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Contrary to naive cosmological expectations, all evidence suggests that the universe contains an
abundance of matter over antimatter. This article reviews the currently popular scenario in which
testable physics, present in the standard model of electroweak interactions and its modest extensions,
is responsible for this fundamental cosmological datum. A pedagogical explanation of the motivations
and physics behind electroweak baryogenesis is provided, and analytical approaches, numerical
studies, up to date developments, and open questions in the field are also discussed.
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A natural question to ask is, what is the largest scale
on which we can say that there is no antimatter? This
question was addressed by Steigman (1976) and by
Stecker (1985), and in particular was the subject of a
careful recent analysis by Cohen et al. (1998). If large
domains of matter and antimatter exist, then annihila-
tions would take place at the interfaces between them. If
the typical size of such a domain were small enough,
then the energy released by these annihilations would
result in a diffuse y-ray background and a distortion of
the cosmic microwave radiation, neither of which is ob-
served. Quantitatively, the result obtained by Steigman
and Stecker is that we may safely conclude that the uni-
verse consists entirely of matter on all scales up to the
Hubble size. It therefore seems that the universe is fun-
damentally matter-antimatter asymmetric.

The above observations put an experimental upper
bound on the amount of antimatter in the universe.
However, strict quantitative estimates of the relative
abundances of baryonic matter and antimatter may also
be obtained from the standard cosmology. Primordial
nucleosynthesis [for a review see Copi ef al. (1995)] is
one of the most powerful tools of the standard cosmo-
logical model. The theory allows accurate predictions of
the cosmological abundances of all the light elements,
H, 3He, *He, D, B, and ’Li, while requiring only a
single input parameter. Define n, to be the number den-
sity of baryons in the universe. Similarly define n}, to be
the number density of antibaryons, and the difference
between the two to be np. Then, if the entropy density
in the universe is given by s, the single parameter re-
quired by nucleosynthesis is the baryon-to-entropy ratio
np—Np

= ; (1

N

ng
="

and one may conservatively say that calculations of the
primordial light element abundances are correct if

1.5x 107 0< 5<7x1071°, ()

Although the range of » within which all light element
abundances agree with observations is quite narrow (see
Fig. 1), its existence at all is remarkable and constitutes
a strong confirmation of the standard cosmology. For
recent progress in nucleosynthesis see Tytler et al
(1996) and Hogan (1997).

The standard cosmological model provides a complete
and accurate description of the evolution of the universe
from extremely early times (a few minutes) to the
present day (1020 billion years) given a host of initial
conditions, one of which is the value of #. This standard
picture is based on classical, fluid sources for the Ein-
stein equations of General Relativity. While the success
of the standard cosmology is encouraging, there remains
the question of the initial conditions. One approach is
just to consider the initial values of cosmological param-
eters as given. However, the values required for many
parameters are extremely unnatural in the sense that the
tiniest deviation from them leads to a universe entirely
different from the one that we observe. One well-known
example of this is the initial value of the mass density of
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FIG. 1. Zone of concordance for primordial nucleosynthesis.
7y denotes the value of the neutron lifetime used in these
calculations. Thanks to Peter Kernan and Lawrence Krauss for
providing this figure (Krauss and Kernan, 1995).

the universe, the naturalness of which is at the root of
the flatness problem of the standard cosmology.

The philosophy of modern cosmology, developed over
the last thirty years, is to attempt to explain the required
initial conditions on the basis of quantum field theories
of elementary particles in the early universe. This ap-
proach has allowed us to push our understanding of
early-universe cosmology back to much earlier times,
conservatively as early as 10! seconds and perhaps
much earlier.

The generation of the observed value of 7 in this con-
text is referred to as baryogenesis. A first step is to out-
line the necessary properties a particle physics theory
must possess. These conditions were first identified by
Sakharov (1967) and are now referred to as the three
Sakharov criteria. They are

¢ Violation of the baryon number (B) symmetry;

¢ Violation of the discrete symmetries C (charge con-
jugation) and CP (the composition of parity and C);

e A departure from thermal equilibrium.

The first of these is rather obvious. If no processes
ever occur in which B is violated, then the total number
of baryons in the universe must remain constant, and
therefore no asymmetry can be generated from symmet-
ric initial conditions. The second Sakharov criterion is
required because, if C and CP are exact symmetries,
then one can prove that the total rate for any process
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that produces an excess of baryons is equal to the rate of
the complementary process that produces an excess of
antibaryons and so no net baryon number can be cre-
ated. That is to say that the thermal average of B, which
is odd under both C and CP, is zero unless those dis-
crete symmetries are violated. Finally, there are many
ways to explain the third criterion. One way is to calcu-
late the equilibrium average of B:

(B);=Tr(e PEB)=Ti[(CPT)(CPT) ‘e PB]
=Tr{e PH(CPT) 'B(CPT)]=—Tr(e P"B). (3)

In the third step I have used the requirement that the
Hamiltonian H commutes with CPT, and in the last
step used the property of B that it is odd under C and
even under P and T symmetries. Thus (B);=0 in equi-
librium and there is no generation of net baryon num-
ber. This may be loosely described in the following way.
In quantum field theories in thermal equilibrium, the
number density of any particle species, X say, depends
only on the energy of that species, through

1
Meq(X)= —E=myr7 4)

where u is the chemical potential corresponding to
baryon number. Since the masses of particle and anti-
particle are equal by virtue of the CPT theorem, and
=0 if baryon number is violated, we have

d? _
Neq(X)zj ﬁnequeq(X), (5)

and again there is no net asymmetry produced.

The focus of this article is to review one popular sce-
nario for generating the baryon asymmetry of the uni-
verse (BAU), as quantified in Eq. (2), within the context
of modern cosmology. In general, such scenarios involve
calculating nz and then dividing by the entropy density,

272
75 8

where g, is the effective number of massless degrees of
freedom at temperature 7. While there have been many
attempts in the literature to explain the baryon asymme-
try of the universe (for a review see Dolgov, 1992), 1
shall concentrate on those scenarios which involve
anomalous electroweak physics, when the universe was
at a temperature of 10° GeV [for earlier reviews see
Turok (1993) Cohen et al. (1993), and Rubakov and
Shaposhnikov (1996)]. The production of baryon asym-
metry through these models is referred to as electroweak
baryogenesis.

In the next section I shall describe baryon number
violation in the electroweak theory both at zero and at
nonzero temperature. In Sec. III, I shall move on to the
subject of CP violation, explaining how this arises in the
standard model and how it is achieved in some popular
extensions. Section IV contains an account of the elec-
troweak phase transition, including discussions of both
analytic and numerical approaches. Having set up the
framework for electroweak baryogenesis, I turn in Sec.

s= T3, (6)
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V to the dynamics of the case in which baryon produc-
tion occurs close to a phase boundary during a phase
transition. In Sec. VI, I then extend these ideas to in-
clude the effects of particle transport, or diffusion. Sec-
tion VII contains a description of how baryogenesis is
implemented in a popular extension of the standard
model, the minimal supersymmetric standard model
(MSSM). In Sec. VIII, I explain how, in some extensions
of the electroweak theory, baryogenesis may be medi-
ated by topological defects, alleviating the constraints on
the order of the phase transition. Finally, in Sec. IX, I
summarize the results and comment on open questions
and future directions in the field.

It is my hope that this article will serve as both a
review of the background and basic material for begin-
ners in the field and a summary of and commentary on
the most recent results and directions in the subject.
However, the focus of this article, as in any such en-
deavor, is quite idiosyncratic, and I apologize to any of
my colleagues whose work has been omitted or incor-
rectly detailed. A different focus can be found in other
accounts of the subject and, in particular, for a compre-
hensive modern review of numerical approaches I rec-
ommend that of Rubakov and Shaposhnikov (1996).

A note about conventions. Throughout I use a metric
with signature +2 and, unless explicitly stated other-
wise, I employ units such that A=c=k=1 so that New-
ton’s gonstant is related to the Planck mass through G
=M, .

II. BARYON NUMBER VIOLATION
IN THE ELECTROWEAK THEORY

The standard model of unified electromagnetic and
weak nuclear interactions (Glashow, 1961; Weinberg,
1967; Salam, 1968) is based on the gauge groups
SU(2)xU(1). The model is described by the Lagrang-
ian density

1 1
L= (Dﬂ¢)TD“¢— ZFM,,F’“’— ZW;’WW‘”“HL V(g)+ L.
(™)
Here, the field strengths are
F,,=d,B,—d,B,,
a _ a a bc Ab 4¢
Wi,=d,A5=3,A,+ge" A A,
where B, is the hypercharge gauge field and A;‘L are the
weak isospin gauge fields. The covariant derivative is
i i,
D,=d,— EgT‘AM_ 78 B,
and the Higgs potential is

A
V(¢)=7(¢76—v?)> ®)

In the above, g is the SU(2) coupling constant, g’ is the
U(1) coupling constant, \ is the Higgs self-coupling, and
v=246 GeV is the vacuum expectation value (VEV) of
the Higgs. The potential V(¢) is chosen so that the
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gauge symmetry is spontaneously broken down to the
U(1) of electromagnetism that is realized by the
vacuum today, and £, denotes the fermionic sector of
the theory that I will describe in a moment. Note that it
is conventional to define

g 1
W4T ©
and to write the ratio of g’ to g as

!

8
tan Q= —, 10
W= (10)
where the experimentally measured value of the weak
mixing angle 6y, is given by
sin? 6y,=0.23. (11)

It will be useful to describe briefly a slightly different
formulation of the SU(2)+ Higgs theory, equivalent to
considering the purely bosonic part of the standard
model and ignoring the U(1) hypercharge gauge field.
The Lagrangian may be written in the form

1 1
L=~ ZTr(WWW’”) - ETr(DWI))TD,}D

- %[Tr(qﬂqn—vz]z. (12)

In this form, the standard Higgs doublet ¢=(¢;,¢,) is
related to the matrix ® by
¢3 ¢1>
—¢7 )
For reference, g=0.65, the gauge boson mass is my,

=4gv, and the Higgs boson mass is m;=+2\v. Note
that

<I)(x,t)=( (13)

1 0
PTO=(0} o1+ @3 ¢2) 0 1), (14)
so that one can write
o=y (15)
‘/2 9

where 02=2(¢} o1+ @5 0,)=Tr®'d, and U is an
SU(2) valued field that is uniquely defined at any space-
time point where o does not vanish. Without loss of gen-
erality, impose the condition that at all times

lim o(x,t)=Vv, (16)

x| o0

. (17)

1 0
Iim U(x,t)= 0 1

|X|—>oo

In Ay=0 gauge, a vacuum configuration is of the form

\'
d=—

V2

1 il
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At any time ¢t when o(x,t)#0 for all x we have that
U(x,t) is a map from R” into SU(2) with the points at
infinity identified [that is from S° into SU(2)], and there-
fore U(x,t) can be associated with an integer-valued
winding,

Nu(t)=w[U]
1
T 2447

f d*xe* T UT9,UU9,UU"9, U],

(19)
the Higgs winding number. If ®(x,t) evolves continu-
ously in ¢ then Ny(t) can change only at times when
there is a zero of o at some point in space. At such
times, N is not defined; at all other times, it is integer
valued. Note that the Higgs winding number of a
vacuum configuration (18) is equal to its Chern-Simons
number,

8 | prcit 2.
NCS(I)EWJ d>xe" Tr(A,-ﬁ]-Ak+ ?—’lgAl-AjAk .

(20)
However, for a general nonvacuum configuration the
Chern-Simons number is not integer valued.

Finally, the fermionic sector of the full
SU(2)XU(1) theory is described by
Li=L+L,, (21)

where the lepton- and quark-sector Lagrangians for a

single family are

L=—iVy*D W —iegy"D sep+h(egd'V+V per),
(22)

— u\ —
L,= —z(u,d)Ly"Du<d>L—luRy“DMuR—ldRy“DﬂdR

+

— Gyl (u,d), 4

dR+E&(¢‘,¢*>(Z)

L

(EE)L( ¢¢i )MR+ER(_¢,¢+)(Z) }, (23)
L

where 1 have written ¢=(¢",#°), with ¢~ =(¢")*.
Here, e is the electron, u and d are the up and down
quarks, respectively, and ¥ represents the left-handed
lepton doublet. The indices L and R refer to left- and
right-handed components, and G, and G, are Yukawa
coupling constants.

When extended to three families, this contains the six
types of quarks Ui:(u,c,t), Di=(d,s,b), the electron,
muon, and tau lepton, and their associated neutrinos.
Note that gauge-invariant fermion mass terms are gen-
erated through couplings to the Higgs doublet ®.

At the classical level, the number of each fermionic
species is separately conserved in all processes. This is
reflected in the fact that for each species there exists a
global U(1) current, which is exactly classically con-
served. In the standard model there are a total of 12
different species and so there are 12 separate conserved
global currents. In particular, for baryons, one may write
a vectorlike current

-G,
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FIG. 2. The triangle diagram contributing to the anomaly in
the baryon and lepton number currents.

1 —
i5=5Q7*Q, (24)

where Q represents quarks, and there is an implied sum
over the color and flavor indices. Now, due to quantum

effects, any axial current y*y° of a gauge-coupled
Dirac fermion ¢ is anomalous (Adler, 1969; Bell and
Jackiw, 1969). This is relevant to baryon number since
the electroweak fermions couple chirally to the gauge
fields. If one writes the baryon current as

1 _ _
jE=7[QY"(1=7y)0+Qy"(1+¥)0]. (25)

only the axial part of this vector current is important
when one calculates the divergence. This effect can be
seen by calculating triangle graphs (see Fig. 2) and leads
to the following expressions for the divergences of the
baryon number and lepton number currents:

2 12
o 8 & v
Iulb=0ul =ni| 32 Wi W™ = 55

F,F*|,  (26)
where n; is the number of families,

T/ mv 1 vaf

W# =§e" Woap (27)

is the dual of the SU(2) field strength tensor, and an

analogous expression holds for F.

The anomaly is important because of the multiple
vacuum structure of the theory (see Fig. 3), as I shall
describe in the following subsections. Equation (26) may
be written as

g2 g/Z
&#jgzaﬂjﬁZHf 327(9141{#_327&#]{” s (28)
VIA,0]
Sphaleron
Ao
n=0 n=1 n=2

FIG. 3. The multiple vacua of the electroweak theory depicted
along some direction in configuration space. The sphaleron is
also shown.
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where the gauge-noninvariant currents are defined by
m— pvaf a a 1 aAb 4qc
Kt=e anAB_ ggeabcAVAaAB >

kt=et"*BE, B,. 29
B

For simplicity, we shall consider space to be a
3-sphere and consider the change in baryon number
from time =0 to some arbitrary final time t=t;. For
transitions between vacua, the average values of the
field strengths are zero at the beginning and the end of
the evolution. Since the final term in Eq. (28) is strictly
proportional to the field strength of the U(1) gauge
fields, we may ignore this term. Then, using Eq. (20), we
may write the change in baryon number as

AB=ANcs=ndNcs(ty) =Ncs(0)]. (30)

Although the Chern-Simons number is not gauge invari-
ant, the change ANy is. Thus, since Ny is integral (as
we have mentioned), changes in Chern-Simons number
result in changes in baryon number that are integral
multiples of the number of families n;.

To understand this structure more completely, since
the U(1) gauge fields are unimportant here, I shall re-
turn to the SU(2) theory. Consider fermion production
in the background of the evolving Higgs and gauge fields
and ignore the back reaction of the fermions on the
bosonic fields. Consider the dynamics of nonzero energy
configurations with nonzero Higgs winding. A simple ex-
ample (Ambjgrn et al., 1989) is

v
CI>(x)=5U[1](x),

A,(0)=0, (1)

where Uypy)(x) is a winding-number-one map, say,

Upy(x) =exp(in(r) 7-X), (32)

with 7(0)=—= and 7(«)=0. The configuration (31)
has no potential energy but does carry gradient energy
because the covariant derivatives D;® do not vanish.
This configuration has Ny=1, where Ny is defined in
Eq. (19). If the configuration (31) were released from
rest it would radiate away its energy and relax towards a
vacuum configuration. There are two very different ways
for this to occur (Turok and Zadrozny, 1990.) If the
characteristic size of Ujy; is large compared to m{vl
then the gauge field will evolve until it lines up with the
Higgs field, making the covariant derivatives zero, and
at late times Ny will still be one. If the characteristic size
is small the configuration will shrink, the Higgs field o
will go through a zero, and at late times N will be zero.
These dynamics are the subject of Sec. V.

Note that N is not invariant under large gauge trans-
formations. However, the change ANy in Higgs winding
is gauge invariant, and the two distinct relaxation pro-
cesses are distinguished by whether AN is zero or non-
zero. To be definite, I shall always choose the gauge
such that the prototypical initial configuration is of the
form (31), which has Ny=1.
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Now, if the fields relax to the vacuum by changing the
Higgs winding then there is no anomalous fermion num-
ber production. However, if there is no net change in
Higgs winding during the evolution (for example, o
never vanishes) then there is anomalous fermion num-
ber production.

To understand these claims consider two sequences of
configurations beginning with the wound-up configura-
tion [Eq. (31)] and ending at the classical vacuum [Eq.
(18)]. The first sequence ends at the vacuum (18) with
U=1, while the second ends up at U= Uy;). Note that
these sequences cannot be solutions to the classical
equations of motion since the initial configurations carry
energy whereas the final ones do not. Throughout both
sequences the boundary conditions (16) and (17) are
maintained. For the first sequence, o must vanish at
some intermediate configuration since the Higgs wind-
ing changes. For the second sequence, the change in
Higgs winding is zero and ¢ need not vanish.

Now introduce an SU(2); weak fermionic doublet .
The fermion is given mass through the usual gauge-
invariant coupling to the Higgs field ®, and for simplic-
ity we assume that both the up and down components of
the doublet have the same mass m. The fermion field is
quantized in the background of the bosonic fields given
by the above interpolation.

The anomaly equation (26) reduces here to

2

g
aﬂ]:u:

3522 Tr( ww), (33)

which, when integrated, implies that the change in the
fermion number from the beginning to the end of a se-
quence is given by

f d3x J° —fd3xJ0
final

where U is that of the final configuration (18). For the
first sequence w is one, whereas for the second it is zero.
Thus fermion number is violated in processes for which
the configuration (31) unwinds via gauge unwinding, but
is not violated when such a configuration unwinds via a
Higgs unwinding.

