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Methods exhibiting linear scaling with respect to the size of the system, the so-called O(N) methods,
are an essential tool for the calculation of the electronic structure of large systems containing many
atoms. They are based on algorithms that take advantage of the decay properties of the density matrix.
In this article the physical decay properties of the density matrix will first be studied for both metals
and insulators. Several strategies for constructing O(N) algorithms will then be presented and
critically examined. Some issues that are relevant only for self-consistent O(N) methods, such as the
calculation of the Hartree potential and mixing issues, will also be discussed. Finally some typical
applications of O(N) methods are briefly described. [S0034-6861(99)00104-X]
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I. INTRODUCTION

The exact quantum-mechanical equations for many-
electron systems are highly intricate. Any attempt to
solve these equations analytically for real systems is
doomed to fail. Numerical methods such as
configuration-interaction-based methods (McWeeny,
1989; Fulde, 1995) or quantum Monte Carlo methods
(Hammond, 1994; Nightingale, 1998) can, in principle,
solve these many-electron equations but because of the
extremely high numerical effort required, their applica-
bility is rather limited in practice.

The bulk of all practical applications is therefore done
within various independent-electron approximations
such as the Hartree-Fock method (Szabo and Ostlund,
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1982), density-functional methods (Parr and Yang,
1989), or tight-binding methods (Goringe, Bouler, and
Hernandez, 1997; Majewski and Vogl, 1989). A compari-
son of the strength of different methods together with a
selection of some interesting applications is given by
Wimmer (1996). Even these approximate quantum-
mechanical equations are still fairly complicated and in
general not solvable by analytical methods. Finding effi-
cient algorithms for solving the many-electron problem
numerically within any of these approximations is im-
perative for the applicability of quantum mechanics to
physics as well as to chemistry and materials science.
Due to efforts in the past, satisfactory algorithms are
now available and computational electronic structure
methods are making very important contributions to our
understanding of matter at the microscopic level. The
1998 Nobel prize awarded to W. Kohn and J. Pople is
indicative of the importance of this approach.

Due to the constant increase in computer power and
due to algorithmic improvements, the importance of
computational methods continues to grow. Whereas
computational methods nowadays mainly supplement
experimentally obtained information, they are expected
increasingly to supersede this information.

This article will concentrate on recently developed
methods that allow us to calculate the total energy
within various independent-electron methods for large
systems. Practically all physical observables can be ob-
tained from the total energy, for instance, in the form of
derivatives with respect to certain external parameters.
The reason why large systems containing many atoms
are accessible with these algorithms is their linear scal-
ing with respect to the number of atoms. In principle,
linear scaling should also be obtainable for true many-
electron methods. For a widely used approximate many-
electron method, such an algorithm has indeed recently
been reported (Ayala and Scuseria, 1998).

Traditional electronic structure algorithms calculate
eigenstates associated with discrete energy levels. The
reason for this is probably historical, since the prediction
of these experimentally observed levels was the first big
success of quantum mechanics. The disadvantage of this
approach is that it leads to a diagonalization problem
that has a cubic scaling in the computational effort. Di-
rect diagonalization (Press et al., 1986), which was the
standard approach in the early days of the computa-
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tional electronic structure era, has a cubic scaling with
respect to the size of the Hamiltonian matrix, i.e., with
respect to the number of basis functions M, . Iterative
diagonalization schemes (Saad, 1996), preconditioned
conjugate-gradient minimizations (Stich et al., 1989;
Teter et al, 1989; Payne etal, 1992), and the Car-
Parrinello method (Car and Parrinello, 1985) for mo-
lecular dynamics simulations were a big algorithmic ad-
vance because of their improved scaling behavior. Their
scaling was no longer proportional to the cube of the
number of basis functions, but grew only like
M, log(M,) if plane waves were used as a basis set. Nev-
ertheless, these methods still have a cubic scaling with
respect to the number of atoms N,,, which comes from
the orthogonality requirement of the wave functions.
The reason why this orthogonalization step scales cubi-
cally can easily be seen. As the system grows, each wave
function extends over a larger volume and therefore has
to be represented by a larger basis set, resulting in a
longer vector. At the same time there are more such
wave functions and each wave function has to be or-
thogonalized to all the others. Thus there are three fac-
tors that grow linearly, resulting in the postulated cubic
behavior. The computer time 7' ¢p required for the cal-
culation is thus given by

Tepy=csNy,, 1)

where c3 is a prefactor. It has to be pointed out that Eq.
(1) gives only the asymptotic scaling behavior. Within
density-functional and Hartree-Fock calculations there
are other terms with a lower scaling, which dominate for
system sizes of less than a few hundred atoms due to
their large prefactor. For plane-wave-type calculations,
the fast Fourier transformations necessary for the appli-
cation of the potential to the wave functions consume
most of the computational time for small systems.
Whereas for calculations using Gaussian-type orbitals
(Hehre et al., 1996), the calculation of the Hartree-Fock
potential is the most time consuming. This cubic scaling
is a major bottleneck nowadays, since in many problems
of practical interest one has to do electronic structure
calculations for systems containing many (a few hundred
or more) atoms. Plainly, cubic scaling means that, if one
doubles the number of atoms in the system, the required
computer time will increase by a factor of 8. By enlarg-
ing the system one therefore rapidly reaches the limits of
the most powerful computers.

So-called O(N) or low-complexity algorithms are
therefore a logical next step of algorithmic progress,
since they exhibit linear scaling with respect to the num-
ber of atoms:

Tepy=ciNy;- 2

Thus these methods offer the potential for calculating
very large systems. The prefactors ¢; and c; depend on
the approximation used for the many-electron problem.
For a density-functional calculation with a large basis
set, the prefactors are of course much larger than for a
tight-binding calculation, where the number of degrees
of freedom per atom is much smaller. The prefactor ¢,
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depends also on what O(N) method is used, but in gen-
eral, the prefactor ¢ is always larger than c3, assuming
that the same independent-electron approximation is
used in both the traditional and the O(N) version. There
is, therefore, a so-called crossover point. For system
sizes smaller than the crossover point the traditional cu-
bic scaling algorithms are faster, whereas for larger sys-
tems the O(N) methods win. Tight-binding calculations
are an ideal test environment for O(N) algorithms. Be-
cause of their rather small memory and CPU require-
ments one can easily treat systems comprising a very
large number of atoms and venture into regions beyond
the crossover point. Contrary to what one might naively
think, the importance of O(N) algorithms will also in-
crease as computers get faster. Whereas at present it is
difficult to access the region beyond the crossover point,
situated at some 100 atoms, using the density-functional
framework, this will be easy with faster computers, and
O(N) algorithms will be the algorithms of choice.

Even though O(N) algorithms contain many aspects
of mathematics and computer science they have, never-
theless, deep roots in physics. Linear scaling is not ob-
tainable by purely mathematical tricks, but it is based on
an understanding of the concept of locality in quantum
mechanics. Conversely, the need for constructing O(N)
algorithms also served as an incentive for investigating
locality questions more deeply and has thus led to a bet-
ter understanding of this very fundamental concept. An
algorithmic description of electronic structure in local
terms can give a justification of the well-established con-
cepts of bonds and lone electron pairs in empirical
chemistry.

Since O(N) algorithms are based on a certain subdivi-
sion of a big system into smaller subsystems, techniques
developed in this context might also be helpful in reach-
ing another important goal, namely combining elec-
tronic structure methods of different accuracy, such as
empirical tight binding and density-functional theory, in
a single system.

Il. LOCALITY IN QUANTUM MECHANICS

Locality in quantum mechanics means that the prop-
erties of a certain observation region comprising one or
a few atoms are only weakly influenced by factors that
are spatially far away from this observation region. This
fundamental characteristic of insulators is well estab-
lished within independent-electron theories (Heine,
1980) and it can even be carried over into the many-
electron framework (Kohn, 1964).

Traditional chemistry is based on local concepts. Co-
valently bonded materials are described in terms of
bonds and lone electron pairs. It is standard textbook
knowledge that the properties of a bond are mainly de-
termined by its immediate neighborhood. The decisive
factors are what type of atoms and how many of them
(the coordination number) are surrounding it. Second-
nearest neighbors and other more distant atoms have a
very small influence. As an example let us look at the
total energy of a hydrocarbon chain molecule C,H,,, ,,.
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FIG. 1. The deviation of the total energy per silicon atom from
its asymptotic bulk value as a function of the size of the peri-
odic volume in which it is embedded. The calculation was done
with a tight-binding scheme using exact diagonalization.

