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The authors review the nonlinear optical properties of semiconductor quantum wells that are grown
inside high-Q Bragg-mirror microcavities. Light-matter coupling in this system is particularly
pronounced, leading in the linear regime to a polaritonic mixing of the excitonic quantum well
resonance and the single longitudinal cavity mode. The resulting normal-mode splitting of the optical
resonance is observed in reflection, transmission, and luminescence experiments. In the nonlinear
regime the strong light-matter coupling influences the excitation-dependent bleaching of the
normal-mode resonances for nonresonant excitation, leads to transient saturation and normal-mode
oscillations for resonant pulsed excitation and is responsible for the density-dependent signatures in
the luminescence characteristics. These and many more experimental observations are summarized
and explained in this review using a microscopic theory for the Coulomb interacting electron-hole
system in the quantum well that is nonperturbatively coupled to the cavity light field.
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I. INTRODUCTION

A. What questions does this field address?

What happens when a quantum well is grown in the
center of a semiconductor microcavity? If the quantum
well exhibits a pronounced exciton resonance and if the
widths of the degenerate exciton and empty-cavity lines
are both small enough, one sees two transmission peaks
and two reflection dips (Weisbuch et al., 1992). This re-
sult of light-matter interaction is called here excitonic
normal-mode coupling (NMC). It is often related to
vacuum-field Rabi splitting of atoms or to a polariton
describing light-propagation in a dielectric medium.

The study of vacuum-field Rabi splitting has been an
exciting subfield of atomic physics for 15 years. After a
decade of gradual improvements, Rabi splitting was
seen with a single atom (Thompson et al., 1992;
Haroche, 1992). This led recently to the first clear dem-
onstration of the discrete nature of the coherent ex-
change of energy between the atom and the quantized
electromagnetic field (Brune et al., 1996). For such a
truly quantum system the optical properties are changed
by the addition of a single photon or single atom, which
is often referred to as the quantum statistical limit.
15911(5)/1591(49)/$24.80 ©1999 The American Physical Society
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In the opposite limit of many atoms the system be-
haves semiclassically, i.e., the light-matter interaction
can be described equally well on the basis of a classical
field. For atoms in a cavity one finds a sinusoidal cycling
of energy between the atom and the cavity field. What
complicates the comparison between the single-atom
and the many-atom systems is the fact that both systems
show the same response to a weak probe field (Car-
michael et al., 1994). These insights lead to a number of
stimulating new questions: Is putting a single quantum
well in a semiconductor microcavity equivalent to put-
ting a single atom into one of the atomic cavities? Can
present-day semiconductor microcavities provide tiny,
monolithic, ‘‘permanent’’ quantum gates exhibiting the
quantum entanglements needed for quantum comput-
ing? To find out, one must answer the question: how
many photons does it take to see detectable changes in
the properties of a current normal-mode-coupling mi-
crocavity? In other words, one must perform and ana-
lyze nonlinear optical experiments, the primary focus of
this review.

To understand the nonlinear response, one must first
understand the linear response. How does one design an
NMC microcavity? Could the measured linear optical
response be useful in this design? Are there any curious
effects arising from the capability to grow a quantum
well where one wants in the microcavity spacer, i.e., in a
field antinode, or node, or anywhere in between? This
static spatial arrangement is a clear advantage of quan-
tum wells relative to atoms.

Then, to return to the nonlinear response, what hap-
pens to the reflectivity, transmission, absorption, and
photoluminescence of an NMC microcavity as the num-
ber of excitations in the system is increased? Does the
NMC splitting change with the first excitation? Could
the measured nonlinear response of the bare quantum
well be useful in understanding the nonlinear response
of the composite system? How does one go about com-
puting the nonlinear optical properties, for example,
when the excitations occur at a constant rate by carrier
injection or by optical pumping above the band gap?
What about the case of resonant excitation with a short
pulse with a broad spectrum overlapping both NMC
peaks? Can one excite the microcavity in a way that
causes the energy to go back and forth between the ex-
citons in the quantum well and the photons bouncing
between the mirrors? If so, what determines the rate of
oscillation? What happens for resonant narrow band ex-
citation into one peak and probing the other? Can one
achieve coherent control of a probe by coherent deexci-
tation?

Another interesting topic is the propagation of light
through an NMC microcavity. The interaction of the
light field with a single resonance of an infinite medium
leads to a new quasiparticle, the polariton (Hopfield,
1958). Using the appropriate boundary conditions, one
can similarly introduce a cavity polariton (Andreani
et al., 1994). Does the curvature of the dispersion curve
of such a cavity polariton correspond to the effective
mass of this quasi-particle? Since the mass of this
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
exciton-photon ‘‘molecule’’ is much smaller than that of
an exciton, does a cavity polariton have a much larger de
Broglie wavelength? Does that mean it is much easier to
achieve Bose condensation of cavity polaritons than of
excitons? Could such a condensation result in coherent
light emission at lower thresholds than ordinary semi-
conductor lasers or vertical-cavity surface-emitting la-
sers (VCSEL’s)? Is it possible that in one of these tiny
semiconductor microcavities one could observe both the
long sought for Bose condensation in a semiconductor
and an atom laser? How does the photoluminescence
for off-resonant cw excitation depend upon excitation
density? Can it be described by electrons and holes hav-
ing Fermi-Dirac distributions trying to emit from within
a two-peaked microcavity? Must one quantize the elec-
tromagnetic field in order to compute it?

Yet another topic involves deviations from perfect
systems in real devices. Does a larger de Broglie wave-
length result in better averaging over structural disorder
such as interface fluctuations, interface diffusion, alloy
fluctuations, etc.?

Normal-mode coupling is also related to device ques-
tions. What distinguishes a microcavity that exhibits
normal-mode coupling from a VCSEL? Can one utilize
the phenomenon of normal-mode coupling to produce
more efficient light-emitting diodes or lower-threshold
coherent light emitters? Does normal-mode coupling oc-
cur only at low temperatures?

B. Historical perspective

The optical properties of semiconductors and semi-
conductor structures have been the subject of intense
experimental and theoretical investigation during recent
decades. Consequently, many of the basic physical prop-
erties are understood very well and even used in com-
mercial devices such as semiconductor lasers. To some
degree it is the huge success of these devices as well as
the desire for faster operational speeds and higher levels
of on- and off-chip integration that drives the develop-
ment of smaller and smaller semiconductor structures.

A recent example in this context is the novel VCSEL
structure in which thin layers of semiconductor material
inside high-finesse microcavities function as very effi-
cient miniature laser systems (Soda et al., 1979; Passner
et al., 1980; Iga et al., 1988; Jewell et al., 1988; Gourley
et al., 1989; Jewell et al., 1991; Koch et al., 1995). Inter-
estingly enough, basically the same structures show very
interesting light-matter coupling effects even under low
excitation conditions, where the excitonic resonances
dominate the optical semiconductor properties.

The detailed analysis of strong light-matter coupling
and its manifestation in the linear and nonlinear optical
properties of semiconductor quantum-well structures in-
side high-finesse microcavities is the main theme of this
review article. A schematic picture of a microcavity sys-
tem is shown in Fig. 1. Of particular interest is the so-
called nonperturbative regime in which the coupling be-
tween the material response and photons in the
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FIG. 1. Schematic of a planar microcavity consisting of two distributed Bragg reflectors (DBR), spacer layers, and a quantum well
in the cavity-field antinode.
semiconductor microcavity exceeds the decay rates of
both. The resulting normal-mode coupling of exciton
and cavity mode was first observed by Weisbuch et al.,
1992; see also Burstein and Weisbuch, 1995; Weisbuch
et al., 1995; Rarity and Weisbuch, 1996.

For atomic systems it has been known for many years
that the spontaneous emission lifetime and angular dis-
tribution are not determined by the atom alone but can
be altered appreciably by the environment around the
atom (Purcell, 1946; Drexhage, 1974; Haroche, 1984,
1992; Meystre, 1992; Berman, 1994; Goldstein and Mey-
stre, 1995). Modifications of the radiation rates and pat-
terns of semiconductor media in the spacer of a semi-
conductor microcavity have been studied in the
perturbative or weak-coupling regime of irreversible
emission.1

The current studies of normal-mode coupling in semi-
conductor systems benefit from the gradual improve-
ment of semiconductor Fabry-Pérot interferometers
used in the research on optical bistability, nonlinear eta-
lons, and—more recently—VCSEL’s. In the 1980s non-
linear Fabry-Pérot etalons were studied extensively as
potential optical switches, logic gates, and optically
bistable memory devices (Miller et al., 1981; Abraham
and Smith, 1982; Gibbs, 1985; Mandel et al., 1987; War-

1Papers include those of (Yokoyama et al., 1990; Yamamoto,
Machida, and Björk, 1991; Nishioka et al., 1993; Yamamoto
et al., 1993; Burstein and Weisbuch, 1995; Tanaka et al., 1995;
Yamanishi, 1995).
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ren et al., 1987) based on large band-edge nonlinearities
discovered in the late 1970s (Shah et al., 1977; Gibbs
et al., 1979; Klingshirn and Haug, 1980; Miller et al.,
1981; Chemla et al., 1984; Klingshirn, 1995). One began
to understand the physics behind these nonlinearities in
the 1980s,2 but the more sophisticated experimental
techniques available today still show that many aspects
of such systems need to be analyzed in further detail
(Chemla, 1999).

Many of the early experimental studies in quantum
well structures were done in samples having linewidths
of several meV. The nonlinearities in such inhomoge-
neously broadened systems were based on the bleaching
and/or shift of an exciton or band edge, resulting in a
change in transmission and/or shift of the single peak of
the cavity. In the late 1980s great progress was made
both in the growth of high-finesse monolithic semicon-
ductor microcavities that spawned VCSEL’s and in
narrower-linewidth quantum wells (Weisbuch and
Vinter, 1991; Weisbuch, 1994a, 1994b). At low tempera-
tures a modern-day quantum well sample can have a
narrow linewidth of less than one meV. This results in
very pronounced index changes in the vicinity of the
exciton resonance so that the Fabry-Pérot resonance
condition, requiring an integral number of wavelengths

2See, for example, Haug and Schmitt-Rink, 1984; Bányai and
Koch, 1986; Schmitt-Rink and Chemla, 1986; Lee et al., 1986;
Koch, Peyghambarian, and Gibbs, 1988; Zimmermann, 1988;
Schäfer, 1988; Koch, Peyghambarian, and Lindberg, 1988;
Schmitt-Rink et al., 1989; Haug and Koch, 1994.
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between the two mirrors, can be satisfied at three differ-
ent frequencies. In the NMC case, the high absorption at
line center destroys the transmission at the central-
frequency Fabry-Pérot solution. That leaves the two
sideband solutions giving the characteristic NMC two-
peaked transmission spectrum first observed by Weis-
buch et al. (1992; Weisbuch and Rarity, 1996).

Generalizing the well known concept of exciton po-
laritons in bulk semiconductors (Hopfield, 1958;
Hopfield and Thomas, 1965; Agranovich and Dubovskii,
1966), the linear exciton-photon coupling in microcavi-
ties was discussed by Weisbuch et al. (1992) and Houdré,
Weisbuch, et al. (1994) in terms of cavity polaritons. An-
dreani (1995a) gives an excellent review of excitons, po-
laritons, and radiative lifetimes in bulk and low-
dimensional semiconductor structures. Andreani et al.
(1994), Andreani and Panzarini (1995), and Savona et al.
(1995) extend the theory to cavity polaritons.

II. OSCILLATOR MODEL OF NORMAL-MODE COUPLING

In this section the basic ideas of semiconductor NMC
are introduced for the example of an ensemble of oscil-
lators in a planar Fabry-Pérot interferometer with metal
mirrors (Zhu et al., 1990; Ell et al., 1999). We use this
simple system to discuss the concepts and to provide the
background for the results presented in the following
sections. The equations for the simple oscillator model
are evaluated for conditions and parameter values that
are typical for a number of recent experiments in semi-
conductors.

Even though for many configurations the oscillator
model would allow us to obtain the linear optical prop-
erties in a simple way, this is often not the case for ex-
periments on semiconductors, where sample characteris-
tics and the unavailability of perfect structures can make
it necessary to use indirect methods of experimental ob-
servation, which are therefore also discussed for the
model system. In the simple analysis presented in this
section we characterize light-matter interaction via ab-
sorption and refractive index. This general concept will
have to be modified later when we deal with a set of
quantum wells in a microcavity. For such a spatially in-
homogeneous situation we need an explicit solution of
Maxwell’s equations (see Sec. III). Nevertheless, many
aspects of microcavity physics can be understood on the
basis of the simple oscillator model discussed here.

The linear susceptibility of a system of Lorentz oscil-
lators can be found by solving the optical Bloch equa-
tions in steady state [see, for example, Haug and Koch
(1994); Loudon (1973)]. The result can be written as

xres5
G

~\v2\vA!1ig
, (1)

where v and vA are the radial frequencies of electro-
magnetic field and the oscillator resonance, G is propor-
tional to the oscillator strength depending on the transi-
tion dipole moment and the density of oscillators, and g
is the homogeneous oscillator HWHM linewidth.
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For wave propagation in a spatially homogeneous me-
dium, Maxwell’s equations reduce to the traveling-wave
equation

DE~r,v!1
v2

c0
2 «~v!E~r,v!50, (2)

where c0 is the vacuum speed of light. The dielectric
function

«~v!5«B1
xres~v!

«0
(3)

contains a nonresonant background contribution «B in
addition to the resonant contribution of the dipole oscil-
lators. For plane-wave solutions of Eq. (2),

E~r,v!5E0~v!eiK~v!z, (4)

one can introduce a complex wave number K(v), which
can be traced back to the dielectric function « or a com-
plex refractive index ñ according to

K2~v!5
v2

c0
2 «~v!5

v2

c0
2 ñ2~v!. (5)

The wave number Re K(v) and the decay constant
Im K(v) of the wave propagating in the medium are
then n(v)q(v) and k(v), where

n~v!5Re ñ~v!,

k~v!5
v

c0
Im ñ~v!, (6)

and q(v)5v/c052p/l0 . Hence linear wave propaga-
tion in a homogeneous three-dimensional medium can
be described in terms of the renormalized refractive in-
dex n(v) and the intensity absorption coefficient a(v)
52k(v).

If one considers a situation in which the medium fills
the space between two ideal metal mirrors having inten-
sity reflectivity RM , transmission TM , and no losses
(RM1TM51), the boundary conditions for the right
and left traveling waves at the two mirrors result in the
Fabry-Pérot formula for transmission and reflection
(Born and Wolf, 1980):

T~v!5
TM

2 e2a~v!L

u12RMeif~v ,L !2a~v!Lu2 ,

R~v!5RM

u12eif~v ,L !u2

u12RMeif~v ,L !2a~v!Lu2 , (7)

where a(v)L describes light absorption and f(v ,L)
52n(v)q(v)L is the phase shift caused by one optical
round trip of the light between mirrors separated by a
distance L. For an empty cavity, the reflection becomes
zero and transmission unity (resonance) when the phase
shift is an integral multiple of 2p.

To determine the basic properties of the Fabry-Pérot
mirrors, we first consider the empty-cavity case. Then
n(v) and a(v) are described by the constant back-
ground index of refraction nB and absorption aB , re-
spectively. For a small deviation from the cavity reso-
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nance, q5mRp/(nBL)1Dq with mR51,2, . . . , the
transmission can be expressed using the expansion
eif(v ,L)511i2nBLDq ,

T~v!5
TM

2 e2aBL

u~12R8!2i2nBLR8Dqu2 , (8)

with the notation R85RMe2aBL. Then the Fabry-Pérot
transmission has a Lorentzian form, T}uDE2idcu22

with the energetic HWHM

dc5
\c0

2nBL

12R8

AR8
. (9)

This result illustrates that both transmission through the
mirrors and background absorption are loss mechanisms
for the light, resulting in a decay rate proportional to
TM1aBL when both are small.

For later reference we define linear dispersion theory
as the computation of a structure’s transmission, reflec-
tion, and absorption using Maxwell’s equation with the
input of the actual linear susceptibility of the detailed
structure (Andreani, 1995a, Andreani et al., 1994). For
the case of a microcavity with Bragg mirrors, Maxwell’s
wave equation can be solved conveniently using
transfer-matrix techniques, with the medium susceptibil-
ity of each layer as an input (Yariv and Yeh, 1983;
MacLeod, 1986; Andreani, 1994; Coldren and Corzine,
1995; Pau, Björk, Jacobson, Cao, and Yamamoto,
1995a). Linear dispersion theory can be based on a the-
oretical nonlocal susceptibility (Andreani and Bassani,
1990; Andreani, 1994; Andreani, 1995a) that emerges
from the microscopic physics; see Sec. III. This approach
is referred to as ‘‘nonlocal semiclassical theory’’ by An-
dreani (1995a; see also Andreani et al., 1994; Savona
et al., 1995). Or it can be based on an experimentally
measured (or from measurements reconstructed) linear
susceptibility averaged over a quantum well. This corre-
sponds to the semiclassical ‘‘local linear dispersion
model’’ in the nomenclature of Savona et al. (1995).

The correct susceptibility is essential to an under-
standing of the NMC system response. Consequently
much theoretical effort is focused on the microscopic
origin of the susceptibility, and experimental attempts to
fit the NMC spectra involve careful reconstructions of
the susceptibility from measurements of the optical
spectra. In this section the spacer between the cavity
mirrors is assumed to be filled with Lorentz oscillators
described by the model susceptibility of Eq. (1); and for
planar metal mirrors the transfer-matrix approach re-
duces to the Fabry-Pérot formula (Zhu et al., 1990). This
is called the semiclassical ‘‘atomic model’’ by Savona
et al. (1995); it was first applied to semiconductor
normal-mode coupling by Weisbuch et al. (1992); see
also Ell et al. (1999).

The empty-cavity Fabry-Pérot formula for the repre-
sentative values RM50.9989, aB51.531026 nm21, nB
53.616, L5230 nm, and aBL50.000 35 gives a single
transmission peak with HWHM linewidth of 0.175 meV
50.097 nm, typical of semiconductor microcavities.
These values are used in all Fabry-Pérot figures in Sec.
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
II. The Lorentzian oscillator model absorption has an
energy HWHM linewidth of g50.25 meV and a peak
absorption coefficient a050.75 mm21. When the Lorent-
zian susceptibility is used in Eq. (7), Fig. 2 results, show-
ing two peaks in transmission, two dips in reflection, and
two peaks in absorption A512R2T . These two peaks
and two dips are the signatures of normal-mode cou-
pling. The two peaks are approximately Lorentzian in
shape and occur at the frequencies D[\(v2vA)
56V0/2 (Agarwal, 1984; Haroche, 1984; Zhu et al.,
1990; Kimble, 1994), where

V05A2«0\vAG/nB
2 2~g2dc!2. (10)

Here G5(nBc0a0g)/(«0vA) relates G to the peak ab-
sorption coefficient a0 . Since the oscillator strength is
proportional to the density of the oscillators, the NMC
splitting depends on the square root of the number of
oscillators and inversely on the square root of the cavity
length. The HWHM width of each of the two peaks is
(g1dc)/2, so that normal-mode coupling is observed
only if the splitting exceeds each of the linewidths.
When V0@g ,dc , the splittings seen in R, T, and A are
almost the same. But it is possible to choose other pa-
rameters for which they differ greatly; for RM50.90,

FIG. 2. Spectra of a Fabry-Pérot cavity containing Lorentz
oscillators: (a) transmission; (b) reflection; (c) absorption.
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there is a splitting in R and T, but not in A (Houdré
et al., 1993; Savona et al., 1995).

In Fig. 3 the energies of the peaks in T are plotted as
a function of detuning between oscillator and cavity
resonance. The result is the characteristic anticrossing
curve typical of any two coupled oscillators: V5(V0

2

1D2)1/2. This anticrossing is consistent with the fact that
in the weak excitation limit the coupled Maxwell-Bloch
equations reduce to the equations for two coupled oscil-
lators.

Further insight into normal-mode coupling can
be gained from a graphical solution to the refractive
index that influences the Fabry-Pérot resonance con-
dition f(L)52n(v)qL52pmR (mR51,2, . . . ) ob-
tained when the cavity resonance was determined in Eq.
(8). Using q52p/l0 we get

n~l0!1nB5
nBl0

lR
, (11)

where lR is the value of l0 at the cavity peak. For an
empty cavity, the left side of Eq. (11) is just a constant
nB and the right side is a straight line, as shown in Fig.
4(a); the single intersection gives the wavelength of the
single longitudinal mode of the cavity. Note that since
the right-hand side of Eq. (11) is linear in l0 (and not
strictly so versus v), the x axis is the wavelength for this
one figure. For a many-oscillator cavity the left-hand
side of Eq. (11) varies rapidly in the vicinity of the reso-
nance; if the transition is sufficiently narrow and strong,
three intersections result, as depicted in Fig. 4(b). The
very high absorption at the central solution results in
very low transmission there; the other two solutions give
the wavelengths of the two NMC peaks. This is analo-
gous to the Casperson (1978) single-mode instability,
where two side modes build up when the lasing mode
burns a narrow hole in an inhomogeneously broadened
gain spectrum. For arbitrary absorption lineshapes, one

FIG. 3. NMC anticrossing curve vs oscillator-cavity detuning:
heavy solid lines, transmission peak positions; thin solid lines,
uncoupled oscillator and cavity positions.
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can use Kramers-Kronig relations to obtain n(l0) and
use this graphical method to find the NMC peak posi-
tions as a function of detuning determined by L.

In Fig. 3 we have plotted the anticrossing curve for
normal incidence as was done by Weisbuch et al. (1992)
in the first observation of normal-mode coupling. The
Fabry-Pérot analysis can be extended to light propaga-
tion at angle u with respect to the normal of the mirrors
by replacing L by L/cos u in T(v), R(v), and R8 and
by L cos u in f(v ,L). The dashed curve in Fig. 5(a)
shows an empty-cavity dispersion curve, i.e., \vP(u)
from the Fabry-Pérot formula. The uncoupled oscillator
resonance is also shown as the dotted straight line inde-
pendent of u. When the cavity-oscillator interaction is
turned on by placing the oscillators inside the cavity, the
NMC splitting at each u can now be computed from the
Fabry-Pérot formula to obtain the cavity polariton dis-
persion curve; see solid curves in Fig. 5(a). If the cavity
peak at u50 is at slightly lower energy than the oscilla-
tor resonance, then the minimum splitting occurs for fi-
nite u, as illustrated in Fig. 5(b). Since the Fabry-Pérot
dispersion is well known, one can deduce the cavity po-
lariton dispersion curve from the u50 anticrossing
curve. However, for NMC splittings approaching the
linewidths, Fabry-Pérot plots of R, T, and A extrema can
differ appreciably (Savona et al., 1995).

