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Reaction waves, in which an energy source sustains a wave front, occur in many areas of physics. The
most important of them is a solitary wave or autowave, which is described on a coarse scale as a
flamon, a surface separating zones. Mathematically, the waves are described by nonlinear transport
equations, whose approximate solution gives propagation velocities of interfaces and stability criteria
for the wave fronts. The instabilities of the autowave can produce complicated behavior such as
periodic waves or spirals in two dimensions. Manifestations of the complex behavior include Gunn
domains and cellular front structures. Important parameters that permit one to classify the wave and
its stability are the Lewis number and the Zel’dovich number. A reaction wave can also have a more
complicated inner structure, with several zones responsible for different physical properties.
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I. INTRODUCTION

The ‘‘reaction’’ waves to be discussed in this review
will include not only chemical reactions, but also elec-
tron and phonon excitation, ionization, recombination,
and so on. A simple and practical approach to our topic
is obtained through a macroscopic kinetic treatment.

Macroscopic kinetics considers matter as a continuous
medium. For this reason the molecular mechanism of
diffusion and other irreversible processes remain be-
yond the scope of this type of theory. These phenomena
Reviews of Modern Physics, Vol. 71, No. 4, July 1999 0034-6861/99/71(
are normally described by means of specified kinetic co-
efficients, which obey symmetry principles (Onsager,
1931). Macrokinetics deals with a system that cannot
come to equilibrium with a thermostat (or heat bath)
due to external influences such as feeding or pumping.
Such a system is termed active. Without pumping, the
system approaches equilibrium with the bath; after the
relaxation time t its state is independent of the initial
one. For times greater than t, the behavior of an active
system cannot depend on the initial conditions, since the
effect of the initial state is suppressed by contact with
the bath. Therefore the behavior will be the same for
different initial conditions. Such special behavior is said
to represent a pattern. In the space of macrostates of a
system (also termed the phase space), such a pattern is
represented by an attractor, i.e., the manifold to which
all the phase trajectories converge.

Smooth variations of control parameters (e.g., pres-
sure, thermostat temperature, pumping intensity, etc.)
result in smooth variations of the characteristics (inter-
nal parameters) of the established pattern as long as this
pattern remains stable. At certain critical values of the
parameters, this pattern breaks up due to the appear-
ance of instabilities. After such an event, the evolution
of the system results in the establishment of a new pat-
tern. The interrelation between new and old patterns
depends on the nonlinear stage of the evolution of the
instability, two cases of which will be discussed.

The characteristics of the new pattern will be close to
those of the old one if fluctuation growth is suppressed
in the nonlinear stage. Differences between patterns
gradually grow as the parameters move away from their
critical values. When nonlinearity promotes fluctuation
growth (explosive instability), the characteristics of the
new pattern, generally speaking, have nothing in com-
mon with the characteristics of the old one. In such a
case, the stability regions in the space of control param-
eters are partially overlapping, so that the reverse tran-
sition is accompanied by hysteresis.

In the first case, the transition between the two pat-
tern is called ‘‘soft,’’ while for the second case it is called
‘‘hard.’’ Though the old and new patterns are quantita-
tively close at the soft transition, in terms of symmetry
11734)/1173(39)/$22.80 ©1999 The American Physical Society
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there is always a qualitative difference between them. In
particular, the soft initiation of self-oscillations (see, for
example, Landau and Lifshitz, 1987, Chap. 26) becomes
possible due to the different symmetries of the station-
ary and periodic patterns with respect to translations in
time: for a stationary pattern, all times are equivalent,
while for a periodic pattern only those times that are
multiples of the period of the oscillations are equivalent.
For hard transitions, changes in symmetry are not nec-
essary. This is exemplified by ignition and extinction in
an instantaneous-mixing reactor (Frank-Kamenetskii,
1939a, Zel’dovich, 1941a), which exhibit transitions be-
tween patterns of the same symmetry.

The above properties of hard and soft transitions are
similar to thermodynamic phase transitions of the first
and second order, respectively. Note that equilibrium
may be considered as a special case of an established
pattern, which corresponds to a vanishing intensity of
the external influence on a system placed in a thermo-
stat. Variation of the thermostat parameters (tempera-
ture, pressure) shifts the equilibrium position until a
given phase becomes unstable at some critical condi-
tions, at which a phase transition takes place. A second-
order transition to the asymmetric phase may be some-
times interpreted as a Bose-Einstein condensation of
corresponding quasiparticles (Cooper pairs, for instance,
in the case of the superconducting transition). The wave
vector of particles of the condensate is zero, since the
condensate is a ground state. On the other hand, the
transition to an asymmetric pattern is interpreted as a
condensation of short-wavelength fluctuations into long-
wavelength modes, the macroscopic filling of which is
termed chaos ordering (Martin, 1965; Haken, 1978). In
contrast to transitions of second order, the fluctuation
spectrum in active systems is of course different from
the thermodynamic equilibrium spectrum (Keldysh and
Tikhodeev, 1986). The space of control parameters of
active systems is partitioned into regions of established
patterns. Such a partitioning is similar to that of thermo-
dynamic phase diagrams; in particular, polycritical
points are possible (Merzhanov and Rumanov, 1987).

Up to this point we have assumed that the influence
preventing active systems from reaching equilibrium is
external. Another scenario is possible when the feed
source is included in the system. The expanded system
interacts only with a thermostat, and eventually equilib-
rium is reached. However, now the equilibrium onset
time is determined by the ‘‘resource’’ of the feed source
(the capacity of the electric battery in a radio transmit-
ter, the reservoir volume containing a reactive mixture,
etc.). As a rule, this time is much greater than t, the
relaxation time of the system in the absence of the feed
source. In view of this, established patterns different
from equilibrium may appear during the limited interval
before the source is consumed. From the mathematical
point of view, such patterns represent intermediate as-
ymptotics (Barenblatt and Zel’dovich, 1971).

Regular macrokinetics studies were probably first ini-
tiated in investigations of the transition from laminar to
turbulent flow (Reynolds, 1883) and of strata in gaseous
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discharges (Langmuir and Compton, 1931). Important
stages in the further development of macrokinetics were
the exploration of explosive instabilities (Inge, Se-
menoff, and Walther, 1925; Semenoff, 1928), the devel-
opment of the theory of excitation and quenching of
self-oscillations (see Andronow, Vitt, and Khaikin,
1987), and that of solitary reaction waves (Kolmogorov,
Petrovskii, and Piskunov, 1937; Fisher, 1937; Zel’dovich
and Frank-Kamenetskii, 1938a). These results were par-
tially generalized in the book of Frank-Kamenetskii
(1969), the first edition of which appeared in 1947. Ex-
tensive studies in the field were initiated only after
World War II. Among the topics studied were the com-
plicated patterns of the Belousov-Zhabotinskii reaction
(Zhabotinskii, 1974; Vasil’ev, Romanovskii, and Ya-
khno, 1979), pinches, domains, and other patterns in
semiconductors (Volkov and Kogan, 1968) and super-
conductors (Gurevich and Mints, 1987), and the rear-
rangement of combustion waves in condensed systems
(Merzhanov, 1983; Zel’dovich, Librovich, and Merzha-
nov, 1985).

Symmetry between molecules and crystals is due to
the fact that atoms at low temperatures appear near the
points of equilibrium. These points are distinguished
and thereby ordered. Similarly, the specific position of a
pattern in the space of macrostates implies some sym-
metry. Such a symmetry as well as the critical nature of
transitions between patterns can excite the fancy of a
researcher. Thus such poetic terms as ‘‘self-organization
of dissipative structures’’ (Nicolis and Prigogine, 1977),
‘‘synergetics’’ (Haken, 1978), and ‘‘catastrophe theory’’
(Thom, 1975) were generated. Simple models that admit
the realization of a large number of regular and chaotic
patterns (Gaponov-Grekhov and Rabinovitch, 1979;
Kerner and Osipov, 1989) were studied, as were the
symmetry effects of pumping on the structure of an es-
tablished pattern (Zaslavskii and Sagdeev, 1988).

Since, in phase space, an attractor corresponds to each
established pattern and the transitions between patterns
are described by the bifurcations of these attractors, bi-
furcation theory is sometimes presented as the theory of
active systems and pattern formation. This viewpoint
was developed, for instance, in the extensive survey of
Cross and Hohenberg (1993). However, a purely math-
ematical approach appears to be insufficient. The con-
vergence of phase paths to an attractor is in fact the
consequence of the heat bath, which erases the influence
of the initial state. Furthermore, one can introduce the
phase space and attractors only if the concept of mac-
rostates is valid, i.e., if the characteristic space and time
scales are large in comparison with those of the atoms.
But the established behavior of an active system is pos-
sible also in the absence of such a limitation, in which
case the description requires another language than
phase trajectories, bifurcations, and so on. Keldysh
(1964a) developed the general procedure for determina-
tion of the established pattern, based on the diagram
technique for the density matrix.

Let us consider a conservative system. Its behavior
depends on the initial conditions. However, a sufficiently
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complicated system displays chaotic behavior due to the
instability of trajectories (Krylov, 1950; Born, 1955), and
the statistical properties that arise are independent of
the initial conditions. More accurately, they are almost
independent because the (initial) phase volume is con-
served. Switching on dissipation (i.e., the interaction
with the heat bath) destroys the remaining conservation,
and the effect of the initial state disappears altogether.
At a macrolevel, we see an equilibrium, so that chaotic
motions are essentially thermal fluctuations. After
pumping is switched on, the system becomes active. Its
established patterns may be significantly influenced by
the ‘‘conservative part.’’ Thus the frequency of self-
oscillations in a clock or radio transmitter due to reso-
nance is close to the eigenfrequency of a conservative
subsystem. The study of the latter may sometimes be of
independent interest.

But there exist active systems that are organized dif-
ferently. When the terms responsible for pumping and
dissipation are removed from the equations describing
such a system, then practically nothing will remain.
These are the equations of chemical kinetics, in particu-
lar, the equations for the Belousov-Zhabotinskii reac-
tion. Active systems with essentially no conservative
part may be termed purely kinetic. These are the very
systems for which the specific solitary waves were first
found and studied and which will be discussed in this
paper.

The most widely known example of such waves is the
combustion front that separates the regions of the initial
mixture and the reaction products. The propagation ve-
locity and structure of the combustion wave are inde-
pendent of initial ignition conditions, so we are dealing
with an established pattern. Moreover, the distribution
of temperature and concentration within the combustion
wave depends only on x1ut , where u is the velocity of
combustion propagation, t is time, and the x axis is ori-
ented opposite to the direction of propagation. Hence
the wave’s phase remains undetermined. In other words,
a given established pattern has one degree of freedom.
The number of degrees of freedom is convenient for the
classification of established patterns. The simplest is a
uniform system described by variables that depend on
time but not on the spatial coordinates. Self-oscillations
require one degree of freedom. Their space of states is
no less than two dimensional, and the attractor in this
space is a closed line (limit cycle), i.e., a one-dimensional
manifold.

In nonuniform systems the space of states has infinite
dimensionality. Obviously, the established patterns in-
herent to the uniform system (stationary state, self-
oscillation, quasiperiodic regime, etc.) can exist in the
nonuniform case. However, new kinds of patterns ap-
pear to be possible, such as the combustion wave. We
saw that it has one degree of freedom, surely not a self-
oscillation). The minimal number of degrees of freedom
for patterns is 0. For ‘‘added’’ patterns (which are absent
in concentrated systems) the minimal number is 1.

Another example of such waves is the motion of the
interface between metastable and equilibrium phases.
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For both cases (the combustion wave and the interface),
a free-energy source is present in the initial metastable
phase, equilibrium being established behind the wave. In
the presence of an external feed source, solitary waves
propagating in an active medium are similar to those in
the examples above. When the system parameters admit
the occurrence of only one homogeneous stationary pat-
tern, this pattern is eventually recovered after the reac-
tion flash, so we come to a traveling pulse, the leading
edge of which is similar to the combustion wave. When
the parameters admit two homogeneous patterns (bista-
bility), the solitary wave converts an active medium
from one such pattern to another (a switching wave).
The switching wave is similar to a propagating interface.

The set of established inhomogeneous patterns in ac-
tive media are sometimes termed ‘‘autowaves.’’ These
are the steady states (so-called ‘‘dissipative structures’’),
traveling pulses and periodic waves, spirals, vortices, etc.
The traveling waves, solitary and periodic, have one de-
gree of freedom. However, the periodic autowave rep-
resents a set of traveling pulses (see Vasil’ev et al.,
1979). We come to the point where, among autowaves,
one can distinguish a class of solitary waves which exhib-
its the simplest patterns with one degree of freedom and
cannot exist in the case of concentrated systems. We
shall term these autowaves ‘‘flamons.’’ (Of course, it is
difficult to forecast the destiny of a new term.)

In various active media, flamons exhibit internal struc-
tures that may be represented as a sequence of layers, or
zones. Each of these zones has its own function in the
structure of a given flamon. At some critical values of
the parameters, the zonal structure undergoes rear-
rangement, and at this moment the dependence of the
flamon velocity on the control parameters is qualita-
tively changed. But the flamon motion in a homoge-
neous active medium does not always remain uniform
and rectilinear. Instabilities may lead to the develop-
ment of self-oscillations and more complicated patterns
that are superimposed on the initial uniform motion. All
these effects are discussed below.

We start from the simple models of the combustion
wave and the traveling interface. Then, systems with ex-
ternal feeding are considered, in which these two models
are replaced by the traveling pulse and the switching
wave, respectively. The interrelations between them are
discussed. We show briefly how a flat wave can trans-
form to a spiral wave because of some kinematic mecha-
nism. Analogous kinematic effects are responsible for
the suppression of flamon diffusional instabilities, to
which Sec. VI is devoted. In our survey, attention is paid
mainly to these instabilities and related patterns as well
as to the complicated multizonal structure of flamons
(Sec. VII).

A subject like the present one determines the style of
our writing. We avoid the formal approach, the so-called
‘‘basic models’’ (with the exception of Sec. VI.B.2), the
‘‘normal forms,’’ etc. They would be of little use for our
purpose, shifting the focus to things that are not essen-
tial from the physical viewpoint. Our approach origi-
nates from the standard macrokinetic concepts as they
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were briefly outlined above. These concepts will be dis-
cussed in detail in the following sections.

This paper was conceived as a tribute to the memory
of Ya. B. Zel’dovich, 1914–1987, who played an impor-
tant role in developing a theory we present as the theory
of flamons. Combustion waves have a long research his-
tory and the relevant literature is vast. We have not at-
tempted to review the subject of solitary reaction waves
as a whole.

II. COMBUSTION WAVES

As mentioned above, two major groups can be distin-
guished among various flamons. The simplest represen-
tative of the first group is the combustion wave, while
the traveling interface represents the second. First let us
consider these simplest waves.

A. Structure and velocity

From a hydrodynamic point of view, the combustion
wave is a propagating boundary between an initial mix-
ture and reaction products. Due to the thermal expan-
sion of products, this boundary turns out to be unstable
(Darrieus, 1944; Landau, 1944a). We shall return to the
problem of stabilizing the boundary in Sec. VI.A. Let us
now consider the internal structure of the boundary de-
fined by the following equations:

d

dx S k
dT

dx D2ruc
dT

dx
1QF~h ,T !50, (1)

d

dx S rD
dh

dx D2ru
dh

dx
1F~h ,T !50, (2)

and the boundary conditions

x˜2` , T5T0 , h50, (3)

x˜` ,
dT

dx
5

dh

dx
50. (4)

It is assumed that only one reaction takes place; h is
the concentration of its product. Here, T is temperature,
r is the density, u is the wave velocity, c is the specific
heat, k is thermal conductivity, D is the diffusivity, and
Q and F are the heat and the rate of reaction, respec-
tively. In a frame of reference that moves together with
the wave, the problem is stationary. The wave velocity u
is not specified but must be found together with the dis-
tributions T(x) and h(x). Due to the invariance of Eqs.
(1)–(4) with respect to translations along the x axis,
these functions have the form T(x1x0),h(x1x0),
where x0 is an arbitrary constant (‘‘phase’’ of the wave)
that is not determined by conditions (3) and (4). There-
fore the problem would seem to be overdetermined
(four conditions for three remaining arbitrary constants)
if the value of u were not considered to be unknown
together with T and h (for more details, see Frank-
Kamenetskii, 1969).

The problem defined by Eqs. (1)–(4) has an intriguing
feature: it has no formal solution. The reaction rate is
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finite at any temperature, including the initial tempera-
ture T0 [the activation dependence is standard, i.e., F
}exp(2e/T), where e;103 –105 K], so that condition (3)
cannot be satisfied. The physical reason for this incom-
patibility is as follows. The heat supplied by the reacting
matter to the neighboring cold layers accelerates the re-
action due to thermal activation, the heat released is
transferred to the next layer, etc. (this is the mechanism
of wave propagation). At x52` the reaction is com-
plete before the heat will come there.

Zel’dovich and Frank-Kamenetskii (1938a) overcame
this difficulty by setting F50 at low temperatures (see
also Zel’dovich, 1948). Of course, in computer-aided cal-
culations, such a ‘‘distortion’’ of a source is unnecessary.
But it makes problem (1)–(4) mathematically well de-
fined and moreover allows us to see the separation of
the combustion wave into two zones: the heating zone
and the zone of heat release within which a source acts.
Separation into zones is clearly seen in Fig. 1. Within the
heating zone, the relationship between q and T is linear
(Michelson, 1889):

kq5rcu~T2T0!. (5)

In view of the exponential dependence of F on T , the
temperature of the reaction zone varies within the range
}Tf

2/e . Normally, Tf
2/e!(Tf2T0), as was taken into ac-

count in Fig. 1. According to Eq. (5), for a narrow reac-
tion zone, the heat flux to the heating zone is roughly
equal to rcu(Tf2T0). From dimensional consider-
ations, the same quantity may be estimated as ;QF fd ,
where F f is a mean value of F within the reaction zone
and d is the width of this zone. As can be seen in Eq. (5),
the width of the heating zone is about ;(k/rcu), and
accordingly d;(k/rcu)(cTf

2/eQ). We then let F f

'F(Tf ,h f), where h f'exp@2(k/rcuD)(cTf
2/eQ)#. The

latter result was obtained by extrapolation of the solu-
tion to Eq. (2) from the heating zone to the reaction
zone (Zel’dovich et al., 1985). Finally, we obtain

~ru !2;kTf
2F f /eQ . (6)

The estimate Eq. (6) for the combustion velocity holds
when, as h˜1, the function F}(12h)a, where a<1.
The opposite case will be considered in Sec. VII.D.

FIG. 1. Projection of the phase trajectory in the (T ,q
5dT/dx) plane. The point T5T0 ,h50,q50,dh/dx50 corre-
sponding to the initial state of a medium is a saddle point.
From the first integral of Eqs. (1) and (2) with account for Eqs.
(3) and (4), it follows that c(Tf2T0)5Qh f , where Tf5T(x
5`), and h f5h(x5`). If the reaction in the combustion
wave is complete, then h f51, and Tf5T01(Q/c). The final
point (Tf ,1,0,0) of the phase trajectory is also a saddle point.
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The value obtained for the velocity is not necessarily
unique, as was the case for Eq. (6) (for details see Sec.
VII.C). However, the ‘‘spectrum’’ of u should be dis-
crete. In this respect, flamons do not differ from other
established patterns. A continuous spectrum would im-
ply an infinitely close position of attractors in the space
of states. This is impossible, since each of them is sur-
rounded by a basin of attraction of finite dimension. In
one of the first studies on reaction waves, Kolmogorov,
Petrovskii, and Piskunov (1937) considered the diffusion
equation with the source F(h)}h(12h). Here the ini-
tial point h50 is unstable, and a continuous spectrum of
velocities bounded from below emerges. Each corre-
sponding ‘‘fast’’ wave is due to a certain initial distribu-
tion of h that is slowly decreasing as x˜2` . Such
waves are sometimes termed phase waves; they cannot
be used for transmission of signals. The solution actually
describes an ‘‘explosion’’ of uncoupled regions of the
medium. Some delay in the reaction flash between vari-
ous regions produces an illusion of wave propagation.
These solutions disappear when the source is cut off, i.e.,
F(h,h0)50. The remaining single solution corre-
sponds to the boundary of the phase-wave spectrum.
This solution is essentially a flamon (for details see Al-
dushin, Zel’dovich, and Khudyaev, 1979). At the same
time there have been mathematical attempts to select a
‘‘real’’ solution, a wave propagating through an unstable
medium (Aronson and Weinberger, 1975; Ben-Jacob
et al., 1985).