=-w[U], (34)

initial

A. Zero-temperature results

We have seen that the vacuum of the electroweak
theory is degenerate, labeled by Ny and Ng. The field
theories constructed around these vacua are entirely
equivalent and may be obtained from one another
through large gauge transformations. However, transi-
tions between these vacua result in the anomalous pro-
duction of fermions via the anomaly equation (26). Such
transitions violate baryon number and so are classically
forbidden, since baryon number is an exact global sym-
metry of the theory. In fact, as I shall describe, at zero
temperature, baryon-number-violating processes occur
through quantum tunneling between the classical vacua
of the theory.

In the infinite-dimensional gauge and Higgs-field con-
figuration space, adjacent vacua of the electroweak

Rev. Mod. Phys., Vol. 71, No. 5, October 1999

theory are separated by a ridge of configurations with
energies larger than that of the vacuum (see Fig. 3). The
lowest-energy point on this ridge is a saddle-point solu-
tion (Dashen et al., 1974; Christ, 1980) to the equations
of motion with a single negative eigenvalue, and is re-
ferred to as the sphaleron (Manton, 1983; Klinkhamer
and Manton, 1984). The sphaleron plays a central role in
the calculation of the rate of baryon-number-violating
processes.

The calculation of the tunneling rate between degen-
erate vacua in quantum field theories is well established
(for a review see Coleman, 1979). One first constructs
the Euclideanized action Sy, obtained from the
Minkowski-space action by performing a Wick rotation,

t——it=r. (35)

In the case of pure gauge theories, one then finds the
solution to the Euclidean equations of motion that inter-
polates between the two vacuum states and minimizes
the Euclidean action. Such a solution to the full four-
dimensional Euclidean system is known as an instanton
and may be seen as a time series of three-dimensional
configurations. The transition rate between the degener-
ate vacua is then proportional to

exp(_SE)|instanton . (36)

When the theory in question has a Higgs field, as in
the electroweak theory, the calculation of the tunneling
amplitude is a little more complicated. In this case, there
are no nonzero size configurations that minimize the Eu-
clidean action, and a slightly different approach is used.
The procedure is to fix the size of the Euclidean configu-
rations in the functional integral by explicitly introduc-
ing a constraint (Affleck, 1981a). The functional integral
is then evaluated using these constrained instantons and,
finally, an integral over the instanton size is performed.

As an estimate of the zero-temperature B-violating
rate in the electroweak theory, I shall follow the ap-
proach of 't Hooft (1976). Consider the pure gauge
SU(2) theory (note no Higgs field). The relevant con-
figurations are finite-action solutions to the Euclidean
equations of motion. Further, as I described earlier, the
configurations of interest must possess nonzero gauge
winding in order for baryon number violation to take
place. If we consider the case in which the instanton
interpolates between adjacent vacua of the theory, then
the topological charge of such a solution is AN g=1.
Now, the quantity

f d*x (Wi, —W4,)? (37)
is positive semidefinite for any gauge-field configuration.
This allows us to construct a bound on the Euclidean
action of configurations in the following way. Expanding
Eq. (37) gives

f d*x [Tr(W ,,, W)+ Tr(W ,, W~

-2 Tr(W,,Wr)]1=0. (38)
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Now, in terms of the Euclidean action and the Chern-
Simons number, this may be written as

1672
4Sp—2 2 N¢s=0, (39)

which finally yields
8’
SEB ?Ncs . (40)

The Ncg=1 instanton saturates this bound, which
means that the rate per unit volume of baryon-number-
violating processes at zero temperature is approximately

I['(T=0)~exp(—2Sg)~10"17, (41)

This is so small that if the universe were always close to
zero temperature, not one event would have occurred
within the present Hubble volume ever in the history of
the universe.

B. Nonzero-temperature results

We have seen that the rate of baryon-number-
violating processes is negligible at zero temperature.
This is to be expected, since such events occur through
quantum tunneling under a high potential barrier (~10
TeV). If this were the case at all temperatures, it is safe
to say that electroweak baryon number violation would
have no observable consequences. In this section we
shall see that, when one includes the effects of nonzero
temperature, classical transitions between electroweak
vacua become possible due to thermal activation.

1. Mechanical analogy

Let us begin with a warmup example. Consider an
ideal pendulum of mass m and length /, confined to ro-
tate in the plane. The Lagrangian is

LErys
L=§ml 0-—mgl(1—cos 6). (42)

The system possesses a periodic vacuum structure la-
beled by integer n,

0,=2n. (43)

The Schrodinger equation describing the quantum me-
chanics of this system is

hw d? . 1 ) _E m
7 _ad_Xz ;Sln X ‘;bn(X)_ nlpn(X)’ ( )

where y=0/2, w=g/l, and a=hw/(4mgl)<1. Since the
potential is periodic in the angle 6, the wave functions
will be periodic and therefore the multiple vacuum
structure of the system is manifest. However, if one uses
perturbation theory, Taylor expanding the potential
about a chosen minimum (#=0) and keeping only the
first term, then the Schrodinger equation becomes that
for a simple harmonic oscillator and all information
about the periodic vacua is lost. This situation is analo-
gous to most familiar calculations in the electroweak
theory, in which perturbation theory is usually a safe
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tool to use. Such an approximation scheme is only valid
when the energy of the pendulum is much less than the
height of the barrier preventing transitions between
vacua (see next subsection concerning the sphaleron). In
that limit, quantum tunneling between vacua is expo-
nentially suppressed as expected. This may be seen by
employing a different approximation scheme which pre-
serves periodicity—the semiclassical (WKB) approxima-
tion.

Now consider raising the temperature of the system.
The pendulum is coupled to a thermal bath and is ther-
mally excited to states of higher and higher energy as
the temperature is raised. As the temperature becomes
comparable with the barrier height, it becomes possible
for thermal transitions over the barrier to occur. Writing
the energy of the barrier between vacua as E,,,, we can
show the rate of these transitions to be

Ebar
Fpendulum(T)OceXp - T |’ (45)

so that at T~ E,,,, the pendulum makes transitions be-
tween vacua, crossing the point = randomly, at an
unsuppressed rate. The important point here is that the
rate of thermally activated transitions between vacua is
governed by the barrier height, or more accurately, by
the maximum of the free energy of the configurations
that interpolate between the vacua.

The general features of this simple mechanical system
are very important for a non-Abelian gauge theory such
as the electroweak theory.

2. Electroweak theory

The calculation of the thermally activated transition
rate for the infinite-dimensional field theory is, of
course, much more complicated than that for the one-
dimensional example above. The field theory approach
to problems of metastability was first outlined by Af-
fleck (1981b; see also Linde, 1981), using techniques de-
veloped by Langer (1967) for use in condensed-matter
problems. The general framework for evaluating the
thermal rate of anomalous processes in the electroweak
theory is due to Kuzminb ez al. (1985).

For any sequence of configurations interpolating be-
tween vacua, there is one configuration that maximizes
the free energy. Over all such sequences, there is one
maximum energy configuration with the smallest free
energy (i.e., a saddle point) and it is this configuration,
in analogy with the pendulum example, that governs the
rate of anomalous transitions due to thermal activation.

In the electroweak theory the relevant saddle-point
configuration is the sphaleron. In the full Glashow-
Salam-Weinberg theory, the sphaleron solution cannot
be obtained analytically. In fact, the original calculation
of Klinkhamer and Manton (1984) was performed in the
SU(2)+Higgs theory, and identified a sphaleron with en-
ergy in the range

8 TeV<E,,,<14TeV, (406)
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depending on the Higgs mass. The corresponding object
in the full electroweak theory can then be obtained from
the SU(2) sphaleron by a perturbative analysis in which
the small parameter is the weak mixing angle 6y, .

To calculate the thermal baryon-number-violation
rate, the following steps are performed. One first com-
putes the rate to cross the barrier over the sphaleron
beginning from a given state. This process is essentially a
one-degree-of-freedom process, since all field directions
perpendicular to the negative mode corresponding to
the sphaleron are ignored. The second step is to sum
over all such paths, weighting each by the appropriate
Boltzmann factor. The calculation for the electroweak
theory, properly taking into account the translational
and rotational zero modes of the sphaleron, was first
carried out by Arnold and McLerran (1987). A final step
is to take account of the infinite number of directions
transverse to the sphaleron by performing a calculation
of the small fluctuation determinant around the sphale-
ron. This final step is carried out within the Gaussian
approximation and was originally performed by Carson
and McLerran (1990; see also Carson et al., 1990), with
more recent analyses by Baacke and Junker (1993,
1994a, 1994b). If My (T) is the thermal W boson mass
calculated from the finite-temperature effective poten-
tial (see next section), the approximations that go into
this calculation are valid only in the regime

My (T)
dy ’

Muy(T)<T<

(47)

The rate per unit volume of baryon-number-violating
events in this range is calculated to be

MW } 4 Esph(T)
F(T)—M(m) MWeXp(_T , (43)
where u is a dimensionless constant. Here, the

temperature-dependent ‘‘sphaleron” energy is defined
through the finite-temperature effective potential by

My (T)

Esph(T)E 8, (49)

with the dimensionless parameter £ lying in the range
3.1<E<S5 4, (50)

depending on the Higgs mass.

Recent approaches to calculating the rate of baryon-
number-violating events in the broken phase have been
primarily numerical. Several results using real-time tech-
niques (Tang and Smit, 1996; Moore and Turok, 1997a)
were found to contain lattice artifacts arising from an
inappropriate definition of Ng. These techniques were
later shown to be too insensitive to the true rate when
improved definitions of Ny were used (Ambjgrn and
Krasnitz, 1997; Moore and Turok, 1997b). The best cal-
culation to date of the broken-phase sphaleron rate is
undoubtably that by Moore (1998a). This work yields a
fully nonperturbative evaluation of the broken-phase
rate by using a combination of multicanonical weighting
and real-time techniques.
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Although the Boltzmann suppression in Eq. (48) ap-
pears large, it is to be expected that, when the elec-
troweak symmetry is restored (Kirzhnits, 1972; Kirzhnits
and Linde, 1972) at a temperature of around 100 GeV,
there will no longer be an exponential suppression fac-
tor. Although calculation of the baryon-number-
violating rate in the high-temperature phase is extremely
difficult, a simple estimate is possible. In Yang-Mills
Higgs theory at nonzero temperature the infrared modes
(those with wave number k<T') are well described clas-
sically in the weak-coupling limit, while the ultraviolet
modes (k~ T) are not. Now, the only important scale in
the symmetric phase is the magnetic screening length
given by

&=(ayT)™". (51)
Assuming that any time scale must also behave in this
way, then on dimensional grounds, we expect the rate
per unit volume of baryon-number-violating events, an
infrared spacetime rate, to be

D(T)=k(awT)*, (52)

with « another dimensionless constant, assuming that
the infrared and ultraviolet modes decouple from each
other.

The rate of baryon-number-violating processes can be
related to the sphaleron rate, which is the diffusion con-
stant for the Chern-Simons number [Eq. (20)] and is
defined by

. [(INcs()=Nes(0)1%)

lim lim Vi (53)

V—owof—0

[cf. Eq. (30)] by a fluctuation-dissipation theorem [Khle-
bnikov and Shaposhnikov (1988); for a good description
of this, see Rubakov and Shaposhnikov (1996)]. In al-
most all numerical calculations of the baryon-number-
violation rate, this relationship is used and what is actu-
ally evaluated is the diffusion constant. The first
attempts to estimate x numerically in this way (Ambjgrn
et al., 1990, 1991) yielded x~0.1-1, but the approach
suffered from limited statistics and large-volume system-
atic errors. Nevertheless, more recent numerical at-
tempts (Ambjgrn and Krasnitz, 1995; Moore, 1996; Tang
and Smit, 1996; Moore and Turok, 1997a) found ap-
proximately the same result. However, as I mentioned
above, these approaches employ a poor definition of the
Chern-Simons number, which compromises their reli-
ability.

The simple scaling argument leading to Eq. (52) was
criticized by Arnold et al. (1997), who argued that damp-
ing effects in the plasma suppress the rate by an extra
power of ay, . The essential reason for this modification
of Eq. (52) is that the decoupling between infrared and
ultraviolet modes does not hold completely when dy-
namics are taken into account. Since the transition rate
involves physics at soft energies g>7 that are small com-
pared to the typical hard energies ~7T of the thermal
excitations in the plasma, the simplest way of analyzing
the problem is to consider an effective theory for the
soft modes. Thus one integrates out the hard modes and
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keeps the dominant contributions, the so-called hard
thermal loops. The resulting typical frequency w. of a
gauge-field configuration with spatial extent (g?7T) !
immersed in the plasma determines the change of
baryon number per unit time and unit volume. This fre-
quency has been estimated to be

wc~g4T» (54)

when the damping effects of the hard modes (Arnold
et al., 1997; Arnold, 1997) are taken into account.

In recent months these issues seem to have been re-
solved. The analysis of Moore and Turok (1997b) dem-
onstrated that, when a reliable definition of N g is used,
there is a lattice spacing dependence in the symmetric
phase rate that is consistent with the claims of Arnold
et al. (1997) and similar results were also obtained by
Ambjgrn and Krasnitz (1997). Huet and Son (1997)
have constructed a nonlocal infrared effective theory
that includes the effects of hard thermal loops, which
they expect to be responsible for the extra power of ay,
in the rate of baryon number violation. Further, a rigor-
ous field-theoretic derivation of this theory has been de-
rived (Son, 1997). Using ideas developed by Hu and
Mueller (1997), Moore et al. (1998) have also considered
the effects of hard thermal loops [see also Iancu (1997)].
In that work the authors find

I'(r> TC)ZK’aW(aWT)4, (55)
with
k' '=29+6 (56)

for the minimal standard model value of the Debye
mass. Note that, although this estimate takes into ac-
count physics that did not enter the original estimate,
this expression is numerically close to Eq. (52).

Finally, the effective dynamics of soft non-Abelian
gauge fields at finite temperature have recently been ad-
dressed by Bodeker (1998), who finds a further logarith-
mic correction
Ty,~ay T In(1/ay). (57)
The physics leading to these corrections has been dis-
cussed at length by Moore (1998b), who describes in
detail both the intuitive arguments for such a term and
the lattice Langevin calculations required to provide an
accurate numerical determination of its magnitude.

Now that I have discussed baryon number violation, I
shall turn to the second Sakharov criterion and its real-
izations in the standard model.

lll. C AND CP VIOLATION

As I mentioned earlier, it is necessary that both the C
and CP symmetries be violated for baryogenesis sce-
narios to succeed. One cause of the initial excitement
over electroweak baryogenesis was the observation that
the Glashow-Salam-Weinberg model naturally satisfies
these requirements.

Recall that fermions in the theory are chirally coupled
to the gauge fields as in Eq. (21). This means that, for
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example, only the left-handed electron is SU(2) gauge
coupled. In terms of the discrete symmetries of the
theory, these chiral couplings result in the electroweak
theory’s being maximally C violating. This is a general
feature that remains true in extensions of the theory and
makes the model ideal for baryogenesis. However, the
issue of CP violation is more complex.

A. Standard-model CP violation:
Kobayashi-Maskawa matrix

CP is known not to be an exact symmetry of the weak
interactions. This is seen experimentally in the neutral-
kaon system through K, K, mixing (Christenson et al.,
1964). At present there is no accepted theoretical expla-
nation of this. However, it is true that CP violation is a
natural feature of the standard electroweak model.
When Eq. (21) is expanded to include N generations of
quarks and leptons, there exists a charged current which,
in the weak interaction basis, may be written as

£
%

where U;=(u,c,t,...);, and D;=(d,s,b,...);. Now,
the quark mass matrices may be diagonalized by unitary
matrices VY, VY, VP V2 via

diag(m, ,m,,m,,...)=VIMUVE, (59)
diag(m,,m,,m,,...)=VPMPVE. (60)

Ly=—=-U_y*D W ,+(Hc.), (58)

Thus, in the basis of quark mass eigenstates, Eq. (58)
may be rewritten as

£
V2
where U;=VYU, and D;=V?D, . The matrix K, de-
fined by

K=V{(vD), (62)

is referred to as the Kobayashi-Maskawa (KM) quark
mass mixing matrix (Kobayashi and Maskawa, 1973).
For N generations, K contains (N—1)(N—2)/2 inde-
pendent phases, and a nonzero value for any of these
phases signals CP violation. Therefore CP violation ex-
ists for N=3, and when N =3, as in the standard model,
there is precisely one such phase é. While this is encour-
aging for baryogenesis, it turns out that this particular
source of CP violation is not strong enough. The rel-
evant effects are parametrized by a dimensionless con-
stant which is no larger than 10~2°. This appears to be
much too small to account for the observed baryon
asymmetry of the universe and, thus far, attempts to uti-
lize this source of CP violation for electroweak baryo-
genesis have been unsuccessful.

When one includes the strong interactions described
by quantum chromodynamics (QCD), a second poten-
tial source of CP violation arises due to instanton ef-
fects. However, precision measurements of the dipole
moment of the neutron constrain the associated dimen-

Ly=—-U;Ky*D} W ,+(H.c.), (61)
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sionless parameter 6ycp to be less than 107Y, which
again is too small for baryogenesis. In light of these
facts, it is usual to extend the standard model in some
minimal fashion that increases the amount of CP viola-
tion in the theory while not leading to results that con-
flict with current experimental data.

B. Two-Higgs-doublet model

One particular way of enhancing CP violation
(McLerran, 1989) is to expand the Higgs sector of the
theory to include a second Higgs doublet. In a two-
Higgs model, the structure described in Sec. II is
doubled so that we have scalars, ®; and ®,, and the
scalar potential is replaced by the most general renor-
malizable two-Higgs potential (Gunion et al., 1989),

V(®1,@5) =\ (P]P1—vT) 2+ Ny (PP, v3)?
+A3[(D] D —v]) + (DD, —v3)]?
FN[(D]D ) (PID) — (D [Dy) (DD )]
+\s[Re(P]d,)— Vv, cos £]?

+ N[ Im(P]D,) — v, v, sin €17 (63)

Here v, and v, are the respective vacuum expectation
values of the two doublets, the \; are coupling constants,
and £ is a phase. To make the CP violation explicit, let
us write the Higgs fields in unitary gauge as

Dy=(0,¢1)7,  @=(0,p5¢"")", (64)

where ¢, ¢,, 6 are real, and 6 is the CP-odd phase.
The important terms for CP violation in the potential
are the final two, with coefficients A5 and \¢, since it is
these terms that determine the dynamics of the C P-odd
field 6.

There are several mechanisms by which # may con-
tribute to the free-energy density of the theory. To be
specific, let us concentrate on the one-loop contribution
(Turok and Zadrozny, 1990) and for simplicity assume
that 6 is spatially homogeneous. The relevant term is

14 m\?.

