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Nonclassical effects such as squeezing, antibunching, and sub-Poissonian statistics of photons have
been attracting attention in quantum optics over the last decade. Up to now most theoretical and
experimental investigations have been carried out exclusively in the time domain while neglecting the
spatial aspects by considering only one spatial mode of the electromagnetic field. In many situations
such an approximation is well justified. There are, however, problems that do not allow in principle a
single-mode consideration. This is the case when one wants to investigate the quantum fluctuations of
light at different spatial points in the plane perpendicular to the direction of propagation of the light
beam. Such an investigation requires a complete description of quantum fluctuations of light in both
time and space and cannot be done within a single-mode theory. This space-time description brings
about a natural generalization into the spatial domain of such notions as the standard quantum limit,
squeezing, antibunching, etc. It predicts, for example, the possibility of generating a light beam with
sub-Poissonian statistics of photons not only in time but also in the beam’s transverse plane. Of
particular relevance to the applications is a situation in which the cross section of the light beam
contains several nonoverlapping areas with sub-Poissonian statistics of photons in each.
Photodetection of such a beam produces several sub-shot-noise photocurrents depending on the
number of independent areas with sub-Poissonian statistics. This is in marked contrast to the case of
a single-mode sub-Poissonian light beam in which any attempt to collect light from only a part of the
beam deteriorates the degree of shot-noise reduction. This property of multimode squeezed light
opens a range of interesting new applications in optical imaging, optical parallel processing of
information, parallel computing, and many other areas in which it is desirable to have a light beam
with regular photon statistics across its transverse area. The aim of this review is to describe the recent
development in this branch of quantum optics. [S0034-6861(99)00605-4]
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I. INTRODUCTION

Nonclassical states of electromagnetic fields have
been intensively investigated in quantum optics over the
last decade. Such notions as squeezing, antibunching,
and sub-Poissonian photon statistics have become famil-
iar, and many of these effects are well understood theo-
retically and observed experimentally (Kimble and
Walls, 1987; Loudon and Knight, 1987; Teich and Saleh,
1989; Fabre and Giacobino, 1992).

Nonclassical states attract considerable attention not
only because they cast a new light on some fundamental
questions about quantum electrodynamics, but also be-
15391(5)/1539(51)/$25.20 ©1999 The American Physical Society
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cause of many practical applications. Most of these ap-
plications rely on the possibility of reducing the quan-
tum fluctuations of light below the so-called standard
quantum limit. This limit is imposed by classical electro-
dynamics as the lowest level of light fluctuations in the
optical measurement process. In many state-of-the-art
technological applications the standard quantum limit
has already been achieved. Therefore the possibility of
overcoming this limit using nonclassical light is very at-
tractive for high-precision optical measurements, optical
communications, optical information processing,
(Yamamoto et al., 1990). Quantum fluctuations of light
in different optical systems and the generation of coher-
ent light fields with sub-Poissonian photon statistics
were recently discussed in review articles by Davidovich
(1996) and Henry and Kazarinov (1996).

In spite of the very rapid development in this area of
quantum optics, at present most theoretical and experi-
mental investigations of nonclassical light deal with
quantum fluctuations in time only. In theory the spatial
aspects are left aside by considering only one spatial
mode of the electromagnetic field. Experimentally this is
accomplished by collecting the whole light beam with a
single photodetector and investigating its temporal
quantum fluctuations. One may say that for the moment
most of the attention has been directed toward the
‘‘one-dimensional’’ applications of nonclassical light, i.e.,
to phenomena evolving in time. However, there are
many areas of optics that could benefit from the possi-
bility of reducing quantum fluctuations of light not only
in time, but also in space, namely, in the transverse area
of the light beam. One may think, for example, about
the detection of faint optical images, or applications in
parallel optical computing, in which quantum fluctua-
tions at different spatial points of the wave front would
cause computing errors.

In this article we shall demonstrate that under certain
physical conditions quantum fluctuations of light can be
reduced below the standard quantum limit not only in
time, but also at different spatial points in the transverse
plane of the electromagnetic wave. Therefore one can
talk about squeezing, sub-Poissonian photon statistics,
and other nonclassical phenomena not only globally,
with respect to the whole light beam, but also locally,
i.e., at a given point in the cross section of the beam and
some area around it. The size of such an area depends
on the physical parameters of nonclassical light and, in
particular, can be much smaller than the transverse area
of the light beam. The possibility of such ‘‘local squeez-
ing’’ was predicted and studied in detail for the first time
by Kolobov and Sokolov (1989a, 1989b, 1991).

We advocate in this paper the investigation of quan-
tum fluctuations not only globally, for the whole light
beam, but also locally, for its parts, which can also mani-
fest nonclassical effects. For such an investigation we
suggest using a dense array of small photodetectors, or
pixels, each pixel having an independent output for fur-
ther analysis of photocurrents from individual pixels and
of their correlations. If the size of a pixel is matched to
the size of the local amplitude squeezing, for example,
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we can obtain as many sub-Poissonian photocurrents as
the number of pixels in the array.

Another motivation for studying the spatial behavior
of nonclassical light is to unify two different areas of
optics: nonclassical effects and transverse nonlinear phe-
nomena. Such a program was developed by the group of
Lugiato at Milan University and has been successfully
pursued in recent years (Lugiato, 1994; Gatti, Wiede-
mann, et al., 1997; Lugiato, Gatti, and Wiedemann, 1997;
Lugiato et al., 1997; Gatti, Lugiato, et al., 1999). Non-
classical effects and transverse nonlinear phenomena
could be considered as complementary areas of optics.
Indeed, while the analysis of nonclassical effects is done
in the framework of quantum theory, it is almost exclu-
sively restricted to just one mode of the electromagnetic
field due to the complexity of multimode quantum treat-
ment. On the other hand, transverse nonlinear optics,
which studies instabilities, pattern formation, and similar
phenomena in the transverse plane of an electromag-
netic wave, is of necessity a multimode theory but only
semiclassical. As often happens in physics, unification of
two complementary fields brings about a wealth of inter-
esting new phenomena. Here we only mention effects
such as ‘‘quantum images’’ and the critical behavior of
quantum fluctuations in space similar to the phenomena
of second-order phase transitions in equilibrium sys-
tems. For descriptions of these phenomena we refer the
reader to the papers of Gatti and Lugiato (1995); Lu-
giato and Marzoli (1995); Gatti, Wiedemann, et al.
(1997); Lugiato, Gatti, and Wiedemann (1997); Lugiato
et al. (1997); and Gatti, Lugiato, et al. (1999). In Secs.
III.C and IV.D.2 we discuss some aspects of these phe-
nomena that are connected with our treatment.

The paper is organized as follows. In Sec. II we give
an overview of nonclassical phenomena for a single-
mode electromagnetic field. We discuss briefly the ob-
servation of quantum fluctuations of light in time by
means of photodetection, the shot-noise limit, and the
possibilities of shot-noise reduction. We introduce the
most important notions, such as, squeezing, antibunch-
ing, and sub-Poissonian photon statistics for a single-
mode case.

In Sec. III we generalize the theory of quantum fluc-
tuations of an electromagnetic field from the time do-
main into space-time. We describe the observation of
quantum fluctuations in space-time using a dense array
of photodetectors, or a charge-coupled device (CCD).
We define the most important observables such as the
space-time correlation function of the photocurrent den-
sity and its frequency and spatial-frequency noise spec-
trum. We define the standard quantum limit in space-
time. We show that all nonclassical phenomena, such as,
squeezing, antibunching, and sub-Poissonian photon sta-
tistics, discussed for a single-mode electromagnetic field,
have their natural counterparts in space-time.

In Sec. IV we describe three different physical models
for the generation of multimode squeezed states. These
are (i) the traveling-wave optical parametric amplifier
(OPA), (ii) degenerate four-wave mixing, and (iii) the
ring-cavity optical parametric oscillator (OPO) below
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threshold. We show that under homodyne detection of
light emitted by a traveling-wave OPA with a plane-
wave local oscillator, one can obtain shot-noise reduc-
tion of the photocurrent density not only for the whole
light beam but also locally, at different points across the
beam. We calculate the spatial resolving power and typi-
cal time scale for a sub-shot-noise photodetection and
show the relation between these parameters and differ-
ent types of phase matching in the nonlinear crystal
serving as a medium for the OPA. Finally, we consider
two other models and compare their properties.

Section V is devoted to a description of multimode
squeezed light propagation in free space and in optical
systems. We show that diffraction in free space deterio-
rates the resolving power of sub-shot-noise observation.
However, this deterioration is entirely due to the phase
modulation of light waves with different transverse com-
ponents of wave vectors propagating in free space and is
therefore reversible. We demonstrate that, using a thin
lens properly inserted into the light beam, one can re-
store the resolving power of the sub-shot-noise observa-
tion and, furthermore, improve it to the ultimate value
achievable for given physical conditions.

In Sec. VI we consider the applications of multimode
squeezed light in sub-shot-noise microscopy and for the
creation of noiseless optical images. We show that the
employment of multimode squeezed light in microscopy
for detecting faint phase objects allows us to increase the
sensitivity beyond the shot-noise limit. Taking an ex-
ample of the simplest phase object such as a sinusoidal
phase grating, we estimate the spatial squeezing band-
width and the size of a pixel in the photodetection array
necessary for sub-shot-noise microscopy.

By noiseless optical images we mean optical images
whose quantum fluctuations are reduced below the shot-
noise limit and, in principle, can be suppressed com-
pletely. For the creation of such noiseless images one
must find a nondestructive way to modulate multimode
squeezed states. We note that not all kinds of modula-
tion of the wave front preserve the regular photon sta-
tistics. For example, intensity modulation due to nonuni-
form absorption destroys the regularity of photons
across the wave fronts because of the randomness of the
absorption process. We show that the interference mix-
ing of two multimode squeezed states by an interferom-
eter with a spatially varying transmission coefficient may
provide such nondestructive modulation.

In Sec. VII we describe a scheme for the amplification
of faint optical images that preserves the signal-to-noise
ratio of the image. The scheme consists of a ring-cavity
optical parametric amplifier as an active element and
two imaging lenses. This system can amplify images ei-
ther ‘‘point by point,’’ when one small region is ampli-
fied at a time, or by narrow rings. In both cases the
system works as an image scanner. We evaluate the in-
herent noise of such an amplifier and formulate the con-
ditions for noiseless amplification.

In Sec. VIII we discuss the noise properties of an op-
tical image processor with multimode squeezed light.
We calculate the signal-to-noise ratio of a spatially par-
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
tially coherent optical processor and compare the results
for illumination by three different light sources: coher-
ent, single-mode squeezed, and multimode squeezed.
We show that the signal-to-noise ratio can be improved
beyond the shot-noise limit for the two last sources.
Moreover, the multimode squeezed source gives better
noise performance over the single-mode squeezed
source for incoherent illumination.

In Sec. IX we provide an overview and formulate
some open questions that might be the subjects of future
research in this area.

II. SINGLE-MODE NONCLASSICAL STATES OF LIGHT

A. Observation of quantum fluctuations of light
in time

Nonclassical states of light manifest their unusual
properties most clearly in photodetection. Therefore,
before explaining nonclassical effects, we shall give
some results from quantum photodetection theory.

The theory of quantum photodetection was developed
in the works of Glauber (1963, 1965). The Glauber
model of photodetection is based on the absorption of
photons via the photoelectric effect. A photodetector
consists of a conducting photosensitive surface and the
photocathode, which is normally illuminated by a light
beam. The cathode contains many electrons in bound
states, some of which may be emitted under the influ-
ence of the incident light. Any emitted electron is at-
tracted by an anode, where it produces with some prob-
ability a detectable electric pulse. A detailed
presentation of semiclassical and quantum photodetec-
tion theory can be found, for example, in the book of
Mandel and Wolf (1995), Chapter 14.

In this section we shall study only temporal fluctua-
tions of light and neglect any spatial effects in the trans-
verse area of the light beam. We assume that the
photodetector of area S is illuminated by a quasimono-
chromatic plane wave traveling along the z axis in a
positive direction. Let us write the positive-frequency
electric-field operator E(1)(z ,t) as

E(1)~z ,t !5iS \v0

2e0cS D 1/2

exp@ i~k0z2v0t !#a~ t !, (2.1)

where v0 is the carrier frequency of the wave, k0 is its
wave number, and a(t) and a†(t) are the photon anni-
hilation and creation operators in the interaction pic-
ture. These operators satisfy the commutation relations

@a~ t !,a†~ t8!#5d~ t2t8!, @a~ t !,a~ t8!#50 (2.2)

and are normalized so that ^a†(t)a(t)& gives the mean
photon flux in photons per second for the light beam of
area S .

The quantum theory of photodetection attributes to
the observed photocurrent a Hermitian operator i(t).
Its mean value ^i(t)& describes the result of the experi-
mental observation averaged over the statistical en-
semble of identical experiments. The deviation di(t)
5i(t)2^i(t)& of the instant value i(t) from the mean
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value ^i(t)& manifests the intrinsic quantum fluctuations
of the photocurrent. An important characteristic of
these quantum fluctuations is the correlation function

^ 1
2 $di(t),di(t8)%1&, where $. . . , . . .%1 indicates an anti-

commutator. The appearance of the anticommutator in
the quantum theory is due to the fact that fluctuations
di(t) at different moments of time do not commute. The
mean value of the photocurrent ^i(t)& and the correla-

tion function ^ 1
2 $di(t),di(t8)%1& are expressed through

the photon annihilation and creation operators a(t) and
a†(t) as follows (Smirnov and Sokolov, 1976; Smirnov
and Troshin, 1987):

^i~ t !&5h^I~ t !&, (2.3)

^ 1
2 $di~ t !,di~ t8!%1&

5^i~ t !&d~ t2t8!1h2^ :I~ t !I~ t8!:&2^i~ t !&^i~ t8!&, (2.4)

where I(t)5a†(t)a(t) is the photon flux operator. The
notation :: stands for normal and time ordering,1 and h is
the quantum efficiency of the photodetector.

The correlation function of photocurrent fluctuations

^ 1
2 $di(t),di(t8)%1& contains three contributions. The

first is given by the mean photocurrent multiplied by
d(t2t8). This term describes completely uncorrelated
photocurrent fluctuations at different moments of time.
The d-type fluctuations appear under the assumption
that the photodetector has an infinitely large detection
bandwidth or, in other words, an infinitely short re-
sponse time. This contribution is known as shot noise.
Shot noise is independent of the quantum statistics of
light and of its spectral parameters. We shall see below
that it determines the standard quantum limit of noise in
time, that is, the lowest noise level of the photocurrent
allowed by semiclassical theory.2

The informative contribution to the photocurrent cor-
relation function that depends on spectral and statistical
properties of the light is given by the normal- and time-
ordered intensity correlation function

G(2)~ t ;t8!5^ :I~ t !I~ t8!:&. (2.5)

When the intensity of light is stationary in time, this
correlation function depends only on the time difference
t5t82t between two photodetections, G(2)(t ;t8)
5G(2)(t). This correlation function is proportional to

1We remind the reader that normal and time ordering means
that all creation operators are placed to the left of the annihi-
lation operator and times are increasing from the outside to
the center of the correlation function. In particular,

^:I~t!I~t8!:&5^a†~t!a†~t8!a~t8!a~t!&u~t82t!

1^a†~t8!a†~t!a~t!a~t8!&u~t2t8!,

where u(t) is the step function.

2By semiclassical theory we understand here an approach to
the photodetection process wherein light is described by clas-
sical electrodynamics while photoelectrons are treated by
quantum mechanics (Mandel and Wolf, 1995, p. 439).
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the probability that a photon will be detected at time t8
provided that the previous photodetection took place at
t . This ‘‘non-exclusive’’ probability allows other photo-
detections between t8 and t and should not be confused
with the ‘‘exclusive’’ probability of two successive pho-
todetections at t and t8. In the quantum optics literature
it is more customary to deal with the normalized corre-
lation function g(2)(t),

g(2)~t!5
^:I~ t !I~ t1t!:&

^I~ t !&2 , (2.6)

which is called the degree of second-order temporal co-
herence (Loudon, 1983, p. 106).

Finally, the last contribution to the correlation func-

tion ^ 1
2 $di(t),di(t8)%1& is the product of two mean pho-

tocurrents and is time independent for light with station-
ary intensity.

Together with the correlation function (2.4) we shall
use the photocurrent noise spectrum (di)V

2 , defined as

~di !V
2 5E

2`

`

dt eiVt^ 1
2 $di~0 !,di~ t !%1&. (2.7)

Experimentally the photocurrent noise spectrum can be
measured by performing a spectral analysis of the pho-
tocurrent fluctuations. Using the photodetection for-
mula (2.4), we can write (di)V

2 as

~di !V
2 5^i&1G̃(2)~V!2^i&2d~V!. (2.8)

The first, frequency-independent term stems from the
shot noise in Eq. (2.4), the second represents the Fourier
transform of the intensity correlation function G(2)(t),

G̃(2)~V!5E
2`

`

dt eiVtG(2)~ t !, (2.9)

and the last, with d(V), comes from the time-
independent product of two mean photocurrents in Eq.
(2.4). It is easy to show that in semiclassical theory the
contribution of the last two terms is always non-
negative. Indeed, for a classical electromagnetic field, we
can replace the photon annihilation and creation opera-
tors a(t) and a†(t) by the classical functions a(t) and
a!(t). The correlation function of photocurrent fluctua-
tions becomes

^ 1
2 $di~ t !,di~ t8!%1&

5^i~ t !&d~ t2t8!1h2^J~ t !J~ t8!&2^i~ t !&^i~ t8!&
(2.10)

5^i~ t !&d~ t2t8!1h2^dJ~ t !dJ~ t8!&,

where J(t)5ua(t)u2 is the stochastic classical intensity of
light. Now the photocurrent noise spectrum reads

~di !V
2 5^i&1~dJ !V

2 , (2.11)

where (dJ)V
2 gives the spectrum of intensity fluctuations,

which is always non-negative. Therefore, in semiclassical
theory, the lowest limit of the photocurrent noise spec-
trum is equal to

~di !V
2 5^i& . (2.12)
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This limit is known in quantum optics as the standard
quantum limit or the shot-noise limit.

B. Bunching, antibunching, and sub-Poissonian statistics

The degree of second-order coherence g(2)(t) can be
measured in a photocurrent correlation experiment as
shown schematically in Fig. 1(a). The primary electro-
magnetic wave is divided into two parts by a semitrans-
parent mirror, and two secondary waves are detected by
two independent photodetectors D1 and D2 . The pho-
tocurrents from these photodetectors are multiplied af-
ter the introduction of a time delay t into one of them.
This kind of experiment was first performed by Hanbury
Brown and Twiss (1956, 1957a, 1957b) for a thermal
light from a mercury arc. Qualitatively the result of this
experiment is shown in Fig. 1(b). We observe that for
short time delays t the conditional probability of detect-
ing the second photon is higher than for large delays
when these two events become independent. Nowadays
this effect is known as photon bunching (Mandel and
Wolf, 1965); it is easy to interpret in terms of classical
fluctuations of light intensity. Indeed, the first photode-
tection occurs with higher probability during the positive
fluctuation of the light intensity. Therefore the condi-

FIG. 1. Photocurrent correlation experiment. (a) A simplified
outline of the apparatus. (b) The degree of second-order co-
herence g(2)(t) for chaotic light with Gaussian frequency dis-
tribution.
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
tional probability of the second detection should be
higher for short time delays t, when the positive fluctua-
tion has not yet disappeared. As a confirmation of this
intuitive explanation, the typical time scale of bunching
is given by the intensity correlation time tc in the ther-
mal light source. The bunching effect disappears for
light in a coherent state, i.e., without classical intensity
fluctuations. Since the pioneering experiments of Han-
bury Brown and Twiss, the bunching effect with thermal
light has been observed by many others (Rebka and
Pound, 1957; Twiss, Little, and Hanbury Brown, 1957;
Arecchi, Gatti, and Sona, 1966; Morgan and Mandel,
1966; Scarl, 1966).

One may ask whether there is a phenomenon oppo-
site to the bunching effect, that is, antibunching, in
which the conditional probability of the second photo-
detection at short time delays t is smaller than for long
delays. A classical example that gives a positive answer
to this question is the phenomenon of resonance fluores-
cence of a single atom driven by an external monochro-
matic light field. The process of photon emission takes
place during the transition of the atom from its excited
state ue& to the ground state ug&. The probability of pho-
ton emission is proportional to the population of the
excited atomic state. Since after emission of the first
photon the atom is in the ground state, the probability of
the second emission is zero for zero time delay t. The
second photon can be emitted only after a certain time
interval needed for excitation of the atom into the upper
state ue&. In this process the probability of detecting the
second photon for short time delays t must be smaller
than for long delays, thus exhibiting antibunching. This
effect was theoretically predicted by Carmichael and
Walls (1976a, 1976b), Kimble and Mandel (1976), and
Cohen-Tannoudji (1977).

Photon antibunching was first observed in a photocur-
rent correlation experiment using resonance fluores-
cence from single sodium atoms in an atomic beam
(Kimble, Dagenais, and Mandel, 1977; Dagenais and
Mandel, 1978; Kimble, Dagenais, and Mandel, 1978). A
diagram of the apparatus used for the two-time correla-
tion experiment is shown in Fig. 2(a). The results of this
experiment are presented in Fig. 2(b). When the Rabi
frequency V, associated with the external driving field, is
much smaller than the rate of spontaneous decay b of
the atomic polarization, the typical time scale tc of an-
tibunching is given by the inverse of b , tc}b21. In a
strong external field, V@b , the antibunching time is re-
lated to the inverse of the Rabi frequency, tc}V21 [see
Fig. 2(b)]. Since the first observation of photon anti-
bunching in the resonance fluorescence of a single atom,
this effect has also been observed in more recent experi-
ments (Cresser et al., 1982; Walker and Jakeman, 1985;
Grangier, Roger, and Aspect, 1986; Grangier et al.,
1986).

Antibunching is a nonclassical phenomenon that can-
not be explained in the framework of classical electro-
dynamics. Indeed, in classical electrodynamics, the pho-
ton annihilation and creation operators a(t) and a†(t)
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FIG. 2. Photon antibunching in resonance fluorescence of a single atom. (a) Sketch of the apparatus used for two-time correlation
measurements: (b) results of correlation measurements for a single driven atom, for various exciting field strengths V/b and
detunings D . The full curves are theoretical and exhibit antibunching. (Reproduced from Dagenais and Mandel, 1978.)
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
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become stochastic c numbers a(t) and a!(t). The cor-
relation function g(2)(t) from Eq. (2.6) can be written as
g(2)(t)5 ^J(t)J(t1t)&/^J(t)&2, where J(t)5ua(t)u2 is
the stochastic classical intensity of light. For a stationary
random process J(t) it follows from the Schwarz in-
equality that

g(2)~t!<g(2)~0 !, (2.13)

i.e., the function g(2)(t) has its absolute maximum at
zero time delay, t50. Photon antibunching is in contra-
diction to inequality (2.13). Therefore light fields with
antibunching cannot be described by random c numbers.

Another nonclassical effect is sub-Poissonian photon
statistics. A classical monochromatic light wave with
fixed complex amplitude a corresponds in quantum elec-
trodynamics to a Glauber coherent state ua& of a single-
mode electromagnetic field (Loudon, 1983). A coherent
state of light has Poissonian photon statistics, i.e., the
probability p(n) to find n photons in the state ua& is
given by a Poisson distribution,

p~n !5u^nua&u25exp~2^n&!
^n&n

n!
, (2.14)

where ^n&5uau2 is the average photon number equal to
the classical intensity of the light wave. For a Poisson
distribution one has ^(Dn)2&5^n&, where ^(Dn)2& is the
dispersion of the photon number.

A convenient quantity for characterizing the photon
statistics for an arbitrary quantum state of a single-mode
electromagnetic field is Mandel’s Q parameter (Mandel,
1979):

Q5
^~Dn !2&2^n&

^n&
. (2.15)

For classical states the photon statistics are always
super-Poissonian, or Poissonian in the limiting case of a
coherent state. Therefore, for such states, Mandel’s Q
parameter is always non-negative, Q>0. For nonclassi-
cal states of light, the photon statistics can be sub-
Poissonian and the Q parameter can become negative.
The greatest possible negative value of Q , Q521, is
realized for a Fock state, which has a definite number of
photons, ^(Dn)2&50.

Sub-Poissonian statistics were first experimentally ob-
served in photoelectric counting experiments on fluores-
cence from a single atom (Short and Mandel, 1983).
More recently there have been reports of other pro-
cesses in which sub-Poissonian statistics can be gener-
ated (Teich, Saleh, and Peřina, 1984; Saleh and Teich,
1985; Teich and Saleh, 1985; Hong and Mandel, 1986;
Machida and Yamamoto, 1986; Rarity, Tapster, and
Jakeman, 1987).

Strictly speaking, sub-Poissonian statistics and anti-
bunching are two independent phenomena and do not
have to accompany each other. We may note, however,
the following relation between the correlation function
g(2)(t) and the dispersion of the photon number:

g(2)~0 !2g(2)~`!5
^~Dn !2&2^n&

^n&2 . (2.16)
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Here we have used the fact that for an infinitely large
time delay, t→` , any correlations in a stationary ran-
dom process disappear, and the correlation function
g(2)(t) tends to unity,

lim
t→`

g(2)~t!51. (2.17)

In Fig. 3 we present three correlation functions g(2)(t)
showing antibunching, i.e., g(2)(0),g(2)(t) for some
values of the time delay t. For curves (a) and (b) we also
have g(2)(0),g(2)(`) and, therefore, sub-Poissonian
statistics. However, for curve (c), we observe that
g(2)(0).g(2)(`) and the photon statistics are super-
Poissonian. We point out that, nevertheless, curve (c)
cannot be attributed to a classical electromagnetic field
since g(2)(0),g(2)(t) for short time delays t.

C. Single-mode squeezed states

In this subsection we give a brief review of single-
mode squeezed states of light, which will help the reader
understand the multimode squeezed states to be intro-
duced in the following sections. More detailed descrip-
tions of squeezed states can be found in review articles
by Walls (1983), Loudon and Knight (1987), Teich and
Saleh (1989; 1990), Yamamoto et al. (1990), Reynaud
et al. (1992), and special issues of Journal of the Optical
Society of America (Kimble and Walls, 1987), Journal of
Modern Optics (Loudon and Knight, 1987), and Applied
Physics B (Fabre and Giacobino, 1992).

Single-mode squeezed states of light were first intro-
duced by Takahashi (1965), Stoler (1970, 1971), Yuen
(1976), and Caves (1981). Let us write the Heisenberg
electric-field operator of a single-mode electromagnetic
field as

E~ t !5
E0

2
~ae2iv0t1a†eiv0t!

(2.18)
5E0~a1 cos v0t1a2 sin v0t !.

Here v0 is the carrier frequency of the field, E0 is the
normalization constant, and a and a† are the single-
mode photon annihilation and creation operators obey-
ing the boson commutation relation, @a ,a†#51. Hermit-
ian operators a1 and a2 ,

a15
a1a†

2
, a25

a2a†

2i
, (2.19)

are called optical quadrature components of the electric
field. From the commutation relation of a and a† it fol-
lows that

@a1 ,a2#5
i

2
. (2.20)

Since operators a1 and a2 do not commute, there is an
uncertainty relation between their fluctuations,

^~Da1!2&^~Da2!2&> 1
4 u^@a1 ,a2#&u25 1

16 . (2.21)
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This inequality must hold for arbitrary states of the elec-
tromagnetic field. Such states, for which Eq. (2.21) be-
comes an equality, are called minimum uncertainty
states. One example of a minimum uncertainty state is
the coherent state, including the vacuum state, for which
dispersions of both quadrature components are equal:

^~Da1!2&5^~Da2!2&5 1
4 . (2.22)

In classical electrodynamics, the complex amplitude of
the electric field can be represented by a vector on the
complex plane. In quantum electrodynamics, because of
quantum fluctuations, this vector cannot be defined ex-
actly. One can give only its mean value and some uncer-
tainty region around this value in accordance with the
uncertainty relation (2.21). The rigorous meaning of the
uncertainty region can be defined with the help of qua-
siprobability distributions, which represent the field den-
sity matrix as a function on the complex plane (Agarwal
and Wolf, 1968, 1970a, 1970b, 1970c; Cahill and
Glauber, 1969a, 1969b; for a review see also Peřina,
1985, Chap. 16, and Peřina, 1991, Sec. 4.8). Using qua-
siprobability distributions, one can evaluate the
quantum-mechanical mean values as integrals over the
complex plane. For example, the mean value of the mo-
nomial $(a†)nam%s written in a certain ordering rule in-
dicated by the index s can be evaluated as

^$~a†!nam%s&5E d2a Ds~a!~a!!nam. (2.23)

The distribution function Ds(a) depends on the particu-
lar ordering of operators a and a†. Normal ordering cor-
responds to the Glauber-Sudarshan P-distribution
P(a), symmetric or Weyl ordering provides the Wigner
distribution W(a), and antinormal ordering gives the
so-called Q-distribution Q(a). The function Ds(a) is
not, in general, a probability distribution and can be-
come negative and even singular for some particular
states of the field. Nevertheless, it plays a role so similar

FIG. 3. Three intensity correlation functions with an anti-
bunching effect. For curves (a) and (b) we have also sub-
Poissonian photoelectron statistics, while curve (c) manifests
super-Poissonian statistics.
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to that of a probability distribution that it is referred to
as a ‘‘quasiprobability distribution.’’