In this case each CH, subunit is, from an energetical
point of view, practically an independent unit. As one
adds one CH, subunit, the energy increases by an
amount that is nearly independent of the chain length.
Already the insertion of a CH, subunit into the smallest
chain C,Hg gives an energy gain that agrees within
10~ *a.u. with the asymptotic value of the insertion en-
ergy for very long chains. This means that the electrons
belonging to this inserted subunit no longer “‘see” the
end of the chain for very short chain lengths. This ex-
ample is a drastic illustration of a principle sometimes
termed ‘‘nearsightedness” (Kohn, 1996). In other insu-
lating materials the influence of the neighboring atoms
decays more slowly. An example is shown in Fig. 1,
where the total energy per silicon atom is plotted as a
function of the size of its crystalline environment.

Even in metallic systems, where the elementary bond
concept is no longer valid, locality still exists. This is
supported by the well-known fact that the total charge
density in a metal is given with reasonable accuracy by
the superposition of the atomic charge densities. Since
atomic charge densities decay rapidly, this implies that
the charge density at the midpoint between two neigh-
boring atoms is mainly determined by the two closest
atoms and influenced very little by other more distant
atoms. Another related example is given by V. Heine
(1980), who points out that the magnetic moment of an
iron atom embedded in an iron-aluminum alloy differs
by less than 5% from the value for pure iron if the atom
is locally surrounded by only eight iron atoms.

This locality is not at all reflected in standard elec-
tronic structure calculations, which are based on
eigenorbitals extending over the whole system, requiring
unnecessary computational effort and making the inter-
pretation of the results more difficult. The simplistic
bond concepts of empirical chemistry are certainly not
adequate for electronic structure calculations aiming at
high accuracy. Nevertheless, one might hope to incorpo-
rate some more general locality concepts into electronic
structure calculations to make them both more intuitive
and more efficient. In the following we shall therefore
carefully examine the range of interactions in quantum-
mechanical systems.

Self-consistent electronic structure methods require
essentially two steps: the calculation of the potential
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from the electronic charge distribution and the determi-
nation of the wave function for a given potential. In non-
self-consistent calculations such as tight-binding calcula-
tions, the first step is not needed.

The calculation of the potential consists usually of two
parts: the exchange-correlation potential and the Cou-
lomb potential. The exchange-correlation potential is a
purely local expression in density-functional theory and
can therefore be calculated with linear scaling. In the
Hartree-Fock scheme one might first think that the ex-
change part is nonlocal, but a closer examination reveals
(Sec. VIII.A) that it is local even in this case. The Cou-
lomb potential, on the other hand, is very long range
and needs proper treatment. A naive evaluation of the
potential U arising from a charge distribution p by sub-
dividing space into subvolumes AV and summing over
these subvolumes,

Ue)=3 22 v,
J |fi_1'j|
would result in a quadratic scaling, since both indices i
and j have to run over all grid points in the system. The
Coulomb problem actually arises not only in the context
of electronic structure calculations but also in classical
calculations of Coulombic and gravitational systems
such as galaxies of stars. Much effort has therefore been
invested in this computational problem and several algo-
rithms are known that solve the problem with linear
scaling. These methods will be described in Sec. VIIL.A.

The more interesting and more difficult part is to as-
sess the role of locality for a given external potential.
The appropriate quantity for studying this property is
the density matrix. The one-particle density matrix F
completely specifies our quantum-mechanical system
within the independent-electron approximation, and all
quantities of interest can easily be calculated from it.
The central quantities in any electronic structure calcu-
lation, the kinetic energy E};,, the potential energy
E,,:, and the electronic charge density p, are given by

1
Ejin==5 f ViF(rx') . dr', 3)
EPO’:I F(r',x")U(x")dr', @)
p(r)=F(r,r), (5)

where U(r") is the potential. A related quantity, which
will frequently be used throughout the article, is the
band-structure energy E g, defined as

EBS:Ekin+Epot’ (6)
and the grand potential ()
O=Eps—uNe, (7

where w is the chemical potential and N,; the number of
electrons. () is by construction invariant under a con-
stant potential offset. If one applies the shift [U(r)
— U(r)+const], the potential energy will increase by
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N, const. In order to conserve the total number of elec-
trons, w also has to be shifted (u— w+const) and thus
remains constant.

Discretizing the Hamiltonian H, which is the sum of
the kinetic and potential energies, as well as F with re-
spect to a finite orthogonal basis ¢;(r), i=1,...,M,,
one obtains

* 1 2
= @ <r>( —5Vi+ U(r)) $(rdr, ®)
Fi,j:f f &7 (1) F(r,x") ¢;(x")dr dr’, )
and the expressions for the central quantities become
Eps=Ti FH], (10)
Q=Tri[F(H—ul)], (11)
P(l’):lzj Fij ¢i(x) di(r), (12)

where Tr denotes the trace. It follows from Eq. (12) that
the total number of electrons N, in the system is given
by

N,,=TiF]. (13)

Evaluating the traces using the eigenfunctions ¥,, of
the Hamiltonian, one obtains immediately the well-
known expressions for N,;, Egg, (), and p within the
context of conventional calculations which are based on
diagonalization. Denoting the eigenvalues associated
with the eigenfunctions ¥, by €, one obtains

Ne=2 few), (14)
Eps=2. f(e))en, (15)

Q=§ [f(en>—u]en=§ flen) €,— N, (16)

p()=2 fle,) W} (D)W, (r). (17)
The function f is the Fermi distribution,
= ! 18
fle)= H—E_M (18)
exp %)

where k3 is Boltzmann’s constant and 7 is the tempera-
ture. When we talk about temperature in this article, we
always mean the electronic temperature, since we are
not considering the motion of the ionic degrees of free-
dom that might be associated with a different ionic tem-
perature. In Eqs. (14)—(17), as well as in the remainder
of the article, we shall use the convention that all the
subscripts indexing eigenvalues and eigenfunctions are
combined orbital and spin indices, i.e., that we can put at
most one electron in each orbital. This will eliminate
bothersome factors of 2. The usual case of an unpolar-
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ized system can easily be obtained by halving all sums
over these indices and multiplying by 2.

In terms of the Hamiltonian H the density matrix is
defined as the following matrix functional:

F=f(H). (19)

Since F is a matrix function of H, it has the same eigen-
functions ¥, as H:

HVY,=¢,¥,, (20)
FV,=f(e,)V,. (21)

The density matrix can consequently be written as

F(r,r'>=§ fle)VE (W, (x'), (22)

where n runs over all the eigenstates of the Hamil-
tonian. From the functional form of the Fermi distribu-
tion it follows that the eigenvalues f(e€,) are always in
the interval [0:1]. At zero temperature the density ma-
trix of an insulating system containing N, electrons will
have N,; eigenvalues of value one, all others being zero.
Thus the density matrix does not have full rank, but only
rank N,;. Hence we can write it as

Frx')= 2 WHIW,(r), (23)
n=occ
where n runs now only over the N,; occupied states. It is
easy to see that F(r,r") is a projection operator, in this
case

f F(rx")F(x"x")dr"=F(rrx'). (24)

A new set of N, eigenfunctions ¥/, (r) can be ob-
tained by any unitary transformation of all the N,; de-
generate eigenfunctions W, (r) associated with eigenval-
ues one,

Vi) = 2 Uy ¥, (25)
m=occ

where U is a unitary N,;-by-N,; matrix. For crystalline
periodic solids such a transformation can be used to gen-
erate the localized Wannier functions (Blount, 1962)
from the extended eigenfunctions ¥, . We shall refer to
any set of orthogonal exponentially localized orbitals
that can be used to represent the density matrix accord-
ing to Eq. (23) as Wannier functions. A method for con-
structing an optimally localized set of Wannier functions
by the minimization of the total spread 2,,(r?),—(r)? in
a crystalline periodic solid has recently been shown by
Marzari and Vanderbilt (1997). It has been well known
in the chemistry community (Chalvet ef al., 1976) that
sets of maximally localized orbitals give excellent insight
into the bonding properties of systems. In addition to
the spread criterion used by Marzari and Vanderbilt
(1997) there are still other criteria in common use in the
chemistry community. They are all in a certain sense
arbitrary, but usually lead to the same interpretation of
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FIG. 2. A set of four Wannier orbitals for the water molecule. The oxygen nucleus in the center is shown as a yellow ball and the
two hydrogen nuclei as red balls. The Wannier functions are indicated by dark blue clouds. One sees two Wannier functions along
the lines connecting the central oxygen with the two hydrogen atoms, representing bonds, as well as two representing lone electron
pairs. The centers of the four Wannier functions form a nearly tetragonal structure.

the bonding properties. Figure 2 shows the four Wannier
functions for the water molecule.

