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The static Casimir effect describes an attractive force between two conducting plates, due to quantum
fluctuations of the electromagnetic (EM) field in the intervening space. Thermal fluctuations of
correlated fluids (such as critical mixtures, super-fluids, liquid crystals, or electrolytes) are also
modified by the boundaries, resulting in finite-size corrections at criticality, and additional forces that
affect wetting and layering phenomena. Modified fluctuations of the EM field can also account for the
‘‘van der Waals’’ interaction between conducting spheres, and have analogs in the fluctuation-induced
interactions between inclusions on a membrane. We employ a path integral formalism to study these
phenomena for boundaries of arbitrary shape. This allows us to examine the many unexpected
phenomena of the dynamic Casimir effect due to moving boundaries. With the inclusion of quantum
fluctuations, the EM vacuum behaves essentially as a complex fluid, and modifies the motion of
objects through it. In particular, from the mechanical response function of the EM vacuum, we extract
a plethora of interesting results, the most notable being: (i) The effective mass of a plate depends on
its shape, and becomes anisotropic. (ii) There is dissipation and damping of the motion, again
dependent upon shape and direction of motion, due to emission of photons. (iii) There is a continuous
spectrum of resonant cavity modes that can be excited by the motion of the (neutral) boundaries.
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I. OUTLINE

Fluctuation-induced forces are ubiquitous in nature,
covering many topics from biophysics to cosmology (Ca-
simir, 1948; Dzyaloshinskii et al., 1961; Mostepanenko
and Trunov, 1997; Krech, 1994; Weinberg, 1989). There
are two basic ingredients in these phenomena: (i) A fluc-
tuating medium, such as the electromagnetic (EM) field;
and (ii) external objects whose presence suppresses (or
in some way modifies) the fluctuations, such as dipoles
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or conductors. The overall strength of the interaction is
proportional to the driving energy of fluctuations (kBT
and \ for thermal and quantum fluctuations, respec-
tively); its range is related to that of the correlations of
the fluctuations. The most interesting cases are when the
interactions are long ranged, corresponding to scale-free
fluctuations.

To illustrate the first ingredient, i.e., fluctuations, let
us consider Feynman’s formulation of quantum mechan-
ics. The quantum particle does not exclusively follow its
classical trajectory, but can virtually follow any path
connecting the beginning and end points; each path is
weighted by eiS/\, with S being the action. The dominant
contributions come from the classical trajectory, for
which the action Scl is a minimum, and also from trajec-
tories close enough to the classical path for which the
deviation S2Scl is of order of \. Such deviations from
classical behavior, whose scale is set by \, are a manifes-
tation of quantum fluctuations. Similarly, a particle in a
thermal (noisy) environment undergoes the zig-zag
paths of Brownian motion. The locations of the particle
in thermal equilibrium are then characterized by a dis-
tribution e2U/kBT, where U is the potential energy at
each location. While the most likely configurations are
those of minimal energy Umin , there are also significant
contributions from configurations such that U2Umin is
of the order of kBT . Such deviations from the minimum
energy position, with scale set by kBT , are due to ther-
mal fluctuations. The above picture can be easily gener-
alized to the case of fluctuating fields such as the EM
field, in which case the classical physics comes from
Maxwell’s equations.

The following argument provides a rough impression
of how the second ingredient—restriction on fluctua-
12334)/1233(13)/$17.60 ©1999 The American Physical Society
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tions by external bodies—can lead to interactions. Imag-
ine a field fluctuating freely in infinite space, except for
the constraints of vanishing on two parallel plates at a
distance H . Each constraint by itself imposes restrictions
on fluctuations of the field, increasing the free energy.
With two plates, space is partitioned into three domains:
Two with continuous modes (less restrictive) and one
with discrete modes (more restrictive). The system now
favors less separation between the plates so that the re-
strictive domain is as small as possible. This is an en-
tropic effective attraction between the plates. Let us re-
call the mattress effect, in which two bodies on an elastic
medium are attracted to each other to reduce the energy
cost of distortions. While in this case the attraction is
due to a reduction in field energy, for fluctuation-
induced interactions, there is a reduction in free energy
which is of entropic origin.

The goal of this article is to provide a glimpse of the
unity and simplicity of fluctuation-induced forces. While
we attempt to describe a wide range of phenomena, this
selection is by no means exhaustive, and highly biased
by subjective interests. In the spirit of a colloquium, we
have tried to avoid technical details, preferring to
present general arguments and dimensional estimates
whenever possible. The interested reader is referred to
various sources for calculational details.

The prototype of fluctuation-induced interactions, the
Casimir force between conducting plates due to quan-
tum fluctuations of the EM field, is briefly recalled in
Sec. II. We then discuss several cases where the source
of interaction is the thermal fluctuations of a correlated
fluid between the bounding plates. This interaction was
originally proposed for a liquid mixture at its critical
point, but is also present when long-range correlations
appear as a result of symmetry breaking, as in superflu-
ids or liquid crystals. There is even an attractive compo-
nent to the (mainly repulsive) force between two simi-
larly charged plates, due to fluctuations of counterions in
a neutralizing solution. Since the latter connection is sel-
dom made explicit, we expand on its origin in Sec. II and
the Appendix. While the reader may skip any one of the
subsections in Sec. II without losing general track of the
article, we note that experiments on wetting of helium
films may provide a beautiful test of these forces.

The van der Waals and London dispersion forces be-
tween atoms and molecules can also be attributed to the
modified fluctuations of the EM field. As we point out in
Sec. III, there are analogous forces between inclusions
on a membrane, which may be of relevance to biology.
Their origin is the modified surface fluctuations, and
they decay more slowly with separation than the stan-
dard van der Waals interaction. We use this example to
emphasize that non-additivity is an important feature of
fluctuation-induced forces: they cannot be obtained
from a pairwise sum of two-body potentials.

Several new results are obtained in going beyond the
simple geometries of flat plates and spheres, by looking
at rough and deformed structures, as in Sec. IV. Our key
to implementing the corresponding nonstandard bound-
ary conditions is a functional integral approach, which
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can also be used in conjunction with a path integral
quantization of the EM field. Since, in this relativistic
theory, deformations in space and time appear on the
same footing, we can then examine the dynamic Casimir
effect, which is introduced in Sec. V.

Some of the unexpected phenomena that emerge
from quantum fluctuations of the EM field in the pres-
ence of moving deformed plates are discussed in Sec. VI.
There are corrections to the mass of a plate that depend
on its shape. There is also dissipation due to emission of
photons (hence, the ‘‘friction’’ in the title of this article).
While these effects are typically very small, we believe
that they are significant for what they imply about the
nature of the quantized EM vacuum. Qualitatively, with
the inclusion of quantum fluctuations, the vacuum be-
haves as a complex fluid that hinders and influences the
bodies moving through it.

