p(1)=0, (29¢)

where =0 corresponds to the initial configuration A
and =1 to the enantiomer E. For concreteness, we have
used the values a(0)=0.99, b(0)=1.01, and c=1.2.
Note that r=1/2 corresponds to the point F, which is
achiral, at which it is easy to see that ¢,= =0 since
a(1/2)=b(1/2) and u=0. To pass between enantiomers
without passing through an achiral configuration we
shall follow the path ABCDE along which the mass pa-
rameter p does not remain fixed at zero. Note that this
path avoids the line, a=b and w=0, along which the
molecule is achiral. Over the first section of the path,
AB, we change the masses of the atoms by changing u
from its initial zero value to a suitable value u (ug
= 0.15). Over the second section, BCD, the mass pa-
rameter is held fixed, so that u=pu,, but a and b are
varied as in Egs. (29a),(29b), so at D w=pu, a(tp)
=b, and b(tp)=a. Finally along DE, a(¢) and b(t) re-
main constant but u is changed from u, back to zero.
For the parameter values we have chosen, i changes
sign on this part of the path. Since configuration E is the
mirror image of configuration A, the values of all chiral
parameters, including ¢, and ¢ have changed sign. But
all states in the path of deformation are chiral and no-
where on this path do both ¢, and ¢ simultaneously
vanish. The chiral measures i, and i, for the path
ABCDE are plotted in Fig. 7.

We note that in a molecule with more than four at-
oms, our artificial deformation of the masses can be re-
placed by the additional degrees of freedom provided by
the other atoms.

What shall we conclude from this example? Since we
can continuously deform a molecule into its enantiomer
via only chiral states, there is no general, unambiguous
characterization of handedness.

IV. PREDICTION OF THE CHOLESTERIC PITCH

We now turn to the calculation of the cholesteric wave
number g, in terms of the microscopic interactions be-
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tween molecules. We shall argue that previous classical
analyses of this problem have missed an essential fea-
ture of chiral interactions—the necessity of biaxial cor-
relations between the molecules. Our result will involve
the chiral parameter ¢, defined in Eq. (22). In accor-
dance with experimental observations we shall assume
that gga<<1, where a is a typical intermolecular separa-
tion. This means that the cholesteric can be treated lo-
cally as a nematic even though it is twisting on longer
length scales. Our aim, then, is to obtain a formula for
qo in terms of correlation functions evaluated in the
nematic limit, i.e., when all chiral interactions have been
turned off. This type of result is particularly desirable
for numerical simulations, since it only requires nematic
correlation functions and hence simulations of the nem-
atic state rather than the cholesteric state.

In this spirit we start by considering the long-
wavelength properties of systems that are locally nem-
atic with fluctuations described by the phenomenologi-
cal Frank free energy (Frank, 1958), which depends on
the director n(x). When surface terms are neglected,
which only come into play when topological defects or
internal surfaces are present (Kléman, 1983), the Frank
free energy is

1
F= Ef d>x{K{(V-n)’+K,(n-Vxn)?

+ K;[nX(VXn)]>+2hn-V Xn}. (30)

This effective free energy can describe most of the phe-
nomena of nematic and cholesteric liquid crystals. The
parameter A is the generalized thermodynamic force
that determines the pitch. We shall refer to /4 as the
torque field since it is proportional to the microscopic
intermolecular torques as we shall show. To see how A
determines the pitch, we consider a helical configuration
of n(x) as in Eq. (1). Then, the twist

—n-VXn=gq (31)

is spatially uniform, V-n=0, and nX(VXn)=0. The
Frank free energy is

1
F=Y(§K2q2—hq], (32)

where Y is the volume of the system. This energy is
minimized when

Note that 4 is a pseudoscalar. Under spatial inversion, &
and therefore also the “twist” change sign: n-VXn—
—n-VXn since it is linear in spatial gradients. To obtain
a nonzero value of # it is, therefore, necessary that the
system not be invariant under spatial inversion. Further-
more, we see that to evaluate g, we need to calculate
both 4 and K.