The density matrix F(r,r’) is a diagonally dominant
operator, whose off-diagonal elements decay with in-
creasing distance from the diagonal. The exact decay be-
havior depends on the material. We shall derive the de-
cay properties within the theoretical framework of the
description of periodic crystalline solids. For a periodic
solid the density matrix is given by

|4
Fer) =S s [ dk e (W)

V *
=3 o | ks

Xt (1) e =0 (26)

where W, 1 (r) =u, ,(r)e™™® are the Bloch functions as-
sociated with the wave vector k and band index n. The
integral is taken over the Brillouin zone (BZ) and V is
the volume of the real-space primitive cell.
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The Wannier functions W, of the nth band in an in-
sulating crystal are defined in the usual way:

1% :
Wir-R)= 53 fBdee*’kR\Irn,k(r). (27)

The Wannier functions are not uniquely defined. One
can construct a different set of Bloch functions by mul-
tiplying them with a phase factor, W, ,(r)
—e'*®W | (r), where w(k) is an arbitrary function.
This will obviously modify the Wannier functions. Fur-
ther ambiguities arise in the case of degenerate bands
(Blount, 1962). Because of these ambiguities in the con-
struction of the Wannier functions it is advantageous to
work with the density matrix where any phase factors
cancel [Eq. (26)] and where degeneracies do not cause
any problems since one sums over all the occupied
bands.

We shall first discuss the decay properties of the den-
sity matrix in metallic systems. In this discussion we shall
assume that metals behave essentially like jellium and
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that exact results for jellium can be carried over to real
metals.

The decay properties of the density matrix of a metal-
lic system at zero temperature are well known (March
et al., 1967). Because the integral in Eq. (26) contains a
discontinuity in the metallic case, the density matrix de-
cays only algebraically with respect to the distance be-
tween r and r'. The decay is given by

cos(k plr—r'])

F(ryx')ockp , (28)

[r—r'|?
where the Fermi wave vector k. is related to the valence
electron density by N,;/V =k3/37% in a non-spin-
polarized system.

Introducing a finite electronic temperature 7 in a
metal leads to a drastic change in this decay behavior.
Instead of an algebraic decay one has a much faster ex-
ponential decay. As shown independently by Goedecker
(1998a) and Ismail-Beigi and Arias (1999), the decay at
low temperatures is then given by

cos(kplr—1’ kgT
A o BT ) o
F

where ¢ is a constant on the order of 1. We thus find
oscillatory behavior with an exponentially damped am-
plitude. The decay rate depends linearly on tempera-
ture, and the oscillatory part is described by the wave
vector k. The related correlation function at finite tem-
perature exhibits the same temperature dependence of
the decay rate with respect to temperature (Landau and
Lifshitz, 1980). In an insulator finite temperature plays
no role as long as the thermal energy kz7T is much
smaller than the gap, a condition that is usually fulfilled.

Let us next discuss the important case of an insulator
with a band gap €,,, at zero temperature. We shall first
present some numerical results and then put forward
some arguments to explain the qualitative features of
the density matrix. Finally, we shall discuss in a more
quantitative way the factors that determine the exact
decay rate.

Numerical calculations of the density matrix or the
related Wannier functions show an oscillatory behavior
with a decaying amplitude. There is exactly one node
per primitive cell, and logarithmic plots of the amplitude
clearly reveal an exponential decay. For alkanes the de-
cay of the density matrix calculated by the Hartree-Fock
method has been studied and plotted on a logarithmic
scale by Maslen et al. (1998). Interestingly, the decay de-
pends also on the basis set used. Small low-quality basis
sets lead to a larger band gap and consequently to a
faster decay of the density matrix. For silicon treated by
density-functional theory, logarithmic plots revealing
the exponential decay of the Wannier functions have
also been done for both grid-based basis sets
(Goedecker, unpublished) and atomic basis sets
(Stephan, 1998). Within the tight-binding method, the
decay of the density matrix has also been studied nu-
merically for crystalline and liquid carbon systems by
Goedecker (1995) and for fullerenes by Itoh et al
(1996).

F(rx')ockp

[r—r’
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Let us now make plausible the exponential decay of
the density matrix. The demonstration is based on the
fact that one can express the Fourier components €,(R)
of the band energy ¢, (k) through the Wannier functions
Wn(r),

— v —ikR
En(R)_ (277)3 fBZGn(k)e dk

(2m)°

|4 space

W* ('Y HW,(r' —R)dr',  (30)

where R is a Bravais lattice vector. Now it is known that
the band energy €,(k) is an analytic function (Blount,
1962). This is actually not surprising. The first and sec-
ond derivatives of the band structure have physical
meaning since they are related to the electron velocity
and effective mass, so it is to be expected that higher
derivatives exist as well. Since the Fourier transform of
an analytic function decays faster than algebraically (see
Appendix), there exists a decay constant y and a nor-
malization constant C such that

Ce =€, (R)|

(2m)°
|4

NG,

f Wy (' YHW,(r' —R)dr’
space

It is reasonable to expect that HW ,(r) will behave simi-
larly to W,(r). In particular, we expect W,(r) to be
small whenever HW ,(r) is small, so we shall just drop H
in Eq. (31). In addition, we shall define this modified
integral not only for lattice vectors R but for arbitrary
vectors r to obtain

ce-ra| E

Wi (" )W, (' —r)dr’

space

. (32)

If Eq. (32) holds, then one can use the mean value theo-
rem to show that

(2m)’
Vv space
(2m)°

Ce V=

W (e )W, (x' —rx)dr’

wWr(x'—R)W,(r' =R’ —r)dr’
i

ce

=[>, W*(s(r)—R")W,(s(r)— R’ —r)dr’
R!

=|F(s(r),s(r)—1)|, (33)

where the mean value s(r) is a vector within the primi-
tive cell. Assuming that the density matrix has the same
order of magnitude within each cell, one can neglect the
dependence of s on r to obtain the final result

Ce "=|F(s,s—r)|. (34)

The numerically observed nodal structure of the den-
sity matrix can be motivated in a very similar way. Be-
cause of the orthogonality of the Wannier functions we
have

0= Wy (" )W, (r' —R)dr’ (35)

space



Stefan Goedecker: Linear scaling electronic structure methods 1091

0 2 4 6 8 10 12

FIG. 3. The nodal structure of the density matrix F(r,r') for a
one-dimensional model insulator with a bandwidth of 4 a.u.
and a band gap of 2 a.u. The length of the primitive cell is 1.
The nodes predicted by Eq. (36) are at the intersections with
diagonal lines, two of which are shown by the dashed lines.

for any nonzero lattice vector R. Doing the same se-
quence of transformation as in Eq. (33), one obtains

0=F(s(R),s(R)—R). (36)

Hence there has to be one node in each cell. The nu-
merically calculated nodal structure for a one-
dimensional model insulator is shown in Fig. 3.

The next step is to examine in a more quantitative
way which factors determine the rate of this exponential
decay for an insulator with a band gap €,,, at zero tem-
perature.

Cloizeaux (1964) proved the exponential decay be-
havior of the zero-temperature density matrix, which is a
projection operator. Considering the extension of the
band energy €,(k) into the complex k plane, he found
that the minimal distance of the branch points of ¢, (k)
from the real axis determines the decay behavior. For
the Wannier functions, which are closely related to the
density matrix by Eq. (23), Kohn (1959) proved the
same decay behavior in the case of a one-dimensional
model crystal. In a later publication Kohn (1993)
claimed that this distance to the real k axis should be
related to the square root of the gap. Even though he
did not present a derivation of this result, it was widely
accepted as generally valid. Ismail-Beigi and Arias
(1999) have shown, however, that Kohn’s claim is not
generally valid. They demonstrated that in the tight-
binding limit the square-root behavior can be found un-
der certain circumstances, but that different behaviors
can be found as well. In the weak-binding limit, where
the band structure can be obtained by perturbation
theory from the band structure of the free-electron gas,
they showed that the dependence is actually linear:

a. (37)

Here, the lattice constant is denoted by a, and ¢ is an
unknown constant of the order of 1.
The dependence of the decay rate on the size of the