II. FLUCTUATION-INDUCED FORCES

A. Quantum fluctuations

The standard Casimir effect (Casimir, 1948;
Mostepanenko and Trunov, 1997) is a macroscopic
manifestation of quantum fluctuations of vacuum. In
1948, Casimir considered the electromagnetic field in the
cavity formed by two conducting plates at a separation
H . Because the electric field must vanish at the bound-
aries, the normal modes of the cavity are characterized
by wave vectors kW 5(kx ,ky ,pn/H), with integer n .
Once quantized, these normal modes are harmonic os-
cillators of frequencies v(kW )5cukW u, each of which in its
ground state has energy \v(kW )/2. While the sum total of
the ground state energies is formally infinite, Casimir
showed that there is a finite H-dependent contribution

dE52\c3
A

H3 3
p2

720
, (1)

implying an attractive force, proportional to the plate
area A . Thus, by measuring the mechanical force be-
tween macroscopic bodies, it is, in principle, possible to
learn about vacuum fluctuations.

The predictions of Casimir were followed by experi-
ments on quartz (Abricossova and Deryaguin, 1953) and
aluminum (Sparnaay, 1958) plates at separations H
.103 Å. However, these experiments, and others re-
viewed in (Israelachvili and McGuigan, 1990) provided
results that were at best in qualitative agreement with
Eq. (1). Recent high precision measurements of the
force (using a torsion pendulum) between a gold plate
and a gold-plated sphere claim to confirm the accuracy
of the theoretical prediction to very high accuracy (Lam-
oreaux, 1997; Mohideen and Roy, 1998).

B. Thermal fluctuations

While the Casimir interaction is due to the quantum
fluctuations of the electromagnetic field, there are sev-
eral examples in classical statistical mechanics, where
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forces are induced by the thermal fluctuations of a cor-
related fluid. One of the best known examples comes
from the finite-size corrections to the free energy at a
critical point (Krech, 1994). Fisher and de Gennes
(Fisher and de Gennes, 1978; Privman and Fisher, 1984)
argued that in a binary liquid mixture, concentrations
near a wall are perturbed only over a distance of the
order of the correlation length j. Any interaction medi-
ated by the concentration fluctuations must also decay
with this characteristic length. However, at the critical
point where j diverges, they suggested an attractive con-
tribution to the free energy of a critical film that varies
with its thickness H as

dF~H !52kBT3
A

H2 3D . (2)

This is to be expected on dimensional grounds, as the
free energy comes from thermal fluctuations, hence pro-
portional to kBT , and must be extensive in A . (Similar
analysis in d dimensions leads to a dependence as
1/Hd21.) In two dimensions, exact values for the dimen-
sionless amplitude D can be obtained by employing tech-
niques of conformal field theories (Blöte et al., 1986). In
higher dimensions, they can be estimated numerically
(Nightingale and Indekeu, 1985), and by e542d expan-
sions (Krech and Dietrich, 1991).

In analogy to the Casimir energy, we can regard Eq.
(2) as due to the modified free energy of concentration
fluctuations by the boundaries. However, the force that
results from this free energy decays as 1/H3. The differ-
ence in power of H from Eq. (1) is explained by noting
that the fluctuation energy in the latter is quantum in
origin, and hence proportional to \c , which has dimen-
sions of energy times length.

C. Superfluid films

In fact, long-range forces are induced by thermal fluc-
tuations of any correlated medium, by which we mean
any system with fluctuations that have long-range corre-
lations. The critical system is a very particular example;
much more common are cases where long-range corre-
lations exist due to Goldstone modes of a broken con-
tinuous symmetry, as in superfluids or liquid crystals.1 A
superfluid is characterized by a complex order param-
eter, whose phase f may vary across the system. The
energy cost of such variations is governed by the Hamil-
tonian

H@f#5
K

2 E d3x~¹f!2, (3)

where the stiffness K is related to the superfluid density.
There is no characteristic length scale for fluctuations of
f, which scale as a power of the observation length.

1For a study of phonon fluctuation-induced interactions, see
Mahale and Cole (1986).
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Consequently, we expect power-law finite-size scaling,
just as in the case of a critical point. In the Casimir ge-
ometry, the free energy resulting from thermal fluctua-
tions of these modes has the form (Li and Kardar, 1991,
1992)

dF~H !52kBT3
A

H2 3
z~3 !

16p
. (4)

Note that the result is universal, i.e., independent of the
stiffness K . A similar expression is obtained for the free
energy of the electromagnetic field confined between
metallic plates at high temperatures kBT@\c/H . How-
ever, the result is larger by a factor of two (Schwinger
et al., 1978), reflecting the two polarizations of the nor-
mal modes (photons).

Liquid Helium tends to spread over and wet most me-
tallic surfaces. The thickness of the wetting layer is con-
trolled by the strength of the attractive forces that bind
the film to the substrate (Dietrich, 1988), mostly due to
van der Waals interactions. In the presence of a chemi-
cal potential penalty of dm per unit volume, the energy
of a film of thickness H is

E~H !

kBT
5AF dm

kBT
H1

C

H2G , (5)

where C is a positive numerical constant. Minimizing
this expression leads to a thickness2

H5S 2CkBT

dm D 1/3

. (6)

When the helium film is in the normal phase, the film
thickness is determined solely by the strength of the van
der Waals (vdW) force. The numerical value of C.

5CvdW.0 depends on the substrate, and is nonuniver-
sal. However, when the film becomes superfluid, there is
an additional attractive fluctuation-induced (FI) force
due to Eq. (4), and C,5CvdW1CFI ; where CFI
52z(3)/16p.20.02391. In the vicinity of the super-
fluid transition, there is a different attractive contribu-
tion to the force due to finite-size scaling (FSS) of the
critical fluctuations, as in Eq. (2), and Cl5CvdW
1CFSS . The best estimates for the finite-size scaling am-
plitude at criticality in d53 are CFSS.20.03 from nu-
merical simulations (Indekeu, 1986; Mon and Nightin-
gale, 1987), and CFSS.20.024 from field-theoretic e
expansions (Krech, 1994). The parameter C thus takes
three different values in the normal fluid, at the l point,
and in the superfluid phase. From Eq. (6) we then ex-
pect two jumps in the film thickness, as the temperature
is lowered through the superfluid transition. Experi-
ments to monitor the film thickness have been recently

2For liquid Helium films with thickness of more than 100 Å,
the van der Waals interaction is retarded, and falls off as 1/H3,
to leading order. In this case, the expression for the film thick-
ness is more complicated, and will not be elaborated upon
here.
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performed at Pennsylvania State University, in which
the corresponding jumps have indeed been observed
(Garcia and Chan, 1999).

