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I. INTRODUCTION

The fundamental underpinnings of theoretical chem-
istry were uncovered in a relatively short period at the
beginning of the present century. Rutherford’s discovery
of the nucleus in 1910 completed the identification of the
constituent subparticles of atoms and molecules and was
followed shortly thereafter by the Bohr treatment of
electronic orbits in atoms, the ‘‘old quantum theory.’’
The relation between the positive nuclear charge,
atomic number and position of an atom in the periodic
table was uncovered by 1913. It proved difficult to ex-
tend Bohr’s orbits to a polyatomic situation and the next
advance had to await the development of the wave
theory of matter and the associated quantum mechanics
in the early 1920s. By 1926, Heisenberg had developed
matrix mechanics and Schrödinger had proposed the ba-
sic nonrelativistic wave equation governing the motion
of nuclei and electrons in molecules. The latter,

HC5EC , (1)

is a differential eigenvalue equation for the energy E
and wave function C of a particular state. H is the
Hamiltonian operator and C depends on Cartesian and
spin coordinates of the component particles. The only
further restrictions are the permutational symmetry re-
quirements for C (antisymmetry for fermions such as
electrons and symmetry for bosons). A relativistic gen-
eralization of this equation was proposed a short time
later by Dirac.

The Schrödinger equation is easily solved for the hy-
drogen atom and found to give results identical to the
earlier treatment of Bohr. With inclusion of relativistic
corrections via the Dirac equation, almost perfect agree-
ment was found with experimental spectroscopic data.
However, exact solution for any other system was not
found possible, leading to a famous remark by Dirac in
1929:

‘‘The fundamental laws necessary for the mathemati-
cal treatment of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty
lies only in the fact that application of these laws leads
to equations that are too complex to be solved.’’

This was a cry both of triumph and of despair. It
marked the end of the process of fundamental discovery
in chemistry but left a colossal mathematical task of
implementation. In retrospect, the implied finality of the
claim seems excessively bold. In 1929, there had only
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been one preliminary approximate quantum-mechanical
calculation on the hydrogen molecule by Heitler and
London, leading to a value of the bond energy of only
about 70% of the experimental value. Nevertheless, the
physicists were highly confident and most moved on to
study the internal structure of the nucleus during the
1930s. In fact, their boldness was apparently justified, for
no significant failure of the full Schrödinger-Dirac treat-
ment has ever been demonstrated.

This was the challenge presented to the early quan-
tum chemists by 1930. Given the hopelessness of exact
solution, how would it be possible to develop approxi-
mate mathematical procedures that could (a) assist the
qualitative interpretation of chemical phenomena and
(b) provide predictive capability? Attempts to approach
this problem by a model approach is the topic addressed
here.

II. FEATURES OF THEORETICAL MODELS

A theoretical model for any complex process is an
approximate but well-defined mathematical procedure of
simulation. When applied to chemistry, the task is to use
input information about the number and character of
component particles (nuclei and electrons) to derive in-
formation and understanding of resultant molecular be-
havior. Five stages may be distinguished in the develop-
ment and use of such a model:

(1) Target
A target accuracy must be selected. A model is not

likely to be of much value unless it is able to provide
clear distinction between possible different modes of
molecular behavior. As the model becomes quantitative,
the target should be that data is reproduced and pre-
dicted within experimental accuracy. For energies, such
as heats of formation or ionization potentials, a global
accuracy of 1 kcal/mole would be appropriate.

(2) Formulation
The approximate mathematical procedure must be

precisely formulated. This should be general and con-
tinuous as far as possible. Thus, particular procedures
for particular molecules or particular symmetries should
be avoided. If this can be done, the procedure becomes
a full theoretical model chemistry, which can be explored
in detail as far as available resources permit.

(3) Implementation
The formulated method has to be implemented in a

form which permits its application in reasonable times
and at reasonable cost. In recent times, this stage in-
volves the development of efficient and easily used com-
puter programs. It is closely comparable to the stage of
building equipment in an experimental investigation.
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(4) Verification
The next step is to test the model against known

chemical facts to determine whether the target has been
achieved. If quantitative accuracy is being sought, this
can be done by various statistical criteria such as the
root-mean-square difference between the results of the
theoretical model and experimental data. In selecting
such a dataset, it is important to make it as broad as
possible, while limiting it to experimental facts known to
be of high quality. If the results of such a comparison do
meet the target requirements, the model may be said to
be validated.