F(ryx')xexp(—y|r—r'[), where y=ce,,,
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band gap is a rather surprising relation. After all, it fol-
lows from Eq. (26) that only the properties of the occu-
pied bands enter into the calculation of the density ma-
trix, whereas the size of the gap is not directly related to
the occupied states. In the following we shall give an
intuitive explanation of the factors determining the de-
cay rate. This explanation will again be based on Eq.
(30) relating the band structure to the decay properties
of the density matrix. As is known from complex analy-
sis, the distance of the singularities from the real axis is
comparable to the length over which one has very strong
variations along the real axis of a complex function.
Now, the long-range decay properties of a Fourier trans-
form are exactly determined by the length Ak of such a
region of strongest variation (see Appendix). One thus
regains Cloizeaux’s result that the decay rate is propor-
tional to the distance of singularities from the real axis.
Let us now explain the behavior found in the weak-
binding limit by Ismail-Beigi and Arias (1999). In the
weak-binding limit the effective mass establishes the
connection between the gap and the important features
of the occupied bands. The effective mass for the nth
band at the point k, is defined as (Kittel, 1963)

1 2 SV (VP 4 (1) dr|?

m T AT ek ek Y
Since we are only interested in orders of magnitude, we
have here averaged over the diagonal elements of the
effective-mass tensor in order to obtain an effective
mass that is a scalar quantity. For the weak-binding
limit, a gap will open up at the boundaries of the Bril-
louin zone and this gap will be small. The effective mass
is therefore small and proportional to azegap , where we
have assumed that the dipole matrix elements
f\P:’kO(r)Vllfi,kO(r) dr are on the order of 1/a. The band

structure near the boundaries of the Brillouin zone is
then given by

L(Ak)2C>c

2m
where Ak is the distance from the boundary, neglecting
directional effects. Since the effective mass is small, the
curvature of the band structure is large in this region.
Hence this region is just the region with the strongest
variation. As is well known (Ashcroft and Mermin,
1976), the perturbation theory arguments leading to Eq.
(39) are valid within an energy range of the order of
€gap - 1t then follows from Eq. (39) that the correspond-
ing range of Ak is €,,,a, confirming the linear decay of
the density matrix with respect to the size of the gap, i.e.,
Y= C€ggpd-

Let us next show how a square-root-like behavior y
=c@ can arise for real crystals with a large gap. In
this case the effective mass is of the order of 1 at all
stationary points k,, in the Brillouin zone. Assuming that
it is then of the order of 1 over the whole Brillouin zone,
the region of largest variation is just the Brillouin zone
itself. The decay constant is therefore simply related to
the lattice constant a:

(Ak)?, (39)
Clzfgap
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FIG. 4. The dependence of the decay constant vy on the gap.
Plotted are the two dimensionless quantities ay vs azega p- The
variation of the gap was obtained for a three-dimensional cu-
bic model crystal by varying the strength of the potential.
Circles refer to the [100], stars to the [110], and pluses to the
[111] direction. This figure is reproduced with kind permission
of the authors, from Ismail-Beigi and Arias (1999).

1
=c—. 40
y=c_ (40)
In order to get the square-root dependence of the decay
constant 7y, one has to assume that

1
€oap™ Cgapa_f7 (41)

where C,,, is a constant that is not dependent (or only
weakly dependent) on the material. Such a behavior has
indeed been observed for certain classes of materials,
where the tight-binding limit is the most appropriate
one, such as ionic crystals (Harrison, 1980), but with a
non-negligible variation of C,,, across different materi-
als. A square-root behavior of y can therefore be ex-
pected if one varies the lattice constant for a certain
material, but the decay constants for different materials
that happen to have the same gap are not necessarily
comparable.

In practice the distinction between the tight-binding
and weak-binding cases may not always be clear. Unless
the region of strongest variation is really a very small
fraction of the whole Brillouin zone, all the prefactors
that were neglected in these considerations might be im-
portant enough to blur the differences. The importance
of these prefactors can also be seen from the fairly
strong directional dependence of the decay rate. Ismail-
Beigi and Arias (1999) found such a strong directional
dependence in numerical tests, confirming the linear de-
pendence of the decay constant on the size of the gap
(Fig. 4). Stephan and Drabold (1998) found the same
behavior during tight-binding studies of carbon. So the
statement in an early paper by Kohn (1964), that the
decay length of the Wannier functions is of the order of
the interatomic spacing, is for practical purposes prob-
ably in many cases the best available characterization of
localization.
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FIG. 5. Comparison of the density of states of carbon and
syntheticum. As one can see, both have roughly the same gap.
The lower part of the valence band, however, is drastically
different. The valence band of syntheticum is roughly half as
wide as that of carbon.

As a numerical illustration of this surprising result,
that only a small part of the Brillouin zone in which one
has the strongest variation determines the decay behav-
ior of the Wannier functions, we compared the decay
behavior of carbon in the diamond structure with “‘syn-
theticum” in the same structure. The artificial element
“syntheticum” was computer generated within the tight-
binding context in such a way that the top part of its
conduction band as well as the gap is nearly identical to
real carbon, whereas the lower part of the valence band
is drastically different, as shown in Fig. 5. More pre-
cisely, carbon was characterized by the parameters of
Goodwin (1991) and, to obtain syntheticum, €; was
modified from —5.16331 to —1.16331, and V,,, was
modified from —4.43338 to —2.43338.

Figure 6 shows the decay behavior of the density ma-
trix. As one can see, the decay behavior is very similar in
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FIG. 6. Comparison of the decay behavior of the density ma-
trices for carbon and syntheticum. They are both very similar.
The moderate scattering comes from the fact that the density
matrix does not decay equally fast in all directions.



Stefan Goedecker: Linear scaling electronic structure methods 1093

both cases. We note that not only the gaps are similar
but also the effective masses, since the density of states
at the top of the valence band has the same behavior in
both materials.

All the above arguments apply to simple and mainly
periodic materials. Advanced electronic structure calcu-
lations, however, frequently study materials that are not
in this class. The localization properties of such materi-
als have not yet been studied systematically and so there
is some uncertainty about which orbitals are localized
and to what extent (Kohn, 1995). If the localization
properties are unknown, one does better not to impose
any localization constraints. In this case some of the dis-
cussed O(N) techniques still give a quadratic scaling,
which also allows us to gain computational efficiency
compared to the traditional cubically scaling algorithms.

lll. BASIC STRATEGIES FOR O(N) SCALING

Most O(N) algorithms are built around the density
matrix or its representation in terms of Wannier func-
tions and take advantage of its decay properties. To ob-
tain linear scaling, one has to cut off the exponentially
decaying quantities when they are small enough. This
introduces the concept of a localization region. Only in-
side this localization region is the quantity calculated;
outside it is assumed to vanish. For simplicity the local-
ization region is usually taken to be a sphere, even
though the optimal shape might be different (Stephan
and Drabold, 1998). In the tight-binding context the
boundary of the localization region can either be defined
by a geometric distance criterion or in terms of the num-
ber of “hops,” i.e., the number of steps one has to take
along bonds connecting neighboring atoms to reach this
boundary (Voter et al., 1996). Different localization re-
gions generally have significant overlaps. The localiza-
tion regions thus do not form a partition of the compu-
tational volume, and one atom, in general, belongs to
several localization regions.

In a numerical calculation the density operator
F(r,r") is discretized with respect to a basis. The basis
set has to be chosen such that the matrix elements F ;
reflect the decay properties of the operator F(r,r').
This will obviously only be the case if the basis set con-
sists of localized functions, such as atom-centered
Gaussian-type basis functions. Sets of orthonormal basis
functions usually facilitate the calculations. Unfortu-
nately all currently used localized basis sets are nonor-
thogonal. In the context of the orthogonal tight-binding
scheme (Goringe, Bowler, and Hernandez, 1997; Ma-
jewski and Vogl, 1989) one just assumes the existence of
a basis set which is both atom centered and orthogonal.
Since only the parametrized Hamiltonian matrix ele-
ments enter in the calculation, there is no need ever to
explicitly construct such a basis set. In the following sec-
tions, we shall follow this practice and assume in all rel-
evant parts that we are dealing with such a localized
orthogonal basis set. The non-orthogonal case will be
discussed in Sec. VII. Whenever we refer from now on
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to a localization region, we actually mean the subset of
all basis functions that are contained within this spatial
localization region.

Obviously the size of the localization region needed to
obtain a certain accuracy depends on the decay proper-
ties of the density matrix as well as on the selected ac-
curacy threshold. It also depends on the quantity one
wants to study. Generally, the total energy as well as
derived quantities such as the geometric equilibrium
configurations are surprisingly insensitive to finite local-
ization regions, because these quantities are not strongly
influenced by the exponentially small tails that are cut
off by the introduction of a localization region. This in-
sensitivity also holds true, though to a much lesser ex-
tent, for metals. As we have seen above, the introduc-
tion of a finite temperature leads to an exponential
decay of the density matrix for a metal, which in turn
justifies truncation. In a metal, the difference between
the finite- and the zero-temperature total energy AFE is
proportional to the square of the temperature, A E o T?
(Ashcroft and Mermin, 1976) and thus rather small.
There are, however, quantities that are very sensitive to
finite localization regions. In the modern theory of po-
larization in solids (King-Smith and Vanderbilt, 1993),
the polarization can be expressed in terms of the centers
of the Wannier functions [ W (r)rW(r)dr. Using this for-
mula (Fernandez et al., 1997), one finds a strong influ-
ence from the tails of the Wannier functions because
they are strongly weighted by the factor of r in the inte-
gral. Since the tails are much more influenced by the
boundary of the localization region than the central part,
this quantity is more sensitive to the size of the localiza-
tion region.