The upper (u) and lower (l) NMC peaks have a width
(HWHM) of

FIG. 4. Graphic solution for the peak positions of a Fabry-
Pérot resonator for (a) a constant refractive index nB and (b) a
Lorentz oscillator index n(l).
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du5d l5~g1dc!/2 (12)

for zero detuning. Thus the two linewidths are equal to
the average of the uncoupled oscillator and cavity
widths. However, this is not a general result, since it
depends upon the particular line shapes of the suscepti-
bility and cavity. Note that linear dispersion theory using
a measured absorption profile does not require an un-
derstanding of the nature of the broadening giving rise
to the measured line shape. However, if the total line-
width gex is much broader than the homogeneous line-
width g, then the on-resonance NMC linewidth can be
much less than (dc1gex)/2 (Houdré et al., 1996); in fact,
for V0@gex , it approaches (dc1g)/2. This is illustrated
in Fig. 6, in which a total HWHM linewidth of gex
51.51 meV is obtained by a Gaussian distribution of en-
ergies for oscillators having a homogeneous linewidth of
g50.25 meV. For V055 meV, du5d l50.46 meV is
clearly less than (dc1gex)/250.82 meV. For V0
517.6 meV, du5d l approaches (dc1g)/2. The NMC
peaks are so far removed from the absorption peak that
the index in the vicinity of each peak, which determines
the linewidths, is almost the same as if the line were not
inhomogeneously broadened. For V052 meV, Fig. 6(d),
the increased ratio of inhomogeneous broadening to
normal-mode coupling prevents the appearance of two

FIG. 5. Cavity-polariton dispersion curve (heavy solid lines)
and oscillator and cavity dispersions for zero detuning, i.e., (a)
\vo5\vc(Q50) and (b) \vo.\vc(Q50); dotted line, oscil-
lator dispersion; dashed lines, cavity dispersions.
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clear peaks as shown by Pau, Björk, Jacobson, Cao, and
Yamamoto (1995a; see also Pau, Björk, Cao, Hanamura,
and Yamamoto, 1995).

For real quantum well systems the line shapes of the
excitonic resonances at very low densities are still being
investigated extensively. Generally the 1s exciton line
shape is asymmetric, falling off faster on the low-energy
side. As a result, equalizing the transmission peaks re-
quires a positive detuning, such that a(vu)5a(v l). The
transmission peaks and reflection dips depend upon the
local absorptions at the two peaks, which may not be
related by a simple formula to the peak absorption and
linewidth as they are for a Lorentzian line shape. This
can be illustrated using two inhomogeneously broad-
ened oscillator resonances as shown in Fig. 7. This case
is close to that discussed at the beginning of Sec. V.C,
where it is also mentioned that d l can be much less than
(dc1gex)/2. Note that part of the reason why d l is less
than du is that at energies above v l , a increases very
rapidly, sending T to zero and resulting in a very asym-
metric T around v l with narrower d l . This illustrates
that du and d l not only are influenced by R8 (if RM and
a change slowly around vu and v l) but can be changed
drastically by rapid changes in a and/or n in the vicinity
of vu and v l .

FIG. 6. Symmetrically inhomogeneously broadened oscillator:
(a) absorption coefficient; (b)–(d) Corresponding Q50 NMC
transmission (T, solid lines), reflection (R, solid lines), and ab-
sorption (A, dashed lines) spectra for (b) splittings of 5 meV;
(c) splittings of 17.6 meV; (d) splittings of 2 meV.
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It will be shown in Sec. III.B that, as an increasing
incoherent equilibrium carrier density is generated in
the quantum wells, the exciton saturation leads to
broadened absorption with negligible change in oscilla-
tor strength. This behavior can be mimicked by our os-
cillator susceptibility, assuming broadening of the form
g5g01gPCex where Cex is the external control param-
eter (carrier density in the exciton system). Figure 8 il-
lustrates linear dispersion theory (Fabry-Pérot formula
with broadened g in a and n) for the case of line broad-
ening with no change in oscillator strength. Note that
the NMC transmission goes to zero with little change in
splitting. The line broadening increases the absorption
at the energies of the two NMC peaks, thereby causing
the transmissions to decrease. But since the oscillator
strength is constant, there is little change in the NMC
splitting. As we shall see later, this behavior illustrates
very well the carrier density dependence of normal-
mode coupling for a microcavity with a large splitting-
to-linewidth ratio. The behavior is quite different when
V is not much larger than 2g0 , as shown in Fig. 9. Then
the difference term in Eq. (10) for V becomes large,
causing the NMC splitting to decrease.

If the system inside the NMC microcavity has consid-
erable inhomogeneous broadening, the effects of
density-dependent broadening may be masked. At suffi-

FIG. 7. Asymmetrically, inhomogeneously broadened oscilla-
tor system: (a) Absorption coefficient: (b) and (c) Correspond-
ing Q50 NMC transmission (T, solid lines), reflection (R,
solid lines), and absorption (A, dashed lines) spectra at a de-
tuning of (b) 0 and (c) 1.02 meV.
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ciently high carrier density the oscillator strength will
decrease. This is mimicked here by plotting in Fig. 10
the NMC transmission as a function of a0 for fixed g. As
expected, the splitting V0 decreases proportional to
Aa0.

Inside a Fabry-Pérot cavity the forward and backward
traveling waves interfere to produce a standing wave
whose amplitude is E, and spatial distribution can be
described by a field mode function E(z). Then aL and
nL in the Fabry-Pérot formulae must be replaced by
*0

La(z)E(z ,v)dz and *0
Ln(z)E(z ,v)dz . In a semicon-

ductor system one typically uses thin quantum well lay-
ers as a medium whose thickness is typically 5–20 nm,
i.e., much thinner than the distance l0/2n'116 nm be-
tween field antinodes, as shown in Fig. 1. This ability to
position quantum wells enhances interference effects
(radiative coupling), leading to enhanced (superradiant)
or suppressed (subradiant) emission.

To conclude this section, we should point out that
what we have presented so far is an attempt to separate
cavity physics from the behavior of the medium. In the
linear regime this separation is usually well justified.
However, in the general nonlinear situation one needs
not only a consistent theory for interacting electron-hole
pairs but also a self-consistent treatment of the proper-
ties of the medium and the light. Such a theory will be
outlined in the remainder of this paper.

FIG. 8. Effect of homogeneous broadening on NMC transmis-
sion for large splitting-to-linewidth ratio: (a) Oscillator absorp-
tion coefficient for various HWHM homogeneous broaden-
ings: solid lines, g50.25 meV; dashed lines, 0.5 meV, dashed-
dotted lines, 1.0 meV, and dotted lines, 4.0 meV.
Corresponding Q50 NMC transmission spectra for the case
V@gex ,dc : (b) zero detuning and (c) \vc.\vo .
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III. LINEAR AND NONLINEAR LIGHT PROPAGATION
IN QUANTUM WELLS AND MICROCAVITIES

A. Light propagation in layered microstructures

The semiclassical description of light propagation in
quantum wells is an interesting topic on its own. Quan-
tum well polaritons and radiatively coupled multiple
quantum wells have been intensively studied recently.
After the prediction of radiative broadening in semicon-
ductor nanostructures without translational symmetry
(Agranovich and Dubovskii, 1966; Orrit et al., 1982; Ha-
namura, 1988; Andreani et al., 1991; Citrin, 1993) and
the experimental observation of radiative broadening
(Devaud et al., 1991), radiatively coupled quantum wells
were theoretically studied.3 Few attempts were made to
investigate the nonlinear propagation of ultrashort, in-
tense pulses in quantum wells (Manzke and Hen-
neberger, 1988; Kim et al., 1993) or to study the influ-
ence of light propagation or radiative coupling effects on
four-wave mixing and pump-probe signals (Rappen
et al., 1993; Hübner et al., 1996; Weber et al., 1996; Haas
et al., 1997).

3See, for example, Ivchenko, 1991; Andreani, 1994; Citrin,
1994a; Ivchenko et al., 1994a, 1994b; Andreani, 1995a, 1995b;
Andreani and Panzarini, 1995; Stroucken et al., 1996.

FIG. 9. Effect of homogeneous broadening on transmission for
barely resolved normal-mode coupling: (a) Oscillator absorp-
tion coefficient for a constant oscillator strength and HWHM
homogeneous broadenings: solid lines, g50.5 meV; dashed
lines, 0.75 meV; dotted lines, 1.0 meV. (b) Corresponding Q
50 NMC transmission spectra at zero detuning for V'gex .
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Propagation effects in quantum wells are part of co-
herent microcavity physics in a nonperturbative regime.
In several recent publications (Citrin, 1994b; Jorda,
1994; Savona et al., 1995) the theoretical description of
quantum well polaritons in semiconductor microcavities
has been based on a linear dispersion theory of an exci-
ton Hamiltonian. These approaches have been success-
fully applied for a linear treatment of the light-matter
interaction, i.e., to the regime of weak-light-field reflec-
tion, transmission, and absorption experiments. How-
ever, the extension of these approaches to the nonlinear
regime is not straightforward. The linear dispersion
theory is naturally based on optical susceptibilities that
are independent of the exciting field(s). On the other
hand, a first-principles quantum-mechanical treatment
of the semiconductor leads to a Hamiltonian for elec-
trons and holes interacting via a Coulomb interaction.
To simplify the description of bound states in the sys-
tem, one can introduce exciton operators. Using these
operators, it is possible to construct a so-called exciton
Hamiltonian which describes the linear optical proper-
ties correctly (Haug and Schmitt-Rink, 1984); for a re-
view see Haug and Koch (1994). However, the excita-
tion of free carriers, which often cannot be avoided, e.g.,
in short-pulse experiments, and the resulting influence
of free-carrier screening and scattering can not be in-
cluded since such a Hamiltonian contains only electron-
hole pair processes. Even if one considers only exciton-

FIG. 10. Dependence of NMC transmission on oscillator
strength: (a) Oscillator absorption coefficient for a constant
HWHM broadening of g50.25 meV and various oscillator
strengths: solid lines, a051.40 mm21; dashed lines, 0.28 mm21;
dotted lines, 0.0084 mm21. (b) Corresponding Q50 NMC
transmission spectra.
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exciton interactions, different expansions are used in the
low-density and high-density regimes, with no solution
in between (Steyn-Ross and Gardiner, 1983).

The aim of our review is to discuss nonlinear effects in
semiconductor microcavities that exhibit normal-mode
coupling. In Sec. III.A, we focus on effects that can be
described on the level of a semiclassical light-matter in-
teraction. We start with a general treatment of the light
propagation that is valid under linear as well as nonlin-
ear excitation conditions. Using macroscopic Maxwell’s
equations, we derive in Sec. III.A.1 a wave equation for
the light field that contains the full space-time dynamics
of the optical field to describe optical coupling between
quantum wells, the interplay of the quantum well emis-
sion with cavity mirrors, and the reflected and transmit-
ted field components of the entire system.

The weak-field regime is defined through a linear de-
pendence of the induced quantum well polarization on
the light field. The theoretical treatment of this case is
reviewed in Sec. III.A.2. The quantum well polarization
can be determined from a field-independent optical sus-
ceptibility and the field at the quantum well’s position.
Hence we can describe the coupled light-matter system
with two independent parts. Calculation of the quantum
well’s susceptibility involves only the electronic proper-
ties, including the Coulomb interaction and quantum
confinement. The light propagation problem can be
solved in terms of a given quantum well susceptibility
and confinement wave functions. For multilayer systems
like quantum wells or microcavities, the linear solution
of the light propagation problem can be readily formu-
lated using the transfer-matrix technique. The result uni-
fies earlier approaches (Andreani, 1994; Ivchenko et al.,
1996) in which the treatment is restricted, for example,
to 1s excitons; it also allows a direct extension to plasma
nonlinearities, discussed below. At the end of Sec.
III.A.2 we study linear reflection, transmission, and ab-
sorption spectra of quantum wells and the physics of
radiative exciton broadening and radiative coupling be-
tween quantum wells.

In Sec. II, a simple picture of normal-mode coupling
for Lorentz oscillators in a Fabry-Pérot interferometer
was developed. Using the results of Sec. III.A, we can
generalize this approach to quantum-confined excitons
in semiconductor microcavities. Theoretical results for
excitonic normal-mode coupling and the corresponding
experimental results are reviewed in Sec. III.A.3.
Through a comparison of theoretical and experimental
results the influences of radiative coupling, broadening,
and disorder effects are discussed.

1. Wave equation

Our starting point is Maxwell’s equations averaged
over macroscopic regions that are large compared to the
atomic scale of the semiconductor crystal but small com-
pared to the light wavelength. We consider only intrinsic
(undoped) semiconductors without external charges or
currents. Then the divergence of D5«0E1P vanishes
where «0 is the vacuum permeability (using SI units) and
P is the induced macroscopic polarization of the semi-
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
conductor. Using «0 div E52div P, we obtain from
these macroscopic Maxwell’s equations the inhomoge-
neous wave equation

FD2
1

c0
2

]2

]t2GE~r,t !5m0

]2

]t2 P~r,t !2
1
«0

grad div P~r,t !.

(13)

In the following we consider standard (type-I) quantum
wells in which a thin layer of lower band gap material is
epitaxially grown between larger layers of bandgap
buffer material to ensure efficient carrier confinement.
In a semiconductor microcavity, quantum wells are
placed between Bragg mirrors which consist of quarter-
wavelength dielectric layers. Quantum well buffer layers
and mirror layers are usually nonabsorbing and optically
inactive for frequencies close to the quantum well band
edge. Then the light field interacts nonreasonantly with
the buffer layers and the mirror layers and resonantly
with the quantum wells. The nonresonant polarization
can be calculated from a background susceptibility using
PB(r,t)5xB(r)E(r,t) where the background susceptibil-
ity can be traced back to an excitation-independent re-
fractive index nB

2 (r)511xB(r)/«0 . In the simplest ap-
proximation, this refractive index is real and frequency
independent. For quantum wells the resonant interac-
tion of the states close to the band edge is described by
the polarization PQW . Using P5PQW1PB we obtain
from Eq. (13)

FD2
nB

2 ~r!

c0
2

]2

]t2GE~r,t !

5m0

]2

]t2 PQW~r,t !2
1
«0

grad div P~r,t !. (14)

The second term on the right side of Eq. (14) describes
contributions to the longitudinal part of the field. The
remaining wave equation for the transverse optical field
can be further simplified for light propagation orthogo-
nal to the layers of quantum wells and Bragg mirrors,

F ]2

]z22
nB

2 ~z !

c0
2

]2

]t2GE~z ,t !5m0

]2

]t2 PQW~z ,t !, (15)

where the right side contains only the transverse part of
the polarization. For a heavy-hole exciton of the lowest
quantum well subband, the polarization itself is trans-
versal and can be directly used in Eq. (15).

In the remainder of this section we describe linear
light propagation in quantum wells and quantum well
microcavities. The extension to the nonlinear regime
will be given in Secs. III.B and III.C.

2. Linear theory for quantum wells: Radiative broadening
and radiative coupling

The quantum well polarization PQW(z ,t), which en-
ters Eq. (15), can be calculated from a microscopic semi-
conductor theory. Referring the reader to Appendix A
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for a general derivation, we summarize here only the
ingredients for a linear description of the medium. In
the linear regime, it is convenient to introduce a
Fourier-transformed polarization,

PQW~z ,t !5E dv

2p
e2ivtPQW~z ,v!, (16)

and similarly a Fourier-transformed optical field
E(z ,v). The spatial extension of the polarization
PQW(z ,v) is restricted to the quantum well layers; the z
dependence of PQW(z ,v) is determined by the carrier
confinement wave functions. Taking for simplicity the
same confinement wave functions j(z) for electrons and
holes of the lowest quantum well subband, we obtain the
corresponding polarization,

PQW~z ,v!5PQW~v!uj~z !u2. (17)

The matrix element PQW(v) contains the sum over all
possible dipole transitions. In a quantum well Bloch ba-
sis with the in-plane carrier momentum k, we use

PQW~v!5
1
S (

k
dcv* Pk~v!1c.c. (18)

with the dipole matrix element dcv and quantum well
area S. If the polarization depends only linearly on the
light field, the carrier-momentum-dependent transition
probability Pk(v) obeys the Wannier equation,

~ek
eh2\v2ig!Pk~v!5dcvEQW~v!1

1
S (

k8
Vk2k8Pk8~v!,

(19)

which is an inhomogeneous version of the two-particle
Schrödinger equation for an exciton’s relative motion;
for a review see Haug and Koch (1994). The Wannier
equation contains the free-carrier energies ek

eh , the po-
larization dephasing g, and the quantum well matrix el-
ements of the bare Coulomb potential Vk2k8 (discussed
in Appendix A). Entering into the driving term of the
Wannier equation is the effective field component which
interacts with the quantum well subband,

EQW~v!5E dz E~z ,v!uj~z !u2. (20)

For typical quantum wells, the optical field is practically
constant over the extension and EQW(v) is simply the
optical field at the quantum well position. The linear
polarization resonantly excited by the field E(z ,v) fol-
lows from Eqs. (17)–(20). The solution of Eqs. (18) and
(19) can be expressed through a linear susceptibility
x(v), with

PQW~v!5x~v!EQW~v!. (21)

In the case of ideal two-dimensional carrier confine-
ment, the analytical result for x(v) can be given by an
Elliot formula which contains a sum over all excitonic
bound and continuum states. Optical susceptibilities of
such a system of finite-width quantum wells can be cal-
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
culated numerically using a matrix inversion approach.
Both analytical and numerical methods are discussed by
Haug and Koch (1994).

With Eqs. (17), (20), and (21) a closed integral equa-
tion for the optical field can be obtained from the wave
equation (15) in which the properties of the semiconduc-
tor quantum wells enter only through the independently
calculated susceptibility x(v) and the confinement wave
function j(z),

F ]2

]z2 1
v2

c0
2 nB

2 ~z !GE~z ,v!

52m0v2x~v!uj~z !u2E dz8 E~z8!uj~z8!u2. (22)

The main advantage of this equation is that it can be
solved analytically for a single quantum well. Such an
approach, introducing the nonlocal integral of the field,
has frequently been used to describe multiple quantum
wells alone and in a microcavity by formulating the so-
lution of Eq. (22) in terms of a transfer matrix (An-
dreani, 1994; Savona et al., 1995; Ivchenko et al., 1996;
Jahnke, Kira, and Koch, 1997). In this approach the non-
local linear quantum well response, radiative broaden-
ing, and coupling effects are fully included.

For a single quantum well, the wave equation (22)
describes the propagation of light through forward- and
backward-propagating waves in the buffer and quantum
well material at normal incidence. Exact analytical solu-
tions for quantum wells of arbitrary thickness have been
discussed in detail by Jahnke, Kira, and Koch (1997).
However, for increasing thickness, additional subbands
have to be included, where for every subband transition
a separate Eq. (19) has to be solved. In the following we
consider the typical case of a narrow quantum well in
which the well width is small compared to the wave-
length of light. Then on the right side of Eq. (22) one
can use uj(z)u25d(z2z0), where z0 is the quantum
well’s position. The solution of the resulting wave equa-
tion,

F ]2

]z2 1
v2

c0
2 nB

2 ~z !GE~z ,v!

52m0v2x~v!E~z0 ,v!d~z2z0!, (23)

is even simpler. The homogeneous solutions in the
buffer layers,

EL~z ,v!5L1eiqnz1L2e2iqnz, (24)

ER~z ,v!5R1eiqnz1R2e2iqnz, (25)

for z,z0 and z.z0 , respectively, describe forward- and
backward-traveling waves with q5v/c0 and the buffer
refractive index n. From Eq. (23) we can also deduce
boundary conditions at the quantum well position,

EL~z0 ,v!5ER~z0 ,v!, (26)

EL8 ~z0 ,v!1I5ER8 ~z0 ,v!, (27)

where Eq. (26) describes the continuity of the field and
Eq. (27) leads to a step in the first derivative of E(z ,v)
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at z5z0 with I52m0v2x(v)E(z0 ,v) so that the sec-
ond derivative contains a d function. With Eqs. (26) and
(27) two of the four coefficients in Eqs. (24) and (25) can
be determined. The connection between the coefficients
can be formulated as a transfer matrix M̂QW ,

S R1

R2
D5M̂QWS L1

L2
D , (28)

which yields the field in the right buffer layer in terms of
the field in the left buffer layer. For M̂QW one readily
obtains

M̂QW5S 11Y Ye22iqnz0

2Ye2iqnz0 12Y D (29)

with Y5i(q/2«0n)x(v). From a given transfer matrix
M̂QW the transmission t5R1 /L1 and the reflection r
5L2 /L1 for an incident wave from the left side can be
directly determined. Solving

S t
0 D5M̂QWS 1

r D (30)

for r and t leads to

r~v!52
M21

M22
5

i~q/2«0n !x~v!

12i~q/2«0n !x~v!
e2iqnz0, (31)

t~v!5
M11M222M12M21

M22
5

1
12i~q/2«0n !x~v!

, (32)

where Mij are the matrix elements of M̂QW . The advan-
tage of the transfer-matrix formulation is that it can be
easily extended to multiple quantum wells at arbitrary
positions. Since the transfer matrix determines the field
coefficients on one side of the quantum well in terms of
coefficients on the other side, a transfer matrix for the
combined system of several quantum wells follows from
successively multiplying the transfer matrices of the in-
dividual quantum wells,

M̂MQW5M̂QW
N

•M̂QW
N21

• ••• •M̂QW
2

•M̂QW
1 , (33)

where M̂QW
1 (M̂QW

N ) is the transfer matrix of the outer-
most left (right) quantum well. Then from Eq. (30) re-
flection and transmission spectra of the combined sys-
tem can be directly determined.

For completeness we should like to note that the so-
lution for quantum wells of thickness L, Eq. (69) in
Jahnke, Kira, and Koch (1997), reduces to Eq. (29) in
the limit L→0.

3. Analytical solutions for 1s excitons

Restricting the analysis to 1s excitons for this subsec-
tion only, we obtain from the two-dimensional Elliot
formula,

x1s52g
udcvu2

\v2E1s1ig
52

2«0nG/q
\v2E1s1ig

, (34)
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where E1s is the 1s-exciton energy, g is the nonradiative
homogeneous exciton broadening, and a radiative
broadening,

G5
q

2«0n
gudcvu2, (35)

has been introduced. The oscillator strength is deter-
mined by the dipole coupling matrix element dcv and
the 1s wave function entering g5uf1s

2D(r50)u2. Using
x1s , we can evaluate the transfer matrix for a single
quantum well,

M̂QW5
1

\v2E1s1ig

3S @\v2E1s1i~g2G!# 2iGe22iqnz0

iGe2iqnz0 @\v2E1s1i~g1G!#
D .

(36)

With Eqs. (36) we can determine the 1s-exciton reflec-
tion, transmission, and absorption spectra of a single
quantum well,

R~v!5ur~v!u25
G2

~\v2E1s!
21~g1G!2 , (37)

T~v!5ut~v!u25
~\v2E1s!

21g2

~\v2E1s!
21~g1G!2 , (38)

A~v!512R~v!2T~v!5
2gG

~\v2E1s!
21~g1G!2 . (39)

The appearance of the additional radiative broadening G
in the denominator is a consequence of spatial boundary
conditions that have to be satisfied by the solutions of
the interacting light-exciton system. Even though in this
section the response of semiconductor quantum wells is
described with a linear susceptibility, the polarization
that follows from Eqs. (17), (20), and (21) fulfills the
self-consistency requirement if calculated together with
the wave equation (15).