D. Liquid crystals

Liquid crystals exemplify anisotropic cases of corre-
lated fluids due to broken symmetry, which again lead to
fluctuation-induced forces (Mikheev, 1989; Ajdari et al.,
1991; Li and Kardar, 1991, 1992). They are also easily
accessible, as experiments can be performed at room
temperature and require no fine tuning to achieve criti-
cality. A nematic liquid crystal is composed of long mol-
ecules that are aligned, with an order parameter which is
the ‘‘director’’ field n(r), characterizing the local pre-
ferred direction of the long axis of the molecules (de
Gennes and Prost, 1993). The energy cost of fluctuations
of this field is given by (de Gennes and Prost, 1993)

HN5
1
2 E d3r@k1~“•n!21k2~n•“3n!21k3~n3“3n!2# .

(7)

Integrating over the nematic fluctuations leads to a free
energy contribution

dEN52kBT3
A

H2 3
z~3 !

16p S k3

k1
1

k3

k2
D . (8)

Note that the resulting force does depend on the relative
strengths of the elastic coupling constants (reflecting the
anisotropy of the system).

In a smectic liquid crystal, the molecules segregate
into layers which are fluid like. The deviations of these
layers from perfect stacking are described by a scalar
deformation u(x,z), which is subject to a Hamiltonian

HS5
1
2 E d3rFBS ]u

]z D 2

1k~¹2u !2G . (9)

The resulting interaction energy

dES52kBT3
A

Hl
3

z~2 !

16p
, with l[Ak

B
, (10)

falls off as 1/H , reflecting the extreme anisotropy which
has introduced an additional length scale l into the
problem. For potential experimental tests of these forces
in surface freezing of liquid crystal films, see Lyra et al.
(1993).

E. Charged fluids

Interactions between a collection of charged macro-
ions in an aqueous solution of neutralizing counterions,3

3Counterions are free ions in the solutions that are oppositely
charged with respect to the macroions. While they may have
any valence, their overall number in the solution counterbal-
ances the net charge of the macroions.
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with or without added salt, are in general very complex.
The macroions may be charged spherical colloidal par-
ticles, charged amphiphilic4 membranes, stiff polyelec-
trolytes (e.g., microtubules, actin filaments, and DNA),
or flexible polyelectrolytes (e.g. polystyrene sulpho-
nate), and the counterions could be mono- or polyva-
lent. It is known that, under certain conditions, the ac-
cumulation (condensation) of counterions around highly
charged macroions can turn the repulsive Coulomb in-
teraction between them into an attractive one. The at-
tractive interaction is induced by the diminished charge-
fluctuations close to the macroions (due to the
condensation of counterions) (Oosawa, 1968, 1971; At-
tard, Mitchell, and Ninham, 1988; Marcelja, 1992), and
in this sense is related to the effects discussed in the
previous sections.

Since the connection between the entropic attraction
of charged macroions and fluctuation-induced forces is
seldom made explicit, in the Appendix we present a
path integral formulation that makes this analogy more
transparent. The interaction between macroions can be
broken into two parts: Poisson-Boltzmann (PB) free en-
ergy, and a fluctuation-induced correction. Specifically,
consider two parallel negatively charged 2D plates with
densities 2s , separated by a distance H in d53, in a
solution of neutralizing counterions with valence z . The
PB equation can be solved exactly in this geometry, and
the corresponding PB free energy, in the limit of highly
charged plates, is5

FPB5kBT3
p

2
3

A

z2l BH F11
1

4p2l B
2 z2s2H2 1¯G , (11)

in which l B[e2/ekBT is the Bjerrum length. Note that
in the limit l BzsH@1, the interaction is independent of
the charge densities of the plates; i.e., it is universal.

The fluctuation-induced correction involves calcula-
tion of a determinant (see the Appendix), which de-
pends on the local charge compressibilities. The true
compressibility profile (and the charge density profile)
emerging from the solution of the PB equation is gener-
ally very complicated. It is usual to simplify the problem
by assuming that the surface charge density is so high
that the counterions are confined to a layer of thickness
lGC!H , where lGC5 1

2pzl Bs is the Gouy-Chapman
length. Then we can use an approximate compressibility
profile m2(x)5(2/lGC)@d(x1H/2)1d(x2H/2)# . In the
limit H/lGC@1, we obtain (Attard et al., 1987; Attard,
Kjellander, Mitchell, and Jönson, 1988)

FFI52kBT3
A

H2 3
z~3 !

16p F11OS lGC

H D G , (12)

4The term amphiphilic comes from a Greek word meaning
‘‘love on both sides.’’ Here, it refers to molecules with seg-
ments of opposite tendencies of attraction to water or oil
(Peliti, 1996).

5See for example, Attard, Mitchell, and Ninham (1988) and
references therein.
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for the fluctuation-induced part of the interaction.6 Note
that at large separations, it is asymptotically identical to
the Casimir interaction in Eq. (4). In the opposite limit
H/lGC!1, however, it yields (Pincus and Safran, 1998;
Golestanian and Kardar, 1998b)

FFI5kBT3
A

lGC
2 3Dc3lnS H

lGC
D , (14)

where Dc.0.0792 (Golestanian and Kardar, 1998b). A
similar analysis in d-dimensions leads to asymptotic de-
pendencies as 1/Hd21 for large separations, and 1/Hd23

for small separations, where the crossover is set by a
generalized Gouy-Chapman length (Golestanian and
Kardar, 1998b). Interestingly, such attractive interac-
tions have recently been suggested to be responsible for
DNA bundle formation (Ha and Liu, 1997, 1998), and
collapse of stiff polyelectrolytes (Golestanian, Kardar,
and Liverpool, 1999) and rigid membranes (Lau and
Pincus, 1998).

III. DISPERSION FORCES

A. Van der Waals interactions

In addition to his work on the force between plates,
Casimir also realized (Casimir and Polder, 1948) that the
van der Waals and London (London, 1930) forces can
be understood on the same footing: The presence of the
atoms modifies the fluctuations of the electromagnetic
field, resulting in an attractive interaction. [For a mod-
ern perspective, see the discussion by Kleppner in
(Kleppner, 1990).] For example, let us consider two con-
ducting (neutral) spheres of volumes V154pa1

3/3 and
V254pa2

3/3, at a distance R . The fluctuation-induced
interaction is proportional to the product of the ex-
cluded volumes, and thus on dimensional grounds we
expect a potential

V~R !52kBT3
V1V2

R6 3DT , (15)

due to thermal fluctuations. When the fluctuations are of
quantum origin, Eq. (15) is modified to

6The calculation of the determinant using the true compress-
ibility profile for the parallel plate geometry has indeed been
carried out (Attard, Mitchell, and Ninham, 1988), with the re-
sult

FFI52kBT3
A

H2

3Fz~3 !

16p
1

p

4 S p

4
1

1
2 D1

p

4
lnS H

plGC
D1OS lGC

H D G .

(13)
It is interesting to note that the correct result is considerably
stronger than that of the simple ‘‘Gouy-Chapman’’ model [Eq.
(12)]. For a numerical calculation of higher loop corrections
see Coalson and Duncan (1992).
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V~R !52\c3
V1V2

R7 3DQ , (16)

with DQ51287/(256 p3) (Mostepanenko and Trunov,
1997).