There are even quantities that are not at all directly
accessible by a solution given in terms of density matri-
ces or Wannier functions. The Fermi surface in a metal,
which can be calculated via the eigenvalues of the band
structure €,(k), is such an example.

It is clear that one can gain significant computational
efficiency only if the extent of the system is larger than
the size of the localization region. The crossover point
depends therefore on the decay properties of the density
matrix of the system. However, it also depends on the
dimensionality of the system. For a linear-chain mol-
ecule with a large band gap, it might be enough to have
a localization region containing just two neighboring at-
oms on each side, hence just five atoms, and for systems
larger than five atoms one might potentially gain com-
putational efficiency by using an O(N) method. If one
had a three-dimensional system with a comparable gap,
then a spherical localization region extending out to the
second neighbors would contain some 60 atoms and the
crossover point would already be much larger. For a sys-
tem with a small gap, such as silicon, or for metallic
systems the crossover point would be even larger.

There are essentially six basic approaches to achieving
linear scaling:

e The Fermi operator expansion (FOE) is based on
Eq. (19). In this approach one finds a computable
functional form of F as a function of H to build up
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the density matrix. Two possible representations
based on a Chebyshev expansion and a rational ex-
pansion will be discussed.

The Fermi operator projection (FOP) is closely re-
lated to the FOE method. The computable form of
F is not, however, used to construct the entire den-
sity matrix but to find the space spanned by the oc-
cupied states, i.e., the space corresponding to the
eigenfunctions associated with the unit eigenvalues
of the density matrix at zero temperature. These
eigenfunctions can be considered as Wannier func-
tions in the generalized sense defined above.

In the divide-and-conquer (DC) method for the den-
sity matrix, the relevant parts of the density matrix
are patched together from pieces that were calcu-
lated for smaller subsystems.

In the density-matrix minimization (DMM) ap-
proach, one finds the density matrix by a minimiza-
tion of an energy expression based on the density
matrix.

In the orbital minimization approach (OM), one
finds a set of Wannier functions by minimization of
an energy expression.

The optimal basis density-matrix minimization
scheme (OBDMM) contains aspects of both the OM
and DMM methods. In addition to finding a density
matrix with respect to the basis, one also finds an
optimal basis by additional minimization steps. The
number of basis functions has to be at least equal to
the number of electrons in the system, but can be
larger as well.

A major difference between these methods is whether
they calculate the full density matrix or only its repre-
sentation in terms of Wannier functions. The latter ap-
proach applies only to insulators, while the former is
also applicable to systems with fractional occupation
numbers [i.e., f(€,) is neither 1 nor 0] such as metals or
systems at finite electronic temperature.

In the following each of these six approaches will be
presented in detail.

A. The Fermi operator expansion

The Fermi operator expansion (FOE) (Goedecker
and Colombo, 1994a; Goedecker and Teter, 1995) is the
most straightforward approach for the calculation of the
density matrix. The basic idea in this approach is to find
a representation of the matrix function (19) that can be
evaluated on a computer. Several such representations
are possible. We shall discuss a Chebyshev and a ratio-
nal representation.

1. The Chebyshev Fermi operator expansion

One of the most basic operations a computer can do is
a matrix-times-vector multiplication. The simplest repre-
sentation of the density matrix, requiring only this op-
eration, would be a polynomial representation,

F~p(H)=COI+c1H+czH2+---+can”pl,
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where [ is the identity matrix. Unfortunately polynomi-
als of high degree become numerically unstable. This
instability can, however, be avoided by introducing a
Chebyshev polynomial representation, which is a widely
used numerical method (Press et al., 1986):

Ny
p(H)= %H}; ¢, T (H). (42)

Since the Chebyshev polynomials are defined only
within the interval [ —1:1], we shall assume in the fol-
lowing that the eigenvalue spectrum of H falls within
this interval. This can always be easily achieved by scal-
ing and shifting of the original Hamiltonian. The Cheby-
shev matrix polynomials 7;(H) satisfy the recursion re-
lations

To(H)=1, (43)
T\(H)=H, (44)
Tjur(H)=2HT,(H)=T;_(H). (45)

The expansion coefficients of the Chebyshev expansion
can easily be determined. The eigenfunction representa-
tion [Eq. (21)] of F is

(W, |FIW )= f(€,) S - (46)

Evaluating the polynomial expansion in the same eigen-
function representation, we obtain

(W ,lp ()| ,)=p(€,) 8 m (47)
where
Co el
ple)=—+2 ¢;T(e). (48)
2 A

Comparing Egs. (46) and (47), we see that the polyno-
mial p(€) has to approximate the Fermi distribution in
the energy interval [ —1:1] where the scaled and shifted
Hamiltonian has its eigenvalues. How to find the Cheby-
shev expansion coefficients for a scalar function is de-
scribed in standard textbooks on numerical analysis
(Press et al., 1986). Actually it is not necessary to take
the exact Fermi distribution. In practically all situations
one is interested in the limit of zero temperature. Hence
any function that approaches a step function in the limit
of zero temperature can be used. For simulations of in-
sulators, for instance, it is advantageous to take the func-
tion f(€)=5{1—erf[(e—u)/A€]} (shown in Fig. 7) since it
decays faster to 0 respectively 1 away from the chemical
potential. We shall use the term Fermi distribution in
this broader sense. The energy resolution A€ is chosen to
be a certain fraction of the size of the gap (Goedecker
and Teter, 1995). For metals, A€ is chosen by consider-
ations of numerical convenience. Large values of Ae will
give lower-accuracy results. However, as pointed out be-
fore, the convergence of the total energy with respect to
A€ is quadratic, and thus highly accurate total energies
can be obtained with rather high values of Ae
(Goedecker and Teter, 1995). Small values of Ae make
the calculation numerically expensive. The detailed scal-
ing behavior of the numerical effort in the limit of van-
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FIG. 7. The Fermi distribution as obtained by a Chebyshev fit
of degree 40 in the case of a diamond structure. The band gap
is in between the two vertical lines.

ishing gaps is analyzed in Sec. IV, where it is found that
the increase in the size of the localization region is the
limiting factor in all methods.

Even if one wants to study electronic properties in the
limit of zero electronic temperature it is important that
one uses a finite-temperature Fermi distribution for the
Chebyshev fit. Using the zero-temperature step function
introduces so-called Gibbs oscillations in the fit and
spoils the Chebysheyv fit over the whole interval.

A method for eliminating these Gibbs oscillations in
the zero-temperature case is the so-called kernel poly-
nomial method (Voter et al., 1996; Silver et al., 1996),
which can be used as a starting point for an alternative
derivation of the FOE method. The basic idea is to ex-
pand a delta function as a polynomial using damping
factors to suppress large oscillations. This representation
of an approximate delta function can then be integrated
to obtain a smooth representation of the Fermi distribu-
tion. Used this way the kernel polynomial method is
thus just another way to derive the expansion coeffi-
cients for the Chebyshev expansion (Kress et al., 1998).
In addition the kernel polynomial approach can also be
used to smear out the density of states rather than the
zero-temperature Fermi distribution, resulting in a
method with practically identical computational require-
ments but some slightly different properties. One useful
property is that the smeared density-of-states energy is
an approximate lower bound to the energy, whereas the
smeared Fermi energy is an approximate upper bound
(Voter et al., 1996).

Coming back to the original motivation for a polyno-
mial representation, let us now show how the density
matrix can be constructed using only matrix-times-
vector multiplications. Let us denote by # the /th col-
umn of the Chebyshev matrix 7;. Now each column of
these Chebyshev matrices satisfies the same recursion
relations:

1)) =le), (49)
|t}y=Hle)),
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) =2He) =),

where e, is a unit vector that has zeros everywhere ex-
cept at the /th entry. So Eq. (49) demonstrates that we
indeed need only matrix-vector multiplications. Once we
have generated the /th columns of all the Chebyshev
matrices, we can obtain the /th column f; of the density
matrix just by forming linear combinations:

npl

=S+ 2 ). (50)
j=1

As we have described the method so far it has a qua-
dratic scaling instead of the linear scaling we finally want
to achieve. If we have M, basis functions, the density
matrix is a M, X M, matrix which means that we have to
calculate M, full columns. For the calculation of each
column, we have to do n,,; matrix-times-vector multipli-
cations, each of which costs M,ny operations, assuming
the matrix H is a sparse matrix with ny off-diagonal
elements per row/column. So the total computational
cost is Minp,n - The degree of the polynomial n,; and
the width n of the Hamiltonian are independent of the
size of the system, whereas M, is proportional to the
number of atoms in the system. The overall scaling with
respect to the number of atoms is therefore quadratic.