Radiative broadening and its explicit form have been
studied by Tassone et al. (1992); Andreani (1994);
Savona et al. (1995); Stroucken et al. (1996); and Jahnke,
Kira, and Koch (1997). Its physical origin stems from the
lack of momentum conservation in the quantum well
growth direction. A light field that is resonant with the
exciton can propagate in a three-dimensional semicon-
ductor as a polariton mode. The propagation is limited
only by intrinsic semiconductor dephasing as well as ma-
terial imperfections and the boundary of the crystal
where polaritons decay into light. For light propagating
through a quantum well, only the in-plane momentum
has to be conserved. Hence the excited quantum well
polarization can decay due to radiation emitted in the
forward and backward directions, as pointed out by
Agranovich and Dubovskii (1966). This leads to an ad-
ditional decay channel, which in good samples is the
dominant one. For GaAs parameters, we obtain from
Eq. (35) a radiative lifetime Trad5\/G'13 ps.
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Using the analytical results for quantum well spectra,
Eqs. (37)–(39), we can discuss two limiting cases. For
small radiative coupling, G!g , the quantum well trans-
mission approaches unity while reflection and absorp-
tion vanish. On the other hand, for vanishing dephasing
g, only the absorption vanishes. However, if there is in-
homogeneous broadening, the true absorption A is non-
zero even if g50 (Ivchenko et al., 1994a); this is because
the emission of the oscillators distributed over frequency
are no longer suppressed via destructive interference at
finite detunings.

Multiple quantum wells exhibit interesting optical
coupling effects. For two quantum wells analytical re-
sults can be obtained by multiplying two transfer matri-
ces [Eq. (36)]. Assuming a distance l/2 between the
quantum wells (the Bragg condition), we find the reflec-
tivity

Rl/25
4G2

~\v2E1s!
21~g12G!2 . (40)

In comparison to the single quantum well, the radiative
broadening is enhanced by a factor of 2 and the reflec-
tivity at the 1s-exciton resonance is increased by a factor
4@(g1G)2/(g12G)2# due to in-phase coupling of the
quantum well fields. For N quantum wells, 2G is replaced
by NG in Eq. (40). For a l/4 distance between the quan-
tum wells (anti-Bragg condition), destructive interfer-
ence reduces the reflectivity. The reflectivity spectrum,

Rl/45
2G2

~\v2E1s2G!21~g1G!2

3
2G2

~\v2E1s1G!21~g1G!2 , (41)

contains a product of two Lorentzians, each of which is
shifted by radiative broadening G. Correspondingly, in
the limit, g,G , a double-peak structure can be obtained
(Stroucken et al., 1996). Signatures of these coupling ef-
fects have been observed in four-wave mixing experi-
ments (Hübner et al., 1996).

4. Linear regime normal-mode coupling

a. Linear regime computations

The linear treatment of light propagation in quantum
wells and multiple quantum wells can be readily ex-
tended to quantum wells in a semiconductor microcav-
ity. The distributed Bragg mirrors consist of quarter-
wavelength layers with alternating refractive index. In
the ideal case of nonabsorbing mirror layers, we can as-
sume free light propagation within the layers. For adja-
cent layers, the field is described by forward and back-
ward traveling field components similar to those in Eqs.
(24) and (25). The boundary conditions for the optical
field require the continuity of E(z ,v) and ]E(z ,v)/]z .
As discussed above, for every surface between two mir-
ror layers, the resulting constraint for the coefficients
can be cast in the form of a transfer matrix,
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M̂5
1
2 S S 11

q0

q1
D ei~q02q1!a S 12

q0

q1
D e2i~q01q1!a

S 12
q0

q1
D ei~q01q1!a S 11

q0

q1
D e2i~q02q1!a

D ,

(42)

where qi5(v/c0)ni and n0 (n1) is the refractive index
of the left (right) layer with a surface at z5a . By mul-
tiplying the matrices of the dielectric layers, one can ob-
tain a transfer matrix for both mirrors of a microcavity.
The successive multiplication of the transfer matrices for
the first mirror, the quantum wells, and the second mir-
ror leads to a transfer matrix for the microcavity (Yariv
and Yeh, 1983; MacLeod, 1986; Andreani, 1994; Coldren
and Corzine, 1995; Pau, Björk, Jacobson, Cao, and
Yamamoto, 1995a).

The resulting semiclassical treatment of the light
propagation, which incorporates a linear quantum well
susceptibility, describes normal-mode coupling in linear
reflection, transmission, and absorption spectra (An-
dreani et al., 1994, 1998; Andreani and Panzarini, 1995;
Kavokin and Kaliteevski, 1995; Panzarini and Andreani,
1995b; Lindmark et al., 1996; Tredicucci et al., 1996).
This approach has been compared with a quantum
theory of the light field together with a description of
quantum well excitons with a Bose Hamiltonian (Citrin,
1994b; Jorda, 1994; Savona et al., 1995). In analogy to
the semiclassical and quantum theory of polaritons, the
results are equivalent. However, such theories are re-
stricted to the weak-field regime, since excitons lose
their Bosonic nature for nonlinear excitation. This and
the microcavity photoluminescence are further ad-
dressed in Sec. IV.

An alternative method for the description of light
propagation in semiconductor microcavities is the recur-
sive Green’s-function technique. The method is not re-
stricted to layers with constant refractive index and can
also treat three-dimensional light propagation in wave-
guide geometries (Kahen, 1992, 1993). Jahnke and Koch
(1995) did a full quantum theory for lasing in VCSEL
structures using a nonequilibrium Green’s-function ap-
proach. Even though it is possible in principle to extend
this approach into the excitonic regime, it is technically
easier to use equations of motion for the individual pho-
ton and system operators. This way one directly obtains
the fully quantum-mechanical version of the semicon-
ductor Bloch equations.

In Fig. 11 we show linear normal-mode spectra that
are calculated numerically from the susceptibility of
8-nm quantum wells and a microcavity transfer matrix
that follows from Eqs. (29), (33), and (42). The exciton
binding energy in the quantum well is about 2.4EB ,
where EB is the three-dimensional binding energy. We
consider a cavity with two Bragg mirrors of 99.6% re-
flectivity. The left mirror (exposed to air) and right mir-
ror (on a GaAs substrate) contain 14 and 16.5 quarter-
wave pairs of GaAs (n53.61) and AlAs (n52.95),
respectively. A 3

2l GaAs spacer between the mirrors
leads to two central antinodes of the static cavity field.
For the solid line in Fig. 11(a), in each of the cavity



1604 Khitrova et al.: Nonlinear optics of semiconductor microcavities
antinodes a single 8-nm In0.04Ga0.96As quantum well is
located. For two quantum wells in every field antinode
(dashed line), the larger oscillator strength of the system
leads to an increase in normal-mode splitting by a factor
&. If only a single quantum well is placed in one of the
two cavity antinodes (dotted line), the normal-mode
splitting is reduced by a factor 1/&. The corresponding
reflectivity of the quantum well(s) without microcavity is
shown in the inset. In Fig. 11(b) we compare cavities
with two quantum wells (one in each of the two cavity
antinodes) and a reduced number of mirror layers. For 6
and 8.5 quarter-wave pair layers and a reflectivity of
88.3% and 86.0%, respectively, normal-mode coupling is
still possible (dotted line). However, due to broadening
of the cavity resonance (shown in the inset) the normal-
mode peaks are strongly washed out.

b. Linear regime steady-state experiments

In their seminal paper reporting normal-mode cou-
pling in a semiconductor microcavity, Weisbuch, Nish-
ioka, Ishikawa, and Arakawa (1992) made a remarkable
number of contributions: first observation of normal-
mode coupling in a semiconductor microcavity (Fig. 12),

FIG. 11. Computed dependence of NMC reflectivity upon
number of quantum wells and mirror pairs: (a) Linear reflec-
tivity spectra for an NMC microcavity with 8-nm quantum
wells: dashed line, four quantum wells: solid line, two quantum
wells; dotted line, one quantum well. The inset shows the re-
flectivity spectrum for four quantum wells: dashed line, two
pairs at l/2 distance; solid line, two wells at l/2; dotted line, a
single quantum well. (b) Reflectivity spectrum for a microcav-
ity with two quantum wells and 14/16.6 (solid line), 10/12.5
(dashed line), and 6/8.5 (dotted line) quarter-wave pair mirror
layers. The inset draws the corresponding reflectivity spectrum
of the microcavity without quantum wells.
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anticrossing curve of dip positions (Fig. 13), narrowing
of the cavitylike dip close to resonance, good agreement
with Fabry-Pérot formula linear dispersion theory, and
detection of normal-mode coupling up to 77 K with the
prediction that it should be observable even at room
temperature. Their structures had R598% left (12 peri-
ods) and right (16.5 periods) GaAs/Al0.4Ga0.6As distrib-
uted Bragg reflector mirrors with a lAl0.2Ga0.8As spacer
and one or several 7.6-nm GaAs quantum wells grown
in the center by metal organic chemical vapor deposi-

FIG. 12. 5-K reflectivity curves on a seven-quantum well mi-
crocavity structure. Various detuning conditions between cav-
ity and quantum well exciton frequencies are obtained by
choosing various points on the wafer, typically 0.5 mm apart.
Note the line narrowing approaching and at resonance, the
resonance mode splitting, and the indication of a light-hole
exciton mode splitting around 1.605 eV for the lowest trace.
From Weisbuch et al., 1992.

FIG. 13. Reflectivity peak positions as a function of cavity
tuning for a five quantum well sample at T55 K. The theoret-
ical fit is obtained through a standard multiple-interfere analy-
sis of the distributed-Bragg-reflector-Fabry-Pérot-quantum
well structure. From Weisbuch et al., 1992.
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tion. With a single quantum well, normal-mode coupling
was not seen. However, with seven quantum wells, two
well-resolved reflectivity dips were seen on resonance;
see Fig. 12 and compare with Fig. 11. The anticrossing
curve, Fig. 13, was mapped out by scanning across the
sample.

Note that the cavity peak scans much more rapidly
with a percentage change in length than the exciton
peak. For the cavity peak, given by 2L5ml , one finds
dl/l5dL/L , whereas for the exciton confinement en-
ergy, which is proportional to the inverse square of the
quantum well thickness w, we obtain dl/l52dw/w ,
which scans twice as fast. However the exciton peak is
determined by the sum of the exciton confinement en-
ergy, typically several meV, and the well band-gap en-
ergy (about 1.52 eV for GaAs at 4 K), so the exciton
peak hardly changes as the cavity peak is tuned through
it.

Using the linear dispersion theory approach of Sec. II
and modeling the exciton resonance by a two-level di-
electric function with Lorentzian HWHM linewidth g
51 meV and peak absorption a0533104 cm21, Weis-
buch et al. (1992) fitted the anticrossing data of Fig. 13.
They also observed that the linewidth of the cavitylike
dip narrowed as the cavity resonance was tuned toward
the exciton resonance. They point out that in atomic
physics experiments usually the cavity finesse is very
high, so it is the atomlike resonance that narrows.
Whichever peak is broader becomes narrower at reso-
nance. Note that already in this first observation, the
higher-energy linewidth is broader than the lower-
energy; detailed studies show that this is generally the
case.

Is there something special about the sample used to
see normal-mode coupling, relative to earlier samples
used for optical bistability and VCSEL’s? Since the ob-
served on-resonance splitting was about V054 meV, it
is clear that the NMC condition V0.dc1g does not im-
pose very stringent requirements on either the cavity or
the exciton linewidth at low temperatures. In fact, the
98% reflectivity is higher than the 90% often used for
bistability and low compared with the .99.9% used for
VCSEL’s. More than likely normal-mode coupling could
have been seen several years sooner if the high-
reflectivity Bragg mirrors developed for VCSEL’s had
been grown with intermediate reflectivity and with rea-
sonably narrow-linewidth exciton absorption. That is, if
one had been smart enough to look for it. Of course, the
design and growth would have had to be optimized for
low temperature, whereas bistability and VCSEL
samples were usually designed for 300 K. The very high
finesse achieved by Stanley, Houdré, Oesterle, Gailha-
nou, and Ilegems (1994) is not necessary for seeing
normal-mode coupling. The relative ease with which it
can now be achieved is illustrated by the rapidity with
which the first work was extended. Since the NMC split-
ting V0 is proportional to the product of the dipole mo-
ment times the cavity field at the quantum well position,
below we divide the experiments into those that change
the dipole moment, those that change the cavity mode
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
functions and their overlap with the excitonic polariza-
tion, and those that change the exciton-cavity detuning.

(1) Changing the exciton dipole moment. Soon
normal-mode coupling was observed using a single
20-nm GaAs quantum well embedded in a l microcavity
[Yamamoto et al., 1993; see Figs. 14(a) and 11(a)] and
using two quantum wells in a l/2 AlAs spacer whose low
index prevented guided modes (Abram et al., 1994).
Normal-mode coupling of the light hole (Fisher et al.,
1995) has also been reported with a single quantum well
(Goobar et al., 1996; Lindmark et al., 1996; Nelson,
Lindmark, et al., 1996); see Fig. 14(b). Normal-mode
coupling with a very high splitting-to-linewidth ratio has
been achieved; see Fig. 15. The large oscillator strength
of ZnCdSe quantum wells has yielded a very large value,
V0517.5 meV, for normal-mode coupling in II-VI semi-
conductor microcavities (Kelkar et al., 1995).

For a spacer filled with bulk GaAs, normal-mode cou-
pling was obtained with V053 meV, which is almost as
large as that for a single well because the greater thick-
ness compensates for the smaller oscillator strength of
the three-dimensional exciton (Chen et al., 1993, 1995;
Tredicucci, Chen, Pellegrini, and Deparis, 1995; Nelson,
Lindmark, et al., 1996). A l/2 spacer is sufficiently short
that the quantization of the center-of-mass motion of
the exciton results in levels separated by more than 0.5
meV, which have been resolved in the NMC reflectivity;

FIG. 14. Normal-mode coupling with a single quantum well in
a 1l cavity (sample NMC28) with 5/12.5 quarter-wave pair
mirror layers (97.7%): (a) zero detuning from the heavy-hole
transition and (b) close to the light-hole transition. From Nel-
son, Lindmark, et al., 1996.
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see Fig. 16 (Tredicucci, Chen, Pellegrini, Börger, et al.,
1995).

An electric field, through the quantum confined Stark
effect, reduces the overlap of the first electron and first
heavy-hole states; this reduces dcv and hence V0 by 20%
at 38 kV/cm (Fisher et al., 1995; Whittaker et al., 1995).
A magnetic field increases the electron-hole overlap
thereby increasing the NMC splitting by 40% in 14 T
(Tignon et al., 1995; Whittaker et al., 1995; Berger et al.,
1996; Fisher et al., 1996; Tanaka et al., 1996). A magnetic
field can even break up a continuum into discrete Lan-
dau levels, causing a transition from weak to nonpertur-
bative coupling (Tignon et al., 1995).

Systems resembling three coupled oscillators have
been studied. For two cavities and one quantum well,
the coupling between cavities is controlled by the trans-

FIG. 15. Normal-mode coupling at zero detuning with ten
quantum wells in a 11l/2 microcavity (sample NMC66) with
mirrors designed for 99.94%.

FIG. 16. Reflectance spectra of the l/2 cavity; each curve re-
fers to a different cavity thickness, with increasing thickness
from top to bottom. The resonance condition (lexc/2'Lcav) is
at about the seventh curve from the top. The inset shows the
energy position of the two main peaks for the various cavity
thicknesses. From Tredicucci, Chen, Pellegrini, Börger, Sorba,
Beltram, and Bassani, 1995.
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mission of their common mirror (Stanley, Houdré,
Oesterle, Ilegems, and Weisbuch, 1994). Panzarini and
Andreani (1995a, 1995b) predicted three reflectivity dips
for a single cavity containing two nonidentical quantum
wells with exciton energies close enough to simulta-
neously couple to the single-cavity mode; this was seen
by Lindmark et al. (1996). Armitage et al. (1998) inves-
tigated four coupled oscillators consisting of one quan-
tum well in each of two coupled cavities.

(2) Changing the overlap of the exciton polarization
and cavity mode function. Zhang et al. (1994) grew four
6.2-nm quantum wells in the center of a l spacer
(optical-field antinode position) plus two 9.0-nm quan-
tum wells in each of the optical-field node positions.
Normal-mode coupling occurred with the cavity tuned
to the quantum wells in the antinode but not to those in
the node, showing that the exciton-light coupling de-
pends upon the position of the quantum well in the op-
tical standing wave as expressed by Eqs. (22) and (23).
However, calculations by Kira, Jahnke, and Koch (1997)
show that quantum wells in cavity-node positions can be
excited with ultrafast laser pulses propagating through
the mirror layers.

Normal-mode coupling at 300 K was barely resolved
using conventional DBR’s (Houdré et al., 1993; Houdré,
Stanley, Oesterle, Ilegems, and Weisbuch, 1994).
Slightly better resolution was achieved utilizing native-
oxide AlAs/GaAs mirrors to improve the cavity field
confinement and shorten the effective length of the cav-
ity (Nelson, Khitrova, et al., 1996; Graham et al., 1997);
see Fig. 17.

(3) Changing the exciton-cavity detuning. Often the
cavity mode is scanned through the exciton energy by
moving the probe spot across the sample as was done in
the first experiment by Weisbuch et al. (1992). This
works well if the sample quality is quite uniform. How-
ever, the scan is not linear, making it nontrivial to con-
vert the scan to detuning in absolute energies. Abram
et al. (1994) and Long et al. (1995) recorded photolumi-
nescence using this technique to scan more than 30 meV
away from the minimum splitting in both directions, en-
abling them to map out a beautiful anticrossing curve
with very straight excitonlike and photonlike lines far
from resonance. Stanley et al. (1996) mapped out the
anticrossing curve in both photoluminescence and true
absorption A; in addition, they showed that photolumi-
nescence out the side is single-peaked when it is double-
peaked out the front.

Fisher et al. (1995) and Goobar et al. (1996) employed
temperature tuning, taking advantage of the strong tem-
perature dependence of the exciton energy and weak
temperature dependence of the cavity mode. Houdré
et al. (1993), Fisher et al. (1995), and Kelkar et al. (1995)
showed reduced splitting when the broadening with in-
creased temperature causes g to approach V0 . Such
broadening-reduced splitting has been modeled, for ex-
ample, by Jahnke, Ruopp, Kira, and Koch (1997).

The energy of the cavity mode can also be tuned by
changing the angle of incidence of the light. Both Hou-
dré, Weisbuch, Stanley, Oesterle, Pellandini, and Il-
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egems (1994), and Kelkar et al. (1995) used angle tuning
to map out the cavity polariton in-plane dispersion
curves, i.e., the energies of the two coupled modes as a
function of qi , which is the in-plane momentum for light
propagating in the q5(qi ,qz) direction; see Fig. 18 and
compare with Fig. 5 of Sec. II and Savona et al. (1996).
Since the values of uqiu are very small compared with
those needed to see curvature in the quantum well in-
plane dispersion curve, the cavity polariton dispersion is
dominated by the photon dispersion, which appears
curved when only the uqiu component is taken. The in-
ternal angle f i is related to the external angle of obser-
vation fe by n sin fi5sin fe and uqusin fi5uqiu. For large
splitting-to-linewidth ratio, the in-plane dispersion
curves are the positions of the two transmission peaks as
a function of the tilt angle given by the Fabry-Pérot for-
mula.

Combining tilting with an electric field, Kadoya et al.
(1996) achieved the minimum splitting at different oscil-
lator strengths.

B. Steady-state incoherent saturation of quantum well
excitons and excitonic normal-mode coupling

Nonlinear exciton saturation is an intricate process
that has been intensively studied in the past. The pres-

FIG. 17. The absolute value of the intracavity field amplitude
and microcavity refractive index profile vs position in the cav-
ity for (a) a 3l/2 GaAs spacer etalon with 28 left and 33 right
mirror layers of GaAs/AlAs (99.5%); (b) a 3l/2 GaAs spacer
etalon utilizing 6 left and 7 right native-oxide AlAs/GaAs mir-
ror layers (99.4%). The origin of the horizontal axis is taken as
the cavity center. (c) Measured (solid) and calculated (dashed)
NMC reflectivity near zero detuning. From Nelson, Khitrova,
et al., 1996.
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ence of unbound carriers, e.g., generated through an ad-
ditional optical pulse resonant with the interband con-
tinuum, can efficiently bleach the exciton resonances.
Phase-space filling and screening cause a reduction in
the exciton oscillator strength and binding energy and
lead to band-gap renormalization (Haug and Schmitt-
Rink, 1984; Bányai and Koch, 1986; Schmitt-Rink et al.,

FIG. 18. Cavity-polariton dispersion curves, deduced from
angle-resolved photoluminescence measurements, for different
resonance conditions. Resonance at (a) u50°, (b) u517°, and
(c) u524°. The continuous lines are computed and the dashed
lines are the uncoupled exciton and cavity dispersion curves.
The interaction energy V and exact resonance position are de-
termined from the minimum splitting between both photolu-
minescence lines. An external emission angle grid is drawn on
(a). From Houdré, Weisbuch, et al., 1994.



1608 Khitrova et al.: Nonlinear optics of semiconductor microcavities
1989). Free carriers can scatter among each other and
with the excitonic polarization. The corresponding
dephasing leads to broadening of the excitonic reso-
nances. Excitonic bound states in the presence of an
electron-hole plasma have been treated in the past using
a Bethe-Salpeter equation (Haug and Tran Thoai, 1978;
Zimmermann et al., 1978; Haug and Schmitt-Rink, 1985;
Schäfer et al., 1986), whereas the coherent exciton dy-
namics is described by semiconductor Bloch equations.
Only recently a microscopic analysis of excitonic broad-
ening due to carrier-carrier interaction has been pre-
sented (Wang et al., 1993; Hu et al., 1994; Rappen et al.,
1994; Schäfer et al., 1994).

To reveal the physical nature of exciton saturation,
one has to distinguish between a reduction in the exciton
oscillator strength and resonance broadening, both of
which reduce the peak absorption coefficient. The trans-
mission and reflection of microcavities in the nonpertur-
bative regime can help distinguish between these effects.
The magnitude of the NMC splitting depends only on
the oscillator strength in the limit of large NMC
splitting-to-linewidth ratio. However, the transmission
percentages and widths are sensitive to absorption in the
vicinity of the peaks, so they are influenced by excitonic
broadening.

In this section, we consider a weak external field that
probes excitonic properties in the presence of unbound
electrons and holes. For an interacting electron-hole
plasma, it is well known that phase-space filling, screen-
ing, and dephasing due to carrier Coulomb interaction
lead to nonlinear saturation with increased excitation
density. At the same time, the wave equation for the
light field interacting with the many-body system can be
solved in linear approximation as long as the applied
optical field is sufficiently weak. This is only possible
when the optical field does not introduce optical nonlin-
earities into the system (through changes of the carrier
occupation probability and nonlinear changes of the
quantum well polarization).