Quasiprobability distributions corresponding to dif-
ferent ordering rules of the operators a and a† are com-
pletely equivalent in the sense that they give the same
mean values for the physical observables. However, for
particular calculations, the choice of a particular distri-
bution might be preferable. Here it must be noted that if
the distribution P(a) can become singular for some
nonclassical states, both W(a)and Q(a) exist as regular
functions for arbitrary quantum states. Moreover, while
W(a) can take on negative values, the function Q(a)
remains always positive.

The distribution Q(a) for a coherent state ua0& is
given by a Gaussian,

Q~a!5
1
p

exp@2ua2a0u2# , (2.24)

centered at a5a0 . The circular section of this Gaussian
with radius 1/2 may be used for representing the coher-
ent state ua0& in the phase space. Such a visual represen-
tation is in agreement with Eq. (2.22), since ^(Da1)2&1/2

5^(Da2)2&1/251/2. This region is shown in Fig. 4.
Single-mode squeezed states can be considered as a

generalization of single-mode coherent states. Let us de-
fine a new operator b as a linear combination of the
photon annihilation and creation operators a and a†,

b5ua1va†. (2.25)

Here u and v are complex coefficients satisfying the con-
dition

uuu22uvu251, (2.26)

and therefore can be written as

u5cosh@r# , v5sinh@r# . (2.27)

The parameter r is called the squeezing parameter. It
follows from Eqs. (2.25) and (2.26) that the new opera-
tors b and b† obey the same commutation relation as a
and a†. Therefore Eq. (2.25) describes a canonical trans-
formation and, according to the theorem of von Neuman
(1931), can be represented by a unitary transformation,

b~a ,a†!5UaU†, (2.28)

with a unitary operator U . The structure and physical
realizations of such a unitary operator, leading to the
canonical transformation (2.25), were discussed by Yuen
(1976). This operator can be written explicitly in terms

FIG. 4. Uncertainty region for a coherent state.
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of the complex coefficients u and v from Eq. (2.25). Be-
cause of condition (2.26), there are only three real inde-
pendent parameters in transformation (2.25). Let us re-
write this transformation as

b5eic~ uuue2ifa1uvueifa†!, (2.29)

where we have introduced two angles c and f,

c5 1
2 ~arg u1arg v !, (2.30a)

f5 1
2 ~arg v2arg u !. (2.30b)

In terms of the three real parameters c , f, and r , the
unitary operator U reads

U5exp@ i~c2f!a†a#exp@ 1
2 ~z!a22za†2!# , (2.31)

with

z5re2if. (2.32)

Let us define the quadrature components of the fields a
and b in their eigencoordinate systems determined by
the angles f and c:

a5eif~a11ia2!, (2.33a)

b5eic~b11ib2!. (2.33b)

It is easy to see from Eq. (2.29) that these quadrature
components are related as

b15~ uuu1uvu!a15era1 , b25~ uuu2uvu!a25e2ra2 .
(2.34)

Assuming that the field a is in a coherent state and tak-
ing into account that the dispersions of the quadrature
components a1 and a2 are equal to 1/4, we can easily
obtain the variances of the quadratures b1 and b2 ,

^~Db1!2&5
1
4

e2r, ^~Db2!2&5
1
4

e22r. (2.35)

Therefore the dispersion ^(Db2)2& is squeezed by the
factor e22r, whereas the dispersion ^(Db1)2& is in-
creased by the factor e2r. This ensures fulfillment of the
uncertainty relation (2.21). From Eq. (2.35) we can see
that a squeezed state is a minimum uncertainty state.

The results of the squeezing transformation (2.25) can
be summarized as follows:

(a) On input to the system, the complex field ampli-
tude together with its uncertainty region must be de-
composed into the eigen quadrature components de-
fined by Eq. (2.33a) in the coordinate system rotated by
an angle f given by Eq. (2.30b); this is illustrated in Fig.
5(a) for a coherent input state with real amplitude.

(b) The quadrature component eifa1 is rotated by an
angle 2f , i.e., brought to the real axis and stretched by
the factor er; the quadrature component ieifa2 is
brought to the imaginary axis and squeezed by the factor
e2r, Fig. 5(b).

(c) The resulting complex field amplitude together
with its uncertainty region is rotated by an angle c given
by Eq. (2.30a), Fig. 5(c); in the chosen example the final
state of the system represents a squeezed state, and its
uncertainty region becomes an ellipse with unequal dis-
persions of quadratures.
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One of the reasons why squeezed states are interest-
ing for applications is that they allow one to reduce the
photocurrent fluctuations below the shot-noise level. To
obtain this low-noise observation one has to use the ho-
modyne detection technique (Mandel and Wolf, 1995,
Chap. 21). We shall consider as an example the homo-
dyne detection of a squeezed vacuum, i.e., a squeezed
state with zero mean amplitude.

A schematic of homodyne detection is shown in Fig. 6.
The incoming light wave in the squeezed vacuum is
mixed by a beam splitter with a strong coherent light
wave called a local oscillator. For simplicity we shall
consider the situation in which the transmission coeffi-
cient of the beam splitter is close to unity so that the
light wave in a squeezed state passes it unaffected. How-
ever, we shall assume the local oscillator to be so strong
that even after reflection from the beam splitter its in-
tensity is still large compared to the intensity of the
squeezed vacuum. Under these assumptions the Heisen-
berg annihilation operator e(t) on the photodetector
surface may be written as

e~ t !5b1b~ t !, (2.36)

where b5ubueiwb is the complex amplitude of the local
oscillator and b(t) is the annihilation operator of the
field in the squeezed vacuum. Substituting Eq. (2.36)
into the photodetection formulas (2.3) and (2.4) and
keeping only the leading-term contributions propor-
tional to the intensity of the local oscillator, we arrive at

^i~ t !&5hubu2, (2.37)

^ 1
2 $di~ t !,di~ t8!%1&

5^i~ t !&d~ t2t8!1h2ubu2$^ :b†~ t !b~ t8!:&

1^:b†~ t8!b~ t !:&1e22iwb^:b~ t !b~ t8!:&

1e2iwb^:b†~ t !b†~ t8!:&%. (2.38)

The result becomes more transparent if instead of the
photocurrent correlation function we write the photo-
current noise spectrum (di)V

2 defined by Eq. (2.7). This
requires, however, a knowledge of the temporal behav-
ior of the quantum fluctuations of the field. To describe
the temporal behavior of the field in a squeezed state,
we have to generalize the single-mode squeezing trans-
formation (2.25) to the so-called broadband squeezing
(Mandel and Wolf, 1995, Chap. 21). Broadband squeez-
ing can be described in terms of the Fourier components
b(V) of the time-dependent field operator b(t),

FIG. 5. Graphic illustration of squeezing for a single-mode
field.



1548 Mikhail I. Kolobov: Spatial behavior of nonclassical light
b~V!5E
2`

`

dt eiVtb~ t !, (2.39)

as

b~V!5U~V!a~V!1V~V!a†~2V!. (2.40)

The physical meaning of this transformation will become
clear in Sec. IV, where we shall discuss in detail its ana-
log for multimode squeezing. Using Eq. (2.40) we can
write the photocurrent noise spectrum as follows:

~di !V
2 5^i&@12h1h~cos2 u~V!e2r(V)

1sin2 u~V!e22r(V)!# , (2.41)

where u(V) is

u~V!5c~V!2wb . (2.42)

The angle c(V) and the squeezing parameter r(V) are
given by Eqs. (2.30a) and (2.27), now with respect to the
frequency-dependent coefficients U(V) and V(V) from
Eq. (2.40).

The result (2.41) for the photocurrent noise spectrum
has a simple physical explanation. The contribution 1
2h in square brackets appears from partial recovery of
the shot noise due to nonideal photodetection for h
<1. The terms proportional to cos2 u(V) and sin2 u(V)
come from projections of the semimajor and semiminor
axes of the squeezing ellipse at frequency V onto the
complex amplitude of the local oscillator. Choosing
u(V0)56p/2 for some frequency V0 , we can obtain the
shot-noise reduction according to the degree of squeez-
ing at this frequency:

~di !V0

2 5^i&@12h1he22r(V0)# . (2.43)

For high quantum efficiency h.1 and strong squeezing
r(V0)@1, one can have almost complete shot-noise re-
duction.

III. QUANTUM FLUCTUATIONS OF LIGHT IN SPACE-TIME

A. Observation of quantum fluctuations of light
in space-time and standard quantum limit in space-time

In this subsection we shall generalize the theory of
quantum fluctuations of light from a temporal domain,
described in the previous section, into space-time. For
this purpose we need local observation of the light fluc-
tuations across the transverse area of the light beam.

FIG. 6. Schematic of homodyne detection of squeezed light.
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More precisely, we want to distinguish the photodetec-
tion events that take place both at different spatial
points rW across the light beam and at different time mo-
ments t . Therefore we shall assume that instead of one
photodetector, as in the previous section, we have a
dense array of very small photodetectors or pixels, which
fill in the photodetection plane normally illuminated by
the light wave under investigation. In practice this can
be implemented by employing, for example, a charge-
coupled device (CCD). A CCD is an array of metal-
oxide-semiconductor capacitors designed to translate an
incident pattern of photons in the light wave into an
electrical charge (electrons or holes) for further elec-
tronic treatment. Nowadays CCDs are available that
contain several million pixels, each just a few microns in
size (Khosla, 1992).

Let us assume for the moment that the size of each
pixel can be arbitrarily small (the finite size of a pixel
will be taken into consideration at the end of this sub-
section). In reality it must be much smaller than a typical
scale of change of the light intensity across the photode-
tection plane. In a continuum limit, when the size of a
pixel goes to zero, the observed quantity is the surface
photocurrent density i(rW ,t), that is, the number of pho-
toelectrons per unit area of the photodetection plane
per second (in cm22 sec21).

Let the photodetection plane be located at the point
with longitudinal coordinate z normal to the z axis. Let
us denote as E(1)(z ,rW ,t) the positive-frequency opera-
tor of the electric field of a quasiplane and a quasimo-
nochromatic wave traveling in the 1z direction, where rW
is the position vector in the transverse plane of the wave.
As in Sec. II [see Eq. (2.1)], this operator can be written
in terms of space- and time-dependent photon annihila-
tion and creation operators a(z ,rW ,t) and a†(z ,rW ,t) as

E(1)~z ,rW ,t !5iS \v0

2e0c D 1/2

exp@ i~k0z2iv0t !#a~z ,rW ,t !.

(3.1)

Here v0 is the carrier frequency of the wave and k0 is its
wave number. The relation of a(z ,rW ,t) and a†(z ,rW ,t) to
the standard-modal annihilation and creation operators
(Wentzel, 1949; Loudon, 1983) will be given in the next
subsection, where we present the theory of quantum
field propagation and diffraction in free space. These
space- and time-dependent photon annihilation and cre-
ation operators obey the commutation relations

@a~z ,rW ,t !,a†~z ,rW 8,t8!#5d~rW 2rW 8!d~ t2t8!,
(3.2)

@a~z ,rW ,t !,a~z ,rW 8,t8!#50

and are normalized so that the mean value
^a†(z ,rW ,t)a(z ,rW ,t)& determines the mean photon-flux
density in photons per cm2 per second at point rW and
time t .

The quantum theory of photodetection provides the
following expressions for the mean value of the photo-
current density ^i(rW ,t)& and its space-time correlation
function ^ 1

2 $di(rW ,t),di(rW 8,t8)%1& :
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^i~rW ,t !&5h^I~rW ,t !&, (3.3)

^ 1
2 $di~rW ,t !,di~rW 8,t8!%1&

5^i~rW ,t !&d~rW 2rW 8!d~ t2t8!1h2^:I~rW ,t !I~rW 8,t8!:&

2^i~rW ,t !&^i~rW 8,t8!& . (3.4)

Here I(rW ,t)5a†(z ,rW ,t)a(z ,rW ,t) is the photon-flux den-
sity operator.

As with the single-mode case considered in the previ-
ous section, the space-time correlation function

^ 1
2 $di(rW ,t),di(rW 8,t8)%1& contains three terms. The first

term, ^i(rW ,t)&d(rW 2rW 8)d(t2t8), describes completely
uncorrelated photodetection events at different times
and at different spatial points across the photodetection
plane and represents the generalization of the shot noise
in space-time.

The second contribution to the photocurrent density
correlation function is proportional to the normal- and
time-ordered space-time intensity correlation function

G(2)~rW ,t ;rW 8,t8!5^:I~rW ,t !I~rW 8,t8!:& . (3.5)

This correlation function is proportional to the probabil-
ity of detecting a photon at time t8 and at the spatial
point rW 8 under the condition that the previous detection
happened at time t and point rW . When the intensity of
the light is stationary in time and uniform in the trans-
verse area of the light beam, this correlation function
depends only on the time difference t5t82t and the
spatial difference jW5rW 82rW between two points,
G(2)(rW ,t ;rW 8,t8)5G(2)(jW ,t).

In analogy to the degree of second-order temporal
coherence introduced in Sec. II, one can define the de-
gree of second-order spatio-temporal coherence as

g(2)~jW ,t!5
^ :I~rW ,t !I~rW 1jW ,t1t!:&

^I~rW ,t !&2 . (3.6)

The last term in Eq. (3.4) is the product of two mean
photocurrent densities and, for a light wave with inten-
sity stationary in time and uniform in the transverse
plane, is constant.

The correlation function g(2)(jW ,t) allows us to gener-
alize the notions of photon bunching and antibunching,
introduced in Sec. II.B, from the temporal domain into
space-time. That is, if the correlation function g(2)(jW ,t)
has its maximum at jW50W and at t50, g(2)(0W ,0)
.g(2)(jW ,t), it is natural to speak about bunching in
space-time. Indeed, this means that two photons are
more likely to be detected when close together, both at
small time intervals and at small spatial separations from
one another, than when further apart. Analogously, if
g(2)(0W ,0),g(2)(jW ,t), one may speak about antibunching
in space-time, because two photodetection events are
less likely to appear at close space-time points than for
more distant points.

As with antibunching in time, antibunching in space-
time is a purely quantum-mechanical phenomenon. In-
deed, it follows from the Schwartz inequality that the
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correlation function g(2)(jW ,t) of a classical electromag-
netic field stationary in time and uniform in space must
satisfy

g(2)~0W ,0!>g(2)~jW ,t! (3.7)

for arbitrary jW and t. Since antibunching in space-time
means an exactly opposite inequality, it cannot be ex-
plained within the framework of semiclassical theory,
i.e., when the light field is treated as a c-number.

At this point it is appropriate to note that the gener-
alization of such notions as bunching and antibunching
from a temporal domain into space-time is more than
just writing an additional (spatial) argument in the cor-
relation function g(2)(jW ,t). Physically, the spatial behav-
ior of light is completely different from its temporal be-
havior and involves new phenomena such as diffraction.
Consequently, spatial bunching and antibunching have
many features different from their temporal counter-
parts. Spatial fluctuations of light can be investigated
completely independently from temporal ones as spatial
correlations of photocounts that happen simultaneously
in time, i.e., for zero time delay t50. Such a possibility
clearly does not exist for a single-mode electromagnetic
field.

In Sec. II we saw that, for a stationary single-mode
electromagnetic field, a convenient characteristic of pho-
tocurrent fluctuations is the photocurrent noise spec-
trum. It was defined as a Fourier transform of the pho-
tocurrent correlation function in time. Using the
photocurrent noise spectrum, we have defined the stan-
dard quantum limit as the minimum amount of noise in
photodetection allowed by semiclassical theory. Now we
shall generalize the notion of the photocurrent noise
spectrum and standard quantum limit in space-time.

As follows from Eq. (3.4), for a light field stationary in
time and uniform in the transverse plane, the correla-
tion function of the photocurrent density

^ 1
2 $di(rW ,t),di(rW 8,t8)%1& depends only on the time differ-

ence t5t82t and the spatial difference jW5rW 82rW . Let us
consider the spatiotemporal Fourier transform of this
correlation function,

~di !qW ,V
2 5E drW E dt exp@ i~Vt2qW •rW !#

3^ 1
2 $di~0W ,0!,di~rW ,t !%1& . (3.8)

Similar to Sec. II.A, we shall call (di)qW ,V
2 the noise spec-

trum of the photocurrent density and its arguments V
and qW frequency and spatial frequency.

Using the photodetection formula (3.4), we can write
the noise spectrum (di)qW ,V

2 as

~di !qW ,V
2 5^i&1G̃(2)~qW ,V!2^i&2d~V!d~qW !. (3.9)

Here the first contribution comes from the shot-noise
term in Eq. (3.4), the second from the intensity correla-
tion function,

G̃(2)~qW ,V!5E drW E dt exp@ i~Vt2qW •rW !#G(2)~rW ,t !,

(3.10)



1550 Mikhail I. Kolobov: Spatial behavior of nonclassical light
and the last one from the space-time independent prod-
uct of two mean photocurrent densities. One can show
that in semiclassical theory the sum of the second and
third contributions is always non-negative. Therefore
the semiclassical minimum value of the photocurrent
density noise is given by the shot noise in space-time,

~di !qW ,V
2 5^i&. (3.11)

This formula is a generalization of the standard quan-
tum limit (2.12) from the temporal domain into space-
time. In quantum theory the sum of the second and third
terms in Eq. (3.9) can be negative and compensate par-
tially or even completely for the shot-noise contribution
for some frequencies V and spatial frequencies qW . In
Sec. IV we shall describe in detail the spectrum (di)qW ,V

2

for a traveling-wave optical parametric amplifier.
The definition (3.11) of the standard quantum limit in

space-time is convenient when the light intensity is sta-
tionary in time and uniform in the transverse plane of
the electromagnetic wave. It is, however, not very ap-
propriate for the case of optical images when the light
intensity is a function of the transverse coordinate rW and
time t if one has a dynamic image (for example, a
movie). Therefore, for imaging applications, we shall
give an equivalent definition of the standard quantum
limit.

We shall assume that an image is detected by a pho-
todetection array or the CCD camera whose pixels oc-
cupy the area Sd during the observation time Td . In the
literature about optical imaging and image processing
(Goodman, 1985; Yu, 1985), the noise performance of
the scheme is described in terms of the signal-to-noise
ratio. When the optical image is detected by a CCD
camera, the observed signal of the scheme is the mean
number of photoelectrons N(rW ,t) collected by the pixel
centered at point rW in the photodetection plane in the
time interval from t2Td/2 to t1Td/2:

^N~rW ,t !&5E
Sd

drW 8E
Td

dt8^i~rW 8,t8!&. (3.12)

For a stationary and uniform light field this quantity is
independent of rW and t . For a real optical image it will
reproduce the intensity distribution across the photode-
tection plane and as a function of time, if the pixel area
Sd and the observation time Td are chosen much smaller
than typical spatial and temporal scales of the image.

The noise properties of the photodetection scheme
are characterized by the variance in the number of col-
lected photoelectrons ^DN2(rW ,t)&, which is related to
the correlation function of the photocurrent density as

^DN2~rW ,t !&5E
Sd

drW 8E
Td

dt8E
Sd

drW 9

3E
Td

dt9^1/2$di~rW 8,t8!,di~rW 9,t9!%1&.

(3.13)
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Following the literature on optical image processing, we
shall define the signal-to-noise ratio R of the scheme as
(Goodman, 1985)3

R5
^N~rW ,t !&

^DN2~rW ,t !&1/2 . (3.14)

Using the photodetection formula (3.4) and keeping
only the shot-noise contribution, we obtain the standard
quantum limit for the signal-to-noise ratio as

RSQL5^N~rW ,t !&1/2. (3.15)

In Secs. VII and VIII we shall calculate the signal-to-
noise ratio R for the case of parametric image amplifi-
cation and optical imaging with multimode squeezed
light.

B. Propagation and diffraction of a quantized field
in free space

The difficulties associated with the quantum-
mechanical description of field propagation in free space
or a nonlinear medium lie in the usual procedure of field
quantization. The transverse component of the electro-
magnetic field is usually quantized at an initial time t
50 within a quantization volume V that is large enough
to contain the spatial region of interest (Wentzel, 1949;
Louisell, 1973; Loudon, 1983). After finding a set of or-
thogonal spatial modes for the given spatial region and
corresponding canonical field variables, one introduces
creation and annihilation operators for these modes that
satisfy the standard commutation relations. Further evo-
lution of the quantized field due, for example, to inter-
action with an atomic medium is described in terms of
the Heisenberg equations for annihilation and creation
operators, i.e., as purely temporal evolution.

Such a description of field dynamics is not well suited
to the problem of field propagation in free space or a
medium. For such a study, it would be more appropriate
to have a quantum-mechanical analog of the classical
field propagation and diffraction theory in the spirit of
Huygens-Fresnel. In the next subsection we shall
present such a description for transparent nonlinear me-
dia, i.e., when the field interaction with atoms can be
described in terms of an effective Hamiltonian. But be-
fore taking on the problem of quantized field propaga-
tion in a nonlinear medium, we shall consider in this
subsection the simpler question of quantized field propa-
gation in free space. Our analysis here will be very simi-
lar to that of Yuen and Shapiro (1978).

Let E(1)(rW ,t), where rW5(x ,y ,z) is the spatial coordi-
nate, be the positive-frequency operator of the electric
field in a vacuum. This field is usually quantized in a
cube with linear dimensions L under periodic boundary

3In the literature about amplifiers it is customary to deal with
the power signal-to-noise ratio, which is equal to R2. Obviously
both definitions are completely equivalent. We shall use the
power signal-to-noise ratio in Sec. VII.A because it provides
simpler final results.
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conditions. In the continuum limit, i.e., when the quan-
tization volume grows infinitely, L→` , this operator is
written in the form of the modal decomposition

E(1)~rW ,t !5iS \

2e0
D 1/2E dkW

~2p!3 v1/2~k !a~kW !

3exp@ i„kW •rW2v~k !t…# . (3.16)

Here a(kW ) and a†(kW ) are the photon annihilation and
creation operators of a spatial mode with wave vector kW ;
the frequency v(k) is given by the free-space dispersion
relation v(k)5kc , with k5ukW u. The operators a(kW ) and
a†(kW ) obey the canonical commutation relations

@a~kW !,a†~kW 8!#5~2p!3d~kW 2kW 8!, @a~kW !,a~kW 8!#50.
(3.17)

Equation (3.16) determines the Heisenberg field opera-
tor E(1)(rW ,t) in all points rW and t of the space-time as a
solution of the initial-value problem, i.e., through the
modal operators a(kW ) and a†(kW ) given at time t50 as
Schrödinger operators. For a complete quantum-
mechanical description we have to specify the density
matrix of the field for the continuum set of modes kW . In
the Heisenberg representation (3.16), this density matrix
remains constant as time evolves.

Though Eq. (3.16) allows us to determine the field at
any point of space-time, it is illsuited for the problem of
field propagation. For a solution to the propagation
problem, we have to translate Eq. (3.16) from a solution
of the initial-value problem into a solution of the
boundary-value problem. In other words, for a wave
traveling in the 1z direction, we would like to have a
formula that determines the field operator at any point rW
in the transverse plane at coordinate z given the field
operator over the plane z50.

Let us introduce the slowly varying photon annihila-
tion and creation operators a(rW ,z ,t) and a†(rW ,z ,t) ac-
cording to

E(1)~z ,rW ,t !5iS \v0

2e0c D 1/2

exp@ i~k0z2v0t !#a~z ,rW ,t !,

(3.18)

where v0 is the carrier frequency of a wave traveling in
the 1z direction and k05v0 /c is its wave number. The
operator a(z ,rW ,t) is given by

a~z ,rW ,t !5E dkz

2p E dqW

~2p!2Av~k !

k0
a~kW !

3exp@ i„qW •rW 1~kz2k0!z2~v~k !2v0!t…# .

(3.19)

Here rW is the two-dimensional coordinate vector rW
5(x ,y) in the transverse plane of the wave and qW
5(kx ,ky).

Let us consider a finite spatial region of volume V .
The free Hamiltonian of the electromagnetic field in this
region can be written as
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H05
\v0

c E
V

drW a†~z ,rW ,t !a~z ,rW ,t !. (3.20)

The factor c21 appears due to the normalization of op-
erators a(rW ,z ,t) and a†(rW ,z ,t). The temporal evolution
of the slowly varying operator a(z ,rW ,t) is described by
the following equation:

ȧ~z ,rW ,t !5iv0a~z ,rW ,t !1
i

\
@H0 ,a~z ,rW ,t !# , (3.21)

where the first term comes from the explicit time depen-
dence exp@iv0t# included in the definition (3.19) of the
slowly varying operator a(z ,rW ,t). To evaluate the com-
mutator in the right-hand side, we need to know the
commutation relation of the slowly varying amplitudes
a(z ,rW ,t) and a†(z ,rW ,t) at the same time, but at two dif-
ferent spatial points inside the medium. Using Eq.
(3.19), we can write this commutation relation as

@a~z ,rW ,t !,a†~z8,rW 8,t !#

5cE dkz

2p E dqW

~2p!2

v~k !

v0
exp@ i~kz2k0!~z2z8!

1iqW •~rW 2rW 8!#[c d̃~rW2rW8!. (3.22)

Here d̃(rW2rW8) is a d-type function that becomes the real
d function d(rW2rW8) if we neglect v(k) dependence in
the integrand.

Using this commutation relation, we obtain

ȧ~z ,rW ,t !5iv0a~z ,rW ,t !

2iv0E
V

drW8d̃~rW2rW8!a~z8,rW 8,t !. (3.23)

We can write this equation for operators in a form simi-
lar to a classical equation describing the diffraction of
light in free space. For this we shall use quasimonochro-
matic and paraxial approximations, namely,

k5Akz
21q2'kz1

q2

2k0
(3.24)

and

v~k !

v0
'11

kz2k0

k0
1

q2

2k0
2 . (3.25)

Substituting Eq. (3.25) into Eq. (3.22) we obtain

d̃~rW2rW 8!'E ds

2p E dqW

~2p!2 S 11
s

ko
1

q2

2k0
2D

3exp@ i„s~z2z8!1qW •~rW 2rW 8!…#

5S 12
i

k0

]

]z
2

1

2k0
2 ¹'

2 D d~rW2rW8!, (3.26)

where ¹'
2 is the transverse Laplacian with respect to rW ,

and we have denoted s5kz2k0 . Therefore, in this ap-
proximation, the equation for the slowly varying opera-
tor a(z ,rW ,t) reads

ȧ~z ,rW ,t !5S 2c
]

]z
1c

i

2k0
¹'

2 D a~z ,rW ,t !. (3.27)
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In Eq. (3.27) we recognize the classical equation describ-
ing the diffraction of a light wave in free space.

C. Propagation and diffraction of a quantized field
in a nonlinear parametric medium

Now we turn to derivation of the equation for propa-
gation of a quantized field in a nonlinear parametric
medium.4 It must be noted that the problem of field
quantization in a dielectric medium is very difficult one
and is outside the scope of this article. For rigorous
treatment we refer the reader to the book of Klyshko
(1988a), the paper of Drummond (1990), and references
therein. Here we present some final results following
Klyshko (1988a).

The positive-frequency operator of a quantized elec-
tric field in a transparent dielectric medium can be writ-
ten in a form similar to that for a vacuum (Klyshko,
1988a):

E(1)~rW ,t !5iS \

2e0
D 1/2E dkW

~2p!3 j~k !v1/2~k !a~kW !

3exp@ i„kW •rW2v~k !t…# . (3.28)

This differs from Eq. (3.16) in the factor j(k), which
describes the strength of the field in the medium as com-
pared to that in a vacuum. This constant is given by

j2~k !5
u~k !v~k !

c2 cos r~k !
, (3.29)

where v(k)5c/n(k) is the phase velocity of light in the
medium, u(k)5]v(k)/]k is the group velocity, and
r(k) is the so-called generalized anisotropy angle, that
is, the angle between the electric field and the induction.

A second difference between this equation and Eq.
(3.16) is in the dispersion relation v(k), which for the
medium is different from v(k)5kc for the vacuum. In
fact, in a real crystal the ‘‘mode’’ of the field is deter-
mined not only by the wave vector kW , but by two addi-
tional parameters n and m (Klyshko, 1988a). The first
corresponds to the type of polarization of the field (in
the case of anisotropic material). In addition, a field with
a fixed wave vector kW and a polarization type n generally
contains many harmonics, which are distinguished by
the index m. For simplicity we shall neglect the polariza-
tion and anisotropy effects and assume that we are in-
terested in a field with frequencies near one fixed branch
of the dispersion law with a definite m.

Under these assumptions we can introduce the slowly
varying operator a(z ,rW ,t) of the quantized field in the
medium,

E(1)~z ,rW ,t !5ijS \v0

2e0c D 1/2

exp@ i~klz2v0t !#a~z ,rW ,t !.

(3.30)

4This derivation belongs to I. Sokolov and has not been pub-
lished previously. I should like to thank him for permitting me
to reproduce it in this article.
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Here we have denoted by kl the wave number of the
wave in the medium, to distinguish it from the corre-
sponding k0 in a vacuum. The slowly varying operator
a(z ,rW ,t) is given by an equation identical to Eq. (3.19),

a~z ,rW ,t !5E dkz

2p E dqW

~2p!2Av~k !

k0
a~kW !