The Frank elastic constants K;, K,, and K3 can be
estimated by dimensional analysis using only excluded
volume (entopic) interactions by dividing an energy
scale by a length scale. Taking the energy scale to be
kyT~4x10"*erg and the length scale to be a molecu-
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lar size ~1 nm, we find that K;~4 X 10~ dyne, or about
1 dyne. This is approximately correct for typical liquid
crystals that exist at room temperature. As we discussed
in the Introduction, dimensional analysis does not pre-
dict g, correctly: q Uis typically on the order of or
larger than hundreds of nanometers and does not corre-
spond to any natural length scale in the problem. The
challenge, therefore, is to calculate 4 and to determine
why its magnitude does not correspond to what dimen-
sional analysis suggests.

A major objective is to establish an approach that in
principle will provide a rigorous calculation of the cho-
lesteric pitch (or equivalently of /) in the limit when the
pitch is very long, i.e., when goa—0. The starting point
of any microscopic calculation of & must be the intermo-
lecular potentials. Liquid-crystal mesogens are notori-
ously complex, containing hundreds to hundreds of
thousands of individual atoms, and they have corre-
spondingly complex interactions. A reasonable ap-
proach, and the one we pursue here, for constructing the
desired potentials is to model each mesogen as a collec-
tion of connected spherically symmetric atoms that in-
teract via pairwise central-force potentials with atoms on
other mesogens. The interatomic potential consists of a
long-range van der Waals part and a short-range repul-
sive part arising mostly from the Pauli exclusion prin-
ciple. Fluid physics is dominated by the short-range re-
pulsive part, and it is often useful to replace the full
interatomic potential by a simple hard-core potential
with no attractive part. An intermolecular potential con-
structed in this way includes steric interactions that force
two chiral objects like screws or ridged ‘‘barber poles”
(Fig. 5) to twist relative to each other when in contact.

There are contributions to the effective intermolecu-
lar potential that cannot be expressed as a superposition
of interatomic central-force potentials. The simplest
such contribution is a chiral dispersion potential—an an-
isotropic generalization of the van der Waals potential.
Dispersion forces arise from the Coulomb potential be-
tween all pairs of electronic and nuclear charges and
quantum fluctuations of the electronic states. The van
der Waals potential is produced by the interaction of
fluctuating electric dipoles on different atoms. If mol-
ecules are chiral, a fluctuating dipole on one molecule
can interact with a fluctuating quadrupole on another to
produce an effective chiral dispersion force (van der
Meer et al., 1976; Kats, 1978; Issaenko et al., 1999). It is
difficult at the moment to obtain first-principles esti-
mates of the strength of chiral dispersion forces.

In what follows, we confine our attention to pairwise
central-force interactions. Once the intermolecular po-
tentials have been chosen, the next step is to devise a
scheme to compute h. Since gga<<1, one may assume
that 4 is small and calculate all quantities to lowest order
in A, or equivalently to lowest order in gga. The choles-
teric twist induces biaxial contributions to the nematic
order parameter or order (qoa)? (Priest and Lubensky,
1974). Thus, to lowest order in gga, biaxiality can be
ignored, and the cholesteric can be treated as though it
were locally uniaxial. Mean-field theory is a natural first
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calculational approach to pursue (Schroder, 1979;
Evans, 1992; Pelcovits, 1996; Ferrarini et al., 1996). In
the locally uniaxial limit appropriate to most cholesteric,
mean-field theory will always predict =0 (Salem et al.,
1987) when central-force potentials between atoms are
assumed. This result is easy to understand: Mean-field
calculations seek the best self-consistently determined
distribution function for a single mesogen. In a uniaxial
system, this distribution function will be uniaxial and
produce only uniaxial average mass moments. Since
there are no uniaxial structures that are chiral, any
manifestation of chirality is washed out, there will be no
potential favoring relative twist of neighboring mol-
ecules, and g, will be zero. Thus a more powerful ap-
proach than mean-field theory is needed to calculate g
in the majority of cholesterics that are nearly uniaxial. In
the less common case that would arise when chirality is
introduced in a biaxial nematic, the cholesteric is locally
biaxial, and mean-field theory will produce a nonvanish-
ing value of ¢ .