The excitation of the system can be described in a
Bloch basis with the momentum-dependent carrier oc-
cupation probabilities fk

e ,h , defined in Eq. (A9). For a
sufficiently long time delay between the electron-hole-
pair generation and the weak optical probe pulse,
carrier-carrier and carrier-phonon scattering leads to a
quasiequilibration of the carriers within their bands, so
that fk

e ,h can be taken as Fermi-Dirac distributions.
Next we have to extend the Wannier equation (19),

which is the general basis for the calculation of a linear
optical susceptibility, to include quasiequilibrium plasma
nonlinearities. For this purpose we use the dynamic po-
larization equation (A33),

F i\
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e~ t !2«k
h~ t !GPk~ t !1@12f k
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whose derivation is outlined in Appendix A, together
with the generalized optical Rabi energy,
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Inserting Eq. (44) and setting f k
e ,h50, the left side of Eq.

(43) reduces to a real-time version of the Wannier equa-
tion. Hence, for the unexcited system, we recover the
linear susceptibility describing excitonic bound and con-
tinuum states. On the other hand, the left side of Eq.
(43) is similar to the optical Bloch equation of atomic
systems for the off-diagonal density-matrix elements.
Pairs of electron-hole Bloch states with carrier momen-
tum k correspond to various two-level systems, and the
macroscopic polarization,

PQW~ t !5
1
S (

k
dvcPk~ t !1c.c., (45)

is the dipole density of the ensemble. Already at the
mean-field or Hartree-Fock level, the Coulomb interac-
tion leads to a coupling of various k states. Correspond-
ingly, Vk(t) can be viewed as a renormalized Rabi en-
ergy and
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a~ t !5ek
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k8
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a
~ t ! (46)

is the renormalized interband transition energy of the
system. In terms of plasma density nonlinearities, the
left side of Eq. (43), i.e., the semiconductor density-
matrix equation in Hartree-Fock approximation, in-
cludes phase-space filling via the 12f k

e2f k
h term and

energy renormalization via Eq. (46). However, to con-
sider screening of the Coulomb interaction and reso-
nance broadening due to interaction-induced dephasing,
one has to go beyond the Hartree-Fock level. Using
quantum-statistical methods (e.g., nonequilibrium
Green’s functions) one can classify correlation contribu-
tions with respect to powers of the screened Coulomb
interaction, as discussed in detail in Appendix A. The
resulting terms on the right side of Eq. (43) describe
excitation-induced resonance broadening and higher-
order renormalizations of the transition energies (in-
cluding band-gap shrinkage).

From a numerical solution of Eqs. (43)–(46), together
with a calculation of G̃k and G̃k,k8 , we can directly obtain
the optical susceptibility of the system, which is linear in
terms of a weak probe field but nonlinear in terms of the
plasma carrier density. Reflection, transmission, and ab-
sorption spectra can be calculated from the Fourier-
transformed optical susceptibility with the transfer-
matrix technique, as discussed in Sec. III.A.

1. Quantum wells

As a first step, we study the saturation of the excitonic
susceptibility in the presence of a free-carrier plasma.
Figure 19(a) shows the computed exciton spectrum for a
given carrier density and temperature. The solid line is
obtained if all correlation terms in Eqs. (A34) and (A35)
are considered. For comparison, the dashed line shows
the result if exchange contributions }Wk8Wk2k9 are ne-
glected in Eqs. (A34) and (A35). Then the broadening
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increases by almost a factor of 2. In the frequently used
pure dephasing limit, where only diagonal contributions
due to carrier-carrier scattering according to Eq. (A34)
are considered and off-diagonal contributions from Eq.
(A35) are neglected, the broadening is strongly overes-
timated (dotted line). Off-diagonal dephasing compen-
sates for diagonal dephasing to a large extent. Somewhat
similar behavior has been found for resonant interband
excitation, where the generation process of free carriers
is accurately described only if diagonal and off-diagonal
dephasing contributions are considered (Rossi et al.,
1994). Furthermore, it has been shown that the line-
shape problem of semiconductor gain spectra is solved
by including off-diagonal dephasing (Chow et al., 1997;
Girndt et al., 1997).

Surprisingly, already at the relatively low carrier-
plasma density of 1010 cm22 the diagonal dephasing cor-
responds to a T2 time faster than 100 fs. These values
are usually expected only for high carrier densities,
where sufficiently many scattering partners are avail-
able. However, at high carrier densities the Coulomb
potential is strongly screened, whereas at the low carrier
density used in Fig. 19(a) only weak Coulomb screening
is present, so that the large scattering cross section com-
pensates for the lower carrier density. Only at even
smaller carrier densities does the carrier-carrier scatter-
ing efficiency decrease significantly.

In Fig. 19(b), the full calculation is compared with the
common approximation in which correlation contribu-
tions are neglected, dephasing is described with a con-
stant damping rate g, and the bare Coulomb potential in
the Hartree-Fock terms, Eqs. (44) and (46), is replaced
by a screened potential. Then the so-called Coulomb-
hole contribution has to be added to Eq. (46); compare
Haug and Koch (1994). For a small carrier density
(1010 cm22) the full calculation (thick solid line) can be

FIG. 19. Dependence of theoretical susceptibility upon ex-
change interaction and scattering: (a) Imaginary part of the
optical susceptibility for an 8-nm quantum well and plasma
excitation with 1010 cm22 at 77 K: solid line, with full dephas-
ing; dashed line, without exchange interaction; dotted line,
without off-diagonal scattering G̃k,k8 . (b) Comparison of full
dephasing (solid lines) and constant damping (dashed lines).
The carrier densities are 1010 cm22 (thick lines) and 1011 cm22

(thin lines). From Jahnke et al., 1996.
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fitted by a constant dephasing rate g50.05EB (thick
dashed line). Increasing the carrier density to 1011 cm22,
we obtain with constant damping and static screening
the well-known artificial shift of the 1s exciton, whereas
the full dephasing calculation does not exhibit this shift.
For a higher carrier density and the same constant
damping, the height of the 1s-exciton peak is only re-
duced by a factor of about 2.5 due to phase-space filling
and screening. If the increased broadening is also taken
into account within the full calculation, the height of the
1s-exciton peak is reduced almost by an order of mag-
nitude.

Figure 20(a) shows the saturation of the 1s exciton for
increasing plasma density, computed within the full
dephasing model. Good agreement is obtained with Fig.
21(a), showing the measured absorption of a 20 quan-
tum well sample.

FIG. 20. Computed quantum-well susceptibility and corre-
sponding NMC transmission as a function of carrier density:
(a) Imaginary part of the optical susceptibility for an 8-nm
quantum well and plasma excitation with various densities at
carrier temperature 77 K. (b) Calculated transmission of the
quantum well microcavity for increasing plasma density and
bleaching of the exciton according to Fig. 20(a). The cavity
resonance has been tuned from 22.05EB (full line) to
22.14EB (short dashed line) to compensate for the small nu-
merical exciton shift. From Jahnke et al., 1996.
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2. Normal-mode coupling

To determine the normal-mode coupling spectrum for
a microcavity containing quantum wells, we use the
quantum well susceptibility within a transfer-matrix cal-
culation for the microcavity design. We consider a cavity
with a 3

2l GaAs spacer between GaAs/AlAs mirrors. For
the left mirror (exposed to air) and right mirror (on a
substrate) a reflectivity of 99.6% is obtained with 14 and
16.5 quarter-wave pairs. A single 8-nm In0.04Ga0.96As
quantum well is placed in each of the two cavity antin-
odes. The cavity wavelength is chosen to coincide with
the 1s-exciton resonance of the quantum wells. The cal-
culated microcavity transmission is shown in Fig. 20(b).
For increasing broadening of the 1s-exciton resonance
with increasing carrier density, we find a strong reduc-
tion of the NMC peak height with only a small reduction
in NMC splitting. The reduced transmission and the in-
creased widths of the individual NMC peaks indicate
strong broadening of the exciton resonance, whereas the
small reduction of the splitting clearly reveals the minor
reduction of the exciton oscillator strength within a large
plasma density range. With increasing plasma density

FIG. 21. Experimental probe transmission spectra with in-
creasing pumping at 787 nm for (a) exciton absorption of 20
quantum wells like the two in the microcavity and (b) micro-
cavity normal-mode coupling. Since absolute densities were
not measured, curves in (a) and (b) cannot be compared di-
rectly; however, Kramers-Kronig transfer-matrix microcavity
calculations using the nonlinear data in (a) show that 28 cor-
responds closely to 2 and 38 to 3. Noise from photolumines-
cence prevented determining the probe transmission when the
exciton is completely saturated (48). Stronger pumping in (b)
results in lasing at a wavelength close to the 48 peak. From
Jahnke et al., 1996.
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the renormalized band edge approaches the energeti-
cally stable 1s-exciton resonance. The rather abrupt re-
placement of the NMC doublet by a single transmission
peak occurs when the cavity resonance becomes degen-
erate with the band edge. This corresponds to a transi-
tion from the nonperturbative regime to the perturba-
tive regime due to strong dephasing of interband states.

The dramatic effect of excitonic broadening on
normal-mode coupling has been seen in measurements
with 8-nm In0.04Ga0.96As quantum wells within the
above-discussed cavity design (Khitrova et al., 1996;
Jahnke et al., 1996; Gibbs et al., 1997). The In concentra-
tion is sufficiently large for the heavy-hole exciton peak
to be around 834 nm at 4 K, so that the GaAs substrate
does not have to be removed for transmission studies.
Nonetheless the strain shifts the light-hole exciton peak
to 826 nm, 13 meV above the heavy-hole exciton, so that
it does not interfere with NMC studies with the heavy-
hole exciton. The results for three samples having small
exciton HWHM linewidths (gex'0.5 meV50.3 nm at 4
K) are as follows. The ratio of splitting to linewidth was
found to be 41(13.6; 4.6) for Bragg mirrors consisting of
19/21.5(14/16.5; 5/12.5) periods for the left and right mir-
rors, respectively. The calculated reflectivities of the
cavities were 99.94% (99.6%; 97.7%); see Figs. 15 (21;
14). The second sample will also be used to illustrate
time-resolved normal-mode oscillations (Fig. 25 in Sec.
III.C.1), nonlinear pulse propagation (Fig. 28) in Sec.
III.C.2), and nonlinear and time-dependent photolumi-
nescence (Figs. 34–39 in Sec. IV).

Experimental results for cw pump-probe excitation of
quantum wells and the corresponding exciton saturation
are shown in Fig. 21(a), in agreement with Fig. 20(a).
With increased excitation, there is little change in oscil-
lator strength (integrated absorption) but considerable
broadening (Fehrenbach et al., 1982; Wang et al., 1993).
This broadening increases the absorption at the energies
of the two peaks, thereby decreasing their transmission
as shown in Fig. 21(b), in agreement with Fig. 20(b).
This curious behavior was illustrated in Fig. 8 in Sec. II.
When the exciton is completely saturated, the transmis-
sion of the almost-empty cavity opens up close to the
midpoint (the usual weak-coupling laser limit). Figure
21(b) was taken with the pump wavelength at the first
transmission minimum above the stop band. Reduction
in transmission without reduction in splitting is also seen
when the pump wavelength is coincident with either one
of the original peaks or midway between them. Of
course, the power dependence is different for each of
the wavelengths, and limiting or optical bistability of the
pump can occur by quasiequilibrium nonlinear effects
not treated here. Citrin and Norris (1997) suggest the
use of an NMC microcavity for high-speed switching: a
pump into one peak controls the transmission through
the other peak, simplifying cascading.

Loss of oscillator strength dominated the first nonlin-
ear NMC experiments because structural-disorder-
induced inhomogeneous broadening masked carrier-
density-dependent excitonic broadening. In the
experiment of Fig. 21 loss of oscillator strength certainly
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FIG. 22. Angle-resolved photoluminescence
under (a) low and (b) high excitation. Dashed
lines are a guide to the eye to follow the re-
spective anticrossing and crossing behaviors
of the dispersion curves. From Houdré et al.,
1995.
occurred, but predominantly in the transition from
normal-mode to weak coupling at densities above the
regime where transmission goes down with little change
in splitting. The collapse of normal-mode coupling ac-
companying loss of oscillator strength has been studied
by femtosecond spectroscopy (see Sec. III.C.3) and by
photoluminescence by Houdré et al. (1995). The latter
mapped out the NMC photoluminescence peaks as a
function of angle of observation. For low-intensity
quasi-cw excitation into the continuum of the bulk
GaAs spacer around the InGaAs quantum wells, there is
the usual nonperturbative anticrossing, as shown in Fig.
22(a) [like Fig. 5(b)]. But for high-intensity excitation
the levels cross, indicating weak coupling [Fig. 22(b),
like the dashed curves in Fig. 5(b)]. The anticrossing and
crossing occur at the same angle because band-gap
renormalization just compensates for the decrease in the
exciton binding energy (Schmitt-Rink and Ell, 1985),
i.e., the resonance condition is always fulfilled during the
bleaching process. From carrier-density-dependent pho-
toluminescence data (Fig. 23) the oscillator strength was
found o to saturate as 1/(11n/ns) with ns54.331011

e-h pairs/cm2 at 100 K. No further broadening of the
NMC peaks was observed up to the complete loss of
NMC transmission. These findings are consistent with
the experimental results in Fig. 21.

What is the evidence that present-day NMC experi-
ments can be described semiclassically? Semiclassical
and quantum electrodynamic theories predict the same
splitting for very weak probes, so one must perform
nonlinear experiments to determine how close one is to
the quantum-statistical regime. Our nonlinear cw and
femtosecond experiments on two-quantum well 3

2l mi-
crocavities (Secs. III.B and III.C) show that the best
present-day microcavities are orders of magnitude away
from the strong-coupling quantum-statistical regime.
One source of evidence is the agreement between non-
linear transmission data and a semiclassical transfer-
matrix simulation (carrier-density-dependent linear dis-
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
persion theory). Also, the observation of stable optical
bistability agrees with semiclassical theory; in the
quantum-statistical limit, the system fluctuates between
the two states. To see why semiclassical theory works so
well, we determined the number of photons that have to
be absorbed to reduce the peak exciton absorption in a

FIG. 23. Series of photoluminescence spectra (110 K) as a
function of pump power showing bleaching of the strong-
coupling regime. The incident power density is shown on the
right axis. From Houdré et al., 1995.
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narrow-linewidth quantum well sample (NMC21) to
one-half. This reduction in peak absorption causes the
NMC peak transmissions to drop below 25% of their
linear (zero-pump) values. Use of a 150-fs pulse of exci-
tation in the continuum made a carrier lifetime measure-
ment unnecessary. We found that a few times 105 pho-
tons in a 50-mm-diameter beam had to be absorbed; this
can be compared to 53105 from the theory presented in
Fig. 20(a) for a 2500-mm2 area. To see small changes in
the NMC transmission, still many thousands of photons
are necessary (Khitrova et al., 1996; Nelson, Khitrova,
et al., 1996; Wick et al., 1996). Thus present-day semi-
conductor microcavity experiments are at least five to
six orders of magnitude away from the strong-coupling
quantum-statistical regime. To emphasize that current
experiments are far from the quantum-statistical limit,
throughout this review we use ‘‘nonperturbative re-
gime’’ rather than the term ‘‘strong-coupling regime’’
used in most semiconductor NMC articles. The invari-
ance of the splitting over several orders of magnitude
variation of emission intensity, considered surprising at
one time (Cao, Jacobson, Björk, Pau, and Yamamoto,
1995), results from operating well below the saturation
of the exciton. Earlier explanations of the appearance of
new frequencies involving forbidden transitions between
low rungs on a coupled boson-boson quantum ladder
(Jacobson et al., 1995; Hanamura et al., 1995) are seen to
be inappropriate.

C. Pulse propagation and nonlinear saturation

1. Time-dependent linear experiments

When a short pulse is incident on an NMC microcav-
ity, the electric fields in both the reflected and the trans-
mitted directions can exhibit oscillations at the NMC
splitting frequency, as just shown theoretically. These
normal-mode oscillations occur provided there is good
overlap between the pulse spectrum and the NMC
peaks, there is a reasonable splitting-to-linewidth ratio,
and the pulse intensity is not high enough to destroy the
normal-mode coupling.

Norris et al. (1993, 1994, 1995, 1996) and Rhee et al.
(1995, 1996) performed time-resolved measurements
with 80-fs pulses on the sample of Weisbuch et al. (1992)
at 10 K. The pump beam was focused to a spot size of
160-mm diameter, with an incidence angle of 3°. By a
standard upconversion technique (Shah, 1988), they
time-resolved the emission, which was in the same direc-
tion as the reflected pump pulse. After the strong re-
flected pump at zero delay, the upconversion signal
showed a fast decay, corresponding to twice the cavity
lifetime, and strong beats with a period of 600 fs, close to
the expected normal-mode oscillation period for V0
56 meV. Changing the detuning to obtain a splitting of
11 meV, the beats had a period of 350 fs and decayed
faster. They showed that the radiation from the cavity
was coherent in the direction of the reflected pump
beam, consistent with the fact that the exciton dephasing
time T2 at low temperature was approximately 1 ps,
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
which is longer than both the cavity lifetime (Tc
5140 fs) and the normal-mode frequency (680 fs). Due
to momentum conservation, the polarization excited in
the cavity by the pump pulse will coherently radiate in
the direction of the reflected pump with a decay time
2Tc . Since T2@Tc , most of the energy will be radiated
away coherently, and almost no luminescence is ob-
served in other directions. The decay time of the micro-
cavity signal is much faster than that of the correspond-
ing bare quantum wells, typically 10 ps (Devaud et al.,
1991).

To determine the time-dependent cavity emission and
population more thoroughly, Norris et al. and Rhee et al.
performed a pump-probe experiment. Both pump and
probe with parallel polarizations were incident at 3° and
overlapped to make them interact as much as possible
with the same cavity mode. There were two contribu-
tions to the signal—one from the change in probe reflec-
tivity induced by the pump-generated excitation in the
quantum wells, and the other from light scattered in the
probe beam direction by small inhomogeneities in the
sample structure. If scattered light was phase coherent
with the probe pulse, then the two pulses interfered on
the detector, and fringes were observed as the delay was
varied a fraction of a wavelength. This gave rise to the
fine fringes in Fig. 24, which persist throughout the co-
herent reemission (unlike the case of quantum wells out-
side the cavity). The envelope of the fringes shows three
peaks, with a period of about 700 fs, which is that ex-
pected for the observed mode splitting of 6 meV on
resonance. The fringes after time zero are an unambigu-
ous signature of the coherence of the polarization re-
maining in the cavity following the pump pulse.

Spectrally and temporally resolved four-wave mixing
has been used to study emission from quantum wells and
NMC microcavities following resonant excitation (Shah
et al., 1995; Wang, Shah, Damen, Jan, et al., 1995; Wang,
Shah, Damen, Pfeiffer, and Cunningham, 1995).
Whereas oscillations in spectrally unresolved emission
may arise from the interference of two fields in the de-
tector (polarization beats), oscillations in spectrally re-
solved emission are interpreted as arising from two tran-
sitions sharing a common ground state (quantum beats).
Oscillations seen in reflection or transmission do not
prove that there is a coherent oscillation of the exciton
population, since they could arise from polarization
beats. The oscillations seen by Wang and co-workers in
spectrally resolved four-wave mixing are interpreted as
showing the creation of a coherent state between the
two normal modes of the composite system and, in the
time domain, the coherent energy exchange between the
exciton and cavity; see also Koch (1997). Bongiovanni
et al. (1997) show that this energy exchange is destroyed
by inhomogeneous broadening: the polarization still ex-
hibits deep oscillations, but not the exciton population;
see also Pau, Björk, Cao, Hanamura, and Yamamoto
(1996), and Björk et al. (1996).

Sermage et al. (1996) studied the emission from a mi-
crocavity with an AlAs l/2 spacer using 1.5-ps pulses;
thus the pulse spectral FWHM width of 1 meV was
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much less than the 4.6-meV NMC splitting. For resonant
excitation into either one of the two NMC peaks, the
emission decay time as a function of detuning was mea-
sured and fit to a two-coupled-oscillator model. They
extracted a bare-exciton decay time of 17 ps and a bare-
cavity decay time of less than 3 ps, their streak-camera
resolution. Whatever the detuning, the branch being ex-
cited decayed as a weighted average of bare exciton and
bare cavity, determined by the detuning in the coupled-
oscillator formula. For this resonant excitation, the exci-
ton states that were populated directly were extended
states with short in-plane wave vectors, that coupled di-
rectly to the cavity modes selected by the laser. Then
they tuned the laser to the first blue bandpass window of
the Bragg mirror and measured the rise time and decay
time of emission from the lower NMC peak. For positive
detunings those times were close to those measured for
a cavityless quantum well (60 ps for the rise time and
400 ps for the decay), while at negative detuning the

FIG. 24. Interferometric time-resolved pump-probe data for
the microcavity sample, showing the envelope of the optical-
frequency interference fringes: (a) resonance, and (b) cavity
tuned off resonance. The ordinate axis is in arbitrary units.
From Norris et al., 1994.
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times were much shorter (less than 3 ps for the rise time
and 180 ps for the decay). In this case the two-coupled-
oscillator model fit gave bare times inconsistent with the
measured values, indicating the need to correctly treat
the complicated relaxation dynamics of carriers and ex-
citons within a microcavity.

Of course, samples with higher splitting-to-linewidth
ratios give normal-mode oscillations of higher contrast
(Berger et al., 1996; Lyngnes et al., 1997). An example
using sample NMC22 described in Sec. III.B.2 is shown
in Fig. 25. Boggavarapu et al. (1996) report very deep
oscillations using balanced homodyne detection; they
use quantum state reconstruction techniques to deduce
the photon statistics of the electric field directly from the
phase-random quadrature probability distributions.
They find that the second-order coherence function
g(2)(t ,t) remains unity wherever the NMC transmission
signal is strong enough to allow for accurate measure-
ment, characteristic of a Poisson photon distribution of
laser emission, as expected for a semiclassical system.

2. Coherent nonlinear pulse propagation calculations

In the linear regime, the propagation equations devel-
oped by Jahnke, Kira, and Koch (1997) are equivalent to
the transfer-matrix calculations of Sec. III.A, which are
an extension of the linear dispersion theory introduced
in Sec. II. Correspondingly, the system dynamics can be
described by Fourier-transforming the incoming pulse
and then applying the transfer-matrix method for each
of its frequency components. The excitonic properties
enter only through the linear time-independent suscep-
tibility. However, this linear model is not applicable for
the intense pulse propagation studied in the following. A
strong excitation generates nonlinear excitonic effects
that have to be treated self-consistently with the nonlin-
ear pulse propagation problem.

FIG. 25. Time-resolved NMC emission signal (normalized to
1000 at t50 ps) close to zero detuning in the linear regime.
Inset: spectrum of the reflected excitation pulse. From Berger
et al., 1996.
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To demonstrate the saturation of quantum well exci-
tons, we study the propagation of an intense laser pulse
through a single quantum well. The results are part of
the nonlinear saturation physics of normal-mode oscilla-
tions discussed in the next section (III.C.3). In the non-
linear regime, the dynamic equation for the quantum
well polarization, Eq. (43), alone is not sufficient to de-
termine the excitation dynamics, since the carrier occu-
pation also becomes an independent dynamic quantity.
The general form of the coupled polarization and occu-
pation equations including correlation contributions, is
discussed in Appendix A. The pulse-excited quantum
well polarization follows from Eqs. (A33)–(A35),
(A40), and (A41), whereas the excitation-induced occu-
pation can be determined with Eqs. (A36)–(A39). The
nonlinear pulse propagation problem has been treated
by Jahnke, Kira, and Koch (1997); the quantum well
polarization follows from Eq. (A10).