(5) Prediction
Finally, if the model has been properly validated ac-

cording to some such criterion, it may be applied to
chemical problems to which the answer is unknown or in
dispute. If the experimental dataset is sufficiently broad,
there is a reasonable expectation that the results will be
accurate to something like the target accuracy. This
stage, of course, is the one of most interest to the larger
chemical community.

One further aspect of theoretical models is the intro-
duction of empirical parameterization. Models which
utilize only the fundamental constants of physics are
generally termed ab initio; if some parameters are intro-
duced which are determined by fitting to some experi-
mental data, the methods are semi-empirical. Clearly,
there is a wide range of possible empiricism, as will be
noted in subsequent parts of this article.

III. HARTREE-FOCK MODELS

During the 1930s, most work was of a qualitative na-
ture, treating the electrons as moving in independent
molecular orbitals. However, the foundations of the or-
bital theory of many-electron systems were laid by Har-
tree, Fock, and Slater. If the 2n electrons in a closed-
shell molecule are assigned to a set of n molecular
orbitals c i (i51, . . . n), the corresponding many-
electron wave function can be written

C5~n! !21/2 det@~c1a!~c1b!~c2a! . . . # . (2)

Here the c i are taken to be orthonormal and a and b
are spin functions. This single-configuration wave func-
tion is usually described as a Slater determinant.

If the molecular orbitals c i are varied to minimize the
energy, calculated as the expectation value of the full
Hamiltonian H ,

E5^CuHuC&, (3)

then the energy E is fully defined and, according to the
variational principle, is an upper bound for the exact
Schrödinger energy from the full wave equation (1).
This procedure leads to a set of coupled differential
equations for the c i , as first derived by Fock. The
method is known as Hartree-Fock theory, early applica-
tions having been made (to atoms) by Hartree.

Following the break due to World War II, work on
quantum chemistry resumed in a number of countries.
In Cambridge, Lennard-Jones and his group (of which I
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became a member in 1948) reexamined the Hartree-
Fock equations with a view to transforming the orbitals
c i into localized or equivalent orbitals, representing
bonding and lone electron pairs, concepts widely used in
the qualitative description of molecular structure. How-
ever, the coupled three-dimensional differential equa-
tions appeared intractable and little progress was made
towards their solution.

A major advance occurred in 1951 with the publica-
tion from Chicago of the Roothaan equations
(Roothaan, 1951). (Actually, these had been circulated
in a report some time earlier.) Roothaan considered mo-
lecular orbitals that were restricted to be linear combi-
nations of a set of prescribed three-dimensional one-
electron functions xm (m51,2,...,N , N.n). Thus

c i5 (
m51

N

cmixm . (4)

Variation of the total energy [Eq. (3)] was then car-
ried out with respect to the coefficients cmi . This leads
to a set of algebraic equations which can be written in
matrix form (using real functions and atomic units
throughout),

FC5SCE, (5)

where

Fmn5Hmn1(
ls

Pls@~mnuls!2~mluns!/2# (6)

Hmn5E xmHxn dt (7)

Smn5E xmxn dt (8)

Eij5e id ij (9)

Pmn52(
i

n

cmicni (10)

~mnuls!5E E xm~1 !xn~1 !

3~1/r12!xl~2 !xs~2 !dt1 dt2 . (11)

In these and subsequent equations, we follow a useful
practice of using Roman suffixes for molecular orbitals c
and Greek for the expansion functions x. H is the core
Hamiltonian, describing motion of a single electron
moving in the bare field of the nuclei. The eigenvalues e i
are the one-electron Fock energies, the lowest n corre-
sponding to the occupied molecular orbitals 1, 2, . . . , n .