TBT T 30,

where m is the finite-temperature mass of the particle
species dominating the contribution to the anomaly and
{ is the Riemann function.

The coefficient of np in the above equation can be
viewed as a sort of chemical potential, upz, for baryon
number,

14 m\?,
,U«B:m(@)(?) 0. (66)

The changes in 6 are dependent on changes in the
magnitude of the Higgs fields. In particular, if a point in
space makes a transition from a false electroweak
vacuum to a true one, then A#>0, and sphaleron pro-
cesses result in the preferential production of baryons
over antibaryons. For the opposite situation, A #<0, and
sphaleron processes generate an excess of antibaryons.
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The total change in the phase 6 (from before the phase
transition to 7=0) may be estimated to be

A
A6~§—arctan<)\—6tan 5), (67)
5

and, as we shall see, it is this quantity that enters into
estimates of the baryon asymmetry of the universe. This,
then, is how the dynamics of the two-Higgs model bias
the production of baryons through sphaleron processes
in electroweak baryogenesis models. The use of the two-
Higgs model is motivated in part by supersymmetry
(SUSY), which demands at least two Higgs scalars.
However, in the minimal supersymmetric standard
model (MSSM), supersymmetry demands that As=N\g
=0 and so the two-Higgs potential is CP invariant. In
such models CP violation arises through soft-SUSY
breaking, which generates nonzero values for A5 and Ag,
as we shall see later.

C. CP violation from higher-dimension operators

The second popular method of extending the standard
model is to view the model as an effective-field theory,
valid at energies below some mass scale M. In addition
to the standard terms in the Lagrangian, one then ex-
pects extra, nonrenormalizable operators, some of which
will be CP odd (Shaposhnikov, 1988; Dine et al., 1991;
Dine, Leigh, et al., 1992; Zhang et al., 1994; Lue et al.,
1997). A particular dimension-six example is

0= %Tr((bT(I))Tr(FWTT’“’), (68)
with b a dimensionless constant. O is the lowest-
dimension CP-odd operator that can be constructed
from minimal standard-model Higgs and gauge fields.
Such a term, with M =v, can be induced in the effective
action by CP violation in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, but in that case the coefficient
b is thought to be tiny.

The operator O induces electric dipole moments for
the electron and the neutron (Zhang and Young, 1994),
and the strongest experimental constraint on the size of
such an operator comes from the fact that such dipole
moments have not been observed. Working to lowest
order (one loop), Lue et al. (1997) find

d, m,sin?(0y) b [ M*+m?

—=——F—>72n 3

e 872 M? my (69)

Note that M? arises in the logarithm without b because
M, the scale above which the effective theory is not
valid, is the ultraviolet cutoff for the divergent loop in-
tegral. Using the experimental limit (Commins ef al.,
1994)

d,
- <4x 107 cm (70)

yields the bound
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24,2
M*+my
2
H

b
M?

1
“BTev)"

In (71)

The corresponding experimental limit (Smith et al.,
1990; Altarev et al., 1992) on the neutron electric dipole
moment d,, is weaker than that on d,, but because d,, is
proportional to the quark mass rather than to the elec-
tron mass, the constraint obtained using d,, is compa-
rable to Eq. (71). Any baryogenesis scenario that relies
on CP violation introduced via the operator O must re-
spect the bound (71).

D. General treatment

Common to both the above extensions of the standard
model is the appearance of extra, CP-violating interac-
tions, parametrized by a new quantity, 5cp (e.g., S
=A@ or §=b/M?). Although there are a number of
other ways in which CP violation may appear in low-
energy electroweak models (see, for example, Frere
et al., 1993; Reina and Tytgat, 1994), in many parts of
this review, for definiteness, I shall focus on A 6. How-
ever, in the discussion of specific SUSY models I shall
explain how CP-violating quantities arise. Whatever its
origin, the effect of CP violation on anomalous baryon-
number-violating processes is to provide a fixed direc-
tion for the net change in baryon number. When the bias
is small, the equation governing this can be derived from
detailed balance arguments (Khlebnikov and Shaposhni-
kov, 1998; Dine et al., 1990) and may be written as

dng _ (D), p )
7_ T B ( )

where AF is the free-energy difference, induced by the
CP violation, between producing baryons and antibary-
ons in a given process, and I' is the rate per unit volume
of baryon-number-violating events. I shall use this equa-
tion further when considering nonlocal baryogenesis.

IV. ELECTROWEAK PHASE TRANSITION

To begin with I shall lay down some definitions from
thermodynamics. If a thermodynamic quantity changes
discontinuously (for example as a function of tempera-
ture), then we say that a first-order phase transition has
occurred. This happens because, at the point at which
the transition occurs, there exist two separate thermody-
namic states that are in equilibrium. Any thermody-
namic quantity that undergoes such a discontinuous
change at the phase transition is referred to as an order
parameter, denoted by ¢. Whether or not a first-order
phase transition occurs often depends on other param-
eters that enter the theory. It is possible that, as another
parameter is varied, the change in the order parameter
at the phase transition decreases until it and all other
thermodynamic quantities are continuous at the transi-
tion point. In this case we refer to a second-order phase
transition at the point at which the transition becomes
continuous, and a continuous crossover at the other
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FIG. 4. Sketch of the finite-temperature effective potential for
various values of temperature for a second-order phase transi-
tion.

points for which all physical quantities undergo no
changes. In general, we are interested in systems for
which the high-temperature ground state of the theory is
achieved for ¢ =0 and the low-temperature ground state
is achieved for ¢#0.

The question of the order of the electroweak phase
(EWPT) transition is central to electroweak baryogen-
esis. Phase transitions are the most important phenom-
ena in particle cosmology, since without them, the his-
tory of the universe is simply one of gradual cooling. In
the absence of phase transitions, the only departure
from thermal equilibrium is provided by the expansion
of the universe. At temperatures around the elec-
troweak scale, the expansion rate of the universe in ther-
mal units is small compared to the rate of baryon-
number-violating processes. This means that the
equilibrium description of particle phenomena is ex-
tremely accurate at electroweak temperatures. Thus
baryogenesis cannot occur at such low scales without the
aid of phase transitions [for a treatment of this argument
in the context of non-standard cosmologies, in which the
universe is not radiation dominated at the electroweak
scale, see Joyce and Prokopec (1998)].

For a continuous transition, the extremum at ¢ =0 be-
comes a local maximum at 7', and thereafter there is
only a single minimum at ¢#0 (see Fig. 4). At each
point in space thermal fluctuations perturb the field
which then rolls classically to the new global minimum
of the finite temperature effective potential. Such a pro-
cess is referred to as spinodal decomposition. If the
EWPT is second-order or a continuous crossover, the
associated departure from equilibrium is insufficient to
lead to relevant baryon number production (Kuzmin
et al., 1985). This means that, for EWBG to succeed, we
either need the EWPT to be strongly first order or need
other methods of destroying thermal equilibrium, for ex-
ample topological defects (see Sec. VIII), to be present
at the phase transition.

For a first-order transition the extremum at ¢=0 be-
comes separated from a second local minimum by an
energy barrier (see Fig. 5). At the critical temperature
T=T, both phases are equally favored energetically and
at later times the minimum at ¢#0 becomes the global
minimum of the theory. The dynamics of the phase tran-
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FIG. 5. Sketch of the finite-temperature effective potential for
various values of temperature for a first-order phase transition.

sition in this situation are crucial to most scenarios of
electroweak baryogenesis. The essential picture is that
at temperatures around 7. quantum tunneling occurs
and nucleation of bubbles of the true vacuum in the sea
of false begins. Initially these bubbles are not large
enough for their volume energy to overcome the com-
peting surface tension and they shrink and disappear.
However, at a particular temperature below 7. bubbles
just large enough to grow nucleate. These are termed
critical bubbles, and they expand, eventually filling all of
space and completing the transition. As the bubble walls
pass each point in space, the order parameter changes
rapidly, as do the other fields, and this leads to a signifi-
cant departure from thermal equilibrium. Thus, if the
phase transition is strongly enough first order, it is pos-
sible to satisfy the third Sakharov criterion in this way.

There exists a simple equilibrium analysis of bubble
nucleation in a first-order phase transition [see, for ex-
ample, Rubakov and Shaposhnikov (1996)]. Write the
bubble nucleation rate per unit volume at temperature
T as R(T). Further, note that if we assume that bubbles
expand at constant speed v, then the volume occupied
at time ¢ by a bubble that nucleated at time ¢ is

41
V(t,ty)= T(l—t0)3v3. (73)
Then, the fraction of the total volume occupied by the
broken phase at time ¢ can be written as
P()=1-exp[-2(1)], (74)
where the quantity % (¢) is given by

()= j:dto V(t,to)R(T) (75)

and ¢, and T, are defined through T(¢.)=T7, and
T(ty)=T,, respectively. In terms of this quantity, we
say that the phase transition is complete when £ =1. In
order to estimate 3(z) note that, when bubble nucle-
ation begins, the quantity
T.—T
T,

is small. Making this change of variables in Eq. (75) and

X (76)

using the time-temperature relationship t=M/T?, with
M~10"® GeV we obtain, for small x,
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S(t)=

641v3 ( M)“

x 1
— 3_
3 T f dx x T R(T). (77)

0
From this expression it is clear that, when % is of order
one, when the phase transition completes or percolates,
the rate per unit volume is negligibly small.

In general, the calculation of the bubble nucleation
rate is extremely complicated. The relevant time scale
Tiorm fOT the formation of a critical bubble is of the form

Tiorm* €XP(F ./ T), (78)

where F is the free energy of the bubble configuration.
We may calculate this by writing the bubble as a spheri-
cally symmetric configuration ¢(r) which extremizes the
effective action (as defined in the next subsection) and
satisfies

limg(r)=0,
¢(0)=v(T),

where v(T) is the minimum of the finite-temperature
effective potential V(¢,T) defined properly in the next
subsection. Then the free energy is given by

1
Fler= [ dar |50+ vie.n (79
with the bubble configuration obtained by solving
1a , bV
r—za(rﬁo)—ﬁﬂ), (80)

subject to the above boundary conditions. However, in
the general situation these equations must be solved nu-
merically, although some progress can be made in the
thin-wall limit in which the typical size of the critical
bubbles is much larger than the correlation length of the
system.

The precise evolution of critical bubbles in the elec-
troweak phase transition is a crucial factor in determin-
ing which regimes of electroweak baryogenesis are both
possible and efficient enough to produce the baryon
asymmetry of the universe. In essence, the bubble wall
dynamics are governed by the interplay between surface
tension and volume pressure.

The physics of a propagating phase boundary, or
bubble wall, have been extensively investigated by many
authors.! The crucial quantities that one wishes to esti-
mate are the wall velocity v and the wall width 6. As will
become clear later, it is important to know whether the
velocity is less than or greater than the speed of sound in
the plasma, because different mechanisms of baryogen-
esis dominate in these regimes. As it turns out, the dy-

ISee, for example, Dine, Huet, and Singleton, 1992; Enqvist
et al., 1992; Khlebnikov, 1992; Liu et al., 1992; Turok, 1992;
Arnold, 1993; Huet ef al., 1993; Ignatius et al., 1994; Laine,
1994; Heckler, 1995; Kurki-Suonio and Laine, 1995a, 1996a,
1996b; Moore and Prokopec, 1995a, 1995b; Duari and Yajnik,
1996.
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namics of the bubble wall are qualitatively different in
these two regimes also (Steinhardt, 1982; Gyulassy et al.,
1983).

For example, consider a single bubble of broken elec-
troweak symmetry expanding in a sea of symmetric
phase plasma, and for simplicity assume that the bubble
is large enough that we may neglect its curvature and
idealize the wall as a planar interface. There are two
relevant regimes:

(1) The wall velocity is less than the speed of sound
(v<cy=0.58): In this case it is said that deflagra-
tion occurs. The plasma near the bubble wall in
the unbroken phase accelerates away from the
wall and a shock wave develops ahead of the wall
moving at speed v,,,>v. This results in the heat-
ing of the plasma behind the shock front [for a
detailed treatment of deflagration see Kurki-
Suonio (1985)].

(2) The wall velocity is greater than the speed of
sound (v>c,): In this case we say that detonation
occurrs. In contrast to deflagration, the plasma
ahead of the wall is now at rest, whereas that be-
hind the wall in the broken phase accelerates
away.

Which of these regimes is relevant for a given phase
transition depends on a host of microphysical inputs,
making an analytic approach extremely difficult. How-
ever, recent investigations of the bubble wall behavior in
the standard model have been performed by Moore and
Prokopec (1995a, 1995b). These authors find that if
m <90 GeV (encompassing the whole region of physi-
cally allowed Higgs masses for which a strongly first-
order phase transition is expected to occur), the phase
transition proceeds through deflagration. They find a ro-
bust upper bound on bubble velocities

v<045<v,,~c,~0.58, my<90GeV. (81)

Other recent work (Moore and Turok, 1997b) has dem-
onstrated the importance of friction from infrared W
bosons on the wall velocity and suggests that velocities
of the order

v~0.1-0.2 (82)

may be realistic. Of course, the methods used in this
analysis cannot be extended past the point at which the
shock waves originating from different bubbles would
collide, since at that stage the approximation of an iso-
lated wall is no longer valid. In fact, the dynamics of the
phase transition from that point to completion are quite
different from the simple picture I have described
above. What seems clear is that significant heating of the
plasma occurs, perhaps up to 7. (Kurki-Suonio and
Laine, 1996b), as the latent heat of the transition is re-
leased. This should result in an appreciable deceleration
of the bubble walls until, finally, the transition is com-
pleted by relatively slow-moving bubbles. In fact, some
analytical progress may be made in the limit in which
one assumes that the latent heat of the transition is re-
leased instantaneously into the plasma (Heckler, 1995).
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While all these approaches are useful in understanding
the nature of bubble walls, it is important to remember
that they are performed in the minimal standard model.
When a particular extension of the electroweak theory is
used, the analysis should be repeated in that context.

In practice it can be a difficult task to determine the
order of a given phase transition and thus whether, and
how, bubble walls may arise. In the remainder of this
section I shall review some of the analytical and numeri-
cal approaches that are used and discuss their applica-
tion to the electroweak phase transition.

A. Finite-temperature effective potential

A widely used tool in studying thermal phase transi-
tions is the finite-temperature effective potential (FTEP)
for the order parameter. I have already mentioned this
in passing when discussing bubble nucleation. Here I
shall define this object precisely and explain how it is
calculated in a simple model. I shall then give the form
of the potential for the electroweak theory and show
how it is used.

Let us begin at zero temperature and consider a single
scalar field ¢ with external source J. The generating
functional for this theory is

Z[J]=f D exp iJ d*x (L[e]+Te)|. (83)

From this quantity the field theory analog E[J] of the
Helmholtz free energy is defined by

e EVI=711. (84)

As is well known, functional differentiation of E[J] with
respect to the source J defines the classical field through

)
WE[JF—%I- (85)

Now, in thermodynamics it is usual to construct the
Gibbs free energy of the theory by a Legendre trans-
form of the Helmholtz free energy. In field theory we
perform an analogous transformation to define the effec-
tive action by

Mleal=—EL1- [ dyI0)guty). (86)

This functional has the useful property that

J(x)=— )T[%z], (87)

5@61()‘
which means that, in the absence of an external source,
the effective action defined by Eq. (86) satisfies

8
5QDcl(x) ]-_‘[(Pcl]_o (88)
Thus the values of the classical fields in the vacua of the
theory are obtained by solving this equation, i.e., by ex-
tremizing the effective action.
One further simplification is possible. If the vacua of
the theory are translation and Lorentz invariant, then
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¢.; 1s constant. In that case, I'[ ¢.;] contains no deriva-
tives of ¢, and Eq. (88) is an ordinary equation. It is
therefore convenient to define the effective potential by

1
Veit(@er)=— v, F[ ®c1ls (89)

where Vy is the spacetime four-volume, so that the equa-
tion leading to the vacua of the theory reduces to

Vi) =0. 90
Tou i ®cr) (90)

Note that this equation allows one, in principle, to com-
pute the vacua of the theory exactly, taking into account
all corrections to the bare potential from quantum fluc-
tuations in the field .

Exact analytic calculations of the effective potential
are difficult. Therefore it is usual to use perturbation
theory. As an example, in the scalar field model above
we choose the bare potential to be

2
M A
Vie)==F¢ ¢°+ 2904, (91)

with p an arbitrary mass scale and \ a parameter. We
write ¢ as

o(x)=@. 4+ x(x), (92)

and the aim is to take account of the small quantum
fluctuations in y around the classical vacuum state ¢;.
These fluctuations can contribute to both the energy of
the vacuum state and the potential felt by ¢,;, since the
mass of the field x is due to ¢.. The perturbation-
theory approach to calculating the effects of quantum
fluctuations is usually phrased in the language of Feyn-
man diagrams. At the one-loop level, there is only one
diagram, which is a single y loop. This loop yields a
contribution to the effective potential of

V()= [ atkmirzeanel—p1. ©03)

1
2(2m)*
If we perform the k integration and remove an infinite
constant, this becomes

1
(94)

This expression can now be seen to correspond to an
integral over the energy of a y particle in all momentum
modes. Note that, since this energy depends on ¢, nor-
mal ordering cannot remove this contribution to the en-
ergy.

Since Eq. (94) is divergent, we must choose renormal-
ization conditions to perform the integration. If we
choose to renormalize at the point ¢=u\ "2, and there
set V'(¢)=V"(¢)=0, then the one-loop zero-
temperature effective potential becomes
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2

" A 1
Ve (@)= — <P+4<P+ P 7 (3AN@?>—u?)?
3N\ 2w 2N,
Xln( Y R Tv R P
(95)

We now wish to incorporate the effects of thermal
fluctuations into this picture. Just as quantum fluctua-
tions of fields lead to a modification of the potential,
thermal fluctuations have an analogous effect. The po-
tential resulting from taking account of thermal fluctua-
tions is the finite-temperature effective potential
(FTEP). The formalism we set up for the zero-
temperature case is applicable here also because of the
well-known connection between zero-temperature field
theory and thermal field theory. The path-integral for-
mulation of field theory at nonzero temperature 7, de-
scribing the equilibrium structure of the theory, is for-
mally equivalent to the zero-temperature formalism
performed over a Euclidean time interval of length 8
=1/T. In addition, one must impose appropriate bound-
ary conditions on the fields, periodic for bosons and an-
tiperiodic for fermions. Thus any field y may be Fourier
expanded over this Euclidean time interval, yielding the
expression

x(x,7)= 2 Xn(X)elon, (96)

with

2nwT bosons

w,= . 97
" 1 (2n+1)wT fermions. ©7)
Since the Euclidean time coordinate is now finite, the
zeroth component of a particle’s four-momentum is now
discrete. When we perform an integral over k, as in the
quantum case above, this becomes a sum. This means
that the one-loop temperature-dependent contribution

to the FTEP is

V(l)((P’ 2(2 )3 2

XIn[(27nT)*+ |k|>+3 > —u?]. (98)

If we define m?(@)=3\¢?— u?, then for m<T we may
perform the sum and integral to first order in lambda.
After renormalization we add this to the bare potential
to give the one-loop FTEP as

2 2 2
M A (o) , 7
—y ettty T T (99)

gf)((Pa T) -

This can be thought of as the contribution to the ¢ po-
tential from the energy of, and interaction with, a ther-
mal bath of particles at temperature 7.