In order to do the correct shifting and scaling of the
original Hamiltonian to map its eigenvalue spectrum on
the interval [—1:1] we have to know its lowest and
highest eigenvalues €,,;, and €,,,, . In addition, we have
to know the chemical potential u. There are auxiliary
matrix functions of H that can help us to determine
these quantities. These functions of H can be built up in
the same way as the density matrix. Since the recursive
buildup of the Chebyshev matrices is the most costly
part, the additional cost for evaluating other functions is
negligible. To determine whether we have a vanishing
density of states beyond an energy €,,, we can, for in-
stance, construct a Chebyshev fit p,,(€) to a function
that is zero (to within a certain tolerance) for energies
below €,,, but blows up for energies larger than ¢, . If
Tr{p,,(H)] does not vanish we have a nonvanishing
density of states beyond ¢, . A similar procedure can be
applied to determine a lower bound for the density of
states. The determination of the chemical potential in an
insulator can be done along the same lines as well (Bates
et al., 1998). Without any significant extra cost one can
build up several Fermi distributions with different
chemical potentials until one finds the correct chemical
potential leading to charge neutrality. In a metallic sys-
tem the search for the chemical potential can be accel-
erated since it is possible to predict with high accuracy
how the number of electrons changes in response to a
change in the chemical potential. From Eq. (13) it fol-
lows that

Net  ipr(u 51
5. =~ Tilp! (H)]) (51)
where p' is the derivative of the Chebyshev polynomial

p that approximates the Fermi distribution. The Cheby-
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shev expansion coefficients of p’ can be calculated from
the coefficients for p (Press et al., 1986). Using the finite-
difference approximation of Eq. (51),

Ay AN
HTelp ()]

it is possible to find the correction Au to the chemical
potential which will nearly exactly eliminate an excess of
AN, electrons due to an incorrect initial chemical po-
tential. The correct chemical potential in a metallic sys-
tem can thus be found with very high accuracy with a
few iterations.

The desired linear scaling can be obtained by intro-
ducing a localization region for each column, outside of
which the elements are negligibly small. For the kth col-
umn, this localization region will be centered on the kth
basis function. If we use atom-centered basis functions,
then the localization region will consequently be cen-
tered on the atom to which this kth basis function be-
longs. We then have only to calculate that part of each
column that corresponds to this localization region. This
means that we can use a truncated Hamiltonian H (k)
which retains only the matrix elements corresponding to
the basis functions contained within the localization re-
gion k. Denoting the number of basis functions in this
region by M,,,. (which might actually depend on the lo-
calization region k being considered), we then have an
overall computational cost M,M,.n,mn, which scales
linearly. Let us stress that the size of the localization
region is independent of the degree of the polynomial. If
one uses, for instance, a polynomial of degree n,;=50,
the recursion in Eq. (49) will extend over the 50 nearest-
neighbor shells without localization constraint for a
Hamiltonian coupling only nearest neighbors. The local-
ization region, however, is typically much smaller, com-
prising just a few nearest-neighbor shells. Imposing a
localization region introduces some subtleties. For in-
stance, the eigenvalues of the truncated density matrix
are no longer exactly given by p(e€,) and F is no longer
strictly symmetric. More importantly, strictly speaking,
we can no longer use the trace notation, since we use
different local Hamiltonians H (k) to build up the differ-
ent columns of the density matrix. The band-structure
energy E g now has to be written as

(52)

EBS=§ 2 [p (H (k) LH (K (53)

Another important quantity is the force. The force
acting on the ath atom at position R, is obtained by
differentiating the total energy with respect to these po-
sitions. The total energy consists of the band-structure
part and possibly other contributions. We shall only dis-
cuss the nontrivial part of the force arising from the dif-
ferentiation of the band-structure energy E zg. For sim-
plicity let us assume that we have a simple polynomial
expansion and not a Chebyshev expansion. Let us also
assume that we calculate the full density matrix, i.e., that
we do not truncate H by introducing a localization re-
gion. We then obtain
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dEgg d , JH" !
iR, ——dRaTr[HEV ¢, H —EV c,,Tr[ R (54)
Let us consider, for instance, the term for which v=2,
d T H?] I oH ol 1 oH i
ar, MR GR TR,
T on HH|=3Tr|HH on 55
T og HH |\ =3 HH o6, (55)

where we used Tr[AB]=Tr[BA]. The final result for
the force, which also holds in the case of a Chebyshev
expansion, is thus

dE g
dR,

For an insulator, the second term in the brackets
Hp'(H) is very small compared to the first term p(H)
at small but finite temperatures and it vanishes in the
limit of zero temperature. The reason for this is that the
eigenvalues of the matrix p'(H) are p’'(e,). Since at
zero temperature p'(€) is nonzero only at the chemical
potential in the middle of the gap, all eigenvalues are
zero and the matrix is identically zero. Nevertheless, re-
taining this term in numerical calculations is recom-
mended because it leads to forces consistent with the
total energy.

When we calculate only part of the density matrix, i.e.,
when we have a truncated Hamiltonian H (k) following
the energy expression (53), we cannot use the properties
of the trace to simplify the force expression as we did in
Eq. (55). The equation corresponding to Eq. (55) there-
fore reads

=Tr

oH
(P(H)+HP'(H))W}- (56)

> . [H(k)]k,ﬂ[H(kn,-l,jz(

&H(k))
k.jTj2, 2k

IR,

dH (k)
+[H(k>]k,,1(&T) [H ) 2
@« TjLj2

JH (k)
+( IR ) LH(K) 1ol H(k) ok - (57)
a [

Similar results hold for all the other terms with different
values of v. For a Chebyshev expansion the situation is
completely analogous, only the formulas are more com-
plicated. The force formula has been worked out in this
case by Voter ef al. (1996) and is given by

dT(H) dT, ,(H) '

iR, iR, +i§)(1+ki><1+k,»_1_i>

oH
XTi(H)mijlfi(H)a (58)
where k;=0 if j<O and k;=1 otherwise. In the typical
tight-binding context dH/JR , is a very sparse matrix. If
it contains 7, nonzero elements, we need of the order of
n; npM, operations to evaluate all the forces according
to Eq. (58). The error incurred by using the approximate
formula (56) is small if the localizarion region is large
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enough. Since the approximate formula can be evalu-
ated with order n,mnpM, operations, it might actually
be preferable to do so. In a molecular dynamics simula-
tion, the largest deviations in the conservation of the
total energy come from events in which atoms enter or
leave localization regions, and this kind of error is not
taken into account by either force formula.

All the above force formulas were derived for the case
in which we have a constant chemical potential and in
which the polynomial representing the Fermi distribu-
tion thus does not change. Frequently, however, one
wants to do simulations for a fixed number of electrons
rather than for a fixed chemical potential. In this case
one has to readjust the chemical potential for each new
atomic configuration. The chemical potential is thus a
function of all the atomic positions u=pu(R,), but the
explicit functional form of this dependence is not
known. The force formula can also be adapted to this
case (Roberts and Clancy, 1998). Ignoring the above
warnings and again using trace notation for simplicity,
we have

Eps=Tir[Hp(H— pl)] (59)

Ne=Ti[p(H—ul)] (60)
and consequently

L5 ol p+p) 2 g p 2L (a1

dR, 1| (Hp p)&Ra [ (Hp )]aRa’ (61)

dNEI—T , oH T , 07/.L 62

dRa_ np ﬁRa r[P ]m ( )

Since dN,;/dR, has to be equal to zero, we can solve
Eq. (62) for du/dR , and insert it into Eq. (61) to obtain
the force under the constraint of a constant number of
electrons.