The condition F(T,T* )50 is closely related to the
fact that the combustion wave (as well as other estab-
lished patterns in active systems with an inner feed
source—see Sec. I) is described by intermediate asymp-
totics. When only a thermostat is assumed to be external
with respect to a system, the limit t˜` , strictly speak-
ing, corresponds to equilibrium. To investigate estab-
lished patterns different from equilibrium, some distor-
tion is needed in formulating the problem (e.g.,
considering a clock operation as an established pattern,
we have to forget about exhausting the storage battery).
Aldushin et al. (1978) have calculated u(T* ) and dem-
onstrated that almost the entire interval (T0 ,Tf) is oc-
cupied by a plateau u'const. When T* approaches Tf ,
the velocity diminishes, since cutting off shortens the re-
action zone. As T*˜T0 , the wave velocity grows to
infinity due to the low stability of the initial state in this
limiting case. Due to the presence of the plateau, the
quantity u obtained by solving Eqs. (1)–(4) makes sense
as a physical quantity. It is called the combustion veloc-
ity.

In case of detonation, the heating zone is replaced by
the shock wave that heats and compresses a combustible
mixture. The velocity of the detonation wave is not de-
termined by Eq. (6). The wave pressure P , volume V
51/r , and velocity u are interrelated by (Michelson,
1889)

P2P05~ru !2~V02V !, (7)

where (P0 ,V0) belongs to the initial state. Along with
the energy balance, Eq. (7) determines a continuous set
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
of final states and a continuous set of velocities u . Ana-
lyzing experimental data, Chapman (1899) found the
‘‘selection rule’’: the wave velocity is equal to the veloc-
ity of sound us in the detonation products. If it were the
case that u,us , the pattern would be destroyed by a
rarefaction wave which could reach it (see Jouget, 1917).
But why are waves with u.us impossible? Zel’dovich
(1940), von Neumann (1942), and Döring (1943) showed
that in such waves inaccessible states should appear be-
tween shock front and products. The transition to a final
state via a new shock jump is also impossible: there are
no rarefaction jumps.1

According to the selection rule of Chapman, u is a
purely hydrodynamic quantity and therefore is indepen-
dent of the reaction rate. With respect to the fresh mat-
ter, the detonation wave is always supersonic. As to the
pattern with a heating zone, according to Eq. (6), the
velocity of this wave (the so-called deflagration) is

u'A~Tf /e!~x/tr!, (8)

where tr is the characteristic time of reaction and x is
the thermal diffusivity of hot products. Representing the
latter as x;tus

2 , where t is the impact time (since not
every collision is accompanied by a reaction), we find
that u!us . Meanwhile, anomalously high thermal con-
duction (e.g., electronic or radiative conduction in ther-
monuclear fusion) may provide a supersonic value of u
in Eq. (8). Both the deflagration and detonation waves
may propagate through the same combustible mixture.
Transitions between these two patterns have been stud-
ied inadequately. Clearly, this study should not be con-
fined to consideration of the zone that separates prod-
ucts and fresh matter, but must also consider the entire
flow structure in the system. There is also the vast field
of gaseous flames that deals with a tangle of chemistry
and fluid dynamics (turbulent flames; see, for example,
Clavin, 1985; Kuhl et al., 1994), to which front propaga-
tion through a random medium (see, for example, Ron-
ney et al., 1995) can be related. Such problems are obvi-
ously beyond our capabilities. As for combustion waves
in condensed matter, they show a multizonal structure,
to which we shall turn in Sec. VII.

Besides conventional combustible mixtures,
combustion-wave propagation have also been observed
in the recombination of ‘‘frozen’’ free radicals in a cold
matrix (Broida and Pellam, 1954). Such a wave can
propagate due to damage to the matrix by thermal
stresses that promote recombination (Barelko et al.,
1982, 1988). Also studied were the waves of thermal de-
activation of electronic excitations (Makshantsev and
Finkel’berg, 1974) and vibrational molecular excitations
(Margolin and Shmelev, 1978) which are similar in struc-
ture to the pattern described above. The Belousov–
Zhabotinsky reaction gave rise to intensive activity in
the field (see, for example, Field and Burger, 1985; Ross

1Actually, rarefaction shock waves are possible but only un-
der very special conditions, which are not met here (see for
details, Zel’dovich, 1946; Kutateladze et al., 1980).



1178 A. G. Merzhanov and E. N. Rumanov: Physics of reaction waves
et al., 1988). This reaction is usually studied in a flow
reactor, and the reaction wave takes the form of a trav-
eling pulse; it will be discussed in Sec. IV.B.

B. Limits

Let us assume that the combustion wave propagates
through a tube of finite diameter d . Let d@k/rcu . Ac-
cording to Eq. (5), the right-hand side of this inequality
is of the order of the width of the flamon under consid-
eration, so that the influence of d on the flamon struc-
ture may be neglected. The influence of this diameter is
reduced due to the effect of heat losses causing a de-
crease in u . However, this retardation is interesting not
in itself, but in its qualitative sequel described below.

Let us consider the one-dimensional problem (1)–(4)
after adding to the left-hand side of Eq. (1) the term

2
Nk

d2 ~T2T0!, (9)

describing heat losses. Here, N is the Nusselt number,
which depends on the sample cross section and the type
of heat exchange. For the simplest case, to which we
restrict ourselves here and in the following sections, N
;1. From condition (4), it follows that T˜T0 as x˜
1` ; the zone of cooling is located behind the reaction
zone. According to Zel’dovich (1941b), the value of u is
found by matching the outer solutions (within the zones
of heating and cooling) to the inner solution (within the
reaction zone). The latter relates u to the temperature in
the reaction zone Tm . Within the narrow reaction zone,
the added term (9) may be neglected, and estimate (6)
remains valid upon replacing Tf by Tm . Now it may be
written in the form

U25rke2e/TmkTm
2 /eQ , (10)

where U[ru is a quantity that is conserved in the case
of one-dimensional stationary flow, and k is a constant
with the dimensions of frequency (s21).

On a coarse scale, the reaction zone is a surface at
which the following condition is fulfilled:

k~q12q2!5QU , (11)

where q1 and q2 are the temperature gradients at the
interfaces between the reaction zone and the zones of
heating and cooling, respectively,

kq65~Tm2T0!FUc

2
6AS Uc

2 D 2

1
Nk2

d2 G . (12)

Since the flamon width is smaller than d , the difference
Tf2Tm is also small, so that from Eqs. (10)–(12) we
obtain

S5exp~AS !, (13)

where S5(U0 /U)2, U05Uud˜` , and A52Ne(Tf
2T0)Tf

22(k/U0cd)2. When heat losses are small, A
,1/e , and Eq. (13) has two solutions, the smaller one
being unstable. With diminishing d there occurs a break-
down due to the confluence of a stable solution with an
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unstable one, so that the flame cannot propagate in a
tube of sufficiently small diameter. The inability of flame
to penetrate the small cells of a copper network was
used by H. Davy at the beginning of the nineteenth cen-
tury in explosion-safety lamps for miners.

The minimal value of U corresponding to breakdown
is only Ae times smaller than the maximal value U0 .
Hence to estimate the flamon velocity only, the cooling
zone need not be taken into consideration; it is impor-
tant only from the point of view of the breakdown ef-
fect. As will be shown, the breakdown effect is displayed
in studies of several flamons. To clarify the nature of this
effect and physical meaning of the minimal velocity, let
us consider a chain reaction wave in a strongly diluted
mixture, when heat release may be neglected. The wave
is assumed to propagate due to diffusion of active par-
ticles (radicals) into a fresh mixture. In such a ‘‘cold’’
flame, Voronkov and Semenoff (1939) observed the
breakdown effect due to loss of the radicals at the tube
walls. The simplest problem that exhibits breakdown,
which was numerically solved by Novozhilov and Posvy-
anskii (1973), is close to Eqs. (1)–(4) and Eq. (9):

f92uf85ff2, (14)

f92uf852ff21bf , (15)

j˜2` : f51, f50; j˜` : f85f850. (16)

Here, f and f are the relative concentrations of the ini-
tial reactant and the active intermediate product, j
5x/ADt , D is the diffusivity (the same for both sub-
stances), t is the characteristic time of reaction, D/t is
the velocity scale, and the term bf [similar to Eq. (9)]
describes loss of active particles.2

At b50, the problem (14)–(16) has the following in-
tegral:

f85~1/& !f~12f!, u51/& , (17)

f1f51. (18)

Zel’dovich and Frank-Kamenetskii (1938b) also used
Eq. (18) for b.0. They assumed this equation to be
invalid only at the back side of the flamon, where both f
and f were small. Accurate description of the back side
was assumed not to be essential for determining the
wave velocity.

From Eqs. (14), (15), and (18), the following equation
may be obtained:

f92uf852f2~12f!1bf . (19)

It has three homogeneous solutions (for b,1/4):

f150, f251/22A1/42b , f351/21A1/42b .
(20)

2Besides the problem (14)–(16), a variety of traveling-wave
models with diffusion of active (intermediate) product were
reported after the work of Belousov and Zhabotinsky (1974)—
see, for example, Ortoleva and Ross (1975), Showalter et al.
(1979), Murray (1989).
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There is also an inhomogeneous solution in the form of
a boundary between the regions with stable values f1
and f3 :

f85
1

&
f~f32f!. (21)

This boundary moves with a velocity

u5
1

&
~3A1/42b21/2!. (22)

Formulas (21) and (22) describe a flamon that
strongly differs in its properties from a solution to the
original problem (14)–(16). According to Eq. (22), as b
grows, the velocity u indeed becomes zero (at b52/9)
and then changes sign. Such behavior is typical of the
interphase boundary: under certain conditions, the
phases are in equilibrium (u50). A change in condi-
tions causes the displacement of an interface in one di-
rection or the other, depending on which phase becomes
metastable under the new conditions. The use of Eq.
(18) for all j (including those behind the reaction wave)
indicates replenishment with fresh reactant (e.g.,
through the porous walls of a tube). Under this condi-
tion, intense reaction behind the front will replenish the
consumption of radicals and thus maintain the estab-
lished pattern with f5f3 .

There is no such replenishment in Eqs. (14)–(16) or in
corresponding experiments. The numerical integration
mentioned above showed that there exists a critical
value of b (corresponding to breakdown) and accord-
ingly there is a minimal velocity u of a flamon under
consideration. A similar breakdown when the propaga-
tion velocity is bound from below was found in studies
of the simplest model of nerve pulses (Casten et al.,
1975; Kudryashov and Yakhno, 1978) and in many other
cases (see Scott, 1970; Vasil’ev et al., 1979). Such flam-
ons will be termed q waves. Equations (21) and (22)
describe a flamon belonging to another category,
namely, s waves. We shall continue the discussion in
Secs. III and IV.

C. Flamon and stationary regimes

The properties of structures given by Eqs. (21) and
(22) will be considered in Sec. III. Now we shall consider
yet another modification of heat exchange with the re-
action wave, namely, longitudinal rather than transverse
heat exchange [as in Eq. (9)]. Let us consider the flow of
a reacting mixture through a tube, at the output of which
a high temperature T1 is maintained, so that any reac-
tion at the initial temperature T0 may be neglected (Al-
dushin, 1987). Due to translational invariance, a flamon
in a coordinate frame that moves at velocity u looks like
a stationary pattern. For this reason, its peculiarities
may be better displayed in comparison with the station-
ary pattern of reaction in a flow.

For T1,Tf5T01(Q/c), two stationary solutions cor-
respond to each value of flow rate v . Such a situation is
encountered in the problem of thermal explosion
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(Frank-Kamenetskii, 1939b), when a high-temperature
solution is unstable. The solutions meet at the critical
ignition conditions v5v(T1); at lower flow rates the
combustion wave forms and propagates toward the in-
put. When T15Tf , this critical velocity is equal to the
normal velocity of the combustion wave u(Tf) deter-
mined above.

When v.u , the combustion wave cannot move in a
direction opposite to the flow, even if T1.Tf , the reac-
tion regime being stationary. The plane of control pa-
rameters (T1 ,v) is shown in Fig. 2. Region I corre-
sponds to a stationary pattern with incomplete
conversion of reactants, region II to complete conver-
sion. Stationary patterns are impossible in region III—in
this case, the combustion wave runs toward the input (so
that the 0fh line may be termed the ignition curve). The
point f[(Tf ,u) separates this curve in two portions; the
segment 0f is the critical curve of confluence of the
stable solution with the unstable one.

An increase in temperature T1 (for v.u) results in an
increase in the output h(x50), which reaches 1 at the
line fg . In region II, the reaction zone is shifted from the
output by a distance of

l5~k/rcv !ln@~T12Tf!/~T* 2Tf!# ,

where T* is the temperature within the reaction zone
determined by u(T* )5v .

Therefore a specific point in the plane of control pa-
rameters corresponds to the combustion wave in the sys-
tem under consideration (a plug-flow reactor). On the
one hand, this is the point at which the critical line 0f
terminates (line of the confluence of the stable and un-
stable solutions for patterns of incomplete conversion);
on the other hand, this is a corner point for the region of
complete conversion. Being a control parameter for sta-
tionary patterns, the flow rate v may vary continuously.
Thus the inner parameters of the pattern, h(x50) in
region I and l in region II, are continuously changed.
The combustion wave has no free parameter; its velocity
is fixed.

Such a property is also inherent to other flamons.
Changes in initial conditions may shift a ‘‘phase’’ (x
1ut), but have no influence on the wave velocity. Solu-
tions with a continuous spectrum of velocities are ob-
tained for problems with an unstable initial state, as dis-
cussed in Sec. II.A. We note that these phenomena were
understood in the early work of Taffanel (1913, 1914).

FIG. 2. Stationary patterns near the hot output: the space of
parameters.
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Unfortunately, not much attention was paid to this
work.

III. MOTION OF INTERPHASE BOUNDARIES

In passing through matter, the combustion wave
changes its state, and in this respect it is similar to a
traveling interphase boundary. To see the difference be-
tween them, let us consider a phase transition in a sub-
stance placed in a tube of diameter d . Let a phase that is
stable at high temperatures be on the left, as shown in
the upper part of Fig. 3, where Ts is the temperature of
the phase transition (at a given pressure). Then Eqs.
(11) and (12) hold, where Tm is now the temperature at
the boundary and Q is the heat of the phase transition.
As to the inner solution, the interface, generally speak-
ing, has an atomic width, so that the problem turns out
to be beyond the scope of macrokinetics. We shall con-
fine ourselves to the case of low metastability when the
thermostat temperature T0 is close to Ts . The velocity
U may be assumed to be proportional to the difference
between the chemical potentials of the metastable and
equilibrium phases, and this difference is proportional to
the deviation of Tm from Ts , so that

U5K~Ts2Tm!, (23)

where K is a positive constant. From Eqs. (11), (12), and
(23) we obtain

U5
2AN~k/dQ !~Ts2T0!

112AN~k/dKQ !
,

Tm5Ts2
Ts2T0

11~dKQ/2ANk!
. (24)

For d@2AN(k/KQ), the propagation velocity is deter-
mined by heat exchange and is independent of K . This
regime of propagation may be termed the Stefan regime.
For the opposite inequality we have Tm'T0 , and the
velocity is determined by the solution to the inner prob-
lem.

FIG. 3. Temperature profiles in the vicinity of the traveling
interface. At T0,Ts , the low-temperature phase is growing,
while at T0.Ts , the high-temperature phase grows.
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The most significant feature of Eqs. (24) is the change
in sign of U when (Ts2T0) changes sign. The former
metastable phase becomes stable and grows. For this
reason, the velocity can be made infinitesimally small,
whereas the delay of the combustion wave leads to its
extinction. We shall find many flamons that are similar
in this respect to an interface. They are termed here s
waves, while the flamons that do not survive retardation
are termed q waves. Returning to Sec. II.B, we can state
that Eq. (19) represents the s wave, whereas the front of
a chain reaction represents the q wave.

Now let us return to the reaction zone. Its solution
may be obtained (Malomed and Rumanov, 1985) when
the state of the substance is close to a critical point.
Then the characteristic spatial scale x0 that, in particu-
lar, determines the boundary width turns out to be mac-
roscopic:

x0;aATc /~Tc2T !, (25)

where Tc is the critical temperature, while a is of the
order of a molecular dimension and may be related
(Zel’dovich and Todes, 1940) to the coefficient of sur-
face tension a between the phases:

a5
8

)
aPcS Tc

~Tc2T ! D
3/2

, (26)

where Pc is the critical pressure. It will be assumed that
(Tc2T)!Tc , so that the boundary structure may be
described in terms of a hydrodynamic approximation.

Near the critical point, the van der Waals equation of
state holds:

p54t16tr1~3/2!r32a2Dr . (27)

Here, p5(P2Pc)/Pc ,r5(r2rc)/rc ,t5(T2Tc)/Tc , r
is the density, and the coefficients were selected accord-
ing to the law of corresponding states. The term with the
Laplacian in Eq. (27) is used to describe regular inho-
mogeneity, i.e., the interface, rather than to account for
fluctuations. The fluctuation region in the (p ,t) plane
(Landau and Lifshitz, 1978; Patashinskii and Pokrovskii,
1979) will not be considered here, and so the fluctua-
tions will be neglected.

Under the condition of equilibrium between the
phases, p54t , and Eq. (27) has three homogeneous so-
lutions:

r0522A2t , r150, r252A2t . (28)

(Since we consider a two-phase system, the temperature
is below criticality, i.e., t,0.) If, for the sake of definite-
ness, we consider the critical point in a liquid-vapor sys-
tem, then r0 and r2 correspond to the vapor and liquid,
respectively; the solution r1 is thermodynamically un-
stable: (]p/]r) t,0. The inhomogeneous solution

r52A2t tanhS x

a
A23t D (29)

describes the plane boundary between the vapor, r(x
˜2`)5r0 , and the liquid, r(x˜`)5r2 . As can be
seen from Eq. (29), the order of the boundary width is
given by Eq. (25).
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Now we shall discuss a traveling boundary. Let us
consider, for example, condensation of a supercooled
vapor. The possible densities of the initial state are con-
fined to the interval

22A2t,r0,22A2t/3, (30)

at the upper limit of which (spinodal) thermodynamic
stability is lost. According to the meaning of the ‘‘inner’’
problem, the temperature may be assumed to be con-
stant (T5Tm). Using a coordinate frame that moves
together with the boundary, let us supplement Eq. (27)
with the equation of continuity and the Navier-Stokes
equation:

ru5r0u0 , (31)

ruu852p81nu9, (32)

where n5(4/3)h1zh ,z are the first and second viscosi-
ties, a prime denotes differentiation with respect to x ,
and the subscript 0 corresponds to the state ahead of the
boundary (in the inner scale, x˜2`) so that u0 is the
velocity of the boundary in the lab frame. Eliminating
u(x) and p(x) from Eqs. (27), (31), and (32) as well
using new variables and parameters,

j5
x

x0
, u5

r

A2t
, v5

u0

A2tPc /rc

,

g5
n/a

APcrc

, (33)

one can obtain the equation for the ‘‘density’’ u(j),

d2u

dj2 2gv
du

dj
5

3
2

~u32u0
3!2~61v2!~u2u0!, (34)

which, together with the conditions

j˜2` : u5u0 ; j˜` : du/dj50, (35)

allows the velocity and structure of the traveling bound-
ary (density wave) to be determined.