In general, in a theory with spontaneous symmetry
breaking, the usual high-temperature behavior of the
theory is that of the zero-temperature theory at high
energies. That is to say that the full symmetry of the
Lagrangian is restored at high temperatures. At high
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temperatures the global minimum of the FTEP is at ¢
=0 and at zero temperature the global minimum is at
¢=v, where v is the usual Higgs vacuum expectation
value (VEV).

In the standard electroweak theory [ignoring the
U(1) terms] the high-temperature form of the one-loop
FTEP is

3 N om?
Vé%?(q»;T):(@g% it 4—V’2)<T2— )

(100)

with ¢=+/¢" ¢, and m, the top quark mass. Note that, in
calculating this quantity for a gauge theory, one also
takes into account loop diagrams corresponding to fluc-
tuations in the gauge fields. The lowest-order thermal
correction to the zero-temperature effective potential is
a temperature-dependent mass. It is this contribution
that causes the extremum at ¢=0 to be the global mini-
mum at high temperatures. Note also the presence of a
cubic term in the effective potential. This term arises
from the gauge-field fluctuations; it is responsible for the
existence of a barrier separating two degenerate vacua
at the critical temperature and hence for the prediction
that the electroweak phase transition must be first order.
Using this one-loop potential, we may estimate the criti-
cal temperature at which the vacua are degenerate to be

9 m[Z —12

3

TC=mH §g2+)\—mg6+7 (101)

Calculations of quantities such as the critical tempera-
ture can be refined if the effective potential is calculated
to higher orders in perturbation theory. Recently the
two-loop calculation has been performed (Arnold and
Espinosa, 1993; Farakos et al., 1994a, 1994b; Fodor and
Hebecker, 1994; Buchmuller ef al., 1995).

It is worthwhile including a cautionary note concern-
ing the FTEP. If the interactions are weak, i.e., if

g°T
mmy (@)

then the effective-potential approach is equivalent to
solving the full equations of motion for the gauge and
Higgs fields with all fluctuations taken into account.
However, in a perturbative approximation it is very dif-
ficult to go beyond two loops, which limits the accuracy
of the method. Further, when the phase transition is
weak, the infrared degrees of freedom become strongly
coupled (Linde, 1980; Gross et al., 1981), the inequality
(102) is no longer satisfied, and we must turn to numeri-
cal approaches.

Note that the higher the Higgs mass is, the weaker the
phase transition gets. The current lower bound on the
mass of the Higgs in the minimal standard model
(MSM) comes from combining the results of the
DELPHI, L3, and OPAL experiments at LEP and is

m;>89.3 GeV (103)

<1, (102)
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(de Jong, 1998), so the perturbation expansion might not
be expected to converge.

B. Dimensional reduction

As I have already explained, equilibrium field theory
at nonzero temperature can be formulated as zero-
temperature field theory performed over a finite interval
of Euclidean time with period 1/7.

If we expand the fields as in Eq. (96), we may think of
the theory as a three-dimensional system of an infinite
number of fields y, . These fields comprise a tower of
states of increasing masses proportional to the Matsub-
ara frequencies w,, . If the theory is weakly coupled (as
we expect), then we may make a simplifying approxima-
tion. For momenta much less than the temperature, we
may perturbatively account for the effects of all fields
with nonzero thermal masses. Thus, since all the fermi-
ons are massive, what remains is an effective theory of
only the bosonic fields with n=0, the zero modes.

To see how the remaining fields contribute to the dy-
namics of such a theory consider the following equiva-
lent construction. Write down the most general, renor-
malizable Lagrangian for the zero modes in three
dimensions. For this to be the effective theory we seek,
it is necessary that the free parameters be determined by
matching the one-particle irreducible (1PI) Green’s
functions with those of the full theory in four dimen-
sions. The massive degrees of freedom are important for
this matching condition and thus contribute to the
masses and couplings in the three-dimensional effective
theory.

The three-dimensional (3D) effective theory is much
simpler than the full theory. For the minimal standard
model, the particle content is the Higgs doublet, the 3D
SU(2) X U(1) gauge fields, and extra bosonic fields cor-
responding to the temporal components of the gauge
fields in the full theory. For this effective theory, pertur-
bative calculations of the coupling constants to one loop
(Farakos et al., 1994a) and masses to second order (Ka-
jantie et al., 1996a) have been performed.

In the region of the phase transition itself, a further
simplification is possible. In this regime, the masses of
the extra bosons in the theory are proportional to g7 or
to g’ T and are heavy compared to the effective Higgs
mass of the theory. Thus we may integrate out these
heavy degrees of freedom and obtain a simple, effective
3D theory that describes the system near the phase tran-
sition (Ginsparg, 1980; Applequist and Pisarski, 1981;
Nadkarni, 1983; Landsman, 1989; Farakos et al., 1994a,
1994b; Laine, 1995). The appropriate Lagrangian is

1 1
L= T WEWi+ L FyFy+ (D) D+ m3g' b

+N3(¢7 )%, (104)

where m3 and A3 are the effective 3D Higgs mass and

self-coupling in the theory near the phase transition.
This theory is superrenormalizable since m% has only

linear and log divergences and, in the MS scheme, \;
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and g3, the three-dimensional gauge coupling, do not
run at all. Thus the theory described by Eq. (104) is very
powerful, since the perturbative calculations of the pa-
rameters involved do not suffer from any infrared diver-
gences. As a result, the theory is valid over a large
range,

30 GeV<m ;<240 GeV, (105)

of Higgs masses. In addition, removal of the ultraviolet
divergences of the theory is simple. Further, the vastly
decreased number of degrees of freedom makes the
analysis of this theory much more manageable. One
might wonder if the results from this approach can be
checked against those from the full 4D theory in any
regimes. In fact, at high temperatures, calculations of the
4D effective potential in which hard thermal loops are
“resummed” (Arnold and Espinosa, 1993; Fodor and
Hebecker; 1994; Farakos et al., 1994a) agree well with
the 3D results (for a nonperturbative approach to check-
ing this agreement see Laine, 1996b). For an alternative
treatment of the effective 3D theory, in which a cutoff is
introduced rather than explicitly using the superrenor-
malizability of the theory, see Karsch et al. (1996).

While we may construct the 3D effective theory with-
out worrying about divergences in its parameters, per-
turbative calculations using the theory are infrared di-
vergent in the symmetric phase of the system. This
means that perturbation theory is not a particularly ef-
fective tool and nonperturbative approaches are neces-
sary. It is usual to treat the simpler SU(2) system, in
which the U(1)y interactions are ignored, to gain insight
into the nonperturbative dynamics of the electroweak
phase transition. In the context of the 3D effective
theory I have described, a number of nonperturbative
methods have been used by different groups.

C. Numerical simulations—Ilattice approaches

The second approach, which has been very successful
for analyzing the nature of phase transitions at nonzero
temperatures, is to simulate the systems numerically on
a lattice. These approaches are technically difficult to
perform but have the advantage of covering the entire
range of parameter space that might be interesting for
electroweak baryogenesis. Here I shall provide an out-
line of how these approaches are performed and give the
essential results. Numerical simulations of the elec-
troweak phase transition have been performed in both
the 3D theory described above and in the full 4D theory
(Csikor et al., 1996). However, in the 4D simulations the
situation is complicated in the physically allowed range
of Higgs masses. Nevertheless, considerable progress
has been made.

Reliable quantitative results for the order of the elec-
troweak phase transition have been obtained from lat-
tice Monte Carlo simulations of the effective 3D theory
(Kajantie et al., 1993, 1996a, 1996b, 1996¢, 1996d; Fara-
kos et al., 1994b, 1994c; Dosch et al., 1996, 1997; Gurtler,
Ilgenfritz, Kripfgang, et al., 1997; Gurtler, Ilgenfritz, and
Schiller, 1997; Gurtler et al., 1998a, 1998b). This ap-
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FIG. 6. The maximum susceptibility yp,.. as a function of vol-
ume for different values of the Higgs mass m: Solid lines,
mean-field fits; dashed line, the mean-field critical exponent.
Thanks to Kari Rummukainen for supplying this figure.

proach is technically complicated and one must take
great care to ensure that the observed features are not
artifacts of the lattice implementation of the theory. For
a discussion of these matters and an excellent compre-
hensive treatment of the method, I refer the reader to
Kajantie et al. (1996b). The Monte Carlo calculations
are performed over a range of system volumes V and
lattice spacings a. The important results are obtained in
the limit of extrapolation to infinite volume (V—o0) and
zero lattice spacing (a—0). Here, I shall just sketch how
these lattice Monte Carlo calculations are performed.

The most widely studied lattice model is the pure
SU(2) theory. The parameters of the 3D theory are
matched with those of the 4D continuum theory by
renormalization-group methods. In particular, the top-
quark mass is matched to the known value m,=175
GeV. More recently, the full bosonic 3D
SU(2)XU(1) theory has been simulated (Kajantie
et al., 1996¢).

The approach of Kajantie et al. is to measure the vol-
ume (finite-size) behavior of the susceptibility y of the
operator ¢'¢. The susceptibility is defined in terms of
quantities in the 3D effective Lagrangian (104) by

x=g3V{(d'p—(d'p))?). (106)

For a given Higgs mass, the procedure is as follows.
First, at fixed volume V, one determines the maximum
value x,,.. of x as a function of temperature. This pro-
cedure is then performed over a range of V to give
Xmax(V). From finite-size scaling arguments, the follow-
ing behaviors are expected:

V first-order transition

Xmar(V)c V7P
const

second-order transition  (107)
no transition,

with y# 0,3 a critical exponent. Using this criterion, it is
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possible to infer the nature of the phase transition from
the numerical simulations. A summary of the results
(Kajantie et al., 1996d) is shown in Fig. 6. The general
result of the Monte Carlo approach is that the phase
transition is first order for Higgs masses m =80 GeV
and becomes a smooth crossover for m ;=80 GeV. The
existence of an end point of first-order phase transitions
was shown by Kajantie et al. (1996d), and the position of
the end point was identified by Gurtler, Ilgenfritz, and
Schiller (1997). This end point, at my~80GeV, falls
into the universality class of the 3D Ising model. The
end point of the transition has also been examined in the
4D simulations by Aoki (1997), with results in agree-
ment with the 3D simulations.

Although the results I quote here are obtained in the
SU(2) theory [equivalently sin®6y=0 in SU(2)
X U(1)], the effects of the additional U(1) of the true
electroweak theory have been considered by Kajantie
et al. (1996¢). However, while the effects of hypercharge
strengthen the phase transition in general, the position
of the end point is relatively insensitive to the value of
sin? Ay . I shall mention briefly in the next section how
these results compare with those obtained from other
approaches.

As the Higgs mass is increased to 80 GeV from below,
the strength of the first-order phase transition decreases.
This behavior is quantified by the tension of the phase
interface at 7, and by the latent heat L of the transition.
Both these quantities are measured in the simulations
and the expected weakening of the transition is ob-
served. The Clausius-Clapeyron equation

dAp L
dT T’
where Ap is the difference in pressures between the

symmetric and broken phases at temperature 7, is par-
ticularly useful here. The equation may be written as

(108)

Lo mu| L
AW@(T;):F" (109)

where A{¢' @) is the jump in the squared order param-
eter. As we shall use later, the measurement of the la-
tent heat from the simulations yields a value for A({ ¢ ¢)
that we shall find very useful when discussing local elec-
troweak baryogenesis.

D. Other approaches

The application of e-expansion techniques to the elec-
troweak phase transition was suggested by Gleiser and
Kolb (1993) and has been investigated in detail by Ar-
nold and Yaffe (1994). Since it is difficult to solve the 3D
theory systematically using analytic methods, the ap-
proach here is to replace the three spatial dimensions by
4— ¢ dimensions. For example, in massive ¢* theory, the
4D action is transformed to

S:f d* ex[(9p)>+m? d*+ ush ¢, (110)
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where a mass scale u has been introduced to keep cou-
plings dimensionless. This class of theories can be solved
perturbatively in ¢ by making use of renormalization-
group-improved perturbation theory. The procedure is
to perform the calculation of a given quantity in this
perturbative scheme to a given order in & and then to
take the 3D limit by taking e—1. This approach pro-
vides an interesting way to study phase transitions. How-
ever, its application to the electroweak theory is compli-
cated, and the authors estimate that the results may be
accurate at the 30% level for Higgs masses below
around 150 GeV and less reliable for higher values. Nev-
ertheless, the prediction of e-expansion techniques is
that the phase transitions become weaker but remain
first order as m; increases, even to values higher than
80 GeV.

In another approach (Buchmuller and Philipsen,
1995) the one-loop Schwinger-Dyson equations are
studied. This method predicts that the first-order transi-
tions become a smooth crossover for Higgs masses
above 100 GeV. Although this result is in reasonable
agreement with that obtained from numerical ap-
proaches, it does rely on perturbation theory, which, as [
have emphasized, should not really be trusted for mpy
=80 GeV.

Finally, exact renormalization-group approaches have
been applied to the electroweak theory by Wetterich
and co-workers (Reuter and Wetterich, 1993; Berger-
hoff and Wetterich, 1995) and by Buchmuller and Fodor
(1994). Again, these analyses support the results of the
numerical approaches I described earlier.

With the exception of the e expansion, the qualitative
conclusion of the above approaches is that there exists a
critical value of the Higgs mass, below which the EWPT
is first order, and above which the transition is continu-
ous. Since, as I have mentioned, results from LEP (de
Jong, 1998) now give my>89.3 GeV, it seems that the
standard electroweak theory undergoes a continuous
transition at high temperatures.

E. Subcritical fluctuations

A central assumption of the analysis of the phase tran-
sitions that I have followed above is that the initial state
is homogeneous. If this is the case then the existence of
a cubic term in the finite-temperature effective potential
clearly implies that the phase transition proceeds by the
nucleation and propagation of critical bubbles of true
vacuum in the homogeneous sea of false. This result is
obtained within the vacuum decay formalism, which re-
lies on the semiclassical expansion of the effective ac-
tion. This approach is valid if the system begins homo-
geneously in the false vacuum state so that one may
consistently sum over small-amplitude fluctuations
about this state, as I described earlier. However, this
picture may not be valid if the initial state of the system
is highly inhomogeneous.

The effects of initial-state inhomogeneities have been
investigated using a variety of different approaches by
Gleiser and collaborators (Gleiser, 1993, 1994, 1995;
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Gleiser and Ramos, 1994; Borrill and Gleiser, 1995,
1997; Gleiser and Heckler, 1996; Gleiser et al., 1997). At
very high temperatures, the order parameter is certainly
well localized about the symmetric vacuum state. How-
ever, as we approach the critical temperature we must
be sure that thermal fluctuations do not lead to signifi-
cant inhomogeneities such that the saddle-point ap-
proximation breaks down. In particular, if there is a suf-
ficient probability for the order parameter to reach the
true vacuum by purely classical thermal processes (sub-
critical fluctuations) near the critical point, then we may
not apply the nucleation calculation and might expect
that the transition proceeds similarly to spinodal decom-
position despite the first-order nature of the effective
potential.

Although quantifying this statement is highly non-
trivial, recent progress has been made numerically by
Borrill and Gleiser (1995). These authors use a Langevin
approach to track the dynamics of the order parameter
in a spontaneously broken theory of a real scalar field in
3+1 dimensions. They use a potential that is identical in
form to the electroweak potential and their initial con-
ditions are that the scalar field is localized around the
false vacuum. The potential is fixed at the critical tem-
perature, the field evolves in time, and then the final
spatial distribution of the scalar is determined for a
range of values of the mass. This distribution is mea-
sured by defining f,(¢) to be the fraction of the total
volume in the false vacuum at time ¢ and evaluating the
ensemble average of this quantity for different values of
the scalar field mass.

With this method the authors are making all the as-
sumptions usually made in studies of the transition (va-
lidity of the effective potential, homogeneity of the ini-
tial state). However, since the dynamics are governed by
a Langevin equation (with rescaled order parameter ¢),

.. 2 . 1%

$=Vietnot+ oo =Ex0), (111)
the effects of noise ¢ and viscosity 7 are taken into ac-
count and are related by the fluctuation-dissipation

equation
(Ex,D)EXt"))y=29T8(t—t") 8 (x—x'). (112)

The results of this simulation are that, for all scalar
masses in the experimentally allowed range of Higgs
mass, the authors expect phase mixing to occur at the
critical temperature (see Fig. 7). In other words, by the
time of the transition, half the universe is classically in
the false vacuum and half is classically in the true.

If this is indeed the case in the electroweak theory
then we might expect the standard bubble nucleation
picture not to hold, irrespective of the validity of the
finite-temperature effective potential. In fact, the dy-
namics of the phase transition may closely resemble that
of spinodal decomposition. It is important to stress,
however, that the electroweak theory itself is not being
simulated in these approaches, and when the transition
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FIG. 7. Evolution of the ensemble-averaged fraction f;(z) for
several values of the scalar field self-coupling N. Thanks to
Marcelo Gleiser for permission to use this figure, which first
appeared in Borrill and Gleiser, 1995.

from a real scalar field to the modulus of a complex field
is made, and gauge fields are included, the dynamics
may be quite different.

F. Erasure of the baryon asymmetry: Washout

There are essentially two criteria related to the
strength of the phase transition that are important for
electroweak baryogenesis. First, as I have commented, if
the phase transition is second order or a crossover, then
the only departure from equilibrium arises from the ex-
pansion of the universe. At the electroweak scale, this is
a negligible effect and so no baryon production results.
In such a situation, electroweak baryogenesis may only
proceed if other physics is responsible for displacing the
system from equilibrium. Such a situation is realized if
TeV-scale topological defects are present at the phase
transition, as I shall discuss in detail in Sec. VIII. If the
phase transition is weakly first order, then the dynamics
can be very complicated, as I have indicated above.