These nonlinear equations provide a complete math-
ematical model if the prescribed functions xm are
uniquely specified by the nuclear positions. They are of-
ten referred to as self-consistent field (SCF) equations. In
the earliest versions of molecular orbital theory, the xm
were chosen to be the atomic orbitals of the component
atoms, in which case the theory was described as
LCAOSCF for ‘‘linear combination of atomic orbitals.’’
More generally, the set $xm% is referred to as the basis
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set. Normal practice is to choose basis functions which
are centered at the nuclei and depend only on the
atomic number (positive charge) of that nucleus.

The Roothaan type of equations can be extended to
electron configurations in which some orbitals are dou-
bly occupied and some singly. Another extension is one
in which electrons of a-spin and b-spin are assigned to
different molecular orbitals ca and cb. This is usually
referred to as a spin-unrestricted configuration. There
will be two sets of coefficients cmi

a and cmi
b . The corre-

sponding generalization of the Roothaan equations was
published by the author and Nesbet in 1954 (Pople and
Nesbet, 1954). These are usually denoted as Unre-
stricted Hartree-Fock or UHF, and the option of double
and single occupation as Restricted Open Hartree-Fock
or ROHF.

The introduction of basis-set expansions played a ma-
jor role in the development of quantum chemistry. It
changed the mathematical task from the numerical solu-
tion of coupled differential equations (following the
atomic work of Hartree) to the double challenge of
evaluation of the three- or six-dimensional integrals (7),
(8), and (11), followed by solution of the algebraic SCF
equations (5). If analytic integration were possible, the
model could become precise in the sense that good arith-
metic correctness would be possible, even though the
underlying approximations (use of a single configuration
determinant and a finite basis) might still be unsatisfac-
tory.

During the 1950s, integral evaluation was regarded as
the main barrier to progress. The best choice of basis
functions for LCAOSCF theory appeared to be Slater-
type atomic orbitals (STO), which have exponential ra-
dial parts by analogy to the hydrogen atom. The one-
and two-electron integrals (7), (8), and (11) can then be
evaluated analytically in the two-center case. However,
great difficulties were encountered for the three- and
four-center cases. It was common to describe this im-
passe as ‘‘the nightmare of the integrals.’’

There were two responses to the integral difficulties.
One was to make approximations for the more difficult
integrals and to introduce parameters for others, with
values obtained by empirical fits to experimental data.
This practice became known as semi-empirical. The al-
ternative of proceeding without approximation or em-
pirical parameterization was, at the time, necessarily
limited to very small molecules and became known as
the ab initio approach. The most widely used semi-
empirical methods were based on the zero-differential-
overlap approximation, in which products of different
atomic orbitals xmxn are neglected in most integrals.
This approximation, when applied to the p electrons of
conjugated organic molecules, became known as the
Pariser-Parr-Pople (PPP) theory (Parr, 1952; Pariser and
Parr, 1953; Pople, 1953). It was later generalized to the
treatment of all valence electrons in the CNDO and
INDO theories (Pople et al., 1965) and then pursued at a
more empirical level by the group of M. J. S. Dewar.
The CNDO/INDO methods were genuine chemical
models in the sense that they could be used to study
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
many molecules, vary structure to determine equilib-
rium geometries and generate potential surfaces. How-
ever, they were limited by uncertainty over the conse-
quences of the massive integral approximations and the
large number of empirical parameters.

Within the ab initio community, a truly major devel-
opment was the introduction of Gaussian-type basis
functions. In 1950, S. F. Boys (Boys, 1950), working in
Cambridge, had demonstrated that all integrals in SCF
theory could be evaluated analytically if the radial parts
had the form P(x ,y ,x)exp( 2 r2), where P(x ,y ,z) is any
polynomial in the Cartesian coordinates x ,y ,z . Initially,
this appeared to be of limited value, since single Gauss-
ian functions were poor approximations to atomic orbit-
als, but it was clear that prospects would improve if
larger numbers of basis functions could be handled. For
several years, there was competition between propo-
nents of Slater-type and Gaussian-type basis sets.