In contrast to Eq. (19), the right-hand side of Eq. (34)
depends on v , which stems from the momentum balance
Eq. (32). From Eqs. (34) and (35) it follows that

du/dj5~)/2!~u2u0!~u22u!, (36)

v52~3)/2g !u1 , (37)

where

u1,252
u0

2
7A42~3/4!u0

21~2/3!v2. (38)

Therefore the density of the final state u2 depends on
the velocity of the boundary motion. According to Eqs.
(30) and (33), possible values of the initial density u0 lie
in the interval (22,22/)). As can be seen from Eq.
(38), u2>2, which corresponds to the density of the
equilibrium phase (liquid). For small e5u012, we have
v'(3)/g)e , or, in dimensional form,

u0'
3)aPc

n S Ts2Tm

Tc2Ts
D . (39)
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Comparison with Eq. (23) gives the value of K . The
approximation given by Eq. (39) is valid for (Ts2Tm)
!(Tc2Ts).

In explicit form, the v dependence on u0 and the ‘‘vis-
cosity’’ g is given by

v5
qu0

2)S 2
9

g221 D 6F g2u0
2

12S 2
9

g221 D 2

1
3
2 S 4u0

2

2
9

g221D G 1/2

. (40)

The problem (34) and (35) is not symmetric with respect
to the boundary conditions. The initial state is chosen at
j˜2` , so only the values v.0 should be considered in
Eq. (40); the density behind the traveling boundary
u(j˜`)5u2 must be determined along with v . The
v(u0) dependence turns out to be different for different
g (i.e., for different substances).

For g2.9/2 only one branch in Eq. (40), correspond-
ing to the 1 sign, is positive. For g2,9/2, both branches
are positive; the branch corresponding to the 2 sign is
ascending, while the other is descending. The solution
corresponding to the descending branch is unstable.
When g,2, the branches merge at u0,22) . At low
viscosity, the velocity of the boundary motion first grows
sharply with supercooling but, at a critical value of u0 ,
this pattern is broken up. Change in decomposition of
the metastable substance is usually related to achieving
the spinodal state, where the barrier to formation of a
new phase becomes zero (see, for example, the review of
Skripov and Skripov, 1979). For a sufficiently fluid sub-
stance (g,2), other critical conditions of the decompo-
sition kinetics are seen to take place. According to Eq.
(40), the critical value of u0 is given by

u* 522A12~2g2/9!

12~g2/6!
, ~g,2 !. (41)

The occurrence of breakup at u05u* may be explained
as follows. Due to the difference in the chemical poten-
tials Dm for the metastable and equilibrium phases, the
interface is moving. Upon acceleration of the boundary,
the pressure difference and hence increase in Dm lead to
a further increase in the rate of condensation. Similarly,
upon evaporation of the superheated liquid, the accel-
eration of the boundary results in additional expansion
of the equilibrium phase (vapor) and in an increase of
Dm.

The breakup of the boundary motion was observed
(Zhukov and Barelko, 1992) upon evaporation of a su-
perheated liquid. A wire was placed in the liquid, which
had a temperature slightly below the boiling point. A
voltage was applied to the wire, and if the electric cur-
rent was sufficiently large, a superheated layer was
formed. An evaporation wave could thus be excited and
was observed to propagate within this layer along the
wire. The speed of the boundary motion as a function of
wire temperature obtained in this study is shown in Fig.
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4 in simplified form. The speed of the boundary motion
is seen to grow together with superheating until breakup
accompanied by hysteresis occurs. The solution of the
fast boundary motion is absent in Eq. (40). This is prob-
ably due to the fact that we used the equation of state,
Eq. (27), containing no higher orders of density.

Generally, the behavior of interfaces in different sub-
stances is universal only under conditions that are close
to equilibrium when the velocity of the boundary mo-
tion is small. In the flamons under consideration here,
the s waves that may come to a halt and change the
direction of their motion, and the q waves that are
quenched if they slow down due to variation of control
parameters, represent two limiting cases. This may be
illustrated by a model of the frontal crystallization in an
amorphous film (Shklovskii, 1982, 1994).

Let the substrate temperature T0 decrease. When T0
is in the vicinity of Ts the boundary motion is close to
that of the s wave: at T05Ts , the velocity U passes
through zero. Then U grows, but at some T05TA break-
down occurs. Such a breakdown is similar to that of the
combustion wave described in Sec. II.B. However, un-
like flames, where breakdown means extinction, the in-
terface does not disappear (which is clearly impossible),
but sharply slows down. An increase in T0 leads, at T0
5TB.TA , to a reverse jump from the slow branch of
velocity to the fast one. In the vicinity of TA , the struc-
ture and behavior of the crystallization front correspond
to those of the q wave. It should be noted that the stable
branch of low velocities is present formally in the system
given by Eqs. (10)–(12); however, for the combustion
wave, such a solution is physically meaningless: as U
˜0, reactions in the cold substance should be taken into
account, and the wave solution disappears.

IV. SOLITARY WAVES IN SYSTEMS WITH AN EXTERNAL
FEED SOURCE

The state of the medium ahead of and behind a fla-
mon is homogeneous. In the absence of an external feed,

FIG. 4. The toluene evaporation wave velocity as a function of
wire temperature (the wave propagates along the wire). The
toluene temperature is 20 °C. From Zhukov and Barelko
(1992).
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equilibrium is established behind the wave, while the
initial state is metastable. In the presence of an external
source, equilibrium is impossible, and either a new ho-
mogeneous steady-state pattern is established or the ini-
tial one is recovered. Of course, in the latter case, the
flamon cannot be an s wave. Let us first consider flam-
ons that give rise to a new homogeneous stationary pat-
tern.

A. Switching wave

The propagation of a flamon that gives rise to a new
homogeneous steady-state pattern implies that one of
the patterns is ‘‘more stable’’ than the other, although
the old and new patterns may exist for the same values
of control parameters (bistability). The condition for
such a flamon (s wave) to have zero velocity is similar to
the condition for equilibrium between thermodynamic
phases. In Sec. III, in considering the propagation of an
interface, we stated that the direction of this motion is
determined by the sign of the difference between the
chemical potentials. This quantity does not exist for the
patterns in an active system. The only way to compare
their stability is to investigate the s wave.

In what was, as far as we know, the first such study
Copeland (1966) dealt with the distribution of the elec-
tric field E in a semiconductor with an N-shaped
voltage-current characteristic, i.e., exhibiting negative
resistivity dE/dj at some field strength. The equation for
E(x ,t) has the form (Kadomtsev, 1988)

]E

]t
2D

]2E

]x2 2mE
]E

]x
5

4p

e
~ j02en0mE !, (42)

where D is the diffusivity of the conduction electrons, m
and n0 are their mobility and mean density, respectively,
e is the dielectric constant, and j0 is the current in an
outer circuit. To obtain a negative resistivity, one has to
use a substance for which m(E) decreases over an inter-
val of E . Equation (42) is interesting because it may be
used to describe the Gunn effect (Gunn, 1963). We shall
return to the Gunn domains, but for now let us consider
other solutions.

Homogeneous patterns correspond to zeros of the
right-hand side of this equation. When m(E) behaves as
described above, bistability occurs within a certain range
of j0 , as shown in Fig. 5. In this case, both E5E0 (the
low-field pattern) and E5E2 (the high-field pattern) are

FIG. 5. Bistability: When the electron mobility m(E) de-
creases, there exists the range of j0 within which three station-
ary values of E correspond to each j0 .
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possible, while the point E1 is unstable. Let us study an
inhomogeneous pattern subject to the boundary condi-
tions E(x52`)5E0 , E(x51`)5E2 , in which the re-
gions of low and high fields are separated by an inter-
mediate layer (s wave). By introducing the automodel
variable j5x1ut and the notation dE/dx5q , we ob-
tain

D
dq

dE
52

1
q

]W

]E
2k , (43)

q~E0!5q~E2!50, (44)

where

W~E !5
4p

e S j0E2en0E mEdE D , k5mE2u . (45)

Mathematically, Eq. (43) is similar to the equation for
the phase trajectories of a particle undergoing one-
dimensional motion in the field with potential W , where
E plays the role of the coordinate and k is the friction
coefficient. Conditions (44) select the trajectory, for
which the maxima of W(E) are turning-points. The dif-
ference in potentials of these points should be equal to
the work of the friction force:

W~E2!2W~E0!5
4p

e F j0~E22E0!2en0E
E0

E2
mEdEG

5E
E0

E2
~u2mE !qdE . (46)

According to Eq. (46), the flamon velocity u increases
with j0 . As long as the current is small, we have u,0,
and the high-field ‘‘phase’’ transforms to the low-field
one. At some j05j00 , the velocity passes through zero
and becomes positive. We remark that when u50, and
the phases of the low and high fields may be considered
as being in equilibrium, the current through the inter-
face does not vanish. The interface under consideration
has a positive charge.

So far, we have assumed that q.0, i.e., that the high-
field phase is on the right of the interface (we assume
j0 ,E.0). Problem (43) and (44) also has a solution for
which q,0 and the high-field phase is on the left of the
interface. Such an interface has a negative charge. Ac-
cording to Eq. (46), u(j0) is decreasing for q,0 and
increasing for q.0. In Sec. III, when we considered the
propagation of a thermodynamic phase boundary, it was
insignificant which phase was on the left and which on
the right of the interface. Equation (34) is invariant with
respect to the transformation j˜2j ,v˜2v . In the
case we consider now, such a symmetry is absent, be-
cause of the presence of the applied field.

The macroscopic kinetics of a phase transition is de-
termined by experimental conditions. For instance, let
us isothermically compress the vapor in the cylinder
shown on the left of Fig. 6(a). If we apply some (pro-
grammed) force to a piston, the vapor volume will be
determined by the pressure at a given moment. Another
experimental approach is to specify the piston position
at each moment (i.e., the substance volume). The differ-
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ence between these approaches will be insignificant as
long as the vapor remains homogeneous. When growing
(with pressure) boiling temperature reaches the system
temperature [point B in Fig. 6(a)], condensation begins
to occur. At a given force, the interface between the
vapor and the liquid in the tube travels until the vapor
completely disappears. By specifying the piston position,
we stop the interface, and the size of ‘‘liquid domain’’ is
determined by a control parameter which is the sub-
stance volume. By neglecting the surface energy, the iso-
therm portion in Fig. 6(a) that corresponds to the equi-
librium between both phases may be considered to be
horizontal. However, if the liquid volume is sufficiently
small, the two-phase state becomes thermodynamically
unfavorable. At point A, the branch of the two-phase
state merges with the branch of unstable states, and the
latter extends until it joins the line of homogeneous
states at point S. The unstable solutions forming the AS
branch correspond to the critical drop surrounded by
vapor according to Gibbs (1961). The BS portion is
made up of the homogeneous metastable states (super-
cooled vapor). Stability with respect to small fluctua-
tions is lost at point S, and spinodal decomposition takes
place (see Skripov and Skripov, 1979). At a given pres-
sure, vapor undergoes complete transition to liquid
[horizontal arrow in Fig. 6(a)]; at a given volume, de-
composition leads to an inhomogeneous (two-phase)
state (vertical arrow).

The above detailed discussion of various modifica-
tions of vapor condensation is needed to reveal a simi-
larity to the ‘‘phase transition’’ in a semiconductor sepa-
rated into regions with high and low fields. The current
voltage characteristic for such a semiconductor is shown
in Fig. 6(b). There are three stable (with respect to small
fluctuations) branches, two of which represent the ho-
mogeneous states (of low and high field), while the third
(horizontal one) corresponds to the states with the
Gunn domain. The homogeneous low field is metastable
within the region BS, i.e., it is not destroyed by small
fluctuations. However, if the electric current is fixed and
the domain is formed, it will grow until it covers the
entire sample. If the voltage is fixed, the domain width l
will be determined by the ‘‘lever rule’’:

V5E0~L2l !1E2l , (47)

FIG. 6. The coexistence of phases. (a) van der Waals isotherm;
dashed lines show the states that are unstable to small fluctua-
tions. The horizontal portion corresponds to equilibrium be-
tween the phases; (b) The N-shaped characteristic of a semi-
conductor. The horizontal portion is due to the occurrence of a
high-field domain in a sample.
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where V is the voltage and L is the sample length. Equa-
tion (47) holds as long as the width of the domain
boundary (s wave) is small compared to l .

The pressure at the horizontal portion of the isotherm
in Fig. 6(a) is such that the liquid/vapor interface is mo-
tionless. The current jB , which corresponds to the hori-
zontal portion of the characteristic in Fig. 6(b), is deter-
mined in a somewhat different way. The Gunn domain
cannot remain motionless since, according to Eq. (46),
the velocities of the left and right interfaces become zero
at different currents. As mentioned above, the velocity
of the left interface is an increasing function of j0 , while
that of the right one is decreasing. For j05jB , these ve-
locities should be equal, which determines the value of
jB . Indeed, at j0,jB , the right interface moves faster
than the left one, and the domain shrinks. In this case,
the sample resistance diminishes, and current grows un-
til the value of jB is recovered. The frequency of self-
oscillations is given by v'u(jB)/L , where the domain
velocity u(jB) is independent of voltage within the pla-
teau in Fig. 6(b), i.e., always when two phases exist.
Therefore the representation of the regions of low and
high fields as ‘‘phases’’ that are separated by the s wave
is very convenient for the description of the Gunn effect.
For a more detailed discussion, see the review of Volkov
and Kogan (1968).

As mentioned above, Eq. (19), which describes the
simplest s wave in a system with an external influence
was suggested as early as 1938. However, at that time,
no physical system was found to be modeled by this
equation. In 1969, Zel’dovich and Pikel’ner considered a
gas cloud heated by cosmic rays. The balance between
heating and radiative heat loss was furnished by two
density values within a certain pressure range. The
higher value corresponded to the cold neutral gas, the
lower one to the hot plasma. An inhomogeneous pattern
is also possible when these two ‘‘phases’’ are separated
by an s wave (in this case, the ionization wave). If a
phase transition accompanied by a change in conductiv-
ity is possible in a substance, then, upon heating by cur-
rent, the s wave may coincide with a real interface. Such
waves in semiconductors, normal metals, and supercon-
ductors were reviewed by Gurevich and Mints (1987).

In distributed chemical systems with thermal bistabil-
ity, s waves were studied in detail. Frank-Kamenetskii
(1939a) was the first who pointed to such bistability in
studying a problem in which a reactive gas was blown
over a catalytic surface. The concentration a and the
surface temperature T satisfy the following equations:

da/dt5b~a02a !2ak exp~2e/T !, (48)

dT/dt5Qc21ak exp~2e/T !2a~T2T0!, (49)

where Q is the reaction heat, c is the specific heat, a and
b are the inverse times of heat and mass exchange, re-
spectively, and the subscript ‘‘0’’ denotes values outside
the boundary layer. From Eqs. (48) and (49), it follows
that there exist two stationary patterns at some values of
parameters. Similar bistability also occurs in a flow reac-
tor (Zel’dovich, 1941a). The bistability region is sche-
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matically drawn in Fig. 7. The low-temperature pattern
is broken up at the upper boundary of this region: the
temperature rises sharply, and transition to the high-
temperature pattern (ignition) is observed. If the param-
eters are changed in the opposite direction, the high-
temperature pattern is retained down to the lower
boundary, at which extinction occurs. Ignition and ex-
tinction are the critical phenomena that are similar to
the spinodal decomposition mentioned above. They are
caused by instability with respect to small fluctuations.
Just as in the case of phase transitions, inhomogeneous
patterns (analogs of coexisting phases) should be added
to the picture above.

The ignition and extinction of catalytic reactions on
platinum surfaces was studied by Buben (1947), who
used a wire installed transversely to the flow of reactants
(the first experiments with such a wire were performed
by Davies, 1934). The wire was heated by an electrical
current, the intensity of which served as a convenient
control parameter. Inhomogeneous reaction patterns for
which the low-temperature regime occurs at one end of
the wire, while the high-temperature regime occurs at
the other end, were later studied theoretically (Merzha-
nov et al., 1975) and experimentally (Barelko et al., 1976;
see also, for later experimental results, Cordoner and
Schmidt, 1989; Philippov and Luss, 1993). The tempera-
ture jump takes place within a narrow (‘‘interface’’) re-
gion, which may move. If the current is small, the cold
region grows; if the current is large, the hot one grows.
The condition u50 determines the line of ‘‘phase equi-
librium’’ in Fig. 7. The picture is quite similar to the
structure of the ‘‘temperature-pressure’’ plane for a
liquid-vapor system, provided that, along with the line of
the phase equilibrium, the lines of stability loss with re-
spect to small fluctuations in supercooling vapor and su-
perheated liquid are plotted. Such a diagram is shown in
the insert to Fig. 7. Just as a continuous transition be-
tween liquid and vapor may be reached by bypassing the
critical point in the (T ,P) plane, a high-temperature
pattern may be reached without ignition and a low-
temperature pattern without extinction if one varies the
flow parameters T0 ,a0 along a route that bypasses point
A in Fig. 7. The structure in the (T0 ,a0) plane of pa-

FIG. 7. Location of the stationary patterns of heterogeneous
reaction in the (a0 ,T0) plane of parameters. The bistability
region is shaded. A is a critical point. Within the bistability
region, the line AD indicates ‘‘phase equilibrium.’’ The insert
shows the phase diagram for the liquid-vapor system. The sig-
nificance of the line E1E2 will be explained in Sec. IV.B.
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rameters with a critical point is determined by the fact
that both patterns have the same symmetry: they are
spatially homogeneous and stationary.

We consider the wire as a one-dimensional system
and introduce the term xT9 into the right-hand side of
Eq. (49), where x is the thermal diffusivity of platinum
and a prime denotes differentiation with respect to the
coordinate x along the wire. The characteristic time of
heat exchange between the gas flow and the wire is large
compared to the time of mass exchange between the
flow and the boundary layer near the wire, so that b
@a . This inequality allows the left-hand side of Eq. (48)
to be neglected. Eliminating the concentration a and us-
ing the reference frame attached to the ‘‘interface,’’ we
obtain

uT82xT95Qa0c21~b211k21ee/T!212a~T2T0!,
(50)

where Q is the reaction heat per gas unit mass and c is
the specific heat of platinum. The right-hand side of Eq.
(50) has three zeros for values of T0 and a0 that lie in
the shaded area in Fig. 7. Let us denote them by T1 , T2 ,
and T3 in order of increasing size. Similarly to Eqs.
(43)–(46), we may write

u5S E
T1

T3
q~T !dT D 21E

T1

T3
F~T !dT , (51)

where q[T8 and F(T) is the right-hand side of Eq.
(50). According to Eq. (51), the condition of ‘‘phase
equilibrium’’ has the form

E
T1

T3
F~T !dT50, (52)

which reminds us of the condition of ‘‘equal areas’’
*C

BVdP50, which determines the position of the hori-
zontal portion of the isotherm in Fig. 6(a).