However, if the phase transition is sufficiently strongly
first order, then we may be confident that widely sepa-
rated critical bubbles nucleate and propagate as I have
described. In this case, electroweak baryogenesis may
proceed, but there is a further criterion to be satisfied.
Consider a point in space as a bubble wall passes by.
Initially, the point is in the false vacuum and sphaleron
processes are copious, with rate per unit volume given
by Eq. (52). As the wall passes the point, the Higgs fields
evolve rapidly and the Higgs VEV changes from (¢)
=0 in the unbroken phase to

(p)=v(T.) (113)

in the broken phase. Here, v(T) is the value of the or-
der parameter at the symmetry-breaking global mini-
mum of the finite-temperature effective potential. That
is, v(7T,.) minimizes the free-energy functional at T
=T.. Now, CP violation and the departure from equi-
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librium, and hence biased baryon production, occur
while the Higgs field is changing. Afterwards, the point
is in the true vacuum, baryogenesis has ended, and the
rate per unit volume of baryon-number-violating events
is given by Eq. (48) with (¢) given by Eq. (113). Since
baryogenesis is now over, it is imperative that baryon
number violation be negligible at this temperature in the
broken phase, otherwise any baryonic excess generated
will be equilibrated to zero. Such an effect is known as
washout of the asymmetry. The condition that the
Boltzmann suppression factor in Eq. (48) be sufficiently
large to avoid washout may be roughly stated as
(Shaposhnikov, 1986a, 1986b)

v(T,)
T.

This is the traditionally used criterion that the baryon
asymmetry survive after the wall has passed, and in this
article, this is the criterion I shall use. However, it is
worth pointing out that there are a number of nontrivial
steps that lead to this simple criterion. The actual bound
is one on the energy of the sphaleron configuration at
the bubble nucleation temperature. In order to arrive at
the criterion (114), one must translate this into a bound
at T, and then write the sphaleron energy in terms of
the VEV v(T,.). Finally, as I commented earlier, if the
evolution of the scale factor of the universe is nonstand-
ard, then this bound can change. For an analysis of these
issues see Joyce and Prokopec (1998). It is necessary
that this criterion, or one similar to it, be satisfied for
any electroweak baryogenesis scenario to be successful.

>1. (114)

G. Summary

I have given arguments that the minimal standard
model has neither enough CP violation nor a suffi-
ciently strong phase transition to allow electroweak
baryogenesis to take place. These issues have been in-
vestigated in depth (Farrar and Shaposhnikov, 1994a,
1994b) and a detailed analysis was presented by Farrar
and Shaposhnikov (1995a, 1995b), in which the authors
found a potential enhancement of the Kobayashi-
Maskawa CP violation by performing a detailed calcu-
lation of the effects of particle reflection and transport.
However, it was later argued (Huet and Sather, 1995;
Gavela et al,, 1995a, 1995b) that this potential effect
would be erased by quantum decoherence. Separate at-
tempts to enhance the CP violation present in the stan-
dard model through dynamical effects (Nasser and
Turok, 1994) have thus far also been unsuccessful. It is
therefore necessary to turn to extensions of the standard
model. I shall do this in some detail for the MSSM in
Sec. VII but in the next two sections I shall focus on the
dynamics of electroweak baryogenesis.

V. LOCAL ELECTROWEAK BARYOGENESIS

In the previous few sections, I have laid out the nec-
essary criteria for a particle physics model to produce a
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baryonic excess and have demonstrated that these crite-
ria are satisfied by the standard model of particle physics
and its modest extensions. In the present section I shall
describe how these separate ingredients can come to-
gether dynamically to produce baryon asymmetry as the
universe evolves through the electroweak phase transi-
tion.

Historically, the ways in which baryons may be pro-
duced as a bubble wall, or phase boundary, sweeps
through space have been separated into two categories:

(1) Local baryogenesis: baryons are produced when
the baryon-number-violating processes and CP-
violating processes occur together near the bubble
walls.

(2) Nonlocal  baryogenesis:  particles  undergo
CP-violating interactions with the bubble wall
and carry an asymmetry in a quantum number
other than baryon number into the unbroken
phase region away from the wall. Baryons are
then produced as baryon-number-violating pro-
cesses convert the existing asymmetry into a
baryon number asymmetry.

In general, both local and nonlocal baryogenesis will oc-
cur and the baryon asymmetry of the universe (BAU)
will be the sum of that generated by the two processes.
In this section I shall discuss local baryogenesis; nonlocal
baryogenesis will be treated in the next section.

Models of local baryogenesis are some of the earliest
viable models in the field. In this section I want to de-
scribe in detail the two major semianalytical approaches
to calculating the BAU produced by this mechanism. It
turns out that both approaches fall short of providing a
reliable quantitative measure of the BAU. However,
these attempts provide interesting ways of viewing the
microphysics behind local baryogenesis. This is espe-
cially important since at present it appears that future
numerical simulations may be our best hope of obtain-
ing a reasonable estimate of this quantity. The most re-
cent analysis of methods of treating local baryogenesis is
due to Lue et al. (1997) and it is that analysis that I shall
describe here.

To be specific, I shall assume CP violation via the
operator O, and assume a strongly first-order phase tran-
sition and thin bubble walls. I shall first look at an ap-
proach (Ambjgrn et al., 1989; Turok and Zadrozny,
1990, 1991; McLerran et al., 1991) that attempts to esti-
mate the baryon asymmetry by considering the relax-
ation of topologically nontrivial field configurations pro-
duced during the phase transition. Second, I shall turn to
a method introduced by Dine et al. (1991; see also Dine,
Leigh, et al., 1992). In this treatment, one considers con-
figurations that happen to be near the crest of the ridge
between vacua as the wall arrives, and one estimates the
extent to which their velocity in configuration space is
modified by the operator O, defined in Eq. (68), during
the passage of the wall.

The mechanisms I consider in this section involve the
dynamical evolution of configurations such as Eq. (31)
which are released from rest and end up as outgoing
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radiation. This complicates somewhat the simple situa-
tion described in Sec. 11, since in this case it is dangerous

to use the anomaly Eq. (33) because [d*x Tr(WW) is
not well defined as an integral and any answer can be
obtained for the change in fermion number (Farhi et al.,
1995). Nonetheless, careful calculation shows that the
results of Sec. II still apply. If the configuration (31) is
released and falls apart without ever going through a
zero of the Higgs field, then the analysis of Farhi et al.
(1996) is directly applicable and one net antifermion is
produced just as in the second interpolation. If the Higgs
field unwinds by going through a zero, then one can use
arguments presented in Farhi ef al. (1995) to demon-
strate that the presence of outgoing radiation in the final
configuration does not affect the result above, namely,
that there is no fermion number violation.

A. Local baryogenesis through unwinding

Consider using the method of Turok and Zadrozny to
estimate the baryon asymmetry produced by local
baryogenesis in a scenario in which the electroweak
phase transition is strongly first order and the bubble
walls are thin (Lin et al., 1997). In their original work,
Turok and Zadrozny studied the classical dynamics of
topologically nontrivial gauge and Higgs field configura-
tions in the presence of CP violation. The first step is to
consider spherically symmetric nonvacuum configura-
tions of the form (31) with Higgs winding Ny=*1 and
discuss their dynamics when they are released from rest
and evolve according to the equations of motion. Solu-
tions to the equations of motion typically approach a
vacuum configuration uniformly throughout space at
late times, and these solutions are no exception. There
are, however, two qualitatively different possible out-
comes of the evolution, as I mentioned in Sec. II. With-
out CP violation, for every Ny= +1 configuration that
relaxes in a baryon-producing fashion there is an N, =
—1 configuration that produces antibaryons. With the
inclusion of the CP-violating operator O, the hope of
this approach is that there will be some configurations
that produce baryons whose CP conjugate configura-
tions relax to the Nz=0 vacuum without violating
baryon number.

The scenario described above is set in the following
dynamical context. Imagine that the (thin) bubble wall
has just passed, leaving in its wake a particular configu-
ration, but that this configuration has not yet had time to
relax to equilibrium. The goal is a qualitative under-
standing of the dynamics of this relaxation. The first-
order electroweak phase transition can be characterized
by the change in the gauge-invariant quantity {c?), de-
fined in Eq. (15). When (¢?) is renormalized such that it
is equal to v? at zero temperature, then for a strongly
first-order phase transition it is close to v just below T,
in the low-temperature phase, and is much smaller just
above T, in the high-temperature phase. This is a slight
motivation for considering initial configurations in which
o=v throughout space, even though in reality this is not
a good description of the nonequilibrium configurations
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left in the wake of the wall and is not maintained during
the subsequent evolution. Similarly, there is no justifica-
tion for choosing a spherically symmetric configuration,
or one with A ,=0, or one that is initially at rest.

Note that the analysis of Lue et al. (1997) that I follow
here treats the nonequilibrium conditions after the pas-
sage of a thin wall. The Lagrangian is simply Eq. (12)
plus Eq. (68). This means that energy is conserved (to
better than half a percent in numerical simulations) dur-
ing the evolution of the gauge and Higgs fields.

The strategy now is to solve the equations of motion
obtained from the action (12) augmented by the addi-
tion of the operator (68). This is performed in the
spherical ansatz (Witten, 1977; Ratra and Yaffe, 1988) in
which all gauge-invariant quantities are functions only of
r and ¢, and the equations are solved numerically. First
consider initial conditions of the form (31) with #(r) of
(32) given by

n(r)=—m (115)

g

1 tanh( R },
where R is a constant parametrizing the size of the con-
figuration. This configuration satisfies the boundary con-
dition (17) and has Higgs winding number N=+1. It is
used as the initial condition for the equations of motion,
setting all time derivatives to zero at t=0. Initially, b is
set to zero in Eq. (68) and thus there is no CP violation.
In agreement with Turok and Zadrozny, this analysis
finds that there is a critical value R, of R, defined as
follows. For all R<R_ the configuration evolves toward
a vacuum configuration with N5;=0. No fermions are
produced in this background. For all R>R_ , the con-
figuration evolves toward a vacuum configuration with
Npy=+1, and fermions are produced. The values of R
obtained in simulations with several different values of
my/my are in quantitative agreement with those ob-
tained by Turok and Zadrozny (1991). Repeating this
exercise beginning with 7(r) given by —1 times that in
Eq. (115), that is, beginning with the CP conjugate con-
figuration having N ;= —1, results in an analogously de-
fined R_ . Since b=0, as expected R, =R . The entire
procedure is now repeated with b+#0, that is, with CP
violation present, and yields R, #R_ . Unfortunately,
this is not the end of the story.

Consider slightly more general initial conditions,
namely, exactly as above except that the time derivative
of ¢ is nonzero and given by

o(r)=yv?*[1—tanh(r/R)], (116)

with y some constant. Performing the simulations again
reveals that, for some values of y, R, <R whereas for
other values of y, R, >R_ . This dooms an analysis in
terms of the single parameter R. Clearly, a more general
framework is needed.

Consider a family of initial configurations with Ny=
+1, much more general than considered to this point,
with a set of parameters 3;. It would be more general
still to go beyond the spherical ansatz and eventually to
work towards an analysis involving an infinite set of §’s,
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FIG. 8. Sketch of two qualitatively different possible behaviors
of the critical surfaces F* =0 (represented by a solid line) and
F~ =0 (represented by a dashed line) in the space (8;,8;,-..)
describing initial configurations.

but it seems reasonable to start with some finite set ;.
For any fixed b, define a function F*(B;,8;,...) that
has the following properties:

(1) F*(B4,B3,...)>0 for all points in B space that
describe configurations which evolve toward the
Npy=+1 vacuum, thereby producing fermions;

(2) F*(B1.B,, ...)<0 for all points in B space de-
scribing configurations that evolve towards the
N =0 vacuum.

Considering only initial configurations described by Egs.
(31), (32), and (115), which are parametrized by the
single parameter R, implies F*(R)=R—R}. Com-
pletely analogously, define a function F~(B,B83,...)
such that the hypersurface F~ (B,8,,...) =0 divides the
B space of Ny=—1 configurations into those which
evolve towards the Ny=—1 and Ny=0 vacua.

In the absence of CP violation, F(8;,8,,...)=0 and
F~(B1,B2,...)=0 define the same hypersurface. In this
case, imagine allowing a CP-symmetric ensemble of
configurations with Ny=+1 and Ny= —1 to evolve. (In
this context, C P-symmetric means that the probability
for finding a particular Ny = +1 configuration in the en-
semble is equal to that for finding its CP conjugate Ny
=—1 configuration.) Since the configurations that
anomalously produce fermions are exactly balanced by
those that anomalously produce antifermions, the net
fermion number produced after relaxation would be
zero. The aim is to investigate the behavior in the pres-
ence of the C P-violating term O of Eq. (68). The hope is
that O will affect the dynamics of Ny=+1 configura-
tions and Ny= —1 configurations in qualitatively differ-
ent ways and that after relaxation to vacuum a net fer-
mion number will result, even though the initial
ensemble of configurations was CP symmetric. As de-
scribed above, when b #0 the two hypersurfaces F* =0
and F~ =0 are indeed distinct. The configurations rep-
resented by points in 3 space between the two hypersur-
faces yield a net baryon asymmetry. There are two
qualitatively different possibilities, however, illustrated
schematically in Fig. 8.

In Fig. 8(a), the hypersurfaces F*=0 and F~=0 do
not cross. The sign of b has been chosen such that a net
baryon number is produced in the region between the
two surfaces. In Fig. 8(b), the hypersurfaces cross and a
net baryon number is produced in regions B and D, and
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net antibaryons in regions A and C. If the hypersurfaces
do not cross, as in Fig. 8(a), then a simple estimate of the
fraction of configurations that yield a net baryon asym-
metry is possible. This fraction would be proportional to
the separation between the two hypersurfaces measured
in any direction in 8 space with a component perpen-
dicular to the hypersurfaces—for example, it would be
proportional to (R, —R_)—and it would be propor-
tional to b/M?, the coefficient of O. Unfortunately, as
described earlier, in the two-parameter space of (R,y)
the hypersurfaces F*=0 and F~=0 do in fact cross.
Thus, in the more general space (8;,8,...), the picture
cannot look like that sketched in Fig. 8(a) and must look
like that sketched in Fig. 8(b).

Hence, although the dynamics of the unwinding of to-
pological configurations after the phase transition in the
presence of the operator O may lead to a baryon asym-
metry, there is at present no way to make a simple ana-
lytical estimate of this asymmetry. This may well be a
valid way of looking at the microphysics of electroweak
baryogenesis, but it seems that large-scale (3+1)-
dimensional numerical simulations of the kind recently
pioneered by Moore and Turok (1997a) [but including
CP violation via Eq. (68) and working in a setting in
which the bubble walls are thin and rapidly moving] are
required in order to estimate the contribution to the
baryon asymmetry of the universe. I shall return shortly
to a brief discussion of the large-scale numerical simula-
tions that seem necessary. Before that, however, let us
examine a different attempt at obtaining a semianalyti-
cal estimate of the magnitude of the effect.

B. Kicking configurations across the barrier

The ideas presented in this subsection were originally
considered by Shaposhnikov (1988) (see also Dine et al.,
1991). The basic idea is to consider the dynamics of con-
figurations that are near the crest of the ridge between
vacua as the bubble wall of the first-order electroweak
phase transition arrives. The objective is to understand
how the dynamics might be biased by the presence of
CP violation in the theory and hence how a baryon
asymmetry might result.

In a sense, this discussion is more general than that of
the previous section, because it attempts to treat baryon-
number-violating processes of a type more general than
the unwinding of winding-number-one configurations.
On the other hand, the treatment of these more general
processes is, of necessity, greatly oversimplified. This
discussion follows those of Dine et al. (1991) and Lue
et al. (1997) to some extent, though they are not always
parallel.

In the high-temperature phase, baryon-number-
violating processes are not exponentially suppressed.
The barrier-crossing configurations typically (Arnold
and McLerran, 1987; Shaposhnikov, 1988; Arnold et al.,
1997; Huet and Son, 1997) have sizes given by the mag-
netic correlation length

E~(ayT)™". (117)
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Imagine dividing space up into cells of this size and
looking at configurations cell by cell. The energy in
gauge-field oscillations with wavelength ¢ is of order 7,
but the total energy in a cell is much larger, as it is
presumably of order T*&°. Indeed, this energy is much
larger than the sphaleron energy, which is E,,~Vv/g.
Most of the energy is in oscillations of the gauge and
Higgs fields on length scales shorter than & These con-
figurations are crossing the barrier between vacua via
regions of the barrier far above the lowest point on the
barrier, that is far above the sphaleron, and they look
nothing like the sphaleron. Recall that it is now believed
that in each cell of volume £, the sphaleron barrier is
crossed once per time &/ ay, leading to k~ay . Now
consider what happens when the bubble wall hits the
configurations just described.

Focus on the configuration in one cell. It traverses a
path through configuration space, which may be param-
etrized by 7. Dine et al. (1991) consider the special case
in which this path is the path in configuration space that
an instanton follows as a function of Euclidean time 7,
but this is not essential, and it is clear that they were
thinking of more general circumstances also. The con-
figurations discussed in Sec. V.A can be seen as special
cases of those described here. The energy of the configu-
ration has a maximum at some 7 (at which the configu-
ration crosses the barrier) which is defined to be 7=0.
Now write down a Lagrangian that is intended to de-
scribe the dynamics of 7 as a function of time for 7 near
7=0:

c; b
Tz+ ? WO'Z T.

€2
28
In this expression, ¢y, ¢,, and c3 are dimensionless con-
stants, different for each of the infinitely many possible
barrier-crossing trajectories. The factors of & have been
put in by dimensional analysis, treating 7as a quantity of
dimension — 1. (However, rescaling 7 by a dimensionful
constant does not change the final result.) This Lagrang-
ian should be seen as the first few terms in an expansion
in powers of 7and 7. Because by assumption 7=0 is a
maximum of the energy as a function of 7, no odd pow-
ers of 7 can appear. In the absence of CP violation,
there can be no odd powers of 7, since they make the
dynamics for crossing the barrier from left to right dif-

L(r.7)= g—;-fu (118)

ferent than from right to left. The Tr FF in the operator
O includes a term that is proportional to the time deriva-
tive of the Chern-Simons number, and this means that O
must contribute a term in £ which is linear in 7. It is
obviously quite an oversimplification to treat barrier
crossing as a problem with one degree of freedom. As
described earlier, the complete dynamics can be very
complicated, even for relatively simple initial conditions.
However, let us forge ahead with Eq. (118).