The failure of mean-field theory can be traced to its
neglect of biaxial correlations between neighboring mol-
ecules. A first-principles theory developed by the au-
thors (Harris et al., 1997) provides a rigorous method,
not limited to mean-field theory, for calculating A. Its
principal result is that, under certain approximations, &
is proportional to a measure ¢ of molecular chirality
times the spatial integral of a biaxial correlation
function—a function that is strictly zero in mean-field
theory. Thus 4 is small and deviates from expectations
based on dimensional analysis both because ¢ can be
small and because biaxial correlations may be very short
ranged. Here we outline some important features of this
theory. It begins with a rigorous expression of 4, which
can be obtained from Eq. (32):

1 oF

Y og (34)

q=0

In the Appendix we show that within certain simplifying
conditions this formulation leads to the result for the
cholesteric wave vector,

_ ! >R 35
qgo= 4K2Y ~ 1" TBA | > ( )

where 754 is the torque exerted on molecule B by mol-
ecule A:

T%A:% fijkr%ﬁﬁkV(RﬂLl'Bﬁ—l'Aa), (36)

and (-) denotes thermodynamic averaging. It is no sur-
prise that the intermolecular torques are the origin of
the cholesteric structure. Indeed, if we had considered
two planes of molecules a distance L apart along an axis
perpendicular to the nematic director, then the change
in angle between them would be §=¢gL and thus the
expression for 4 in Eq. (34) would become
L JF

h=—o— (37)
Y a6, ,

Rev. Mod. Phys., Vol. 71, No. 5, October 1999

which is simply the torque per unit area. Moreover, Eq.
(35) provides a rigorous small-g, expression for g in a
fully aligned nematic in terms of quantities to be evalu-
ated in the nematic limit, i.e., when molecular chirality is
turned off. It is interesting to observe that this result
does not involve simply the torque 74=2 373, on mol-
ecule A. In the nematic phase the average torque on
molecules in the interior of the sample is zero. Whether
or not the nematic is locally unstable relative to states
with nonzero ¢ depends on the boundary conditions
(Harris et al., 1999). Accordingly, Eq. (35) involves what
we call the “projected torque on molecule A,” namely
>gR, - 73, . Finally, the appearance of the antisymmet-
ric tensor in Eq. (36) guarantees that g, is a pseudo-
scalar and hence must vanish for a system in which all
molecules are achiral.

We now discuss some of the implications of the result
in Eq. (35). For this purpose we consider a number of
approximations that lead to a simple, yet nontrivial case.
First, the molecules are assumed to have their long axes
perfectly aligned along the director, i.e., their principal
axes vectors e are parallel to n. Although strictly speak-
ing this limit is not realized in real systems, it does en-
able us to see some simple consequences of our formal-
ism. Second, we neglect correlations between density
fluctuations and orientational fluctuations. Finally, we
invoke an expansion in powers of /R. Elsewhere (Har-
ris et al., 1999) we give a less restrictive discussion. As
our prior discussion indicates, we must be sure to take
the uniaxial average of the molecular orientations. In
doing so, we found (Harris et al., 1997) that the first non-
zero term upon averaging was fifth order in powers of r.
The lowest order expression for g, depends on the nem-
atic alignment tensor Q'I, the biaxial tensor B”, and the
third-rank tensor S/* introduced in Eq. (21). We found

Spa€ij QP (BRSSP + BLSFHK(R))

(38)

where K(R) is a sum of products of |R| and derivatives
of the interaction potential V(R).

The sum in Eq. (38) is averaged over molecular ori-
entations and locations. The tensors B and §¥* depend
on the orientation of the molecule. In fact, if the mol-
ecules spin independently about their long axes, this av-
erage of BY will vanish. Moreover, the components of

S that contribute to Eq. (38), Sk can be expressed in
terms of BY so that, for identical molecules, Eq. (38)
becomes

S pa((BEBYK(R))
8K,Y Tr(B?)

where ,=5""€,,Q"B/™, as defined in Sec. II, is
evaluated on a single molecule. Hence i, is a pseudo-
scalar parameter that is a measure of the chiral interac-
tion between identical chiral molecules. It vanishes
when the molecules are not chiral, and it provides a
quantitative index of chirality as would be measured
through the cholesteric pitch. We emphasize, however,
that other microscopic measures of chirality will in gen-

qgo= " (39)
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eral involve other chiral parameters. Note that, since the
biaxial correlations can be negative at the intermolecu-
lar separation, there is not even a correlation between
the signs of ¢, and the cholesteric pitch.