The Joule heat of current through the wire is not ac-
counted for in Eqs. (49) and (50). Since the temperature
dependence of electrical resistance R is weaker than the
activation of the reaction, the role of the Joule heat is
reduced mainly to the renormalization of T0 . Utilizing
this weak dependence, it is possible to design a regulator
(Mashkinov et al., 1975) that provides fixed R and there-
fore fixed mean temperature of the wire. In experiments
with this regulator, jumps in the heat release were found
to occur at certain critical values of R (Barelko and Vo-
lodin, 1973). They are related to the transitions between
the homogeneous and inhomogeneous patterns of reac-
tion, the latter represented by a hot domain, the width l
of which, similar to Eq. (47), is given by

r1~L2l !1r3l5R , (53)

where L is the wire length and r1 and r3 are the specific
resistance values at T1 and T3 , respectively (Grachev
and Rumanov, 1981). The thermal domain does not
move; the velocities of both the s waves corresponding
to the left and right interfaces become zero under the
same condition (52). Of course, an equality like Eq. (53),
where the width of the s wave is not taken into account,
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is a rather rough approximation. An analysis that did
not depend on the smallness of x/al was carried out by
Sigov and Chechetkin (1985). It should also be noted
that the surface reactions do not necessarily obey the
activation dependence in Eqs. (48) and (49), the ad-
sorbed reactants form various phase modifications, ad-
sorption and surface reconstruction are interrelated, etc.
These phenomena, observed mainly by tunnel micros-
copy and spectroscopy, have been analyzed by Keldysh
(1985). Reaction waves were observed for CO oxidation
on a Pt (100) surface (Cox et al., 1985). The boundary
line between (131) and hex structures was seen to
move by diffusion of adsorbed CO. Laser irradiation ini-
tiated the desorption of CO, followed by the chemical
wave propagating from this irradiated spot at a velocity
of about 2 mm/min at 480 K (Fink et al., 1990; see also
Ertl, 1991).

As we have seen, a unique value of the heating cur-
rent (or T0) corresponds to phase equilibrium (u50)
when the other parameters are fixed. On the other hand,
in many experiments the s wave does not move within a
finite (although not large) range of currents. Gurevich
and Mints (1984) assumed that the stoppage of the s
wave is determined by macroscopic inhomogeneities in
the medium through which the wave propagates. An-
other mechanism of stoppage was suggested by Temkin
(1989). He considered the influence of a small admixture
on interface propagation when the power of the heat
source is different in different phases. In the problem of
current in a conductor, this difference arises due to a
resistance change upon phase transition (Kalafati et al.,
1979; Merzhanov et al., 1980), in other examples the re-
action rate is different for different phases of adsorbed
reactants, the heat removal from a wire is more efficient
for nucleate boiling than for film boiling when the wire
surface is surrounded by vapor (Zhukov et al., 1979),
etc. Restricting ourselves to low s-wave velocities, we
shall approximate the right-hand side in Eq. (50) for all
these problems by the piecewise-linear function:

a~T12T !u~Ts2T !1a~T32T !u~T2Ts!, (54)

where Ts is the interface temperature and u is the
Heaviside function, u(T,0)50, u(T.0)51. Then Eq.
(52) takes the form

Ts5~T11T3!/2. (55)

For a pure substance, Ts has a prescribed value (phase-
transition temperature); in the presence of an impurity,
it has to be determined along with the impurity concen-
trations on both sides of the interface. The concentra-
tion b(x) is given by the solution to the diffusion equa-
tion,

Db92ub850, (56)

with boundary conditions

b~x˜2`!5b~x˜1`!5b0 , (57)

b~x520 !5b1~Ts!, b~x510 !5b2~Ts!. (58)

In Eq. (58), subscripts 1 and 2 refer to the low- and
high-temperature phases, respectively. As before, let us
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assume that the high-temperature phase occupies the re-
gion x.0 in the reference frame attached to the inter-
face (see Fig. 8). From Eqs. (56) and (57), it follows that
b(10)5b0 for u.0, and b(20)5b0 for u,0. For this
reason, Ts turns out to depend on the direction of the
s-wave propagation: Ts5Tu for u.0, and Ts5Td for
u,0 (Tu and Td are found from the phase diagram
schematically represented in Fig. 8). The range of cur-
rent (or other control parameter), for which u50, ac-
cording to Eq. (55) is determined by the conditions

Td,~T11T3!/2,Tu . (59)

B. Recovery zone

The occurrence of s waves is possible for control pa-
rameters in the bistability region (for the heterogeneous
reaction this is the shaded area in Fig. 7). Is it possible to
excite a flamon when the point (a0 ,T0) is below the
shaded area and the unique homogeneous pattern is a
low-temperature one? First, let us note that among the
phase trajectories of a system similar to Eqs. (48) and
(49) there are trajectories that emerge from points with
a5a0 and relatively low temperature to the region of
high temperatures and low concentrations and then ‘‘re-
turn’’ to an attracting node (Abramov and Merzhanov,
1975). These trajectories correspond to the ignition of a
mixture in a reactor, but the flow of the cold substance
‘‘blows out’’ the reaction, and a low-temperature pattern
is established. Upon going from the concentrated system
to the extended one, we consider the reactor oriented
transverse to the flow.

In deriving Eq. (50), we have taken into account heat
conduction along the x axis and neglected the left-hand
side in Eq. (48) in view of the inequality b@a . In the
reference frame attached to the flamon, the left-hand
side contains the term uda/dx , the magnitude of which
depends on the flamon velocity u . Since now we are not
going to restrict ourselves to slow s waves, this term
should not be neglected, and both equations (for tem-
perature and concentration) must be analyzed. If the
(a0 ,T0) point is chosen from the shaded area in Fig. 7,

FIG. 8. Effect of impurity on the s wave. (a) Concentration
profiles in the vicinity of the interface for u.0 (upper curve)
and for u,0 (lower curve); (b) portion of the phase diagram
for small concentration of impurity; the two-phase region is
shaded. At Ts5Tu , the concentration in the low-temperature
phase 1 is bd , and in phase 2 it is b0 . When Ts5Td , these
concentrations are b0 and bu , respectively.
Rev. Mod. Phys., Vol. 71, No. 4, July 1999
the s waves can propagate along the x direction. In the
region BAD, such a wave transforms the low-
temperature pattern into the high-temperature one,
while in the portion CAD, the transition is in the reverse
direction.

Now let us consider a region below the line AC and
imagine for a moment that there is no flow of reactants
through the reactor. The cold mixture that fills the reac-
tor may be ignited. Then a combustion wave will be
formed, behind which the reaction products will be
gradually cooled. If the flow rate is not zero but is suffi-
ciently small, the flow will have no time to influence the
wave structure, which consists of the heating, reaction,
and cooling zones. The role of flow is reduced here to
the slow replacement of the products by fresh substance,
and the steady-state low-temperature pattern will be re-
covered. Assuming the recovery to be slow, we can omit
the term 2ba in Eq. (48) in treating the first three zones
of the flamon. Such a problem has already been ana-
lyzed in Sec. II.B. It has two solutions, and the solution
for which u is greater is stable. When stable and un-
stable branches merge, breakdown occurs. The depen-
dence T0(a0) corresponding to the merger is schemati-
cally drawn as the line E1E2 in Fig. 7. It represents the
lower limit for the occurrence of the q waves (obviously,
the upper limit is given by the ignition line AB, above
which a homogeneous low-temperature pattern is im-
possible). However, the line AB is not the upper limit
for the existence of s waves. For some T0 , the solution
corresponding to the s wave coalesces with the unstable
solution, the flamon is transformed into a q wave, and its
velocity increases discontinuously. The breakup of the s
wave may be explained as follows. For u.0, the reac-
tion consumes not only the substance that is supplied at
this moment but also the fresh mixture ahead of the
wave in the cold part of the vessel (Aldushin, 1977). The
greater the wave velocity, the greater is the fraction of
this ‘‘additional feed’’; a positive feedback arises, which
explains self-acceleration of the s wave leading to
breakup.

The zonal structure of these flamons is shown in Fig.
9. For parameters belonging to the region between the
lines E1E2 and AC in Fig. 7, propagation of only the q
wave is possible. Behind such a wave, the initial low-
temperature pattern is recovered. Sometimes such a
wave is termed a traveling pulse (e.g., Vasil’ev et al.,
1987; Loskutov and Mikhailov, 1990). If parameters be-
long to the shaded area in Fig. 7, a return to the low-
temperature pattern is impossible; after reaching a maxi-
mum, the temperature decreases to T3 . The main
difference with the traveling pulse is in its rear edge. The
reaction zones have the same structure, hence the ve-
locities are the same: the u(T0) curve for the q waves is
continuous in passing through AC in Fig. 7, after which
their structure changes. The fact that the rear edge of
the flamon exhibits no influence on its velocity allows a
simple estimate for the velocity of a nerve pulse
(Kompaneets and Gurovich, 1966). Although the
Belousov-Zhabotinsky reaction is not thermally acti-
vated, the traveling pulse structure obtained by Wood
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and Ross (1985) is similar to that shown in Fig. 9. Re-
covery of the initial state behind the pulse permits its
splitting by an inhibiting light flash (Muñuzuri et al.,
1997). After the flash, part of the excitation survives and
ignites two pulses moving in opposite directions.

Below the line AC in Fig. 7, the velocities of the s and
q waves differ in direction. This implies that the meta-
stability of the high-temperature pattern in the region
CAD in Fig. 7 is not absolute. Excitation of the s wave
transforms this pattern to the low-temperature one.
However, for the same (a0 ,T0) the low-temperature
pattern may be transformed to the high-temperature
one by exciting the q wave (for more details, see
Merzhanov and Rumanov, 1987, page 303).

A good deal of attention has been paid in the litera-
ture to traveling pulses, i.e., flamons, behind which the
initial homogeneous pattern is recovered (e.g., Scott,
1970; Polak and Mikhailov, 1983; Romanovskii,
Stepanova, and Chernavskii, 1984; Meron, 1992), be-
cause traveling pulses are claimed to model propagation
of a nerve excitation. As shown above, there are two
ways to organize a traveling pulse in a system with an
external feed source. Either the q wave is excited under
conditions when only one homogeneous pattern is pos-
sible and its recovery behind the wave is unavoidable; or
the same velocity of the s waves (that separate the ex-
cited domain from regions with a homogeneous pattern)
is maintained (e.g., by electric current) under conditions
of bistability. In the latter case, the active medium is
clearly anisotropic.

V. SPIRAL FRONTS

The recovery of initial patterns behind the traveling
pulse makes it possible to twist the plane front into a
spiral. Let us consider again the ‘‘one-dimensional’’ re-
actor of Sec. IV.B and make it ring shaped. The pulse
may run in this ring indefinitely since it always finds a
fresh mixture, provided that the ring radius is large com-
pared to the pulse width including the recovery zone.

FIG. 9. Temperature profiles of a flamon in a flow reactor: (1)
q wave (traveling pulse) which can propagate if (a0 ,T0) falls
in the region between the lines E1E2 and AC in Fig. 7; (2) q
wave for (a0 ,T0) above the line AC; (3) s wave, whose region
of existence lies from the line AC up to the line of merger with
the unstable branch. In the corner point of each T(x) line, the
flamon consumes fresh mixture located in its path.
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Now let us imagine an active medium as a set of concen-
tric rings (Fig. 10) and let pulses be excited simulta-
neously at different points along the same radius. In this
case, we cannot obtain a rotating ray for which the linear
velocity of each point is proportional to its radial coor-
dinate. Instead, the velocity is constant, so that the
pulses at larger radii lag behind, thus forming a spiral.

Therefore, under certain conditions, we may obtain a
periodic pattern representing a reaction wave in the
form of a rotating spiral (Wiener and Rosenblueth,
1946). Various spirals have been observed in cells with
the Belousov reaction (Winfree, 1972; Zhabotinskii,
1974). Of course, the concentric rings of Fig. 10 are
merely an illustration. To evaluate the rotation rate and
shape of the spiral, let us consider its small portion in
the polar coordinate system. The equation for a spiral
may be written as

f1vt5f0~r !, (60)

where f is the polar angle and r is the radius. This equa-
tion is similar to the familiar equality x1ut5x0 for a
plane wave. In time dt , a given portion of the front trav-
els the distance vrdt along a circle of radius r , whereas
the displacement in the direction normal to the front is
udt , where u is the velocity of the plane flamon. Let a
be the angle between the normal and tangent to the
circle at the point under consideration (Fig. 11). It is
clear that

u5vr cos a . (61)

On the other hand, small displacements dr and df0
along the f0(r) line are related by

rdf05~2tan a!dr , (62)

so that

cos a51/A11r2~df0 /dr !2. (63)

From Eqs. (61) and (63), we obtain

FIG. 10. How spirals arise. Rotation of the ray is impossible;
pulses in the rings of larger radii lag and, instead of a rotating
ray, a spiral is obtained.

FIG. 11. Geometry of the spiral wave shape.



1188 A. G. Merzhanov and E. N. Rumanov: Physics of reaction waves
f0~r !5EAS v

u D 2

2
1
r2 dr1const. (64)

For large radii, this is the Archimedes spiral with pitch

Dr;2pu/v . (65)

Equation (61) is meaningful only for r.r05u/v . It fol-
lows that a spiral rotating at frequency v cannot pen-
etrate inside a circle of radius r0 . For r,r0 , a homoge-
neous pattern occurs. The occurrence of a spiral
structure with a motionless core is apparently related to
the fact that the width of the traveling pulse (as well as
other flamons) is finite. The arguments based on Figs. 10
and 11, in which the front is depicted as a line, do not
hold for radii comparable to the pulse width Dx . Assum-
ing r0;Dx , we obtain an estimate for the frequency,

v;u/Dx , (66)

since for r5r0 the front velocity is tangent to the core,
according to Eq. (61).

Away from the core, where the characteristic dimen-
sions (specifically, the radius of curvature of the spiral)
are large compared to Dx , the representation of the
traveling front as an oriented line seems to be convinc-
ing. However, for a description of the core vicinity and,
accordingly, a more accurate determination of its radius,
as well as of the frequency v, the inner structure of the
traveling pulse (considered in Sec. IV.B) must be taken
into account. In addition, one would like to improve the
simple description by an oriented line, in order to ex-
tend its range of applicability (for details, see the review
of Davydov et al., 1991).

Taking into account the dependence of the front ve-
locity on its curvature K is an example of such an im-
provement. Markstein (1951) postulated that this depen-
dence has the form

u~K !5u02DK , (67)

where u0 is the velocity of a planar front and D is the
effective transport coefficient. This expression was used
in an attempt to explain the damping of the hydrody-
namic instability of combustion waves (see also Sec.
VI.A). The linearity of Eq. (67) makes it applicable only
for small K with DK!u0 . The rotating spiral is termi-
nated at the core boundary r5r0 . There will be the ter-
mination of the free end of a finite wave front if its
transverse growth depends on K . Let us assume (Davy-
dov and Mikhailov, 1987) that the velocity of growth
v(K) is given by

v~K !5g~Kc2K !, g.0. (68)

To maintain a steady rotation of the spiral, its curvature
K(r0) at the end must be equal to the critical value Kc .
According to Eq. (68), which allows a change in the sign
of v , the traveling front may be regarded as a certain
one-dimensional phase with respect to the homogeneous
pattern in a two-dimensional active medium. Indeed,
Eq. (68) is similar to dependence (23) for the velocity of
an interface.
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A consistent realization of the idea of describing a
front as an oriented line is provided by an equation that
relates the arc length l to K . Such an equation was sug-
gested by Zykov (1984) and then modified by Brazhnik
et al. (1986) and by Davydov and Mikhailov (1987). In a
modified form, it is

]K

]t
1

]K

]l S E
0

l
Kudz1v D 52K2u2

]2u

]l2 , (69)

where u and v are defined by Eqs. (67) and (68), respec-
tively. The arc length in Eq. (69) is measured from the
free end. The quantities u0 , D , g, and Kc in Eqs. (67)–
(69) play the role of phenomenological parameters,
which can be determined from experimental data. Since
the spiral curvature increases as we approach the core,
the applicability of Eq. (67) for all l in view of Eq. (68)
is determined by the condition DKc!u0 .

Using Eqs. (67)–(69), one can describe a number of
phenomena exhibited by spiral waves. Upon periodic il-
lumination of the tray in which the spiral wave of the
Belousov–Zhabotinskii reaction was rotated, a drift of
the spiral center was observed (Agladze et al., 1987).
Photographs from this work are presented in Fig. 12.
The period of variation in lighting was the same as the
period of spiral rotation found independently. In a the-
oretical and numerical investigation of the periodic ac-
tion (Davydov et al., 1988) based on Eqs. (67)–(69), it
was assumed that the time dependence of Kc was sinu-
soidal. The solution corresponds to the motion of the
spiral center along a circle, the radius of which is in-
versely proportional to (v12v), where v1 is the fre-
quency of action. When the frequencies are exactly
equal, the center moves along a straight line. A compli-
cated picture of ‘‘nonlinear resonance’’ was also ob-
served (Rehberg et al., 1988; Petrov et al., 1997).

Upon steady rotation of the spiral, the trajectory of
the free end, i.e., the core boundary, is a circle. However
in experiments on the Belousov-Zhabotinskii reaction
(Winfree and Janke, 1989; Skinner and Swinney, 1990),
a deviation of the end point of the front from a circular
trajectory was observed; in this case, the core center was
shifted after each revolution. These displacements were
due to the finite width of the pulse (Zykov, 1986; Zykov
and Morozova, 1990). The initial state in the range of
small radii had no time to recover during one revolution,
and the front ‘‘tried to seek’’ regions containing fresh
mixture (see also Kessler and Kupferman, 1997).

If an active medium is inhomogeneous (e.g., contains

FIG. 12. Drift of the spiral wave of the Belousov-Zhabotinskii
reaction. The reference lines, along one of which the spiral
center displaces, are imposed on the photographs. The interval
between shots is ten minutes. From Agladze et al. (1987).
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inert inclusions), an inhomogeneity may become a core
for a rotating spiral. However, the condition K05Kc at
the core boundary is not fulfilled in this case. Curvature
may grow to a higher value Kl , at which front propaga-
tion becomes impossible in view of Eq. (67) [more pre-
cisely, in view of a nonlinear generalization of this for-
mula (Zykov, 1980), breakdown occurs, at which the
velocity u(Kl) is finite]. In numerical studies (Pertsov
et al., 1984) of the spiral rotation around an inert core,
hysteresis of the rotation frequency as a function of the
core radius was found to occur.

Equation (69) was generalized to the case of a curved
surface (Brazhnik et al., 1988); a kinematic description
of three-dimensional structures was given (Brazhnik
et al., 1987); spiral behavior in an anisotropic medium
was studied (Davydov and Zykov, 1989), and other
problems were studied as well (a recent result is a freak-
ish twist of spirals in a circle and sphere, Zykov et al.,
1997). Although the kinematic approach does not per-
mit analysis of the inner structure of the flamon, as a
matter of fact all of the studies mentioned in this section
assumed the occurrence of a q wave with a recovery
zone. As shown in Sec. IV.B, a traveling pulse can also
be constructed using a pair of s waves, but one or an-
other type of anisotropy in the medium is necessary.
Moreover, the distortion of the plane front does not nec-
essarily have a kinematic origin. In the next section, we
shall consider the situation in which the inner flamon
structure is essential not only at distances of the order of
its width Dx or times 'Dx/u . For details on two- and
three-dimensional spirals, see, for example, Fife (1985),
Meron and Pelce (1988), Keener and Tyson (1991),
Winfree (1991), and Goryachev and Kapral (1996, the
influence of chaos in the medium); the interaction of
spirals has been studied theoretically (Pismen and Nep-
omnyashchy, 1992) and experimentally (Ruiz-Villarreal
et al., 1997).