For the propagation of a 100-fs laser pulse through a
single 8-nm GaAs quantum well, the time evolution of
the excited quantum well polarization is shown in Fig.
26(a). Using a small Rabi energy, VR5dcvE, of an ex-
ternally applied pulse, the solution remains in the linear
regime and the polarization decay is governed by the
background damping. At elevated pulse energies, en-

FIG. 26. Compound quantum-well polarization and transmis-
sion as a function of resonant pump Rabi energy: (a) Time-
resolved quantum-well polarization uPQW(t)u for increasing
Rabi energy VR of the external 100-fs laser pulse. The linear
result is obtained for VR51023EB where the curve has been
scaled by a factor 1024. (b) Corresponding quantum well
transmission spectra for increasing Rabi energy. From Jahnke,
Kira, and Koch, 1997.
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hanced polarization decay is obtained from increased ef-
ficiency of carrier and polarization scattering. The calcu-
lated spectra of the transmitted pulses are shown in Fig.
26(b). Similar to the case of quasiequilibrium excitation
in Sec. III.B, bleaching of the exciton transmission oc-
curs basically without any shift of the 1s-exciton reso-
nance. The spectral position of the 1s exciton results
from the interplay of a reduced exciton binding energy
and the increasing band-gap shift. Both effects are cal-
culated including the above-discussed dynamic renor-
malization contributions.

3. Nonlinear saturation of time-resolved
normal-mode oscillations

Using nonlinear theory, we have also studied the satu-
ration of excitonic normal-mode coupling. For the
above-discussed microcavity design with two quantum
wells, we have calculated the propagation of an intense
100-fs pulse (VR51EB) through the Bragg mirrors. Fig-
ure 27 shows that the normal-mode oscillations are
strongly damped. Due to increased dephasing, the quan-
tum well polarization (solid line in Fig. 27) rapidly van-

FIG. 27. Computed time dependence following femtosecond
excitation: (a) Temporal evolution of a quantum well; solid
line, polarization; dot-dashed line, excitation density; dotted
line, cavity field at the quantum well position for a microcavity
with two quantum wells and excitation with an intense 100-fs
laser pulse. All quantities are the same for both quantum wells;
(b) corresponding reflected and transmitted fields. Time-
resolved reflected signal (solid line) and transmitted signal
(dotted line) of a VCSEL. From Jahnke, Kira, and Koch, 1997.
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ishes. Since normal-mode oscillations originate from the
periodic energy exchange between the quantum well
and the cavity field, the rapid polarization decay reduces
the reemission of the field by the quantum wells. Hence
the cavity field at the quantum wells (dotted line in Fig.
27) decays much faster than in the low-intensity case.
The discussed behavior leads to strongly damped
normal-mode oscillations and a fast decay of the trans-
mitted and reflected field.

Figure 28 shows the measured time-resolved reflec-
tion of the sample (on a logarithmic scale) for different
incident pulse intensities. The corresponding measured
reflection spectra are shown in the inset. A rich dynamic
behavior is observed: As the incident pulse intensity in-
creases, the modulation depth of the NMC oscillations
decreases, accompanied by a reduction and broadening
of the dips in the reflection spectra. However, the oscil-
lation period stays approximately constant as the pulse
intensity increases, consistent with the observed near-
constant splitting in the reflection spectra. Nonlinear ef-
fects strongly influence the interaction-induced decay of
the time-resolved signal. When the pulse intensity is in-
creased from a low to an intermediate value (solid line
and dotted line in Fig. 28, respectively) the decay be-
comes faster. For a very large pulse intensity (dashed
line in Fig. 28), the NMC oscillations are strongly
damped out, due to fast-exciton saturation, and the de-
cay is slowed down approaching the empty-cavity decay
rate.

The corresponding calculations of the time-resolved
reflected signal for increasing intensity of the applied
100-fs pulse, using the above discussed microscopic
theory, are shown in Fig. 29. We find quantitative agree-
ment with the experimental results (Fig. 28) regarding
the decay behavior and the reduction in modulation
depth. Note that the limited time resolution in the ex-
perimental setup increases the width of the t50 peak in

FIG. 28. Experimental time-resolved reflected intensity (nor-
malized to 1 at t50 ps) after 100-fs pulse excitation of a mi-
crocavity with two quantum wells: solid line, with a photon flux
1.431011 photons/cm2; dotted line, 5.531012 photons/cm2;
dashed line, 1.131013 photons/cm2. Inset: the corresponding
spectra of the reflected signal divided by the spectrum of the
incident pulse. From Lyngnes et al., 1997.
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Fig. 28. Furthermore the reflected pulse spectrum, dis-
played in the inset, reproduces the experimentally ob-
served features.

Nonlinear transmission was also studied by time-
integrated detection of the throughput of 100-fs laser
pulses (Gibbs et al., 1997). Again loss of transmission
with little reduction in splitting was seen just as in the cw
case (Fig. 21). With increasing excitation, the oscillations
damped out more rapidly, but the oscillation frequency
hardly changed. This is the time-resolved equivalent of
the cw reduced transmission without a reduction in split-
ting. The decay rate increased linearly with carrier den-
sity, corresponding to broadening of the exciton absorp-
tion in the cw case.

As the carrier density increased, carrier and polariza-
tion scattering increased the dephasing rate of the exci-
ton, broadening the excitonic transition without decreas-
ing the oscillator strength [Figs. 30 and 26(b)]. Similar
behavior has been reported for bulk GaAs (Fehrenbach
et al., 1982; Wang et al., 1993). The broadening increased
the absorption at the wavelength of the reflectance dips,
thus reducing the depth of the reflectance dips and
broadening them. This translates in the time domain to a
reduction of the modulation depth of the NMC oscilla-
tions. However, since the oscillator strength is conserved
by scattering processes, the NMC splitting and oscilla-
tion period stay constant. Phase-space filling and Cou-
lomb screening do eventually reduce the oscillator
strength and collapse the NMC splitting, as described
next, but not until the NMC reflectance dips and oscil-
lations are almost completely gone. Then the bare-cavity
reflectance dip appears, signaling the transition to the
perturbative regime.

Rhee et al. (1995, 1996) and Norris et al. (1995) re-
corded the time-integrated spectra of 80-fs pulses re-
flected from a microcavity with a 6-meV splitting. Ad-

FIG. 29. Calculated time-resolved reflected intensity of a mi-
crocavity after 100-fs pulse excitation: solid line, with VR

50.01EB ; dotted line, VR51EB ; dashed line, VR52EB . The
inset shows the Fourier spectrum of the reflected signal di-
vided by the Fourier spectrum of the incident pulse. From
Lyngnes et al., 1997.
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justing the tuning for equal reflectivity dips, they
observed no change in splitting over two orders of mag-
nitude and then a gradual decrease in splitting as shown
in Fig. 31. They attribute this reduction to loss of quan-
tum well oscillator strength as 1/(11n/ns) with ns56.6
31010 excitons/cm2. They note that for their sample the
NMC splitting was not sensitive to pure linewidth broad-
ening due to the exciton-exciton interaction in the
relatively-low-excitation regime. As can be seen in Fig.
31, their reflectivity dips are barely resolved in spite of
the large splitting. Consequently inhomogeneous broad-
ening completely masked the broadening effects on
transmission described above, just as it did in the cw
carrier-density-dependent experiments of Houdré et al.
(1995), discussed in Sec. III.B.2, and in other transient
observations of the reduction in NMC splitting with in-
creased excitation (Wang, Shah, Damen, Jan, et al.,
1995; Wang, Shah, Damen, Pfeiffer, and Cunningham,
1995).

When the resonant excitation is pulsed, then the equi-
librium carrier-density-dependent linear dispersion
theory extension of Sec. II fails because the time dy-
namical response of quantum well carriers within a mi-

FIG. 30. Measured exciton absorption, linewidth, and relative
oscillator strength as a function of resonant excitation: (a) Ex-
citon absorption of a 20-quantum well sample measured by the
transmission of 100-fs pulses. (b) FWHM linewidth and rela-
tive oscillator strength as a function of incident photon flux
estimated from (a). From Lyngnes et al., 1997.
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crocavity can be quite different from that of cavityless
quantum well carriers. Thus one does not know what
carrier distributions to use at a given instant of time.
One must self-consistently solve for the time dynamics
of the coupled system of carrier distributions and polar-
izations and the intracavity optical fields as treated
above.

IV. NONLINEAR MICROCAVITY LUMINESCENCE

The semiclassical theory developed in Sec. III and
Appendix A describes both the pump and the probe
beams classically. Its detailed agreement with experi-
ments might suggest that a quantum treatment of light
brings only minor corrections to the classical calcula-
tions. However, this is usually true only as long as the
classical fields exceed the vacuum fluctuations, which are
almost always much smaller than the weakest probe
beam. Photoluminescence is an important phenomenon,
which cannot be explained semiclassically. It was shown
in Sec. III.C that without an external driving field the
polarization and the coherent microcavity field ^E& de-
cay away typically on a ps time scale after the excitation
pulse. However, in many cases a substantial number of
incoherent electrons and holes remain excited in the sys-
tem. The system can then reach its ground state via non-
radiative electron-hole recombination or radiatively
through spontaneous emission leading to photolumines-
cence out of the quantum well.

New and valuable information on the interplay of
field and quantum well properties can be extracted from
this luminescence. For example, suppressed or enhanced
spontaneous emission (Kleppner, 1981; Yablonovitch,
1987) in semiconductor microcavities has been observed
(Yamamoto, Machida, Horikoshi, and Igeta, 1991;
Deppe and Lei, 1992; Huffaker et al., 1992; Tanaka
et al., 1995).

A quantum treatment of light is desired to describe
photoluminescence because the field has nonclassical
properties, e.g., ^E&50 but ^EE&Þ0. Alternatively to a
fully quantum-mechanical theory, the analysis of photo-
luminescence properties is at the level of a Langevin
approach using the generalized dissipation-fluctuation
theorem (Louisell, 1974). However, in a strongly inter-
acting nonlinear system with both quantum correlations
in the material and light degrees of freedom, such a
Langevin-type approach offers no significant simplifica-
tion over the quantum theory, which is the more general
approach anyhow.

The fully quantum-mechanical analysis of the inter-
acting photon-semiconductor electron-hole system poses
a considerable challenge to current theories. In the semi-
classical calculations presented in Sec. III, the major dif-
ficulties arise from the consistent inclusion of carrier-
carrier Coulomb interaction effects. To describe the
quantum properties of light an alternative set of ap-
proximations is used frequently in which the light field is
quantized, but the full electron-hole Coulomb interac-
tion in the many-body Hamiltonian is approximated by
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introducing exciton operators having bosonic character.4

As already discussed in earlier sections, such calcula-
tions yield the correct linear results in the semiclassical
regime, but they include only a subset of the carrier
Coulomb correlation effects, and corrections become
important even in the weakly nonlinear regime. Further-
more, it has been shown (Savasta and Girlanda, 1995)
that the Bosonic approach does not lead to the correct
quantum correlations even for very low densities.

In this section, we present a fully quantum-mechanical
theory for the interacting carrier-photon system, in
which electrons and holes are treated as fermions (Kira,
Jahnke, and Koch, 1998; Kira et al., 1999). Excitonic ef-
fects enter through the consistent inclusion of the Cou-
lomb interaction between the carriers. On this level, in-
vestigations can be extended to the nonlinear regime
and one can estimate when the Bosonic approximation
breaks down.

A. Microscopic description of luminescence dynamics

For a quantum description, both light and matter
properties have to be treated at the operator level. For
this purpose, we introduce a bosonic photon operator bq
corresponding to a light mode having momentum q; for
more details, see Appendix B. We also define the micro-
scopic polarization operator P̂k5vk

†ck and carrier occu-
pation operators n̂k

c5ck
†ck and n̂k

v5vk
†vk , for the con-

duction and valence-band electrons, respectively. Their
quantum-mechanical expectation values, Pk5^P̂k&, f k

e

5^ck
†ck&, and f k

h512^vk
†vk& , relate the opera-

4See, for example, Andreani et al., 1994; Citrin, 1994b;
Savona et al., 1994, 1995; Hanamura et al., 1995; Pau, Björk,
Jacobson, Cao, and Yamamoto, 1995a, 1995b; Pau, Björk, Ja-
cobson, and Yamamoto, 1995; Savona and Tassone, 1995; Pau,
Björk, Cao, Hanamura, and Yamamoto, 1996; Savasta and
Girlanda, 1996a, 1996b.

FIG. 31. Normal-mode splitting vs optical fluence for on-
resonance excitation, extracted from normalized reflectance
spectra as shown in the inset. The pump laser is resonant with
the exciton-cavity resonance. T510 K. From Norris et al.,
1995.
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tors to the dynamical variables used previously in Sec.
III in the semiclassical treatment.

In the following, we focus on the analysis of photolu-
minescence experiments where carriers are nonreso-
nantly generated in the quantum well by cw or pulsed
optical excitation high above the semiconductor band
edge. Hence there is no coherent field or intraband po-
larization generated in the vicinity of the exciton reso-
nances and we can use

^P̂k~ t050 !&50, ^bq~ t050 !&50. (47)

After their generation, the carriers rapidly relax into
quasiequilibrium Fermi-Dirac distributions within their
respective bands (Collet et al., 1986; Osman and Ferry,
1987; Pelouch et al., 1992; Jahnke and Koch, 1993, 1995).
Starting from the initial condition (47), the equations of
motion discussed in Appendix B show that, for t.t0 ,

^P̂k&5^bq&5^n̂k
c ,vbq&5^bqP̂k&50. (48)

Hence we have to determine the incoherent field dy-
namics from second-order correlations like ^bq

†bq& and
^bq

†P̂k&. These correlations are generated via spontane-
ous emission, which is genuinely a quantum phenom-
enon. The equation of motion for ^bq

†bq8& is obtained
from the equation of motion for the photon operators,
Eq. (B26),

i\
]

]t
^bq

†bq8&5\~vq82vq!^bq
†bq8&1iEqũq^bq8P̂&

1iEq8ũq8
* ^bq

†P̂&, (49)

where Eq is the vacuum field amplitude, P̂5SkdcvP̂k
1H.c., and ũq is the effective mode strength at the
quantum well. The equations of motion for ^bq

†P̂k& and
f k

e ,h can be derived from the quantum operator equa-
tions (B26)–(B28) combined with the dynamic decou-
pling (B33) and condition (48), yielding

i\
]

]t
^bq

†P̂k&5S ek
e1ek

h2\vq2
1
S (

k8
Vk2k8~f k8

e
1f k8

h
!D

3^bq
†P̂k&1~f k

e1f k
h21 !V~k,q !

1f k
ef k

hVSE~k,q !, (50)

i\
]

]t
f k

e~h !522i(
q

Im@dcv* iEqũq* ^bq
†P̂k&# . (51)

Equations (49)–(51) give a closed set of semiconductor
luminescence equations with the renormalized
stimulated-emission/absorption term

V~k,q !5dcv^bq
†ÊQW&1

1
S (

k8
Vk2k8^bq

†P̂k8&, (52)

similar to the renormalized Rabi energy of a classical
field discussed in Appendix A. Using Eq. (B30) we can
write
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V~k,q !5dcvS (
q8

iEq8ũq8^bq
†bq8&

2

E dzuj~z !u4

e0n2S (
k8

dcv* ^bq
†P̂k8&D

1(
k8

Vk2k8^bq
†P̂k8&, (53)

where the first term is the driving contribution due to
field correlations and the second and third terms de-
scribe its renormalization due to the dipole self-energy
and the Coulomb interaction, respectively. In Eq. (50)
the rate of spontaneous emission is given by

VSE~k,q !5iEqũqdcv (54)

in terms of the dipole matrix element dcv of the transi-
tion multiplied by the effective mode strength iEqũq at
the quantum well position.

The correlation ^bq
†P̂k&5^bq

†vk
†ck& gives the amplitude

of a process in which an electron-hole pair with zero
center-of-mass momentum recombines by emitting a
photon with vanishing in-plane momentum, qi50. Even
if the field-particle and the field-field correlations are
initially taken to be zero, correlations start to build up
because of the term f k

ef k
hVSE(k,q) entering Eq. (50).

This driving term is directly associated with spontaneous
emission triggering the recombination process. Accord-
ing to the factor f k

ef k
h , the spontaneous recombination

takes place only if an electron and hole are present si-
multaneously.

Together with the field correlations, the stimulated
emission/absorption V(k,q) strongly influences the pho-
toluminescence spectrum. The observed photolumines-
cence is a result of the interplay of the field-field and
field-particle correlations affected by the elementary
processes of spontaneous emission and stimulated emis-
sion or absorption. The electron-hole recombination na-
ture of the luminescence is seen in the most transparent
manner by investigating the carrier and the photon num-
ber dynamics of the system. The total change in photon
and carrier number is obtained from Eqs. (49) and (51),

]

]t (q
^bq

†bq&52
]

]t (k
f k

e ,h , (55)

which means that each time one electron-hole pair is
recombined, a photon is created.

The semiconductor luminescence equations partially
resemble the semiconductor Bloch Eqs. (A33) and
(A36) describing the interaction of classical fields with
the semiconductor. The semiclassical calculation intro-
duces screening and dephasing due to carrier-carrier
scattering and polarization scattering, which are beyond
the Hartree-Fock approximation. Such a fully micro-
scopic calculation of photoluminescence remains a ma-
jor challenge for the future. A solid starting point for
such an investigation might be the operator equations
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
(B26)–(B28) because they contain all possible quantum
correlations. However, since the full quantum theory
can be reduced to semiclassical calculation, these effects
can be described relatively well, at least for cw pumping
and incoherent excitation, using a screened Coulomb
potential and a dephasing rate extracted from an inde-
pendent quantum-kinetic calculation. This simplifies the
quantum calculations considerably, still allowing us to
determine the properties of quantized light correlated
with matter polarization in great detail. In practice, we
replace the bare Coulomb potential of the semiconduc-
tor luminescence equations by a screened one. In the
dephasing rate approximation, we add to Eq. (50) an
additional term (DEg2ig)^bq

†P̂k&, where DEg5Sk@Wk
2Vk# is the Coulomb hole energy renormalization and g
is the effective dephasing rate. In practice, the dephasing
constant is determined by computing the excitonic ab-
sorption spectrum using the Hartree-Fock computation
and the full quantum-kinetic method; the dephasing in
the Hartree-Fock computation is required to make the
excitonic absorption half-width equal to that of the
quantum-kinetic approach.

B. Quantum well and microcavity photoluminescence
calculations

The field modes uq(z) entering in a luminescence cal-
culation can be obtained from the transfer-matrix tech-
nique discussed in Sec. III.A. These field modes deter-
mine whether the electron-hole-pair decay is enhanced
or inhibited due to the environment. For the following
calculations of luminescence spectra, we use up to 180
discretization points for different q modes for both
propagating and counterpropagating modes and 100 k
points to describe the many-body dynamics of the car-
rier system. Numerically, this computation corresponds
to solving over 100 time-dependent semiconductor
Bloch equations simultaneously, which makes the calcu-
lation numerically rather demanding. The dephasing
constant is separately determined from the quantum-
kinetic calculations of Sec. III.B for each carrier density.
For the situation discussed below, the dephasing
changes from g50.05EB –0.24EB as the carrier density
is increased.

In an experiment, the luminescence spectrum is mea-
sured with a detector placed on one side of the micro-
cavity. Therefore our microcavity mode basis is trans-
formed into a detector basis, which relates the detector
photon number ^dq

†dq& to ^bq
†bq& via a matrix transfor-

mation. For highly symmetrical mirrors, the photon
number is practically equal to ^bq

†bq&. Since the mea-
sured luminescence for stationary emission is propor-
tional to the incoming photon flux, the luminescence in-
tensity spectrum is given by

ILUM~q !}
]

]t
^dq

†dq&. (56)

For a similar definition, see Lindberg and Koch (1989).
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In the computations, we start from a situation in
which all correlations are initially zero. We numerically
evolve Eqs. (49) and (50) to steady state to obtain the
cw photoluminescence spectrum. For the carrier distri-
butions we take constant-temperature Fermi-Dirac func-
tions, which must be the steady-state solutions. Then we
do not have to treat the carrier occupations dynamically,
but we still get the correct steady-state result; however,
the approach to equilibrium cannot be used.

As discussed in Sec. IV.A, the stimulated and sponta-
neous contributions influence the photoluminescence
spectrum. The stimulated contribution increases as the
mode confinement improves. In the bare-well limit, the
stimulated emission/absorption is negligible, since all
photons emitted by the quantum well escape the quan-
tum well region rapidly, preventing any back action.
Consequently, the bare-well luminescence is obtained
from Eqs. (49) and (50) by setting the mode function to
its free-space value, uuq

0 u51. Figure 32 shows the steady-
state luminescence spectra of a single 8-nm quantum
well for various carrier densities, in direct comparison
with the corresponding absorption spectra. The photolu-
minescence spectra have their maxima close to the exci-
tonic absorption peak. Furthermore, the luminescence
stays peaked for much higher carrier densities than the
excitonic absorption. As the exciton resonance vanishes
from the absorption, the quantum well luminescence be-
comes strongly asymmetric.

The quantum theory presented here provides a con-
sistent interpretation for the photoluminescence which
is attributed to quantum-correlated electron-hole re-
combination processes. The amplitude of a single
photon-assisted electron-hole recombination process is
determined by ^bq

†vk
†ck&. These events are driven simul-

taneously by spontaneous emission and stimulated emis-
sion or reabsorption of photons. The Coulomb interac-
tion strongly correlates the microscopic recombination
processes; at low carrier densities this leads to excitonic
resonance enhancements in macroscopic carrier quanti-
ties like Skdcv^bq

†P̂k&. For high carrier densities, stimu-
lated emission introduces gain to the system, leading to
laser operation.

FIG. 32. Calculated luminescence (a) and absorption (b) for a
single 8-nm GaAs quantum well and various carrier densities.
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C. Transitions from normal-mode luminescence
to weak-coupling luminescence
and onto lasing

In this section, we compare the microscopic calcula-
tions to experimental results (Kira, Jahnke, Koch, et al.,
1997, 1998). The pump Ti:sapphire laser beam is inci-
dent at a 15° angle from normal and focused to a 100-
mm-diameter spot on the microcavity sample NMC22.
The laser beam is chopped by an acousto-optic modula-
tor into 0.5-ms pulses with a 10% duty cycle to avoid
heating the sample, which is kept close to 4 K. Photolu-
minescence is collected in the normal direction from a
small solid angle, ;4p31023 sr, and imaged onto an
aperture of area an order of magnitude smaller than the
image of the photoluminescence spot. The computed
and measured photoluminescence spectra are shown in
Fig. 33 for three different carrier densities and cavity-
exciton detunings. For a low carrier density (n

FIG. 33. Photoluminescence spectra for three cavity-exciton
detunings D: (upper) computed for carrier densities 2.1, 1.7,
and 1.2531011 cm22 (from top to bottom), and (lower) mea-
sured for different detunings but showing the same behavior.
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51011 cm22), all detunings show two normal-mode
peaks such that the high-energy peak has a lower inten-
sity. If the detuning is negative, the high-energy peak
vanishes as the carrier density is increased. For positive
detunings, a transitionlike behavior is observed for el-
evated excitations; the high-energy peak intensity over-
takes the low-energy intensity. Note that the transition
carrier densities are still below lasing. Examples of this
crossover behavior are shown in Fig. 34. For positive
detunings, the low-energy peak height clamps, whereas
the high-energy peak grows strongly for elevated carrier
densities. For larger detunings, the peak heights cross
already for lower excitation levels.