The 1950s also saw the introduction of computers into
quantum chemistry. By the time of the 1959 meeting,
there were already several groups developing ab initio
programs, using both Slater and Gaussian bases. Early
codes for two-center integrals with Slater basis functions
were developed in Chicago and used by Ransil in the
first full LCAOSCF treatment of diatomic hydrides. At
the same meeting, Boys presented several prescient pa-
pers describing simple SCF calculations using Gaussians.
During the early 1960s, other general purpose programs
were developed, notably the Gaussian packages
POLYATOM and IBMOL, leading to a number of indi-
vidual computations of molecular orbitals at the LCAO
or minimal basis level.

My own research group began ab initio work in 1968
with the development of the GAUSSIAN program. At that
time, the relative cost of ab initio LCAOSCF and
CNDO computations on small organic molecules was
over 1000. The original intention was to use full ab initio
results to test various integral approximations that were
less severe than the use of zero differential overlap.
However, in the course of developing the program, War-
ren Hehre and I were able to generate a new integral
algorithm that improved efficiency for highly contracted
Gaussian basis sets by more than two orders of magni-
tude (Pople and Hehre, 1978). This was based on a
method of axis rotation inside inner loops, thereby lim-
iting the number of arithmetic operations in the inner-
most sections of the program. Using a procedure of
least-squares-fitting Slater-type basis functions by a fixed
contraction of K Gaussians, we were able to reproduce
the results of earlier full Slater results on a series of
small molecules. The choice K53 proved adequate and
led to the STO-3G basis and the general theoretical
model HF/STO-3G. This was published in 1969 (Hehre
et al., 1969) and the code was made generally available
as GAUSSIAN70 shortly thereafter.

Investigation of the minimal HF/STO-3G model
quickly showed major failures. Comparison of some iso-
meric species (e.g., propene and cyclopropane) showed
too much stability for single bonds relative to multiple
bonds. This can be traced to the failure of the minimal
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basis to describe anisotropic atoms. In acetylene, for ex-
ample, the carbon 2ps atomic orbitals should be much
tighter than 2pp ; this effect cannot be properly simu-
lated by the isotropic structure implied by a minimal
basis with identical 2p functions in all three directions.
This difficulty can be overcome by using two basis func-
tions per valence atomic orbital instead of one. Such a
basis is 6-31G, which has a single contracted six-
Gaussian basis function for the inner shell, a set of inner
three-contracted and a set of outer uncontracted Gauss-
ians for the valence shell of each atom. This is an ex-
ample of a split-valence basis. Another similar com-
monly used type of basis set is double-zeta, in which
there are two basis functions per atomic orbital for all
atomic shells.

There are several notable failures for split-valence
bases. In the first place, such bases tend to favor struc-
tures of high symmetry. For example, the ammonia mol-
ecule NH3 is predicted to have a trigonal structure which
is too close to planarity. This deficiency can reasonably
be attributed to the fact that, in a planar structure, the
lone pair of electrons is assigned to a nitrogen orbital
that is pure p-type, which cannot mix with higher-
angular-momentum d-type functions, whereas, in a non-
planar structure, the lone-pair orbital is an sp mixture,
for which further stabilization by d mixing is possible. A
second deficiency in Hartree-Fock studies at the split-
valence level is an exaggeration of polarity, as measured
by electric dipole moments. This can also be attributed
to restriction of lone-pair orbitals to pure p-type. The
3pp lone-pair orbitals in HCl, for example, will prob-
ably be polarized towards hydrogen if mixing with dp
basis is allowed, thereby reducing the predicted dipole
moment.

Considerable improvement is found in Hartree-Fock
models if a single set of uncontracted d functions is
added on each heavy (nonhydrogen) atom. Such a basis
is 6-31G* , or 6-31G(d) (Hariharan and Pople, 1971;
Francl et al., 1982). If a single set of uncontracted p
functions is added on each hydrogen, the basis is de-
noted by 6-31G** or 6-31G(d ,p). These additional ba-
sis functions are termed polarization functions. The full
model with the 6-31G* basis is then described as
HF/6-31G* . Other important basis set extensions are
the introduction of higher polarization functions [as in
6-31G(2df ,p), which contains two sets of d functions
and a set of f functions on heavy atoms and a single set
of p functions on hydrogen] and the use of diffuse func-
tions, which are particularly important for anions and
electronic states. The latter are denoted by a ‘‘1’’ as in
6-311G(d).