3exp@ i„qW •rW 1~kz2k0!z2~v~k !2v0!t…# ,

(3.31)

but now with a dispersion relation v(k) for the medium.
We shall describe the parametric interaction in the

medium in terms of an effective Hamiltonian. Let us
assume that a x(2) nonlinear parametric medium fills a
volume V . This medium is illuminated by a monochro-
matic plane wave playing the role of the pump. The
pump wave propagates in the 1z direction and has the
frequency vp and wave number kp :

Ep
(1)~z ,rW ,t !5Ep exp@ i~kpz2vpt !# . (3.32)

We choose the frequency vp of the pump wave to be
vp52v0 . We shall consider the amplitude Ep as a
c-number, i.e., we neglect the quantum fluctuations of
the pump wave. We shall also assume this amplitude to
be strong enough and neglect depletion of the pump
wave due to parametric interaction. Under these as-
sumptions the parametric interaction can be described
by the following effective Hamiltonian (Klyshko, 1988a,
p. 289):

H int5i\
n0g

c E
V

drW exp@ i~kp22kl!z#„a†~z ,rW ,t !…21H.c.

(3.33)

Here n0 gives the density of active atoms in the para-
metric medium, and g is the strength constant of the
parametric interaction proportional to the amplitude Ep
of the pump wave and the susceptibility constant x(2) of
the medium.

The evolution of the slowly varying amplitude
a(z ,rW ,t) in the parametric medium is described by the
following equation:

ȧ~z ,rW ,t !5iv0a~z ,rW ,t !1
i

\
@H01H int ,a~z ,rW ,t !# . (3.34)

Here H0 is the free-field Hamiltonian in the medium. In
terms of a(z ,rW ,t) and a†(z ,rW ,t) it is given by Eq. (3.20).
We can also use Eq. (3.22) for the commutation relation
of slowly varying photon operators, but now with a dis-
persion relation v(k) for the medium. Thus we obtain

ȧ~z ,rW ,t !5iv0a~z ,rW ,t !2iv0E
V

drW8d̃~rW2rW8!a~z8,rW 8,t !

12n0gE
V

drW8exp@ i~kp22kl!z8#

3 d̃~rW2rW8!a†~z8,rW 8,t !. (3.35)

To bring this equation into equation for the propaga-
tion of a(z ,rW ,t) along the z axis we shall perform the
following Fourier transform:
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a~s ,qW ,V!5E dz e2iszE drW e2iqW •rWE dt eiVta~z ,rW ,t !.

(3.36)

Here s is the Fourier variable corresponding to the lon-
gitudinal coordinate z . From Eq. (3.35) we obtain the
following equation for the Fourier amplitude a(s ,qW ,V):

2iVa~s ,qW ,V!52i~v~k !2v0!a~s ,qW ,V!

12n0ga†~2s1D ,2qW ,2V!, (3.37)

where v(k) corresponds to the wave vector kW 5(qW ,kl
1s) and we have denoted D5kp22kl . We shall sepa-
rate the evolution of the Fourier amplitude a(z ,qW ,V)
due to free propagation in the medium from the effect
of the parametric interaction by introducing a new Fou-
rier amplitude e(z ,qW ,V) as

a~z ,qW ,V!5e~z ,qW ,V!exp@„kz~qW ,V!2kl…z# , (3.38)

where

kz~qW ,V!5Ak2~v01V!2q2 (3.39)

is a z component of the wave vector with frequency v0
1V and spatial frequency qW . From Eq. (3.38) it follows
that

e~s ,qW ,V!5a„s1kz~qW ,V!2kl ,qW ,V…. (3.40)

From Eq. (3.37) we obtain the following equation for
the new Fourier amplitude e(s ,qW ,V):

2iVe~s ,qW ,V!52i„v~k1!2v0…e~s ,qW ,V!

12n0ge†
„2s2D~qW ,V!,2qW ,2V….

(3.41)

Here the wave vector kW 1 is defined as

kW 15„s1kz~qW ,V!2kl ,qW …. (3.42)

In Eq. (3.41) we have introduced the mismatch function
D(qW ,V),

D~qW ,V!5kz~qW ,V!1kz~2qW ,2V!2kp . (3.43)

Now we shall use paraxial and quasimonochromatic ap-
proximations, namely,

v~k1!'v01V1us , (3.44)

where u5]v(kl)/]kl is the group velocity of the wave
in the crystal.

Substituting Eq. (3.44) into Eq. (3.41), we arrive at

ise~s ,qW ,V!5
2n0g

u
e†
„2s2D~qW ,V!,2qW ,2V…. (3.45)

Finally, performing the inverse Fourier transform over
s , we obtain the desired equation of propagation for the
Fourier amplitude e(z ,qW ,V):

]

]z
e~z ,qW ,V!5se†~z ,2qW ,2V!exp@ iD~qW ,V!z# , (3.46)

where s5 2n0g/u is the coupling constant of the para-
metric interaction. In Sec. IV we shall use this equation
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to describe the generation of multimode squeezed states
by a traveling-wave optical parametric amplifier.

D. Space-time Fourier transform vs decomposition
into discrete transverse modes of a resonator

We shall see in Sec. IV that multimode squeezed
states of light can be generated both in traveling-wave
geometry without a cavity and when an active nonlinear
medium is placed in a resonator. In the latter case it is
more natural to describe multimode squeezing in terms
of discrete transverse modes of the cavity. In this sub-
section we shall give an overview of such an alternative
description of quantum fluctuations in space-time. More
details on this approach can be found in papers by Lu-
giato and Gatti (1993), Gatti and Lugiato (1995), and
Lugiato and Marzoli (1995).

Let f l(rW ) be a complete orthonormal set of complex
functions in the transverse plane rW . Here l stands for a
certain set of indices. In the case of cavity-based genera-
tion of multimode squeezed states, it is natural to choose
this set as eigenmodes of the cavity. Normally, these
eigenmodes depend on the longitudinal coordinate z ;
however, for simplicity, in this subsection we shall omit
this dependence. The set of functions f l(rW ) satisfies both
the condition of orthonormality,

E drW f l
!~rW !f l8~rW !5d ll8 , (3.47)

and completeness,

(
l

f l
!~rW !f l~rW 8!5d~rW 2rW 8!. (3.48)

Instead of performing a space-time Fourier transform of
the slowly varying field operator a(rW ,t) in free space as
in Eq. (3.36), we can expand it over the eigenmodes
f l(rW )

a~rW ,t !5(
l

f l~rW !al~ t !, (3.49)

where al(t) are operator-valued expansion coefficients
that have the meaning of photon annihilation operators
for the lth mode. From the commutation relations (3.2)
together with Eq. (3.47) it is easy to see that al(t) and
al

†(t) obey

@al~ t !,al8
†

~ t8!#5d ll8d~ t2t8!. (3.50)

We note that these commutation relations hold for the
field operators outside the cavity. To complete the anal-
ogy with the space-time Fourier transform we shall also
employ the Fourier coefficients al(V), defined as

al~V!5E
2`

`

dt eiVtal~ t !. (3.51)

Using these definitions we would like to express the
space-time correlation function of the photocurrent den-
sity (3.4) in terms of the noise spectrum of the individual
eigenmodes similar to (di)qW ,V

2 . For this we can expand
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the correlation function ^ 1
2 $di(rW ,t),di(rW 8,t8)%1& over

the set of eigenfunctions f l(rW ),

^ 1
2 $di~rW ,t !,di~rW 8,t8!%1&

5(
l ,l8

f l~rW !f l8~rW 8!^ 1
2 $di l~ t !,di l8~ t8!%1&

5(
l

f l~rW !f l~rW 8!^ 1
2 $di l~ t !,di l~ t8!%1&. (3.52)

Here we have assumed that the eigenfunctions f l(rW ) are
real and that the photocurrent density fluctuations for
different eigenmodes are uncorrelated,

^ 1
2 $di l~ t !,di l8~ t8!%1&5d ll8^

1
2 $di l~ t !,di l~ t8!%1&. (3.53)

We shall further assume that the photocurrent density
i(rW ,t) is stationary in time, ^i(rW ,t)&5^i(rW )&, but not
necessarily uniform in space. In this case we can intro-
duce the noise spectrum of the photocurrent density for
the lth mode as

~di ! l ,V
2 5E

2`

`

dt eiVt^ 1
2 $di l~0 !,di l~ t !%1&. (3.54)

Combining Eqs. (3.52)–(3.54) we arrive at the desired
expression for the space-time correlation function,

^ 1
2 $di~rW ,t !,di~rW 8,t8!%1&

5(
l

f l~rW !f l~rW 8!
1

2p E
2`

`

dV e2iV(t2t8)~di ! l ,V
2 . (3.55)

Comparing this result with Eq. (3.8), we see that (di) l ,V
2

plays the role of a discrete analog for the noise spectrum
of the photocurrent density (di)qW ,V

2 . An important dif-
ference between Eqs. (3.55) and (3.8) is that in arriving
at Eq. (3.55) we did not assume the photocurrent density
to be uniform in space, while Eq. (3.8) holds true only
for spatially uniform processes. This distinction makes
the method of modal decomposition more powerful and
allows us to apply it to the investigation of nonuniform
spatial processes. In Sec. IV.D.2 we shall illustrate the
application of this method for calculating the spatial cor-
relation function and squeezing spectra for multimode
squeezed states generated by an optical parametric os-
cillator in a cavity with spherical mirrors.

IV. MULTIMODE SQUEEZED STATES OF LIGHT

A. Generation of multimode squeezed states
by a traveling-wave optical parametric amplifier

The generation of multimode squeezed states of light
by a traveling-wave optical parametric amplifier was de-
scribed by Kolobov and Sokolov (1989a). In this section
we shall present this model in detail and compare it with
some other proposed schemes.

Let us consider a three-wave parametric interaction in
a x(2) nonlinear medium having the form of a plane slab
of thickness l , placed perpendicular to the z axis (see
Fig. 7). A plane monochromatic pump wave of fre-
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quency vp52v0 is incident on this slab normal to its
surface. As a result of the parametric down conversion,
a pump photon vp splits into signal and idler photons,
with frequencies v01V and v02V , and wave vectors
kW (qW ,V) and kW (2qW ,2V). Here we denote by kW (qW ,V)
the wave vector of a photon with frequency v01V and
transverse component qW . Because of stationarity in time
and homogeneity in the transverse direction of the para-
metric process, the twin photons appear with opposite
transverse components qW and opposite frequencies V. In
isotropic media the signal and idler photons have equal
polarizations, determined by the polarization of the
pump wave. In the case of anisotropic media, polariza-
tions of signal and idler photons can be different and
depend on the kind of nonlinear susceptibility tensor of
the medium and the type of phase matching. For sim-
plicity we do not consider here such polarization effects
but refer the reader to the paper by Kolobov (1991) in
which these effects were investigated in detail.

In Sec. III.B we introduced the phase mismatch func-
tion D(qW ,V) among three waves taking part in the para-
metric process [see Eq. (3.43)]. The parametric interac-
tion is effective for such frequencies V and spatial
frequencies qW where the mismatch is small,

D~qW ,V!l<1. (4.1)

For the slowly varying Fourier amplitudes e(z ,qW ,V)
given by Eq. (3.38), we obtained Eq. (3.46), describing
their evolution inside the crystal. Solving this equation
and taking into account the relation (3.38) between the
Fourier amplitudes a(z ,qW ,V) and e(z ,qW ,V), we arrive
at the following transformation of the operators
a(z ,qW ,V) from the input of the crystal, z50, to its out-
put, z5l :

a~ l ,qW ,V!5U~qW ,V!a~0,qW ,V!1V~qW ,V!a†~0,2qW ,2V!,
(4.2)

with coefficients U(qW ,V) and V(qW ,V) equal to

U~qW ,V!5exp@ i„kz~qW ,V!2kl2D~qW ,V!/2…l#

3Fcosh~Gl !1
iD~qW ,V!

2G
sinh~Gl !G ,

V~qW ,V!5exp@ i„kz~qW ,V!2kl2D~qW ,V!/2…l#

3
s

G
sinh~Gl !, (4.3)

FIG. 7. Schematic of the generation of multimode squeezed
light by a traveling-wave optical parametric amplifier.
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where

G5Ausu22D~qW ,V!2/4. (4.4)

The functions U(qW ,V) and V(qW ,V) satisfy the condition

uU~qW ,V!u22uV~qW ,V!u251, (4.5)

necessary for conserving the commutation relations of
operators a(z ,qW ,V) and a†(z ,qW ,V) by the transforma-
tion (4.2). At the entry to the crystal, operators
a(0,qW ,V) and a†(0,qW ,V) satisfy the free-field commuta-
tion relation

@a~0,qW ,V!,a†~0,qW 8,V8!#5~2p!3d~qW 2qW 8!d~V2V8!.
(4.6)

Equation (4.2) generalizes the broadband squeezing
transformation (2.40) for a single-mode electromagnetic
field. It should be noted that broadband squeezing (with
frequency argument, but without spatial frequency) has
been investigated in the literature by several authors.
Spectral aspects of broadband squeezing in a three-wave
interaction were discussed by Caves and Crough (1987)
and Kolobov and Sokolov (1989c), and in a four-wave
interaction by Levenson et al. (1985) in the case of par-
allel propagation, and by Yurke (1985) for antiparallel
propagation. These and certain other publications have
shown how the spectrum of the intensity fluctuations in
homodyne detection of broadband squeezed states is in-
fluenced by dispersion in a parametric medium (Caves
and Crough, 1987; Kolobov and Sokolov, 1989c) or in an
active resonator (Yurke, 1985) and by reflection from an
external cavity (Levenson et al., 1985). Equation (4.2)
involves the spatial frequency qW in the squeezing trans-
formation, and our major interest here is to show the
physical consequences of such a generalization.

We shall assume that, together with the pump wave, a
monochromatic plane wave of frequency v0 is incident
normal to the entry surface of the crystal. This wave will
serve as a local oscillator for the homodyne detection of
multimode squeezed light, and, upon entering the crys-
tal, is assumed to be in a coherent state with complex
amplitude a. The quantum state of all other waves with
nonzero transverse components qW at the entry to the
crystal is a vacuum. Therefore, if we denote the total
state of the electromagnetic field at z50 as uin&, we can
write

a~0,rW ,t !uin&5auin&. (4.7)

Upon leaving the crystal, the local oscillator wave is in a
coherent state with the complex amplitude b, which is
found from Eq. (4.2) to be

b5ubueiwb5aU~0W ,0!1a!V~0W ,0!. (4.8)

In this section we shall assume that the photodetection
plane is located directly at the output of the crystal. The
effect of free propagation and diffraction of multimode
squeezed states will be the subject of Sec. V. Using Eq.
(4.2), we can find the mean value of the photocurrent
density and its noise spectrum defined by Eqs. (3.3),
(3.4), and (3.8). For the mean photocurrent density we
obtain
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^i&5hubu21hE dqW

~2p!2

dV

2p
uV~qW ,V!u2[^i& l1^i&s . (4.9)

It contains two terms: the first one, ^i& l , comes from the
local oscillator field, and the second, ^i&s , is proportional
to the intensity of spontaneous parametric down conver-
sion. It follows from Eq. (4.9) that the function

dqW ,V5uV~qW ,V!u2 (4.10)

determines the frequency and spatial frequency spec-
trum of spontaneous parametric down conversion. We
shall see below that dqW ,V is also a convenient parameter
for characterizing the degree of squeezing for a wave
pair with wave vectors kW (qW ,V) and kW (2qW ,2V).

Let Vc and qc be the widths of the frequency and
spatial frequency spectra of spontaneous parametric
down conversion, Tc52p/Vc its coherence time, and
Sc5(2p/qc)2 the coherence area. The mean photocur-
rent density ^i&s can be written as

^i&s5h
ds

TcSc
, (4.11)

where

ds5
1

qc
2Vc

E dqW dV dqW ,V (4.12)

is the degeneracy parameter for spontaneous parametric
down conversion (Mandel and Wolf, 1995).

Equation (4.2) allows us to evaluate the time- and
normal-ordered intensity correlation function which ap-
pears in the photocurrent correlation function (3.4). It is
convenient to perform the calculations directly with
Fourier amplitudes a(z ,qW ,V). With the help of the com-
mutation relations (4.6), we can bring the correlation
functions of the field at the input to the crystal to the
normal-ordered form and can evaluate the quantum-
mechanical averages over the input state defined in Eq.
(4.7). The result for the noise spectrum of the photocur-
rent density reads

~di !qW ,V
2 5^i&12h2ubu2~dqW ,V1Re$e22iwbg~qW ,V!%!

1h2E dqW 8

~2p!2

dV8

2p
„dqW 8,V8dqW 2qW 8,V2V8

1g!~qW 8,V8!g~qW 2qW 8,V2V8!…, (4.13)

where

g~qW ,V!5U~qW ,V!V~2qW ,2V!. (4.14)

The first term determines shot noise. The contribution
proportional to ubu2 comes from interference between
the local oscillator wave and the waves of the spontane-
ous parametric down conversion. The last contribution,
given by the integral term, has its origin in the self-
interference of the parametric down-conversion waves.
This term describes the bunching effect typical for the
down-conversion process.
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B. Multimode squeezing as modulation of quantum
fluctuations in space-time

It was shown by Kolobov and Sokolov (1989a) that
the homodyne detection of multimode squeezed states
can result in sub-Poissonian statistics of photons in both
time and transverse area of the light beam. Under ho-
modyne detection the down-conversion waves (qW ,V)
and (2qW ,2V) modulate the local oscillator wave in
space and time. The physical picture of such modulation
was briefly outlined in Kolobov and Sokolov (1989a). In
this subsection we shall give a detailed description of
multimode squeezing in terms of the modulation of
quantum fluctuations in space-time.

The transformation (4.2) of the Heisenberg operators
a(z ,qW ,V) from the entry surface to the exit of the para-
metric crystal is valid for an arbitrary quantum state of
the electromagnetic field. In the case of spontaneous
parametric down conversion, the quantum state of the
field uin& at the entry to the crystal is a vacuum for all
waves with nonzero transverse components qW .

Let us consider the positive-frequency part of the field
dE(1)(z ,rW ,t) composed of a pair of down-conversion
waves with Fourier components a(z ,qW ,V) and a(z ,
2qW ,2V),

dE(1)~z ,rW ,t !5ijS \v0

2e0c D 1/2

3exp@ i~klz2v0t !#daqW ,V~z ,rW ,t !, (4.15)

where

daqW ,V~z ,rW ,t !5a~z ,qW ,V!exp@2i~Vt2qW •rW !#

1a~z ,2qW ,2V!exp@2i~Vt2qW •rW !#

(4.16)

is the contribution of the pair of down-conversion waves
to a slowly varying field amplitude with frequency V and
spatial frequency qW . For illustration let us consider
daqW ,V(z ,rW ,t) as a vector in the complex plane
„Re daqW ,V(z,rW,t),Im daqW ,V(z,rW,t)…. We shall introduce in
this complex plane the slow quadrature components
amc(z ,qW ,V) and ams(z ,qW ,V), where m51,2, describing
the harmonic oscillations }cos(Vt2qW•rW) and }sin(Vt
2qW•rW):

daqW ,V~z ,rW ,t !

5exp@ ic~z ,qW ,V!#$@a1c~z ,qW ,V!

1ia2c~z ,qW ,V!#cos~Vt2qW •rW !1@a1s~z ,qW ,V!

1ia2s~z ,qW ,V!#sin~Vt2qW •rW !%. (4.17)

Here the angle c(z ,qW ,V) determines the orientation of
the coordinate system of the quadrature components
amc(z ,qW ,V) and ams(z ,qW ,V).

The slow quadrature components aml(z ,qW ,V), l
5c ,s , are connected with the Fourier components
a(z ,qW ,V) and a(z ,2qW ,2V) as

a1c~z ,qW ,V!1ia1s~z ,qW ,V!

5e2ica~z ,qW ,V!1eica†~z ,2qW ,2V!,
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a2c~z ,qW ,V!1ia2s~z ,qW ,V!

52i@e2ica~z ,qW ,V!2eica†~z ,2qW ,2V!# , (4.18)

where we have written c instead of c(z ,qW ,V) for brev-
ity. Using condition (4.5) and

arg@U~qW ,V!U!~2qW ,2V!#5arg@V~qW ,V!V!~2qW ,2V!# ,
(4.19)

which follows from the explicit form of the functions
U(qW ,V) and V(qW ,V), we find from Eq. (4.18) the trans-
formation of the slow quadratures from the entry sur-
face to the exit surface of the crystal,

amc~ l ,qW ,V!1iams~ l ,qW ,V!

5exp@ ik~qW ,V!#exp@6r~qW ,V!#„amc~0,qW ,V!

1iams~0,qW ,V!…, (4.20)

where ‘‘1’’ corresponds to the component with m51
and ‘‘2’’ to the component with m52. The components
aml(0,qW ,V) at the entry surface to the crystal are de-
fined in the coordinate system with c(0,qW ,V), and the
components aml(l ,qW ,V) at the exit surface of the crystal
are defined with c(l ,qW ,V). These angles are

c~0,qW ,V!5 1
2 arg@V~qW ,V!U21~qW ,V!# ,

(4.21)
c~ l ,qW ,V!5 1

2 arg@U~qW ,V!V~2qW ,2V!# .

Two other squeezing parameters, r(qW ,V) and k(qW ,V),
are given by

exp@6r~qW ,V!#5uU~qW ,V!u6uV~qW ,V!u,
(4.22)

k~qW ,V!5 1
2 arg@U~qW ,V!U21~2qW ,2V!# .

Equations (4.20)–(4.22) describe the multimode squeez-
ing of the slow quadrature components. Let us consider
the transformation of the vector a(z ,rW ,t) of the sum of
the local oscillator wave and the pair of down-
conversion waves (qW ,V) and (2qW ,2V). In the complex
plane of quadrature components, the vector a(z ,rW ,t) is
given by the sum of the fixed vector of the local oscilla-
tor and the vector daqW ,V(z ,rW ,t) of two down-conversion
waves, which oscillates in time with frequency V and in
space with spatial frequency qW .

At the entry surface to the crystal, the plane of the
quadrature components is defined by the angle
c(0,qW ,V). In this plane the average value of vector
a(0,rW ,t) is determined by the complex amplitude a of
the local oscillator. The down-conversion waves at the
entry surface to the crystal are in a vacuum state. There-
fore the noise modulation of the vector a(0,rW ,t) has
equal mean square uncertainties of both quadrature
components, i.e., neither phase nor amplitude modula-
tion predominates.

The results of the squeezing transformation are as fol-
lows:

(1) The plane of slow quadrature components
aml(l ,qW ,V) at the exit surface of the crystal is defined by
the angle c(l ,qW ,V). In this coordinate system the slow
quadrature components a1l(l ,qW ,V) increase by the fac-
tor exp@r(qW ,V)#, whereas the components a2l(l ,qW ,V) de-
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crease by the factor exp@2r(qW ,V)#. Therefore at the exit
surface of the crystal the noise modulation of the vector
a(l ,rW ,t) takes place on average inside the uncertainty
ellipse, whose semimajor axis is oriented at the angle
c(l ,qW ,V). Because squeezing parameters r(qW ,V) and
c(z ,qW ,V) depend on frequency and spatial frequency,
the uncertainty ellipses for every pair of down-
conversion waves have different degrees of squeezing
and different orientations. This effect is illustrated in
Fig. 8.

(2) The local oscillator wave at the exit surface of the
crystal has the complex amplitude b. The type of noise
modulation of the resultant field in space-time is deter-
mined by the angle

u~qW ,V!5c~ l ,qW ,V!2wb . (4.23)

Phase modulation predominates for u(qW ,V).6p/2 and
amplitude modulation for u(qW ,V).0,p .

(3) Because of the factor exp@ik(qW ,V)# in Eq. (4.20),
there is a phase delay in the slow oscillations at frequen-
cies qW ,V at the exit surface of the crystal,

amc~ l ,qW ,V!cos~Vt2qW •rW !1ams~ l ,qW ,V!sin~Vt2qW •rW !

5exp@6r~qW ,V!#$amc~0,qW ,V!cos„Vt2qW •rW 2k~qW ,V!…

1ams~0,qW ,V!sin„Vt2qW •rW 2k~qW ,V!…%. (4.24)

We want to point out that the squeezing transformation
(4.2) is characterized by four real parameters c(0,qW ,V),
c(l ,qW ,V), r(qW ,V), and k(qW ,V), given by Eqs. (4.21)
and (4.22). For the vacuum input state of the wave pair
(qW ,V) and (2qW ,2V) considered above, their output
state depends on only two parameters, namely,
c(l ,qW ,V) and r(qW ,V). We shall see in the next subsec-
tion that this is also true for the noise spectrum of the
photocurrent density. In the literature about squeezed
states one usually finds only these two parameters (see,
for example, Caves and Schumaker, 1985). However, the
squeezing transformation (4.2) is applicable not only for
the vacuum input state but for the arbitrary quantum
state of the wave pair (qW ,V) and (2qW ,2V) at the input
to the crystal. Dependence on c(0,qW ,V) in the observa-
tion should manifest itself when the quadrature compo-

FIG. 8. Dependence on qW and V of the squeezing ellipse at the
exit from the parametric crystal for exp@2rm#510. The dimen-
sionless phase mismatch D(qW ,V)l/2 is taken in steps of 0.32;
the squeezing ellipse for a pair of conjugate down-conversion
waves (qW ,V) and (2qW ,2V) is shown as a function of dimen-
sionless phase mismatch.
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
nents of the field at the input have different uncertain-
ties. We would expect to see dependence on k(qW ,V) if
different Fourier amplitudes at the input become
coupled due to parametric interaction. This would hap-
pen, for instance, in pulsed down conversion or in down
conversion with a nonplanar pump wave.

C. Homodyne detection of multimode squeezed states
and reduction of the photocurrent noise
in space-time below the shot-noise level

As we have already said, in the literature devoted to
squeezed states more attention has been paid to their
behavior in time. We would like to mention, however,
some early works attempting to bring spatial depen-
dence into consideration. Kilin (1989) generalized the
notion of the squeezing spectrum to include spatial de-
pendence in connection with anomalous field correla-
tions. He pointed out that the presence of such anoma-
lous correlations can lead to the appearance of a narrow
spectral component in the spectrum of a second-
harmonic generation. This narrow component was regis-
tered experimentally by Piskarskas, Stabinis, and
Yankauskas (1989).

Spatial correlations of twin photons emitted in spon-
taneous parametric down conversion have been studied
both theoretically and experimentally (Malygin, Penin,
and Sergienko, 1985; Rubin et al., 1994; Shih and Ser-
gienko, 1994; Strekalov et al., 1995). However, these in-
vestigations were performed for direct correlation-type
measurements and not for the homodyne detection
scheme. We shall see below that homodyne detection
drastically changes the noise spectrum of the photocur-
rent density and makes it possible to reduce shot noise
in both space and time.

As has now become clear the phenomenon of nonlin-
ear resonance diffraction is closely associated with
squeezed states. Quantum correlations in space have
been studied in relation to the placement of photodetec-
tors for the separation of different elementary processes
in an active volume. To our knowledge, only Le Berre-
Rousseau, Ressayre, and Tallet (1979) have pointed out
that there could be nonclassical correlations in the cross
section of a light beam.

Squeezed states of light can be created in a medium
whose dielectric and magnetic susceptibility changes in
space-time. Spatial aspects of nonclassical fluctuations in
such a process were studied by Bialynicka-Birula and
Bialynicka-Birula (1987).

The question of the spatial behavior of squeezed
states was addressed by Yuen and Shapiro (1978), and
Akhmanov, Belinskii, and Chirkin (1988). Yuen and
Shapiro considered the diffraction of squeezed light in
free space. They assumed that squeezed light was emit-
ted by a single-mode source with a finite aperture. In
contrast, here we consider multimode squeezed states.
We shall see below that this difference leads to qualita-
tively different physical conclusions about the possibili-
ties of noise reduction in the photodetection of squeezed
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light. Akhmanov, Belinskii, and Chirkin investigated the
diffraction of squeezed light with emphasis on phase
matching.

The role of phase matching in parametric interactions
has been investigated from various points of view. The
spectral, angular, and power characteristics of paramet-
ric down conversion (Klyshko, 1988a), photon correla-
tions in the absence of the local oscillator (so-called bi-
photons), and squeezing efficiency (Akhmanov,
Belinskii, and Chirkin, 1988) have been examined in the
literature.

In this subsection we take a different approach to the
role of phase matching in parametric interactions. We
shall show that different types of phase matching in a
nonlinear medium correspond to different types of ob-
servation of spatial squeezing with the photocurrent
noise reduced below shot noise in space-time. We shall
give the criteria for choosing the type of phase matching
for a particular measurement. We shall also determine
the typical spectral and spatio-temporal scales that gov-
ern the resolving power of sub-shot-noise measurements
with multimode squeezed states.

Let us assume that the intensity of the local oscillator
wave is high, so that we can neglect the contribution
from the self-interference term in Eq. (4.13). At the end
of this subsection we shall formulate this condition
quantitatively. Discarding the integral term in the noise
spectrum of the photocurrent density (4.13), we can re-
write it as follows:

~di !qW ,V
2 5^i&@12h1h„cos2 u~qW ,V!e2r(qW ,V)

1sin2 u~qW ,V!e22r(qW ,V)
…# , (4.25)

where r(qW ,V) and u(qW ,V) are the squeezing parameter
and the orientation angle from Eqs. (4.22) and (4.23).
The squeezing parameter is related to the spectral
power of spontaneous parametric down conversion dqW ,V
from Eq. (4.10) as

exp@r~qW ,V!#5~11dqW ,V!1/21dqW ,V
1/2 . (4.26)

We observe from Eq. (4.25) that the spectral power den-
sity of fluctuations at frequencies qW ,V is determined by
projecting the noise motion of the field inside the uncer-
tainty ellipse onto the amplitude of the local oscillator.
The phase modulation of the local oscillator at frequen-
cies qW ,V predominates for u(qW ,V).6p/2. In this case
we have a reduction of shot noise in the photocurrent
density spectrum (4.25) at these frequencies and spatial
frequencies.