VI. DIFFUSIVE INSTABILITY

The beginning of studies on diffusive instability is tra-
ditionally associated with the work of Turing (1952),
who studied stratification of an active medium caused by
differences in diffusivities. However, qualitative argu-
ments that provided an understanding of the mechanism
of this instability were already suggested by Zel’dovich
as early as 1944. In his book (Zel’dovich, 1944) he ana-
lyzed the experiments of Kokochashvili (1942) on the
combustion of the H21Br2 mixture, lean in hydrogen.
Flame propagation was impossible in such a mixture, but
luminous spherelike reaction sites were observed.
Zel’dovich suggested that this phenomenon occurred
because of the fast diffusion of hydrogen to the reaction
site, thereby supporting it. Flame propagation in such a
mixture is suppressed because of low thermal diffusivity,
which is determined by the abundant heavy component
(Br). Of course, such a reaction pattern can be estab-
lished for a limited time only, until Br at the site burns
off completely.
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In the simplest possible realization of diffusive insta-
bility, an active medium is characterized by two diffu-
sion coefficients. Correspondingly, the ‘‘reaction rate’’—
the source in the diffusion equations—is a function of
two concentrations. Such a function increases with one
of them in a nonlinear fashion and decreases with the
other. The first substance is called an ‘‘activator’’ and
the second one an ‘‘inhibitor.’’ When related to simple
exothermic reactions, which are the main focus of atten-
tion here, heat is an activator while the reaction product
is an inhibitor. Most publications consider the case of
fast diffusion of an inhibitor. These include Nicolis and
Prigogine, 1977; Tyson and Keener, 1988; Kerner and
Osipov, 1991; and Pearson, 1993, among the theoretical
studies and Castets et al., 1990; Lengyel and Epstein,
1991; Ouyang and Swinney, 1991; and Lee et al., 1993
among the experimental studies. In this case, the strati-
fication mechanism described above forms all the struc-
tures mentioned above: the local spherelike reaction
sites, excited domains, dissipative structures, etc. Insta-
bility due to the fast diffusion of an inhibitor, resulting in
the formation of the corresponding structures in flam-
ons, will be considered in Sec. VI.A. At the same time,
there is a specific instability of the flamons when the fast
diffusion of an activator occurs. It is easy to understand
the relationship between the two kinds of diffusive in-
stability in the example of combustion waves.

Let us discuss the stability of the solution to Eqs. (1)–
(4), which describes a combustion wave. The ratio of the
diffusivity D to the thermal diffusivity (k/rc) is called
the Lewis number Le . This ratio was introduced by
Drozdov and Zel’dovich (1943). In accordance with the
above consideration, fast diffusion of the inhibitor is
characterized by the inequality Le.1. The Le.1 case is
that of gaseous mixtures in which some heavy compo-
nent is abundant. For combustion waves in a condensed
medium, Le!1. The study of the instability can be sim-
plified significantly if we take into account (Barenblatt
et al., 1962; Zel’dovich et al., 1985) that the source in
Eqs. (1) and (2) can be neglected everywhere except for
a narrow reaction zone. Now we shall consider the reac-
tion zone as a surface that separates the heating zone
and that of the products. When outer solutions are
matched across such a surface the inner solution serves
as an additional boundary condition. This allows one to
obtain the stationary solution in a simple analytical form
that in turn leads to relatively simple linearized equa-
tions for fluctuations of T and h. If Aktr /rc and
Ak/rctr are used as the scales of length and velocity,
respectively [tr is the characteristic reaction time at the
temperature T01(Q/c)], then the equations for fluctua-
tions contain two parameters: Le and the Zel’dovich
number Z ,

Z5~Q/c !~] ln u/]T0!, (70)

where u is the velocity of the stationary wave. For u2

}exp(2e/Tf), we obtain Z5eQ(2cTf
2)21.

In their study on the linearized problem, Barenblatt
et al. (1962) found an instability boundary Le(Z) lo-
cated in the region Le.1. Later, independent studies by
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Makhviladze and Novozhilov (1971) and Maksimov and
Shkadinsky (1971) revealed instability also at Le50.
The latter was foreseen by Lewis and von Elbe (1934).
A complete picture was presented in the works of Al-
dushin and Kasparian (1978, 1979), from which Fig. 13 is
taken. There are two instability regions which expand as
Z increases, with their boundaries asymptotically ap-
proaching the horizontal line Le51. If the modes of
fluctuations are characterized by a complex frequency
v(k), then Re v50 near the instability boundary for
Le.1. The growth rate Im v(k) is shown in Fig. 13(b).
Short-wavelength modes grow rapidly since, for Le.1,
protrusions on the front are better supplied with fresh
mixture (Zel’dovich, 1944). The increasing dependence
of Im v on k becomes decreasing only for k.Arc/ktr,
since heat conduction smoothes small-scale fluctuations
of temperature. The existence of a well-pronounced
maximum in the growth rate Im v is typical of systems
characterized by fast diffusion of an inhibitor. Although
the properties of the new pattern are determined by the
instability’s nonlinear stage of evolution, the fastest
growing mode that corresponds to the maximum deter-
mines the scale of the developing dissipative structure.
We shall discuss this problem further in Sec. VI.A.

Let us now return to the instability boundary in the
region Le,1. When the imaginary part of the frequency
v(k) passes through zero, its real part remains finite,
and the oscillatory modes grow. A pictorial explanation
of the evolution of the instability was given by
Zel’dovich (1979, 1981). When Le,1, the heating zone
is not depleted of fresh fuel. The enthalpy in this zone is

FIG. 13. Stability of the combustion wave: (a) the plane of
parameters (Z ,Le); shaded regions are those of aperiodic
(positive slope of shading lines) and oscillatory (negative slope
of shading lines) instabilities; (b) the growth rate of these in-
stabilities.
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greater than that in both the fresh cold substance and
the heated products. The reaction wave can run through
such a preheated medium at higher velocity. In this case
the instability is one-dimensional. The growth rate Im v
appears to be almost flat for small k [Fig. 13(b)]. It
should be noted that Makhviladze and Novozhilov
(1971) found a weak maximum in the growth rate. In
any case, the dependence of Im v on k is weak until k
.Arc/ktr, when it drops due to heat conduction.

A. Cellular structure

As we have seen, the growth rate Im v(k) has a clearly
visible maximum when Le.1. For a sample of finite
diameter only a discrete set of k values is possible. Con-
sequently there is a parameter region near the instability
boundary where Im v.0 for one such k while all the
remaining modes decay. Petersen and Emmons (1961)
pointed out a specific kinematic phenomenon that might
provide for nonlinear stabilization of the growing mode
(see also Zel’dovich, 1966).

We assume that the stationary wave that loses stabil-
ity is planar. Then the coefficients in the linearized equa-
tions for the fluctuations do not depend on the coordi-
nate y along the front. The dependence of the solution
on y can be written as

sin~kmy1am!, (71)

where km is the wave number of the growing mode, and
the value of am is determined, together with km , by the
boundary conditions. The evolution of a sinusoidal front
is shown in Fig. 14. The sine function (71) is distorted
due to an increase in the amplitude as well as to dis-
placement of each small interval of the front in the nor-
mal direction. Cavities on the front narrow, thereby
forming corner points. Such a corner point moves with a
velocity of u/sin f, where 2f is the angle for which the
given point is a vertex. The increased velocity is solely a
phase effect—this becomes obvious when comparing to
Eq. (61) and Fig. 11.

As the protrusions of the front move more rapidly,
the angle f narrows. As a result the difference in veloci-
ties of the protrusion and corner point is compensated,
and the front moves uniformly but becomes wavy. The
scale of the wavy structure is determined by km . Assum-
ing that the wave amplitude A is small relative to km

21 ,

FIG. 14. Why cellular structure forms: (a) nonlinear evolution
of the sinusoidal front; (b) vicinity of the corner point on a
larger scale.
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we compare the protrusion velocity ;A Im v to the cor-
rection of the corner-point velocity. Thus we obtain the
approximation

A;Im v~ukm
2 !21. (72)

Such a wavy front moves faster than a planar one, the
increase in velocity being ;u21(Im v/km)2. Numerical
calculations of combustion-wave propagation for Le.1
(Aldushin, Kasparyan, and Shkadinskii, 1979) are in rea-
sonable agreement with these qualitative arguments. It
was found that the maximal temperature is reached at
the front protrusions, and curvature maxima are in the
cavities (at the corner points). Transition from a planar
to a wavy front results in an increase of velocity. The
cellular structure was also analyzed by Joulin and Clavin
(1979), Matkowsky et al. (1980), Sivashinsky (1983),
Garbey et al. (1989), and other authors. The develop-
ment of instabilities was studied by Bradley and Harper
(1994) and by Bayliss and Matkowsky (1997).

The experiments of Markstein (1949) on cellular
flames were known prior to the theoretical results de-
scribed above. As already mentioned, the first data were
obtained as early as 1942 by Kokochashvili. In his ex-
periments Markstein used flammable mixtures of air
with heavy hydrocarbons (such as butane, etc.) lean in
oxygen relative to stoichiometric composition. As we
saw earlier, the deficit of a light component corresponds,
to some extent, to the condition Le.1. The photographs
presented by Markstein were used in the well-known
book by Lewis and von Elbe (1961). One of them is
reproduced in Fig. 15. Brightness reaches its maximum
at the center of each cell; the darker boundaries be-
tween the cells should be considered as lines composed
of the corner points. Equation (67), which was accepted
as an explanation of geometric spirals, implies that the
convex portions of front move faster than the concave
ones. But the effect of the corner points ensures stabili-
zation, as described above. Nevertheless, calculations of
nonplanar fronts using Eq. (67) have continued (e.g.,
Grindrod et al., 1992; Mulholland and Gomatam, 1996).

Since stabilization by the corner points is a purely ki-

FIG. 15. Cellular flame. The photograph was taken at an angle
from below, p5414 torr. Mixture composition: nitrogen, oxy-
gen, and butane; the butane concentration is 1.39 times greater
than the stoichiometric value). From Markstein (1949).
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nematic phenomenon, it may be expected to hold true
not only for diffusive but also for hydrodynamic flame
instability. The latter was independently predicted by
Landau (1944a) and Darrieus (1944). From a hydrody-
namic point of view, one should consider the combus-
tion wave as an interface between cold fresh substance
and heated products. Let us consider this interface to be
plane and examine distortions due to fluctuations. The
dependence v(k) for fluctuation modes is found from
the linearized hydrodynamic equations as

2iv~k !52
kuv
u1v

6S k2u2v2

~u1v !2 1k2uv
v2u

u1v D 1/2

, (73)

where v is the velocity of products in the reference
frame that moves with the combustion wave. The com-
bustion velocity u is related to v by r0u5rv , where r0
and r are the densities of fresh substance and reaction
products, respectively. Since products are heated, the in-
equality v.u practically always holds. Therefore Re v
50, and one of the two values of Im v is positive. The
plane front is always hydrodynamically unstable. The in-
stability manifests itself by the rapid growth of short-
wave modes (with km limited by viscosity), so that sta-
bilization occurs as described above. However, the
supercriticality in Eq. (73) is not small, and the modes
with k,km are also growing. According to Zel’dovich
(1981), when the mode km has stabilized, the role of the
long-wave modes increases, short distortions flatten out,
and, as a result, only one mode having the smallest k
survives in the tube. Therefore the planar front changes
into the bulging one. Such a bulge was also found in a
different way by Thual et al. (1985) for a special case
representing an instability of the front expanding in an
active medium from the point of excitation (see Gostint-
sev et al., 1989; Filyand et al., 1994; Kupervasser et al.,
1996). The developing front can accelerate. In a closed
chamber, the pressure and temperature grow due to the
developing front, and this growth sometimes leads to
stability (Bychkov and Liberman, 1997).

Thus, for Le.1, we observe effects similar to those
found in other cases of fast diffusion of the inhibitor,
e.g., in Castets et al. (1990); Ouyang and Swinney (1991);
Hagberg and Meron (1994); Schenk et al. (1997).

There is a similarity between the equation describing
hydrodynamic fluctuation of a smooth flame surface
(Sivashinsky, 1977a) and the one describing diffusive
fluctuations (Sivashinsky, 1977b). An analogous equa-
tion was devised by Kuramoto and Tsuzuki (1976). The
Kuramoto-Sivashinsky equation was a favorite of theo-
reticians, and is now numbered among the often used
‘‘model equations.’’ When the perturbation methods or
model equations are applied to the problem of instabil-
ity of the combustion wave, its translation symmetry
(see Sec. II.A) is important. The equations (1)–(4) (as
well as those considered in Secs. II–IV) have an infinite
family of solutions, displaced with respect to each other
along the x axis. Due to this feature, the perturbation
spectrum for such a solution contains the eigenvalue v
50, whose eigenfunction is the derivative of the solution
with respect to x (Barenblatt and Zel’dovich, 1957). This
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so-called ‘‘Goldstone mode’’ is important at weak super-
criticality: v(km) [Fig. 13(b)] is close to zero, and one
can expect some coupling between the unstable and
translation modes. It may decrease the stability of the
wrinkled front (Tribelskii, 1997).

When the parameters Le and Z are deep in the un-
stable region, the behavior of the cellular front becomes
complicated. The transformation into nonstationary pat-
terns has been studied by numerical simulation (Bayliss
and Matkowsky, 1990, 1997; see also Aldushin et al.,
1994). The complication was observed experimentally
(el-Hamdi et al., 1993). However, in this and subsequent
experiments (see, for instance, Gorman et al., 1994) a
porous plug burner was used, and rearrangement in cel-
lular structure was reached by variation in flow rate. It is
doubtful whether the cells are due to diffusive instabil-
ity: they may be small torches (see Sec. VII.C and Fig.
26 therein). These regimes are beyond the scope of this
article. For more on the porous plug burner see, for ex-
ample, Buckmaster, 1982; McIntosh, 1985.

B. Fast diffusion of activator

As mentioned above, the oscillatory modes (Re v
Þ0) with small k increase when Le,1. Since Z is posi-
tive, the velocity u grows with T0 according to Eq. (70),
so that we can consider the heating zone as a medium
for secondary combustion-wave propagation with a
higher velocity and lower width than that of the primary
wave. After the heated layer burns off, the process is
depressed until a new heated layer forms due to heat
conduction and flares up again. Therefore the velocity
and other characteristics of the combustion wave are pe-
riodic in time.

This behavior does not take into account the break-
down effects that were discussed in Secs. II.B and IV.B.
A stationary combustion wave cannot propagate if heat
losses exceed a critical value. It seems obvious that the
depression stage is particularly sensitive to heat losses.
Apparently, in the case of propellants and explosives,
when the reaction is accompanied by gasification, the
instability causes extinction in most cases. Thermites
and other mixtures yielding condensed reaction prod-
ucts are a different matter. Heat stored in these products
plays a stabilizing role (Merzhanov, 1981). Stable pat-
terns of nonstationary waves form for a certain range of
parameters.

Below we shall consider the case in which combustion
instability does not result in extinction, so that heat
losses do not change the flamon behavior qualitatively.
As mentioned above, a heating zone with excess en-
thalpy is favorable for propagation of the secondary
combustion wave, which is faster and narrower than the
primary one. When the secondary wave travels in the
same direction as the initial (stationary) wave, as pre-
sented schematically in Fig. 16(a), in-phase oscillations
occur. The stages in which the heated layer burns down
rapidly and the temperature in the reaction zone ex-
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ceeds the adiabatic value T01(Q/c) alternate with
stages in which the front stops and a new heated layer
forms.

The secondary wave can also propagate through the
heated zone along the front (Ivleva et al., 1978; Istratov,
1985). The combination of such a motion and slower
initial wave propagation can be described in a different
manner (Zel’dovich, 1981): the flash-depression inter-
change allows one to consider the combustion wave as a
self-oscillatory system characterized by a certain fre-
quency and amplitude. However, the phases at different
sites on the oscillating front are not necessarily identical.
Close phase values are maintained only at distances
;Atrk/rc at which heat exchange is possible during the
reaction time tr . We have already met this quantity—
the only parameter that has the dimensionality of length
in the reaction-wave problem. More distant front sites
cannot affect each other. The phase difference yields in-
homogeneous oscillations. The reaction-wave width is
relatively small compared to the sample diameter, so
from the standpoint of the oscillations it can be com-
pared to a thin plate or membrane. In a frame of refer-
ence that moves uniformly with velocity u the mem-
brane is at rest. If the propagation is unstable, the
membrane oscillates either homogeneously (in-phase os-
cillations) or inhomogeneously (like Lissajous figures).
Let us consider both cases in turn.

1. In-phase oscillations

Following the discussion concerning Fig. 16(a), let us
try to construct a simple mathematical model based on
these considerations (Rumanov, 1994). At time t , the
combustion wave can be characterized by the instanta-
neous values of temperature T and width l . Variations

FIG. 16. The secondary waves propagating (a) longitudinally
and (b) transversely with respect to the velocity of the main
flamon.
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in l are due to the difference between the instantaneous
velocity u(T) and stationary velocity us ,

dl

dt
5us2u~T !. (74)

The temperature T satisfies a thermal balance equation
which can be written as

rcd
dT

dt
5Qru~T !2k

T2T0

l
2k

T2Tf

a
, (75)

where d is the thickness of the layer with an average
temperature T and the terms on the right-hand side cor-
respond, respectively, to heat release by the surface
chemical source, heat exchange between the fresh sub-
stance, of temperature T0 , and the products, of tem-
perature Tf5T01(Q/c). Taking into account the expo-
nential dependence of the reaction rate on temperature,
we represent u as

u~T !5us exp@e~Tf
212T21!# . (76)

ls5k/rcus . (77)

To solve the equations we consider d to be constant, d
5bk/rcus with b,1. The distance a at which the tem-
perature relaxation occurs is also taken to be constant.

We first transform the equations using the new vari-
ables

j5lls
2121, u5~T2Tf!~Tf2T0!21,

t5trcus
2k21,

so that Eqs. (74) and (75) become

j̇512eZu, (78)

b u̇5eZu2
11u

11j
2

u

a
, (79)

where a5arcus /k and the dot denotes the derivative
with respect to t. Linearization of the system of equa-
tions (78) and (79) about the stationary point (j50,u
50) leads to the following expression for the frequency
of the critical modes:

v'6AZc

b
2

g2

4b21i
g

2b
, (80)

where

g5Z2Zc , Zc511a21. (81)

For Z.Zc , two modes having different signs of Re v
grow. Such a bifurcation was first investigated by An-
dronow (1929; see also Andronow and Leontovich-
Andronowa, 1939), followed by Hopf (1942).

Instability with frequencies given by Eq. (80) causes a
soft excitation of the front oscillations. The oscillation
amplitudes for l and T are

Al5
kr0

rcus
Zcb , AT5~Tf2T0!r0 , (82)

where
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r0
254g~Zc

322bZc
214bZc!21. (83)

A substance in which the combustion wave can propa-
gate is characterized by Z@1. The critical value for
propagation was obtained as Zc'4 by Maksimov and
Shkadinskii (1971) as well as by Makhviladze and No-
vozhilov (1971). We now turn to the stabilizing effect of
condensed products. Such an effect is provided by the
last term in Eq. (75). Without heat exchange between
the product and reaction zones, the stationary combus-
tion wave would be unstable for all realistic values of Z .
As in the distributed problem, the instability occurs for
Z.Zc , and Re v decreases with increasing g as we
move further into the instability region (see below). Os-
cillations of the combustion-front velocity with hard ini-
tiation were found by Novozhilov (1970, 1973), who gen-
eralized the model of propellant combustion suggested
by Zel’dovich (1942). As the supercriticality g and con-
sequently the oscillation amplitude increases, the oscil-
lations differ more and more from sinusoidal. For rela-
tively large g , the model considered (with constant a
and b) loses even qualitative similarity with the numeri-
cal solution to the extended one-dimensional model,
which we shall now discuss.