The momentum conjugate to 7is given by

Cl. C3 b

p:ET+€WU2 (119)

and the Hamiltonian density is therefore
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H

g( &b 2)2 ) (120)

“ia\PT e T3

Before considering the thin-wall case described in detail
here, it is worth pausing to consider the thick-wall limit
in which (¢?) is changing slowly and other quantities
evolve adiabatically in this slowly changing background.
A reasonable assumption is that the variables (7,p) are
Boltzmann distributed with respect to the Hamiltonian
(120) at each instant, treating o> as approximately con-
stant. This implies that the distribution of p is centered
at

Cj3 b
po:? WO'Z. (121)

However, from Eq. (119), this means that the velocity +
is Boltzmann distributed with center 7=0. Thus the
presence of the C P-violating operator (68) does not bias
the velocity of trajectories in configuration space in the
thick-wall limit. This conclusion disagrees with that of
Dine et al. (1991) and Dine, Leigh, et al. (1992). There is
nevertheless an effect. Integrating the third term in Eq.
(118) by parts, one obtains a term linear in 7 propor-
tional to the time derivative of ¢. This changes the
shape of the potential-energy surface in configuration
space during the passage of the wall and yields an asym-
metry. In this limit, in which the wall is thick and depar-
ture from equilibrium is small, the problem is much
more easily treated in the language of spontaneous
baryogenesis, as I shall discuss later—the operator O
acts like a chemical potential for baryon number.

Now let us return to the thin-wall case. Immediately
after the wall strikes, the fields are not yet in equilib-
rium. The idea here is to use an impulse approximation
to estimate the kick that + receives as the wall passes,
and from this to estimate the baryon asymmetry that
results. The equation of motion for 7 obtained from Eq.
(118) is

Co C3 b d
T8’
During the passage of a thin wall, the first term on the
right-hand side can be neglected relative to the second.

In the impulse approximation the passage of the wall
kicks 7 by an amount

7 a’. (122)

C3 b 5
T——ZWAO' N (123)
where Ag? is the amount by which ¢ changes at the
phase transition. The kick A+ has a definite sign. Thus,
in the thin-wall limit, the distribution of the velocities in
configuration space of barrier-crossing trajectories is bi-
ased and a baryon asymmetry results. How might one
calculate the magnitude of this asymmetry?

If A+ is large compared to 7, the velocity the con-
figuration would have had as it crossed 7=0 in the ab-
sence of the action of the wall, then A7+ will kick the
configuration over the barrier in the direction it favors
and will produce, say, baryons rather than antibaryons.



Mark Trodden: Electroweak baryogenesis 1485

If A7 is small compared to 7, it will have no qualitative
effect. The fraction of the distribution of configurations
with <At is proportional to A+. Note that in this cal-
culation it was not necessary for 7 to be precisely at 7
=0 when the wall hits. It was only necessary for 7to be
close enough to 7=0 that the Lagrangian (118) is a good
approximation. It is difficult to quantify what fraction f
of configurations satisfy this criterion of being “close
enough to 7=0,” although it is worth noting that f does
not depend on the time it takes configurations to
traverse the barrier. Nevertheless, the net number den-
sity of baryons produced may be estimated as

np~ATfE3, (124)
where the constants c;,c,,c3 have been absorbed
into f.

At the time of the electroweak phase transition, the
entropy density of the universe is s~457>, and the
baryon-to-entropy ratio is therefore?

TNfE WAO'Z. (125)
The size of the effect clearly depends on Ac?. It was
suggested by Dine et al. (1991) that Ao corresponds to
increasing o up to that value at which baryon-number-
violating processes become exponentially suppressed in
thermal equilibrium. Whereas, in the thick-wall case,
baryon-number-violating processes stop when o2
reaches this value, this is not the case in the thin-wall
scenario. In this setting, thermal equilibrium is not main-
tained even approximately, and it can be seen from the
above discussion that what matters is the net change in
o as the wall passes. Once one picks an extension of the
standard model which makes the transition strongly first
order, one can compute Ag?. It is simplest just to take
Ac?=v?/2, which is approximately what is obtained in
the minimal standard model with a 35-GeV Higgs mass
(Kajantie et al., 1996b). Putting it all together yields

(5 TeV)?

o
If, for example, b~ ay and M ~1 TeV, the bound (71)
can be satisfied and Eq. (126) suggests that a cosmologi-
cally relevant baryon asymmetry may be generated. If
CP violation is introduced via the operator O with a
coefficient b/M? satisfying Eq. (71), and if the bubble
walls are thin, then the contribution to the baryon asym-
metry of the universe from local electroweak baryogen-
esis can be at an interesting level so long as the quantity
f is not smaller than about a tenth.

There are many contributions to f, since the treat-
ment leading to the estimate (126) is greatly oversimpli-
fied. First, there are the constants ¢; (i=1,2,3), which of
course differ for the different configurations in different

”S—B~ AAX107%)b (126)

This result agrees with that of Dine et al. (1991) although the
discussion and results of Lue et al. (1997) are somewhat differ-
ent.
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cells of volume & and must somehow be averaged over.
Second, using the impulse approximation is not really
justified. In reality, the wall does not have zero thick-
ness. More important, even if the wall is thin, the time
during which it can affect a configuration of size ¢ is at
least & Third, the treatment in terms of the Lagrangian
(118) only has a chance of capturing the physics near 7
=0, and it is not at all clear what fraction of configura-
tions satisfy this. Configurations that happen to be far-
ther away from the crest of the ridge between vacua
when the wall hits do receive a kick from the wall. How-
ever, even if this kick is large, it may not be in a suitable
direction in configuration space to be effective. Configu-
rations far from 7=0 can contribute to ny, but their
contribution is hard to compute, because far from 7=0,
there is no way to reduce the problem to one of one
degree of freedom. Fourth, even near the crest of the
ridge for a given trajectory the problem does not really
reduce to one degree of freedom. For the configurations
of interest, o is a function of space and time, and the
operator O and the bubble wall conspire to affect its
dynamics. In the method discussed here, the effect is
described by treating o as constant in space and time on
either side of the wall and only changing at the wall.
Fifth, we must face up to the specific difficulties dis-
cussed in the treatment of the Turok and Zadrozny
mechanism. After the wall has passed, the fields are not
yet in thermal equilibrium and their dynamics are com-
plicated. This may in fact yield a further contribution to
npg. It may also, however, negate some of the contribu-
tion estimated in Eq. (126) because some configurations
kicked across the barrier in one direction by the passage
of the wall may at a later time wander back across the
barrier whence they came. As mentioned earlier, an es-
timate of the magnitude of these sorts of effects is diffi-
cult even for a restricted class of configurations. To sum
up, f is almost certainly less than 1. Hence it would be
best to use Eq. (126) as an upper bound on ng/s, rather
than as an estimate.

Even if Eq. (126) is used only as an upper bound it is
still interesting. Combined with the experimental bound
(71) on the coefficient of O, the result (126) shows that if
the experimental sensitivity to the electric dipole mo-
ment of the electron or the neutron can be improved by
about an order of magnitude, and if these experiments
continue to yield results consistent with zero, then the
baryon asymmetry of the universe produced by local
electroweak baryogenesis is smaller than that observed,
even if future numerical simulations were to demon-
strate that f is as large as 1. Such a result would rule out
the operator (68) as the source of CP violation for elec-
troweak baryogenesis.

C. Making progress

If the bubble walls are thick, conditions remain close
to thermal equilibrium during the passage of the wall,
and the nonequilibrium physics can be captured by as-
signing nonzero chemical potentials to various quantum
numbers including baryon number. As I have men-
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tioned, analytic estimates for the baryon asymmetry of
the universe produced in this setting exist in the litera-
ture (Cohen et al, 1991b; Dine et al., 1991; McLerran
et al., 1991; Cohen and Nelson, 1992; Dine, Leigh, et al.,
1992; Dine and Thomas, 1994), and the need for a nu-
merical treatment is not pressing. If the bubble walls are
thin, however, or if (as is no doubt the case) they are
comparable in thickness to other length scales in the
problem, the situation is unsettled and it seems that a
large-scale numerical treatment is necessary.

Moore and Turok (1997a) have recently taken a big
step in this direction. They have performed (3+1)-
dimensional classical simulations in which a bubble wall
moves through a box converting the high-temperature
phase to the low-temperature phase. To date, they have
focused more on computing quantities like the wall
thickness, the wall velocity, the surface tension, and the
drag on the wall and have only begun their treatment of
local electroweak baryogenesis. To this point, they have
introduced CP violation only by “mocking up” the ef-
fects of Eq. (68) by first computing the average wall pro-
file (o)(z) for an ensemble of walls, where z is the di-
rection prependicular to the wall, and then doing a
simulation in which one measures the distance of a given
point to the nearest bubble wall and adds a chemical
potential for Chern-Simons number at that point pro-
portional to the spatial derivative of the average wall
profile at that distance. This chemical potential is only
nonzero on the wall, as it would be if it were propor-
tional to d(o?)/dt for a moving wall. Nevertheless, by
imposing the chemical potential as an external driving
force instead of simply introducing Eq. (68) in the La-
grangian and letting the dynamics do their thing self-
consistently, one risks missing a lot of the difficulties
(and potential effects) discussed earlier. The simulations
of Moore and Turok suggest that a large-scale numerical
assault on the problem of local electroweak baryogen-
esis is now possible.

VI. NONLOCAL BARYOGENESIS

If CP violation leads to an asymmetry in a quantum
number other than baryon number and this asymmetry
i1s subsequently transformed into a baryon excess by
sphaleron effects in the symmetric phase, then this pro-
cess is referred to as nonlocal baryogenesis. Nonlocal
baryogenesis typically involves the interaction of the
bubble wall with the various fermionic species in the
unbroken phase. The main picture is that as a result of
CP violation in the bubble wall, particles with opposite
chirality interact differently with the wall, resulting in a
net injected chiral flux. This flux thermalizes and diffuses
into the unbroken phase, where it is converted to bary-
ons. In this section, for definiteness when describing
these effects, I shall assume that the C P violation arises
because of a two-Higgs-doublet structure. There are
typically two distinct calculational regimes that are ap-
propriate for the treatment of nonlocal effects in elec-
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troweak baryogenesis. Which regime is appropriate de-
pends on the particular fermionic species under
consideration.

(1) The thin-wall regime (Cohen et al., 1990, 1991a;
Joyce et al., 1994b): If the mean free path [ of the
fermions being considered is much greater than
the thickness & of the wall, i.e., if

o 1
=<

l b
then we may neglect scattering effects and treat
the fermions as free particles in their interactions
with the wall.

(127)

(2) The thick-wall regime: If the mean free path of
the fermions is of the same order or less than the
wall thickness, then scattering effects become im-
portant and the noninteracting picture is no
longer applicable. Here there are two effects, clas-
sical force baryogenesis (Joyce et al., 1994c) and
nonlocal spontaneous baryogenesis (Joyce et al.,
1994c; Cohen et al., 1994). In the former scenario,
as a result of CP violation, an axial field emerges
on the wall, leading to a classical force that per-
turbs particle densities, thus biasing baryon num-
ber. In the latter, hypercharge-violating processes
in the presence of an axial field on the wall are
responsible for perturbing particle densities in a
C P-violating manner. When the effects of particle
transport are taken into account, both cases give
rise to nonlocal baryogenesis.

Both these mechanisms lead to an increase in the net
effective volume contributing to baryogenesis over that
of local baryogenesis since it is no longer necessary to
rely on anomalous interactions taking place in the nar-
row region of the face of the wall where the changing
Higgs fields provide CP violation.

The chiral asymmetry which is converted to an asym-
metry in baryon number is carried by both quarks and
leptons. However, the Yukawa couplings of the top
quark and the 7lepton are larger than those of the other
quarks and leptons, respectively. Therefore it is reason-
able to expect that the main contribution to the injected
asymmetry comes from these particles and to neglect the
effects of the other particles (for an alternative scenario
see Davoudiasl et al., 1998).

When considering nonlocal baryogenesis it is conve-
nient to write the equation for the rate of production of
baryons in the form (Joyce et al., 1994b)

dng  nd(T) >
e 2T &M

(128)

where the rate per unit volume for electroweak spha-
leron transitions is given by Eq. (52). Here, n; is again
the number of families and wu; is the chemical potential
for left-handed particles of species i. An accurate evalu-
ation of the chemical potentials that bias baryon number
production is crucial in applying this equation.
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FIG. 9. Relevant quantities for nonlocal baryogenesis as a
bubble wall propagates through the electroweak plasma, con-
verting false vacuum to true.

A. Thin bubble walls

Let us first consider the case in which the Higgs fields
change only in a narrow region at the face of the bubble
wall. We refer to this as the thin-wall case. In this re-
gime, effects due to local baryogenesis are heavily sup-
pressed because CP-violating processes take place only
in a very small volume in which the rate for baryon-
number-violating processes is nonzero. However, in con-
trast, we shall see that nonlocal baryogenesis produces
an appreciable baryon asymmetry due to particle trans-
port effects (Cohen et al., 1990, 1991a; Joyce et al.,
1994b).

In the rest frame of the bubble wall, particles see a
sharp potential barrier and undergo C P-violating inter-
actions with the wall due to the gradient in the CP-odd
Higgs phase. As a consequence of CP violation, there
will be asymmetric reflection and transmission of par-
ticles, thus generating an injected current into the un-
broken phase in front of the bubble wall. As a conse-
quence of this injected current, asymmetries in certain
quantum numbers will diffuse both behind and in front
of the wall due to particle interactions and decays (Co-
hen et al., 1990, 1991a; Joyce et al., 1994b). In particular,
the asymmetric reflection and transmission of left- and
right-handed particles will lead to a net injected chiral
flux from the wall (see Fig. 9). However, there is a quali-
tative difference between the diffusion occurring in the
interior and exterior of the bubble.

Exterior to the bubble the electroweak symmetry is
restored and weak sphaleron transitions are unsup-
pressed. This means that the chiral asymmetry carried
into this region by transport of the injected particles may
be converted to an asymmetry in baryon number by
sphaleron effects. In contrast, particles injected into the
phase of broken symmetry interior to the bubble may
diffuse only by baryon-number-conserving decays, since
the electroweak sphaleron rate is exponentially sup-
pressed in this region. Hence I shall concentrate only on
those particles injected into the unbroken phase.

The net baryon to entropy ratio that results via non-
local baryogenesis in the case of thin walls has been cal-
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culated in several different analyses (Cohen et al., 1990,
1991a; Joyce et al., 1994b). In the following I shall give a
brief outline of the logic of the calculation, following
Joyce et al. (1994b). The baryon density produced is
given by Eq. (128) in terms of the chemical potentials u;
for left-handed particles. These chemical potentials are a
consequence of the asymmetric reflection and transmis-
sion off the walls and the resulting chiral particle asym-
metry. Baryon number violation is driven by the chemi-
cal potentials for left-handed leptons or quarks. To be
concrete, I shall focus on leptons (Joyce et al., 1994b);
for quarks see, for example, Cohen et al. (1990). If there
is local thermal equilibrium in front of the bubble
walls—as I am assuming—then the chemical potentials
wu; of particle species i are related to their number den-
sities n; by
T2

ni:EkiMia (129)
where k; is a statistical factor which equals 1 for fermi-
ons and 2 for bosons. In deriving this expression, it is
important (Joyce et al., 1994a) to correctly impose the
constraints on quantities that are conserved in the re-
gion in front of and on the wall.

Using the above considerations, the chemical poten-
tial u; for left-handed leptons can be related to the left-
handed lepton number densities L; . These are in turn
determined by particle transport. The source term in the
diffusion equation is the flux J resulting from the asym-
metric reflection and transmission of left- and right-
handed leptons off the bubble wall.

For simplicity let us assume a planar wall. If |p.| is the
momentum of the lepton perpendicular to the wall (in
the wall frame), the analytic approximation used by
Joyce et al. (1994b) allows the asymmetric reflection co-
efficients for lepton scattering to be calculated in the
range

1
m<|p:|<mp~=, (130)
where m; and my are the lepton and Higgs masses, re-
spectively. This results in

2

m;
Rir—Rr_1=200cp—. 131
L—R™ VR L P lp] (131)
The corresponding flux of left-handed leptons is
2
vmy mHA Hcp
Jo= T (132)

Note that in order for the momentum interval in Eq.
(130) to be nonvanishing, the condition m,;6<1 needs to
be satisfied.

The injected current from a bubble wall will lead to a
“diffusion tail” of particles in front of the moving wall.
In the approximation in which the persistence length of
the injected current is much larger than the wall thick-
ness we may to a good approximation model it as a
delta-function source and search for a steady-state solu-
tion. In addition, assume that the decay time of leptons
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is much longer than the time it takes for a wall to pass so
that we may neglect decays. Then the diffusion equation
for a single particle species becomes

DLy +vL;=¢£,Jy8(z2), (133)

where D; is the diffusion constant for leptons and a
prime denotes the spatial derivative in the direction z
perpendicular to the wall. This equation contains a pa-
rameter &° that is called the persistence length of the
current in front of the bubble wall. This describes, and
contains all uncertainties about how the current ther-
malizes in the unbroken phase. Equation (133) can be
immediately integrated once, with the integration con-
stant specified by the boundary condition

lim L,;(z)=0. (134)
2]~
This leads easily to the solution
€L
Jg——e M7 7>0,
L]_,(Z) = 0 DL (35)
0 z<0
with the diffusion root
Ap= v 136

Note that in this approximation the injected current
does not generate any perturbation behind the wall. This
is true provided &> § is satisfied. If this inequality is not
true, the problem becomes significantly more complex
(Joyce et al., 1994b).