To obtain further insight into the excitation-
dependent microcavity photoluminescence, we show in
Fig. 35 the energetic positions of the two emission peaks
in experiments and theory. For low excitation, all spec-
tra show large NMC splittings that are only weakly de-
tuning dependent. For all positive detunings, the high-
energy peak shifts toward the lower-energy peak,
whereas the energetic position of the low-energy peak
remains nearly constant. As in Fig. 34, the high-energy
peak vanishes for negative detuning at higher excitation
levels. For positive detunings, the energetic splitting be-
tween both peaks decreases before it reaches a basically
constant value, which is determined by the cavity-
exciton detuning; a strong detuning dependence is ob-
served. This suggests that a transition to the perturbative
regime takes place even if the photoluminescence stays
double peaked. This might seem contradictory at first,
but such a double-peaked emission can result even for a
classical emitter in a cavity for detuned emission fre-
quency and cavity resonance. The transition from
normal-mode coupling to the weak-coupling regime

FIG. 34. NMC photoluminescence peak intensities as a func-
tion of carrier density. Measured (a)–(c) and calculated (d)–
(f) microcavity emission peak intensity vs excitation for differ-
ent cavity-exciton detunings D. The shaded inset in (f) shows
the computed average Bosonic commutator.
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takes place roughly when the peak heights cross in Fig.
34.

The remarkable crossover of the photoluminescence
peak intensities, just explained as electron-hole pairs
emitting in an NMC microcavity, was first attributed to
‘‘Boser action’’ (Pau, Cao, et al., 1996; Pau, Jacobson,
Björk, and Yamamoto, 1996; Yamamoto et al., 1996;
Ram et al., 1996; Cao, Pau, Tassone, et al., 1997). A se-
ries of theoretical papers (Ram and Imamoglu, 1996;
Imamoglu et al., 1996; Imamoglu and Ram, 1996) had
argued that if excitons behave as bosons then Bose con-
densation could occur to the upper branch polaritons,
i.e., providing a source for coherent emission from the
higher-energy NMC peak. Quoting Ram and Imamoglu
(1996): ‘‘The excitons in the boser are generated by an
off-resonant, circularly-polarized optical field which cre-
ates spin-polarized electron-hole pairs. These subse-
quently form excitons with large center-of-mass mo-
menta that relax by acoustic phonon emission to
populate the [zero center-of-mass in-plane momentum]
excitonic state. It is this phonon emission rate into the
exciton ground state that is enhanced by final-state
stimulation. In an ideal quantum well, only those ground
state excitons are able to annihilate by spontaneously
emitting photons.’’ It was hoped that this condensation
would result in coherent light emission at densities lower
than those required for conventional laser emission by
an electron-hole plasma.

An important component of the ‘‘Boser action’’ inter-
pretation is the presence of double peaks in photolumi-

FIG. 35. Microcavity photoluminescence peak energies vs
continuous-wave excitation intensity: solid line, for the high-
energy peak; dotted line, for the low-energy peak correspond-
ing to Fig. 34.
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FIG. 36. Transmission and pho-
toluminescence spectra for
sample NMC22 and cavity-
exciton detuning D51.9 meV:
(a) measured; (b) computed.
nescence, indicating that nonperturbative coupling still
exists, when the upper photoluminescence peak over-
takes the lower one for increasing carrier density. It was
pointed out (Pau, Cao, et al., 1996), however, that the
splitting is less than the zero-density value, suggesting
that the crossover transition occurs as normal-mode cou-
pling starts to collapse. Both cw and fs experiments
(Gibbs et al., 1997; Khitrova et al., 1998; Kira, Jahnke,
Koch, et al., 1997; Fan et al., 1997; Cao, Pau, Jacobson,
et al., 1997) were performed over a wide range of exci-
tations from very low densities to well above the lasing
threshold. Those experiments reproduced the main fea-
tures of the earlier data leading to the ‘‘Boser’’ interpre-
tation and established several facts about the operating
range of the ‘‘Boser action.’’ Particularly revealing were
simultaneous measurements of cw transmission and
photoluminescence spectra as a function of excitation
level (Nelson, Lindmark, et al., 1996). Examples of the
results are shown in Fig. 36. Clearly, the NMC splittings
are roughly the same in transmission and photolumines-
cence, but the peak-height ratios are quite different.
Furthermore, the transmission spectra do not show the
crossover in peak heights observed in photolumines-
cence spectra. However, as the upper photolumines-
cence peak overtakes the lower, the transmission be-
comes single-peaked. This indicates that the density at
crossover is so high that the exciton absorption is largely
gone, causing the two transmission peaks in the NMC
regime to collapse to a single peak. This is consistent
with the fact that the crossover occurs at a density that is
only about a factor of 2 lower than the usual electron-
hole-plasma lasing threshold density, as shown in Fig.
37. It is also consistent with the density dependence of
the splitting shown in Fig. 35; the splitting hardly
changes above the crossover density. In fact, lasing fi-
nally occurs very close to the frequency of the upper
peak emission at crossover.
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Compare Fig. 38, the time-integrated photolumines-
cence after pulsed excitation, with Fig. 36(a), the photo-
luminescence with cw excitation. One sees that the high-
density pulsed data are double-peaked simply because
the photoluminescence spectra are time integrated over
the decay of the carrier density (Fan et al., 1997).
Clearly, for densities below the crossover density, this
averaging contributes predominantly to the lower-
energy photoluminescence peak. The presence of pro-
nounced double peaks in the pulsed photoluminescence
spectra throughout the ‘‘Boser action’’ regime, an im-
portant part of the argument that nonperturbative cou-
pling still exists (Pau, Cao, et al., 1996), can be seen to be
an artifact of the pulsed measurement. Nonetheless the
cw measurements show that the photoluminescence
spectra can be double peaked even after the transmis-
sion becomes single peaked, as discussed above, but the
range above crossover is much smaller than for the
pulsed data.

Fan et al. (1997) suggest that the double-peaked emis-
sion after loss of normal-mode coupling can result from
the inclusion in the signal of photoluminescence from

FIG. 37. Peak photoluminescence intensity vs pump power for
D54.2 meV detuning and 100-fs pulse excitation above the
cavity stop band. From Kira, Jahnke, Koch, Berger, Wick, Nel-
son, Khitrova, and Gibbs, 1997.



1622 Khitrova et al.: Nonlinear optics of semiconductor microcavities
spatial regions of lower carrier density; i.e., a spatial av-
eraging much like the temporal averaging in the pulsed
data. Khitrova et al. (1998) imaged the photolumines-
cence output collected within a small solid angle (4p
31023 sr) onto an aperture that passed only the
uniform-excitation 10% central part of the photolumi-
nescence. Without the aperture the double-peaked cw
emission did extend to slightly higher excitations; in the
data of Figs. 33–37 such effects were avoided by aper-
turing.

The crossover occurs twice in time-resolved photolu-
minescence after pulsed excitation (Fig. 39). The inten-
sities cross first as the carriers cool and increase the dis-
tribution in the vicinity of the NMC peaks. They cross
again as the carriers decay away, and the density drops
below the crossover value.

To estimate the validity of the condensation hypoth-
esis let us check the basic assumption of bosonic theories
claiming that a fermionic electron and hole form an ex-
citon which can be described with a bosonic operator.
The commutator of 1s-boson operators @B̂00 ,B̂00

† # is it-
self an operator, if one uses Eq. (58). However, the ex-
pectation value of the commutator ^@B̂00 ,B̂00

† #& can be
determined. This value should be close to unity if the
Bosonic approximation is valid. Calculated values for
^@B̂00 ,B̂00

† #& as a function of the carrier density are
shown in the inset to Fig. 34 for the same conditions as
the photoluminescence spectra. We see that for the el-
evated carrier densities at which the NMC peaks cross,
the commutator varies between 0.7 and 0.4, i.e., far be-
low the ideal bosonic value 1. Hence we conclude that
the Bosonic approximation is not valid anymore and
that the transition observed in Fig. 34 cannot be attrib-
uted to Bosonic properties of electron-hole pairs. Fur-
thermore, both the theoretical and the experimental
data show that the collapse of normal-mode coupling to

FIG. 38. Time-integrated microcavity photoluminescence
spectra for increasing pump power following 100-fs excitation
above the cavity stop band with the cavity mode 2.83 meV
above the exciton. From Khitrova et al., 1998.
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the weak-coupling regime occurs right in the middle of
the ‘‘Boser action’’ regime, so that there are no excitons
present that could Bose condense.

These thorough theoretical and experimental investi-
gations do not support a Bosonic interpretation. In fact,
that explanation for the observed behavior has been re-
tracted (Cao, Pau, Jacobson, et al., 1997). The experi-
mental observations can be explained by the fermionic
carrier nonlinearities (phase-space filling, absorption
saturation) and cavity effects (see Kira, Jahnke, Koch,
Berger, et al., 1997, 1998). The roles of stimulated and
spontaneous emission can be separated by performing a
computation in which stimulated emission/absorption is
switched off, as described in Sec. IV. B. In this case, the
computation corresponds to effective decoupling of pho-
toluminescence and normal-mode coupling since the
stimulated emission is not present. The computed full
and artificial spectra for detuning D513 meV are plot-
ted in Fig. 40. Without normal-mode coupling, the effect
of spontaneous emission is basically that of a classical
emitter inside a detuned cavity. Increasing the emission
intensity leads to a dramatic increase in the emission at
the cavity mode, but only to a weak increase of the emis-
sion at the frequency of the detuned emitter. When the
term ^bq

†ÊQW& is switched on, the stimulated term estab-
lishes a strong reabsorption of photons for the low-
carrier-density case. The reabsorption is much higher for
the high-energy peak because it is closer to the empty-
cavity mode, which forces the light modes to propagate
many roundtrips in the absorbing material. The reab-
sorption at the high-energy peak is enhanced further be-
cause it is energetically closer to the unrenormalized
continuum states. For higher carrier densities, the semi-
conductor absorption is gradually bleached (Fig. 40), re-
ducing the suppression of the high-energy luminescence.
As a consequence, the high-energy peak becomes larger

FIG. 39. Time-resolved magnetoexciton NMC photolumines-
cence spectra at 14 T magnetic field, following femtosecond
above-stop band excitation for 1.05-meV positive detuning.
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than the low-energy peak. The bleaching of the exciton
also means that the exciton vanishes at the peak height
crossing. Thus the system has reached the perturbative
regime even before the ‘‘Boser’’ transition. These obser-
vations are verified by comparison of transmission and
photoluminescence experiments. For positive detunings,
the upper branch transmission peak goes continuously
from the NMC regime to the perturbative regime, en-
abling its emission to grow continuously with increased
carrier density. In contrast the transmission of the lower
branch is attenuated rapidly when normal-mode cou-
pling disappears, inhibiting lower-branch photolumines-
cence; the increase in carrier density is offset by the in-
creased difficulty of emission.

For very low cw-excitation powers, Senellart and
Bloch (1999) have observed another transition in the
low-energy photoluminescence intensity when the
exciton-cavity detuning is strongly negative. They sug-
gest that the phenomenon can be explained by a
Bosonic model that includes phonon-assisted relaxation
stimulated by polariton final-state population. However,
according to our calculations these results can be ex-
plained within the framework of our fermionic quantum
theory. The observed transition arises as a consequence
of the nonlinear relationship between pump power and
generated carrier density under stationary conditions,
which can be reproduced by model calculations. Dang
et al. (1998) offer stimulation of cavity polaritons as one
possible explanation for a low-power threshold on the
high-energy side of the lower branch in an NMC micro-
cavity containing 16 CdTe quantum wells; our Fermionic
quantum theory has not yet been applied to that case.

FIG. 40. Photoluminescence spectra for various excitation
densities for the detuning D53 meV: (a) from a calculation
without the stimulated emission/absorption term causing
normal-mode coupling (on a logarithmic scale); (b) from the
full calculation; (c) the corresponding excitonic absorption.
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V. CONCLUSIONS AND FUTURE DIRECTIONS

A. Quantum-statistical limit

Since strong light-matter coupling effects are impor-
tant in microcavity systems, we briefly outline in this
section some aspects of the quantum-statistical limit
known from atomic physics. In the field of experimental
atomic cavity quantum electrodynamics it was an impor-
tant goal for some time to observe the second rung of
the Jaynes-Cummings ladder (Jaynes and Cummings,
1963) for the single-atom strong-coupling regime. This
was seen in 1996 by Haroche’s group (Brune et al.,
1996).

For a single two-level-atom system, the Jaynes-
Cummings interaction Hamiltonian is

Hatom5g0~bqs11bq
†s2!, (57)

where the vacuum field amplitude Evac5A\v/2«0V and
dipole matrix element d determine the coupling constant
g05dEvac . Here, s1 raises the atom from the ground
state ug& to the excited state ue&, and s2 lowers it from
the excited state ue& to the ground state ug&. The system
dynamics takes place within the states un&ue& and
un11&ug&, where un& is a photon number state. If the
atom and the cavity systems are in resonance, a wave-
function solution uc&5Cn(t)un&ue&1Cn11(t)un11&ug&
leads to two discrete energy levels with energy differ-
ence Vn52An11g0 . The energetic level structure of
such a system is often called a single-atom quantum lad-
der; see Fig. 41(a).

If the coupling g0 of a single atom exceeds the cavity

FIG. 41. The first few rungs of the light interaction quantum
ladder for (a) a single atom and (b) N atoms.
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damping and the dipole dephasing rates, then vacuum
field Rabi splitting can be seen with a single atom. This
is the regime of strong coupling in which a single photon
can change the transmission of the coupled cavity-atom
system. If a large number N of identical atoms all inter-
act with a single mode of a cavity, then they give rise to
a splitting 2ANg0 ; this is the regime of nonperturbative
normal-mode coupling [Fig. 41(b); Haroche, 1984, 1992;
Kimble, 1994; Raimond and Haroche, 1995]. The first
excited rungs on the single-atom and many-atom ladders
look alike in that both consist of two states (split by 2g0

and 2ANg0 , respectively). The second rung on the
single-atom ladder consists of two states split by 2&g0 ,
so that transitions from the first and second rungs differ
from those from the zeroth (ground) to the first rungs.
In contrast, the second rung of the many-atom ladder
consists of three states with energies 2\v0 and 2\v0

62ANg0 . As a result the transition energies are the
same from the first and second as from the zeroth to the
first. Thus no new frequencies appear in the spectrum to
help determine how high one is on the many-atom quan-
tum ladder. It has been shown (Carmichael et al., 1994)
that the many-atom case (described by a semiclassical
theory) and the single-atom case (described by the
Jaynes-Cummings model) give the same doublet split-
ting (multiplied by AN for N atoms) for a weak probe
field. In both cases the equations resemble those of two
coupled oscillators, i.e., semiclassical calculations give
correct answers. To see the difference between the semi-
classical behavior of a many-atom system and the genu-
ine quantum behavior of a single-atom system, one has
to perform nonlinear experiments. Only for the quan-
tum system will one obtain ‘‘ladder effects.’’ So the goals
were clear, though difficult to achieve, for the atomic
world. At least they had distinguishable ladders.

Life is much more complicated for the semiconductor
community. Whereas for the atom-light interaction
problem the Jaynes-Cummings Hamiltonian was easy to
diagonalize, yielding the dressed states, i.e., the new
eigenstates with the atom-light interaction, we saw in
Secs. III and IV that because of the Coulomb interaction
the diagonalization of an interacting electron system in a
semiconductor is not possible. This Coulomb many-body
problem is an essential part of semiconductor physics.

In the past, a simplified treatment was often used
based on the approximation of the full semiconductor
electron-hole Hamiltonian by a boson Hamiltonian, to
which high-density effects were added phenomenologi-
cally. This Hamiltonian led to results similar to the
Jaynes-Cummings model. To obtain this Hamiltonian,
electron-hole-pair operators were replaced by exciton
operators Bn ,K

† ,

Bn ,K
† 5(

k
cn~k!ck1K/2

† vk2K/2 , (58)

where cv(k) is the relative motion exciton wave func-
tion with quantum number n, and ck

†vk8 describes the
creation of a conduction-band electron and annihilation
of a valence-band electron (Haug and Koch, 1994). Thus
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the operators Bn ,K
† represent the creation of an exciton

with center-of-mass momentum K. Starting from a first-
principles Hamiltonian in the electron hole picture, as
discussed in Appendixes A and B, one can introduce
exciton operators without approximations only in the
light-matter-interaction Hamiltonian and a simplified
Coulomb Hamiltonian. However, the reduction of the
Coulomb interaction between carriers to bosonic exci-
tons represents only a subset of possible processes in the
nonlinear regime. Important fermionic effects like
phase-space filling, screening, and dephasing are poorly
approximated. Also a description of the interplay be-
tween excitons and free carriers is no longer possible.
Experimentally it is difficult to avoid the excitation of
free carriers, even for excitation at the exciton reso-
nance, due to various interaction processes. On the
other hand, excitonic luminescence is not an unambigu-
ous signature of bound excitons but equally possible due
to recombination of Coulomb correlated carriers of an
electron-hole plasma (Kira, Jahnke, and Koch, 1998), as
discussed in Sec. IV.

Since the bosonic Hamiltonian is strictly valid only in
the linear regime, its predictions are not reliable in the
nonlinear regime, where quantum ladder effects occur.
Hence quantum effects of the nonlinear exciton system
usually cannot simply be handled by models of the
Jaynes-Cummings type. Clearly it is mathematically cor-
rect to expand all pair wave functions into an exciton
basis. However, important nondiagonal coupling ele-
ments occur which cannot be approximated simply by
keeping only the first bound-exciton contribution. The
proper inclusion of screening effects, fermionic phase-
space filling, interaction-induced dephasing, etc., in the
exciton description remains a challenging problem for
the future.

In Sec. III. B.2 evidence was given that present-day
NMC microcavities are far from the quantum-statistical
limit. Even if through clever techniques the semiconduc-
tor quantum limit is achieved one day, it is at least cur-
rently not well understood what its genuine signatures
and quantum effects will be. Nonetheless, note that the
quantum-statistical regime of true strong coupling,
where a single pump photon already changes the optical
properties for a probe photon, is conceivable with a
single quantum dot in a transversely confined microcav-
ity. Consider a nanocavity with cavity-mode volume of
1l3 (Huffaker et al., 1998); already Gutbrod et al. (1998)
report a 2-meV NMC splitting for a quantum well in a
1.2-mm-diameter ‘‘photon dot.’’ Assume that the quan-
tum dot comes from a monolayer fluctuation (Gammon
et al., 1996a); Bonadeo et al. (1998) have performed
nonlinear optical experiments on such a dot and con-
cluded that it behaves like an atom with dephasing
dominated by radiative decay. The parameters of Gam-
mon et al. (1996b) yield a single-oscillator NMC splitting
of 2g05140 meV, i.e., larger than the NMC FWHM line-
width (g1dc)5(11.5155)meV'66 meV for a mirror
reflectivity of 0.998. This quantum-dot nanocavity Q
needed for dc<g0 is much smaller than that for a single
Cs atom (Hood et al., 1998; Kimble, 1998) because both
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the dipole moment and the vacuum field are '123
larger. It will be exciting if quantum features, such as
entanglement, and the quantum-classical boundary
(Haroche and Raimond, 1996; Haroche, 1998) can be
observed and studied with a quantum-dot nanocavity.

B. Directional dependence of microcavity emission

Experimental observations show that one may have
more than two peaks under normal-mode-coupling con-
ditions. These peaks occur in the vicinity of zero detun-
ing for both single-pulse and pump-probe transmission
experiments.

According to our current understanding, the occur-
rence of a three- or more-peaked NMC spectrum can be
attributed to the coupling of the fundamental cavity
mode to guided or leaky modes of the microcavity. The
fundamental cavity mode, which on its own results in the
usual double-peaked NMC spectrum, therefore acquires
contributions particularly from those guided or leaky
modes that have a high amplitude at the quantum-well
position. Therefore the resulting spectra are not only
determined by the fundamental mode, but contain infor-
mation about the complex 3D mode structure of the cav-
ity by showing additional signatures. This mode coupling
can be mediated either by static disorder in the quantum
well or by higher-order quantum correlations; currently
both mechanisms are under investigation.

Since the full 3D mode structure influences the light-
matter coupling, it will be interesting to study structures
in which the optical modes are controlled in more than
one dimension (Björk et al., 1993; Bloch et al., 1997;
Ohnesorge et al., 1997; Gutbrod et al., 1998). Notewor-
thy developments in this context are the so-called pho-
tonic band-gap materials (Yablonovitch, 1987; 1993; La-
billoy et al., 1997) which may also be fabricated around
semiconductor microcavities. The study of NMC effects
in such systems promises to be an interesting research
field in the near future.

C. What other questions remain open?

In Ell et al. (1998) it was shown that the reflectivity,
which was calculated using linear dispersion (transfer-
matrix) theory and the experimentally reconstructed
quantum well susceptibility, agrees well with the mea-
sured linear reflectivity of an NMC microcavity; see also
Ell et al. (1999). So-called motional narrowing, i.e.,
wave-function averaging over the structural disorder, is
not enhanced by microcavity effects in presently investi-
gated samples [as suggested by Whittaker et al. (1996)
and Savona et al. (1997) and retracted by Whittaker
(1998)]. The NMC linewidth puzzles that led to this sug-
gestion, namely, that the lower branch linewidth is al-
ways smaller than that of the upper branch and often
less than the mean of the cavity and total exciton line-
widths, as expected for a homogeneously broadened os-
cillator, turned out to be explicable as the effect of
disorder-induced quantum-well line-shape asymmetry
much like the example of Fig. 7. However, the possibil-
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ity that linewidth averaging is improved and dephasing
processes reduced within a microcavity continues to be a
subject of intense investigations (Baumberg et al., 1998)
with relevance to the open problem of excitonic Bose
condensation in semiconductors. There is no question
that ideally light propagation and all interactions within
the quantum wells should be included on an equal foot-
ing (simultaneously). Clearly, nonlinear pulse propaga-
tion modeling requires the full solution of the coupled
light-matter equations. Model calculations for NMC in
strongly disordered structures show signatures, such as
the three-peak spectrum mentioned above, which can-
not be explained using linear dispersion theory (Grote
et al., 1999).