When combustion instability due to fast activator dif-
fusion was discovered, there were simultaneous compu-
tations of the transition to in-phase oscillations (Shkad-
inskii et al., 1971). In subsequent work, Aldushin et al.
(1973) investigated the evolution of the periodic pattern
with increasing Z (see Fig. 17). One can clearly see that
not only does the frequency decrease with Z , but also
that period doublings occur (see also Bayliss et al.,
1989). Analyzing the results of numerical computations,
Barenblatt (1971) suggested that such period doublings
lead to chaotic front motion. The chaotic motion of fire
is of course well known, but is caused by the hydrody-
namical turbulence of heat convection. In the case we
discuss now, there is no mechanical motion—this math-
ematical model includes reaction and heat conduction
only. Transition to chaos by period doublings was mod-
eled numerically by Bayliss and Matkowsky, 1990; see
also Margolis, 1991. During the twenty years that sepa-
rate the prediction of chaotic behavior in these systems
and simulation of this behavior, the remarkable scaling
and universality properties of period doublings were dis-
covered (Feigenbaum, 1978, 1979).

FIG. 17. The oscillations of the front velocity for different Z as
calculated by Aldushin et al. (1973). The sequence of period
doublings can be clearly seen.
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In experimental studies on combustion of thermites
(Belyaev and Komkova, 1950), stopping and starting of
front motion was observed. Later, Maksimov (1963)
published a photographic record (Fig. 18) clearly show-
ing the periodic front propagation in propellants. A sys-
tematic investigation of reaction waves yielding con-
densed products was then performed, associated with
development of a method for self-propagating high-
temperature synthesis (Merzhanov and Borovinskaya,
1972). It was found that in-phase oscillations of the front
could be observed in a large number of systems diluted
by an inert component—usually reaction products
(Merzhanov et al., 1973). Dilution with an inert compo-
nent decreases the combustion temperature Tf and, ac-
cording to Eq. (70), increases Z . Thus the conclusion
that the reaction wave undergoes transition from uni-
form to periodic motion has been confirmed experimen-
tally. It was also found that the oscillation frequency
decreases with increasing dilution by an inert compo-
nent. Further, the experiments of Shkiro and Nersisyan
(1978) can be interpreted as an indication of period dou-
blings.

2. Spinning patterns

As discussed above, in-phase oscillations resulting
from the secondary wave propagation [see Fig. 16(a)]
came under experimental attention only after theoreti-
cal works were published, except for one or two early
experimental papers already mentioned. Unlike the case
with in-phase oscillations, periodic inhomogeneous pat-
terns, of which the secondary wave shown in Fig. 16(b)
is an element, were not predicted theoretically. Motion
of a reaction spot along the spiral winding on the surface
of a cylindrical sample was the first such pattern ob-
served (Merzhanov et al., 1973). It was called spinning
combustion, by analogy to spinning detonation (Camp-
bell and Woodhead, 1926; see also Scelkin and Troshin,
1963). It should be noted that these phenomena are re-
ally similar: the arguments illustrated by Fig. 16 can be
easily applied to the case of a detonation wave. A sec-
ondary detonation wave can propagate through com-
pressed matter heated by shock waves, both in the direc-
tion of the main front propagation [see Fig. 16(a)] and in
the tangential direction [Fig. 16(b)]. Detonation waves
in any medium including a gaseous one are subject to

FIG. 18. Experimental evidence for the periodic pattern. The
combustion wave traveled in a propellant. From Maksimov
(1963).
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oscillatory instability for the very same reason as defla-
gration waves in condensed matter.

The motion of a reaction spot has been filmed; some
pictures are shown in Fig. 19(a). It can be seen at the
polished section of the burnt sample [Fig. 19(b)] that the
helix pitch is small compared to the diameter of the
sample (Maksimov et al., 1979). Thus the velocity of the
luminous spot along the surface should be considerably
higher than that of the main front moving along the
sample axis, as has indeed been observed. Spin patterns
involving two or more reaction sites that move in the
same direction are possible (Merzhanov et al., 1973).
Transitions from one to two and then to three reaction
spots can occur if the diameter of the sample is in-
creased (Maksimov et al., 1981). When the sample in the
form of a thin disk was ignited at the center, the reaction
site was seen to move along an unwinding spiral, appear-
ing or disappearing for some time on the disk surface
(Merzhanov et al., 1982). Figure 20 shows the photo-
graph of the burnt disk, with the reaction spot traces.
The spinning combustion of gaseous mixtures with a
light inert component (helium), corresponding to the
Le,1 situation, was presented by Pearlman and Ron-
ney (1994).

These and other experimental results concerning spin-
ning patterns initiated a number of theoretical studies
that we shall discuss now. One cannot observe the pro-
cesses occurring inside the sample: the only thing we can
see is a reaction spot moving along its surface. A spin-
ning pattern was originally found in experiments with

FIG. 19. Spinning waves: (a) movie shots of spinning combus-
tion. From Dvoryankin and Strunina (1991); (b) metallo-
graphic specimen of the sample burnt in a spinning pattern.
From Maksimov et al. (1979).
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metallic samples burning in nitrogen, with the reaction
occurring in a relatively narrow surface layer (Merzha-
nov et al., 1973). As a first attempt to investigate this
phenomenon, Ivleva et al. (1978) carried out a numerical
simulation with a two-dimensional model in which the
front was a line rather than a surface. They considered
propagation of a nonstationary wave in a strip of width
d . When d was small enough, only in-phase oscillations
occurred. But for d.(k/rcus), the front developed a
wave—protrusions alternating with caverns. Protrusions
were characterized by a higher temperature and associ-
ated with the reaction sites. If the strip were to be rolled
as a cylinder such that periodic boundary conditions
@T(y50)5T(y5d),T8(y50)5T8(y5d)] were ap-
plied at its edges, a given phase, e.g., a protrusion, would
move in the laboratory frame of reference in a helical
fashion. The length l of the propagating wave is selected
by the obvious condition

d5nl/2, (84)

where n is an integer. If the supercriticality g is small,
the value of l is bounded from below,

l>~k/rcus! (85)

[see Fig. 13(b)]. Therefore the number of reaction sites
can increase if the diameter of the sample is increased.
This qualitatively agrees with experimental observa-
tions. Recently, even ordering of reaction spots into a
lattice was reported (Schenk et al., 1997).

A phenomenological (model) equation for the front
j(y) in a two-dimensional problem was suggested by
Aldushin et al. (1980):

j̈1uvu2j52 Im vF j̇2
4
3

~Auvu!22j̇31l2
]2j̇

]y2G . (86)

Here, v and A are, respectively, the complex frequency
and amplitude of in-phase oscillations at given super-
criticality g ; l;(k/rcus) is the distance over which heat

FIG. 20. Photograph of the burnt disk. The front traveled from
the center to the periphery. Traces of the reaction spot appear
on the surface. From Merzhanov et al. (1982).
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interaction between the front regions is appreciable; a
dot above a letter denotes the derivative with respect to
time. Each front region is considered as a nonlinear os-
cillator similar to Van der Pol’s model (1920). Heat con-
duction along the front assures that the oscillations are
in phase over distances ,l . Simulation of a cylindrical
sample is achieved by periodic boundary conditions
j(y)5j(y1d) for the strip. As in the numerical experi-
ment in the strip, for small d there are solutions only in
the form of in-phase oscillations. As d increases, waves
propagating along the front with one, two, or more pro-
trusions appear. However, such spinlike solutions are
not stable—they become stable only when their ampli-
tude, which increases with d , reaches (1/))A .

In the asymptotic limit g˜0, when the periodic pat-
terns are almost sinusoidal, it is possible to calculate the
patterns using perturbation methods. A general scheme
of such calculations for an extended system was de-
scribed by Landau (1944b; see also Landau and Lifshitz,
1987). Certainly, perturbation theory is applicable only
if the transition from a stationary wave to a periodic
pattern is soft, i.e., the amplitude of the pattern is small.
This approach was applied (Volpert et al., 1982a, 1982b)
to a three-dimensional problem. The complete structure
was obtained not just for the perimeter but for the entire
front. It was assumed that, for small g , only one mode
increases. There were also numerical studies on the
three-dimensional problem performed by Scerbak
(1983; see also Weber et al., 1997).

Novozhilov (1992a) returned to the two-dimensional
model of front propagation along a strip, this time with-
out the requirement of small supercriticality. The heat-
ing zone in this study was viewed as a specific kind of
flow reactor. This seems rather obvious if we consider
the frame of reference attached to the front. Such a one-
dimensional reactor was described in Sec. IV.B. Now the
role of the parameter b is played by the quantity ul21,
where u is the velocity of the main front and l is the
width of the heating zone. As we saw, a traveling pulse
can propagate through the reactor. The leading zone of
the pulse is a combustion wave, and behind it low tem-
perature is recovered. If we again roll the strip into a
cylinder using the periodic boundary conditions T(y
1d)5T(y),h(y1d)5h(y), a periodic pattern with
frequency

v52pu1 /d (87)

forms, where u1 is the velocity of the traveling pulse. In
the laboratory frame of reference there is a hot spot
(reaction site) moving along a helix with pitch 2pu/v .
On the other hand, the same pitch is given by l . Indeed,
while the secondary wave completes one turn, thereby
burning down the heated layer, the recovery of this layer
has to take place [see also Fig. 16(b)]. As we saw, l
;k/rcu , so that

2p
u2

v
5m

k

rc
, (88)

where m is a numerical factor ;1. It is interesting that
the left-hand side of Eq. (88) contains purely kinematic
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quantities such as velocity and frequency, while the
right-hand side is a material constant (heat diffusivity).
For more details, see Novozhiliv (1992b, 1993).

If we regard the heating zone as a flow reactor we
have to consider more than the surface of the sample
available for visible examination. In other words, the
flow reactor we are dealing with is not a circle, but a thin
disk. Consequently, in the frame of reference that moves
with velocity u , the spinning pattern represents a rotat-
ing spiral described by Wiener and Rosenblueth (1946).
We discussed its properties in detail in Sec. V. The ro-
tating spirals are clearly seen in the photographs pre-
sented by Pearlman and Ronney (1994). They used the
gaseous mixture C4H101O21He to model the Le,1
region, making use of the high heat diffusivity of He and
the low diffusivity of C4H10 . The results for gases com-
pared to those for solid samples do not imply that the
spinning patterns are due to peculiarities of the solid-
state reaction, only that suitable values of Le and Z are
necessary.

The motion of the luminous spot along the surface of
the sample (when spinning combustion or spinning deto-
nation take place) is a pure phase wave, formed by spiral
front regions subsequently reaching the surface. The
measured velocity of the spot u1 is related to the physi-
cal quantity u0—the spiral front velocity in the normal
direction—by Eq. (61) (u0 is the same for all front re-
gions and equals the traveling pulse velocity in a one-
dimensional reactor). In the new notation, vr5u1 . Ac-
cording to Eq. (66), the rotation frequency v is
;u0 /Dx , while the pulse width Dx;u0 /b;u0x/u2, and
we again arrive at Eq. (88). The visual dimensions of the
hot spot are x/u along the cylinder axis and u1x/u2 in
the perpendicular direction, respectively.

The structure of the spinning combustion wave seems
to be clear enough. This is not true with regard to the
relation between the spin patterns and in-phase
oscillations,3 which we discuss next.

C. Interaction between periodic patterns

First, we shall consider the possibility of change in
patterns due to an increase in Z with fixed sample diam-
eter. As we noted above, Barenblatt (1971) has pointed
out the doublings of the period in numerically calculated
in-phase oscillations (Shkadinskii et al., 1971). He sug-
gested that, as Z increases, a transition to chaotic propa-
gation of the plane reaction wave occurs. Such a transi-
tion occurs as a result of a number of sequential period
doublings. Later inhomogeneous periodic patterns, in-
cluding spinning ones, have been found experimentally
(see Sec. VI.B.2). Naturally, the question arises of what
transitions occur between patterns in situations that are
not artificially constrained to be one dimensional.

3Besides the rotating spirals, Pearlman and Ronney (1994)
observed radial pulsations (see also Maksimov, et al., 1981). It
is not excluded that in-phase oscillations are in some sense the
traces of radial pulsations at the surface of a burning sample.
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In experiments, an increase in Z is most often
achieved by dilution of a fresh mixture, so that tempera-
ture Tf decreases. The combustion of a Ti–B mixture
diluted with Cu was investigated by Maksimov et al.
(1981), as was that of Fe–Zr thermite diluted with reac-
tion products, by Strunina et al. (1983). These experi-
ments gave the following result: as the concentration of
an inert component increases, the in-phase oscillations
turn into irregular motion of one or more reaction sites.
These reaction spots appear and disappear on the
sample surface. They move along the front, either fol-
lowing each other or moving in opposite directions. This
type of front motion was named multiple-point combus-
tion (Strunina et al., 1983). A photograph of the sample
burnt in the multiple-point combustion regime is shown
in Fig. 21. Further dilution of the fresh mixture with an
inert component results in the ordering of multiple-point
combustion into a spinning pattern.

One can imagine that the loss of stability by in-phase
oscillations at some critical value of Z1 creates a spin-
ning pattern. As long as the difference Z2Z1 is small,
the two periodic patterns, having generally speaking in-
commensurable frequencies, are seemingly superposed.
As a result of such superposition, we see a quasiperiodic
pattern that can be distinguished from the chaotic one
only by special analysis. But as the amplitude of the new
(spinning) periodic pattern increases, the linear picture
of such superposition is no longer suitable. Frequency
locking takes place (see Landau and Lifshitz, 1987,
Chap. 30) and the quasiperiodic pattern becomes purely
periodic, becoming a spinning pattern.

There is another possible mechanism. First, the in-
phase oscillations evolve to a chaotic pattern. This can
happen by period doubling or in some other way, but
the chaotic pattern thus generated appears to be essen-
tially inhomogeneous. Then the regular spinning pattern
arises from chaos. The appearance of regular patterns
from chaos is not unusual. One well-known example is
the transformation of the Lorenz attractor (Lorenz,
1963) into a limit cycle with an increase of the bifurca-
tion parameter. As we saw with the two possible sce-
narios for the transition from in-phase oscillations of the
combustion front to spinning combustion, there are dif-
ferent interpretations of the experimentally observed
site pattern (multiple-point combustion). In one case, it
is thought to be quasiperiodic, while in the other it is
chaotic. An experiment by Strunin et al. (1994) seems to
favor the latter interpretation.

In this experiment, the burning of a thermite in the
multiple-point regime was videotaped. Using the video

FIG. 21. Photograph of a sample burnt in the multiple-point
regime. From Strunina et al. (1983).
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film and photographic record, Strunin et al. obtained the
dependence of x05x1ut on time; here, x is the position
of the front at time t on the chosen generatrix of the
burning cylindrical sample and u is the average velocity
of the front. If the front motion were uniform, x0(t)
would be constant. The discrete spectrum of x0(t) with
two main maxima at main frequencies (for in-phase os-
cillations and spinning) and their overtones would cor-
respond to a quasiperiodic motion of the front. The
spectrum in Fig. 22(a) is of a different kind. It is continu-
ous, which is typical of a chaotic pattern. More precisely,
the spectrum consists of peaks that are comparable in
height, separated by a distance ;t0

21, where t0 is the
total burning time of the sample. The upper bound for
the frequency is u2x21, where x is the heat diffusivity.
The high-frequency tail is due to measurement errors,
etc.

In order to get an idea of the attractor structure that
corresponds to a chaotic pattern in the space of states,
the correlation properties of the function x0(t) were
studied by the method suggested by Grassberger and
Procaccia (1983). In this approach, the sequence xk
5x0(kt),k50,1, . . . , is considered, with the time scale
t;xu22. The correlation integral is defined as

cn~ l !52~N2n !21~N2n21 !21 (
i ,j5n

N2n

u~ l2D ij
n !, (89)

where N is the number of points xk , u is the Heaviside
function, and

D ij
n 5F (

p51

n

~xi2n1p2xj2n1p!2G 1/2

.

Graphs cn(l) for sequential values of n are plotted in

FIG. 22. Chaotic reaction wave: (a) Spectrum of the function
x0(t); (b) plots of the correlation integrals cn(l) at different n
in logarithmic coordinates. From Strunin et al. (1994).
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the double-logarithmic scale in Fig. 22(b). The value of
n , above which the slope of these curves in the limit l
˜0 becomes independent of n , is the embedding di-
mensionality de . It is the minimal dimensionality of a
smooth manifold in the space of states in which the at-
tractor can be embedded. In the same limit, the value
lcn

21(l)(dcn /dl) is the correlation dimensionality dc . It
is seen that de57,dc'4.4. These numbers should be
considered together with the dimensionality G of the
space of states. To estimate G, we consider the flamon as
a disk (see the end of Sec. VI.B.2). The diameter of the
disk is the same as the diameter of the sample d , and its
thickness is ;Axt . Since the inner scale is also Axt , we
find

G;~ud/x!2.

If x51022 cm2 s21, d51 cm, and u50.1 cm/s, we have
G;102. We remark also that the chaotic patterns ob-
tained in the numerical experiment (Bayliss and Mat-
kowsky, 1990; see also Margolis, 1991) are one dimen-
sional and cannot be related to the observed site-
combustion pattern. As can be seen in Fig. 13(a), both
instability domains are separated only by a narrow strip
near Le exactly equal to 1 for sufficiently large Z . The
patterns at weak supercriticality are quite different for
Le.1 (stationary wrinkled) and Le,1 (oscillating). But
the difference gradually diminishes as the supercritical-
ity grows. For instance, the rotating cells of gaseous
flame (Le.1) are somewhat similar to the multihead
spin in a burning specimen (Le'0). The chaotic pat-
terns arising from the diffusive instability of flamons can
be expected to be, at an ‘‘impression’’ level, indepen-
dent of Le . The experimental results of Pearlman and
Ronney (1994) and Pearlman (1997), who studied a wide
range of gaseous mixtures modeling a variety of Le val-
ues, are in qualitative agreement with these consider-
ations.

VII. MULTIZONALITY

Let us return to the uniformly propagating flamons
discussed in Secs. II–IV. We began their study with the
simplest combustion waves consisting of two zones,
namely, the heating zone and the reaction zone. Then a
third, cooling, zone, which arises due to heat losses, was
considered (Sec. II.B). The vicinity of a moving interface
has a similar three-zone structure (Fig. 5), while the
Gunn domain has a more complex structure involving
two ‘‘interfaces’’ (see Sec. IV.A). When control param-
eters are varied, they can take on certain critical values
at which a given zonal structure becomes unstable. A
new pattern then forms which in a number of cases rep-
resents a flamon having a different zonal structure. Both
the wave speed and its dependence on the control pa-
rameters change qualitatively as a result of this transi-
tion. The only way to understand the origin of this
change is to study the zonal structure of the flamon. The
kinematic approach of Sec. V, where the reaction wave
was considered as a moving surface, turns out to be in-
sufficient.
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From the mathematical point of view, the problem of
a multizonal flamon appears, as a rule, to be hard and
awkward. A straightforward numerical simulation not
supported by preliminary analysis will hardly lead to
success. It is possible sometimes to construct an approxi-
mate solution at a qualitative level by a method specific
to a given problem. It was found (in each case analyzed)
that a complex wave could be divided into several zones
according to their ‘‘functional properties.’’ The system
of equations that describes the flamon can be simplified
in a specific way when being considered inside each
zone. The similarity between this approach and the
boundary-layer idea (Prandtl, 1904; see also Landau and
Lifshitz, 1987) that was later developed into the method
of matched asymptotic expansions (van Dyke, 1964) can
be easily seen. The difference between the two ap-
proaches stems from the fact that separation into the
outer and inner regions in the ‘‘match’’ method is based
on the presence of essentially different scales in the
problem, while the presence of different scales is not
necessary to identify a zonal structure. As mentioned
above, identification of a zonal structure is based on the
functional properties of the zones.