Maximum squeezing occurs at frequencies qW m ,Vm ,
which belong to the phase-matching surface in the
(qW ,V) space defined by the condition D(qW m ,Vm)50.
For these frequencies the squeezing parameter r(qW ,V)
reaches its maximum value, r(qW m ,Vm)[rm5l/lamp ,
where lamp5usu21 is the amplification length. Tuning the
local oscillator so that u(qW m ,Vm)56p/2, we reduce
shot noise to the highest extent,

~di !qW m ,Vm

2 5^i&@12h1he22rm#h→1→^i&e22rm. (4.27)
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Let us determine the frequency and spatial frequency
range of shot-noise reduction. In paraxial approximation
for qW and quadratic approximation for V we can write
the phase mismatch function D(qW ,V) as

D~qW ,V!'D~0W ,0!1kV9 V22q2/kl , (4.28)

where

D~0W ,0!52kl2kp (4.29)

is the phase mismatch for zero frequency and spatial
frequency, and kV9 5]2k/]V2 for V50. Using the ex-
plicit expressions for the functions U(qW ,V) and
V(qW ,V), it is easy to verify that for large squeezing, rm
@1, parameters r(qW ,V) and u(qW ,V) near the phase-
matching surface have the form

r~qW ,V!'rm , u~qW ,V!'u~qW m ,Vm!1D~qW ,V!lamp/4.
(4.30)

This approximation is valid for qW and V where
uD(qW ,V)lampu!1. From Eq. (4.30) we conclude that as
we depart from the phase-matching surface, the squeez-
ing ellipse starts to rotate, initially retaining its dimen-
sions. Therefore a projection of the stretched ‘‘noisy’’
component of the ellipse appears on the vector of the
local oscillator, which leads to increased noise of the
photocurrent.

Let us consider the frequency and angle-degenerate
phase matching, D(0W ,0)50. In this case the signal and
idler photons, generated in parametric down conversion,
have close frequencies and are mostly emitted in the
forward direction. Using Eqs. (4.28) and (4.30), we can
write approximately the spectrum of the photocurrent
density in the vicinity of the phase-matching surface as

~di !qW ,V
2 '^i&F12h1hH S sign kV9

V2

Vm
2 2

q2

qm
2 D 2

1e22rmJ G ,

(4.31)
where

Vm52~ ukV9 ulamp exp rm!21/2,
(4.32)qm52~kl

21lamp exp rm!21/2

are the characteristic frequency and spatial frequency.
Figure 9 shows the typical noise spectrum (4.25), for

FIG. 9. Noise spectrum of the photocurrent density for degen-
erate phase matching, D(0W ,0)50 and kV9 ,0. The spectrum is
normalized to the shot-noise level; the frequency V is given in
units of (ukV9 ul/2)21/2, the spatial frequency in (2kl /l)1/2; the
squeezing parameter is equal to exp@rm#52, h51.
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the case of degenerate phase matching and kV9 ,0. From
this figure and Eq. (4.25), we conclude that in the region
of frequencies V,Vm and spatial frequencies q,qm the
noise of the photocurrent density is reduced below the
shot-noise level. In space-time language this can be in-
terpreted as follows. Suppose that the photocurrent is
collected by a photodetector of area DS>Sm5(p/qm)2

and during the time DT>Tm5p/Vm . Fluctuations in
the number of collected photoelectrons are determined
by the low-frequency harmonics of the photocurrent
density noise such that q<qm and V<Vm . The high-
frequency harmonics do not contribute because of aver-
aging over the surface of the photodetector and the ac-
quisition time. Since the low-frequency noise
components of the photocurrent density are reduced be-
low the shot-noise level, the fluctuation of the number of
collected photoelectrons is less than the Poissonian
value. Therefore the frequencies Vm and qm determine
the minimum time Tm and the minimum area of photo-
detector Sm , which are necessary for reducing fluctua-
tions in the observed number of photoelectrons below
the Poissonian limit. Note that the factor (lamp /kl)

1/2 in
the linear size of the photodetection area Sm is due to
wave propagation inside the crystal. That is, the diffrac-
tive spreading of a light spot of this size is about the size
itself.

Often it is necessary to perform low-noise measure-
ments when (i) the useful information in the dynamical
image is ‘‘concentrated’’ near nonzero carrier frequen-
cies qW and V, i.e., a space-time spectral analysis must be
carried out near such frequencies and spatial frequen-
cies; (ii) a spectral analysis of the image is required only
for the spatial variable near the carrier spatial frequency
qW , and there is no need for spectral analysis in the time
variable; and (iii) a spectral analysis is required in the
time domain but not in the spatial domain.

These kinds of measurements can be performed for
the case of nondegenerate phase matching in a crystal,
for example, when D(0W ,0).0,kV9 ,0. The typical ex-
ample of the noise spectrum for this case is shown in Fig.
10. For the three types of measurement just mentioned,
one has to choose a nonlinear crystal and observation

FIG. 10. Noise spectrum of the photocurrent density for the
case of nondegenerate phase matching, D(0W ,0).0, kV9 , 0.
The spectrum is normalized to the shot-noise level; the fre-
quency V is given in units of (ukV9 ul/2)21/2, the spatial fre-
quency in (2kl /l)1/2; the squeezing parameter is equal to
exp@rm#52, h51.
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geometry that will ensure that the phase-matching sur-
face crosses the surface with the noise reduction region
where (i) qW Þ0W ,VÞ0, (ii) qW Þ0W ,V50, and (iii) qW 50W ,V
Þ0. Other varieties of phase matching can be described
in a similar way.

For the observation of spatial squeezing, we have to
make sure that the last contribution from the self-
interference of the down-conversion waves is negligible
compared with the shot noise and the interference term
in Eq. (4.13). To conclude this subsection, let us estimate
the intensity of a local oscillator wave that would guar-
antee such a possibility. Suppose that the local oscillator
is turned off, b→0. The spectrum (4.13) then contains
the shot noise and self-interference of parametric down-
conversion. At low frequencies and spatial frequencies
we can assess the noise spectrum as

~di !0W ,0
2

5^i&s12h2E dqW

~2p!2

dV

2p
dqW ,V

2 , (4.33)

where we have used the fact that uU(qW ,V)u2

2uV(qW ,V)u251 and that dqW ,V and g(qW ,V) are even
functions of qW and V. In the first approximation we re-
place one factor dqW ,V by d0W ,0 and use the definition (4.9)
of ^i&s . This gives

~di !0W ,0
2

'^i&s~11h12hd0W ,0!. (4.34)

The contribution ^i&s(11h) is of a corpuscular nature
and represents the noise in the detection of pairs of si-
multaneously emitted twin photons or biphotons (Kly-
shko, 1988a). If squeezing is effective, i.e., the degen-
eracy parameter ds is much larger than unity, the noise
spectrum (4.34) is dominated by the wave noise propor-
tional to d0W ,0 . The spectral power of self-interference
and the shot-noise component of spontaneous paramet-
ric down conversion are negligible compared to the
shot-noise term in the local oscillator and the interfer-
ence of the local oscillator with the down-conversion
waves if the following inequality is fulfilled:

^i& l~12h1he22rm!@^i&s~11h12hd0W ,0!. (4.35)

D. Other schemes for generation of multimode
squeezed states

1. Degenerate four-wave mixing

A degenerate four-wave mixing process as a possible
source for squeezed light was first suggested by Yuen
and Shapiro (1979). Since that work, many publications
have appeared with more elaborate theories of
squeezed-state generation via degenerate mixing (Bon-
durant et al., 1984; Kumar and Shapiro, 1984; Reid and
Walls, 1985a, 1985b; Ho, Kumar, and Shapiro, 1986) and
nondegenerate mixing with (Yurke and Denker, 1984)
and without (Levenson et al., 1985; Yurke, 1985; Ho,
Kumar, and Shapiro, 1991) the use of optical cavities.
Several groups have also reported successful experimen-
tal observations of squeezing by means of intracavity
backward four-wave mixing in an atomic beam (Slusher
et al., 1987), forward four-wave mixing in an optical fiber
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(Shelby et al. 1986; Bergman and Haus, 1991; Rosenbluh
and Shelby, 1991) and forward four-wave mixing in so-
dium vapor (Maeda, Kumar, and Shapiro, 1987; Ho, Ku-
mar, and Shapiro, 1991). In all of these theoretical and
experimental investigations, squeezing was predicted
and observed in the temporal domain, i.e., for signal and
noise of the measurement scheme evolving in time.

That multimode squeezed states of light can be gen-
erated in a four-wave mixing process was shown for the
first time by Kumar and Kolobov (1994). A four-wave
mixer can be configured either in a backward geometry,
as proposed by Yuen and Shapiro (1979) or in a forward
geometry, according to Kumar and Shapiro (1984). Here
we present the results of Kumar and Kolobov. In par-
ticular, we calculate the spatial bandwidth of multimode
squeezing obtainable with backward four-wave mixing
(BFWM) and forward four-wave mixing (FFWM) and
compare them with that obtainable with an optical para-
metric amplifier, considered in the previous subsection.
Our analysis aims to show that the BFWM scheme can
produce multimode squeezed light with a much larger
spatial bandwidth than the other two schemes because it
is not restricted by the phase-matching condition. This
result makes the BFWM scheme very attractive for ap-
plications in optical imaging with reduced quantum
noise (Kolobov and Kumar, 1993).

For simplicity, in what follows we restrict ourselves to
the BFWM geometry. Our description can be readily
adapted to FFWM geometry (Kumar and Shapiro,
1984). A schematic of the backward geometry for pro-
ducing multimode squeezed light by means of four-wave
mixing in a transparent x(3) nonlinear medium is shown
in Fig. 11. The medium is supposed to be in the form of
a plane slab of thickness l oriented perpendicular to the
z direction. Two counterpropagating plane monochro-
matic pump waves E1 and E2 of angular frequency v0

and wave vectors kW 1 and kW 2 , respectively, intersect the
slab at a small angle to the z axis. A quasiplane and
quasimonochromatic probe wave of carrier frequency
v0 enters the medium from the left and propagates in
the 1z direction. As a result of the nonlinear interac-
tion between the two pump waves and the probe wave, a
phase conjugate wave is generated in the medium that
propagates in the opposite direction to the probe wave.
We describe the probe and conjugate waves by two cor-
responding operator-valued slowly varying amplitudes
ep(z ,rW ,t) and ec(z ,rW ,t), where rW 5(x ,y) is the two-
dimensional coordinate in the plane transverse to the z
axis.

Let km(qW ,V), m 5 p ,c , be the wave vectors of the
probe and conjugate waves, respectively, with transverse
components qW and angular frequencies v01V . As a re-
sult of the four-wave mixing interaction, the spatio-
temporal Fourier amplitudes em(z ,qW ,V),

em~z ,qW ,V!5E drW E dt em~z ,rW ,t !exp@ i~Vt2qW •rW !# ,

(4.36)

corresponding to kW p(qW ,V) and kW c(2qW ,2V), become
coupled. In the undepleted pump approximation, the
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
pump amplitudes can be considered classical and de-
scribed by c-number quantities. As in the derivation
performed in Sec. III.B for three-wave interactions, it
can be shown that the operator-valued amplitudes of
probe and conjugate waves evolve in the nonlinear me-
dium according to (Fisher, 1983)

d

dz
ep~z ,qW ,V!52ikec

†~z ,2qW ,2V!exp@2iD~qW ,V!z# ,

(4.37a)

d

dz
ec~z ,qW ,V!5ikep

†~z ,2qW ,2V!exp@2iD~qW ,V!z# .

(4.37b)

Here k is a coupling constant proportional to the prod-
uct of the two pump wave amplitudes and to the nonlin-
ear susceptibility x(3) of the medium; D(qW ,V) is a phase-
mismatch function for the four interacting waves given
by [cf. Eq. (3.43)]

D~qW ,V!5kp
z~qW ,V!1kc

z~2qW ,2V!2k1
z2k2

z , (4.38)

with kp ,c
z (qW ,V) being the projections of the probe and

conjugate wave vectors onto the positive z direction,
and k1,2

z the corresponding projections for the pump
waves. As in the case of three-wave interaction, the
four-wave interaction occurs effectively only for those
probe and conjugate Fourier harmonics for which the
spatial frequencies qW and the frequencies V satisfy the
phase-matching condition uD(qW ,V)lu<1.

The solution of Eqs. (4.37a) and (4.37b) with the

FIG. 11. Schematic of the backward four-wave mixing
(BFWM) scheme for the generation of multimode squeezed
light. Multimode squeezed light described by the operators aout
and bout emerges from both ports of the beam splitter BS. E1
and E2 are the pump waves; M1 and M2 are plane mirrors; and
the lens serves to match the paths of the probe and conjugate
waves from the input to the output ports of BS.
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boundary conditions ep(z50,qW ,V)5ep(0,qW ,V) and
ec(z5l ,qW ,V)5ec(l ,qW ,V) is well known in the literature
(Fisher, 1983), and in our case can be written as

ep~ l ,qW ,V!}U~qW ,V!ep~0,qW ,V!1V~qW ,V!ec
†~ l ,2qW ,2V!,

(4.39a)

ec~0,qW ,V!}U~qW ,V!ec~ l ,qW ,V!1V~qW ,V!ep
†~0,2qW ,2V!.

(4.39b)
The coefficients U(qW ,V) and V(qW ,V) depend on the
coupling constant k and the phase-mismatch function
D(qW ,V) and can be found, for example, in Fisher (1983).
We write ‘‘}’’ in Eqs. (4.39a) and (4.39b) instead of ‘‘5’’
because of the different phase factors for the probe and
conjugate waves, which depend on qW and V but never-
theless can be easily compensated for.

To obtain the input-output transformations for the
operators corresponding to the waves entering and leav-
ing the medium in the scheme of Fig. 11, we use the
scattering properties of the outcoupling beam splitter.
We arrive at the following input-output transformations:

aout~qW ,V!}U~qW ,V!a in~qW ,V!1V~qW ,V!a in
† ~2qW ,2V!,

(4.40a)

bout~qW ,V!}U~qW ,V!b in~qW ,V!1V~q ,V!b in
† ~2qW ,2V!.

(4.40b)
Equations (4.40a) and (4.40b) look exactly like the
squeezing transformation (4.2) for the case of three-
wave interactions in a traveling-wave OPA. Therefore
all the spatio-temporal features described in Sec. IV.A
should be manifested by Eqs. (4.40a) and (4.40b). How-
ever, there is an important difference between the mul-
timode squeezing obtained with an OPA and that ob-
tained by means of the four-wave mixing process. To
investigate this difference, let us consider explicitly the
frequency and spatial frequency dependence of the
phase-mismatch functions for BFWM and FFWM and
compare them with that of the OPA. We have seen in
Sec. IV.A that in the quadratic approximation for the
spatial frequency qW and the frequency V, the phase-
mismatch function D(qW ,V) for the OPA is [see Eq.
(4.28)]

D~qW ,V!5kV9 V22q2/kl . (4.41)

Here we have assumed degenerate matching, D(0W ,0)
50; kl is the wave number of the local oscillator and
kV9 5]2k/]V2 for V50. Using quadratic approximation
and, for simplicity, considering the wave vectors for the
probe and conjugate waves to be the same functions of qW
and V, kW p(qW ,V)5kW c(qW ,V)5kW (qW ,V), we can write

kp
z~qW ,V!5kp1kV8 V1kV9 V2/22q2/2kl , (4.42a)

kc
z~2qW ,2V!5kc2kV8 V1kV9 V2/22q2/2kl , (4.42b)

where kV8 5]k/]V for V50. Therefore we arrive at

D~qW ,V!5kV9 V22q2/kl (4.43)

for the FFWM process, and

D~qW ,V!52kV8 V (4.44)
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for the BFWM process (the probe and conjugate waves
propagate in opposite directions). Thus, in the quadratic
approximation, the phase-mismatch function for BFWM
does not depend on spatial frequency. Hence the spatial
bandwidth of squeezing obtainable with BFWM is not
limited by the phase-matching condition. It must there-
fore be much larger for BFWM than for an OPA and for
FFWM.

Since our interest here is in spatial squeezing, let us
explicitly compare the bandwidths for degenerate OPA,
FFWM, and BFWM. From Eqs. (4.41), (4.43), and
(4.44), we obtain DOPA5DFFWM52q2/kl and DBFWM
50. For the case of an OPA (or FFWM), therefore,
DOPAl51 gives a spatial squeezing bandwidth of q
5(kl /l)1/2. However, for the BFWM case, DBFWMl50,
which implies an infinite spatial bandwidth. (In reality,
however, the spatial bandwidth will not be infinite. Our
results are valid in the paraxial approximation, which
will break down when q;kl .) In a typical OPA experi-
ment at l.1 mm (Aytür and Kumar, 1992), l.5 mm;
therefore the spatial squeezing bandwidth is .(4p)1/2

3102 cm21, corresponding to a spatial resolution of .6
line pairs/mm. In contrast, for the case of BFWM a spa-
tial resolution of 400 line pairs/mm has been demon-
strated (Levenson et al., 1981).

We conclude with a few words about the frequency
dependence of the phase-mismatch function for BFWM
in Eq. (4.44). It is well known (Fisher, 1983) that this
frequency dependence can be used to filter the probe
signal. The bandwidth of such a filter rapidly decreases
with increasing ukul , which determines the gain of the
four-wave mixer. Therefore one can expect that the fre-
quency bandwidth will decrease as the ukul parameter
grows. Also, in the multimode theory of four-wave mix-
ing presented above, we assumed that the nonlinear me-
dium is ideal so that its response could be described
classically. When the realistic microscopic nature of the
medium is taken into account, the spectrum of temporal
squeezing is known5 to be modified due to various fac-
tors such as propagation loss, spontaneous emission,
self-focusing, etc. Therefore we expect that the spectrum
of spatial squeezing will also be modified when the
quantum nature of the medium is taken into account.

2. Subthreshold optical parametric oscillator

In previous subsections we have been concerned with
traveling-wave generation schemes of multimode
squeezed states. Traveling-wave geometry is the most
natural one because it automatically produces a broad
spectrum of spatial frequencies. However, the picture
would be incomplete without mentioning the cavity-
based configurations for multimode squeezed-state gen-
eration.

5See, for example, Yurke and Denker, 1984; Levenson et al.,
1985; Reid and Walls, 1985a, 1985b, 1986; Yurke, 1985; Holm,
Sargent, and Capron, 1986; Ho, Kumar, and Shapiro, 1986,
1987, 1991.
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To our knowledge, the first cavity-based scheme was
proposed by Belinskii and Rosanov (1992), who consid-
ered a wide-aperture nonlinear interferometer with a
x(3) nonlinear medium. It is well known that such a de-
vice can exhibit bistable behavior. In recent years it has
also been learned that in the vicinity of the turning
points on the bistability curve one can achieve a strong
squeezing effect. Belinskii and Rosanov generalized the
theory of optical bistability and quantum fluctuations in
such an interferometer to take spatial degrees of free-
dom into consideration.

Another scheme for the generation of multimode
squeezed states in a cavity-based configuration is a sub-
threshold optical parametric oscillator (OPO). This
scheme was considered by Gatti and Lugiato (Lugiato
and Gatti, 1993; Gatti and Lugiato, 1995) for a cavity
with plane mirrors and by Lugiato and Marzoli (1995)
for a cavity with spherical mirrors. Here we give an out-
line of the last model and the results for the space-time
correlation function and fluctuation spectra. More de-
tails can be found in the references cited.

A schematic of the OPO for the generation of multi-
mode squeezed states is shown in Fig. 12. A medium
with x(2) nonlinearity is contained in a single-ended cav-
ity with spherical mirrors. The driving pump wave with
frequency vp52vs is injected into the cavity. Due to
nonlinear interaction in the x(2) medium, pump photons
are converted into pairs of signal photons with fre-
quency vs . To simplify the analysis the following as-
sumptions are made: (i) the Rayleigh range of the cavity
is much larger than its length, and (ii) the cavity mirrors
are completely transparent for the pump wave, which is
assumed to be a plane wave. Moreover, both the mean-
field limit and the paraxial and slowly varying approxi-
mation for the fields taking part in the nonlinear inter-
action are assumed to be valid. The slowly varying
amplitude approximation guarantees that the pump and
the signal waves are uniform along the sample in the
longitudinal direction z .

As mentioned in Sec. III.C, for a cavity-based geom-
etry a more natural language for the description of mul-
timode squeezing is that of discrete eigenmodes of the

FIG. 12. Schematic of an optical parametric oscillator. A cav-
ity with spherical mirrors containing a x(2) nonlinear medium
is illuminated by a pump wave Epump with frequency vp ; cav-
ity mirrors are assumed to be completely transparent for this
wave; squeezed light is generated at the frequency vs5vp/2
and is described by a signal wave Aout .
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resonator. In the case of the cavity with spherical mir-
rors, such a discrete eigenset is given by the Gauss-
Laguerre modes

fpli~r ,f!5 f̃ pl~r !3 H cos~ lf!,
sin~ lf!,

for i51,
for i52, (4.45a)

with

f̃ pl~r !5
2

~2d l ,0pw2!1/2 F p!

~p1l !!G
1/2

3S 2
r2

w2D l/2

Lp
l S 2

r2

w2D e2r2/w2
, (4.45b)

where w is the waist of the beam and p ,l50,1,2, . . . , are
the radial and angular indices, respectively; r5(x2

1y2)1/2 is the radial and f is the angular variable. The
functions Lp

l are the Laguerre polynomials (Abramow-
itz and Stegun, 1965). The functions fpli(r ,f) obey the
following condition of orthonormality:

E
0

2p

dfE
0

`

r dr fpli~r ,f!fp8l8i8~r ,f!5dpp8d ll8d ii8 . (4.46)

The eigenfrequencies of these modes are given by

vpl5v001~2p1l !z , (4.47)

where the parameter z depends on the mirrors’ curva-
ture and the distance between them (Yariv, 1989). One
can see from Eq. (4.47) that modes gather in degenerate
groups characterized by an integer q52p1l . The modal
expansion of the field operator A(r ,f) inside the cavity
reads

A~r ,f!5 (
i51,2

(
p ,l

fpli~r ,f!apli , (4.48)

with the corresponding expression for its Hermitian con-
jugate; apli and apli

† are the photon annihilation and cre-
ation operators obeying the standard commutation rela-
tions: @apli ,ap8l8i8

†
#5dpp8d ll8d ii8 .

The quantum model of the subthreshold OPO consid-
ered by Lugiato and Marzoli is formulated in terms of
the master equation for the density matrix r of the cav-
ity eigenmodes f lpi . The pump wave is treated as a clas-
sical c-number, i.e., its depletion and the quantum fluc-
tuations are neglected. The master equation in the
interaction picture reads

ṙ5
1
i\

@H int ,r#1 (
i51,2

(
p ,l

Lplir , (4.49)

where the generator Lplir ,

Lplir5g~2aplirapli
† 2apli

† aplir2rapli
† apli!, (4.50)

describes the damping of the mode pli due to cavity de-
cay through the outcoupling mirror with the rate g. The
interaction Hamiltonian H int is given by (Lugiato and
Marzoli, 1995)

H int5i\
g

2
ApE

0

2p

dfE
0

`

r dr@„A†~r ,f!…22A2~r ,f!# ,

(4.51)
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where Ap is the coupling constant proportional to the
nonlinear susceptibility x(2) of the medium and the am-
plitude of the pump wave. Inserting the modal expan-
sion (4.48) into Eq. (4.51) and using the orthonormality
relation (4.46), we can rewrite this interaction Hamil-
tonian as

H int5i\
g

2
Ap (

i51,2
(
p ,l

@~apli
† !22apli

2 # . (4.52)

From this expression we see the advantage of the eigen-
modes method. That is, the master equation (4.49) with
the interaction Hamiltonian (4.52) describes the evolu-
tion of an infinite set of independent, single-mode, de-
generate parametric oscillators. Instead of solving the
master equation (4.49), we can write a set of indepen-
dent Langevin equations (Walls and Milburn, 1994) for
the annihilation and creation operators apli and apli

† in-
side the cavity,

ȧpli~ t !52g@~11iDpl!apli~ t !2Apapli
† ~ t !#1A2gcpli~ t !,

(4.53)
where

Dpl5
vpl2vs

g
, (4.54)

with vpl given by Eq. (4.47). The operators cpli(t) and
cpli

† (t) correspond to the operator-valued Langevin
forces and describe the vacuum fluctuations entering the
cavity through the outcoupling mirror. These operators
obey the commutation relations

@cpli~ t !,cp8l8i8
†

~ t8!#5dpp8d ll8d ii8d~ t2t8!. (4.55)

Equations (4.53) are easy to solve by performing the
Fourier transform,

apli~V!5E
2`

`

dt eiVtapli~ t !. (4.56)

Using the input-output relation (Collet and Gardiner,
1984) for the field operators bpli(t) in the wave outgoing
from the cavity, cpli(t) of the vacuum fluctuation enter-
ing it, and apli(t) inside the cavity,

bpli~ t !5A2gapli~ t !2cpli~ t !, (4.57)

we obtain the following squeezing transformation be-
tween the Fourier amplitudes of the incoming and out-
going waves:

bpli~V!5Upl~V!cpli~V!1Vpl~V!cpli
† ~2V!, (4.58)

which constitutes a discrete equivalent of the multimode
squeezing transformation (4.2). The functions Upl(V)
and Vpl(V) read as follows:

Upl~V!5
@12iDpl~2V!#@12iDpl~V!#1Ap

2

@11iDpl~V!#@12iDpl~2V!#2Ap
2 ,

Vpl~V!5
2Ap

@11iDpl~V!#@12iDpl~2V!#2Ap
2 , (4.59)

where Dpl(6V)5Dpl7V/g . Since Eq. (4.58) is exactly
equivalent to Eq. (4.2), the calculation of the photocur-
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rent noise spectrum proceeds similarly to the case of the
continuous Fourier transform considered in Sec. IV [cf.
Eqs. (4.13) and (4.25)]. We omit repetition of this pro-
cedure and go directly to the results (Lugiato and Mar-
zoli, 1995). The space-time correlation function of the
photocurrent density in homodyne detection of multi-
mode squeezed light at the output of the cavity with
spherical mirrors can be written as [cf. Eq. (3.55)]

^ 1
2 $di~rW ,t !,di~rW 8,t8!%1&

5(
p ,l

f̃ pl~r ! f̃ pl~r8!cos@ l~f2f8!#

3
1

2p
E

2`

`

dV e2iV(t2t8)~di !pl ,V
2 . (4.60)

The dependence of the space-time correlation function
on the phase difference f2f8 is a consequence of rota-
tional symmetry f→f1u of the cavity with spherical
mirrors. The fluctuation spectrum of the photocurrent
density (di)pl ,V

2 is that for a single-mode degenerate
OPO, which was calculated previously by several au-
thors (Collet and Walls, 1985; Savage and Walls, 1987):

~di !pl ,V
2 5^i&F 11

4Ap

~11Dpl
2 2Ap

22Ṽ2!214Ṽ2

3~2Ap1Re$e22iwb~12Dpl
2 1Ap

2

1Ṽ222iDpl!%!G , (4.61)

where wb is the phase of the local oscillator and Ṽ
5V/g is the dimensionless frequency. We assume that
h51.

As an illustration of this result let us consider this
spectrum at zero frequency, V50, which would corre-
spond to the pure spatial frequency fluctuation spectrum
in the continuous Fourier transform case. For an optimal
choice of the local oscillator phase at Dpl50, wb5
6p/2, the spectrum (4.61) for V50 simplifies to

~di !pl ,0
2 5^i&F11

4Ap

~11Dpl
2 2Ap

2 !2 „Dpl
2 2~12Ap!2

…G .

(4.62)
This spectrum is shown in Fig. 13 as a function of the
detuning Dpl (which one can view as a normalized spa-
tial frequency in this case) for two different values of the
coupling constant Ap : (a) Ap50.5 and (b): Ap50.9.
One sees from Fig. 13 that squeezing persists for small
values of detunings Dpl , i.e., small ‘‘spatial frequencies.’’
This spatial bandwidth of squeezing shrinks when the
OPO approaches threshold, Ap→1. Moreover, the
maximum of the curve, corresponding to the excess
noise of photodetection, increases and moves closer to
Dpl50, which should make squeezing hard to observe
when the OPO operates too close to threshold.

In concluding this section we should like to add that
several papers (Gatti and Lugiato, 1995; Lugiato and
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Marzoli, 1995; Lugiato, Gatti, and Wiedemann, 1997;
Lugiato et al., 1997) discuss spatial correlation functions
extensively, as well as the concept of quantum image;
the reader is referred to the literature for these issues.

V. FREE PROPAGATION AND DIFFRACTION
OF MULTIMODE SQUEEZED LIGHT

A. Effects of free propagation and a thin lens
on multimode squeezed light

In this subsection we shall extend the above conclu-
sion about the possibilities of low-noise measurements
in space-time with multimode squeezed light by taking
into account light propagation in free space and the sim-
plest optical system, such as a thin lens. We shall see that
propagation in free space in general deteriorates the re-
solving power of low-noise measurements with squeezed
light. However, we shall also show that a lens allows us
to compensate for this deterioration and even further
improve the resolving power by a proper choice of ge-
ometry. We shall establish the following important prop-
erty of lens systems and systems similar to them: they
can compensate for the spatial frequency and frequency
dependence of multimode squeezed light, which appears
due to the diffraction and dispersion of light in the crys-
tal during the generation process and in free space on
the way to the photodetection plane.