Interesting recent experimental observations include
the following: selective resonant tunneling into a micro-
cavity exciton-polariton state (Klimovitch et al., 1997;
Cao, Klimovitch, Björk, and Yamamoto, 1995a, 1995b);
the claim of a transition from NMC to the ac Stark trip-
let (Quochi et al., 1997, 1998); time-resolved four-wave
mixing (Koch, 1997; Koch et al., 1998) and spectral in-
terferometry (Huang et al., 1997) to determine the phase
of microcavity coherent reemission; the use of phase-
controlled pulses for coherent control (Lee et al., 1998);
strong polarization dependences of degenerate four-
wave mixing and transient pump-probe experiments
(Kuwata-Gonokami et al., 1997; Fan et al., 1998); NMC
studies on materials with large exciton binding energies,
such as II-VI semiconductors (Kelkar et al., 1997; Bleuse
et al., 1998); studies in which radiative coupling effects
(super radiance) dominate the behavior of both quan-
tum wells spaced by half wavelengths (Bragg structures)
and NMC microcavities;5 and resonant Raman scatter-
ing (Fainstein et al., 1997; Savasta et al., 1997; Tribe
et al., 1997). It remains to be seen if and to what degree
of accuracy these experimental observations can be ex-
plained by current theories or if additional microscopic
effects have to be included.

In conclusion, this article reviews detailed experi-
ments and a comprehensive theoretical analysis of light-
semiconductor interaction effects. Both linear and non-
linear NMC behaviors have been described on the basis
of the fermionic many-body theory. The comparison of
experiments and theory clearly shows that nonclassical
effects, i.e., truly quantum-statistical or quantum-
mechanical light correlation effects, have not yet been
observed in state-of-the-art semiconductor microcavity
systems. Neither has pure exciton lasing been observed,
nor has an example been found in the linear regime
where light propagation effects significantly modify mi-
croscopic interactions affecting only the carriers in the
quantum well. Even though answers have been given
herein to many of the questions posed in the first section
of this article, many interesting and challenging prob-

5Numerous publications include those of Andreani et al.,
1991; Ivchenko, 1991; Andreani, 1994, 1995a; Björk et al., 1994,
1995, 1996; Ivchenko et al., 1994b; Haas et al., 1998; Hubner
et al., 1998.
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lems still await a final answer. Hence the subfield of
semiconductor microcavity optics can be expected to
yield many new results in the future.
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APPENDIX A: EXCITATION DYNAMICS
IN QUANTUM WELLS

For a semiclassical treatment of the light-matter inter-
action in quantum wells one has to determine the linear
or nonlinear quantum well polarization which enters in
the wave equation for the optical field. In this appendix
we outline calculation schemes based on a microscopic
semiconductor theory. Starting from the Hamiltonian of
the interacting electron-hole system, we derive equa-
tions of motion for the density-matrix elements in a
quantum well Bloch basis.

For the weak-field regime, the theory yields the field-
independent optical quantum well susceptibility used in
Secs. III.A.2 and III.A.3. As a next step, the density-
dependent exciton saturation for increasing incoherent
plasma excitation, discussed in Sec. III.B, is included in
the calculation of the optical susceptibility. For a treat-
ment of field-induced nonlinearities in Sec. III.C, the
theory is further extended to include the coupled dy-
namics of the semiconductor density-matrix elements.

1. Semiconductor density matrix

The excitation dynamics of semiconductor quantum
wells can be treated in terms of a single-particle density
matrix,

r~r,r8,t !5^C†~r,t !C~r8,t !&, (A1)

with the Heisenberg picture field operators C†(r,t) and
C(r,t) creating and annihilating a semiconductor elec-
tron at position r and time t, respectively. In a Bloch
basis, the field operators are expanded according to

C~r,t !5(
n ,k

an~k,t !fn ,k~r!, (A2)

where an(k,t) is the annihilation operator of an electron
in the state k,n. The wave functions of quantum well
electrons can be given in an envelope function approxi-
mation (Bastard, 1988):

fn ,k~r!5jn~z !
1

AS
eik•rul~r!, (A3)
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describing a free motion within the quantum well plane,
with the momentum k and carrier confinement in the
direction of growth in terms of the envelope function
jn(z). The Bloch wave functions are normalized with
respect to the area S of the well, and r5(x ,y) is the
space vector in the quantum well plane. The additional
quantum number n5(l ,n) includes the band index l
5c ,v and the quantum well subband index n. ul(r) is
the lattice-periodic Bloch function.

The macroscopic polarization, which acts as a sink or
source for light propagation through the quantum well is
given by the dipole density

P~ t !5
1

SL E d3r r~r,r,t !er, (A4)

where L is the thickness of the quantum well. To formu-
late the macroscopic polarization in the Bloch basis, we
use Eqs. (A1)–(A3) and rewrite the integral in Eq. (A4)
as a sum of integrals over the crystal unit cells (Haug
and Koch, 1994). The resulting polarization,

P~ t !5
1
S (

k
(
n ,n8

dl ,l8^an
†~k,t !an8~k,t !&

1
L

3E dz jn* ~z !jn8~z !, (A5)

contains all allowed interband dipole transitions for vari-
ous k states. With the Bloch functions u, we can intro-
duce the dipole matrix element,

dl ,l85
1
Vi

E
Vi

d3r ul* ~r!erul8~r!, (A6)

where the integral has to be extended over the volume
Vi of a crystal unit cell. Since for GaAs-like materials
the Bloch functions are s-like and p-like for conduction
and valence band states near the band edge, respec-
tively, the dipole coupling involves only interband tran-
sitions and dcc5dvv50. Possible transitions between the
corresponding subbands are selected by the integral
over envelope functions in Eq. (A5). The transition
probabilities are described by expectation values of cre-
ation and annihilation operators with different band in-
dexes. In a similar way, the excitation density nn(t) in
the band/subband n,

nn~ t !5
1
S (

k
^an

†~k,t !an~k,t !&, (A7)

can be traced back to band-diagonal expectation values
of Bloch operators. Restricting our analysis to the lowest
quantum well subband n51, we find that the density
matrix in the Bloch representation reduces to a 232
matrix in the band index l5c ,v . We introduce the sim-
plified notation

ac ,n~k!5ck , av ,n~k!5vk (A8)

to distinguish the two band from the general multiband
version of the theory, where we use an(k), from the
two-band version with the annihilation operators
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ck (vk) for conduction (valence) band electrons. Then
we obtain for the two-band density matrix

S ^ck
†~ t ! ck~ t !& ^vk

†~ t ! ck~ t !&

^ck
†~ t ! vk~ t !& ^vk

†~ t ! vk~ t !&
D 5S f k

e~ t ! Pk~ t !

Pk* ~ t ! 12f k
h~ t !D ,

(A9)
with the momentum-dependent electron and hole distri-
bution functions f k

e ,h and the coherent interband polar-
ization Pk . In terms of these density-matrix elements,
the quantum well polarization is given by

PQW~ t !5
1
S (

k
dvcPk~ t !1c.c., (A10)

with PQW(z ,t)5PQW(t)uj(z)u2, and the excitation den-
sity follows from

na~ t !5
1
S (

k
f k

a~ t !. (A11)

2. Hamiltonian

Equations of motion for the density-matrix elements
can be derived from the Hamiltonian of the interacting
carrier system,

H5H01Hcoul1Hlight . (A12)

The free motion of carriers in the periodic lattice poten-
tial VG follows from

H05E d3r C†~r,t !F \2

2m
D1VG~r!GC~r,t !. (A13)

In transverse or Coulomb gauge, the Coulomb interac-
tion between carriers,

Hcoul5
1
2 E d3r d3r8 C†~r,t !C†~r8,t !v~r2r8!

3C~r8,t !C~r,t !, (A14)

with the bare Coulomb potential v(r)5(e2/
4pe0)(1/uru) represents the contribution of the longitu-
dinal electromagnetic field. The interaction of carriers
with the transverse part of the electromagnetic field is
described by the dipole Hamiltonian

Hlight5E d3r C†~r,t !@2er#•E~r,t !C~r,t !. (A15)

In this appendix and in Sec. III we treat the light field in
semiclassical approximation, whereas in Appendix B
and Sec. IV a quantized light field will be introduced.
Using Eqs. (A2) and (A3), we can reformulate the
Hamiltonian in the Bloch basis. Then in the free-carrier
Hamiltonian,

H05(
n ,k

ek
nan

†~k,t !an~k,t !, (A16)

we find the single-particle energies ek
c ,n5ek

e ,n and ek
v ,n

52ek
h ,n for electrons and holes, respectively. Corre-

spondingly, the Coulomb Hamiltonian becomes
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Hcoul5 (
n1 ,.. . ,n4

(
k8,k9,k

an1

† ~k8,t !an2

† ~k9,t !an3
~k92k,t !

3an4
~k81k,t !vn1 ,.. . ,n4

~k!. (A17)

Here

vn1 ,.. . ,n4
~k!5dl1 ,l4

dl2 ,l3E dz dz8 jn1
~z !jn2

~z8!

3
e2

2e0k
e2kuz2z8ujn3

~z8!jn4
~z ! (A18)

is the quantum well Coulomb matrix element, and
(e2/2e0k)e2kuz2z8u is the 2D Fourier transform of the
bare Coulomb potential v(r2r8). For the Hamiltonian
of the carrier-light interaction we obtain

Hlight5 (
nÞn8

(
k,q

an
†~k,t !an8~k2qi ,t !dl ,l8En ,n8~q,t !,

(A19)

where dl ,l8 is the dipole matrix element. The quantum
well matrix element of the field,

En ,n8~q,t !5E dz jn* ~z !jn8~z !E~qi ,z ,t !, (A20)

contains the 2D Fourier transform of the field E(qi ,z ,t)
which is defined through

E~r,t !5E~r,z ,t !5
1
S (

qi

eiqi•rE~qi ,z ,t !, (A21)

with the in-plane photon momentum qi both outside and
inside the medium. As an important result of the intro-
duction of the quantum well Bloch basis, the overlap
integral of the field with the carrier confinement wave
functions determines the interaction of the light field
with the corresponding bands and subbands. Similarly,
the carrier-carrier interaction is determined by quantum
well matrix elements of the Coulomb potential.

In the following, we restrict our analysis to the case of
normal incidence of the external field, i.e., vanishing in-
plane photon momentum qi (cf. Sec. III.A). In the limit
of strong carrier confinement (narrow quantum wells
with large subband spacing), we assume that the laser
field is only resonant with the lowest quantum well sub-
band. For excitation close to the band edge, the corre-
sponding free-carrier energies will be used in parabolic
approximation,

ek
a ,n5

EG

2
1

\2

2ma
k21En , (A22)

with the electron-hole index a5e ,h and reduced mass
ma ; EG and En are the band-gap energy and the sub-
band confinement energy, respectively. The inclusion of
band-mixing effects in the theory presented here is dis-
cussed, for example, by Girndt et al. (1997).

3. Equations of motion

Equations of motion for the density-matrix elements
(A9) can be directly derived using the Heisenberg equa-
tions of motion for the carrier annihilation and creation
operators,
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i\
]

]t
an~k!5@an~k!,H# . (A23)

From the free-carrier Hamiltonian H0 as well as the
Hamiltonian for the carrier-light interaction Hlight , we
obtain on the operator level

i\
]

]t
vk

†ck5~«k
e2«k

v!vk
†ck2dcvEQW~ck

†ck2vk
†vk!, (A24)

i\
]

]t
ck

†ck5dcv* EQWvk
†ck2H.c. (A25)

Since H0 and Hlight are single-particle operators, these
equations of motion for bilinear operators contain only
bilinear operators on the right side. Taking the expecta-
tion value of Eqs. (A24) and (A25) leads to a closed set
of equations for the density-matrix elements. Using the
electron-hole picture, we obtain optical Bloch equations
for the interband polarization Pk5^vk

†ck& ,

F i\
]

]t
2«k

e~ t !2«k
h~ t !GPk~ t !1@12f k

e~ t !2f k
h~ t !#Vk~ t !50,

(A26)

and for the occupation probabilities of electrons f k
e

5^ck
†ck& and holes f k

h512^vk
†vk&,

i\
]

]t
f k

a~ t !1Vk~ t !Pk* ~ t !2Vk* ~ t !Pk~ t !50, (A27)

with the electron-hole index a5e ,h . Equations (A26)
and (A27) resemble the conventional atomic density-
matrix equations. Every k state corresponds to a two-
level system in which the transition energy «k

a(t)5ek
a is

optically driven by the Rabi energy Vk(t)5dcvEQW(t).
Dephasing of the interband polarization (off-diagonal
density-matrix elements) and nonradiative depletion of
the occupation (diagonal density-matrix elements) are
not included on this level. In atomic systems, dissipation
is often introduced by coupling the two-level system to a
reservoir. In semiconductors, a large number of two-
level transitions corresponding to various k states is mu-
tually coupled by the Coulomb interaction. A micro-
scopic description of this interaction provides both
dephasing of the interband polarization and redistribu-
tion of carriers between various k states. However,
dephasing and scattering follow only from a treatment
of the Coulomb interaction beyond the mean-field ap-
proximation, to be discussed in Secs. A.4 and A.5 of this
appendix.

The Coulomb Hamiltonian Hcoul is a two-particle op-
erator and its inclusion leads to the hierarchy problem.
From the Heisenberg equation of motion and Hcoul we
obtain

F i\
]

]t
vk

†ckG
coul

5
1
S (

k8,k9
Vk2k8@vk

†~ck81k92k
† ck9

1vk81k92k
† vk9!ck82vk8

†
~ck9

† ck81k92k

1vk9
† vk81k92k!ck# , (A28)
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F i\
]

]t
ck

†ckG
coul

5
1
S (

k8,k9
Vk2k8ck8

†
~ck9

† ck81k92k

1vk9
† vk81k92k!ck2H.c., (A29)

where Vk is the Coulomb matrix element of the lowest
quantum well subband. Taking the expectation value of
Eqs. (A28) and (A29), we see that the contribution of
the Coulomb interaction to the density-matrix equations
is described by expectation values containing four car-
rier operators. Without further approximation, there is
no closed equation for the single-particle density-matrix
elements, since the equation of motion for an expecta-
tion value with n carrier Bloch operators contains expec-
tation values with n12 Bloch operators. The lowest-
order (mean-field, Hartree-Fock) approximation
corresponds to a factorization of four-operator expecta-
tion values in the equation of motion for the single-
particle density-matrix elements,

^an1

† ~k1!an2

† ~k2!an3
~k3!an4

~k4!&

.^an1

† ~k1!an4
~k4!&^an2

† ~k2!an3
~k3!&dk1 ,k4

dk2 ,k3

2^an1

† ~k1!an3
~k3!&^an2

† ~k2!an4
~k4!&dk1 ,k3

dk2 ,k4
.

(A30)

On this level, the coupling of the individual k states via
the Coulomb potential can be expressed in terms of
renormalized single-particle energies,

«k
a~ t !5ek

a2
1
S (

k8
Vk2k8f k8

a
~ t !, (A31)

and a renormalized optical Rabi energy,

Vk~ t !5dcvEQW~ t !1
1
S (

k8
Vk2k8Pk8~ t !, (A32)

in Eqs. (A26) and (A27). These corrections, linear in the
bare Coulomb potential, couple different semiconductor
k states and, together with the phase-space filling term
in Eq. (A26), 12f k

e(t)2f k
h(t), introduce nonlinearities

into the light-matter interaction.
The density-matrix equations in the Bloch basis, Eqs.

(A26) and (A27), together with the Hartree-Fock renor-
malizations, Eqs. (A31) and (A32), are often called
semiconductor Bloch equations (Schmitt-Rink and
Chemla, 1986; Linberg and Koch, 1988). They have been
successfully used in the past to describe coherent exci-
tonic nonlinearities in the optical Stark effect (Koch,
Peyghambarian, and Lindberg, 1988; Schmitt-Rink,
Chemla, and Haug, 1988; Binder et al., 1991) and in
four-wave mixing signals (Lindberg et al., 1992; Schäfer
et al., 1993).

For a realistic description of high-excitation condi-
tions, a microscopic treatment of polarization dephasing
(damping) and carrier scattering due to Coulomb inter-
action is necessary. Furthermore, under high-excitation
conditions, screening of the Coulomb interaction has to
be included. A systematic way to treat these effects is
the nonequilibrium Green’s-function technique
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(Keldysh, 1965; Korenman, 1966; DuBois, 1967) that has
been applied in the past to highly excited semiconduc-
tors in both the coherent and the incoherent regime
(Haug, 1985; Schäfer and Treusch, 1986; Henneberger,
1988). However, the interacting system of crystal elec-
trons, plasmons, and phonons, their interplay with the
band structure, and the short-time dynamics are so com-
plicated that a first-principles solution of the problem is
currently not possible. Various authors have focused in
the past on selected problems. The treatment of Cou-
lomb correlations can be limited to terms up to qua-
dratic order in the screened Coulomb interaction which
is often called the second Born approximation. On this
level, the contributions of carrier scattering and polar-
ization interactions in the equations of motion for the
carrier occupation and interband polarization, Eqs.
(A26) and (A27), can be obtained.6 While these models
are well suited for the description of plasma-carrier cor-
relations, some of the excitonic correlations are lost. The
theory includes the coherent exciton dynamics, but inco-
herent exciton collisions or biexcitonic effects are miss-
ing. While a generalization of the factorization scheme
(A30) leads only to equations containing the unscreened
Coulomb potential, the functional-derivative technique
(DuBois, 1967) allows the inclusion of screening. For
practical calculations often simplified screening models
have been used. The Lindhard formula for the longitu-
dinal dielectric function again treats only screening due
to plasma carriers (see below). Recently attention has
been paid to the carrier dynamics on very short time
scales where the Markov approximation becomes in-
valid (Zimmermann, 1990; Hartmann and Schäfer, 1992;
Haug, 1992; Zimmermann, 1992; Bányai et al., 1996;
Schäfer, 1996). Equations of motion without Markov ap-
proximation have been denoted as quantum kinetics. To
describe the dynamics of screening, especially the
build-up on an ultrafast time scale, equations of motion
for plasmons have been formulated and numerically
solved for simple systems (Hartmann et al., 1990; El
Sayed et al., 1994; Manzke et al., 1995). An alternative
method for including correlation contributions in the
carrier and polarization dynamics is the dynamic trunca-
tion scheme (Axt and Stahl, 1994; Lindberg et al., 1994;
Schäfer et al., 1996), in which expectation values of more
than two carrier operators are classified in terms of pow-
ers of the electric field. This method is well suited for the
description of coherent effects on a short time scale and
allows, for example, the inclusion of biexcitonic effects
or non-Markovian effects. It is not easy to use, however,
for the description of incoherent excitations, e.g., when a
prepulse excites an electron-hole plasma or when the
coherent excitation dephases into incoherent states. This
list is certainly incomplete and much work remains to be

6See, for example, Lindberg and Koch, 1988; Tran Thoai and
Haug, 1993; Kuhn, 1994; Rappen et al., 1994; Rossi et al., 1994;
Schäfer et al., 1994; Schäfer, 1996; Jahnke, Kira, and Koch,
1997.
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done for a microscopic description of carrier correla-
tions and their dynamics in semiconductors.

In the following we review a theory for carrier corre-
lations up to quadratic order in the screened Coulomb
potential that includes the nonlinear carrier and polar-
ization interaction. The time dynamics have been
treated in the Markov approximation and screening has
been included in a quasistatic approximation. Details of
the theoretical framework are discussed by Jahnke,
Kira, and Koch (1997). The numerical calculations on
this level exhaust the possibilities of currently available
supercomputers.

4. Correlation contributions for quasiequilibrium
plasma nonlinearities

In the weak-field regime, the equations of motion for
the density-matrix elements, Eqs. (A26) and (A27), and
the inclusion of correlation contributions can be simpli-
fied. We can restrict the analysis to terms linear in the
effective quantum well field EQW(t) which enters in the
theory via Eq. (A32). Since changes of the occupation
probabilities f k

a(t), described by Eq. (A27), are at least
of quadratic order in EQW (Pk and Vk are at least linear
in EQW), there are no contributions of a weak field to
the carrier occupation. Hence linear contributions to the
carrier momentum-dependent polarization Pk(t) can be
obtained using field-independent (incoherent) carrier
occupation probabilities f k

a . The equation of motion for
Pk(t) including correlation contributions on the dis-
cussed level has the form

F i\
]

]t
2«k

e~ t !2«k
h~ t !GPk~ t !1@12f k

e2f k
h#Vk~ t !

52iG̃kPk~ t !1i (
k8

G̃k,k8Pk1k8~ t !. (A33)

The right-hand side can be obtained, for example, from
a Green’s-function treatment (Jahnke, Kira, and Koch,
1997) and contains complex self-energies that are either
diagonal or off-diagonal with respect to their carrier-
momentum dependence. The real part of G̃k describes
polarization dephasing. In the weak-field regime, it is
given by the sum of in-and out-scattering rates for car-
rier collisions; see Eqs. (A37) and (A38) below. Its
Kramers-Kronig transform, the imaginary part of G̃k ,
describes the corresponding energy renormalization be-
yond the Hartree-Fock level. For the complex rate we
obtain

G̃k5
1
S2 (

k8,k9
(

a ,b5e ,h
g~«k

a1«k81k9
b

2«k9
b

2«k81k
a

!

3@2Wk8
2

2dabWk8Wk2k9#@~12f k81k9
b

!f k9
b f k81k

a

1f k81k9
b

~12f k9
b

!~12f k81k
a

!# . (A34)

A complex delta function g(«)5pd(«)1i(P/«) has
been introduced where P denotes that the principal
value of the corresponding integral has to be taken.
Terms up to quadratic order in the screened Coulomb
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potential Wk have been retained, which corresponds to a
restriction to two-particle collisions. From the second
term on the right-hand side of Eq. (A33),

G̃k,k85
1
S2 (

k9
(

a ,b5e ,h
g~2«k

a2«k81k9
b

1«k9
b

1«k81k
a

!

3@2Wk8
2

2dabWk8Wk2k9#

3@~12f k
a!~12f k81k9

b
!f k9

b
1f k

a f k81k9
b

~12f k9
b

!# ,

(A35)

we obtain diagonal contributions (with respect to the
carrier momentum) for k850 as well as off-diagonal
contributions for k8Þ0. It turns out that the contribu-
tions of G̃k,k850 partially compensate G̃k . This leads to
reduced dephasing and reduced band-gap renormaliza-
tion. The off-diagonal contributions can be viewed as
higher-order corrections to the renormalized Rabi en-
ergy.

In Eqs. (A34) and (A35), the d function describes en-
ergy conservation; the conservation of the in-plane car-
rier momentum has been included already in the k argu-
ments. The z dependence of the carrier confinement
wave functions enters in the quantum well matrix ele-
ment of the screened Coulomb potential Wk . We find
direct (RPA) contributions, }Wk8

2 , as well as exchange
(vertex) contributions, }Wk8Wk2k9 . In the quasistatic
approximation for Wk(v50,t), dependence on the fre-
quency or on two independent time arguments is ne-
glected. This is usually a good approximation for carrier-
plasma excitation, even though the results might weakly
depend on the screening model.