The correlation function in Eq. (39) may be evaluated
in the decoupling approximation where the molecular
separation R is uncorrelated with the biaxial orientation.
In this case the biaxial correlation function is simply the
average

((B}B))=(cos[2(da— dp)]), (40)

where [see Fig. 1(c)] ¢4 is the angle between the biaxial
axis of molecule A and the x axis.

In the above calculation of ¢, we assumed that all
molecules in the cholesteric were chiral. In order for a
chiral interaction producing relative twist between two
molecules to exist, however, it is only necessary for one
molecule to be chiral. The linearity of our expression for
qo [Eq. (39)] in ¢, is a consequence of this fact. If both
molecules had to be chiral, one might expect g, to be
proportional to 3. This is impossible, of course, be-
cause a pseudoscalar (¢g,) cannot be proportional to the
square of a pseudoscalar (i,). The expression for g for
a system composed of a mixture of chiral and achiral
molecules is essentially the same as Eq. (39) except that
A and B refer to different molecular species and ¢, is
the chiral parameter of the chiral molecule. There are
also chiral interactions between a chiral molecule and a
strictly uniaxial molecule. These interactions lead to
contributions to g that depend on correlations between
the chiral parameter of the chiral molecule and the bi-
axial anisotropy of the positional correlation of its
uniaxial neighbor. Thus, when a nematic is doped with
chiral molecules, a finite pitch must result, and we ex-
pect g, to be proportional to the dopant concentration
when it is small.

V. DISCUSSION AND CONCLUSION

In this colloquium we considered ways of characteriz-
ing and quantifying molecular chirality and of calculat-
ing the pitch wave number ¢, a macroscopic manifes-
tation of chirality in cholesteric liquid crystals. We
showed that there is not one, but an infinite number of
chiral parameters that characterize a chiral object. Each
chiral parameter is a pseudoscalar, whose construction,
if it is obtained from mass or charge distributions, re-
quires the contraction of at least three mass- or charge-
moment tensors. Chiral parameters for a given object
can have varying magnitudes and even different signs. It
is possible to pass continuously from a chiral object to its
mirror image without ever passing through a state in
which the object is achiral. In this process, each chiral
parameter passes through zero, but at no point do all
parameters pass simultaneously through zero. We
showed in Sec. IV that the macroscopic pitch depends
on both molecular chiral parameters and on molecular
orientational correlations. Since these correlations vary
with temperature, pH, pressure, etc., it is possible to
change the magnitude of the cholesteric pitch without
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changing molecules. This mechanism may be the expla-
nation for the phenomena of twist inversion (Stegem-
eyer et al., 1989) in which the pitch changes continuously
from right- to left-handed as a function of temperature.
Moreover, orientational order (e.g., hexatic) can selec-
tively enhance different intermolecular correlations and
thus change the importance of different chiral param-
eters for determining the macroscopic cholesteric pitch.

Finally, we emphasize the usefulness of the formal de-
velopment of Sec. IV. It represents an important ad-
vance in that, in the limit of long pitch, it gives an ex-
pression for the pitch in terms of quantities in the
nematic system when chiral interactions have been
turned off. Especially for simulations, this implies that it
is not necessary to simulate a long-pitch system. Instead
one can simulate a homogeneous nematic in order to get
correlation functions of the type appearing in Eq. (33).
Further analysis in this direction may be needed to ac-
tually implement this idea.
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APPENDIX: EXPRESSION FOR THE TORQUE FIELD

In this appendix we recast the expression for /4 in a
simplifying limit, viz. when the molecules are perfectly
aligned along the local nematic axis (but their biaxial
axis is not fixed). We start from Eq. (34). As mentioned
in the text, it is clear that A is zero if the system is
achiral. Thus we are interested in the terms in the free
energy that are linear in the chiral parameters, ¢, . So
we may write

h=y3 v

I*F

n
aq iy, 4=0.4, 0

(A1)

Note that g enters the calculation in the following way.
We consider a helical phase in which the director n is
given by Eq. (1). In the small-g limit, the atomic coordi-
nates are displaced by an amount &%, from their refer-
ence positions in the nematic phase, where &r,
=k s0l,r% ., 6w, =qe/(e-R,) and where e is an arbi-
trary unit vector perpendicular to n. In this sense the
total potential energy U has a g dependence, such that