We shall assume that the plane of photodetection lies
at a distance L from the exit plane of the nonlinear
crystal and is parallel to it. In the case of wave propaga-
tion in free space, the slowly varying operators a(l ,qW ,V)
at the exit plane of the crystal and a(l1L ,qW ,V) at the
photodetection plane are related as [cf. Eq. (3.38)]

a~ l1L ,qW ,V!5exp@ i„kz
(0)~qW ,V!2k0…L#a~ l ,qW ,V!. (5.1)

Here we have denoted by kz
(0)(qW ,V) the z component of

the wave vector in free space, to distinguish it from

FIG. 13. Zero-frequency photocurrent noise spectrum (di)pl ,0
2

vs the detuning Dpl for different values of the coupling con-
stant Ap : (a) Ap50.5; (b) Ap50.9; the spectrum is normalized
to the shot-noise level.
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kz(qW ,V) in the crystal. We can relate the field operator
at the plane of photodetection with that at the entry to a
nonlinear crystal by the squeezing transformation, simi-
lar to Eq. (4.2),

a~ l1L ,qW ,V!5Ũ~qW ,V!a~0,qW ,V!

1Ṽ~qW ,V!a†~0,2qW ,2V!, (5.2)

where

Ũ~qW ,V!5exp@ i„kz
(0)~qW ,V!2k0…L#U~qW ,V!, (5.3)

and likewise for coefficients Ṽ(qW ,V) and V(qW ,V). Let
us introduce the new squeezing parameter r̃(qW ,V) and
the orientation angle ũ(qW ,V) analogous to r(qW ,V) and
u(qW ,V) given by Eqs. (4.22) and (4.23). It can readily be
seen from Eqs. (5.2) and (5.3) that in the case of free
propagation from z5l to z5l1L the degree of squeez-
ing remains unchanged, r̃(qW ,V)5r(qW ,V), and the new
orientation angle ũ(qW ,V) becomes

ũ~qW ,V!5u~qW ,V!1@kz
(0)~qW ,V!1kz

(0)~2qW ,2V!22k0#

3L/2'u~qW ,V!2
q2L

2k0
, (5.4)

where we have assumed a paraxial and quasimonochro-
matic approximation. From Eq. (5.4) we observe that
free propagation enhances the dependence of the angle
ũ(qW ,V) on spatial frequency qW . In a figure analogous to
Fig. 8 this would appear as rapid rotation of the squeez-
ing ellipse with increasing values of q . Using the lan-
guage of noise modulation, we can say that the conju-
gate down-conversion waves traveling at the angle q/k0
and the local oscillator wave that they modulate have
different phase shifts, so that the phase and amplitude
modulation of the resultant field rapidly change each
other in space. These oscillations appear in the noise
spectrum of the photocurrent density as shown in Fig. 14
for its spatial frequency component, i.e., V50.

Let us estimate the area of low-noise detection in the
case in which a photodetection plane is located at a dis-
tance L from the output plane of the nonlinear crystal.
Near the phase-matching surface we can use approxima-
tion (4.30) for the orientation angle u(qW ,V), which gives
for ũ(qW ,V)

ũ~qW ,V!'u~qW m ,Vm!1@D~0W ,0!1kV9 V2#

3lamp/42q2S lamp

4kl
1

L

2k0
D , (5.5)

where the amplification length lamp has been combined
with the free-propagation length L . In Sec. IV.C we es-
timated the minimum area Sm of low-noise detection
[see Eq. (4.32) and the paragraph after it]. To obtain an
analogous estimate of such an area at a distance L from
the crystal, we can use Eq. (4.32) with lamp /kl replaced
by lamp /kl12L/k0 . For the case L@lamp this low-noise
area is entirely determined by diffraction over the free-
propagation length L . It should be noted that we as-
sume the size of the spot illuminated by the pump wave
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at the input surface of the crystal to be large and confine
ourselves to the near-field diffraction zone of this spot.

Thus we conclude that free propagation deteriorates
the resolving power of a low-noise observation. How-
ever, this deterioration is entirely due to the phase shifts
experienced by light waves with different transverse
components of the wave vector during propagation in
free space, and is therefore reversible. Furthermore, as
we shall now show, the phase shifts produced during
wave propagation inside the nonlinear crystal can be
compensated for, as well, and this allows us to achieve
the ultimate value of the resolving power.

Let as assume that a lens of focal length f is inserted
into the light beam with its center at the axis of the
beam. The thin lens ‘‘multiplies’’ the complex amplitude
of the monochromatic wave by the factor
exp@2ik0r

2/(2 f )#, i.e., it introduces a phase shift. We do
not consider here the effects of the finite aperture of the
lens. If the lens is inserted at the plane z12 f , the trans-
formation of the field operator a(z ,rW ,t) from plane z to
plane z14f reads as follows:

a~z14f ,rW ,t !5exp@2ik0r2/~2 f !#

3aS z ,2rW ,t2F4f1
r2

2 fG Y c D . (5.6)

From Eq. (5.6) it is easy to see that the noise spectrum
(di)qW ,V

2 observed in the plane located at z14f is identi-
cal to that at z . Indeed, this conclusion follows from the
following considerations: (i) the phase factor

FIG. 14. Spatial-frequency noise spectrum of the photocurrent
density observed at the exit from the crystal (curve 1) and at
distance L57lampk0 /(2kl) from it (curve 2). The phase
matching is degenerate in frequency and angle, u(0W ,0)5
6p/2, exp@rm#52, h51; the spectrum is normalized to the shot
noise, and spatial frequency q is in units of (2kl /l)1/2.
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exp@2ik0r
2/(2 f )# has no effect on the light intensity and

cancels out in the photodetection formulas given by Eqs.
(3.3) and (3.4); (ii) the time delay is constant for f@r in
the region of photodetection and therefore has no effect
on the spectrum of the stationary photocurrent density
i(rW ,t); and (iii) inversion of the transverse coordinate
rW→2rW in Eq. (5.6) has no effect on the photocurrent
density noise spectrum, since the latter is an even func-
tion of rW .

If the lens and the plane of photodetection are ar-
ranged as described above and we choose z5l , i.e., the
exit plane of the crystal, the noise spectrum observed in
the plane l14f is identical with the spectrum recorded
at the exit surface from the crystal. This result is not
surprising, because such a geometry corresponds to geo-
metrical imaging with unit magnification of the low-
noise detection area from the exit plane of the crystal
into the photodetection plane located at z14f . It can be
shown that such imaging can be performed with arbi-
trary magnification as well.

Less obvious, but more advantageous is a geometry
that images onto the detection plane some plane inside
the crystal. Let us consider z5l1L and keep L arbi-
trary for the moment. The total transformation of the
field from the exit plane z5l to the observation plane
z5l1L14f now consists of free propagation over the
distance L and transformation (5.6) performed by the
lens. The latter transformation does not change the
spectrum. Therefore the spectrum at z5l1L14f will
be identical to that at z5l1L , where L can be both
positive and negative. In the case L<0, transformation
(5.1) is valid as well and describes free propagation in a
backward direction. From Eq. (5.5) we observe that if
we choose L as

L52lamp

k0

2kl
, (5.7)

the orientation angle ũ(qW ,V) in the vicinity of the
matching surface becomes independent of spatial fre-
quency. Thus geometrical imaging of the plane inside
the crystal at the distance L given by Eq. (5.7) onto the
photodetection plane broadens the range of spatial fre-
quencies at which one has a noise reduction below the
shot-noise level. In a figure analogous to Fig. 8, the
squeezing ellipses would have appeared with equal ori-
entation practically over the whole range of spatial fre-
quencies where the parametric interaction is effective.

Figure 15 shows the spatial frequency spectrum for
observation at the exit from the crystal and in the opti-
mal case with the lens correcting for the dispersion of
the squeezing ellipses as described above. We can see
that in the latter case shot-noise reduction takes place
over a much greater region of spatial frequencies. This
improves the resolving power of a low-noise observation
to its ultimate value.

In the literature it has been noticed that the squeezing
efficiency becomes greater when the light is focused on a
nonlinear medium (Akhmanov, Belinskii, and Chirkin,
1988). The consequences of energy concentration
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(Sokolov, 1977) and separation of the waves in space by
focusing (Klyshko, 1988c) have been discussed as well.
In our case, focusing means controlling the phase modu-
lation of the resultant field independent of the nonlinear
medium; it is therefore irrelevant to energy concentra-
tion or spatial separation of twin photons.

To improve the frequency behavior of the noise spec-
trum, we can introduce additional frequency-dependent
phase shifts into the down-conversion waves with non-
zero V. This can be done, for example, by inserting into
the light beam a slab of a dispersive medium with wave
number k(1)(V). If the length of the slab is L(1) and we
choose the sign of kV

(1)9 properly, then it is easy to see
that, for

L(1)52lamp

kV9

2kV
(1)9

, (5.8)

the frequency dependence of ũ(qW ,V) in Eq. (5.5) in the
vicinity of the phase-matching surface also disappears.

Thus in this subsection we have shown that multimode
squeezed light retains and sometimes even improves its
capacity for low-noise measurement in optical systems
such as lenses and in dispersive media.

B. Assessment of physical possibilities for low-noise
measurements and information transmission
with multimode squeezed light

In this subsection we shall make some simple assess-
ments of physical possibilities for employing multimode

FIG. 15. The effect of a thin lens on the spatial-frequency
noise spectrum of the photocurrent density: curve 1, observa-
tion at the exit from the crystal; curve 2, observation with com-
pensation of the dispersion of the squeezing angle by the lens;
exp@rm#55, h51; the spectrum is normalized to the shot noise,
and spatial frequency q is in units of (2kl /l)1/2.
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squeezed light in low-noise optical measurements and
information transmission. More precisely, we shall give
some estimates for the spectral, spatio-temporal, and
power characteristics of measurements with multimode
squeezed light.

From the discussion in the previous subsection we see
that with the help of a lens and an additional slab of
dispersive medium we can eliminate the qW and V depen-
dence in the orientation angle u(qW ,V) of the squeezing
ellipse over the whole bandwidth of spontaneous para-
metric down conversion. Then the photodetection noise
is effectively suppressed below the shot-noise limit over
the entire region of frequencies V<Vc/2 and spatial fre-
quencies q<qc/2, where Vc and qc are the widths of
frequency and spatial frequency spectra of spontaneous
parametric down conversion [see Eqs. (4.11), (4.12), and
the paragraph before them]. Let us estimate the disper-
sion ^DN2& of the photoelectron number collected by a
pixel with the area Sd during the time interval Td ac-
cording to Eqs. (3.12) and (3.13). Expressing the space-
time correlation function of photocurrent density via its
noise spectrum (di)qW ,V

2 we arrive at

^DN2&5^N&E
2`

`

dqxE
2`

`

dqyE
2`

`

dV d̃1/Td
~V!

3 d̃1/Ld
~qx!d̃1/Ld

~qy!
~di !qW ,V

2

^i&
, (5.9)

where the d-like function d̃1/a(x) is defined as

d̃1/a~x !5
a

2p

sin2~ax/2!

~ax/2!2 . (5.10)

We have assumed that a pixel has the shape of a square
with the side of length Ld . From Eqs. (5.9) and (5.10)
we can conclude that, provided Ld>2p/qc and Td
>2p/Vc , the dispersion of the photoelectron number is
determined by the noise spectral density at low frequen-
cies V<Vc and spatial frequencies qx ,qy<qc , i.e., is
equal to

^DN2&5^N&~12h1he22rm!. (5.11)

For high quantum efficiency, h.1, and effective squeez-
ing, e2rm!1, the statistics of photoelectrons are sub-
Poissonian. The minimum area of a pixel and the mini-
mum collection time are determined by the coherence
area Sc and coherence time Tc of spontaneous paramet-
ric down conversion.

The average number of down-conversion photons
necessary for a single low-noise measurement is there-
fore given by ^i&sScTc , i.e., for h51 is equal to the de-
generacy parameter of spontaneous parametric down
conversion ds defined by Eq. (4.12). The average num-
ber of local-oscillator photons is equal to ^i& lScTc .

If the pump and the local oscillator waves illuminate a
spot of area S@Sc at the entry to the nonlinear crystal,
the total number of low-noise measurements that can be
performed with multimode squeezed light in a time in-
terval T@Tc is given by ST/ScTc@1. If one employs the
multimode squeezed light for transmission of informa-
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tion this is equivalent to the transmission of T/Tc@1
images, each image containing S/Sc@1 elements. In
other words, one can say that the source of multimode
squeezed light under investigation contains S/Sc@1 spa-
tial modes of radiation. This is the most important dis-
tinction of multimode squeezed light from single-mode
squeezed light, where the ratio S/Sc is of the order of
unity.

We should also note that the scheme of homodyne
detection of multimode squeezed light is very closely
related to holographic measurements. Indeed, one may
consider photodetection of the interference pattern cre-
ated by the local oscillator wave and the waves of para-
metric down conversion as the writing of a hologram.
The local oscillator wave in this case plays the role of the
reference wave and the down-conversion waves play the
role of the subject waves. The result of writing such a
hologram is paradoxical from the point of view of clas-
sical electrodynamics. The modulation of ‘‘blackening’’
in space, which is produced by a hologram of this type, is
not superimposed, as is usual, on the Poisson or shot
noise of photons in the photodetection plane, but is sub-
tracted from it. This analogy has not yet been explored
in detail.

VI. NOISELESS CONTROL OF MULTIMODE
SQUEEZED LIGHT

A. Sub-shot-noise microscopy: detection of faint objects
with multimode squeezed light

In this subsection we shall describe the application of
multimode squeezed light for the detection of faint
phase objects with a sensitivity better than the shot-
noise limit, as proposed by Kolobov and Kumar (1993).
Conceptually, the scheme of sub-shot-noise microscopy
parallels in the spatial domain what was experimentally
demonstrated in the time domain by Xiao, Wu, and
Kimble (1987). Figure 16 shows a schematic of the sub-

FIG. 16. Schematic of the sub-shot-noise microscopy with mul-
timode squeezed light. This scheme allows us to detect faint
phase objects with a sensitivity better than the shot-noise limit.
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shot-noise microscopy. A Mach-Zehnder interferometer
is formed by two 50-50 beam splitters, BS1 and BS2, and
two highly reflective mirrors, M1 and M2. A plane wave
is injected into one port of BS1, which serves as the local
oscillator. The other port is illuminated by the squeezed
vacuum produced by means of a traveling-wave OPA,
for example, an OPA pumped by the second harmonic
of a mode-locked and Q-switched laser (Aytür and Ku-
mar, 1992). The dichroic mirror D prevents the pump
wave of the OPA from entering the interferometer.

The outgoing light from the two ports of BS2 is de-
tected by two photodetector arrays, D1 and D2 . The
size and number of elements in each array must be cho-
sen to resolve the details of the phase object that is in-
serted in one arm of the interferometer (see the estima-
tion below). The difference between the two
photocurrent densities, io(rW )[i1(rW )2i2(rW ), is observed
as a function of the spatial coordinate rW 5(x ,y) on the
arrays. Following the work of Caves (1981) and Yurke
(1988), we shall calculate the sensitivity to the local os-
cillator phase and the enhancement of the minimum de-
tectable spatially varying phase change in the object
when multimode squeezed light is used.

For simplicity and notational convenience, in what
follows we explicitly consider only the spatial depen-
dence of the fields. Let a1(rW ) and a2(rW ) be the photon
annihilation operators for the light waves at the two in-
put ports of the interferometer. From an analysis of a
Mach-Zehnder interferometer (Caves, 1981) we obtain
the following expression for the mean difference in pho-
tocurrent density:

^io~rW !&5h@cos f^a1
†~rW !a1~rW !2a2

†~rW !a2~rW !&

2sin f^a1
†~rW !a2~rW !1a2

†~rW !a1~rW !&# , (6.1)

where h is the quantum efficiency of the photodetector
elements in the array (we assume h to be the same for
all the elements) and f is the phase difference for wave
propagation along the two arms of the interferometer.
In arriving at Eq. (6.1) we have implicitly assumed that
the beam sizes are such that there is negligible diffrac-
tion from the input to the output of the interferometer.
We consider the local oscillator field a1(rW ) to be in a
coherent state with the complex amplitude a. If we de-
note the quantum state of the system by uC&, then

a1~rW !uC&5auC& . (6.2)

We assume that the field a2(rW ) entering the second port
of the interferometer is generated by the traveling-wave
OPA. As we know from Sec. IV.A, a traveling-wave
OPA generates a multimode squeezed vacuum at its
output surface. The spatial Fourier amplitudes a(z ,qW ) of
the annihilation operators transform from the input of
the OPA (z50) to the output (z5l) as

a~ l ,qW !5U~qW !a~0,qW !1V~qW !a†~0,2qW !, (6.3)

where U(qW ) and V(qW ) are the functions from Eq. (4.3)
for V50. We assume that the input port of the interfer-
ometer coincides with the output plane of the OPA so
that a2(rW )5a(l ,rW ).
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Here we recall the expression for the spatial noise
spectrum (di)q

2(u) of the photocurrent density, calcu-
lated in Sec. IV.C. It depends on the spatial frequency qW
and the relative phase u between the local oscillator field
and the semimajor axis of the squeezing ellipse. Because
squeezing ellipses with different qW have different orien-
tations, the angle u is a function of qW , u5u(qW ). If we
neglect the anisotropy of the crystal, the spatial noise
spectrum depends only on the absolute value of uqW u
5q . As shown in Sec. IV.C [see Eq. (4.25)], this spec-
trum has the form

~di !q
2~u!5^i&@12h1h„cos2 u~q !e2r(q)

1sin2 u~q !e22r(q)
…# , (6.4)

where u(q) and r(q) are defined in Eqs. (4.23) and
(4.22).

Going back to the Mach-Zehnder interferometer and
using Eqs. (6.1)–(6.3), we can calculate the mean value
of the difference in photocurrent density ^io(rW )& and its
noise spectrum (dio)q

2(u ,f) as a function of the phase
difference f in the interferometer. When the local oscil-
lator field is strong compared to the mean intensity of
the squeezed-vacuum field, the result is

^io~rW !&5huau2 cos f , (6.5)

~dio!q
2~u ,f!5huau2@12h1h„e2r(q) cos2 u~q !

1e22r(q) sin2 u~q !…sin2 f1h cos2 f# .

(6.6)

If we define the phase sensitivity of the interferometer
by S(f)[u]^io&/]fu and the minimum detectable phase
change by Dfmin

2 5Dio
2/Smax

2 , then we can see that the
interferometer reaches its maximum sensitivity Smax
5huau2 near the operating points fo5(2n11)p/2, n
50,1,2, . . . . The minimum detectable phase change at
these operating points is

Dfmin
2 ~q ,u!5@12h1h„cos2 u~q !e2r(q)

1sin2 u~q !e22r(q)
…#/huau2. (6.7)

Comparing Eq. (6.7) with Eq. (6.4) we conclude that for
spatial frequencies inside the squeezing bandwidth, q
<qc , the angle u(qm)56p/2, and the quantum effi-
ciency h.1, the minimum detectable phase change is

Dfmin
2 ~qm!5e22rm/uau2. (6.8)

If the squeezed-vacuum port of the interferometer is
blocked, then one would get Dfmin

2 (qm)51/uau2. There-
fore illumination of the normally unused port of the in-
terferometer by a multimode squeezed vacuum with
maximum squeezing in a region of spatial frequencies
q<qc reduces the minimum detectable phase change of
this spatial frequency by a factor of e22rm. This result
is the spatial analog of the time domain result derived by
Caves (1981).
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Note that in general the spectra (6.4) and (6.6) also
depend upon the frequency V at which the photocurrent
noise is analyzed. We know from the analysis in Sec. IV
that for a given spatial frequency q there is a range of
frequencies V over which squeezing occurs. To obtain
the maximum sensitivity enhancement predicted by Eq.
(6.8), the postdetection electronics that processes the ar-
ray photocurrents must be arranged to sense only this
band of frequencies.

To explore the practical implications of this prediction
in the experiment of Fig. 16, we insert in one arm of the
interferometer an object with a faint phase modulation.
The simplest object to use is a sinusoidal phase grating
with spatial modulation across a chosen direction, say x .
Such a grating will impart phase modulation onto the
plane wave passing through it. The phase f becomes f
5f01d cos(ax) with d!1, where 2p/a is the period of
the sinusoidal modulation. The constant phase f0 can be
canceled by inserting a flat piece of glass in the reference
arm of the interferometer as shown in Fig. 16. To
achieve enhancement of the phase sensitivity, we choose
the spatial frequency a of the grating to be less than the
squeezing bandwidth (kl /l)1/2 of the OPA.

Expanding Eq. (6.5) for small d around one of the
operating points, we obtain for the signal ^io(x)&
5huau2d cos(ax). Now we estimate the number of ele-
ments in the photodetector arrays and their required
size for the detection of this signal. The Whittaker-
Shannon sampling theorem (Goodman, 1968) states that
the maximum spacing Dx of the sample lattice for an
exact recovery of the original function with finite spec-
tral bandwidth B is Dx52p/B . Because the spatial
spectrum of our signal is proportional to the sum of two
d functions, d(q6a), we have Dx5p/a . The size of
each element, however, must be larger than the inverse
of the spatial squeezing bandwidth; otherwise the pho-
todetector elements will be sensitive to the stretched-
noise component outside the squeezing bandwidth.
Therefore, for the chosen example, the size of each ele-
ment must be at least 2pAl/kl.

B. Interference mixing of multimode squeezed states
and noiseless optical images

To create an optical image one has to modulate a
wave front of an electromagnetic wave in space. How-
ever, not every modulation preserves the regular (sub-
Poissonian) photon statistics across the wave front that
can be obtained with multimode squeezed states. For
example, the amplitude modulation in space due to non-
uniform absorption would destroy this regularity, be-
cause photons would be absorbed randomly at different
spatial points on the wave front. Therefore, for the cre-
ation of optical images with regular photon statistics, we
have to learn how to modulate multimode squeezed
light without destroying the regularity of photons in
space.

One example of such nondestructive modulation in
space is binary modulation by means of an opaque
screen with apertures. The area of an aperture must be
chosen to be larger than the coherence area of squeezed
light, Sc , estimated in Sec. IV. Then under homodyne
detection, the light collected from each aperture will
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have sub-Poissonian photon statistics. The opaque areas
of the screen, obviously, do not introduce shot-noise
having no photons. Therefore such a binary modulation
with properly chosen aperture size preserves regular
photon statistics in space. This kind of modulation might
be of interest for digital two-dimensional optical com-
puting. However, binary modulation does not allow us
to create optical images with halftones. For the creation
of a noiseless optical image with halftones we need non-
destructive modulation of the wave front in space with
an arbitrary degree of modulation.

It has been shown theoretically by many authors
(Caves, 1981; Bondurant and Shapiro, 1984; Heidmann,
Reynaud, and Cohen-Tannoudji, 1984; Kolobov and
Sokolov, 1986; Yurke and Whittaker, 1987; Yurke, Mc-
Call, and Klauder, 1988) and also confirmed experimen-
tally (Grangier et al., 1987; Xiao, Wu, and Kimble, 1987)
that interference mixing of two single-mode light waves
provides such nondestructive modulation in time with
the arbitrary degree of modulation. Recently the scheme
of interference mixing was generalized (Sokolov, 1991,
1992; Sokolov and Fofanov, 1993) for multimode
squeezed light and was shown to serve for the creation
of optical images with regular photon statistics. In this
subsection we shall describe this scheme.

Figure 17 shows a possible optical scheme for creation
of noiseless optical images (Sokolov, 1991). Two nonlin-
ear parametric crystals, NC1 and NC2 , produce two
beams of multimode squeezed light with orthogonal po-
larizations. In principle, this can also be done by a single
crystal with type-II matching condition (Kolobov, 1991).
Two polarization prisms, PP1 and PP2 , serve to combine
and separate the light beams in the interferometer, I, in
such a way that the wave fronts of both light waves co-
incide at its surface. The image is created by spatial
modulation of Faraday rotation or birefringence of the
interferometer. This image is detected by two dense ar-
rays of photodetectors, D1 and D2 , and quantum fluc-

FIG. 17. Optical scheme for creation of noiseless optical im-
ages. Two orthogonally polarized multimode light beams are
produced by nonlinear parametric crystals NC1 and NC2. Two
polarization prisms, PP1 and PP2, combine and separate these
light beams on the interferometer I. The image is created by
spatial modulation of the Faraday rotation or birefringence of
the interferometer. Two dense arrays of photodetectors CCD1
and CCD2 serve to detect the images at two outputs of the
polarization prism PP2 and investigate their quantum fluctua-
tion in a balanced homodyne detection scheme.
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tuations of these images are investigated by a balanced
homodyne detection technique.

Let am(rW ,t), bm(rW ,t), and em(rW ,t) with m51,2 be the
photon annihilation operators at the inputs of nonlinear
crystals at their outputs, and at the outputs of the inter-
ference mixer, respectively. For simplicity we shall ne-
glect diffraction effects, assuming the distances between
the components of the optical scheme to be small. We
shall further assume that the interference mixer does not
introduce any losses and therefore can be described by
the following unitary scattering matrix:

R~rW ,t !5S exp~ iw1! 0

0 exp~ iw2!
D S c s

2s c D
3S exp~2ik1! 0

0 exp~2ik2!
D . (6.9)

The real parameters wm , km , c, and s, with c21s251,
which describe the transformation of the amplitudes and
phases of the scattered waves, depend upon the time
and the spatial coordinates. We assume that this depen-
dence is controlled from outside, and as a result of such
control an optical image is formed in the scattered
waves. The second prism PP2 serves as an analyzer,
which directs the scattered waves into the photodetec-
tion arrays D1 and D2 , where the image is detected and
its fluctuations analyzed. For the field operators en(rW ,t)
on the nth photodetection array we have

en~rW ,t !5 (
m51

2

Rnm~rW ,t !bm~rW ,t !, (6.10)

with Rnm(rW ,t) given by Eq. (6.9).
We assume that the fields bm(rW ,t) are created by two

independent optical parametric amplifiers. Therefore we
can write the following relations between the operators
of the slowly varying Fourier amplitudes at the inputs
and outputs of the crystals:

bm~qW ,V!5Um~qW ,V!am~qW ,V!1Vm~qW ,V!am
† ~2qW ,2V!,

(6.11)
where the coefficients Um(qW ,V) and Vm(qW ,V) for both
crystals are defined by Eq. (4.3). As in Sec. IV, we shall
assume that two strong monochromatic plane waves,
which play the role of the local oscillators, enter both
crystals. At the entries to the crystals these waves are in
coherent states with complex amplitudes am . Their
complex amplitudes bm at the exit surface of the crystals
are given by

bm5Um~0,0!am1Vm~0,0!am
! . (6.12)

We denote the complex amplitudes of the local oscilla-
tor waves at the photodetection planes as em . These
amplitudes are found from Eq. (6.10) as

en5 (
m51

2

Rnm~rW ,t !bm . (6.13)

A particular image, generated by the transformation
(6.10), is localized in space and in time, in the case of a
dynamical image. Hence the parameters of the quantum
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fluctuations also depend on the spatial point and the
time. In order to draw more general conclusions we shall
study a statistical ensemble of images that is homoge-
neous in space and time (Sokolov, 1991). As in Sec. IV,
we can calculate the noise spectrum of the photocurrent
density in both photodetection planes using the photo-
detection formulas (3.3) and (3.4) and the transforma-
tion of the field amplitudes (6.10) and (6.11). Keeping
only the contributions proportional to the intensity of
the local oscillator, we arrive at the following result:

~din!qW ,V
2 5^in~rW ,t !&~12h!1h2 (

m51

2 1

~2p!3

3E dqW 8dV8„Gnm
(1)~qW 2qW 8,V2V8!

3@cos2 unm~qW ,qW 8,V ,V8!e2rm(qW 8,V8)

1sin2 unm~qW ,qW 8,V ,V8!e22rm(qW 8,V8)#…

1~G(1)↔G(2),cos ↔ sin!. (6.14)

Here the overbar denotes statistical averaging over the
ensemble of images so that the mean value ^in(rW ,t)& is
independent of the spatial coordinate rW and time t .

The intensity distribution in the photodetection plane
is determined by the interference of the squeezed
vacuum waves produced by nonlinear crystals with the
following combination of amplitudes of the local oscilla-
tor waves with transmission coefficients Rnm(rW ,t):

Bnm~rW ,t !5(
l51

2

Rnm
! ~rW ,t !Rml~rW ,t !b l . (6.15)

For a stationary and spatially uniform ensemble of im-
ages, the space-time correlation functions of Bnm(rW ,t) at
two different space-time points depend only on the in-
terval between them. We can, therefore, introduce the
cross-spectral density of these complex amplitudes as
follows:

~BnmBkl!qW ,V5E drW dtBnm~0W ,0!Bkl~rW ,t !

3exp@ i~Vt2qW •rW !# . (6.16)

The quantities Gnm
(p)(qW ,V), p51,2, appearing in Eq.