In the massless approximation the chemical potential
., can be related to L; by

6

ML= 72 Ly (137)
(for details see Joyce et al., 1994b). Inserting the sphale-
ron rate and the above results for the chemical potential
winto Eq. (128), we find that the final baryon-to-entropy
ratio becomes

ny 1 B m\*my &
_:m"“év(g*) lAﬁcp( ) ED—L

s
The diffusion constant is proportional to ay” (see Joyce
et al., 1994b):

7 (138)

1
—’—VSa%,VT.

i (139)

Hence, provided that sphalerons do not equilibrate in
the diffusion tail,

2 L
b 02 ()L gt T T £
S OZC(W(g ) KAeCPV T T DL. (140)
Since we may estimate that
&1
D, Ts (141)

the baryon-to-entropy ratio obtained by nonlocal baryo-
genesis is proportional to a7}, and not ayy as in the result
for local baryogenesis.
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Now consider the effects of top quarks scattering off
the advancing wall (Cohen et al., 1990, 1991a). Several
effects tend to decrease the contribution of the top
quarks relative to that of tau leptons. First, for typical
wall thicknesses the thin-wall approximation does not
hold for top quarks. This is because top quarks are much
more strongly interacting than leptons and so have a
much shorter mean free path. An important effect is
that the diffusion tail is cut off in front of the wall by
strong sphalerons (Mohapatra and Zhang, 1992; Giudice
and Shaposhnikov, 1994). There is an anomaly in the
quark axial-vector current in QCD. This leads to
chirality-nonconserving processes at high temperatures.
These processes are relevant for nonlocal baryogenesis
since it is the chirality of the injected current that is
important in that scenario. In an analogous expression
to that for weak sphalerons, we may write the rate per
unit volume of chirality-violating processes due to strong
sphalerons in the unbroken phase as

I'y=x,(a,T)* (142)

where «, is a dimensionless constant (Moore, 1997).
Note that the uncertainties in « are precisely the same
as those in « defined in Eq. (52). As such, «, could easily
be proportional to «;, in analogy with Eq. (55), perhaps
with a logarithmic correction. These chirality-changing
processes damp the effect of the injected chiral flux and
effectively cut off the diffusion tail in front of the ad-
vancing bubble wall. Second, the diffusion length for top
quarks is intrinsically smaller than that for tau leptons,
thus reducing the volume in which baryogenesis takes
place. Although there are also enhancement factors,
e.g., the ratio of the squares of the masses m?/m?, it
seems that leptons provide the dominant contribution to
nonlocal baryogenesis.

B. Thick bubble walls

If the mean free path of the fermions being consid-
ered is smaller than the width of the wall, we refer to the
thick-wall, or adiabatic, limit, and the analysis is more
complicated. In the case of thin bubble walls, the plasma
within the walls undergoes a sharp departure from equi-
librium. When the walls are thick, however, most inter-
actions within the wall will be almost in thermal equilib-
rium. The equilibrium is not exact because some
interactions, in particular baryon number violation, take
place on a time scale much slower than the rate of pas-
sage of the bubble wall. These slowly varying quantities
are best treated by the method of chemical potentials.
For nonlocal baryogenesis, it is still useful to follow the
diffusion equation approach. However, whereas in the
thin-wall case it was sufficient to model the source as a §
function, here we must consider sources that extend
over the wall. There are a number of possible sources.

To be definite, consider the example in which CP vio-
lation is due to a CP-odd phase 6 in the two-Higgs-
doublet model.
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1. Spontaneous baryogenesis

Let us begin by describing how the dynamics of 6
might bias baryon number production. In order to see
how @ couples to the fermionic sector of the theory (to
produce baryons) we may remove the # dependence of
the Yukawa couplings arising from the Higgs terms. We
do this by performing an anomaly-free hypercharge ro-
tation on the fermions (Nelson et al., 1992), inducing a
term in the Lagrangian density of the form

1— 1— 2
“Upy*Up+ EDL'YMDL+?_’UR7MUR

ECPOWMG 6

1— 1— —
_gDRV'uDR_ElL')’MZL_ER')’MER . (143)
Here Ui and Dy are the right-handed up and down
quarks, respectively, /; are the left-handed leptons, and
E g are the right-handed charged leptons. The quantity
in the square brackets is proportional to the fermionic
part of the hypercharge current, and therefore changes
in 0 provide a preferential direction for the production
of quarks and leptons, in essence a chemical potential
for baryon number wp similar to that described in Eq.
(65).

Of course, strictly speaking, this is not a chemical po-
tential, since it arises dynamically rather than by impos-
ing a constraint. For this reason, the quantity wp is
sometimes referred to as a “‘charge potential.” The ef-
fect of the charge potential is to split the otherwise de-
generate energy levels of the baryons with respect to the
antibaryons. This results in a free-energy difference
which we may feed into Eq. (72) to obtain

dnpg (T

ar 0T M
The relevant baryon number produced by spontaneous
baryogenesis is then calculated by integrating this equa-
tion.

Initially, spontaneous baryogenesis was considered as
an example of local baryogenesis. However, it has be-
come clear that diffusion effects can lead to an appre-
ciable enhancement of the baryon asymmetry produced
by this mechanism (Cohen et al., 1994), and this effect
has been investigated by a number of authors (Joyce
et al., 1994; Comelli et al., 1995). In addition, it has been
shown that the final result for the baryon-to-entropy ra-
tio must be suppressed by a factor of m?/T? where m is
the relevant fermion mass (Comelli et al., 1995). As we
saw in the case of thin walls, the major part of the work
is to use the diffusion equation to calculate the number
densities of particle species, and then to relate these
densities to the chemical potentials. In the case of thick
walls the situation is complicated, since one must con-
sider extended sources for the appropriate diffusion
equations. Nevertheless, the calculations can be per-
formed and I will sketch one such approach as part of
the next subsection.

(144)

2. Classical force baryogenesis

An alternative way of generating a source for the dif-
fusion equation was suggested by Joyce et al. (1994c).
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The essential idea is that there exists a purely classical
chiral force that acts on particles when there is a
CP-violating field on the bubble wall. I shall briefly
sketch this idea here. The Lagrangian for a fermion ¢ in
the background of a bubble wall in the presence of the
CP-odd phase 6 is

=igy* (145)

v2
t3y —2—27 20,0 | p—myy,
where v; and v, are the VEVs of the Higgs fields and m
is the fermion mass. As usual we assume a planar wall
propagating at speed v in the z direction. Further, if
interactions of the Higgs and gauge fields with the wall
have reached a stationary state, then these fields are
functions only of z—vt. Then, in the wall rest frame
plane-wave fermion solutions g<e~?"* have the disper-
sion relation

2

E=|p +

2 1 V% 27172
Vps+ mts 70,0 , (146)

where * corresponds to s, = *1/2, with s, the z compo-
nent of the spin.

In the WKB approximation, the Hamilton equations
derived from this relation allow calculation of the accel-
eration of a WKB wave packet (i.e., the chiral force).
This force acts as a potential well that induces an excess
of chiral charge on the wall. In the diffusion tail in front
of the wall, there exists a corresponding deficit of chiral
charge. This acts as a chemical potential that is the
source of baryon number.

This calculation is performed by solving the associated
Boltzmann equation,

s>, f af
iy TP, = CU). (147)
in which the collision integral C(f) accounts for the fact
that in the thick-wall regime we may no longer use the
noninteracting picture, and Z and p, are obtained from
the Hamilton equations.

Joyce et al. (1994c) follow a fluid approach to solving
this equation. By concentrating on particles with |p,]
~T>m, they are able to treat the particle and antipar-
ticle excitations (146) as separate fluids in the WKB ap-
proximation. This permits an analytic solution to the dif-
fusion equation, which yields a relation between the
chiral force and the chemical potential on the wall for
the fermion species considered as

2In(2) v V3 m
Hy= 2200
3((3) 2v]+v2 T

2
, (148)

where { is again the Riemann function. Integrating this
in front of the wall yields a chemical potential that may
then be fed into Eq. (128) to yield an approximate an-
swer for the baryon asymmetry of the universe.

C. Summary and progress

The advantage of nonlocal baryogenesis over local
baryogenesis is that the effective volume in which
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baryon number generation can occur is enhanced in the
former case. This is because the effects of transport in
the plasma external to the expanding bubble allow
baryon-number-violating transitions in the unbroken
phase to transform a chiral asymmetry produced on the
wall into a baryon asymmetry. This means that in the
case of nonlocal baryogenesis we do not need to rely on
baryon-number-violating processes occurring in the re-
gion where the Higgs fields are changing.

The diffusion equation approach to the problem of
nonlocal baryogenesis has been very successful. In the
thin-wall case, it is a valid approximation to assume that
the source for the diffusion equation is essentially a &
function on the wall. This is because one may ignore the
effects of particle scattering in this picture. However, in
the case of thick walls, significant particle scattering oc-
curs, and as a result it is necessary to consider sources
for the diffusion equations that extend over the wall.

New approaches to this scenario continue to appear as
we try to understand the detailed predictions of specific
extensions of the standard model to compare with up-
coming accelerator tests (Cline, Joyce, and Kainulainen,
1998; Enqvist et al., 1997; Riotto, 1998b, 1998c).

VIl. A REALISTIC MODEL OF ELECTROWEAK
BARYOGENESIS: THE MSSM

As we have seen, if we are to produce enough baryons
at the electroweak phase transition, we must go beyond
the minimal Glashow-Salam-Weinberg theory. This is
true both to obtain strong enough CP violation and to
ensure a sufficient departure from thermal equilibrium.
It has been common to invoke general two-Higgs-
doublet models to satisfy these conditions (Bochkarev
et al., 1990; Arnold et al., 1992; Parwani, 1992; Davies
et al., 1994; Losada, 1996b), and the behavior of the
phase transition has most recently been investigated in
that context by Cline and Lemieux (1997). Here I shall
focus on a more restrictive model with good particle
physics motivations—the minimal supersymmetric stan-
dard model (MSSM).

Supersymmetry requires that each fermion have a
bosonic superpartner and vice versa. The essential fea-
ture of the MSSM, therefore, is that it contains twice the
particle content of the MSM plus an extra Higgs doublet
(and superpartner). Naturally, introducing a host of new
free parameters into the theory allows us to relax the
constraints that were derived for the MSM. However,
many of the new parameters are constrained by super-
symmetry and by existing accelerator measurements.

A. Electroweak phase transition in the MSSM

A strongly first-order phase transition can result if the
theory contains light scalars, which are strongly coupled
to the Higgs field. The MSSM contains two Higgs dou-
blets H, and H,, one linear combination of which is a
CP-even Higgs boson 4. The mass m, of this particle is
constrained to be less than of order 125 GeV (Carena
et al., 1996; Haber et al., 1997). Further, the superpart-
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ners of the top quark, the stops 7, couple to the Higgs
with strength of the order of the top-quark Yukawa cou-
pling. These light scalars are precisely the particles nec-
essary to enable the phase transition to be more strongly
first order than in the MSM (Guidice, 1992; Brignole
et al., 1994; Delepine et al., 1996). In fact, for their ef-
fects to be useful, it is necessary that the lightest stop be
no heavier than the top quark itself (see, for example,
Espinosa, 1996).

The phase transition in supersymmetric electroweak
theories has been investigated very recently (Cline and
Kainulainen, 1996, 1998; Farrar and Losada, 1996;
Laine, 1996a; Losada, 1996a, 1996b; Bodeker et al., 1997;
Carena et al., 1998). In addition to the parameters men-
tioned above, the other important quantity is

(Hy)
(Hy)’

the ratio of the vacuum expectation values of the Higgs
fields. The methods available to estimate the region of
parameter space in which EWBG is possible in the mini-
mal standard model can also be applied here. However,
since there is more structure in the MSSM, the calcula-
tion is more involved. Nevertheless, the calculation of
the allowed region of the m;,-m7 space has been per-
formed using the finite-temperature effective potential
computed up to all finite-temperature two-loop correc-
tions (Carena et al., 1998). The two-loop contributions
are crucial to the accuracy of this calculation and yield
the value

tan = (149)

tan S=2 (150)
and the constraints

75 GeV=m,;,<105GeV, (151)

100 GeV=m;<m;,. (152)

These results have been confirmed by lattice numerical
simulations by Laine and Rummukainen (1998). In the
ranges (152) the phase transition in the MSSM is strong
enough that washout of the baryon asymmetry produced
is avoided.

In quoting these bounds, there is an issue I have ne-
glected. It is possible to choose values of the parameters
in the MSSM such that the absolute energy minimum in
field space is a vacuum that breaks the color symmetry.
Although this would normally be forbidden, it is pos-
sible that the vacuum in which we live is metastable with
an extremely long lifetime, and hence such a minimum
would be consistent with observations. If we allow such
parameter values, then the above constraints may be re-
laxed a little. Here I have chosen to adopt the most
conservative assumption, namely that the color-
preserving vacuum state is the global minimum at all
temperatures.

B. Extra CP violation in the MSSM

In the MSSM there are extra sources of CP violation
beyond that contained in the Cabibbo-Kaboayashi-
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Maskawa matrix of the standard model. First, when su-
persymmetry breaking occurs, as we know it must, the
interactions of the Higgs fields A, and H, with chargi-
nos and neutralinos at the one-loop level lead to a
CP-violating contribution to the scalar potential of the
form

Vep=Ny(H H,)*+\g|H\|*H Hy+No|H,|*H  H,
(153)

The interaction of the Higgs fields with the stops is a
potential further effect that contributes to the
CP-violating part of the potential. However, in the
range (152) of stop masses required to maintain a strong
enough phase transition, this effect is suppressed. The
nature of supersymmetry breaking can lead to the pa-
rameters’ being complex,

+(H.c.).

N7=|Nq]e*e, (154)
Ag=|N\gle’, (155)
)\9:|)\9|€ia. (156)

The phase a breaks CP and can bias baryon production
in a way similar to that described for the two-Higgs
model.

Second, in SUSY extensions of the minimal standard
model, there exists a mass mixing matrix for the chargi-
nos. This mass matrix has a similar structure to the
quark mixing matrix in the MSM. In particular, the
chargino mixing matrix contains a phase ¢p that param-
etrizes C P violation in this sector. Similarly, there exists
a mixing matrix for the neutralinos, which also contains
this same phase. Finally, there is a further mass mixing
matrix for the top squarks. This contains a phase that is
a linear combination of ¢z and a second phase ¢, .
These extra phases can provide enough CP violation to
be useful for baryogenesis (Huet and Nelson, 1996).
However, in some regimes it is possible to constrain
their sizes through dipole moment calculations such as I
described earlier.

The electroweak phase transition and CP violation
are not the only features of electroweak baryogenesis
that change when one considers supersymmetric models.
It is necessary to reanalyze the reflection of particles
from bubble walls within the context of these theories,
and to reexamine the ranges of validity of the various
approximations used to obtain estimates for the baryon
asymmetry of the universe. Serious attempts to do just
this have only been made in the last two years (Davies
et al., 1996; Carena et al., 1997; Worah, 1997; Cline,
Joyce, and Kainulainen et al., 1998; Riotto, 1998a, 1998b,
1998c).

The regions of parameter space I have mentioned
above are still experimentally allowed. Thus the MSSM
remains a viable candidate theory to explain the baryon
asymmetry of the universe. It is quite possible that the
full parameter range will be covered in the next decade.
At that time we should know whether MSSM baryogen-
esis explains the BAU or whether we must turn to more
complicated models of the electroweak scale.
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FIG. 10. Analogy between the bubble-wall-mediated baryo-
genesis scenario and the defect-mediated scenario.

Vill. TOPOLOGICAL DEFECTS AND THE DEPARTURE
FROM THERMAL EQUILIBRIUM

If the dynamics of the electroweak phase transition
are such that the traditional scenarios for electroweak
baryogenesis that I have described are inefficient, then it
is interesting to explore alternative implementations of
baryogenesis at the electroweak scale. In this section, I
describe a particular realization of the third Sakharov
condition suggested by myself and collaborators (Bran-
denberger et al., 1994; Trodden et al., 1995; Branden-
berger et al., 1996; Prokopec et al., 1996). This imple-
mentation uses the out-of-equilibrium evolution of a
network of topological defects to realize the third Sa-
kharov criterion, instead of the evolution of bubble walls
(see Fig. 10). Different scenarios making use of topo-
logical defects formed at that temperature have been
suggested by other authors (Vachaspati and Field, 1994;
Barriola, 1995).

Topological defects are regions of trapped energy
density that can remain after a cosmological phase tran-
sition if the topology of the vacuum of the theory is
nontrivial. Typically, cosmological phase transitions oc-
cur when a gauge symmetry of a particle physics theory
is spontaneously broken. In that case, the cores of the
topological defects formed are regions in which the sym-
metry of the unbroken theory is restored. There exist
many excellent reviews of the physics of topological de-
fects and I refer the reader to one of those, rather than
provide a lengthy aside here. For the purposes of this
section, it is sufficient to specialize to the case of cosmic
strings; linelike, solitonic solutions to spontaneously bro-
ken field theories, for which there exist noncontractible
loops in the vacuum manifold. If these objects arise from
the breakdown of a gauge symmetry, then they can have
interesting microphysics, as I shall briefly describe.

A. Electroweak symmetry restoration
and the baryogenesis volume

Let us review the scenario for electroweak baryogen-
esis proposed by Brandenberger et al. (1994). I shall be-
gin by briefly explaining the physical principles behind
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electroweak symmetry restoration around ordinary
(nonsuperconducting) defects. This is an essential ingre-
dient of defect-mediated electroweak baryogenesis.

Consider a cosmic string, formed at a scale 7> ngyy,
that couples to the Glashow-Salam-Weinberg model.
Further, assume that the gauge fields corresponding to
this higher symmetry scale acquire an extra mass at the
electroweak scale. The simplest example is to introduce
an extra gauged U(1) symmetry that breaks to the stan-
dard model,

SU2), XU(1)yXU(1)—=SU2), XU(1)y. (157)

This is the model originally considered by Perkins and
Davis (1993). Let the string’s scalar and gauge fields be
S (which breaks the symmetry) and R, respectively.
The coupling between the string and the electroweak
sector is through R, and the electroweak Higgs field @,
in the covariant derivative

1 1 1
D, ®=\d,—5igr-W,—5ig'B,— 5ig"R, | .

5 5 5 (158)

Since 7> ngw, we may consistently treat R, as a back-
ground with Nielsen-Olesen characteristics. We now
minimize the energy of this configuration. Writing the
Higgs field in the unitary gauge

®=(0,0(r)7, (159)

we find that the minimal energy configuration is
achieved for

(160)

where a is a constant. With this ansatz the scale of elec-
troweak symmetry restoration R, is determined to be

R~N"MG Py, (161)

where 7y is the electroweak scale and G?=g>+g'>.

Thus the electroweak symmetry is restored out to the
inverse electroweak scale around such a higher-scale or-
dinary defect. If certain consistency conditions are satis-
fied [e.g., sphalerons fit inside the defect so that their
rate is not significantly suppressed (Perkins, 1995)], then
within this region the rate of baryon number violation is
still given by Eq. (52) after the electroweak phase tran-
sition.