A. The controlling zone

Equation (8) for the combustion-wave velocity con-
tains the heat diffusivity in the reaction zone and the
reaction time, but there are no parameters for other
zones. If the wave contains several zones of heat release
rather than one, it is like that the dynamics is controlled
by one of these zones. This appears to be the case not
only for combustion waves but also for a variety of other
q waves.

Reaction waves propagate due to the transport of
heat, radicals, or other active particles into the fresh
mixture. In case of a multizonal flamon, the sources in
its ‘‘front’’ are the objects of such transport from the
‘‘rear’’ sources. Let us, for definiteness, talk now only
about heat transfer. The flamon velocity is determined
by one controlling zone because, due to heating of the
front reaction zones, the processes there adjust them-
selves to the pace of the controlling zone. The control-
ling zone cannot be heated by rear zones since in this
case it would not be controlling. This argument does not
mean that the controlling zone is necessarily a rear one
and necessarily has the highest temperature. The point is
that if the distance between ‘‘front’’ and ‘‘rear’’ heat
sources is large enough, the influence of the latter ap-
pears to be negligible. The quantity

l5xu21;Axtr (90)

can serve as a scale of distance of influence, where the
parameters x and tr are now those of the controlling
zone. Hence the distance between the controlling zone
and the front edge of the flamon is not more than ;l .

The intensity of the transport processes in the part of
the flamon behind the controlling zone is relatively
small. The gradients of the temperature, concentrations,
and other quantities are correspondingly small. How-
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ever, the variations of these quantities may be large if
the flamon is sufficiently wide. In this case, boundary
conditions at x˜` similar to Eq. (4) are not important
for calculating the wave velocity. On the other hand,
upon identifying the controlling zone, it is possible
sometimes to obtain relations of the form

f~T ,a1 ,a2 , . . . !50 (91)

for temperature, concentrations, etc. at the rear edge of
this zone. It is possible to use such relations as boundary
conditions for determining the flamon velocity. Combus-
tion waves as well as other q waves whose controlling
zone is located at the rear, so that boundary conditions
of the form Eq. (4) are important, will be called for
brevity ‘‘reaction waves of the first kind.’’ Conversely,
waves in which the leading zone is followed by a wide
region, so that Eq. (91) can be more effectively used as a
boundary condition than Eq. (4), will be called ‘‘reaction
waves of the second kind’’ (Merzhanov, 1969, 1977). We
dealt with the simplest models of the first kind in Secs. II
and IV. Now we turn to the waves of the second kind.

B. Combustion waves of the second kind

As typical examples of combustion waves of the sec-
ond kind, we shall look at a wave in which a phase tran-
sition occurs (Aldushin and Merzhanov, 1977) and one
in which dissociation of the product accompanies syn-
thesis (Aldushin, 1984).

1. Wave with a phase transition

Here, we consider the situation in which the fresh sub-
stance is condensed and the medium remains condensed
after both the phase transition and chemical transforma-
tion. In this case we can neglect diffusion and set D50
in Eq. (2). Eliminating the reaction rate in Eq. (1)
through Eq. (2), we obtain the integral

kT82rucT1Qruh5const52rucT0 . (92)

The value of the constant was found using conditions
(3). Equations (92) and (2) yield the ‘‘phase’’ equation
(Novozhilov, 1961)

dT

dh
5

~ru !2

k
@c~T2T0!2Qh#~rF!21, (93)

which is convenient for analysis of the simplest
reaction waves in a condensed medium. Let F be
f(h)k exp(2e/T).

Hitherto, the medium was considered a ‘‘two-
component’’ one, i.e., consisting of the fresh mixture and
product characterized by concentration h. To study
purely the effect of the phase transition, we now intro-
duce an inert component of concentration a and assume
that this very component undergoes the phase transi-
tion. The transition temperature Ts lies in the interval
(T0 ,Tf), where Tf is the combustion temperature,

Tf5T01@Q~12a !2Qsa#c21, (94)

and Qs is the transition heat. As previously the specific
heat is, for simplicity, assumed to be constant in Eq.
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(94). The phase transition of the first order can be de-
scribed as a d-function singularity of the specific heat.
Then, in the left-hand side of Eq. (92) and, respectively,
in the numerator in the right-hand side of Eq. (93), the
term

2Qsruau~T2Ts! (95)

should be added. Also the factor 12a should be added
to the term Qruh . The Qs is positive since transition to
a high-temperature phase is always accompanied by con-
sumption of heat.

Let the difference Tf2Ts be large enough so that the
interface is located in the heating zone, h(Ts)'0. Ac-
cording to Eqs. (92) and (95), there is a jump in the heat
flux across the front of the phase transition. Let us now
decrease T0 , so that Tf also decreases and approaches
Ts . The h(Ts) value starts to grow and the reaction
zone is separated into two parts by the interface. We call
them the L and H zones. The heat release in the L zone
is insufficient for wave propagation with velocity u .
Propagation with this velocity is supported by the addi-
tional heat flux coming through the interface. This addi-
tional heat flux decreases as Ts and Tf get closer. If hs
5h(Ts)5hc ,

hc5c~Ts2T0!Q21~12a !21, (96)

the heat flux through the interface to the L zone be-
comes zero. Further decrease in T0 results in the recon-
struction of the flamon. The reaction L zone takes over
the leading role. The wave velocity

u'F ~k/r!ETs
ke2e/TdT G1/2

3S E
T0

Ts
@c~Ts2T0!2Q~12a !h#dh D 21/2

(97)

is independent of Tf (a wave of the second kind). The
phase transition occurs due to volumetric nucleation
rather than nucleation at a moving interface. The phase
transition zone (M zone) forms, within which the tem-
perature is constant.

The condition under which a wave with a frontal
phase transition transforms into a wave having a tem-
perature plateau, or M zone, has the form

eTs
22~Tf2Ts!'E

hc

1
~12h!f21dh

3F E
0

hc
~hc2h!f21dhG21

,1. (98)

Here, we have restricted ourselves to first-order terms
with respect to the small parameter Ts

2e21. Since Tf
2Ts is small,

hc'12QsaQ21~12a !21. (99)

The dependence of the temperature coefficient of the
velocity Z , given by Eq. (70), on the initial temperature
T0 is shown in Fig. 23. As long as T0,Ts2Q(1
2a)c21, the phase transition does not occur, and Z de-
creases in a typical way }T0

21 due to an increase in the
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combustion temperature Tf . However, further increase
in T0 leaves the temperature Tf constant at Tf5Ts ,
since a part of the reaction heat is spent for the phase
transition. The coefficient Z drops to zero abruptly. If
T05Ts2@Q(12a)2Qsa#c21, the reaction heat is suffi-
cient for the phase transition, and Tf again increases
with T0 . This growth leads to the formation of the H
zone. However, the M zone does not disappear, the L
zone remains controlling, and Z is still zero. As we can
see, the interval in T0 , for which this structure of the
flamon occurs, is not large. It is determined by Eq. (98).
Finally, at T05T0c the leading role shifts to the H zone,
and Z is again }T0

21. Thus a wave of the second kind
with Z50 occurs in the interval of values of T0 slightly
greater than (Qsa/c).

2. Dissociation of products

Heating of substance in the wave of synthesis can
cause thermal dissociation of products, so that transfor-
mation of the initial reactants will be incomplete. To
better understand this effect, let us consider the disso-
ciation temperature Td at which the equilibrium be-
tween synthesis and dissociation, independent of the
depth of conversion h, is instantaneously achieved. If
Td,T01(Q/c), then the depth of conversion in such
wave is bounded by

h05c~Td2T0!Q21 (100)

(Merzhanov, 1977). If heat losses are taken into account,
then it turns out that the maximum value of h is greater
than this quantity, and appropriate heat losses can result
in complete conversion (Aldushin, 1984). Let us exam-
ine the structure of such a wave of the second kind.

The combustion wave studied in Sec. II.B consists of
three zones. The heat is transferred from the reaction
zone both ahead of it (i.e., to the heating zone) and
behind it, i.e., to the cooling zone. In the wave we dis-
cuss now, there are certainly heating and cooling zones,
and the heat fluxes at the boundaries of these zones are
still given by Eq. (12) with the reaction-zone tempera-
ture Tm replaced by Td . But a temperature plateau with
T5Td is located right behind the reaction zone rather
than the cooling zone. At each point of this plateau, the
heat of synthesis exactly compensates for the heat losses.

FIG. 23. Changes in the propagation regime for the reaction
wave due to a phase transition. The width of the graph portion
with Z50 is approximately Qsac21.
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The zonal structure is shown in Fig. 24. The jump in heat
flux at the boundary between the temperature plateau
and the cooling zone indicates the presence of the sec-
ond reaction zone. Complete conversion within the pla-
teau cannot occur: the heat flux from the plateau to the
cooling zone, additional to the heat losses, causes a de-
crease in temperature near the boundary of the cooling
zone. Therefore the dissociation stops and the synthesis
continues until either h51 or it is frozen due to fast
cooling,

h15
h0

12A
, h2512

A

12A
h0 , (101)

where

A5N~k/rcu0d !2. (102)

Here u0 is the flamon velocity in the absence of heat
losses, when h15h0 . As A˜0, the width of the plateau
increases without bound. At the same time, the structure
shown in Fig. 24 assumes h2>h1 . Therefore, for

A.Ac5
12h0

11h0
, (103)

the plateau disappears, the rear reaction zone reaches
the front one, and they merge. Now the structure of the
combustion wave is that considered in Sec. II.B. As we
saw, the decrease Tf

2/e in the maximum temperature
caused by heat losses leads to breakdown. If (Tf2Td)
.Tf

2/e , the structure without a plateau is unstable, and
Eq. (103) determines the critical conditions for existence
of a given flamon, in particular, the critical value of di-
ameter d .

C. Two narrow reaction zones

In Sec. VII.B, we considered combustion waves
propagating due to the occurrence of one exothermic
reaction, while the processes of heat consumption, such
as a phase transition or dissociation, led to splitting of
the reaction zone. Khaikin et al. (1968) have considered
a wave in which sequential transformations occur: first,
intermediate products are formed from the fresh mix-

FIG. 24. The structure of a flamon generated by synthesis and
dissociation of products, consisting of the heating zone (I), the
front reaction zone (II), the zone of displacing equilibrium
(III), the rear reaction zone (IV), and the cooling zone (V).
From Aldushin (1984).
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ture, and then the intermediate products participate in
the second reaction, yielding final products.

There are now two reaction zones; the zone of the
second reaction controls the motion of the first one by
the heat flux. As the distance l between the zones in-
creases, the temperature T1 decreases, causing the first
reaction zone to slow down, so that the original value of
l is recovered. Therefore this flamon structure is stable.
However, controlled propagation disappears when the
temperatures are such that the heat flux into the first
zone vanishes. This zone becomes leading and escapes
from the second one. A third kind of behavior is that the
two zones fuse.

The regimes of control, escape, and fusion were stud-
ied first numerically (Khaikin et al., 1968) and then by
asymptotic analysis (Merzhanov, Rumanov, and
Khaikin, 1972), the results of which are briefly described
above. The phenomenon of escape was studied even
earlier (Zaidel and Zel’dovich, 1962; Merzhanov and
Filonenko, 1963) in the case of a wave near the plug-
flow reactor input.

The wave that escapes has a long ‘‘tail’’ at which self-
ignition of the second reaction occurs and, in common
with all other flamons discussed in this section, has a
one-dimensional structure (which corresponds to com-
bustion of a reactive mixture in a tube). For a different
geometry, another structure is possible, as in Fig. 25
(Khaikin, 1969). In this case, the second reaction zone
does not necessarily lag behind, due to its larger area. So
far, both heats of reaction Q1 and Q2 have been as-
sumed to be positive. The controllling zone can clearly
be only a zone with positive heat release. When Q1,0,
only the regimes of control and fusion can occur. If Q2
,0, then there is a region of parameters within which
regimes of both fusion and escape are possible. In the
escape regime, which is faster than the regime of fusion,
the first reaction heats the substance up to temperature
T01(Q1 /c), after which the substance cools to tem-
perature T2 (Borovikov et al., 1983; Nekrasov and
Timokhin, 1984).

D. Zone of propagation

If the reaction is stronglly inhibited by the product the
wide reaction zone forms in the combustion wave (Al-
dushin et al., 1972). The structure is similar to that of

FIG. 25. Two-dimensional flamon structure; the first reaction
zone is flat, while the second one forms a torch. The stream-
lines in the flamon frame are marked with arrows.
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escape regime: the zone of propagation (controlling) is
placed ahead, then the ‘‘tail’’ follows (burn-off zone).
Let us return to the problem of interaction between two
flamons. An example of such interaction is the regime of
control discussed in Sec. VII.C: the second flamon
‘‘pushes’’ the first one by its heat flux. When transition
to the escape regime occurs, the region of the second
reaction loses the features of a flamon and hence cannot
be considered to have a normal velocity. In case of in-
teraction between two wide reaction zones, the situation
is different. The distance between them can exceed the
length over which heat from the second reaction zone
can influence the first one. The second reaction occurs in
the burn-off zone of the first one, fed by its products.
Because the second propagation zone may shift along
the burn-off zone of the first reaction, an additional pa-
rameter l appears, the distance between the propagation
zones, which allows the velocities of the zones to be
equal—thus a two-wave structure forms.

Such a structure was revealed in studies on the syn-
thesis of niobium boride (Zenin et al., 1981). The heat-
flux distribution in this wave is shown in Fig. 26. There is
no heating of the first wave by the second one (escape
regime). On the other hand, there is a second heating
zone (linear growth of the heat flux). According to Ze-
nin et al., first niobium diboride is formed, which, when
all boron is consumed, recovers to monoboride (the sec-
ond reaction). For more details on the zonal structure of
combustion waves see Merzhanov and Khaikin (1988).

E. Density jump in the flamon structure

So far we have not considered phenomena related to
density change, except for a brief mention of detonation
waves in Sec. II.A, the inner structure of the interface in
Sec. III, and some remarks concerning the hydrody-
namic stability of slow combustion in Sec. VI.A. The
phase transition studied in Sec. VII.B.1 was considered
only from the point of view of the effect of latent heat
on the reaction zone. The most pronounced effects of
density change can be expected in the transition of con-
densed matter to gas. Such a transition occurs in the
structure of combustion waves in propellants and explo-
sives since the reaction products are gaseous. Analyzing
his experimental data, Belyaev (1940) suggested that the

FIG. 26. Temperature dependence of the heat flux for a wave
of niobium boride synthesis (Zenin et al., 1980).
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condensed matter first evaporates and then reacts; the
heat released in reaction is transferred to the burning
surface of sample, thus giving rise to evaporation.
Zel’dovich (1942) treated this idea quantitatively and
gave a description of the nonstationary processes by us-
ing the difference in heat relaxation times between the
gas adjacent to the burning surface and that in the
heated surface layer of the sample. In subsequent ex-
periments, it was found that a significant part of the heat
is liberated in the surface layer of the condensed matter
(Pokhil, 1953). This means that a large amount of gas is
produced in the surface layer. But the question arises,
what is the influence of this gas on the wave structure?

If the condensed layer adjacent to the burning surface
is solid and porous, then the gas can leave the solid by
percolation through the pores (Khaikin and Merzhanov,
1967). Because of the high temperatures, the surface
layer is most likely to be liquid rather than solid. Assum-
ing equilibrium gas release (Maksimov and Merzhanov,
1966), we shall obtain a structure in which almost all the
heat is liberated in the region with low density (froth, or
a mixture of droplets and gas). This conclusion does not
essentially change when dissolution of the gas product in
liquid reactants is taken into account (Margolin and
Pokhil, 1963), since, in the systems under consideration,
the solubility h0!1, provided the pressure is not too
high. However, gas release can be considered as equilib-
rium only if its characteristic time is small compared to
the reaction time. If the gas release time is greater than
the reaction time (Rumanov and Khaikin, 1982), then
the gas produced by the reaction has no time to release,
and a supersaturated solution is formed, h.h0 . The
h(x) profile is nonmonotonic: h grows from 0 to hs due
to the reaction and then falls sharply to h0 in a distance
;D/u , where D is the diffusivity of gas in liquid and u
is the combustion velocity. Such a ‘‘diffusion zone’’ is
much narrower than the reaction zone. A structure with
a diffusion zone is possible if the products spend less
time in the reaction zone than the time of decomposition
of a supersaturated solution formed in this zone (for
estimation of the decomposition time see, Skripov and
Skripov, 1979; Rumanov and Merzhanov, 1996).

The h(x) distribution looks like a temperature profile
of a substance evaporating under laser heating. The heat
is released in a layer of finite width (;m21, where m is
the absorption coefficient), and there is a heat sink at
the surface due to evaporation. The maximum tempera-
ture is located at a finite distance from the surface
(Anisimov et al., 1980). The flat evaporation surface ap-
pears to be unstable. A similar instability is probably
inherent to burning surfaces in question. The origin of
the instability can be explained in the following way. If a
cavity is formed on the burning surface, then the width
of the diffusion zone decreases, hence the velocity of
propagation of the surface increases, making the cavity
deeper. A similar argument explains the growth of a
bulge at the surface. As explained in Sec. VI.B, there
should be a secondary effect of developing large-scale
inhomogeneities. Due to corrugating, the area of the
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FIG. 27. Heat structure of filtration combustion waves: (a) the reaction zone is followed by a temperature plateau within which all
released heat is accumulated; (b) inverse structure: the gas flow carries all the heat into the expanding layer ahead of the reaction
zone. From Aldushin and Seplyarskii (1979).
burning surface increases. This accelerates gas removal
from the reaction zone and reduces the role of the volu-
metric gas release that causes the drop in density.

F. Filtration waves

When a flamon propagates through a porous medium,
interaction between phases produces a very peculiar
zonal structure. One of the first studies in the field was a
solution to the adsorption wave problem by Zel’dovich
in the late 1930s. The circumstances of that time were
such that these results could not be published; they were
cited much later by Rachinsky (1964). If the filtration
flux v is constant, then the boundary between the
‘‘pure’’ and saturated sorbent regions moves uniformly.
Its velocity u is determined by the equality

un05~v2u !n , (104)

where n0 is the number of particles saturating a unit
volume of the porous material and n is the initial con-
centration in the flow. As the mixture percolates, sepa-
ration occurs, since the adsorption waves of its compo-
nents have different velocities (this phenomenon is the
basis of chromatography, discovered by Tsvet in 1903).
A chemical interaction between a gas flow and a solid
porous material leads to a more complex zonal structure
and, consequently, to new phenomena, which have been
extensively treated, as have experimental (Merzhanov,
Borovinskaya and Volodin, 1972) and theoretical (Al-
dushin et al., 1974) aspects of this interaction. We shall
be limited here to considering only one example of gas
filtration and one example of liquid filtration.

1. Superheating and inversion

Let us consider the flamon formed in the case of so-
called ‘‘coflow’’ filtration, when the gas flows to the re-
action zone through a layer of products (Aldushin and
Seplyarskii, 1979; see also Aldushin, 1993). We assume
the gas velocity v to be prescribed. As we shall see, the
temperature distribution in the porous medium depends
on the concentration of a reactive component of the gas.
Similarly to Eq. (92), one can write down the first inte-
gral of the heat conduction equation in the form
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xT81Qc21uh5@u2rrs
21mv~12m !21#~T2T0!,

(105)

where x is the effective heat diffusivity, m is the poros-
ity, i.e., the volume fraction of pores, and r is the gas
density, and rs is the density of the cast solid (without
pores). Here it is assumed for simplicity that specific
heats of all the substances are equal, and that the reac-
tion does not change the porosity and density of the
solid matrix. The flamon velocity is determined by the
obvious relation

rs~12m !u5rmva , (106)

where the dimensionless coefficient a is determined by
reaction stoichiometry and the concentration of reactant
in the gas.