(6.14), are defined as

Gnm
(p)~qW ,V!5 1

2 @Gnm~qW ,V!2~21 !pu~Bnm
2 !qW ,Vu# , (6.17)

where

Gnm~qW ,V!5 1
2 @~Bnm

! Bnm!qW ,V1~BnmBnm
! !qW ,V# . (6.18)

As shown by Sokolov (1991), the coefficients Gnm
(p)(qW ,V)

arise when the complex amplitudes Bnm(rW ,t) are ex-
panded in the quadrature components. The orientation
of the coordinate system in which this expansion is per-
formed is given by the angle

Fnm~qW ,V!5 1
2 arg~Bnm

2 !qW ,V . (6.19)

Finally, the angles unm(qW ,qW 8,V ,V8), which appear in
Eq. (6.14), are given by the following expressions:
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unm~qW ,qW 8,V ,V8!5 1
2 arg@Um~qW 8,V8!Vm~2qW 8,2V8!#

2Fnm~qW 2qW 8,V2V8!. (6.20)

We can see from Eqs. (6.14) and (6.20) that the spectral
components qW and V of the photocurrent density fluc-
tuations are created by interference of the harmonics qW 8
and V8 of the squeezed vacuum with the harmonics qW
2qW 8 and V2V8 of the effective image field, given by
the complex amplitude Bnm(rW ,t). In order to suppress
the quantum fluctuations of the photocurrent density, it
is necessary to have a source of squeezed vacuum with a
wide range of frequencies V and spatial frequencies qW
and also to take into account the spectral properties of
the effective field of the image.

Following Sokolov (1991), we shall discuss the arbi-
trary degree of spatial and temporal modulation of the
scattering coefficients of the interferometer. Our goal is
to formulate conditions that will guarantee nondestruc-
tive modulation of the incoming light waves. These con-
ditions will pertain not only to noiseless optical images
but also to a high degree of temporal modulation, i.e.,
the single-mode case.

In order to achieve nondestructive modulation of mul-
timode squeezed waves and create a noiseless image at
the output n of the interferometer, it is sufficient to sat-
isfy simultaneously the conditions

Gnm
(2)~qW ,V!50, (6.21)

for m51,2 in the required range of frequencies V and
spatial frequencies qW [see Eq. (6.14)]. In this case the
effective field of the image for both m51 and m52 will
be concentrated in the quadrature 1. By proper choice
of the phase of squeezed light at both entrance surfaces
to the interferometer, one can ensure that the beats of
the effective field of the image cancel with the noisy
quadrature of the fluctuations.

The complex amplitude Bnm(rW ,t) in Eq. (6.15) con-
tains the contribution p5m , with a constant phase equal
to arg(bm), and the contribution pÞm , with the phase
depending on rW and t . A sufficient condition for both
contributions to have the same phase, independent of
spatial and temporal modulation, reads

arg b12k1~rW ,t !5arg b22k2~rW ,t !. (6.22)

For an interferometer described by Eq. (6.9), this condi-
tion means that the output phase increments w1(rW ,t)
and w2(rW ,t) are arbitrary, while the constraint

k1~rW ,t !2k2~rW ,t !5const (6.23)

is imposed on the phase increments at the input. The
latter condition is satisfied only for some particular
methods of interference mixing. If condition (6.23) is
met and the phases of the local oscillator waves are cho-
sen according to Eq. (6.22), then from the definition of
the quadrature components of the effective field of the
image (Sokolov, 1991) it follows that

Fnm5arg bm (6.24a)

and
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Gnm
(1)~qW ,V!5~ uBnmu2!qW ,V , Gnm

(2)~qW ,V!50. (6.24b)

In the spectrum (6.14) the contribution of beats with the
quadrature component 2 disappears. The quantum fluc-
tuations in the resulting optical image are reduced below
the shot-noise limit to the same degree as in incoming
squeezed light waves with the proper choice of phases
unm , for m51,2:

unm~qW ,qW 8,V ,V8!56p/2. (6.25)

These results are easy to illustrate graphically. Figure
18 shows the quadrature components of the output am-
plitude en(rW ,t) and the complex vectors of the local os-
cillator waves together with the uncertainty regions of
the squeezed light. Figure 18(a) pertains to the general
case when no care is taken to match the phases of the
waves according to Eqs. (6.22) and (6.23). Figure 18(b)
displays the case when such phase matching is achieved.
In the latter case the spatial and temporal modulation of
the scattering coefficients does not destroy the orienta-
tion of the squeezing ellipses relative to the vectors of
the local oscillator waves. Therefore, at the output of the
interference mixer, we have reduced the amplitude fluc-
tuations of the resulting field and correspondingly, re-
duced the photocurrent density fluctuations below the
shot-noise limit.

In concluding this subsection we present a possible
physical mechanism for the nondestructive control of
multimode squeezed states. For a more detailed descrip-
tion we refer the reader to the paper by Sokolov and
Fofanov (1993). As mentioned above, not all methods of
interference mixing satisfy condition (6.23) for the cre-
ation of noiseless optical images. Two examples that do
satisfy this condition are Faraday rotation and birefrin-
gence. Let the input light waves be polarized linearly
and orthogonally to one another. The analyzer PP2 sepa-
rates outgoing waves with the same states of polariza-
tion. The interference mixer contributes the externally
controlled phase increments x1(rW ,t) and x2(rW ,t) to
waves with orthogonal circular polarization (Faraday ro-
tation). The matrix R(rW ,t) from Eq. (6.9) takes the form

FIG. 18. Matching of the phases of the local oscillator and
squeezed vacuum arriving from two inputs on one of the pho-
todetectors of the optical image: (a) general case without
phase matching; (b) phase matching that guarantees reduction
of the amplitude fluctuations in the image below the shot-noise
level.
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R~rW ,t !5exp@ ix8~rW ,t !#S eiD1 0

0 eiD2D
3S cos x9~rW ,t ! sin x9~rW ,t !

2sin x9~rW ,t ! cos x9~rW ,t ! D S e2iD1 0

0 e2iD2D ,

(6.26)

where

x8~rW ,t !5@x1~rW ,t !1x2~rW ,t !#/2,
(6.27)x9~rW ,t !5@x1~rW ,t !2x2~rW ,t !#/2.

Here D1 and D2 are the constant phase shifts. If or-
thogonal circular polarizations are separated at the input
and output, and the interferometer induces controllable
phase increments in orthogonal linear polarizations
(birefringence), then we have a transformation similar
to Eq. (6.26).

It is obvious that condition (6.23) is satisfied for trans-
formation (6.26). Therefore we conclude that Faraday
rotation and birefringence are suitable physical mecha-
nisms for the nondestructive control of multimode
squeezed states with an arbitrary degree of modulation,
and thus for the creation of noiseless optical images.

VII. NOISELESS AMPLIFICATION OF OPTICAL IMAGES

A. Optical scheme and evolution of the field

It has been shown by many authors that phase-
insensitive optical amplifiers introduce at least 3 dB of
extra noise in the output, whereas phase-sensitive ampli-
fiers may preserve the input signal-to-noise ratio and in
this sense are ‘‘noiseless.’’ 6 Investigations of the noise
properties of optical amplifiers are usually carried out in
the time domain and neglect spatial aspects pertaining
to a single mode of electromagnetic field.

However, the spatial domain is by no means to be cast
out from the scope of noiseless amplification. Indeed,
many areas of physics would benefit from the possibility
of noiseless amplification of faint optical images. Those
that come to mind immediately are astronomy and mi-
croscopy, which in this case would be able to widen the
range of the faintest detectable galaxies and microscopic
objects.

The first step towards realization of a noiseless ampli-
fier of optical images was taken by Kolobov and Lugiato
(1995). In this section we shall describe the results of
their analysis and mention some experiments relevant to
the practical implementation of the proposed scheme.

A possible realization of a parametric image amplifier
and its equivalent linear scheme are shown in Fig. 19. A
faint image that is to be amplified is located in the object

6See, for example, Caves, 1982; Yurke and Denker, 1984; Gil-
son, Barnett, and Stenholm, 1987; Milburn, Steyn-Ross, and
Walls, 1987; Mander, Loudon, and Shepherd, 1988; Yamamoto
et al., 1990; Kimble, 1992; Protsenko and Lugiato, 1994; Prot-
senko, Lugiato, and Fabre, 1994.
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plane P1 . This image is projected by the lens L1 in the
input plane P2 of a ring-cavity degenerate OPA. We
consider the case of a cavity with plane mirrors. The
amplified image from the output plane P3 is projected
onto the image plane P4 by the lens L2 . We shall as-
sume that in the output plane P3 there is a pupil of finite
area Sp . Its shape is described by the pupil frame func-
tion P(jW) equal to one in the pupil and zero elsewhere;
jW is the transverse coordinate in the input and output
planes. The introduction of a pupil of finite size is nec-
essary for evaluating the noise properties of our system.
We choose all optical intervals in the scheme to be equal
to the focal length f of the identical lenses L1 and L2 .

For simplicity we restrict our analysis to monochro-
matic images. However, our scheme can easily be gen-
eralized to include polychromatic images. Clearly, the
spectral bandwidth of such images should be within the
bandwidth of the cavity employed in the scheme. Hence,
in general, filters to make light quasimonochromatic be-
fore amplification are necessary.

The reason for combining the OPA with input and
output lenses is as follows. It will be clear from below
that without lenses the OPA would amplify the plane

FIG. 19. A possible realization of the parametric image ampli-
fier (a) and its equivalent linear scheme (b). A faint optical
image located in the object plane P1 is projected onto the
image plane P4 by lenses L1 and L2 . P2 and P3 are the input
and output planes of a ring-cavity optical parametric amplifier
(OPA).
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waves with a narrow bandwidth of transverse vectors qW
that satisfy the resonance condition (Oppo, Brambilla,
and Lugiato, 1994). Therefore, without lenses, the sys-
tem would essentially behave as a narrow-band filter
that selectively amplifies a narrow region in the spatial
Fourier plane of vectors qW . Lenses L1 and L2 located as
shown in Fig. 19(b) perform the spatial Fourier trans-
form, thus converting the qW plane into the rW plane.

We shall assume that the amplified image is detected
by a CCD camera. To be more precise, we shall take
into account the fact that each pixel has a finite area Sd
and that the photocurrent from each pixel is collected
during the observation time Td . Thus the quantity of
interest for us is the number of photoelectrons NI(rW ,t)
registered by the pixel centered at point rW in the image
plane in the time window from t2Td/2 to t1Td/2,

NI~rW ,t !5E
Sd

drW 8E
Td

dt8 i~rW 8,t8!. (7.1)

This kind of observation was discussed in Sec. III, Eqs.
(3.12)–(3.14). We shall consider the mean number
^NI(rW ,t)& of registered electrons as the amplified signal
of our scheme. Its variance, ^DNI

2(rW ,t)&, characterizes
the noise properties of the amplified image, and the
power signal-to-noise ratio RI of the amplified image is
given by7

RI5^NI~rW ,t !&2/^DNI
2~rW ,t !&. (7.2)

The equivalent quantities ^NO(rW ,t)&, ^DNO
2 (rW ,t)&,

and RO , measured in the object plane, describe the sig-
nal and noise of the input image. For a stationary signal
none of these quantities depends on time. Our goal is to
compare RI and RO and to show that under certain con-
ditions they can be equal. We refer to this situation as a
noiseless amplification.

We denote by a(rW ,t) and a†(rW ,t) the photon annihi-
lation and creation operators in the object plane P1 and
by e(rW ,t) and e†(rW ,t) the corresponding operators in the
image plane P4 . Using Eqs. (3.12) and (3.13) together
with the photodetection formulas (3.3) and (3.4), we can
express ^NI(rW ,t)& and ^DNI

2(rW ,t)& through the mean ir-
radiance ^e†(rW ,t)e(rW ,t)& and the intensity correlation
function ^e†(rW ,t)e†(rW 8,t8)e(rW 8,t8)e(rW ,t)& of the field in
the image plane. To evaluate these observable quantities
in terms of the input signal and the gain of our amplifier
we need the relation between the field operators e(rW ,t)
in the image plane and a(rW ,t) in the object plane.

For the moment we assume that there is no pupil in
plane P3 . In the next subsection we shall see that this
assumption gives divergent results for the inherent noise
of the scheme. Then we shall generalize the results of
this subsection to include the pupil.

Let us denote the field operators in the input and the
output planes of the OPA as b in(jW ,t) and bout(jW ,t), re-

7In this section we consider the power signal-to-noise ratio
(Thomas, 1969) instead of the one defined by Eq. (3.14); with
the power signal-to-noise ratio the final results look simpler.
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spectively [Fig. 19(b)]. These operators obey the free-
field commutation relations equivalent to Eq. (3.2). The
operator b in(jW ,t) is expressed through the operator
a(rW ,t) in the object plane by the following transforma-
tion performed by the lens L1 :

b in~jW ,t !5
1
lf E drW expF2i

2p

lf
jW •rW Ga~rW ,t !, (7.3)

where f is the focal length of the lens and l is the wave-
length of the light.

We use a paraxial approximation and consider only
one longitudinal cavity mode closest to resonance with
the input signal. The behavior of the slowly varying field
operator b(jW ,t) of this mode inside the cavity is de-
scribed by the following equation:

]

]t
b~jW ,t !2i

c

2k
¹'

2 b~jW ,t !

52~k1iD!b~jW ,t !1sb†~jW ,t !1A2kb in~jW ,t !. (7.4)

Here k is the cavity decay constant equal to

k5cT/2L , (7.5)

where T is the intensity transmission coefficient of the
cavity outcoupling mirror, L is the perimeter of the cav-
ity, and c is the light velocity in a vacuum; the detuning
parameter D is defined as

D5vc2vs , (7.6)

where vc is the longitudinal cavity frequency closest to
the frequency vs of the signal field. Because the optical
parametric oscillator is below threshold we can neglect
pump depletion and consider the amplitude of the pump
field as a fixed c-number; s is the constant of parametric
interaction proportional to this amplitude; ¹'

2 denotes
the transverse Laplacian; and k is the wave number of
the traveling wave inside the cavity, k52p/l .

The output field operator bout(jW ,t) is the sum of two
waves, one of which is reflected from and another trans-
mitted through the outcoupling mirror of the cavity:

bout~jW ,t !5A2kb~jW ,t !2b in~jW ,t !. (7.7)

To express the output field operators through the input
operators we take the spatio-temporal Fourier trans-
form of b(jW ,t),

b̃~qW ,V!5E djW dt b~jW ,t !exp@ i~Vt2qW •jW !# , (7.8)

and solve the linear system for b̃(qW ,V) and b̃†(2qW ,
2V) obtained from Eq. (7.4). After some algebra we
arrive at the following relation between the correspond-
ing Fourier amplitudes b̃ in(qW ,V) and b̃out(qW ,V) on the
input and the output of the OPA:

b̃out~qW ,V!5U~qW ,V!b̃ in~qW ,V!1V~qW ,V!b̃ in
† ~2qW ,2V!,

(7.9)
with the coefficients U(qW ,V) and V(qW ,V) given by
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U~qW ,V!5
@k2iD~qW ,V!#@k2iD~qW ,2V!#1usu2

@k1iD~qW ,V!#@k2iD~qW ,2V!#2usu2 ,

(7.10)
V~qW ,V!5

2ks

@k1iD~qW ,V!#@k2iD~qW ,2V!#2usu2 ,

where D(qW ,V)5D2V1cq2/2k . Since both b in(jW ,V)
and bout(jW ,V) satisfy the free-field commutation rela-
tion (4.6), the transformation (7.9) must be unitary. The
necessary condition for unitarity of (7.9) is uU(qW ,V)u2

2uV(qW ,V)u251. It is easy to check that this condition is
satisfied by U(qW ,V) and V(qW ,V) from Eq. (7.10).

The transformation of the field amplitude from the
object plane P1 to the input plane P2 given by Eq. (7.3)
is equivalent to the following relation between the Fou-
rier amplitudes b̃ in(qW ,V) and ã(qW ,V):

b̃ in~qW ,V!5lfãS 2
lf

2p
qW ,V D . (7.11)

Since the lens L2 has the same focal length as L1 , we
have an identical relationship between the Fourier am-
plitudes b̃out(qW ,V) and ẽ(qW ,V) in the output plane P3
and in the image plane P4 :

ẽ~qW ,V!5lfb̃outS 2
lf

2p
qW ,V D . (7.12)

Using Eqs. (7.11) and (7.12) together with Eq. (7.9)
and performing the inverse Fourier transform with re-
spect to the spatial argument, we obtain the desired re-
lationship between the field amplitudes in the object and
the image planes:

e~rW ,V!5u~rW ,V!a~rW ,V!1v~rW ,V!a†~2rW ,2V!, (7.13)

with u(rW ,V), and v(rW ,V) given by

u~rW ,V!5
@12id~rW ,V!#@12id~rW ,2V!#1ugu2

@11id~rW ,V!#@12id~rW ,2V!#2ugu2 ,

(7.14)
v~rW ,V!5

2g

@11id~rW ,V!#@12id~rW ,2V!#2ugu2 .

Here we have introduced the dimensionless coupling
strength g of the parametric interaction,

g5s/k , (7.15)

and the dimensionless mismatch function d(rW ,V),

d~rW ,V!5D/k2V/k1~r/r0!2, (7.16)

with r0 defined as

r05fA lT

2pL
. (7.17)

As shown by Oppo, Brambilla, and Lugiato (1994), for
D.0 the threshold of the optical parametric oscillator
corresponds to ugu2511(D/k)2; for D<0 the threshold
value is ugu51. In the analysis below we shall consider
the situation of exact resonance, D50, or negative de-
tuning, D,0. Therefore, to ensure a linear amplification
regime, the coupling strength g must be ugu,1. For sim-
plicity we shall consider the case of real g .
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Equations (7.13)–(7.17) give us the desired relation-
ship between the field operators in the object and image
planes, which we shall use for calculations of the quan-
tum fluctuations of the amplified image.

B. Quantum fluctuations of the amplified image

In our analysis we shall restrict ourselves to stationary
images. We shall assume that the field in the object
plane P1 is in a coherent state with the complex ampli-
tude s(rW ) modulated in space. This spatial modulation
of the complex amplitude represents the input signal of
the scheme or the ‘‘image’’ that is to be amplified.

We should like to stress here that this modulation can
be so faint that it is insufficient for recording a real
‘‘physical’’ image in the form of a transparency or a ho-
logram. Of course, having such a transparency would
enable us to ‘‘amplify’’ the image more easily, simply by
increasing the intensity of the light illuminating it. How-
ever, we have in mind a situation in which we do not
have such a possibility.

For simplicity we shall consider the situation in which
s(rW ) is a real and even function of rW . In practice this can
be obtained by using not one optical image in the object
plane, but two mirror copies separated from each other
by some spatial interval 2a , so that they do not overlap:

s~rW !5s0~rW 2aW !1s0~2rW 2aW !, (7.18)

where s0(rW ) is the original image of finite size smaller
than the distance a . It follows from the stationarity of
the input signal that

^a~rW ,V!&5s~rW !2pd~V!. (7.19)

Using Eqs. (7.13) and (7.19) we can evaluate any corre-
lation function of the field operators e(rW ,t) and e†(rW ,t)
in the image plane. For this we have to express this cor-
relation function through the normal-ordered correla-
tion functions of the field operators a(rW ,t) and a†(rW ,t)
in the object plane and then use Eq. (7.19), taking into
account that the input field is in a coherent state. There
is, however, a difficulty. When doing this, for example,
for the mean irradiance ^e†(rW ,t)e(rW ,t)& , we obtain

^e†~rW ,t !e~rW ,t !&5s2~rW !uu~rW ,0!1v~rW ,0!u2

1d~0W !
1

2p E dVuv~rW ,V!u2. (7.20)

The first term in Eq. (7.20) gives the amplified signal,
while the second one describes the noise added by the
OPA. The physical origin of that noise is well known—it
is due to spontaneous parametric radiation. Indeed, an
OPA generates so-called twin photons even when there
is no signal on its input, s(rW )50, and the first term in
Eq. (7.20) vanishes. The irradiance of the field generated
in this case is given by the second term. Unfortunately,
as we can see from Eq. (7.20), it is proportional to d(0W ),
i.e., it diverges. The reason for this divergence lies in our
approximation of an infinitely large spatial bandwidth
for our system, as follows from Eq. (7.13). Therefore, to
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estimate the noise of our amplifier, we have to introduce
a pupil of finite size into the scheme.

This, however, brings about another problem, since
now part of the light gets lost in the system, and there-
fore the transformation of the field operators from the
object plane to the image plane cannot be unitary. In-
deed, in the case without a pupil, we have obtained a
field operator bout(jW ,t) in the plane P3 that obeys com-
mutation relations analogous to Eq. (3.2). When we in-
sert the pupil in this plane, the contribution from
bout(jW ,t) to the field in the image plane becomes

e~rW ,t !5
1
lf E djW P~jW !bout~jW ,t !expF2i

2p

lf
rW •jW G , (7.21)

where P(jW) is the pupil frame function defined in Sec.
VII.A. From Eq. (7.21) it is easy to see that e(rW ,t) no
longer obeys Eq. (3.2). The reason for this is obvious.
Now the integral in Eq. (7.21) is taken only over the part
of the output plane in which P(jW) is equal to unity. Thus
Eq. (7.21) does not take into account the contribution of
the field from the part of the output plane that lies out-
side the pupil. This gives us an idea of how to restore
unitarity of the transformation from the object to the
image plane.

Let us introduce an auxiliary field operator c(jW ,t) in
the output plane P3 that obeys the free-field commuta-
tion relations (3.2) and is independent of bout(jW ,t) and
bout

† (jW ,t), i.e., commutes with them. This auxiliary field
operator will give us the necessary contribution from the
part of the P3 plane outside the pupil. The total field in
the image now reads

e~rW ,t !5
1
lf E djW P~jW !bout~jW ,t !expF2i

2p

lf
rW •jW G

1
1
lf E djW @12P~jW !#c~jW ,t !expF2i

2p

lf
rW •jW G .

(7.22)

It is easy to check that e(rW ,t) and e†(rW ,t) now satisfy the
commutation relations (3.2). From Eq. (7.22) we can
also see the physical meaning of the introduced auxiliary
operator c(jW ,t). It gives the contribution to the field in
the image plane P4 from the part of P3 that lies outside
the pupil and in which the field is in the vacuum state.
Since the operators c(jW ,t) and c†(jW ,t) commute with the
operators bout(jW ,t) and bout

† (jW ,t) and are in the vacuum
state, there will be no contribution from the c(jW ,t) term
in Eq. (7.22) to any normal-ordered correlation function
of the field operators e(rW ,t) and e†(rW ,t). This is why in
classical theory there is no need to write the second term
in Eq. (7.22).

The importance of this term in quantum theory was
recognized by Yuen and Shapiro (1978) at the very be-
ginning of the study of squeezed states of light. They
developed a theory of optical communication with
squeezed states of light in free space which diffraction



1575Mikhail I. Kolobov: Spatial behavior of nonclassical light
should be taken into account; in order to separate the
two contributions in Eq. (7.22) they used the modal
theory of diffraction.

Since in our case the second term in Eq. (7.22) does
not contribute to the normal-ordered correlation func-
tions in Eqs. (3.3) and (3.4), from now on we shall omit
this term when writing the field operator e(rW ,t) in the
image plane P4 . By expressing the field operator
bout(jW ,t) through a(rW ,t) and a†(rW ,t) and substituting
this expression into Eq. (7.22), we arrive at the following
result for e(rW ,V):

e~rW ,V!5
1
lf E drW 8 p~rW 2rW 8!@u~rW 8,V!a~rW 8,V!

1v~rW 8,V!a†~2rW 8,2V!# , (7.23)

which generalizes Eq. (7.13) to the case with a pupil.
The function p(rW ) in Eq. (7.23) is related to the pupil
frame function as

p~rW !5
1
lf E djW P~jW !expF i

2p

lf
rW •jW G (7.24)

and is called the impulse response of the optical system.
For an infinitely large pupil p(rW )5lfd(rW ), and Eq.
(7.23) recovers the previous result (7.13). Notice that the
typical linear spatial scale of change of the impulse re-
sponse function is lf/Sp

1/2 , where Sp is the pupil area. To
obtain explicit analytical results we shall assume that
this distance is much smaller than the typical scale over
which functions u(rW ,0) and v(rW ,0) [which is of the order
of r0 from Eq. (7.17)] as well as the input signal s(rW )
change. This will allow us to take the latter functions out
of integral when they enter as a product with impulse
response p(rW ).

To check that introduction of the pupil allows us to
estimate the noise of the system, let us calculate the
mean irradiance ^e†(rW ,t)e(rW ,t)& using the new expres-
sion for e(rW ,t). From Eq. (7.23) we obtain

^e†~rW ,t !e~rW ,t !&5s2~rW !uu~rW ,0!1v~rW ,0!u2

1
1

Sdiff

1
2p E dVuv~rW ,V!u2, (7.25)

where we have introduced the diffraction area Sdiff as

Sdiff5
~lf !2

Sp
. (7.26)

Now the noise contribution is finite. Equation (7.25) also
clarifies the physical origin of d(0W ) in Eq. (7.20); that is,
it arises when the area Sp grows infinitely.

From Eqs. (3.3), (7.1), and (7.25) we obtain for the
mean number of photoelectrons

^NI~rW ,t !&5hSdTds2~rW !Gf~rW !

1h
Sd

Sdiff

Td

2p E dVuv~rW ,V!u2. (7.27)

Here we have introduced the phase-sensitive gain
Gf(rW ) as
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Gf~rW !5uu~rW ,0!1v~rW ,0!u2. (7.28)

Though the relative phase among three interacting
waves (pump, signal, and idler) is fixed so as to give
amplification, this gain varies across the image plane be-
cause of diffraction.

To calculate the variance ^DNI
2(rW ,t)& we use Eqs.

(3.13), (3.4), and (7.23). By substituting e(rW ,V) from Eq.
(7.23) into the intensity correlation function
^e†(rW ,t)e†(rW 8,t8)e(rW 8,t8)e(rW ,t)& from Eq. (3.4) we ob-
tain 16 correlation functions of operators a(rW ,V) and
a†(rW ,V) of mixed order and at four different points rW
and frequencies V. Using the commutator (3.2), we
bring them to the normal order and then use Eq. (7.19)
together with the fact that the input field is in a coherent
state. When doing so we get two different kinds of
terms: the first arises from interference of the amplified
signal with the noise from spontaneous parametric ra-
diation, and the second from the self-interference of this
noise.

To simplify the calculations we shall use the assump-
tions that the observation time Td is long compared with
the inverse cavity bandwidth k21 and that both the dif-
fraction area and the pixel area are small compared to
the typical spatial scales of functions u(rW ,0), v(rW ,0), and
s(rW ). Moreover, we shall assume that Sd>Sdiff . In this
case the diffraction spread of the image is small and the
impulse response function p(rW ) can be approximated by
the delta function p(rW )5lfd(rW ). Using these approxi-
mations we arrive at the following result:

^DNI
2~rW ,t !&5hSdTds2~rW !Gf~rW !

3[12h1h„cos2 u~rW !exp@2r~rW !#

1sin2 u~rW !exp@22r~rW !#…]

1h
Sd

Sdiff

Td

2p E dVuv~rW ,V!u2

1h2
Sd

Sdiff

Td

2p E dVuv~rW ,V!u2

3@112uv~rW ,V!u2# , (7.29)

where we have introduced the squeezing parameter r(rW )
and the orientation angle u(rW ) as [cf. Eqs. (4.22) and
(4.23)]

exp@6r~rW !#5uu~rW ,0!u6uv~rW ,0!u, (7.30)

u~rW !5arg@u~rW ,0!1v~rW ,0!#2 1
2 „arg@u~rW ,0!#

1arg@v~rW ,0!#…. (7.31)

There are two shot-noise contributions in Eq. (7.29),
proportional to the mean intensity of the amplified im-
age and that of spontaneous parametric down conver-
sion. The term proportional to s2(rW )Gf(rW ) in Eq. (7.29)
stems from the interference of the amplified signal with
noise and the last term from self-interference of the
noise. This self-interference gives the inherent noise of
the amplifier, which is present even when there is no
signal on its input.
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C. Spatial width of the gain and conditions for noiseless
amplification

Let us consider the mean number of photoelectrons
given by Eq. (7.27). It consists of two terms: the first one
gives the amplified signal while the second one describes
the noise added by the amplifier. Introducing the angle
f(rW ) as

f~rW !5 1
2 „arg@u~rW ,0!#2arg@v~rW ,0!#…, (7.32)

we can write the phase-sensitive gain Gf(rW ) in terms of
the squeezing parameter r(rW ) defined in Eq. (7.30) and
f(rW ),

Gf~rW !5cos2 f~rW !exp@2r~rW !#

1sin2 f~rW !exp@22r~rW !# . (7.33)

Using the explicit expressions for u(rW ,0) and v(rW ,0)
from Eq. (7.14), we can express the gain as a function of
the dimensionless coupling strength g defined in Eq.
(7.15) and the dimensionless mismatch d(rW ,0) given by
Eq. (7.16); in what follows we shall call d(rW ,0) the local
mismatch. In the case of real and positive g the result
reads

Gf~rW !5
@~11g !22d2~rW ,0!#214d2~rW ,0!