The Hartree-Fock model HF/6-31G* has proved quite
effective in the description of molecular conformations.
Its overall performance in this and other regards has
been documented elsewhere (Hehre et al., 1986). It is
notably successful in giving differences of different iso-
meric forms of organic molecules, where no major
changes of bond lengths are involved. Rotational poten-
tials about single bonds were successfully explored using
this level of theory (Radom et al., 1971). A particular
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example is the anomeric effect in carbohydrate chemis-
try, which was not properly understood until the inter-
action of rotational potentials about geminal C-O single
bonds was investigated using HF/6-31G* theory (Jeffrey
et al., 1972).

IV. CORRELATED MODELS

The major fault implicit in all Hartree-Fock models is
neglect of electron correlation between the motions of
electrons of antiparallel spin (ab correlation). In the
very early days of quantum chemistry, it was recognized
that neglect of correlation led to severe underestimation
of bond dissociation energies. This may be understood
qualitatively by considering the process of complete ho-
molytic dissociation of a bond in which one electron
ends up on one center and one on the other. If the mo-
tion of the two electrons is uncorrelated, there will be a
finite possibility of both electrons ending up on the same
center.

Neglect of ab electron correlation is implicit in the
use of a single-determinant wave function; improved
wave functions necessarily involve the use of many de-
terminants. Most practical correlation procedures start
with the Hartree-Fock determinant and form linear
combinations with other determinants. It is particularly
convenient to form additional determinants from the un-
occupied or virtual molecular orbitals, which are the
higher eigenfunctions of the Fock operator. If a finite
basis is used, with 2n electrons and N Cartesian basis
functions, there will be N2n virtual orbitals, which may
be occupied by a or b electrons.

At this point, it is convenient to change the notation
somewhat and use spinorbital basis functions, which are
products of the Cartesian basis functions and the a or b
spin functions. N is now the size of this spinorbital basis
(twice the number of Cartesian basis functions) and n is
the total number of electrons. This notation enables us
to use a common notation for both spin-restricted and
spin-unrestricted cases. If labels i ,j ,k , . . . are used for
occupied spinorbitals and labels a ,b ,c , . . . for virtual,
then single-determinant functions using Fock orbitals
may be classified as unsubstituted (i.e., Hartree-Fock)
C0 , singly substituted C i

a , doubly substituted C ij
ab and

so forth. A general multideterminant wave function can
then be written

C5a0C01(
ia

ai
aC i

a1(
ijab

aij
abC ij

ab1¯ . (12)

The a coefficients can be determined by variation to
minimize the calculated energy. This is the method of
configuration interaction (CI). If only singles are mixed
in, no energy lowering follows, since the occupied orbit-
als are already optimized. The simplest effective form of
CI allows for doubles only in Eq. (12). This is usually
denoted by CID. If singles are also included, the method
is CISD. These configuration interaction techniques
were first implemented as iterative schemes around 1970
and are still often used in practical computations. If all
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possible substitutions are included in the expansion (a
large but finite set if a finite basis set is used), the
method is described as full configuration or FCI. The
FCI procedure, although desirable in principle, is usually
too costly to apply except for very small systems.

Although CID and CISD are well-defined models,
given a standard basis set, they suffer some serious dis-
advantages. These have to do with size consistency. If a
method such as CID is applied to a pair of completely
separated systems, the resulting energy is not the sum of
the energies obtained by applying the same theory to the
systems separately. If CID is applied to two separated
helium atoms, for example, the wave function does not
allow for simultaneous excitation of pairs in each atom,
this being strictly a quadruple excitation. This failure of
CID and CISD models is likely to lead to poor descrip-
tions of large molecules and interacting systems.