Let us first assume that a.1. (Since the concentration
cannot exceed unity, this inequality means that the sto-
ichiometric ratio of the masses of the reactants, gaseous
to solid, is sufficiently large.) The temperature distribu-
tion is shown in Fig. 27(a). To the right of the reaction
zone, h51, so that the temperature

Tf5T01~Q/c !~12a21!21 (107)

is higher than that of heat-insulated burned substance
(superheating). The point is that the incoming gas flux
(having initially the temperature T0) cools the reaction
products and transfers heat into the region of the ‘‘tem-
perature plateau’’ [Eq. (107)]. The width of the plateau
is evidently 1/(12a21) of the entire burned layer.

If a,1, then Eq. (107) does not make sense. In this
range of concentrations, the structure of the filtration
wave is essentially different. The convective heat trans-
fer is so large that the high-temperature plateau appears
ahead of the reaction zone [Fig. 27(b)]. Behind the re-
action zone (where h51), the temperature is equal to
T0 . An inversion of the structure of the combustion
wave takes place. The constant in Eq. (105) was taken in
accordance with the condition h50,T5T0 . In the case
of the inverse structure, the condition h51,T5T0
should be used to determine the constant. Then the term
2Qu/c arises in the left-hand side of Eq. (105), and the
temperature ahead of the reaction zone is

Tf5T01~Q/c !~a2121 !21. (108)
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In the inverse combustion wave, the temperature de-
creases rather than increases. Ahead of the wave, there
is no chemical conversion in the hot substance, since
only an inert component of the gas is delivered there.
The active component is completely consumed in the
reaction zone. As follows from Eq. (108), filtration
through the products allows us to effectively heat the
fresh solid even in the case of low heat release in the
reaction (e.g., in poor oil strata, etc.) by choosing a (the
gas composition). Similarly to the case a.1, the width of
the hot region here increases with time.

Let t be the time elapsed since the beginning of com-
bustion, so that the width of the burnt layer is ut . Then
the width of the plateau in Fig. 27(a) is ut(12a21), and
hence its rear boundary moves at a velocity of u/a . In an
inverse wave, the velocity of the front boundary of the
plateau with width ut(a2121) is also u/a , but now this
quantity exceeds the combustion velocity, since inver-
sion corresponds to a,1. The boundaries of the plateau
are shown as temperature jumps, as they are on the scale
of the plateau itself. The inner structure of the boundary
containing the reaction zone can vary depending on the
parameters of the reaction and composition of the gas.
Such phenomena as incomplete conversion or product
tempering are possible (Aldushin and Merzhanov,
1987). As to the rear boundary in Fig. 27(a) and the
front boundary in Fig. 27(b), their structure is deter-
mined by heat conduction. Due to heat conduction, the
width of each of these boundaries increases with time
and reaches, at time t , a value of the order (xt)1/2. Since
the width of the plateau }t , the boundaries can be con-
sidered to be narrow at practically any time (t@xu22):
this is shown in Fig. 27. The width of the boundary at
which the reaction occurs does not depend on time for
any a and has a value of ;xu21. The time spent by the
substance in such a wave, ;(xt)1/2u21 or xu22, is large
compared to the time of heat exchange between the
phases rsd

2(rx)21, where d is the diameter of grains in
the porous medium. The situation is very different in the
case of an interphase heat exchange during melting of a
porous solid, which is our next topic.

2. Melting of porous material

Let us consider melting occurring due to the heat lib-
erated in the melt. The source of heat may be a reaction
that occurs only in the liquid or, say, electric current if
the solid phase is an insulator and the liquid is a metal.
Melting of a dielectric by high-frequency currents ex-
cited in a conducting melt was suggested by Aleksan-
drov et al. (1973). When heating of the solid phase is due
to heat conduction, the wave of melting is similar to a
combustion wave. The heating zone is located in the
solid, and the zone of heat release is in the liquid. But if
the initial solid is a porous medium, there is a more
effective mechanism for heating of solid grains, namely,
by the melt’s spreading into the pores (Rumanov, 1982a;
Merzhanov and Rumanov, 1987). The spreading is due
to the fact that liquid always wets its own solid phase.
Using the quantities characterizing spreading, one can
form the combination
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ad/h5xeff , (109)

where a is the surface tension for the liquid, d is the
grain or pore size (since these quantities are usually of
the same order), and h is the viscosity. The quantity xeff
has the dimensionality of heat diffusivity. For liquid
metals, the case we consider now, its value is 104 –105

times greater than that of heat diffusivity.
For definiteness, let us assume that the heat is liber-

ated due to induction currents excited by a high-
frequency field in a conducting liquid. The presence of
solid grains does not interfere with these currents. In-
deed, any two points of the liquid in any plane can be
connected by a continuous contour (in fact, in many dif-
ferent ways). Thus the melt spreading through the pores
is, at the same time, transporting the heat source. This
wave cannot be separated into zones of heat release and
heating, as has been done so far for all other flamons,
analogs of slow combustion waves. The thermal struc-
ture of this wave is two dimensional: in addition to the
direction of propagation (direction normal to the mac-
roscopic boundary ‘‘charge-melt’’), there is a coordinate
of microscopic heat exchange along which the heat flux
from the liquid is directed to each solid grain.

This flux is due to the usual heat conduction. But the
area of the contact surface between the phases increases
drastically due to spreading. It is x1 /d times greater than
the area of contact in the case of a melt and cast (pore-
free) solid, where x1 is the penetration depth of the melt
into the porous material. Correspondingly, the melting
rate of the porous material has to be greater than that of
the cast material. As was shown in the cited work (Ru-
manov, 1982a; Merzhanov and Rumanov, 1987), solidi-
fication of the liquid occurs at the front edge of the two-
phase region rather than melting of the solid. The heat
flux into a grain is high at the front edge, and the heat
flux to the surface of solid grains from the liquid is in-
sufficient to compensate for the heat spent on heating of
these grains, so that the melt begins to freeze on the
surface of grains. In the course of heating, the intensity
of heat exchange between the phases decreases, and, at
some distance from the front edge, the release of Joule
heat completely compensates for the heat sink to the
solid phase. The direction of phase transition changes—
melting begins.

The fraction of liquid in the two-phase melting wave is
not a monotonic function of distance x from the spread-
ing front. It has a minimum at a certain x5xd . Since the
high-frequency energy is absorbed by the melt only, par-
tial crystallization leads to weakening of the heat source.
As a result, stable propagation of the melting wave due
to filtration of the melt is possible only if the thermal
power F exceeds a certain critical value Ft . At the mini-
mum point x5xd , one can write

md~m02md!5
m0Ft

4F
,

Ft5
4ks

m0d2 ~Ts2T0!2S Ts2T01
Q

c D 21

, (110)
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where ks is the thermal conductivity of solid, Ts and Q
are the temperature and latent heat of melting, and md
5(xd). For F.Ft , two values of md are possible, the
smaller one corresponding to an unstable solution. In
the regime of stable spreading, there is a certain amount
of the ‘‘confined’’ substance that moves together with
the wave. The confined substance periodically changes
its state: it crystallizes at the front edge of the two-phase
region; then, as the front moves, it melts, flows to the
front edge, crystallizes, etc. For typical values of the pa-
rameters, Ft is very large (Ft;104 W cm23), and the
wave velocity (u;10 cm/s) is much greater than usual
for a frontal phase transition. For F,Ft , the regime of
capillary spreading is unstable, and the melt that pen-
etrates into the pores crystallizes, thus forming a region
of continuous solid that separates the porous charge
from the melt. This region slowly melts due to heat con-
duction. When the melt contacts the porous charge
again, fast spreading that results in formation of a new
frozen region occurs, etc.

The melting front propagation is thus periodic. Its av-
erage velocity is determined by the slow stage of melting
of the frozen layers,

uc;Ax/t , (111)

and the period of velocity oscillations is

tc;~d/x!Axefft , (112)

where x is the heat diffusivity of the liquid. As soon as F
reaches Ft , the velocity increases discontinuously, while
the melt overheating drops. Until now, experimental
heating powers have been in the F,Ft regime. The ex-
perimental results of Aleksandrov et al. (1991) corrobo-
rate the oscillatory fashion of front motion. For F5102

W cm23 and the above values of other parameters, we
obtain uc;1022 cm s21 and tc;102 s.

Let us return to the uniform motion of the wave and
consider the ‘‘sandwich model’’: solid plates separated
by gaps, i.e., pores. The two-dimensional picture of the
flow is shown in Fig. 28(a). The streamlines are drawn
not only for the liquid but also for the solid—in the form
of straight lines, since, in the frame of reference used,
the solid moves as a rigid body at velocity u . Some of
these streamlines are closed, so that there is substance
that moves periodically: it flows to the front edge of the
two-phase region, then freezes, melts, again flows to the
front edge, etc. In other words, there is a ‘‘confined’’
portion of the substance that moves together with the
wave. The temperature distribution in the liquid has a
saddle form [Fig. 28(b)], which is caused by the Joule
source and escape of heat to the solid.

G. Gunn domain in a capillary

A detailed comparison between a moving Gunn do-
main and phase equilibrium in a system with a given
volume was made in Sec. IV.A. Now we turn to fluid-
dynamic systems with a negative resistivity. This occurs
in liquid flow through a tube when the viscosity of the
liquid increases with temperature in some temperature
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range, as for example with liquid sulfur or liquid helium.
Let us set the viscosity h(T) to be

h~T,Tc!5h1 , h~T.Tc!5h2 , h1,h2 . (113)

Averaged over the cross section of the tube, the equa-
tions for the temperature T(x) of the liquid and its ve-
locity v have the form

rc
]T

]t
5k

]2T

]x2 2rvc
]T

]x
112h

v2

d2 2
2a

d
~T2T0!,

(114)

dP

dx
5212h

v
d2 . (115)

Here, r is the density, c the specific heat, k the thermal
conductivity, and P the pressure of the liquid. The nu-
merical coefficients correspond to the case of a flat chan-
nel of width d and coefficient a of heat transfer to the
environment with T0,Tc . The velocity v is assumed to
be small, and the heat processes are assumed to be slow
compared to the fluid-dynamic ones. It was also assumed
that ad!k .

The conductance (i.e., the dependence of the velocity
v on the decrease in pressure DP between the ends of
the tube) consists of two rectilinear Poiseuille segments.
One of them, given for 0,DP,P1 , has the slope }h1

21,
while the other, for DP.P2 , has a lower slope }h2

21,
where

P1,25h1,2Ld23/22A6a~Tc2T0! (116)

and L is the length of the tube. In the case of a continu-
ous function h(T)—a smoothed curve of Eqs. (113)—an
N-shaped characteristic with a descending part within

FIG. 28. Structure of the two-phase region for a ‘‘sandwich
model’’: (a) streamlines; (b) isotherms. The bold curves corre-
spond to interfaces. The dash-dotted lines are traces of the
planes of symmetry. The distance between them equals a half
period of the ‘‘sandwich’’ structure d/2.



1205A. G. Merzhanov and E. N. Rumanov: Physics of reaction waves
the segment P1,DP,P2 is obtained. The descending
part is unstable: when DP falls in this region, a thermal
domain is formed in the tube, i.e., a region heated by
dissipation, with T.Tc (Rumanov, 1982b). The domain
can be regarded as a viscous cork carried by the flow.
The domain boundaries are the s waves that separate
the phases with temperatures T1 and T2 ,

T1,25T016h1,2v
2~ad !21. (117)

The velocity v is determined by the condition of phase
equilibrium

Tc2T15T22Tc , (118)

which is quite similar to Eqs. (52 and (55). Since, accord-
ing to Eqs. (117) and (118), v does not depend on pres-
sure, a plateau appears on the characteristic, and it takes
the form shown in Fig. 6(b). When the viscous domain
leaves the tube through the end, the resistance drops,
and the process repeats. The oscillation frequency may
be estimated as v'vL21.

Similarly to Eq. (47), the width of the domain is de-
termined by the lever rule:

DP512vd22@h1~L2l !1h2l# , (119)

while the width of the s waves at the boundaries is
;Akd/a . The structure does not move with respect to
the liquid and is carried by the flow.

Different behavior is exhibited by flow of liquid he-
lium in a capillary (Rumanov, 1978, 1982b). When the
capillary is placed in a thermostat at temperature T0
below Tc , the superfluid transition temperature He II,
then it will flow like the normal fluid (He I) if the pres-
sure difference satisfies DP.P2 . In this case, the tem-
perature T2 in the capillary will be higher than Tc due to
the frictional heating. When DP,P2 , the flow of nor-
mal He I is unstable, and part of the liquid transforms
into He II. The thermal domain in this case is the do-
main of He I, the width of which is determined by DP .
In order to find this width and the velocity of the flow,
we have to consider the motion of the boundary He
I-He II relative to the liquid. Unlike the case of an or-
dinary, nonsuperfluid liquid, such a motion always oc-
curs. In the He-II phase, far from the boundary, the nor-
mal component is considered to be motionless, the
pressure to be constant, and the temperature to be equal
to T0 . In the region adjacent to the boundary, the tem-
perature rises from T0 to Tc , and the heat is effectively
transferred by the flow of the normal component. Let us
call this region the convective zone. Since the velocity is
small, the temperature and pressure are related in the
convective zone by the equation (London, 1939)

dP/dT5rs , (120)

where s is the specific entropy. Equation (120) together
with the entropy transport equation and Eq. (115), al-
lows one to find the profiles of P , T , and velocity of
normal motion w. These profiles found for convective
zones in He II cannot be immediately matched with the
solution for He I at T5Tc . This is seen from the fact
that the velocity of the normal motion, which is respon-
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sible for heat transport, is always directed opposite to
the temperature gradient. At the other side of the
boundary in He I, the liquid velocity has the opposite
direction if the region of He I is located downstream.
Thus between the convective zone and the boundary
there is a narrow (in temperature range and therefore in
space) boundary zone, in which the flow rearranges. It is
not necessary to study this zone if we want to determine
the velocity of the boundary He I-He II. The reason is
that, since the zone is narrow, momentum and heat
transfer to the walls of the capillary can be neglected, so
that the jumps in the temperature, velocity, and pressure
will be determined by conservation laws applied to the
quantities at both sides of the zone. The temperature
jump on the boundary He I-He II was found by Peshkov
(1956). In his experiments, a region of He I arose
around a heater in a cm-sized chamber. In this region,
strong convective turbulence was observed, and vortices
penetrated into He II through the interface. Now we
consider a narrow capillary in which vortices cannot
form.

Under these conditions the boundary always moves
relative to the liquid, with the upstream phase growing
(Rumanov, 1978). This result can be understood in the
following way. Let us consider a frame of reference con-
nected with the liquid. In the frame moving with the
liquid, the capillary walls move in the direction opposite
to the flow. If the region of He I is located downstream
of the boundary, then the normal component in He II,
pulled by the walls, intensely removes heat from the
boundary and He I transforms into He II. If the region
of He I is located upstream, then the removal of heat
from the boundary is impeded, and the inverse phase
transition occurs. The difference in the behavior of the
left and right boundaries reminds us of the properties of
the high-field domain discussed in Sec. IV.A. At the
same time, the motion of the normal phase in a super-
conductor (Volkov and Kogan, 1974) shows complete
symmetry between the left and right boundaries of the
thermal domain, which do not move.

If the width of the He I region exceeds the heat scale
Aa21kd , the motion of the left and right boundaries can
be considered as independent. Using the asymptotic es-
timate given by the scheme described above, one can
obtain the qualitative dependence of the phase-
transition rate at these boundaries on the helium flow
velocity v . This is shown in Fig. 29. Solutions exist only
for v.vm , where vm is the minimal flow velocity that
admits the existence of the He I region, T2(vm)5Tc .
The velocities of the boundaries are equal at v5vD ,
where

vD
2 '@11c~T0!c1

21#~ad/6h!~Tc2T0!. (121)

Here, c and c1 are the specific heats of He II and He I,
respectively. It is easy to see that this very velocity will
be established in a capillary with a domain for a given
DP . Indeed, if v,vD , then the right boundary moves
faster than the left one, the region of He I shortens, the
drag decreases, which increases the flow velocity, etc.
Since vD does not depend on DP , there should be a
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plateau on the characteristic for 0,DP,P2 . In order
for the plateau and oscillations in the flow velocity to be
observed, the quantity vD must be less than the ‘‘ordi-
nary’’ critical velocity of superfluidity destruction occur-
ring due to formation of vortex rings. If T052 K, d
51025 cm, and a51025 W cm21 K21, the velocity vD is
about 7 cm s21. As we saw, the flamon has a five-zone
structure: there are two convective zones, two boundary
zones, and the heat release zone, i.e., the He I region.

VIII. CONCLUSION

In active media a variety of patterns can form and
propagate as reaction waves. Systems that exhibit such
behavior range from the cells of thermal convection to
the rotating spirals in the dish of a reacting chemical
mixture. The flamon is the simplest reaction wave, de-
scribable on a coarse scale as a surface dividing two uni-
form semispaces. On a finer scale, the dynamics is gov-
erned by individual zonal characteristics, but there are
common features. The zone in which an activator is gen-
erated and the zone in which the activator is transported
forward to excite the transition are always present. Fre-
quently the transport is due to diffusion, though other
ways such as shock waves or resonant photons are also
possible. Flamons can be divided into types, those which
are abe to stand called s waves, and those which must
propagate through the medium at some minimal veloc-
ity, the q waves.

The simple flamon is subject to many kinds of insta-
bility, depending on the parameters. We have not dis-
cussed in detail hydrodynamic instabilities, which give a
wrinkled front instead of the plane one. The scale of
corresponding cellular structure is determined by the
viscosity of the medium. Diffusive instability, which we
have discussed in various contexts, can lead to similar
cells with a scale determined by the diffusivity. How-
ever, the instability associated with diffusion of activa-
tors generally causes time-dependent patterns such as
pulsating fronts, reaction spots, and spirals moving regu-
larly or in a chaotic manner. These complicated forms
can be explained as the nonlinear stabilization of the
unstable growing modes predicted by linear theory.

Active research continues on reaction waves and, in
particular, flamons. The question of diffusive instability,
nonstationarity, and chaotization have attracted much

FIG. 29. Phase-transition rate at the left (L) and right (R)
boundaries of the He I domain as a function of helium flux
through the capillary.
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attention. Space limitations have forced us to consider
only certain selected problems. Among those left out,
there are two large areas: (i) crystallization fronts with
dendritic form originating from the diffusive instability;
and (ii) waves of ionization. The latter involve propagat-
ing discharges such as optical discharges and plasma do-
mains moving along a laser beam (Bunkin et al., 1969;
Raizer, 1974, 1980). These can be studied experimen-
tally as a stationary transition in a flowing gas. Then
specific relations between the wave and stationary re-
gimes arise, as we discussed in a different context in Sec.
II.C. Besides the q and s waves discussed here there are
flamons whose velocity can approach zero but not nega-
tive values such as the front of fog clearance by laser
(Sukhorukov et al., 1971). An even more peculiar phe-
nomenon is the wave of self-induced transparency (Mc-
Call and Halm, 1969; see also Lugovoi and Prokhorov,
1973).

Ideas concerning oscillations and waves infuse physics
in its entirety. Flamons have become a common concept
in chemical physics, fluid dynamics, solid-state physics,
optics, and even astrophysics (see, for example,
Zel’dovich and Pikelner, 1969). While the universal
characteristic of various oscillations is their spectra, and
interactions of modes produce endless variety, the uni-
versal characteristic of a flamon is its zonal structure.
However, the term ‘‘zone’’ seems to be more intuitive
than mathematical. Not much is known about stability
and transformation of flamons having a complex zonal
structure. This direction of research may offer future
promise.
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