@11d2~rW ,0!2g2#2 . (7.34)

The maximum gain, G5Gf(RW ), is reached for such rW

5RW where the local mismatch is zero, d(RW ,0)5D/k
1(R/r0)250, and is equal to

G5S 11g

12g D 2

. (7.35)

Let us estimate the spatial width of the amplification
region, that is, the transverse distance d at which the
gain is equal to G/2. For this we first solve the equation
Gf(rW )5G/2 to determine the dimensionless mismatch
d0 for which the gain is equal to one-half of its maximum
value. In the interesting case of high gain, G@1, i.e.,
when the dimensionless constant of parametric interac-
tion is of the order of unity, g.1, we find this mismatch
to be

d052~&21 !~12g !. (7.36)

To estimate d we shall distinguish two different situa-
tions: zero detuning, D50, when the maximum amplifi-
cation takes place for RW 50, and nonzero negative de-
tuning, D52uDuÞ0, when the mismatch is nulled for
some nonzero transverse distance RW Þ0. In the case of
zero detuning we obtain for d

d5d0
1/2r0 , (7.37)

with r0 defined in Eq. (7.17). In the case of negative
detuning the maximum gain is attained for a nonzero
transverse distance R given by

R5r0AuDu
k

. (7.38)
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This means that in this case the region in which the am-
plification takes place has the shape of a ring with the
inner radius R2d/2 and the outer radius R1d/2. From
Eq. (7.36) and the definition of d(rW ,0) given by Eq.
(7.16) we obtain d as

d52d0r0
2/R (7.39)

for the case in which the ring radius is much larger than
the width of its band, R@d .

Figure 20 shows the phase-sensitive gain Gf(rW ) as a
function of dimensionless distance r/r0 for the case of
exact resonance between the external signal and the cav-
ity mode and for the case of negative detuning. Notice
that in the case of zero detuning [Fig. 20(a)], there is a
flat plateau in the gain curve around the point of maxi-
mum amplification, rW 50.

The two different situations of exact resonance be-
tween the external signal and the cavity mode and of
negative detuning between them naturally distinguish

FIG. 20. Phase-sensitive gain Gf(rW ) as a function of dimen-
sionless transverse distance r/r0 for exact resonance (a) and
negative detuning D/k522 (b). Curves a, b, and g correspond
to the maximum gain of G54, 25, and 100, respectively.
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two possible operation regimes for the amplifier. In the
case of zero detuning the amplification is performed in a
‘‘point-by-point’’ manner, i.e., amplifying one small re-
gion around the origin r50 at a time. The input image
can be scanned by shifting the input plane in the trans-
verse direction. The amplification width d for this opera-
tion regime is given by Eq. (7.37). In the case of negative
detuning, instead of moving the input plane one can
keep it still while changing the cavity length, which con-
trols the magnitude of the detuning uDu. This will lead to
varying of the radius R of the amplified ring [see Eq.
(7.38)] and thus to the amplification of different ring-
shaped stripes of the input image. The width of the
stripe is given by Eq. (7.39).

As follows from Eq. (7.27), the mean number of pho-
toelectrons, ^NI(rW ,t)&, contains two contributions. The
first one represents the amplified image, while the sec-
ond term exists even without an input signal and comes
from the inherent noise of the amplifier. Its physical ori-
gin is in the phenomenon of spontaneous parametric
down conversion. This noise term determines the ulti-
mate lower limit for the input signal s(rW ) that can be
amplified noiselessly. That is, the noise contribution
must be small compared with the amplified signal. For a
large gain, G@1, from Eq. (7.27) we obtain the condi-
tion

s2~rW !SdiffTamp@1/4, (7.40)

where we have introduced the typical temporal scale of
the amplifier as Tamp52p/k .
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Another condition for noiseless amplification arises
from Eq. (7.29) for dispersion of the observed number
of photoelectrons. The self-interference term must be
small compared with the term due to interference of the
amplified signal with noise. This gives

s2~rW !SdiffTamp@1/8, (7.41)

which as an order of magnitude estimate is equivalent to
condition (7.40).

In the literature about amplifiers, the amount of extra
noise added to the input signals is quantified by the
noise figure F of the amplifier, which is defined as a ratio
of the signal-to-noise ratios at its input and output (Tho-
mas, 1969). We shall adopt this definition for our scheme
of image amplification and introduce the noise figure as

F5
RO

RI
, (7.42)

which in our case is a function of the transverse coordi-
nate rW , F5F(rW ). We shall refer to the case of F51 as
noiseless amplification.

It is easy to see that for an input signal in a coherent
state the signal-to-noise ratio RO in the object plane is

RO5hSdTds2~rW !. (7.43)

Hence, if we assume that conditions (7.40) and (7.41)
are met so that we can discard the noise terms in Eqs.
(7.27) and (7.29), the noise figure at point rW in the image
plane is
F~rW !5
12h1h„cos2 u~rW !exp@2r~rW !#1sin2 u~rW !exp@22r~rW !#…

cos2 f~rW !exp@2r~rW !#1sin2 f~rW !exp@22r~rW !#
. (7.44)
From Eq. (7.44) one can see that if the angles u(rW ) and
f(rW ) were equal, then for h51 one would always have
a unity noise figure, i.e., noiseless amplification for all rW .
But this is not the case due to diffraction. Fortunately, as
follows from the definitions of u(rW ,0) and v(rW ,0) [see
Eq. (7.14)], they become real for d(rW ,0)50, i.e., at the
point of maximum amplification. Consequently our am-
plifier is noiseless at this point and in some region
around it.

Figure 21 shows the noise figure F(rW ) for ideal pho-
todetection, h51, and the same operative conditions as
in Fig. 20. One can see from these figures that, indeed,
the minimum of the noise figure, F51, is reached at the
point of maximum amplification. For zero detuning [Fig.
21(a)], the curve F(rW ) has a flat plateau around the
point of its minimum at rW 50. This corresponds to the
plateau in the gain curve Gf(rW ) [Fig. 20(a)]. This area is
most favorable for noiseless amplification. The corre-
sponding area in the case of nonzero detuning [Fig.
21(b)] is much smaller. This will require a smaller pho-
todetection pixel and correspondingly more steps in
scanning through the whole image.
From Eq. (7.44) we can also learn how rapidly the
noise figure increases for nonideal photodetection, i.e.,
when h,1. For this we can fix the spatial point rW 5RW ,
which gives the minimum noise figure, Fmin5F(RW ), and
investigate it as a function of quantum efficiency h. It
follows from Eq. (7.44) that

Fmin5
12h1hG

G
5h1

12h

G
. (7.45)

Equation (7.45) says that for a large gain, G@1, the
minimum noise figure is equal to h, i.e., can become less
than unity for nonideal photodetection, h,1. Does this
mean that we can improve the signal-to-noise ratio by
linear amplification?

To answer this question we have to look at our defi-
nitions of F and RO given by Eqs. (7.42) and (7.43).
When defining the signal-to-noise ratio in the object
plane, we assumed that the input image is detected by a
nonideal array of pixels with h,1. Therefore the RO in
the input is deteriorated from the value achieved for
ideal photodetection. A noiseless amplifier can compen-
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sate for this deterioration and bring the RI back to the
value of RO for h51 (Levenson et al., 1993a; 1993b).

Since the noise figure is intended to characterize only
the noise added by the amplifier, it is more natural to
use another definition of F , namely,

F85
RO~h51 !

RI
. (7.46)

This definition returns to RO its ‘‘true’’ value, not dete-
riorated by nonideal photodetection. The new F8(rW ) is
given by Eq. (7.44) with an additional factor h in the
denominator, and the corresponding Fmin8 is equal to

Fmin8 511
12h

h

1
G

, (7.47)

i.e., is always larger than unity.
Figure 22 shows Fmin8 (h) for three different gains, G

FIG. 21. Noise figure F(rW ) for ideal photodetection, h51, as a
function of dimensionless transverse distance r/r0 : (a) exact
resonance; (b) negative detuning D/k522. Curves a, b, and g
correspond to the maximum gain of G54, 25, and 100, respec-
tively.
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54, 25, and 100. We can see that for G.25 the mini-
mum noise figure is almost insensitive to the quantum
efficiency and stays very close to unity if h is larger than
10%.

To conclude this subsection we should like to summa-
rize the results of our analysis. We have demonstrated
two different ways of operating a noiseless image ampli-
fier:

(1) ‘‘Point-by-point’’ operation, when a small area of
size d0r0

2 of the image around the origin, rW 50, is ampli-
fied and the image is scanned by lateral shifting of the
input plane.

(2) ‘‘Annular’’ operation, i.e., amplification of an an-
nular region of width 2d0r0

2/R , where R is the radius of
the annulus; in this case the image is scanned by varying
the cavity length that controls R .

In both kinds of operation the image is scanned. In
this way the system might find applications, for example,
in scanning microscopy (Wilson and Sheppard, 1984). In
many other applications it would be advantageous to be
able to amplify the whole image at once. For this one
would have to abandon cavity-based geometry and use a
traveling-wave configuration.

In Sec. VII.A we mentioned astronomy as a potential
candidate (but by no means the only one) for applica-
tion of a noiseless image amplifier. However, it appears
that our scheme as it stands in the paper is not suited for
astronomical imaging. The reason for this is the internal
noise of the amplifier, which imposes severe limitations.
Incidentally, such a conclusion about our scheme agrees
with more general assessments of the noise limitations
on image amplification in astronomy, made recently by
Prasad (1994).

D. Experimental observation of quantum noise
correlations in parametric image amplification

Parametric image amplification has been studied re-
cently by several experimental groups.8 In the experi-
ments performed by Lantz’s group, parametric image
amplification was achieved for a monochromatic near-
infrared image with a resolution of 60380 points in the
amplified image with a mean gain of 15 dB (Devaux
et al., 1995). Then the process of parametric amplifica-
tion was applied for low-pass and bandpass spatial filter-
ing of amplified images using the filtering properties of
the transfer function of the amplifier (Devaux and
Lantz, 1995a) and for ultrahigh-speed imaging (Devaux
and Lantz, 1995b). Parametric amplification has also
been employed in time-gated image recovery (Gavri-
elides, Peterson, and Gardimona, 1987; Wetterer, Sche-
lonka, and Kramer, 1989) and in biomedical imaging
(Cameron, Bliss, and Kimmel, 1996). Quantum fluctua-

8See, for example, Gavrielides, Peterson, and Gardimona,
1987; Wetterer, Schelonka, and Kramer, 1989; Guthals and
Sox, 1990; Devaux et al., 1995; Devaux and Lantz, 1995a,
1995b, 1995c; Cameron, Bliss, and Kimmel, 1996; Choi, Ma-
rable, and Kumar, 1997; Choi, Vasilyev, and Kumar, 1998; Ma-
rable, Choi, and Kumar, 1998.
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tions in parametric image amplification were studied by
Guthals and Sox (1990) and in recent experiments by
the group of Kumar (Choi, Marable, and Kumar, 1997;
Choi, Vasilyev, and Kumar, 1998; Marable, Choi, and
Kumar, 1998). In this subsection we shall describe the
experiment by Kumar and collaborators (Marable, Choi,
and Kumar, 1998), which, to our knowledge, gives the
first experimental observation of quantum noise correla-
tions in parametric image amplification. Recently this
group has also reported the first experimental demon-
stration of noiseless image amplification (Choi, Vasilyev,
and Kumar, 1998).

The layout of the experiment is depicted in Fig. 23. A
5.21-mm-long KTP crystal (the OPA) is pumped by a
Q-switched, mode-locked, and frequency-doubled
Nd:YAG laser. The IR (1064 nm) signal input and the
green (532 nm) pump are each p polarized (parallel to
the crystal z axis) for type-II phase matching in the crys-
tal. The object is placed in the signal-beam path in front
of the OPA. A real image of this object is formed in the
center of the KTP crystal by a 31 telescope consisting
of two 10-cm focal-length lenses. The spatial frequencies
of this image are amplified by the pump beam, which is
made coincident with the signal beam using a dichroic
beamsplitter. The green pump is blocked after the crys-
tal by using a filter that passes only the IR. CCD cam-
eras are placed in the output image as well as the Fou-
rier planes of a 20-cm focal-length lens that is placed
after the filter. The generated idler is orthogonally po-
larized relative to the amplified signal because of type-II
phase matching. Therefore a half-wave plate followed
by a polarizing beamsplitter placed after the 20-cm lens
allows us to observe either the signal or the idler output
in the image as well as the Fourier planes by simply
rotating the half-wave plate.

Typically, the phase-matching condition for the de-
generate case, q50, is fulfilled when the phase mismatch
is Dk[kp2ks2ki50, where kp is the wave number of
the pump wave, and ks and ki are those of signal and

FIG. 22. Minimum noise figure Fmin8 as a function of quantum
efficiency h for different gains. Curves a, b and g correspond
to the maximum gains of G54, 25, and 100, respectively.
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idler waves. However, the effective phase mismatch for
a spatial frequency qW in a paraxial approximation is
equal to [cf. Eqs. (4.28) and (4.29)]

Dkeff~q !5Dk1
q2

ks
(7.48)

for ki5ks . Therefore, by making Dk progressively more
and more negative, one can bring increasingly higher
spatial frequencies into the phase-matching condition,
i.e., into the amplification region. In practice, Dk is ad-
justed by the rotation of the KTP crystal of the OPA
with respect to the incident signal and pump field such
that Dkeff(q0)50. In this case, the OPA acts as a band-
pass amplifier, amplifying a range of spatial frequencies
around the spatial frequency q0 . In such a way one can
maximize phase matching, and hence the quantum cor-
relations, for a given value of the spatial frequency q0 .

For parametric image amplification, Marable et al.
used a negative test pattern of three vertical lines with a
uniform spacing of 62.5 mm (16 lines/mm). The horizon-
tal Fourier transform of this object consists of three
main peaks at j50,616 mm21 (j5q/2p) with two
smaller peaks in between at j568 mm21. As recorded
in the output image plane, real images of the bare signal
(i.e., with the pump turned off), the amplified signal, and
the generated idler are shown in Fig. 24(a) for an OPA
gain of .1.2. The transverse pattern of the bare signal as
recorded in the output Fourier plane is shown in Fig.
24(b). Figure 24(c) shows the transverse pattern of the

FIG. 23. Experimental layout for parametric image amplifica-
tion (top) and measurement of quantum-noise correlations
(bottom). (From Marable, Choi, and Kumar, 1998.)



1580 Mikhail I. Kolobov: Spatial behavior of nonclassical light
amplified signal in the output Fourier plane when the
OPA was aligned in the low-pass configuration (Dk
50), and the pump power was adjusted for a gain of
.4. As shown, the central peak (j50) was strongly am-
plified with little amplification occurring at the side
peaks (j5616 mm21). The transverse pattern in the
output Fourier plane for bandpass amplification with
Dk520.95 rad/mm is shown in Fig. 24(d). Here, the
pump power was the same as in Fig. 24(c) and the OPA
was aligned for maximum amplification of the two side
peaks at 616 mm21.

For the measurement of quantum correlations, the
goal of Marable, Choi, and Kumar was to observe noise
reduction at a single spatial frequency. The OPA was
first optimized for maximum gain by aligning the signal
and idler patterns to be simultaneously coincident in
both the real-image and the Fourier planes. By placing
an iris in the Fourier plane, that is, in front of the OPA
(halfway between the two lenses of the 31 telescope),
they blocked all spatial frequency components of the
input signal pattern except the peak centered at j5
116 mm21. Thus the input signal had a well-defined spa-
tial frequency. The OPA was adjusted for maximum
gain at 616 mm21, corresponding to an azimuthal rota-
tion of the KTP crystal of about 0.85° from the angle for
phase matching at j50. In this way the input signal Fou-
rier component was bandpass amplified, and a conjugate
Fourier component at j5216 mm21 of the idler beam
was generated. Since the amplified signal Fourier com-
ponent at 116 mm21 exited the OPA at an angle of
2317534 mrad with respect to the idler Fourier compo-
nent at 216 mm21, it was easy to separate the two with
the use of plane mirrors. The mirror that sent the beams
to the CCD cameras was removed, and each beam was
focused onto a separate photodetector located in the far
field (i.e., in the Fourier plane). Therefore one detector
saw the amplified signal Fourier component at 116

FIG. 24. Parametric amplification of a test pattern: (a) Bare
signal, amplified signal, and idler patterns in the output image
plane; (b) bare signal pattern in the output Fourier plane; (c)
amplified signal pattern in the output Fourier plane with the
OPA aligned for low-pass amplification; (d) same as in (c) but
with the OPA aligned for bandpass amplification. (From Ma-
rable, Choi, and Kumar, 1998.)
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mm21, while the other detected the idler component at
216 mm21. Twin-beam-type noise measurements were
made using direct difference detection, similar to the
measurements described by Aytür and Kumar (1990).
The noise power of the photocurrent difference was
measured at 27 MHz with a 3-MHz resolution band-
width.

Figure 25(a) shows the quantum-noise reduction be-
low the shot-noise level for the detected signal and idler
Fourier components as a function of the signal gain. For
OPA gains below .4, the data are in good agreement
with the theory (solid curve; Gavrielides, Peterson, and
Gardimona, 1987) once a detection quantum efficiency
of 0.76 is taken into account. Marable, Choi, and Kumar
also measured the quantum-noise reduction as a func-
tion of the phase mismatch Dk for various values of the
OPA gain. Results from one set of data for an OPA gain
of .3.9 are shown in Fig. 25(b). As pointed out previ-
ously, Dk was varied by rotating the azimuthal angle of
the KTP crystal in the OPA. The micrometer readings
on the KTP rotation stage were calibrated and con-
verted into units of Dk for comparison with the theory.
As one can see, the experimental data are once again in
good agreement with the theory (solid curve), once the
detection quantum efficiency is taken into account.

FIG. 25. Noise reduction as a function of (a) OPA gain and (b)
phase mismatch Dk . (From Marable, Choi, and Kumar, 1998.)
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VIII. OPTICAL IMAGING WITH MULTIMODE SQUEEZED
LIGHT

A. Description of the optical scheme and observables

The question of noise limitations in optical imaging
and image processing has been addressed by many au-
thors. In particular, it has been repeatedly pointed out
that incoherent imaging is preferable to coherent with
respect to noise (Chavel and Lowenthal, 1978; Yu,
1985). Incoherent or partially coherent imaging is per-
formed using either a spatially coherent point source
with a broad linewidth (temporal incoherence) or a
monochromatic light source of a finite size (spatial inco-
herence). Here we shall consider the latter situation,
called spatially partially coherent (SPC) illumination.

Under SPC illumination each point of the extended
light source, called a channel, produces an object image
at the image plane. The coherent illumination corre-
sponds to a point source, i.e., one channel. A large
source with infinitely many channels gives another ex-
treme, namely, spatially incoherent illumination. A typi-
cal SPC light source corresponds to a finite but large
number of channels.

As shown by Chavel and Lowenthal (1978), the noise
performance of an optical system employing SPC illumi-
nation depends on the nature of the noise. If the noise is
present in the input, then all channels carry the same
noise and there is no gain in using several channels. If
the noise does not depend on the input, but is inherent
to each channel, then the gain is equal to the square root
of the number of channels. Chavel and Lowenthal ana-
lyzed two different kinds of technical noise in the
scheme: the setup noise concentrated in the pupil of the
system and the input noise such as impulse noise or
granularity noise of the object.

The noise limitations of optical SPC systems due to
quantum fluctuations of light were investigated by
Kolobov (1995). Quantum fluctuations of light give an
ultimate noise performance in optical imaging and im-
age processing. One has to take quantum fluctuations
into account in the case of photon-limited or low-light-
level images. Such images arise in many different areas,
for example, astronomy or low-light-level spectroscopy.
In optical computing, processing information at a low
light level will increase the speed of computation. In ad-
dition to these naturally quantum-limited situations, one
can encounter photon-limited processing even if there is
an abundance of light. Often only a sparse sampling (i.e.,
a small number of detected photons) of the input image
is needed for processing (Morris, 1989).

An example is real-time machine vision. In this case
one digitizes the input image using a two-dimensional
photodetection array such as a CCD camera. For an ar-
ray with dimensions, say, 100031000 elements, one has
to process the information from a million pixels. This is
too much information for processing in real time even
for large computers. Therefore one usually tries to re-
duce the amount of information by using, for example,
edge-enhanced images. An alternative approach would
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
be to process low-light-level images. In this case one
would collect photoelectrons with the maximal counting
rate allowed by the system until there was enough infor-
mation about the input image to achieve an acceptable
signal-to-noise level.

In this section we shall give the standard quantum
limit for SPC imaging with coherent light. Then we shall
demonstrate that by employing multimode squeezed
light for SPC illumination one can go beyond this limit.
As the source of multimode squeezed light we shall con-
sider the traveling-wave OPA, investigated in Sec. IV.
We already know that in homodyne detection of multi-
mode squeezed light by a CCD camera with a properly
chosen size of pixels we can obtain simultaneously many
sub-Poissonian photocurrents from individual pixels.
Using the aforementioned terminology with channels,
we can say that such a source has several ‘‘quantum’’
channels and each channel produces an object image
with fluctuations below the shot-noise level. Since these
quantum channels are independent, we may expect an
improvement in noise performance employing a source
with many channels. We shall see from the calculations
that this physical picture is indeed correct.

Let us consider the schematic setup of an optical pro-
cessor with an SPC source of squeezed light (Fig. 26). In
the object plane P2 there is an object transparency with
the amplitude transmission t(rW ); rW is a transverse coor-
dinate in the object and the image planes. This transpar-
ency is imaged in the image plane P4 by lenses L2 and
L3 . All optical intervals in the scheme are chosen to be
the same and equal to the focal length of the lenses.
Therefore, with suitable axis orientation (see Fig. 26),
the illuminating and imaging magnifications are M5
11.

We assume that the source plane P1 is the output
plane of a traveling-wave OPA. To have the possibility
of changing the spatial coherence of the source we shall
assume that there is an aperture of a variable area Ss in
the source plane P1 . The shape of the aperture is deter-
mined by the source frame function S(jW) equal to one in
the aperture and zero elsewhere; jW is a transverse coor-
dinate in the source and the Fourier planes. The source

FIG. 26. Schematic diagram of an optical processor with a
spatially partially coherent source of light. Object transparency
located in the object plane P2 is imaged in the image plane P4
by lenses L2 and L3 . The source plane P1 is the output plane
of a traveling-wave optical parametric amplifier (OPA) or an-
other source of spatially squeezed light. This source is imaged
in the Fourier plane P3 by lenses L1 and L2 .
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is imaged in the Fourier plane P3 by lenses L1 and L2 .
In the Fourier plane P3 we place a pupil of area Sp .

Its form is defined by the pupil frame function P(jW)
equal to one in the pupil and zero elsewhere.

In the literature about optical image processing
(Chavel and Lowenthal, 1978; Yu, 1985), a typical quan-
tity of interest is the image irradiance Ii(rW ,t) in the im-
age plane P4 , equal to the photon flux density. Its
quantum-mechanical counterpart is the corresponding
quantity for describing the quantum noise properties of
the system. The quantum-mechanical mean value
^Ii(rW ,t)& of the image irradiance is a signal of the
scheme. Its variance, s i

2(rW ,t)5^DIi
2(rW ,t)&, characterizes

the noise properties of the processor, and a signal-to-
noise ratio is given by Ri(rW ,t)5^Ii(rW ,t)&/s i(rW ,t) (Good-
man, 1985; Yu, 1985). Below we shall express the signal-
to-noise ratio for the image irradiance as a function of
the illuminating and imaging aperture areas Ss and Sp
for a given source of spatially multimode squeezed light.

For simplicity we shall explicitly consider only the
spatial dependence of the fields. Let b(jW) and b†(jW) be
the photon annihilation and creation operators in the
source plane normalized so that ^Is(jW)&5^b†(jW)b(jW)& is
the mean value of the source irradiance at point jW in the
source plane. The mean value of the image irradiance is
given by the theory of partial coherence (Born and
Wolf, 1964),

^Ii~rW !&5
1
lf E djW S~jW !uh~rW ,jW !u2^Is~jW !&, (8.1)

where f is the focal length of the lenses, l is the wave-
length of the light, and S(jW) is the source frame function
introduced above. The function

h~rW ,jW !5
1
lf E drW 8t~rW 8!p~rW 2rW 8!expF2i

2p

lf
jW•rW 8G (8.2)

is the normalized complex amplitude at point rW in the
image plane due to point jW in the source plane. The
function p(rW ) in Eq. (8.2) is the Fourier transform of the
pupil frame function P(jW),

p~rW !5
1
lf E djW P~jW !expF2i

2p

lf
rW •jW G , (8.3)

and is called the coherent impulse response of the imag-
ing system (Goodman, 1985; Yu, 1985).

The variance of the image irradiance can be obtained
using Eq. (8.1) together with a formula similar to Eq.
(3.4) for the correlation function of the photocurrent
density:

^DIi
2~rW !&5

1

~lf !2 E djWE djW8S~jW !S~jW8!uh~rW ,jW !u2

3uh~rW ,jW8!u2~^Is~jW !&d~jW2jW8!

1@^:Is~jW !Is~jW8!:&2^Is~jW !&^Is~jW8!&# !.

(8.4)
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From Eq. (8.4) we can see that there are two contribu-
tions to the variance of the image irradiance. In the first
one we recognize the shot noise, and in the second (in
square brackets) the contribution from the spatial inten-
sity correlation function. From Eq. (8.4) it is easy to see
that the standard quantum limit for the image irradiance
is given by [cf. Eq. (3.15)]

RSQL5^Ii~rW !&1/2. (8.5)

This limit is expected for a coherent state of light. Any
other classical light will result in a positive contribution
from the intensity correlation term. However, if the light
emitted by the source is in a nonclassical, for instance,
squeezed state, the contribution from the intensity cor-
relation term can be negative and can partially or even
completely compensate for the shot-noise term.

B. Quantum fluctuations in optical imaging with multimode
squeezed light

Let us consider the situation when the source field
operator b(jW) has the form

b~jW !5a1db~jW !, (8.6)

where a is the c-number complex amplitude of a strong
plane wave (local oscillator) and db(jW) is a ‘‘small’’
operator-valued fluctuation in the source plane. The as-
sumption that the source plane P1 is the output plane of
the traveling-wave OPA allows us to use the results
from Sec. IV. As shown there, the spatial Fourier ampli-
tudes,

db~qW !5E djW e2iqW •jWdb~jW !, (8.7)

on the output of the OPA are expressed through the
corresponding Fourier amplitudes da(qW ) on its input
surface as

db~qW !5U~qW !da~qW !1V~qW !da†~2qW !, (8.8)

with coefficients U(qW ) and V(qW ) given by Eq. (4.3) for
V50.

Using Eqs. (8.6)–(8.8), we can write the correlation
function of the intensity fluctuations from Eq. (8.4) as

^ :Is~jW !Is~jW8!:&2^Is~jW !&^Is~jW8!&5uau2Gu~jW2jW8!, (8.9)

with Gu(jW2jW8) given by

Gu~jW2jW8!5
1

~2p!2 E dqW exp@ iqW •~jW2jW8!#Gu~qW !,

(8.10)

Gu~qW !5211„exp@2r~qW !#cos2 u~qW !

1exp@22r~qW !#sin2 u~qW !…, (8.11)

exp@6r~qW !#5uU~qW !u6uV~qW !u,

u~qW !5 1
2 arg@U~qW !V~2qW !#2w , (8.12)

where w5arg a. The function Gu(qW ) in Eq. (8.11) is the
squeezing spectrum for multimode squeezed light ex-
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pressed as a function of the spatial frequency qW and nor-
malized so that Gu(qW )50 for a coherent state and
Gu(qW )521 for a perfectly squeezed state [cf. Eq.
(4.25)]. The functions r(qW ) and u(qW ) defined by Eq.
(8.12) are the squeezing parameter and the orientation
angle of the squeezing ellipse relative to the complex
amplitude a.

Maximum squeezing occurs at the spatial frequency
qm for which the phase mismatch is zero and the squeez-
ing parameter r(q) reaches its maximum value rm (see
Sec. IV.C). Choosing u(qm)56p/2 gives the noise spec-
trum G2(q) (squeezing spectrum), and u(qm)50,p
gives the noise spectrum G1(q) (stretching spectrum).
At the spatial frequency qm , we have

G2~qm!5211exp@22rm# , G1~qm!5211exp@2rm# ,
(8.13)

i.e., reduction or increase of the noise compared with a
coherent state of light. For qm50, which corresponds to
degenerate matching, the spectra G6(q) are shown in
Fig. 27.

For simplicity, we shall assume that the amplitude
transmission of the object transparency t(rW ) is a slowly
varying function in space compared with the impulse re-
sponse p(rW ) from Eq. (8.3). In this case, as follows from
Eqs. (8.2) and (8.3), the normalized complex amplitude
h(rW ,jW) is

h~rW ,jW !5t~rW !P~jW !expF2i
2p

lf
rW •jW G , (8.14)

i.e., it represents a replica of the object amplitude trans-
mittance t(rW ) multiplied by the pupil frame function
P(jW) and phase shifted by the skew illumination. From
Eqs. (8.1), (8.4), (8.9), and (8.14) the mean irradiance
^Ii(rW )& and its variance ^DIi

2(rW )& read

FIG. 27. Normalized spatial-frequency squeezing spectrum
Gu(q) for a traveling-wave OPA. Curve (a) gives the stretch-
ing spectrum, G1(q): curve (b) is for the squeezing spectrum,
G2(q). The OPA phase-sensitive gain is exp(2rm)54. The
spectrum is normalized so that Gu(q)50 for a coherent state
and Gu(q)521 for a perfectly squeezed state. The spatial fre-
quency q is in units of (Sm)21/2.
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^Ii~rW !&5
ut~rW !u2uau2

lf E djW Smin~jW !5
ut~rW !u2uau2

lf
Smin ,

(8.15)

^DIi
2~rW !&5

ut~rW !u4uau2

~lf !2 F E djW Smin~jW !