U ou ary,
g  AKu (9rf4a aq -

(A2)
With this understanding, one evaluates Eq. (Al) as

1 PU
h:_Vg ¥ <<9q 8l/fn> X

; (A3)
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where () denotes a thermodynamic average in which
the density matrix exp[ —U/(kgT)] is evaluated when all
molecular chirality is turned off and
1 [oU oU

X ”_kB_T<% awn>'
Note the appearance in 4 of the terms in y,. As we
show elsewhere (Harris et al., 1999), these terms, which
normally are not considered, are needed to obtain the
expected result that 4 vanishes in the limit of an isotro-
pic fluid (for which the nematic order parameter van-
ishes). However, in the limit of nearly complete nematic
order (which we consider here), these terms in y, are
negligible. Superficially it may appear that we have to
isolate the dependence of U on the chiral parameters.

However, since achiral components of U do not contrib-
ute to (dU/dq), this step is, in fact, not necessary, so that

L, LjaU
=~ v\3g/)

This equality is the basis of our calculation—it allows us
to calculate dF/dq microscopically in terms of molecular
interactions. In particular, note that the result is ex-
pressed in terms of a correlation function to be evalu-
ated in the nematic (¢ =0) limit (which we do implicitly
in the following). It is important to note that in the more
realistic limit when the orientations of the molecules
fluctuate away from the local nematic direction, both
terms in Eq. (A3) must be retained. Such a calculation
has not yet been carried out.

Writing the potential energy as a sum of identical (for
simplicity), pairwise central-force interactions V(R) and
using Egs. (33), (A2), and (AS), we find

(A4)

(AS)

1
qo=— 2K,Y <BAEBa €j19;V(Rgtrps—Ry—r1y,)

><e,-{<e-RB>r’;ﬁ—<e-RA>rfza}>. (A6)
Because the system is uniaxial, we can average over all
perpendicular directions e, so that e;e;— ]5(5,-j—nl-nj). In
this case Eq. (A6) becomes

1

qo=— m<B§Ea €ijk O;V(R+155—T4,)

X[Rir§B+RiB<r§B—rﬁa>]>, (A7)
where R, is the projection of R onto the plane perpen-
dicular to n and R=Rz—R,. By translational invari-
ance, the second of the two terms inside the square
brackets of Eq. (A7) must vanish: for fixed molecule B,
one can shift the origin of the coordinate system by a
fixed vector A. This would make the second term de-
pend on the choice of origin, which it cannot. Hence we
find that

1
q0:_4K2Y<;‘\ RJ_'TBA>>

(A8)
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where 75,4 is the torque exerted on molecule B by mol-
ecule A:

T%A:ﬂE €ijkr’1§5 W V(R+rps—14,). (A9)

GLOSSARY

For the nonspecialist, we include the following glos-
sary of technical terms.

cholesteric: a material in the cholesteric (or twisted
nematic) phase. The director in this phase has a heli-
cal structure (depicted in Fig. 3) obtained by twisting
a nematic.

director: unit vector n specifying the direction of av-
erage orientation of anisotropic molecules in a me-
sophase.

enantiomer: a molecule with a given chemical formula
can exhibit many different geometrical structures
called isomers. A chiral isomer is an enantiomer. A
chiral isomer and its mirror image are an enantio-
meric pair.

Frank free energy: energy [Eq. (30)] associated with
long-wavelength distortions of the director in a nem-
atic. It is proportional to the square of spatial deriva-
tives of n.

mesogen: a molecule that forms a mesophase.

mesophase: a phase with symmetry intermediate be-
tween that of the most disordered isotropic, spatially
homogeneous fluid phase and those of the most or-
dered periodic crystal phases. All liquid-crystal phases
except for those, such as the cholesteric blue phase,
that have true three-dimensional periodic order are
mesophases.

nematic: a liquid-crystalline material composed of an-
isotropic (rod or disk shaped) particles with long-
range orientational but no long-range translational or-
der. This term comes from the Greek word veua for
thread. A nematic is often filled with defects that look
like threads under cross polarizers.

nematogen: a molecule that forms a nematic phase.

smectic: from the Greek word oueyua for soap. A
smectic phase is a “solid” in one dimension and a fluid
in the other two directions. It consists of equally
spaced parallel layers.

steric: arising from hard-core, excluded-volume inter-
actions. This term comes from the Greek word
orepeoo for solid.
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