Once again, I shall assume that CP violation is due to
a CP-odd relative phase, 6, between two electroweak
Higgs doublets, and that this phase changes by Afcp
during the transition from false to true vacuum, and by
—A0cp in the reverse transition. Thus, if A§-p>0 for a
given process, then baryon number is driven positive (an
excess of baryons over antibaryons is generated) and
vice versa.

As a defect moves, certain regions of the background
space enter the core of the defect—i.e., make the tran-
sition from true to false vacuum—while others leave the
core and make the transition from false to true vacuum.
There are certain types of motion of defects and evolu-
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tions of defect networks that can provide an asymmetry
such that an overall baryon excess is created in the uni-
verse.

An important quantity that enters the calculation is
the suppression factor

Vo
|4

A~ , (162)

where V. is the volume in which baryogenesis occurs
and V is the total volume. A is the factor by which
defect-mediated baryogenesis is weaker than baryogen-
esis with bubble walls. In the original work of Branden-
berger et al. (1994), the processes responsible for the
generation of the baryon asymmetry were purely local.
For a collapsing topological defect, purely local baryo-
genesis restricts the baryogenesis volume to be the ini-

tial volume of the defect because the effects of >0 on

one side of the string are canceled by the effects of @
<0 on the other. In fact, in order for A not to be a
prohibitively small suppression, it is necessary that the
scale at which the defects are formed be extremely close
to the electroweak scale. For definiteness, we shall re-
strict ourselves to local baryogenesis here, but note that
nonlocal effects lead to an appreciable enhancement and
allow the defects to be formed at scales further above
the electroweak scale.

B. Local baryogenesis and diffusion in defects

In this section I shall obtain an estimate for the
baryon asymmetry produced by a topological defect as a
consequence of local mechanisms.

As a topological defect passes each point in space, a
number density of antibaryons is produced by local
baryogenesis at the leading face of the defect, and then
an equal number density of baryons is produced as the
trailing edge passes. Naively we would expect that these
effects would cancel each other, so that any time-
symmetric motion of the defect, such as translation,
would yield no net baryon asymmetry. For this reason,
the analysis of Brandenberger ef al. (1994) was restricted
to the time-asymmetric motion of cosmic-string loop col-
lapse. In that case, the cancellation effects led to sup-
pression of the strength of the mechanism by the factor

A= >\3( M) '

7
However, this neglects an important effect and thus
underestimates the strength of the mechanism. The an-
tibaryons produced at the leading edge of the defect at a
fixed point in space spend a time interval 7 inside the
defect during which they may decay before the trailing

edge passes by and produces baryons at the same point.
The core passage time 7 is given by

L
T=—,
Vp

(163)

(164)

where L is the width of the defect and v, is its velocity.
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Thus, if ng is the number density of baryons (or anti-
baryons) produced at either edge, we may estimate the
net baryon asymmetry B produced after the defect has
passed a given point once to be

B=nj(1—e™ "), (165)
where T is the rate at which antibaryons decay and may
be related to the electroweak sphaleron rate by (Joyce
et al., 1994b)
— I s
F=6an=6anaWT. (166)
The resulting average baryon number density n, can
be estimated from Eq. (165), taking into account Eq.
(166) and the volume suppression [see Eq. (162)]:
L 2 T
nb:SnfT,uE(l—e A, (167)
where J is the thickness of the defect wall. The deriva-

tives of O.p and 6/vp combine to give Af-p, and hence
the resulting net baryon-to-entropy ratio becomes

Vsa
|4
where g, is the number of spin degrees of freedom that

enters into the equation for the entropy density.

Note that, although there is a volume suppression fac-
tor, in some cases it is O(vp) because the defect net-
work can sweep out that fraction of the total volume in
one Hubble expansion time. That is, we are no longer
restricted to the initial volume of the defect, as we shall
see shortly in an example. However, even if Vg5 /V~1
there is still a suppression of this mechanism over the
usual bubble wall scenarios by the factor

2 _
Abcp (1—e™ '),

M _gna -1
P =4dKkayg, (T (168)

(1 _efFL/vD)‘
This clearly distinguishes two cases. When the defects
are “thin,” defined as L<vp/I', there is a suppression
factor of approximately I'L/vp. However, when the de-

fects are “‘thick,” L>vp /T", then there is negligible sup-
pression due to this effect.

Let us now examine how these conditions are related
to the microphysical parameters of the models. First
consider nonsuperconducting defects. The electroweak
symmetry is restored out to a distance given by Eq.
(161). The defects are considered “thin” if the Higgs
self-coupling \ satisfies

4
1

—_—, (169)
GZ

and they are considered “‘thick’ otherwise. This quan-

r
A>

VDMEW

tity may be estimated by evaluating T at the electroweak
temperature, using G~ () and v~0.1—1. This re-
sults in the condition

A>10"3-10"7, (170)
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an inequality that includes most of the parameter space
of the theory. Thus one concludes that, for the case of

ordinary defects, the suppression factor I'L/vp almost
always applies.

In some cases, it is possible for the region of symmetry
restoration around a string to be enhanced. It was shown
by Witten (1995) that some strings can carry supercur-
rents. In the simplest examples, these currents are due to
the presence of a scalar condensate field on the string.
The supercurrent is proportional to the winding of this
condensate field. There is a large gauge flux associated
with the supercurrent, and this flux, coupling to the elec-
troweak Higgs field, leads to an increased region of elec-
troweak symmetry restoration. If, as in Brandenberger
et al. (1991), we estimate the current on the defects by
assuming a random walk of the winding of the conden-
sate field, then we may estimate the size of the symmetry
restoration region to be (Ambjgrn et al., 1988; Perkins
and Davis, 1993)

1112 q n |3
Rl Tl
2N 27mpw )\ mEw

where 7 is the scale at which the defects are formed. A
similar result has been shown to hold in the two-Higgs-
doublet model relevant here (Trodden, 1994). Thus, in
this case, the defects are considered ‘thick” if

4/3
v
n=> ( —DZEW\/XZ 77) NEW
Iy

and they are considered “‘thin” otherwise. Using A~1
and estimating I' from Eq. (9), we obtain 7>10°
—4x%10'° GeV. Therefore, if the scale of the defects is in
this range, there is no additional suppression beyond the
volume suppression. If the scale lies below this, then the
factor I'L/v applies as in the case of ordinary defects.
The above considerations allow the computation of
the asymmetry in the baryon number density at every
point swept out by a topological defect of a given type.
In order to make a specific prediction one must consider
a particular type of defect in a given configuration and
have knowledge of the evolution of the defect network.
This then provides a reliable estimate for the volume
suppression A and hence the total baryon asymmetry.

171)

(172)

C. Specific geometry and examples

Let us assume that the network is in the friction-
dominated epoch at ¢y . In this case it is reasonable to
make the approximation that all string loops have the
same radius. Also, note that, for this example, the strings
are thin enough (for local baryogenesis) that the addi-

tional suppression factor I';L/v, mentioned above ap-
plies in both ordinary and superconducting cases (for a
large range of Higgs self-coupling). For nonlocal baryo-
genesis with defects, the suppression factor is linear in
Lvp/D. Further, assume that there is one string loop
per correlation volume at formation, via the Kibble
mechanism. In one horizon volume the total volume tak-
ing part in baryogenesis is



1494 Mark Trodden: Electroweak baryogenesis

3
Vp, (173)

t

VpG=R,E&( 2( TN

BG Sg( ) f(t)

where I have used the largest strings with radius equal to

the correlation length &(¢) and the last factor is the num-

ber of string loops per horizon volume. Thus dividing by

the horizon volume #* yields the volume suppression fac-
tor

o VBG _ Rs
SV
Using &(ty) =\"!5"1 (Kibble, 1976), where t;is the for-

mation time of the string network (Everett, 1981;
Kibble, 1982; Hindmarsh, 1986)

(174)

¢\ 54
g(r>~§(rf>(;f (175)
gives
nEw| 2
A=)\<T vp ordinary strings (176)

3/4
=)\<7]L77W> vp superconducting strings. (177)

These equations take into account only the dynamics
during the first Hubble expansion time after tgy . In
later expansion times, the density of strings is diluted,
and hence the above results are a good approximation of
the total effect of strings.

Now consider briefly the case in which the strings are
formed at a scale much higher than the electroweak
scale. If the strings are ordinary, one still expects the

I'yL/vp suppression, but for superconducting defects we
shall see that this is absent since the electroweak sym-
metry is restored out to such a large radius that all the
antibaryons may decay before the baryons are created.

Focus again on string loops. By the time of the elec-
troweak phase transition the defect network is well de-
scribed by a scaling solution. This solution is character-
ized by the fact that the distribution of string loops looks
the same when viewed on all scales. Quantitatively, the
number density of string loops with radii in the range
[R,R+dR] is given by (Zel’dovich, 1980; Vilenkin,
1981; Turok and Brandenberger, 1986)

vR™ 5/2t— 3/2

yt<R<t
n(R,1)= 5124

R (178)

Y
where y<<1 is a constant determined by the strength of
electromagnetic radiation from the string. Loops with
radius R=yt decay in one Hubble expansion time. In
the above I have assumed that electromagnetic radiation
dominates over gravitational radiation. If this is not the
case, then y must be replaced by y, Gu, u being the
mass per unit length of the string (u=7?) and (Turok,
1984; Burden, 1985; Vachaspati and Vilenkin, 1985) v,
~100. In other words, vy is bounded from below,

Y>v,Gu. (179)
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The suppression factor A can be estimated by inte-
grating over all the string loops present at ¢y,

YIEW 2 m 12 RS
A= AdRR* R n(Rtpw)=5vy . (180)
0 3 tew
Without superconductivity the suppression factor for
Grand unified theory (GUT) strings ( 7=10'®GeV) is so
small (~10732) that the contribution is negligible. How-
ever, for superconducting strings the suppression is

vayl/z(i
mpl

so that the final baryon-to-entropy ratio generated by
this mechanism is given by

0
np np
_:_A’
s s

: (181)

(182)

with A given by Eq. (180) and nY%/s proportional to aj,
for local baryogenesis and to a3, for nonlocal baryogen-
esis. Clearly, this lies below the observed value, and
therefore strings formed at high-energy scales are not
viable candidates for mediating electroweak baryogen-
esis.

D. Particle physics model

The results above indicate that particle physics models
that admit cosmic strings at or around the TeV scale are
perhaps the best candidates for implementing the
defect-mediated scenario. The particle physics literature
contains many such examples. Here I shall give just one.

The particular supersymmetric model I shall consider
(Suematsu and Yamagishi, 1995) has been proposed as a
solution to the u problem of the MSSM and the cosmo-
logical solar neutrino problem.

In the MSSM there exists a mixing term of the form

L,=wHH, (183)

where H is the supersymmetric Higgs field. In order to
obtain radiative SUSY breaking at the weak scale it is
necessary that u~O(G ") where G is the Fermi con-
stant. However, there is no natural scale in the MSSM to
ensure that this is the case.

In the model under consideration the MSSM is
supplemented by two U(1) symmetries. One of the ex-
tra U(1)’s breaks at a high scale (~10'>GeV) and is
concerned with the implementation of the Mikheyev,
Smirnov, and Wolfenstein (MSW, Wolfenstein, 1979;
Mikheyev and Smirnov, 1985) solution of the solar neu-
trino problem via the seesaw mechanism. I shall not dis-
cuss that aspect of the model any further. The u term in
this model is given in terms of a Yukawa coupling \'
and a scalar S which is a singlet under the standard-
model gauge group but charged under the low-energy
extra U(1). Thus the term (183) is forbidden, since it is
not invariant under the extra U(1) symmetry, and in its
place we have a term

L£,=\N'SHH. (184)
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Therefore if the low-energy U(1) breaks at a scale 7 of
the order of 1 TeV, then § gets a VEV of this order and
the u problem is resolved.

The symmetry-breaking scheme of the model is

SU3).XSU2), X U(1)yx U(1)X U(1)
LSU3) SU2), X U1)yxU(1)

lSU(3)C><SU(2)LU(1)Y

TEW

— SUB) XUy (185)

Clearly we obtain TeV-scale ordinary cosmic strings
from this final U(1) breaking, and this model would ex-
hibit defect-mediated electroweak baryogenesis.

E. Summary

I have described an alternative scenario to traditional
electroweak baryogenesis, in which the out-of-
equilibrium evolution of a network of topological de-
fects satisfies the third Sakharov condition. The advan-
tage of such a scenario for electroweak baryogenesis is
that it does not depend in any way on the order of the
electroweak phase transition. A further advantage of us-
ing topological defects to seed baryogenesis is that the
volume in defects decreases only as a power of time
below the phase-transition temperature. Therefore, as
pointed out by Brandenberger etal (1991), defect-
mediated baryogenesis remains effective even if sphal-
erons are in thermal equilibrium just below the elec-
troweak phase-transition temperature. This alleviates
the problem of washout of the asymmetry. However, a
potential drawback for specific implementations is the
requirement that defects be formed at a scale rather
close to the electroweak scale in order to avoid large
volume suppression factors (for further constraints in
the specific case of ordinary cosmic strings see Cline,
Espinosa, et al., 1998).

One might worry that, since the baryon production in
these models occurs inhomogeneously, nucleosynthesis
might proceed inhomogeneously, leading to a conflict
with observation. This possibility has been investigated
(Brandenberger et al., 1995) and, for defects formed at
low enough temperatures that the volume suppression
factor is not prohibitively small, the baryons produced
are sufficiently homogeneous at the time of nucleosyn-
thesis.

IX. CONCLUDING REMARKS AND A LOOK
TO THE FUTURE

Modern particle cosmology consists of the union of
the hot big-bang model with quantum field theories of
elementary particles. Under mild assumptions, it is a
consequence of this structure that, when the universe
was extremely young and hot, the net baryon number of
the universe was zero. That is, the number of particles
carrying a given baryon number in any region was equal
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on average to the number of the appropriate antipar-
ticles carrying the opposite baryon number. However,
on the other hand, it is a clear observational fact that the
universe is maximally baryon-antibaryon asymmetric.
This fact is quantified from the considerations of primor-
dial nucleosynthesis. These calculations are perhaps the
most impressive success of the standard cosmology, ac-
curately predicting the abundances of the light elements
from the single input parameter of the baryon-to-
entropy ratio, which is constrained as in Eq. (2). Until
recently, there were two possible explanations for this.
First, the universe as a whole could be baryon number
symmetric, but baryon-antibaryon separation could have
resulted in an apparent baryon asymmetry in the local
universe. the second possibility is that some dynamical
process took place as the universe evolved, causing bary-
ons to be preferentially produced over antibaryons. A
recent analysis (Cohen et al., 1998) has ruled out the
former possibility over scales up to the size of the ob-
servable universe. It therefore appears that the latter
option, baryogenesis, must have taken place.

In this article I have tried to describe how a number of
different physical effects, all present in the standard
electroweak theory at nonzero temperature, can come
together in the context of the expanding universe to
implement baryogenesis. It is an amazing fact about the
Glashow-Salam-Weinberg model and its modest exten-
sions that they satisfy all three Sakharov criteria for pro-
ducing a baryon excess. As a result, over the last decade,
electroweak baryogenesis has been a very popular sce-
nario for the generation of the baryon asymmetry of the
universe.

There are four technical issues to be investigated
when considering models of electroweak baryogenesis.
These are

(1) How is the departure from equilibrium realized?
Is the electroweak phase transition strongly first
order or are topological defects necessary?

(2) How is sufficient CP violation obtained?

(3) What is the rate of baryon-number-violating pro-
cesses? Is this rate high enough in the unbroken
phase and can washout of any asymmetry be
avoided?

(4) What are the actual dynamics of baryon number
production?

I hope I have described how each of these issues has
been addressed in the literature on electroweak baryo-
genesis. Detailed analyses of the phase transition,
coupled with the smallness of the CP violation due to
phases in the Cabibbo-Kobayashi-Maskawa matrix,
have made it clear that an extension of the standard
model is required to make the scenarios viable. While
general two-Higgs-doublet theories have been consid-
ered, perhaps the most appealing candidate from par-
ticle physics motivations is the minimal supersymmetric
standard model. The implementations of electroweak
baryogenesis in this model have recently been investi-
gated and the range of parameters of the model for
which an appreciable baryon asymmetry of the universe
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can be generated have been calculated. This range
should be accessible to future particle colliders, and thus
the scenario of electroweak baryogenesis in the MSSM
should be experimentally testable. If the MSSM or two-
Higgs models are not chosen by nature, then other mod-
els of electroweak baryogenesis may be relevant. If the
topological structure of the relevant theory admits gauge
solitons, then defect-mediated electroweak baryogenesis
may be important, irrespective of the order of the phase
transition.

Although I have argued that there exist viable sce-
narios of electroweak baryogenesis, particularly in the
context of supersymmetric models, there remain a num-
ber of open questions and directions for future research.
I shall list the ones that I feel are most important.

(1) At present, the best quantitative understanding of
the electroweak phase transition comes from lat-
tice Monte Carlo simulations. While the results
from these are impressive, they do not provide an
intuitive understanding of the microphysics of the
phase transition. The numerical results are par-
tially supported by some analytical approaches,
but these often cannot be trusted in the physical
range of Higgs masses. An analytic understanding
of the nonperturbative dynamics of the phase
transition would be an important step forward.

(2) The chemical potential and “fluid” approaches to
nonlocal baryogenesis provide good analytical
tools for understanding the nonlocal production of
baryons. However, in the case of local baryogen-
esis, analytical methods that yield believable quan-
titative results have yet to be found. Again, it is
encouraging that numerical calculations, for ex-
ample of Chern-Simons number diffusion, are pro-
viding quantitative predictions, but an appropriate
analytical model is very desirable.

(3) While it will strongly support electroweak baryo-
genesis if supersymmetry is verified with param-
eters in the correct range, it is important to ensure
that there is sufficient CP violation. To this end,
phenomenological predictions of CP violation in
SUSY models and the corresponding experimen-
tal tests are crucial hurdles that the scenario must
pass.

If electroweak baryogenesis is correct, then no matter
what the relevant electroweak model is, the physics in-
volved is extremely beautiful and diverse. The topology
of gauge-field theories, the physics of phase transitions,
CP violation, plasma dynamics, and thermal field theory
all play a part in generating the baryon asymmetry of
the universe. However, perhaps the most attractive fea-
ture of electroweak baryogenesis scenarios is that they
should be testable at the next generation of particle col-
liders. It is an exciting possibility that we may soon un-
derstand the origin of the matter that makes up our uni-
verse.
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