1E djWE djW8Smin~jW !Smin~jW8!Gu~jW2jW8!G ,
(8.16)

where Smin(jW)5S(jW)P(jW) and Smin5min(Ss ,Sp) is the
smallest of the source and pupil apertures. Let us intro-
duce the dimensionless spatial coordinate xW as jW
5(Smin)1/2xW , and the dimensionless spatial frequency kW
as qW 5(Sm)21/2kW , where Sm is the minimum photodetec-
tion area introduced in Sec. IV.C. As discussed there,
this area gives the size of the smallest photodetector
from which one can collect photocurrent with the sub-
shot-noise fluctuations. In terms of the dimensionless
variables xW and kW , Eq. (8.16) can be written as

^DIi
2~rW !&5

ut~rW !u4uau2

~lf !2 Smin@11Fu~m!# , (8.17)

where m5(Smin /Sm)1/2 and the function Fu(m) is

Fu~m!5
1

~2p!2 E dkW Gu~kW /m!uSmin~kW !u2,

Smin~kW !5E dxW eikW •xWSmin~xW !. (8.18)

Equations. (8.17) and (8.18) express the variance
^DIi

2(rW )& as a function of the source and pupil aperture
areas, Ss and Sp , and the area Sm .

The function Fu(m) in general can be computed nu-
merically for a given geometry of the source and pupil
apertures and for a given light source. Two limiting
cases can be evaluated analytically. When m@1, i.e.,
Smin@Sm , the function F2(m), which is equal to

F2~m!um@15211e22rm, (8.19)

can be very close to 21 for exp@22rs#!1. As follows
from Eq. (8.17), in this case the contribution from
F2(m) to ^DIi

2(rW )& almost compensates for the shot-
noise fluctuations and brings an improvement in the
signal-to-noise ratio.

In the opposite limit, m!1 (Smin!Sm),

Fu~m!um!15m2
1

~2p!2 E dkW Gu~kW !!1. (8.20)

Therefore, when the area Sm is very large compared to
the area of illuminating and imaging apertures, the con-
tribution from Fu(m) into ^DIi

2(rW )& is negligible com-
pared with the shot noise and there is no advantage of
using squeezed light for the signal-to-noise ratio.

For the circular illuminating and imaging apertures,
Fu(m) has the form

Fu~m!52E
0

` dx

x
J1

2~xm/Ap!Gu~x !, (8.21)
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where J1 is a first-order Bessel function of the first kind.
Figure 28(a) shows the result of computation of F2(m)
for a traveling-wave OPA. In this case the parameter m
is

m52pr/All , (8.22)

where r is the radius of the smallest of the illuminating
and imaging apertures and l is the length of the crystal
used in the OPA.

C. Noise performance of an optical image processor
with single-mode and multimode squeezed light

It is interesting to compare the variance ^DIi
2(rW )& for

multimode squeezed light given by Eq. (8.17) with the
result that can be obtained using single-mode squeezed
light. Such light can be generated, for example, by a
cavity OPA with a single transverse spatial mode, qW
50. In this case the cavity plays the role of a narrow-
band spatial filter that selects one single mode from a
continuum of spatial modes of the traveling-wave OPA.
Assuming that the spectrum of this filter is H(qW )
5(2p)2d(qW )/Ss and substituting it into the integrand in
Eq. (8.10), we obtain the correlation function G2(jW

2jW8) for single-mode squeezed light,

G2~jW2jW8!5~211exp@22rm# !/Ss . (8.23)

It is easy to see that the variance ^DIi
2(rW )& for such a

source is still given by Eq. (8.17) with F2(m) equal to

F2~m!5m2~211exp@22rm# !, (8.24)

with the following parameter m:

FIG. 28. The function Fu(m) defined by Eq. (8.18) for multi-
mode and single-mode squeezed light: (a) F2(m) for circular
illuminating and imaging apertures [see Eq. (8.21)] and for a
traveling-wave OPA with the phase-sensitive gain exp(2rm)
510; (b) F2(m) for a traveling-wave OPA with the same gain
but only one transverse spatial mode, qW 50. The dotted line
shows the minimum of F2(m) that can be reached for these
two sources with such a gain. It is realized for m→` in case (a)
and m51 in case (b).
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m5~Smin /Ss!
1/25 H ~Sp /Ss!

1/2, if Sp,Ss ,
1, if Sp.Ss . (8.25)

Therefore in this case the parameter m is restricted to
the interval 0<m<1. The optimum value of the variance
^DIi

2(rW )& is obtained for m51 and is equal to that ob-
tained with multimode squeezed light for m@1. For m
,1 the behavior of the variance ^DIi

2(rW )& for the single-
mode source given by Eqs. (8.17) and (8.24) is the same
as for nonideal detection of squeezed light by a detector
with the quantum efficiency h5m2. Figure 28(b) shows
F2(m) for single-mode squeezed light.

Note that the discussed situation of a single spatial
mode with qW 50 corresponds to a normal illumination of
the source plane P1 by a plane wave. In this case only
one point, namely, the diffraction-limited spot, illumi-
nates the object in the plane P2 . The whole image can
be reconstructed either by scanning the object or by tilt-
ing the illuminating plane wave. This should be consid-
ered not as a practical method of realization but rather
as an illustration of the difference between the single-
mode and multimode cases.

Let us consider the signal-to-noise ratio for a light
source of coherent and squeezed light as a function of
the spatial coherence of the source. As mentioned
above, under SPC illumination the image of the object is
created by several channels of the source. The number
of channels, or the space bandwidth product Ns defined
by a source of area Ss and an object of area So , is equal
to (Chavel and Lowenthal, 1978; Yu, 1985)

Ns5SoSs /l2f2. (8.26)

The number of channels that eventually contribute to
the output image is constrained by the pupil area Sp and
is given by the space bandwidth product Np of the opti-
cal system,

Np5SoSp /l2f2. (8.27)

The ratio between space bandwidth products of the
source and the system,

c5
Ns

Np
, (8.28)

gives the spatial coherence parameter c for the optical
system. A strictly coherent light source can be consid-
ered as a source with one channel, Ns51. Then, from
Eq. (8.28), we obtain for the spatial coherence param-
eter of such a source c5Np

21 . Since Np is usually as
large as 106 or more, for a spatially coherent source we
have c!1. As this increases to infinity an extremely in-
coherent illumination results. A typical range of c for an
SPC source is 0.2<c<0.7 (Yu, 1985).

Since we are interested in the comparison of a par-
tially coherent to a coherent system, let us define the
gain G in signal-to-noise ratio R as a ratio between R
for a source with Ns channels and that for a source with
one channel, Ns51, in a coherent state,

G~c !5R~Ns!/R~Ns51, coherent state!. (8.29)
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It is interesting to compare this gain as a function of c
for an SPC source in a coherent state, a single-mode
squeezed state, and a multimode squeezed state.

From Eqs. (8.15) and (8.17) with only the shot-noise
contribution we obtain G(c) for the SPC source in a
coherent state

G~c !5HAcNp,
ANp,

if Np
21<c<1,

if c.1. (8.30)

Figure 29(a) shows a plot of the gain G(c) given by Eq.
(8.30). For c,1, when the size of the illuminating aper-
ture is smaller than the size of the imaging aperture, the
gain is growing as a square root of the space bandwidth
product Ns of the source. However, when the source size
becomes larger than the pupil size, c.1, the system no
longer supports the additional channels and the gain
stays at the constant level ANp given by the space band-
width product of the optical system. Note that the same
behavior for G(c) was found by Chavel and Lowenthal
(1978) with respect to the technical noise concentrated
in the Fourier plane of the system.

For an SPC source with single-mode squeezed light,
G(c) is obtained from Eqs. (8.15), (8.17), (8.24), and
(8.25) as

G~c !5HAcNp exp@rm# , if Np
21<c<1,

ANp/A11~211exp@22rm# !/c , if c.1.
(8.31)

Its plot is shown in Fig. 29(b). Again, for c,1 the gain is
growing as the square root of Ns but now with an addi-
tional factor exp@rm# because of squeezing. This factor
improves G(c) compared with the coherent-state case.
The maximum of G(c) is reached at c51. For c.1,
when the source size becomes larger than the pupil size,

FIG. 29. The signal-to-noise ratio gain G(c) between spatially
partially coherent and strictly coherent illumination as a func-
tion of the spatial coherence parameter c : (a) a source in a
coherent state; (b) a single-mode traveling-wave OPA; (c) a
multimode traveling-wave OPA with the same gain. The space
bandwidth product is Np5104 and the phase-sensitive gain of
the OPA is exp(2rm)510. For curve (c) the ratio Sp /Sm

5102.
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part of the light gets lost in the optical scheme. For a
single-mode source of squeezed light this loss is equiva-
lent to a degradation in the quantum efficiency of pho-
todetection and causes the squeezing to deteriorate.
When c grows to infinity the gain G(c) becomes equal
to that obtained with an SPC source in a coherent state.

The gain G(c) for an SPC source of multimode
squeezed light is obtained from Eqs. (8.15), (8.17), and
(8.18) as

G~c !5HAcNp/A11F2@~cSp /Sm!1/2# , if Np
21<c<1

ANp/A11F2@~Sp /Sm!1/2# , if c.1.
(8.32)

The gain also depends on the ratio of the pupil area Sp
to the area Sm . A plot of this ratio is given in Fig. 29(c)
for a circular pupil aperture and a traveling-wave OPA
as the source of multimode squeezed light for Sp /Sm
5102. For the same squeezing parameter rm as in Fig.
29(b) we can see that for c,1 the gain G(c) is growing
with increasing c and is somewhat smaller than in the
case of a single-mode source. But upon reaching its
maximum at c51 it stays constant for all c.1 in con-
trast to the case of the single-mode source.

We can conclude that partially coherent illumination
is preferable to coherent illumination for the quantum
noise performance of the scheme. Employing a source of
squeezed light instead of a source in a coherent state
allows us to improve the signal-to-noise ratio beyond the
standard quantum limit. A multimode light source has
better noise performance than a single-mode source for
incoherent illumination with a spatial coherence param-
eter much larger than unity.

IX. CONCLUSIONS AND OUTLOOK

We have shown in this article that multimode
squeezed states of light come about as a natural gener-
alization of single-mode squeezed states. Moreover, they
can be easily produced in squeezing experiments when
no special care is taken to cut out just one spatial mode
of the field by means of a high-Q optical cavity.
Traveling-wave configurations are most natural for the
generation of multimode squeezed states. To observe
multimode squeezed states, one has to employ a dense
array of photodetectors, instead of just one photodetec-
tor, as in the case of single-mode squeezing.

In spite of the deceptive simplicity of the idea of gen-
eralizing from single-mode squeezing to multimode
squeezing, this idea brings about a wealth of new physi-
cal phenomena. We have tried to illustrate the potential
of multimode squeezing by considering here just a few
applications, including optical imaging with sub-shot-
noise sensitivity, sub-shot-noise microscopy, and noise-
less amplification of optical images. This is, however, by
no means a complete list of the applications of multi-
mode squeezed states. In conclusion we should like to
mention some other phenomena related to multimode
squeezing that are still awaiting investigation.
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We mentioned in Sec. IV that homodyne detection of
multimode squeezed states is very similar to the scheme
of optical holography. The interference of a strong co-
herent plane wave from a local oscillator with paramet-
ric down-conversion waves with different transverse
components qW is nothing else but the writing of an opti-
cal hologram. Here the local oscillator wave plays the
role of the reference wave while the down-conversion
waves act as the subject waves. The result of writing
such a hologram is paradoxical from the semiclassical
point of view: along with classical intensity modulation
in the cross section of the light beam due to interference,
one obtains regularization of the photon statistics in this
cross section.

Another possible application of multimode squeezed
states is in the area of optical image recognition with
photon-limited images (Morris, 1989). We noted in Sec.
VIII that in several applications it is advantageous to
work with low-light-level or photon-limited images. In
this case, apparently, the ultimate performance limit of
the scheme is set by random quantum fluctuations of the
light intensity in the cross section of the light beam. This
can be clearly seen from Fig. 30, which shows the role of
quantum fluctuations of light in low-light-level optical
imaging. Multimode squeezed light would allow us to
obtain a better performance from a prototype scheme
while providing the possibility of effectively suppressing
such randomness.

One other interesting subject that we did not discuss
in this review but that might be related to multimode
squeezed states is the question of a quantum limit in
optical resolution and the possibilities for improving it
using nonclassical light. The classical resolution criterion
of Rayleigh was formulated having in mind a simple ob-
servation procedure. Rayleigh’s choice of resolution
limit, which seems at first sight rather arbitrary, is based
on the presumed resolving capabilities of the human vi-
sual system. Rayleigh himself said about his criterion:
‘‘This rule is convenient on account of its simplicity and
it is sufficiently accurate in view of the necessary uncer-
tainty as to what exactly is meant by resolution’’ (Ray-
leigh, 1899).

Since Rayleigh’s day, technical progress has created
many refined tools and methods that allow us to obtain
better and better resolution. For example, while Ray-
leigh’s criterion puts a limit of about 0.2 mm for the
determination of spacing between two points under an
optical microscope, by processing microscopic images a
precision of ;1 nm has been achieved (Kamamura,
1987).

A detailed discussion of resolution is outside the
scope of this review and can be found, for example, in a
recent survey (den Dekker and van den Bos, 1997). We
should like to point out that the ability to resolve two
point sources depends fundamentally on the signal-to-
noise ratio associated with the detected image intensity
pattern. (Note that Rayleigh’s resolution criterion does
not consider the noise associated with the observation
procedure.) It is therefore natural to expect an analog of
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the standard quantum limit of resolution and the possi-
bility of improving the resolution beyond this limit with
multimode squeezed light.

Last but not least, we should like to mention a quite
different field in which multimode squeezed states and
quantum spatial fluctuations occur. This is the field of
optical pattern formation, which studies the spatial and
spatio-temporal phenomena that arise in the structure of
the electromagnetic field in the plane orthogonal to the
direction of propagation. The latest development in this
area shows that there are many situations in which quan-
tum fluctuations of light in the transverse plane of the
light beam have to be taken into account. For example,
a recent study by the group of Boyd investigated fila-
mentation of a laser beam initiated by quantum fluctua-
tions of light in its transverse area (Nagasako, Boyd, and
Agarwal, 1997). For details we refer to the reader a re-
view article on spatial pattern formation by Lugiato,
Brambilla, and Gatti (1999).

FIG. 30. Images of engraved portraits obtained using a two-
dimensional, photon-counting detection system. First column,
portrait of George Washington; second column, Abraham Lin-
coln; third column, Andrew Jackson. N is the number of de-
tected photoevents over the entire image. The spatial coordi-
nates of each detected photoevent are digitized to eight-bit
accuracy. (From Morris, 1989.)
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Cresser J. D., J. Häger, G. Leuchs, M. Rateike, and H.

Walther, 1982, in Dissipative Systems in Quantum Optics, ed-
ited by R. Bonifacio (Springer-Verlag, Berlin), p. 21.

Dagenais, M., and L. Mandel, 1978, Phys. Rev. A 18, 2217.
Davidovich, L., 1996, Rev. Mod. Phys. 68, 127.
den Dekker, A. J., and A. van den Bos, 1997, J. Opt. Soc. Am.

14, 547.
Devaux, F., and E. Lantz, 1995a, Opt. Commun. 114, 295.
Devaux, F., and E. Lantz, 1995b, Opt. Commun. 118, 25.
Devaux, F., and E. Lantz, 1995c, J. Opt. Soc. Am. B 12, 2245.
Devaux, F., E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P.

A. Doreau, and T. Laurent, 1995, Nonlinear Opt. 11, 25.
Drummond, P. D., 1990, Phys. Rev. A 42, 6845.
Fabre, C., and E. Giacobino, 1992, Eds., Quantum Noise Re-

duction in Optical Systems/Experiments, special issue of Appl.
Phys. B 55, 189.

Fisher, R. A., 1983, Optical Phase Conjugation (Academic,
New York).

Gatti, A., and L. A. Lugiato, 1995, Phys. Rev. A 52, 1675.
Gatti, A., L. A. Lugiato, L. Spinelli, G. Tissoni, M. Brambilla,

P. Di Trapani, F. Prati, G. L. Oppo, and A. Berzanskis, 1999,
Nonlinear Optical Patterns: Applications to Spatial Soliton Ar-
rays, Quantum Aspects, Chaos Solitons Fractals 10, 875.

Gatti, A., H. Wiedemann, L. A. Lugiato, I. Marzoli, G. L.
Oppo, and S. Barnett, 1997, Phys. Rev. A 56, 877.

Gavrielides, A., P. Peterson, and D. Gardimona, 1987, J. Appl.
Phys. 62, 2640.

Gehitz, M., G. C. Bjorklund, and E. A. Whittaker, 1985, J.
Opt. Soc. Am. 132, 1519.

Gilson, C. R., S. M. Barnett, and S. Stenholm, 1987, J. Mod.
Opt. 34, 855.

Glauber, R. J., 1963, Phys. Rev. 130, 2529.
Glauber, R. J., 1965, Quantum Optics and Electronics (Les

Houches Summer School of Theoretical Physics, University
of Grenoble), edited by C. DeWitt, A. Blandin, and C.
Cohen-Tannoudji (Gordon and Breach, New York), p. 53.

Goodman, J. W., 1968, Introduction to Fourier Optics
(McGraw-Hill, New York), Chap. 1.

Goodman, J. W., 1985, Statistical Optics (Wiley, New York).
Grangier, P., G. Roger, and A. Aspect, 1986, Europhys. Lett.

1, 173.
Grangier, P., G. Roger, A. Aspect, A. Heidmann, and S. Rey-

naud, 1986, Phys. Rev. Lett. 57, 678.
Grangier, P., R. E. Slusher, B. Yurke, and A. LaPorta, 1987,

Phys. Rev. Lett. 59, 2153.
Guthals, D., and D. Sox, 1990, in Proceedings of International

Conference on Lasers ’89, edited by D. G. Harris and T. M.
Shay (STS, Mclean, VA), p. 808.

Hanbury Brown, R., and R. Q. Twiss, 1956, Nature (London)
177, 27.

Hanbury Brown, R., and R. Q. Twiss, 1957a, Proc. R. Soc.
London, Ser. A 242, 300.

Hanbury Brown, R., and R. Q. Twiss, 1957b, Proc. R. Soc.
London, Ser. A 243, 291.



1588 Mikhail I. Kolobov: Spatial behavior of nonclassical light
Heidmann, A., S. Reynaud, and C. Cohen-Tannoudji, 1984,
Opt. Commun. 52, 235.

Henry, C. H., and R. F. Kazarinov, 1996, Rev. Mod. Phys. 68,
801.

Ho, S.-T., P. Kumar, and J. H. Shapiro, 1986, Phys. Rev. A 34,
293.

Ho, S.-T., P. Kumar, and J. H. Shapiro, 1987, Phys. Rev. A 35,
3982.

Ho, S.-T., P. Kumar, and J. H. Shapiro, 1991, J. Opt. Soc. Am.
B 8, 37.

Holm, D. A., M. Sargent III, and B. A. Capron, 1986, Opt.
Lett. 11, 443.

Hong, C. K., and L. Mandel, 1986, Phys. Rev. Lett. 56, 58.
Kamamura, S., 1987, Appl. Opt. 26, 3425.
Khosla, R. P., 1992, Phys. Today 45, 42.
Kilin, S. Ya., 1989, Opt. Spektrosk. 66, 733 [Opt. Spectrosc. 66,

429 (1989)].
Kimble, H. J., 1992, in Fundamental Systems in Quantum Op-

tics, edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin
(North-Holland, Amsterdam), Chap. 10.

Kimble, H. J., M. Dagenais, and L. Mandel, 1977, Phys. Rev.
Lett. 39, 691.

Kimble, H. J., M. Dagenais, and L. Mandel, 1978, Phys. Rev. A
18, 201.

Kimble, H. J., and L. Mandel, 1976, Phys. Rev. A 13, 2123.
Kimble, H. J., and D. F. Walls, 1987, Eds., Squeezed States of

the Electromagnetic Field, special issue of J. Opt. Soc. Am. B
4, 1453.

Klyshko, D. N., 1988a, Photons and Nonlinear Optics (Gordon
and Breach, New York).

Klyshko, D. N., 1988b, Zh. Eksp. Teor. Fiz. 94, 88 [Sov. Phys.
JETP 67, 915 (1989)].

Klyshko, D. N., 1988c, Zh. Eksp. Teor. Fiz. 94, 82 [Sov. Phys.
JETP 67, 1131 (1989)].

Kolobov, M. I., 1991, Phys. Rev. A 44, 1986.
Kolobov, M. I., 1995, Phys. Rev. A 51, 1656.
Kolobov, M. I., and P. Kumar, 1993, Opt. Lett. 18, 849.
Kolobov, M. I., and L. A. Lugiato, 1995, Phys. Rev. A 52, 4930.
Kolobov, M. I., and I. V. Sokolov, 1986, Zh. Eksp. Teor. Fiz.

90, 1889 [Sov. Phys. JETP 63, 1105 (1986)].
Kolobov, M. I., and I. V. Sokolov, 1989a, Zh. Eksp. Teor. Fiz.

96, 1945 [Sov. Phys. JETP 69, 1097 (1989)].
Kolobov, M. I., and I. V. Sokolov, 1989b, Phys. Lett. A 140,

101.
Kolobov, M. I., and I. V. Sokolov, 1989c, Opt. Spektrosk. 66,

753 [Opt. Spectrosc. 66, 440 (1989)].
Kolobov, M. I., and I. V. Sokolov, 1991, Europhys. Lett. 15,

271.
Kumar, P., and M. I. Kolobov, 1994, Opt. Commun. 104, 374.
Kumar, P., and J. H. Shapiro, 1984, Phys. Rev. A 30, 1568.
Le Berre-Rousseau, M., E. Ressayre, and A. Tallet, 1979,

Phys. Rev. Lett. 43, 1314.
Levenson, J. A., I. Abram, T. Rivera, P. Fayolle, J. C. Garreau,

and P. Grangier, 1993a, Phys. Rev. Lett. 70, 267.
Levenson, J. A., I. Abram, T. Rivera, and P. Grangier, 1993b,

J. Opt. Soc. Am. B 10, 2233.
Levenson, M. D., K. M. Johnson, V. C. Hanchett, and K. Cha-

ing, 1981, J. Opt. Soc. Am. 71, 737.
Levenson, M. D., R. M. Shelby, A. Aspect, M. Reid, and D. F.

Walls, 1985, Phys. Rev. A 32, 1550.
Loudon, R., 1983, The Quantum Theory of Light, 2nd ed.

(Clarendon, Oxford), Chap. 4.
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
Loudon, R., and P. L. Knight, 1987, Eds., Squeezed Light, spe-
cial issue of J. Mod. Opt. 34, 709.

Louisell, W. H., 1973, Quantum Statistical Properties of Radia-
tion (Wiley, New York).

Lugiato, L. A., 1994, Ed., Nonlinear Optical Structures, Pattern,
Chaos, special issue of Chaos, Solitons and Fractals 4, 1251.

Lugiato, L. A., M. Brambilla, and A. Gatti, 1999, in Advances
in Atomic, Molecular, and Optical Physics, Vol. 40, edited by
B. Bederson and H. Walther (Academic, Boston), p. 229.

Lugiato, L. A., and A. Gatti, 1993, Phys. Rev. Lett. 70, 3868.
Lugiato, L. A., A. Gatti, H. Ritsch, I. Marzoli, and G. L. Oppo,

1997, J. Mod. Opt. 44, 1899.
Lugiato, L. A., A. Gatti, and H. Wiedemann, 1997, in Quan-

tum Fluctuations, edited by S. Reynaud, E. Giacobino, and J.
Zinn-Justin, Les Houches, Session LXIII (1995) (Elsevier,
Amsterdam), p. 431.

Lugiato, L. A., and I. Marzoli, 1995, Phys. Rev. A 52, 4886.
Machida, S., and Y. Yamamoto, 1986, Opt. Commun. 57, 290.
Maeda, M. W., P. Kumar, and J. H. Shapiro, 1987, J. Opt. Soc.

Am. B 4, 1501.
Malygin, A. A., A. N. Penin, and A. V. Sergienko, 1985, Dokl.

Akad. Nauk SSSR 281, 308 [Sov. Phys. Dokl. 30, 229 (1985)].
Mandel, L., 1979, Opt. Lett. 4, 205.
Mandel, L., and E. Wolf, 1965, Rev. Mod. Phys. 37, 231.
Mandel, L., and E. Wolf, 1995, Optical Coherence and Quan-

tum Optics (Cambridge University Press, New York).
Mander, G. L., R. Loudon, and T. G. Shepherd, 1988, in Pho-

tons and Quantum Fluctuations, edited by R. E. Pike and H.
Walther (Hilger, Bristol), p. 190.

Marable, M. L., S.-K. Choi, and P. Kumar, 1998, Optics Ex-
press 2, 84.

Milburn, G. J., M. L. Steyn-Ross, and D. F. Walls, 1987, Phys.
Rev. A 35, 4443.

Morgan, B. L., and L. Mandel, 1966, Phys. Rev. Lett. 16, 1012.
Morris, G. M., 1989, in Optical Processing and Computing, ed-

ited by H. H. Arsenault, T. Szoplik, and B. Macukow (Aca-
demic, New York), p. 343.

Nagasako, E. M., R. W. Boyd, and G. S. Agarwal, 1997, Phys.
Rev. A 55, 1412.

Oppo, G. L., M. Brambilla, and L. A. Lugiato, 1994, Phys.
Rev. A 49, 2028.
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Peřina, J., 1991, Quantum Statistics of Linear and Nonlinear
Optical Phenomena, 2nd ed. (Kluwer, Dordrecht).

Piskarskas, A., A. Stabinis, and A. Yankauskas, 1989, Opt.
Spektrosk. 66, 742 [Opt. Spectrosc. 66, 434 (1989)].

Prasad, S., 1994, J. Opt. Soc. Am. A 11, 2799.
Protsenko, I. E., and L. A. Lugiato, 1994, Opt. Commun. 109,

304.
Protsenko, I. E., L. A. Lugiato, and C. Fabre, 1994, Phys. Rev.

A 50, 1627.
Rarity, J. G., P. R. Tapster, and E. Jakeman, 1987, Opt. Com-

mun. 62, 201.
Rayleigh Lord (John William Strutt, Third Baron Rayleigh),

1899, in Scientific Papers by John William Strutt, Baron Ray-
leigh, Vol. I, 1869–1881 (Cambridge University Press, Cam-
bridge), p. 420.

Rebka, G. A., and R. V. Pound, 1957, Nature (London) 180,
1035.



1589Mikhail I. Kolobov: Spatial behavior of nonclassical light
Reid, M. D., and D. F. Walls, 1985a, Phys. Rev. A 31, 1622.
Reid, M. D., and D. F. Walls, 1985b, J. Opt. Soc. Am. B 2,

1682.
Reid, M. D., and D. F. Walls, 1986, Phys. Rev. A 34, 4929.
Reynaud, S., A. Heidmann, E. Giacobino, and C. Fabre, 1992,

in Progress in Optics, Vol. 30, edited by E. Wolf (North-
Holland, Amsterdam), p. 1.

Rosenbluh, M., and R. M. Shelby, 1991, Phys. Rev. Lett. 66,
153.

Rubin, M. H., D. N. Klyshko, Y. H. Shih, and A. V. Sergienko,
1994, Phys. Rev. A 50, 5122.

Saleh, B. E. A., and M. C. Teich, 1985, Opt. Commun. 52, 429.
Savage, G. M., and D. F. Walls, 1987, J. Opt. Soc. Am. B 4,

1514.
Scarl, D. B., 1966, Phys. Rev. Lett. 17, 663.
Shelby, R. M., M. D. Levenson, S. H. Perlmutter, R. G. De-

Voe, and D. F. Walls, 1986, Phys. Rev. Lett. 57, 2520.
Shih, Y. H., and A. V. Sergienko, 1994, Phys. Rev. A 50, 2564.
Short, R., and L. Mandel, 1983, Phys. Rev. Lett. 61, 2921.
Slusher, R. E., P. Grangier, A. LaPorta, B. Yurke, and M. J.

Potasek, 1987, Phys. Rev. Lett. 59, 2566.
Smirnov, D. F., and I. V. Sokolov, 1976, Zh. Eksp. Teor. Fiz.

70, 2098 [Sov. Phys. JETP 43, 1095 (1976)].
Smirnov, D. F., and A. S. Troshin, 1987, Usp. Fiz. Nauk 153,

233 [Sov. Phys. Usp. 30, 851 (1987)].
Sokolov, I. V., 1977, Zh. Eksp. Teor. Fiz. 72, 1687 [Sov. Phys.

JETP 45, 884 (1977)].
Sokolov, I. V., 1991, Zh. Eksp. Teor. Fiz. 100, 780 [Sov. Phys.

JETP 73, 431 (1991)].
Sokolov, I. V., 1992, Opt. Spektrosk. 73, 1158 [Opt. Spectrosc.

73, 689 (1992)].
Sokolov, I. V., and Ya. A. Fofanov, 1993, Opt. Spektrosk. 74,

764 [Opt. Spectrosc. 74, 454 (1993)].
Stoler, D., 1970, Phys. Rev. D 1, 3217.
Stoler, D., 1971, Phys. Rev. D 4, 1925.
Strekalov, D. V., A. V. Sergienko, D. N. Klyshko, and Y. H.

Shih, 1995, Phys. Rev. Lett. 74, 3600.
Takahashi, H., 1965, in Advances in Communication Systems,

edited by A. V. Balakrishnan (Academic, New York), p. 277.
Teich, M. C., and B. E. A. Saleh, 1985, J. Opt. Soc. Am. B 2,

275.
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
Teich, M. C., B. E. A. Saleh, and J. Peřina, 1984, J. Opt. Soc.
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