Let us compare the above result with the more stan-
dard approach to calculating the London force between
two neutral atoms: While the average dipole for each
atom is zero, an instantaneous dipole fluctuation in one
can induce a parallel instantaneous dipole in the other,
leading to an attraction. Since the direct dipole-dipole
interaction decays as 1/R3, the induced effect scales as
the square, i.e., 1/R6. In this regard, it is similar to the
result in Eq. (15), except that the characteristic energy is
set by a typical atomic excitation energy \v0 rather than
kBT . The retardation effects are then obtained by tak-
ing into account the finite speed of light. For large
enough distances, when the signal goes from atom-1 to
atom-2 to induce the dipole, and return to atom-1 to
induce an attraction, it finds the dipole at atom-1 some-
what misaligned; resulting in a weaker attraction. The
characteristic time for electron movements can be esti-
mated from the frequency of the orbit as t52p/v0 . The
crossover occurs when the travel time for the signal is
comparable to this characteristic time, namely R/c;t .
Hence, taking into account the retardation effect, the
interaction is

Vr~R !52\v03
V1V2

R6 3fS Rv0

c D . (17)

The crossover function f(x) is a constant for x˜0, and
vanishes as 1/x for x˜` . In the latter limit, the depen-
dence on v0 vanishes, and the Casimir-Polder result of
Eq. (16) is recovered. A similar crossover function be-
tween the two forms of interaction for conducting
spheres in Eqs. (15) and (16), occurs at a distance lT
;\c/kBT .

B. Inclusions on membranes

Dispersion forces are not limited to particles in three
dimensional space, but also occur for inclusions on films
and membranes, the latter being of potential importance
for understanding the interactions between proteins
floating on a cell membrane. A membrane is a bilayer of
amphiphilic molecules, each composed of a hydrophilic
or polar head, and a hydrophobic tail of hydrocarbon
chains. The polar heads prefer to be in contact with the
water, and in the bilayer structure insulate the ‘‘oily’’
hydrocarbon interior from contact with water. A bilayer
that is in equilibrium with amphiphiles in solution can
easily change its area by exchanging molecules with this
reservoir. This implies that the surface tension is zero
(de Gennes and Taupin, 1982; Brochard and Lennon,
1975; David and Leibler, 1991), and the energy cost of
deforming the bilayer is entirely due to bending (Can-
ham, 1970; Helfrich, 1973). The ‘‘flicker’’ of the mem-
brane is thus governed by the elastic Hamiltonian

H5
k

2 E d2x„¹2h~x!…2, (18)
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where h(x) is a height function describing deformations
of the surface. Typical values of the bending rigidity k of
biological membranes is of the order of 0.1225kBT .

Cell membranes also include proteins that perform
various biological functions (e.g., pumps). Each protein
inclusion disturbs the lipid bilayer, resulting in interac-
tions between nearby inclusions (cf. Israelachvili 1992,
Dan et al. 1993, Goulian et al. 1993, Mouritsen and
Bloom, 1993, and references therein). These distur-
bances, and the resulting interactions, tend to be short-
ranged, falling off exponentially with a characteristic
length related to the distance over which the lipid mem-
brane ‘‘heals’’ (Dan et al., 1993). There are also longer-
ranged interactions between the proteins: In addition to
the standard van der Waals interaction, there are inter-
actions mediated by the disturbed fluctuations of the
flickering membrane. As discussed by Goulian et al.
(1993) and Goulian (1996), such interactions exist as
long as the rigidity of the inclusion differs from that of
the ambient membrane, and fall off as 1/R4. In particu-
lar, if the inclusions are much stiffer than the membrane,
the fluctuation-induced potential is

V~R !52kBT3
A2

R4 3
6

p2 , (19)

where A is the area of each inclusion.7 The interaction is
attractive and independent of k and k̄ ; its energy scale is
set by kBT . A generalization of this result that includes
quantum fluctuations of membranes is given in D’Hoker
et al. (1995).

The form of the interaction depends sensitively on the
shapes of the inclusions, as demonstrated by the calcu-
lation of the fluctuation-induced interaction between
rod-like objects Golestanian, Goulian, and Kardar
(1996a, 1996b). The rods are assumed to be sufficiently
rigid so that they do not deform coherently with the
underlying membrane. They can thus only perform rigid
translations and rotations while remaining attached to
the surface. As a result, the fluctuations of the mem-
brane are constrained, having to vanish at the bound-
aries of the rods. Consider the situation depicted in Fig.
1, with two rods of lengths L1 and L2 at a separation
R@Li . The fluctuation-induced interaction is given by

VT~R ,u1 ,u2!52
kBT

128
3

L1
2L2

2

R4 3cos2@2~u11u2!# ,

(20)

to the leading order, where u1 and u2 are the angles
between the rods and the line adjoining their centers, as
indicated in Fig. 1.

The orientational dependence is the square of a
quadrupole-quadrupole interaction, with the unusual
property of being minimized for both parallel and per-
pendicular orientations of the rods. The above
fluctuation-induced interactions decay less rapidly at

7In this formula, the result in Goulian et al. (1993) has been
corrected by a factor of 1/2 (Golestanian, Goulian, and Kardar,
1996a, 1996b).
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large distances than van der Waals forces and may play
an important role in aligning asymmetric inclusions in
biomembranes. Since orientational correlations are of-
ten easier to detect than forces, this result may also be
useful as a probe of fluctuation-induced interactions. Fi-
nally, this interaction could give rise to novel two-
dimensional structures for collections of rodlike mol-
ecules. In particular, the resemblance of the
orientational part of the interaction to dipolar forces
suggests that a suitable way to minimize the energy of a
collection of rods is to form chains. (If the rods are not
colinear, the interactions cannot be simultaneously mini-
mized.)

An important property of fluctuation-induced interac-
tions is that they are non-additive, and cannot be ob-
tained by adding two-body potentials. For example, con-
sider an interaction, U(ur12r2u)du1du2 , between any
two infinitesimal segments of two rods in Fig. 1. If both
rods are of length L at a distance R@L , expanding
ur12r2u and integrating over the two rods leads to the
interaction

V~R ,u1 ,u2!5L2U~R !1
L4

6 S U8~R !

R
1U9~R ! D

2
L4

12 S U8~R !

R
2U9~R ! D

3~cos 2u11cos 2u2!. (21)

The angular dependence is now completely different,
and minimized when the two rods are parallel to their
axis of separation. Presumably both interactions are
present for rods of finite thickness; the additive interac-
tion is proportional to L2(Le/R)2, where e is the thick-
ness. The previously calculated interactions are thus
larger by a factor proportional to (R/e)2 and should
dominate at large separations.