A second general method of incorporating electron
correlation is to treat its effects by perturbation theory.
Suppose we define a perturbed Hamiltonian as

H~l!5F01l$H2F0%, (13)

where F0 is the Fock Hamiltonian [for which the single
determinants in Eq. (12) are exact eigenfunctions], then
C0 is the appropriate wave function if l50 and the exact
(FCI) C is obtained if l51. The perturbation procedure
used is to expand the computed energy in powers of l,

E~l!5E01lE11l2E21l3E31¯ , (14)

cut the series off at some level and then put l51. This
perturbation method was first introduced by Moeller
and Plesset (1934) and is often denoted by MPn if ter-
minated at order n . The MP1 energy (E01E1) is iden-
tical to the Hartree-Fock value. MP2 is the simplest
practical perturbative procedure for electron correlation
and incorporates only effects of double substitutions. At
third order, MP3 also involves only double substitutions.
At the fourth-order level, MP4 includes a description of
the (indirect) effects of singles, the leading contributions
of triples and some treatment of certain quadruple sub-
stitutions.

Moeller-Plesset theory is size consistent if the compu-
tations are carried out completely at any given order.
Difficulties are that the terms become algebraically com-
plicated at higher orders and also are increasingly costly
to apply. In fact, Hartree-Fock theory (with no integral
approximations) scales as N4, MP2 as N5, MP3 as N6,
and MP4 as N7. The triple contributions in the MP4
energy are the most expensive and generally limit the
applicability of Moeller-Plesset theory to this level. The
MP2, MP3, and MP4 models were implemented by sev-
eral groups in the 1970s and incorporated into the
GAUSSIAN program (Krishnan and Pople, 1978; Krish-
nan et al., 1980).

A third general approach to correlation theory is the
use of coupled-cluster methods, originally introduced
into quantum chemistry by Cizek (1966). If the configu-
ration interaction CID wave function is written in the
form

C5~11T2!C0 , (15)
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where T2 is an operator specifying all double substitu-
tions, with undetermined coefficients, then the corre-
sponding coupled-cluster function (CCD) is

C5exp~T2!C0 . (16)

The CCD coefficients are determined, not by the varia-
tional method, but by requiring zero projection of (H
2E)C onto C0 and all C ij

ab . This method was first
implemented in 1978 (Taylor et al., 1976; Bartlett and
Purvis, 1978; Pople, Krishnan, et al., 1978). Single substi-
tutions are incorporated by using the operator exp(T1
1T2) instead of exp(T1). This then defines a CCSD
model (Scuseria et al., 1981; Purvis and Bartlett, 1982).

Unlike CISD, the CCSD method is size consistent.
The cost is of order N6, as for CISD. Being nonvaria-
tional, the resulting total energy is no longer an upper
bound for the exact result, but it is generally thought
that the achievement of size consistency is a matter of
greater importance. Another, slightly simpler, method is
quadratic configuration, denoted QCISD. This is also
size consistent and can be regarded as an approximation
intermediate between CISD and CCSD.

The QCISD and CCSD methods take no account of
the effects of triple substitutions, known to be important
by studies at the MP4 level. A useful way to take ac-
count of triples is to carry out an iterative QCISD or
CCSD computation and then do a single computation of
the effects of triples, using the single and double ampli-
tudes already found. These are the QCISD(T) and
CCSD(T) methods (Pople, Head-Gordon, and Raghava-
chari, 1987; Raghavachari, Trucks, et al., 1989). A third
related method is the Brueckner-doubles method,
BD(T) (Handy et al., 1989), which alters the underlying
occupied orbitals so that there is no singles mixing. All
three of these methods are superior to MP4 in that,
when the energy is expanded in a Moeller-Plesset series,
complete agreement with a full-configuration expansion
is obtained up to fourth order and many other terms at
higher order are also included (Raghavachari, Pople,
et al., 1990). In fact, the QCISD, CCSD, and BD meth-
ods have the further advantage of being completely cor-
rect for composite two-electron systems such as a set of
isolated helium atoms.

The cost of QCISD(T) or CCSD(T) scales as iterative
N6, followed by a single computation at N7. They rep-
resent the most sophisticated correlation methods that
are simple enough to be incorporated into general the-
oretical models at the present time.