Let us finally derive a force formula for the case in
which a local charge neutrality condition is enforced
(Kress et al., 1998). The motivation for this approach is
that in non-self-consistent tight-binding calculations one
frequently finds an unphysically large transfer of charge
between atoms. In a self-consistent calculation the elec-
trostatic potential, built up by a charge transfer, is coun-
teracting a further charge flow and thus limits charge
transfer to reasonably small values. Some tight-binding
schemes (Horsfield, Godwin, et al., 1996) enforce a so-
called local charge neutrality condition requiring that
the total charge associated with an atom in a molecule
or solid be equal to the charge of the isolated atom. This
is done by determining a potential offset u, for each
atom « in the system which will ensure this neutrality.
The total Hamiltonian H of the system is then given by
Hy+ U, where H is the Hamiltonian without any po-
tential bias and U a diagonal matrix containing the
atomic potential offsets u,. The band-structure energy
is given by

EBS=Tr[<H0+U>p<H0+U>]—§ Outty,  (63)
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where the term containing the atomic valence charges
0, has been subtracted to make the expression invari-
ant under the application of a uniform potential bias to
all atoms in the system. Expressed in terms of the den-
sity matrix, the local charge neutrality condition be-
comes

E, PH) g rar=Qa- (64)

In Eq. (64) we have labeled the basis functions by a
composite index, where « indicates on which atom the
basis function is centered, and where [ describes the
character of the atom-centered basis function. If we
have carbon atoms, for which Q,=4, [ would, for in-
stance, denote the four orbitals 2s, 2px, 2py, 2pz. Us-
ing Eq. (64), Eq. (63) then simplifies to

Eps=Ti[Hop(Hy+U)]. (65)
Taking the derivative, we get
dE dEgs du JE
BS _ Bs dUpg BS’ (66)
dR, G dug IR, IR,
where
L85 1 o (1) 22 67
Omﬂ—f oP()%- (67)

As discussed above, the matrix p'(H) is close to zero in
an insulator at sufficiently low temperature and can of-
ten be neglected. The forces are therefore approxi-
mately given by

EBS
dR,

It has to be pointed out that to get sufficiently high ac-
curacy the degree of the polynomial has to be higher
than in the tight-binding case without local charge neu-
trality.

In general, the degree n,,; of the polynomial needed to
represent the Fermi distribution is proportional to

=Tr

oH
Hop(H) 0?} (68)

o €max— €min
pl Ae

This follows from the fact that the nth-order Chebyshev
polynomial has n roots and so a resolution that is
roughly proportional to 1/n. For the usual tight-binding
Hamiltonians the ratio in Eq. (69) is not very large, and
for silicon and carbon systems without gap states poly-
nomials of degree 50 are sufficient if no local charge
neutrality is enforced. In contexts other than tight-
binding this ratio can, however, be fairly large and poly-
nomial representation would become very inefficient.

n (69)

2. The rational Fermi operator expansion

If very high order polynomials would be needed, a
rational representation of the density matrix
(Goedecker, 1995) is more efficient:

WV
=3 (70)
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FIG. 8. A discretization of the contour integral in the complex
energy plane of Eq. (71). The resulting Fermi distribution is
shown on top.

As is well known, the function f(€) given by

1 dz
fle)=5=

2 €—2z

(71)

is equal to 1 if e is within the volume encircled by the
contour integration path and zero otherwise. If the inte-
gration path contains the occupied states, as shown in
Fig. 8, it can therefore be used as a zero-temperature
Fermi distribution. The exact finite-temperature Fermi
distribution f(e,(k)) can be obtained by replacing the
path in this contour integral by a sequence of paths that
do not intersect the real axis (Goedecker, 1993; Nichol-
son and Zhang, 1997; Gagel, 1998). Actually, as already
mentioned above, it is usually not necessary to have the
exact Fermi distribution. The electronic temperature is
just determined by the slope (and possibly some higher
derivatives) of the distribution at the Fermi energy.
Hence we shall also refer to such generalized distribu-
tions as Fermi distributions. A distribution of this type
can be obtained by discretizing the zero-temperature
contour integral from Eq. (71), as shown in Fig. 8.

In principle, any other set of z,’s and w,’s can be used
as long as it satisfies

npd

fley=2

b
v=1 €73,

14

(72)

where n,, is the degree of the rational approximation.
How can we now evaluate Eq. (70) on a computer? De-
noting I/(H—z,) by F, we have

(H—z,)F,=1, (73)

F=> w,F,. (74)

So we first have to invert all the matrices H—z, and
then need to form linear combinations of them. The in-
version is equivalent to the solution of M, linear sys-
tems of equations. This can be done using iterative tech-
niques so that in the end everything can again be solved
by matrix-times-vector multiplications. A rational ap-
proximation can represent the sharp variation near the
chemical potential of a low-temperature Fermi distribu-
tion in a more efficient way than a Chebyshev approxi-
mation. Whereas in the Chebyshev case the degree of
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the polynomial is given by Eq. (69), the degree of the
rational approximation n,, is given by

o M~ €min
pd Ae

Thus n,, in contrast to n,; does not depend on the larg-
est eigenvalue €,,,,. Once n,, is of the order of magni-
tude given by Eq. (75) one has exponential convergence
to the zero-temperature Fermi distribution. In the case,
where the integration points and weights are obtained
by discretizing the contour integral of Fig. 8, this expo-
nential behavior is immediately comprehensible since an
equally spaced integration scheme gives exponential
convergence for periodic functions (Sloan and Joe,
1994). Since n,, is usually reasonably small, the success
of the method will hinge upon whether it is possible to
solve the linear system of equations associated with each
integration point with a small number of iterations. The
number of iterations in an iterative method such as a
conjugate-gradient scheme (Press et al., 1986) is related
to whether it is possible to find a good preconditioning
scheme. For plane-wave calculations, a good precondi-
tioner can be obtained from the diagonal elements and
of the order of 10 iterations are required. In other
schemes using Gaussians, for instance, it is not clear
whether good preconditioners can be found. When the
Hamiltonian depends on the atomic positions R,, Egs.
(73) and (74) can be differentiated to obtain the deriva-
tive dF/dR ,, which is needed for the calculation of the
forces.

n

(75)

B. The Fermi operator projection method

The FOE method is used to calculate the full density
matrix. This can be inefficient if the number of basis
functions per atom is very large. As was mentioned be-
fore, the density matrix at zero temperature does not
have full rank. For an insulator, it can be constructed
from N,; Wannier functions [Eq. (23)]. If one has a nu-
merical representation of the zero-temperature density
operator, which is actually a projection operator and
which eliminates all components belonging to eigenval-
ues above the Fermi level, one can apply it to a set of

trial Wannier functions T/n, n=1,...,N,; to generate a
set of orbitals that span the space of the Wannier func-
tions. This is the basic idea of the Fermi operator pro-
jection (FOP) method. The numerical representation of
the density operator can again either be a Chebyshev or
rational one. We shall first discuss the rational case
(Goedecker, 1995).

To do the projection with a rational representation, a
system of equations analogous to Egs. (73) and (74) has

to be solved for each trial Wannier function V, and at
each integration point v:

(H_ZV)VVn,V:T/rw (76)

W,=> w,W,,. (77)

4
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FIG. 9. The effect of applying the density operator, which is a
projection operator in the eigenvalue space, to a Gaussian
(dashed line) centered in the middle of a bond between two
silicon atoms denoted by discs. The resulting function W is
shown by the solid line. The orthogonal Wannier function W
obtained by symmetric orthogonalization is practically indistin-
guishable from W on this scale. The calculation was done using
density-functional theory with pseudopotentials.

Thus the savings comes from the fact that one has to
solve this equation (76) only for N,; right-hand sides,
whereas one has M, right-hand sides in Eq. (73). Obvi-
ously the solution of Eq. (76) has to be done not within
the whole computational volume but only within the lo-
calization region to obtain linear scaling. The functions

W,, will now span our subspace unless one of our trial

functions V,, was chosen in such a way that it has zero
overlap with the space of the occupied orbitals, which is
highly unlikely. To obtain a set of valid Wannier func-

tions W, one still has to orthogonalize the orbitals w,.
Since the W,’s are localized, the overlap matrix is a
sparse matrix and can be calculated with linear scaling.
In the typical density-functional context, the inversion of
this matrix is a rather small part, even if it is done with
cubic scaling. In a tight-binding context it is much more
important and linear scaling methods have been devised
by Stephan and Drabold (1998) and by Challacombe
(1999). The construction of the Wannier functions by
projection according to Egs. (76) and (77) is illustrated
in Fig. 9 for the case of a silicon crystal. In this case one
knows that the Wannier functions are bond centered
and it is therefore natural to choose a set of bond-
centered functions as an initial guess. In this example we
used simple Gaussians. As shown in Fig. 9, the projec-
tion modifies the details of the Gaussian but does not
significantly change its localization properties.

Chebyshev-based projection methods have been in-
troduced in connection with other techniques by Sankey
et al. (1994) and by Stephan and Drabold (1998).