The case of stiff linear inclusions at close separations
(L@R) is considered in Golestanian (1996). It is shown
that a finite rigidity of the linear inclusions leads to a
screening out of the Casimir-type fluctuation-induced at-
traction. The screening length is set by the ratio between
the rigidity of the polymer and that of the membrane.
This is the length scale below which the polymers are
seen as straight parallel lines, hence resulting in a Ca-
simir interaction. Moreover, the attractive interactions

FIG. 1. Two rod-shaped inclusions embedded in a membrane.
The rods are separated by a distance R . The ith rod has length
Li , width e i , and makes an angle u i with the line joining the
centers of the two rods.
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could lead to an instability in the shape of the stiff poly-
mers, signalling a major reduction in their rigidity (soft-
ening) induced by the membrane fluctuations (Golesta-
nian, 1996).

IV. ROUGH SURFACES

Most computations of Casimir forces are for simple
geometries, e.g. between two parallel plates, or perfect
spheres. It is natural to consider how these forces are
modified by the roughness that is present in most ‘‘ran-
dom’’ surfaces. There are a number of ways that one can
go beyond the simple planar geometry. For example, a
multiple scattering approach (Balian and Duplantier,
1978) can be used to compute the interactions for arbi-
trary geometry in a perturbation series in the curvature.
A generalization of the approach due to Dzyaloshinskii,
Lifshitz, and Pitaevskii (Dzyaloshinskii et al., 1961)
could be developed (Novikov et al., 1990a, 1990b, 1992a,
1992b) to study the Casimir forces for surfaces with
roughness. It is possible to use a phenomenological ap-
proach (Bordag et al., 1995) in which small deviations
from plane parallel geometry are treated by using an
additive summation of Casimir potentials. However, as
demonstrated in the previous section, fluctuation in-
duced forces are not additive, and additional steps are
necessary to correct the result (Bordag et al., 1995). An-
other perturbative approach is also introduced (Ford
and Vilenkin, 1982), which could in principle be used to
treat surfaces with roughness, although it is not explicitly
carried out in this paper. Most of these approaches suf-
fer from rather cumbersome treatments of the boundary
conditions.

A path integral approach, introduced by Li and Kar-
dar (1991, 1992), makes possible relatively simple com-
putations of the fluctuation-induced force. This ap-
proach has a number of advantages. First, different
manifolds (with arbitrary intrinsic and embedding di-
mensions) in various correlated fluids can be treated in a
similar fashion. Second, the boundary conditions are
quite easily implemented, and corrections can be com-
puted perturbatively in the deformations. While this
method was originally developed for the study of ther-
mal fluctuations, it can be adapted to quantum fluctua-
tions, as discussed in the next section. In the remainder
of this section we calculate the corrections to the ther-
mal Casimir force due to substrate roughness.

Many solid surfaces produced by rapid growth or
deposition are characterized by self-similar fluctuations
(Kardar, 1996), which grow as

@h~x!2h~y!#25ASux2yu2zS, (22)

where the overbar denotes an average over the surface
profile, and zS is a characteristic roughness exponent.
The Casimir force between a flat and a rough surface
(with a correlated fluid in between) is calculated in Li
and Kardar (1991, 1992). The resulting free energy per
unit area is
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F~H !52
kBT

H2

z~3 !

16p
2

kBTASL2zS

H4

3z~3 !

16p
1

kBTAS

H422zS

C1

4
,

(23)

where C1 is a numerical coefficient (Li and Kardar,
1991, 1992), and L is the extent (upper cutoff) of the
self-affine structure, satisfying DH[AASLzS!H . (This
is the condition that the total width due to roughness,
DH , is less than the average separation H , so that the
plates are not in contact.) As long as L@H@DH , the
interactions in Eq. (23) are arranged in order of increas-
ing strength. The largest effect of randomness is to in-
crease the Casimir attraction by an amount proportional
to (DH/H)2. There is also another correction term, of
the opposite sign, that decays as 1/H422zS, and in prin-
ciple can be used to indirectly measure the roughness
exponent zS . In Eq. (22), if all lengths are measured in
units of an atomic scale a0 (e.g., the diameter of a sur-
face atom), AS becomes dimensionless. Using a reason-
able set of parameters (zS.0.35, a0.5 Å, AS.1 and
L.300 Å), we estimate that for surfaces of 1 mm size,
and 100 Å apart, the forces generated by the three terms
in Eq. (23) are 1.931024, 4.931025, and 3.731026 N,
respectively (using a reasonable lower cutoff of ;20 Å),
which are measurable with the current force apparatus
(Lamoreaux, 1997).

V. THE DYNAMIC CASIMIR EFFECT

A. Background

Although less well known than its static counterpart,
the dynamical Casimir effect, describing the force and
radiation from moving mirrors has also garnered much
attention (Moore, 1970; Fulling and Davis, 1976;
Calucci, 1992; Jaekel and Reynaud, 1992; Maia Neto and
Reynaud, 1993; Law, 1994; Dodonov, 1995; Lambrecht
et al., 1996; Meplan and Gignoux, 1996). This is partly
due to connections to Hawking and Unruh effects (ra-
diation from black holes and accelerating bodies, respec-
tively), suggesting a deeper link between quantum me-
chanics, relativity, and cosmology (Weinberg, 1989;
Davis, 1996).

The creation of photons by moving mirrors was first
obtained (Moore, 1970) for a one-dimensional cavity. It
was then demonstrated (Fulling and Davis, 1976) that
there is a corresponding force even for a single mirror,
which depends on the third time derivative of its dis-
placement. Computations in (111)-dimensional space-
time take advantage of its conformal symmetries, and
cannot be easily generalized to higher dimensions. Fur-
thermore, the calculated force has causality problems
reminiscent of radiation reaction forces in classical elec-
tron theory (Jaekel and Reynaud, 1992). This is an arti-
fact of the unphysical assumption of perfect reflectivity
of the mirror, and is resolved by considering realistic
frequency-dependent reflection and transmission from
the mirrors (Jaekel and Reynaud, 1992).

Another approach to the problem starts with the fluc-
tuations in the force on a single plate. The fluctuation-
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dissipation theorem is then used to obtain the mechani-
cal response function (Maia Neto and Reynaud, 1993),
whose imaginary part is related to the dissipation. This
method does not have any causality problems, and can
also be extended to higher dimensions. The force in (1
13)-dimensional space-time depends on the fifth power
of the motional frequency. The emission of photons by a
perfect cavity, and the observability of this energy, has
been studied by different approaches (Calucci, 1992;
Law, 1994; Dodonov, 1995; Lambrecht et al., 1996; Me-
plan and Gignoux, 1996). The most promising candidate
is the resonant production of photons when the mirrors
vibrate at the optical resonance frequency of the cavity
(Davis, 1996).8 More recently, the radiation due to
vacuum fluctuations of a collapsing bubble has been pro-
posed (Schwinger, 1992, 1993, 1994; Eberlein, 1996a,
1996b; Knight, 1996) as a possible explanation for the
intriguing phenomenon of sonoluminescence. Subse-
quent experimental measurements of the duration of the
signal (Gompf et al., 1997; Hiller et al., 1998) favor more
classical explanations.