V. GENERAL ENERGY MODELS

In recent years, progress has been made in developing
models which reproduce chemical energies to an accu-
racy approaching that achieved in good experimental
work. The description of model features in the two pre-
vious sections indicates that two main features are in-
volved, basis set and level of correlation. The options
available are usefully summarized in a two-dimensional
model chart as shown in Fig. 1. The various correlation
methods are displayed horizontally in order of increas-
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ing sophistication from left to right. Basis sets are dis-
played vertically, becoming more flexible from top to
bottom. At the far right, full configuration interaction
(FCI) represents complete solution within the finite
space defined by the basis. At the bottom of the table, we
have (in principle but not in practice), the results of ap-
plying a complete basis set. At the bottom right, appli-
cation of a complete basis set with full configuration in-
teraction corresponds to full solution of the
nonrelativistic Schrödinger equation.

Each empty box in this chart represents a well-defined
size-consistent theoretical model as specified in Sec. II.
Clearly, we may test each level to find how far we have
to proceed from top-left to bottom-right for acceptable
agreement between theory and experiment. Eventually,
adequate performance will be achieved, if the underly-
ing assumptions of quantum mechanics are correct.

In practice, full models usually have to make some
compromises to achieve a wide range of applicability. If
the prediction of energies is most important, a common
practice is to carry out a geometry optimization (to an
equilibrium structure, for example) at some lower level
of theory and then make a final, more expensive, com-
putation at a higher level. A useful notation for this type
of composite model is ‘‘model-1//model-2,’’ meaning
single-point calculations using model-1 at geometrical
structures determined by model-2.

To illustrate these ideas, we give a partial description
of the G3 model for molecular energies, recently pub-
lished (Curtiss, Raghavachari, et al., 1998). This is a re-
finement of previous energy models G1 and G2, which
have been under development for more than a decade
(Curtiss, Jones et al., 1990; Curtiss, Raghavachari et al.,
1991). The main computational steps are summarized in
Fig. 2.

In addition to the standard type of basis sets already
described, a large basis (G3large), which permits a flex-

FIG. 1. General Model Table: HF, Hartree-Fock; MP2, MP3,
MP4, Moeller-Plesset models; QCI, quadratic configuration in-
teraction [QCISD(T)]; FCI, full configuration interaction.

FIG. 2. G3 Model Table. [QCI refers to QCISD(T).]
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ible description of the whole space with inner shells, is
added. This basis is so large that only MP2 computations
are reasonably possible. Geometrical structures in the
G3 model are determined at the MP2/6-31G(d) level
(DeFrees et al., 1979). This is followed by a sequence of
single-point calculations which aim to estimate the re-
sults of a potential QCI/G3large energy, by assuming
that effects of some of the improvement steps can be
treated additively. The actual formula used is

?521~322 !1~522 !1~722 !1~821 !

2~421 !2~621 ! (17)

Earlier studies (Curtiss, Carpenter, et al., 1992) had in-
dicated that this kind of additivity was reasonably accu-
rate. (It should be noted that all correlation computa-
tions except the full MP2/G3large are carried out in the
‘‘frozen-core’’ approximation, only interactions between
valence electrons being treated.)

An important contribution to total molecular energies
is the zero-point vibrational energy. This is estimated in
G3 theory by using harmonic frequencies calculated at
the HF/6-31G(d) level and then empirically scaled by a
factor 0.8929 [HF theory being known to systemically
overestimate the magnitudes of frequencies (Pople,
Schlegel, et al., 1981)]. In addition, a small correction is
added for the spin-orbit splitting in isolated atoms, ob-
tained from experimental data (Moore, 1952).

The computations as described up to this level give a
reasonable account of significant energy differences,
such as dissociation energies and ionization potentials.
However, there is a significant systematic error, all bind-
ing energies being slightly too low. This can reasonably
be interpreted as due mostly to the limitation in the ba-
sis sets being used. An accurate description of the wave-
function cusp at the point where electrons of opposite
spin come to the same point in space requires basis sets
involving high angular momentum. Another reason is
that, in molecules, the symmetry is lower than in atoms
and again neglect of the effects of higher-angular-
momentum basis functions will favor atomic energies
relative to molecular.