5. Nonequilibrium carrier dynamics
and nonlinear correlations

When the interband polarization Pk has a nonlinear
field dependence and/or when the momentum-
dependent carrier occupation probability f k

e ,h deviates
from quasiequilibrium Fermi-Dirac functions, f k

e ,h be-
comes a dynamical quantity that describes the redistri-
bution of carriers due to carrier and polarization inter-
action. The kinetic equation of carriers including
correlation effects has the form

i\
]

]t
f k

a~ t !1Vk~ t !Pk* ~ t !2Vk* ~ t !Pk~ t !

5i$Sk
in ,a~ t !@12f k

a~ t !#2Sk
out ,a~ t !f k

a~ t !1Sk
pol ,a~ t !%.

(A36)

The probability for carrier scattering into a k state de-
pends on the nonoccupation of this state (12f k

a) and
the inverse scattering time Sk

in ,a ; the out-scattering
probability is determined by the occupation f k

a and
Sk

out ,a . The self-energies for carrier Coulomb scattering
(including terms up to quadratic order in the screened
Coulomb potential) are given by
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Sk
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Sk
out ,a5

2p

S2 (
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(
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!~12f k81k
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In Eqs. (A33)–(A35) f k
a becomes explicitly time depen-

dent. Since the screened Coulomb potential Wk is self-
consistently computed from the occupation of the car-
rier system (see below), it also ‘‘follows’’ the changes of
f k

a .
For a strong optical field EQW , the occupation prob-

ability contains odd powers and the interband polariza-
tion includes even powers of EQW . Via the f k

e ,h(t)Vk(t)
driving term in Eq. (A33) and the Vk(t)Pk* (t) driving
term in Eq. (A36) arbitrarily high powers of the field
EQW can appear. Correlation contributions describing
the nonlinear polarization interaction in Eq. (A36) are
given by
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Similarly, the nonlinear polarization interaction contri-
butions in Eq. (A33), which have to be added to G̃ , are
given by

G5 k52
1
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(A41)

For notational simplicity, we have omitted additional
vertex contributions, which usually represent only small
corrections; they are discussed by Jahnke, Kira, and
Koch (1997).

We should like to point out that terms in Eqs. (A39)–
(A41) are not restricted to quadratic or cubic field non-
linearities, since every polarization function Pk itself can
have a nonlinear field dependence. The number of po-
larization functions in the correlation contributions de-
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pends on the order of the diagrammatic expansion of the
self-energy in terms of the Coulomb interaction. Higher-
order expansions can be obtained from a T-matrix for-
mulation of the self-energies; see, for example,
Morawetz and Roepke (1995).

We explicitly note here that Eqs. (A33)–(A41) pro-
vide the simplest consistent form for a description of
correlations in the carrier and polarization dynamics up
to quadratic order in the screened Coulomb interaction.
On an ultrafast time scale, energy conservation can be
violated and non-Markovian effects have to be consid-
ered. Furthermore, for time intervals of the inverse
plasma frequency the buildup of screening is incom-
plete. The consistent inclusion of these effects in the car-
rier and polarization dynamics presents, however, a
challenge to current theories.

Screening of the Coulomb interaction due to free
electrons and holes can be described in a manner similar
to the electron-gas theory (Mahan, 1990). From a longi-
tudinal dielectric function in the random-phase approxi-
mation, the Lindhard dielectric function can be derived
in the Markov approximation, which has become a stan-
dard tool for the description of electron-hole-plasma
screening in semiconductors. By omitting the Markov
approximation, the theory has been further developed
towards a kinetic modeling of screening in terms of
carrier-plasmon interaction (El Sayed et al., 1994; Man-
zke et al., 1995). Only a few attempts have been made to
properly describe screening due to excitons (Röpke and
Der, 1979; Haug and Schmitt-Rink, 1984; Schäfer, 1988).
For excitons in the presence of free carriers, one usually
neglects the excitonic screening contribution due to the
small induced charge density of the almost neutral exci-
ton complex. A proper description of coexisting bound
and free carriers is especially missed for the understand-
ing of group-II–VI semiconductors or group-III nitrides,
in which strong excitonic effects have been observed
even at and above room temperature (Nurmikko and
Gunshor, 1993). For the present analysis, we restrict
ourselves to the Lindhard formula,

e~k,v ,t !512v~k!
1
S (

a ,k8

f k82k
a

~ t !2f k8
a

~ t !

\v1ek82k
a

~ t !2ek8
a

~ t !1ig
,

(A42)

which has been extensively discussed in the literature
(Mahan, 1990) and will be used in the quasistatic ap-
proximation Wk(t)5e21(k,v50,t)Vk .

APPENDIX B: QUANTUM THEORY OF THE COUPLED
CARRIER-PHOTON SYSTEM

In this appendix, we outline a treatment of the quan-
tized electromagnetic field in the framework of a semi-
conductor many-body theory. The Hamiltonian for the
interaction of carriers with a quantized light field is de-
rived to replace its semiclassical counterpart used in Ap-
pendix A. On the operator level, we can formulate the
analog to the semiconductor Bloch equations extended
to a quantum description of light. In Sec. IV.A these
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operator equations are used to derive semiconductor lu-
minescence equations. To distinguish between the clas-
sical and quantum-mechanical treatments of the trans-
verse field, classical quantities are denoted by A, E and
their quantum operators by Â,Ê.

1. Field quantization

A standard approach is to perform the field quantiza-
tion for the vector potential Â using the Coulomb
gauge, ¹•Â50 (Cohen-Tannoudji et al., 1989). The field
quantization is formulated first for a microcavity without
active material. In the sourceless case, both the classical
and the quantized vector potential obey the wave equa-
tion

F¹22
nB

2 ~z !

c0
2

]2

]t2GÂ~r,t !50, (B1)

where nB(z) describes the refractive index profile across
the microcavity structure. The vector potential deter-
mines the transverse electric field Ê52]Â/]t and the
magnetic field B̂5¹3Â.

The wave equation has the stationary solutions
Uqs(r)exp(2ivqt) where vq5c0uqu is the frequency and
s denotes the two polarization directions of the field
perpendicular to the propagation direction q. For sim-
plicity, we restrict the following analysis to photolumi-
nescence in the normal direction. Then q5qez , and
Uqs(r)5uq(z)es contains the polarization directions s
5x ,y . By inserting the stationary solution into Eq. (B1)
we obtain

F ]2

]z2 1q2nB
2 ~z !Guq~z !50. (B2)

The solutions of Eq. (B2) form a complete set of func-
tions, which can be orthonormalized via

1
SL E d3r uq* ~z !uq8~z !5dq ,q8 . (B3)

For the quantization volume we choose a large cylinder
around the microcavity. The length L of the quantiza-
tion volume is much longer than the microcavity and the
cross-section area S is the same as that of the microcav-
ity (see Fig. 1). For our analysis we choose a cylinder
diameter substantially larger than the wavelength of
light. Light properties inside such a large system are de-
scribed by a mode basis computed for an infinite-
diameter system.

Studying light propagation effects in small-diameter
microcavities (Burak and Binder, 1997) one finds that
the effects of cylinder boundaries do not have to be in-
cluded when the diameter exceeds 10 mm. The derived
quantum theory is also formally valid for small-diameter
systems. However, the computation of three-
dimensional small-diameter mode functions is far from
trivial. For a large quantization volume, one can evalu-
ate the mode functions using the transfer-matrix tech-
niques discussed in Sec. III.A.
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The vector potential can be expanded in terms of
eigenmodes,

Â~z !5(
q ,s

Aq@uq~z !bq ,s1H.c.#es , (B4)

where Aq is a real number and bq is the operator for the
quantum field. Since the modes have only two possible
q-independent polarization directions, the vector poten-
tial is determined by a scalar operator,

Âs~z !5(
q

Aq@uq~z !bqs1H.c.# , (B5)

where Â5SsÂses . The quantization for the field (con-
sult Cohen-Tannoudji et al., 1989 for details) determines
a boson commutation relation for each field mode,

@bqs ,bq8s8#5@bqs
† ,bq8s8

†
#50,

@bqs ,bq8s8
†

#5dq ,q8ds ,s8 . (B6)

Since operators with different s are independent, we in-
vestigate the quantum dynamics of a given polarization
direction and omit the s index.

The coefficients in Eqs. (B4) and (B5) are often called
vacuum field amplitudes. Using

Aq5A \

2e0vqSL
(B7)

within Eq. (B5) as well as the normalization (B3) and
the commutator relations (B6) we obtain from the op-
erator of the transverse field energy

HF5
1
2 E d3r e0@nB

2 ~z !Ê2~z ,t !1c2B̂2~z ,t !# (B8)

the empty cavity Hamiltonian

HF5(
q

\vqS bq
†bq1

1
2 D . (B9)

We point out that this Hamiltonian is diagonal only be-
cause we use eigenmodes of the microcavity system de-
scribed by the wave equation (B2). For example, a
plane-wave basis inevitably gives a nondiagonal Hamil-
tonian HF .

2. Interaction of quantum well carriers
with a quantum field

The fully quantized interaction between light and
matter can be obtained from the minimal substitution
Hamiltonian

Hlight5E d3r c†~r,t !F2
e

ma
Â~z !•p

1
e2

2ma
Â2~z !Gc~r,t !. (B10)

To eliminate complications resulting from the Â2 term
in Eq. (B10), we apply a unitary gauge transformation
(Cohen-Tannoudji et al., 1989), which leads in the dipole
approximation to
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Hlight5HD1Hdip , (B11)

with

HD52E d3r C†~r!er•D̂~r!C~r!, (B12)

Hdip5
1

2e0
E E d3r d3r8 C†~r!C†~r8!

3(
qs

@er–Uqs~r!#@er•Uqs
! ~r8!#C~r8!C~r!.

(B13)

As a result of the transformation (i) the Â2 term is re-
moved, (ii) the additional dipole self-energy term Hdip
occurs, and (iii) the operator of transverse electric field
Ê is replaced by the electric displacement D̂, which after
the transformation becomes

D̂~z !5(
qs

iEq@uq~z !bqs2H.c.#es , (B14)

with Eq5vqAq . As for Â, a scalar operator for D̂ is
defined by

D̂~z !5(
q

iEq@uq~z !bq2H.c.# . (B15)

The dipole Hamiltonian HD with the transformed dis-
placement D̂ resembles the semiclassical Hamiltonian
(A15). In the quantum well Bloch basis, we obtain with
Eqs. (A2), (A6), and (B14)

HD52(
q ,k

iEqũqbq@dcvck
†vk1dcv

! vk
†ck#1H.c.

52D̂QWSP̂ , (B16)

where we have defined the operator form of the macro-
scopic polarization

P̂5
1
S (

k
dcv

! vk
†ck1H.c. (B17)

Similar to the classical case, the interaction involves the
matrix element of the optical field

D̂QW5E dzuj~z !u2D̂~z !, (B18)

where we again have restricted the analysis to the lowest
quantum well subband. However, instead of the local
electric field EQW occurring for the semiclassical case,
the quantum treatment involves the electric displace-
ment at the quantum well position in the transformed
picture. Using Eq. (B15), we find that the quantum well
matrix element contains the overlap of the mode func-
tion with the confinement wave function

ũq5E dzuj~z !u2uq~z !. (B19)

The dipole self-energy has the form of a two-particle
interaction. With the help of the definition (B17), Eq.
(B13) can be written as
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Hdip5

E dzuj~z !u4

2e0nB2
S$P̂P̂%N , (B20)

where N denotes normal ordering of the carriers opera-
tors. The fully quantized Hamiltonian of the complete
photon-carrier system is given by Eq. (A12) provided
that the photon Hamiltonian (B9) is added to H0 and
the semiclassical interaction Hamiltonian is replaced by
Eq. (B11).

3. Operator dynamics of a fully quantized system

The field operators commute with the particle opera-
tors for a noninteracting field-matter system. Similarly, a
straightforward calculation, starting from Hamiltonians
(B16) and (B20) and Heisenberg equations of motion
for commutators like @ck ,bq

† # , confirms that these com-
mutation relations also hold for an interacting system.
For example, the electric displacement is a pure field
operator and the polarization a pure matter operator.
However, since we want to see the analogy of our full
quantum theory with a corresponding semiclassical
treatment, we use the electric field rather than the dis-
placement field. From the Heisenberg equations of mo-
tion, we obtain the electric field operator as

Ê~z !52
]Â~z !

]t
52

1
i\

@Â~z !,H#

5D̂~z !2
1

e0nB2
P̂QW~z !, (B21)

where the right-hand side contains the transverse part of
the quantum well polarization. For the case of normal
incidence studied here, the quantum well polarization is
purely transverse, and as in the semiclassical case we can
write

P̂QW~z !5uj~z !u2P̂ . (B22)

Using Eqs. (B17) and (B18), we find the explicit form of
the electric field,

Ê~z !5(
q

iEquq~z !bq2
uj~z !u2

e0nB2S (
k

dcv
! ~k!vk

†ck1H.c.

(B23)

In the derivation of these expressions, we used the com-
pleteness relation of the mode function basis. A distinc-
tive property of the dipole interaction picture is that the
electric field contains both field and particle operators
(Cohen-Tannoudji et al., 1989). Relation (B21) implies
that Ê equals the electric displacement minus the matter
polarization, as in the classical case.

To formulate the wave equation for the interacting
case, we take a time derivative of Eq. (B21). The time
derivative of D̂ is computed using the Heisenberg equa-
tion of motion i\]/]tD̂5@D̂,H# . Since D̂ commutes
with all other parts of the Hamiltonian except HF , this
term leads to the empty-cavity part of the wave equa-
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tion. Together with the time derivative of P̂QW we ob-
tain

F ]2

]z2 2
nB2~z !

c0
2

]2

]t2GÂs~z !52m0

]

]t
P̂QW~z !, (B24)
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]z2 2
nB2~z !

c0
2

]2

]t2GÊ~z !5m0

]2

]t2 P̂QW~z !. (B25)

Equations (B24) and (B25) are exactly the same as those
obtained from Maxwell’s equations for classical fields,
which confirms the consistency of the interaction Hamil-
tonian (B11). On the other hand, Eqs. (B24) and (B25)
describe the operator dynamics, whereas we are inter-
ested in correlation functions of the field. Equation
(B24) has been used by Jahnke and Koch (1995) to de-
fine a photon Green’s function for a semiconductor laser
theory that includes a quantized treatment of the light
field as well as a many-body treatment of the interacting
carrier system.

An alternative method for the description of quantum
dynamics is to derive Heisenberg equations of motion
for photon operators from the Hamiltonian of the inter-
acting system,

i\
]

]t
bq

†52\wqbq
†1iEqũq(

k
~dcv

! vk
†ck1dcvck

†vk!.

(B26)
Clearly the evolution of the photon operator depends on
the electron-hole pair transition operator in the Bloch
basis P̂k5vk

†ck . The Heisenberg equations of motion for
P̂k and for the carrier momentum-dependent occupation
operators n̂k

c5ck
†ck and n̂k

v5vk
†vk are

i\
]

]t
vk

†ck5~ek
c2ek

v!vk
†ck1dcv@ck

†ÊQWck2vk
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1
1
S (

k8,k9
Vk82k@vk

†~ck81k92k
† ck9

1vk81k92k
† vk9!ck82vk8

†
~ck9

† ck81k92k

1vk9
† vk81k92k!ck# , (B27)
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]

]t
ck

†ck5Fdcv
! vk

†ÊQWck2
1
S (

k8,k9
Vk82kck8

†
~ck9

† ck81k92k

1vk9
† vk81k92k!ckG2H.c. (B28)

The equation for (]/]t)n̂k
v is obtained from Eq. (B28) by

the replacement c(v)→v(c). Equations (B27) and
(B28) contain the operator of the transverse electric
field evaluated at the quantum well position

ÊQW5E dzuj~z !u2Ê~z !, (B29)

which can be written explicitly with help of Eqs. (B19)
and (B23):

ÊQW5(
q

iEqũqbq2
*dzuj~z !u4

e0nB2S (
k

dcv
! vk

†ck1H.c.

(B30)
Equations (B27) and (B28) are formally equivalent to
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the semiclassical equations (A24), (A25), (A28), and
(A29). However, for the case of a quantized light field,
the ordering of ÊQW and the carrier operators is crucial
in Eqs. (B27) and (B28), since ÊQW contains field and
particle operators, as can be seen from Eq. (B30). Both
types of operators are normally ordered in Eq. (B27),
which means that ÊQW is sandwiched between ck

† and
ck , for instance. We point out that the field dynamics
could equivalently be computed from the wave equation
(B25). In the context of excitonic luminescence, it is
more convenient to use the dynamic equation (B26)–
(B28) as a general starting point of quantum correlation
investigations.

The generalization of Eqs. (B26)–(B28) to modes that
do not propagate normal to the microcavity surface
is straightforward. In that case, both the mode functions
Uqs and the polarization have the in-plane depend-
ency eiqi•r, where r5(x ,y). If the system consists only
of heavy-hole excitons of the lowest quantum well sub-
band, the modes can be classified as transverse electric
(TE) or transverse magnetic (TM) fields. The introduc-
tion of scalar operators like Eqs. (B5), (B15), and (B21)
becomes more complicated. However, the resulting op-
erator equations have a similar form to that of Eqs.
(B26)–(B28).

To check the consistency of Eqs. (B26)–(B28) we con-
sider the semiclassical limit where the bq operators are
treated as c numbers. The simplest application of Eqs.
(B26)–(B28) is to describe the field-induced polarization
and population dynamics. The relevant expectation val-
ues are ^Pk& , ^Ê&, and the electron and hole populations
f k

e and f k
h , respectively. In the semiclassical limit, the

pure field operators like D̂ are complex numbers and
can be taken out from the expectation values. For ex-
ample, the second term on the right side of Eq. (B27)
becomes

^ck
†ÊQWck&5^ck

†D̂QWck&

2

E dzuj~z !u4

e0nB2S (
k8

~dcv
! ^ck

†vk8
† ck8ck&

1dcv^ck
†ck8

† vk8ck&!

5^f k
e&F ^D̂QW&2

E dzuj~z !u4

e0nB2

3S 1
S (

k8Þk
dcv

! ^Pk8&1H.c.D G
5^f k

e&^ÊQW& , (B31)

where we have used the factorization (A30) and the
definition (A9) for f k

e5^ck
†ck&. From this procedure we

obtain as the semiclassical limit of Eqs. (B26)–(B28) the
Hartree-Fock semiconductor Bloch equations (A26) and
(A27). Note that, in order to obtain this agreement, it
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was indeed necessary to include the dipole-dipole inter-
action in the Hamiltonian (B11).

When equations of motion for expectation values are
derived using the operator equations (B26)–(B28), we
are again confronted with the problem that the nonlin-
ear Coulomb terms lead to an infinite hierarchy of equa-
tions. Sophisticated truncation schemes have been dis-
cussed for the semiclassical case in Sec. III. For the
quantum calculations of this section, these high-order
procedures lead to equations that are beyond current
numerical capabilities. Therefore we limit ourselves here
to the Hartree-Fock approximation (A30) as the sim-
plest truncation scheme.

In the photoluminescence application, it is important
to retain field-particle correlations in terms like
^a1

†a2
†ÔFa3a4& , where ÔF is a single photon operator. To

get some insight into the applied truncation scheme we
formally integrate Eq. (B26),

bq
†~ t !5bq

†~0 !eivqt1
Eqũq

\
SE

0

t
dt8P̂~ t8!eivq~ t2t8!, (B32)

which shows that bq
†(t) corresponds formally to a two-

particle operator vk
†ck . Thus ^a1

†a2
†ÔFa3a4& corresponds

to a six-particle expectation value. The Hartree Fock
approximation for such a term can be written as

^a1
†a2

†ÔFa3a4&uHF

5^ÔF&^a1
†a2

†a3a4&uHF1~^a1
†ÔFa4&^a2

†a3&

2^a1
†ÔFa3&^a2

†a4&2^ÔF&^a1
†a2

†a3a4&uHF!

1~^a1
†a4&^a2

†ÔFa3&2^a1
†a3&^a2

†ÔFa4&

2^ÔF&^a1
†a2

†a3a4&uHF!. (B33)

Furthermore, we can use

^ck
†ck8ÔF&5sk,k8^n̂k

c&^ÔF&;

^vk
†vk8ÔF&5dk,k8^n̂k

v&^ÔF& (B34)

since the optical field does not introduce intraband tran-
sitions.
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Jahnke, 1991, Phys. Rev. B 43, 6520.

Björk, G., H. Heitmann, and Y. Yamamoto, 1993, Phys. Rev.
A 47, 4451.

Björk, G., S. Pau, J. Jacobson, and Y. Yamamoto, 1994, Phys.
Rev. B 50, 17 336.

Björk, G., S. Pau, J. M. Jacobson, H. Cao, and Y. Yamamoto,
1995, Phys. Rev. B 52, 17 310.

Björk, G., S. Pau, J. M. Jacobson, H. Cao, and Y. Yamamoto,
1996, J. Opt. Soc. Am. B 13, 1069.

Bleuse, J., F. Kany, A. P. de Boer, P. C. M. Christianen, R.
Andre, and H. Ulmer-Tuffigo, 1998, J. Cryst. Growth 185,
750.

Bloch, J., R. Planel, V. Thierry-Mieg, J. M. Gerard, D. Barrier,
J. Y. Marzin, and E. Costard, 1997, Superlattices Microstruct.
22, 371.

Boggavarapu, D., D. McAlister, M. Anderson, M. Munroe, M.
G. Raymer, G. Khitrova, and H. M. Gibbs, 1996, in Interna-
tional Quantum Electronics Conference (Optical Society of
America, Washington, D.C.), p. ML5.

Bonadeo, N. H., G. Chen, D. Gammon, D. S. Katzer, D. Park,
and D. G. Steel, 1998, Phys. Rev. Lett. 81, 2759.

Bongiovanni, G., A. Mura, F. Quochi, S. Gürtler, J. L. Staehli,
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Röpke, G., and R. Der, 1979, Phys. Status Solidi B 92, 501.
Rossi, F., S. Haas, and T. Kuhn, 1994, Phys. Rev. Lett. 72, 152.
Savasta, S., and R. Girlanda, 1995, Nuovo Cimento D 17, 1705.
Savasta, S., and R. Girlanda, 1996a, Phys. Rev. A 53, 2716.
Savasta, S., and R. Girlanda, 1996b, Phys. Rev. Lett. 77, 4736.
Savasta, S., R. Girlanda, and G. Martino, 1997, Phys. Status

Solidi A 164, 85.
Savona, V., L. C. Andreani, P. Schwendimann, and A. Quat-

tropani, 1995, Solid State Commun. 93, 733.
Savona, V., Z. Hradil, A. Quattropani, and P. Schwendimann,

1994, Phys. Rev. B 49, 8774.
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
Savona, V., C. Piermarocchi, A. Quattropani, F. Tassone, and
P. Schwendimann, 1997, Phys. Rev. Lett. 78, 4470.

Savona, V., and F. Tassone, 1995, Solid State Commun. 95,
673.

Savona, V., F. Tassone, C. Piermarocchi, A. Quattropani, and
P. Schwendimann, 1996, Phys. Rev. B 53, 13 051.
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Am. B 13, 1241.

Weisbuch, C., 1994a, J. Vac. Sci. Technol. B 12, 1191.
Weisbuch, C., 1994b, J. Cryst. Growth 138, 776.
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