A number of authors have further discussed the no-
tion of frictional forces: Using conformal methods in 1
11 dimensions, a friction term is found (Dodonov et al.,
1989) as

F friction~H !5a Fstatic~H !~Ḣ/c !2, (24)

for slowly moving boundaries, where a is a numerical
constant that only depends on dimensionality. The addi-
tional factor of (v/c)2 makes detection of such a force
yet more delicate. There are a few attempts to calculate
forces (in higher dimensions) for walls that move later-
ally, i.e., parallel to each other. Dielectrics moving later-
ally seem to experience radiation-reaction-type fric-
tional forces that vanish for the limiting case of perfect
mirrors (Barton, 1996). On the other hand, it is found
(Levitov, 1989; Mkrtchian, 1995; Pendry, 1997; Eberlein,
1998) that boundaries that are not ideal conductors ex-
perience a friction as if the plates are moving in a vis-
cous fluid.9 This friction has a complicated dependence
on the frequency-dependent resistivity of the plates, and
vanishes for ideal (nondispersive) conductors. The
dominant ‘‘dissipation’’ mechanism for this ‘‘friction’’ is
inducing eddy currents in the nonideal conductors, and
thus making it distinct from the Casimir effect, although
still belonging to the general class of fluctuation-induced
forces.

Possible experimental evidence of an electromagnetic
contribution to friction has been recently reported
(Dayo et al., 1998). The experiment employs a quartz
crystal microbalance technique to measure the friction
associated with the sliding of solid nitrogen along a lead
surface, above and below the superconducting transition
temperature of lead. An abrupt drop in friction is re-

8For a review, and more extensive references see Barton and
Eberlein (1993).

9For an interesting demonstration of an intricate crosstalk
between quantum and thermal fluctuations see Polevoi (1990).
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
ported at the transition point as the substrate enters the
superconducting state (Dayo et al., 1998). This signals
the presence of an electronic contribution to friction in
addition to other mechanisms: The relative motion of
the two solids induces currents in the bulk that are dis-
sipated in the normal metal phase. The dissipation dis-
appears in the superconducting phase.

An interesting analog of the dynamic Casimir effect is
suggested for the moving interface between two differ-
ent phases of superfluid 3He (Volovik, 1996). In this sys-
tem, the Andreev reflection of the massless ‘‘relativistic’’
fermions which live on the A-phase10 of the interface
provides the corresponding mechanism for friction: The
interface is analogous to a perfectly reflecting wall mov-
ing in the quantum vacuum.

B. Path integral formulation

The path integral methods originally developed for
rough surfaces (Li and Kardar, 1991, 1992) can also be
applied to the problem of perfectly reflecting mirrors
that undergo arbitrary dynamic deformations (Golesta-
nian and Kardar, 1997, 1998a). Consider the path inte-
gral quantization of a scalar field f with the action

S5
1
2 E d4X ]mf~X !]mf~X !, (25)

where summation over m50, . . . ,3 is implicit. Following
a Wick rotation, imaginary time appears as another co-
ordinate, X45ict , in the four-dimensional space-time.
In principle, we should use the electromagnetic vector
potential Am(X), but requirements of gauge fixing com-
plicate the calculations, while the final results only
change by a numerical prefactor. (We have explicitly re-
produced the known result for gauge fields between flat
plates by this method, see Golestanian and Kardar,
1998a.) We would like to quantize the field subject to
the constraints of its vanishing on a set of n manifolds
(objects) defined by X5Xa(ya), where ya parametrize
the ath manifold. We implement the constraints using
delta functions, and write the partition function as

Z5E Df~X ! )
a51

n

)
ya

d~f„Xa~ya!…!expH 2
S@f#

\ J . (26)

The delta functions are next represented by integrals
over Lagrange multiplier fields. Performing the Gauss-
ian integrations over f(X) then leads to an effective
action for the Lagrange multipliers which is again
Gaussian (Li and Kardar, 1991, 1992). Evaluating Z is
thus reduced to calculating the logarithm of the deter-
minant of a kernel. Since the Lagrange multipliers are
defined on a set of manifolds with nontrivial geometry,
this calculation is generally complicated. To be specific,

10There are two different phases (vacua) in superfluid 3He. In
the A-phase the relevant excitations (quasiparticles) are chiral
and massless, while in the B-phase they are massive (Volovik,
1992).
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we focus on two parallel 2D plates embedded in 311
space-time, and separated by an average distance H
along the x3 direction. Deformations of the plates are
parametrized by the height functions h1(x,t) and
h2(x,t), where x[(x1 ,x2) denotes the two lateral space
coordinates, while t is the time variable. We can then
calculate lnZ in a perturbative series in powers of the
height functions11 (Li and Kardar, 1991, 1992; Golesta-
nian and Kardar, 1997, 1998a). The resulting expression
for the effective action (after rotating back to real time),
defined by Seff[2i\ lnZ, and eliminating
h-independent terms, is

Seff5
\c

2 E dvd2q
~2p!3 $A1~q ,v!@ uh1~q,v!u21uh2~q,v!u2#

2A2~q ,v!@h1~q,v!h2~2q,2v!

1h1~2q,2v!h2~q,v!#%1O~h3!. (27)

The kernels A6(q ,v) are closely related to the me-
chanical response of the system, defined as the ratio be-
tween force and displacement in frequency domain (Go-
lestanian and Kardar, 1997, 1998a). They are functions
of the separation H , but depend on q and v only
through the combination Q25q22v2/c2. The kernels
can be decomposed into H-independent (obtained by
letting H˜`) and H-dependent parts: A6(q ,v)
5A6

` (q ,v)1A6
H(q ,v), whose behaviors are tabulated

in Table I. Note that an imaginary response function
signifies dissipation of energy (Maia Neto and Reynaud,
1993), presumably by generation of photons (Lambrecht
et al., 1996).

VI. CORRUGATED MIRRORS

As a concrete example, let us examine the lateral vi-
bration of plates with fixed roughness, such as two cor-
rugated mirrors. We consider corrugated plates with de-
formations h1(x)5h2(x)5d cos(q•x) that are moving
laterally with respect to each other. From the
frequency–wave-vector dependence of the mechanical
response we extract a plethora of interesting results,
some of which we discuss next (Golestanian and Kardar,
1997, 1998a).

11For two plates separated by H , the perturbation series is in
the small parameters h1 /H and h2 /H . For a single plate (H
˜`), the requirement is that the time and space derivatives of
the height functions should be small.

TABLE I. Behavior of the kernels in different regions de-
noted in Fig. 2.