These difficulties can be partly overcome by adding a
small empirical correction, depending on the number of
electrons and distinguishing between atoms and mol-
ecules. The theory therefore becomes semi-empirical or,
perhaps, ‘‘slightly empirical’’ since the parameters are
small and their origin is partly understood. This higher-
level correction (HLC) is 2Anb2B(na2nb) for mol-
ecules and 2Cnb2D(na2nb) for atoms (including
atomic ions). na and nb are the numbers of a and b
electrons, respectively, with na>nb . This completes the
specification of a total G3 energy for any atom or mol-
ecule.

The parameters A ,B ,C ,D are determined as part of
the validation process. This is carried out using a large
set of 299 experimental energy differences, involving
molecules up to the size of benzene (42 electrons).
These data include 148 heats of formation, derived from
heats of atomization, 85 ionization potentials, 58 elec-
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tron affinities and 8 proton affinities. All of these experi-
mental results are believed known to an accuracy of 1
kcal/mole or better. Values of A ,B ,C ,D are obtained by
minimization of the mean absolute deviation between
theory and experiment. These are (in millihartrees)
6.386, 2.977, 6.219, and 1.185. The resulting mean devia-
tion is 1.02 kcal/mole, close to the target accuracy. The
corresponding root-mean-square deviation, which lays
more emphasis on the poorer levels of agreement, is 1.45
kcal/mole. However, nearly 88% of the G3 deviations
fall in the range 22.0 to 12.0 kcal/mole. These results
are significantly better than the prior G1 and G2 models,
which use a smaller database of experimental facts.

The poorest results are worthy of note. The largest
absolute deviations are 4.9 kcal/mole (C2F4) for heats
of formation, 7.0 kcal/mole (B2F4) for ionization poten-
tials, 4.2 kcal/mole (NH) for electron affinities and 1.8
kcal/mole (PH3 and SH2) for proton affinities.

VI. CONCLUSIONS

The current status of ab initio quantum chemical mod-
els is that some success has been achieved in approach-
ing experimental accuracy in predictive power. The tar-
get of 1 kcal/mole is not far away for small molecules
containing up to about fifty electrons. However, the G3
model has a number of remaining deficiencies that merit
further attack.

(1) The use of an empirical correction, which depends
only on the number of electrons, is undesirable. One
consequence is that the model becomes discontinuous in
some manner. For example, if a bond is broken, the
electron count of paired versus unpaired electrons has to
change at some point, thereby providing a discontinuity
in the potential surface. The same criticism can be ap-
plied to the use of different parameters for atoms and
molecules. Some form of extrapolation is probably nec-
essary, but it would be much better if this could be car-
ried out in a continuous and differentiable manner.

(2) The G3 model is based on MP2/6-31G(d) geom-
etries, which are known to show considerable errors
(DeFrees et al., 1979). Some of the failures of the final
energies can be attributed to this; clearly a method
which would reproduce known bond lengths and angles
more accurately would be preferable.

(3) No account is taken of relativity in the G3 model.
The total energy of a molecule is known to depend sig-
nificantly on relativistic corrections, particularly for
inner-shell electrons. However, considerable cancella-
tion of errors occurs in processes such as bond dissocia-
tion. Nevertheless, some inclusion of relativistic contri-
butions to chemical processes is clearly desirable.

(4) The applicability of the G3 model to large systems
is presently limited by the very expensive treatment of
the triples terms, where computational cost scales as the
seventh power of the size of the system. The magnitude
of these terms is small, but not insignificant. A simpler
treatment of three-electron effects would be desirable.

Finally, some brief comment should be made about
theoretical models based on density-functional theory
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
(DFT). Such methods do not handle the two-electron
interactions explicitly but rather allow for them using
properties of the one-electron density. This leads to
lower cost and therefore a wider range of applicability.
Recent forms of DFT have also introduced a consider-
able amount of empirical parameterization, sometimes
using the same set of experimental data. At the present
time, the principal limitation of DFT models is that
there is no clear route for convergence of methods to
the correct answer, comparable to the ab initio chart
shown in Fig. 1. Interaction between these two groups of
theoretical chemists is a hopeful direction for future
progress.
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