Region I Region IIa Region IIb

A1
` (q ,v) real, finite imaginary, finite imaginary, finite

A1
H(q ,v) real, finite real, finite complex, infinite

A2
` (q ,v) 0 0 0

A2
H(q ,v) real, finite real, finite complex, infinite
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A. Mass corrections: Region I

In the limit of v!cq , the response function can be
expanded as a series in powers of v2. The coefficient of
the v2 term can be regarded as a correction to the mass
of the plate. For a single plate (H˜`), we find mass
corrections that are anisotropic: dm i5(1/288p2)(\/
c)Ad2q5, and dm'50, where parallel and perpendicu-
lar components are defined with respect to q, and A
denotes the area of the plates. The mass correction is
inherently very small: For a macroscopic sample with d
.l52p/q.1 mm, density .15 gr/cm3, and thickness t
.1 mm, we find dm/m;10234. Even for deformations
of a microscopic sample of atomic dimensions (close to
the limits of the applicability of our continuum represen-
tations of the boundaries), dm/m can only be reduced to
around 10210.

With the second plate at a separation H , the mass
renormalization becomes a function of both q and H ,
with a crossover from the single plate behavior for qH
;1. In the limit of qH!1, we obtain dm i

5\ABq2d2/48cH3 and dm'50, with B520.453. Com-
pared to the single plate, there is an enhancement by a
factor of (qH)23 in dm i . While the actual changes in
mass are immeasurably small, the hope is that its anisot-
ropy may be more accessible, say by comparing oscilla-
tion frequencies of a plate in two orthogonal directions.

B. Dissipation: Region IIa

For v@cq the response function has an imaginary
part, and we can define a frequency-dependent effective
shear viscosity. This viscosity is also anisotropic, with
h i(v)5(1/720p2)(\/c4)Ad2q2v4, and h'(v)50. Note
that the dissipation is proportional to the fifth time de-
rivative of displacement, and there is no dissipation for a
uniformly accelerating plate. However, a freely oscillat-
ing plate will undergo a damping of its motion. The
characteristic decay time for a plate of mass M is t
.2M/h . For the macroscopic plate of the previous
paragraph, vibrating at a frequency of v.2cq (in the
1012 Hz range), the decay time is enormous, t;1018 s. As
the decay time scales as the fifth power of the dimen-
sion, it can be reduced to 10212 s for plates of order of 10
atoms. However, the required frequencies in this case
(in the 1018 Hz range) are very large. Also note that for
the linearized forms to remain valid in this high fre-
quency regime, we must require very small amplitudes
r0 , so that the typical velocities involved, v;r0v , are
smaller than the speed of light. The effective dissipation
in region IIa of Fig. 2 is simply the sum of those due to
individual plates, and contains no H dependence.

C. Resonant emission: Region IIb

The cavity formed between the two plates supports a
continuous spectrum of normal modes for frequencies
v2.c2(q21p2/H2). We find that both real and imagi-
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nary parts of A6(q ,v) diverge in this regime, which we
interpret as resonant dissipation due to excitation of
photons in the cavity.12

Resonant dissipation has profound consequences for
motion of plates. It implies that, due to quantum fluc-
tuations of vacuum, components of motion with fre-
quencies in the range of divergences cannot be gener-
ated by any finite external force. The imaginary parts of
the kernels are proportional to the total number of ex-
cited photons (Lambrecht et al., 1996). Excitation of
these degrees of motion must be accompanied by the
generation of an infinite number of photons, requiring
an infinite amount of energy, and is thus impossible.
However, as pointed out in Lambrecht et al. (1996), the
divergence is rounded off by assuming finite reflectivity
and transmissivity for the mirrors. Hence, in practice,
the restriction is softened and controlled by the degree
of ideality of the mirrors in the frequency region of in-
terest.

As opposed to the examples considered previously, it
thus seems possible to create a considerable amount of
photons in resonant conditions. However, to make
quantitative predictions about the number of emitted
photons, we should consider more realistic models than
perfectly reflecting mirrors, as described above. We also
note that the spectrum of resonant modes is continuous
in 113 dimensions, while it is discrete in 111 dimen-
sions (Calucci, 1992; Law, 1994; Dodonov, 1995; Meplan
and Gignoux, 1996; Lambrecht et al., 1996; Davis, 1996;
Golestanian and Kardar, 1997, 1998a).

12The divergence of kernels in IIb comes from integrations
over space-time. Given a cutoff L in plate size, and an associ-
ated cutoff L/c in time, the kernels diverge as exp@(K
22)L/H#/@K(L/H)3#, with K52QH/p . Some care is necessary
in the order of limits for (L ,H)˜` .

FIG. 2. Different regions of the frequency–wave vector and
separation plane. The dependence on frequency and wave vec-
tor always appears through the relativistically invariant combi-
nation of Q25q22v2/c2. The dash-dotted line indicates how
the three different regions are crossed upon increasing Q2 for
a particular value of the separation H .
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D. Radiation spectra

Where does the energy go when the plates experience
viscous dissipation? When the viscosity is a result of
losses in the dispersive boundaries (Levitov, 1989; Mkrt-
chian, 1995; Pendry, 1997; Eberlein, 1998), the energy is
used up in heating the plates. Since we have examined
perfect mirrors, the dissipated energy can only be ac-
counted for by the emission of photons into the cavity.
The path integral methods can be further exploited to
calculate the spectrum of the emitted radiation (Miri
and Golestanian, 1999). The basic idea is to relate the
transition amplitude from an empty vacuum (at t˜
2`) to a state with two photons (at t˜1`), to a two-
point correlation function of the field, which is then cal-
culated perturbatively in the deformations. From the
transition amplitude (after integrating over the states of
one photon) we obtain the probability that an emitted
photon is observed at a frequency V and with a particu-
lar orientation.

Specifically, calculations of the angular distribution
and spectrum of radiation were performed (Miri and
Golestanian, 1999) for a single perfectly reflecting plate,
which undergoes harmonic deformations characterized
by a height function h(x,t)5d cos(k0•x2v0t). Depend-
ing on the ratio v0 /ck0 , it is found that radiation at a
frequency V is restricted to a particular window in solid
angle. The total spectrum of radiation P(V), i.e., the
number of photons with frequencies between V and V
1dV radiated per unit time per unit area of the plate, is
found by integrating the angular distribution over the
unit sphere, and is shown in Fig. 3. Note that it is a
symmetric function with respect to v0/2, where it is
peaked, that is a characteristic behavior of two-photon
processes. The peak sharpens as the parameter v0 /ck0
increases, and saturates for k050 (Maia Neto and
Machado, 1996; Miri and Golestanian, 1999). The inter-
esting problem of the angular distribution and spectrum
of radiation between two plates in discussed by
Mundarain and Maia Neto (1998).

The connection between the dissipative dynamic Ca-
simir force and radiation of photons is made explicit by

FIG. 3. Spectrum of radiation for different classes. Plot I cor-
responds to v0 /ck055/3, plot II corresponds to v0 /ck0
55/2, and plot III corresponds to v0 /ck055.
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calculating the total number of photons radiated per
unit time and per unit area of the plate. The result is
identical to the energy dissipation rate calculated from
mechanical response considerations (Golestanian and
Kardar, 1997, 1998a). No radiation is observed at fre-
quencies higher than v0 , due to conservation of energy,
and also for v0 /ck0,1, in agreement with Sec. VI.B
above, where no dissipative forces are found in this re-
gime.

VII. CONCLUSION

In this article we presented various examples of
fluctuation-induced phenomena, taken from diverse
contexts ranging from biophysics to cavity QED. We
hope to have illustrated some of the underlying prin-
ciples that govern these different manifestations. The
basic idea is that if fluctuations of a field (whether of
quantum or thermal origin) are hampered by the pres-
ence of external objects, there is a back reaction felt by
these external objects. Due to their entropic nature, the
resulting interactions usually depend on geometrical
properties of the objects, with scales set by \ (quantum
fluctuations) or kBT (thermal fluctuations). There is a
great deal of universality, in that the asymptotic limits of
the interactions at large distances depend only on the
shape of the object, and are independent of microscopic
details or energy scales. The dependence on shape, how-
ever, can be unexpected and nontrivial; for example, the
interaction between extended objects cannot be ob-
tained from a pairwise summation of pair potentials.

Thermal fluctuation–induced interactions are starting
to be probed more systematically by experiments on
wetting of complex fluids and on colloidal particles. Such
interactions may also account for attractions between
macroions of like charge, in turn explaining bundle for-
mation and collapse of DNA filaments and other stiff
polyelectrolytes. In fact, the very existence of a fluid
phase (condensing from a gas) is due to the first histori-
cally recognized fluctuation-induced interactions, the
van der Waals force.

The nonintuitive world of frictional Casimir forces
and radiation from a perturbed vacuum brings about a
deeper understanding of a fundamental physical entity,
the quantum vacuum. As with any complex fluid, the
quantum vacuum interacts with objects moving through
it, hindering and modifying their motion. While the dy-
namic Casimir effect appears more as an academic prob-
lem at the moment, it has nevertheless raised the hope
among some quantum opticians of making an optical
resonator from a mechanical one, i.e., a laser with me-
chanical pumping!
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APPENDIX: PATH INTEGRAL FORMULATION
OF CHARGED FLUIDS

Here, we introduce a systematic path integral formu-
lation to study fluctuation-induced interactions in a
charged fluid. Consider n charged manifolds embedded
in a d-dimensional aqueous solution of neutralizing
counterions, interacting through Coulomb potentials.
The manifolds have charge densities 2sa (all assumed
to be negatively charged for simplicity), and are de-
scribed by the functions Ra(xa), where xa is a
Da-dimensional internal coordinate, while Ra indicates
a position in the d-dimensional solution. There are Nc
positively charged counterions of valence z , each de-
scribed by a position vector Ri , in the d-dimensional
solution. The Coulomb Hamiltonian can be written as

HC5
1
2 E ddXddX8 r~X !

e2

euX2X8ud22 r~X8!, (A1)

where

r~X !52 (
a51

n E dxasadd
„X2Ra~xa!…

1(
i51

Nc

zdd~X2Ri!, (A2)

is the number density of the charges. Charge neutrality
requires 2(a51

n saAa1zNc50, where Aa is the
Da-dimensional area of the ath manifold.

A restricted partition function of the Coulomb sys-
tem, depending upon the shapes and locations of the
macroions, is now given by

ZNc
@Ra~xa!#5E )

i51

Nc ddRi

ad e2HC /kBT, (A3)

in which a is a short-distance cutoff. Using the Hubbard-
Stratanovich transformation of the Coulomb interaction,

e2HC /kBT5E Df~X !expH 2
ekBT

2Sde2 E ddX~¹f!2

1iE ddXr~X !f~X !J , (A4)

we can rewrite the partition function as

ZNc
@Ra~xa!#5E Df~X !expH 2

ekBT

2Sde2 E ddX~¹f!2

2i (
a51

n E dxa saf„Ra~xa!…J
3S E ddR

ad eizf(R)D Nc

, (A5)
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where Sd is the area of the d-dimensional unit sphere.
We can introduce a fugacity y , and a rescaled partition
function

Z@Ra~xa!#5
yNc

Nc!
ZNc

@Ra~xa!# , (A6)

which can be rewritten as

Z5 (
N50

`

dN ,Nc

yN

N!
ZN@Ra~xa!#

5 (
N50

` E
0

2p du

2p
eiu(Nc2N)E Df~X !

3expH 2
ekBT

2Sde2 E ddX~¹f!2

2i (
a51

n E dxa saf„Ra~xa!…J
3

1
N! S yE ddR

ad eizf(R)D N

. (A7)

A shift in the field f by 2u , and use of the neutrality
condition renders the u-integration trivial. We can then
sum up the exponential series, and obtain

Z@Ra~xa!#5E Df~X ! e2H[f], (A8)

in which

H@f#5
ekBT

2Sde2 E ddX~¹f!2

1i (
a51

n E dxa saf„Ra~xa!…

2
y

ad E ddXeizf(X). (A9)

Note that the fugacity y can be eliminated using the
identity Nc5] lnZ/] ln y, which follows from Eq. (A6).

We next evaluate the path integral using a saddle-
point approximation. The extremum of Eq. (A8), ob-
tained from dH/df50, is the solution of the Poisson-
Boltzmann (PB) equation

2¹2
„zc~X !…2k2e2zc(X)

52 (
a51

n E dxa

Sde2zsa

ekBT
dd

„X2Ra~xa!…, (A10)

for the (real) field c(X)52if̄(X), in which k2

5Sde2yz2/ekBTad defines the inverse square of the De-
bye screening length. To study the fluctuations on top of
this saddle point, we can set f5f̄1df , and expand the
Hamiltonian up to quadratic order, to get H@f#5H@f̄#
1(ekBT/2Sde2)*ddX@(¹df)21k2e2zc(X)df2# . The
free energy of the system of charged manifolds in the
presence of fluctuating counterions now reads
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F5FPB1
kBT

2
ln det@2¹21m2~X !# , (A11)

where FPB5H@ ic(X)# is the Poisson-Boltzmann free
energy, and m2(X)5k2e2zc(X) is a ‘‘mass (or charge
compressibility) profile.’’ The PB free energy is known
to be generically repulsive (Oosawa, 1968, 1971; Is-
raelachvili, 1992). The fluctuation-induced correction,
however, is attractive. For highly charged manifolds, it is
indeed reminiscent of the Casimir interactions, but with
the boundary constraints smoothed out. To see this, one
should note that the mass profile is indeed identical to
the density profile of the counterions. Highly charged
manifolds accumulate counterions in their vicinity, and
consequently the fluctuations of the ‘‘potential’’ field f
are suppressed in a region close to the manifolds, but are
unconstrained in other regions in the solution, hence
leading to a Casimir-type fluctuation-induced attraction.
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