C. The divide-and-conquer method

The original formulation of the divide-and-conquer
(DC) method (Yang, 1991a, 1991b; Zhao and Yang,
1995) was based on a subdivision of the electronic den-
sity. To calculate the density at a certain point, an ordi-
nary electronic structure calculation is done for a sub-
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volume containing this point. Since the electronic
density is only influenced by features in a rather small
neighborhood, the density obtained in this way at that
point is a good approximation to the density one would
obtain by doing a calculation in the whole volume occu-
pied by the molecule or solid under consideration. The
more recent formulation of this theory (Yang and Lee,
1995) is, however, also based on the density matrix and
we shall discuss this version in more detail. The idea is
to calculate certain regions of the density matrix by con-
sidering subvolumes and then to generate the full den-
sity matrix by adding up these parts with the appropriate
weights. How to calculate the density matrix for the sub-
volumes is, in principle, unspecified, but it is usually
done using ordinary electronic structure calculations
based on exact diagonalization. Let us illustrate the prin-
ciple for synthesizing the density matrix from its sub-
parts in a pictorial way by considering a one-
dimensional chain molecule. For simplicity let us also
assume that we have atom-centered basis functions.

First one divides the whole computational volume
into subvolumes, which we shall call central regions.
Three such central regions are displayed in Fig. 10 by
the dark green, blue, and red colors. Around each cen-
tral region one puts a buffer region denoted by light
green, blue, and red. The sum of these two regions cor-
responds to the localization region of the other O(N)
methods.

Once one has set up this subdivision, one does an
electronic structure calculation within each localization
region to obtain the density matrix belonging to this re-
gion. These different calculations are only coupled by
the requirement that the Fermi level be the same in all
the localization regions. Typically a very small tempera-
ture is used to stabilize the search for the overall Fermi
level. From the density matrices obtained in this way,
one cuts off all the corners, i.e., the regions where both
matrix indices belong to basis functions in the buffer
region. For the blue region, this series of transforma-
tions is shown in Fig. 11.

Using these cross-shaped blocks one then finally syn-
thesizes the density matrix as shown in Fig. 12 by adding
up the different contributions. The regions shown in
dark colors which do not overlap with other regions
have weight one, whereas the overlapping regions in-
dicted by light colors each have weight one-half. Hence
the sum of the weights is one in the overlap regions, as
well.

The achievement of linear scaling in the divide-and-
conquer and the Fermi operator expansion methods is
conceptually related. In both methods certain parts of
the density matrix are calculated independently. The
main difference is that in the FOE method no calculated
parts of the density matrix are discarded as in the divide-
and-conquer method, as depicted in Fig. 11. The Fermi
operator expansion method can thus be considered as a
divide-and-conquer method in which only the central
part of the density matrix, which is not contaminated by
the boundary of the localization region, is calculated.
The fact that in the divide-and-conquer method only a
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FIG. 10. The different subvolumes described in the text which are necessary for the application of the divide-and-conquer method

to a chain molecule. The atoms are denoted by black dots.

small part of the density matrix obtained by costly di-
agonalizations is used, while the largest part associated
with the buffer region is thrown away, results in a large
prefactor [Eq. (2)] for this method. This is clearly a par-
ticularly serious disadvantage if large localization re-
gions are needed, as will be discussed in more detail in
Sec. I'V.

The calculation of the forces acting on the atoms
within the divide-and-conquer method is also described
by Yang and Lee (1995). Their force formula is based on
the Hellmann-Feynman theorem (Feynman, 1939) as
well as some other terms, such as Pulay forces (Pulay,
1977), which arise from the use of atom-centered basis
sets and auxiliary charge densities. As has been dis-
cussed in the case of the FOE method, the Hellmann-
Feynman expression for the force [Eq. (56)] is not ex-
actly consistent with the total energy expression in a
nonvariational method, since it is based on the assump-
tion that one is allowed to take traces. Even though the
density matrix in the divide-and-conquer method is not
calculated via a polynomial expansion, the analysis given
for the FOE method also applies to the divide-and-
conquer method since conceptually one can represent
any matrix functional of H as a polynomial Taylor ex-
pansion. The total energy will consequently not have its
minimum at exactly the same place where the
Hellmann-Feynman forces vanish if both quantities are
calculated with the divide-and-conquer method. For the
FOE method, there is a simple analytic expression for

FIG. 11. Density matrix for a certain localization region. From
the full density matrix (left-hand side) only the cross-shaped
part (right-hand side) is used.
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the calculation of the total energy, even in the case in
which localization constraints are imposed [Eq. (53)].
One can therefore differentiate it without using the sim-
plifications arising from the use of traces to obtain con-
sistent forces. No such simple prescription can be writ-
ten down for the divide-and-conquer method which
would allow the calculation of consistent forces. Plainly
this compatibility problem becomes negligible for large
localization regions, and there are certainly practical ap-
plications where small inconsistencies of forces and en-
ergies are tolerable.

D. The density-matrix minimization approach

The density-matrix minimization (DMM) approach of
Li, Nunes, and Vanderbilt (1993) is another method by
which the full density matrix is constructed. In contrast
to the FOE method one obtains the density matrix F in
the limit of zero temperature, so no adjustable tempera-
ture parameter enters the calculation. The density ma-
trix is obtained by minimizing the following functional
for the grand potential () with respect to F:

Q=Ti[(3F?-2F*)(H-ul)]. (78)

FIG. 12. Contributions to the full density matrix from the dif-
ferent localization regions. In this figure only the three contri-
butions from the localization regions of Fig. 10 are shown.
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FIG. 13. The McWeeny (1960) purification function y=3x>
—2x°.

There is no constraint imposed during the minimization,
so all the matrix elements of F are independent degrees
of freedom. Nevertheless, the final density matrix will
obey the correct constraint of being a projector if no
localization constraints are imposed. This is related to
the fact that the matrix 3F>—2F? is a purified version of
F, as can be seen from Fig. 13. If F has eigenvalues close
to zero or 1 then the purified matrix will have eigenval-
ues that are even closer to the same values. It is also
clear from Fig. 13 that the eigenvalues of the purified
matrix are contained in the interval [0;1] as long as the
eigenvalues of F are in the interval [ —1/2;3/2].

The gradient of () as given by Eq. (78) with respect to
F is itself a matrix, and it is given by

i—2=3(FH’+H’F)—2(F2H’+FH’F+H’F2), (79)
where H'=(H—pl). In order to verify that Eq. (78)
defines a valid functional we have to show two things:
first, that the grand potential expression (78) gives the
correct result if we insert the exact density matrix F, and
second, that the gradient (79) vanishes in this case. From
Eq. (24) we see that the exact F is a projection operator,
i.e, that F2=F. Therefore (3F>—2F>)=F and the grand
potential expression (78) indeed agrees with the correct
result (11). Using in addition the fact that H' and the
exact F commute [as follows from Egs. (20) and (21)], it
is also evident that the gradient in Eq. (79) vanishes.
The gradient vanishes, however, not only for the
ground-state density matrix F but also for any excited-
state density matrix. In order to exclude the possibility
of local minima, we have to verify that these stationary
points are not minima. This can easily be done (Vander-
bilt, 1998, private communication) using the fact that the
functional is a cubic polynomial with respect to all its
degrees of freedom. Let us suppose that there are two
minima. Inspecting the functional along the line con-
necting these two minima, we would obviously again
find these two minima, which is a contradiction because
a cubic polynomial cannot have two minima. Thus we
have proved by contradiction that the DMM functional
has only one single minimum.

There is a second feature that is worrisome at first
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sight with this functional. If the density matrix for an
insulator at zero temperature is of the correct form (i.e.,
if the occupation numbers n; are 0 or 1), the gradient
(79) will vanish independently of the value of the chemi-
cal potential. This ambiguity, however, disappears as
soon as one has fractional occupation numbers. Let us
consider an approximate density matrix of the form

F=20 m|W)(W . (80)

Then it is easy to see that

Q=Zl (e—pm)(3n]—2n3), (81)

Q)
—F =2 6= pn(1=n)|¥)(V . (82)
7

The polynomial of Eq. (81) is the same as that shown in
Fig. 13, and we see that components corresponding to
eigenvalues larger than the chemical potential are
damped until they vanish in the minimization process,
whereas components corresponding to smaller eigenval-
ues are amplified until they reach the value one. Thus
the chemical potential will determine the number of
electrons to be found in the system, as it should. The
above statements are actually only correct if all the n;’s
are contained in the interval [ —1/2:3/2]. If this is not the
case then one can see from Fig. 13 that there can be
runaway solutions, where some #, tend to £o. When we
implemented the scheme, however, we never encoun-
tered in practice such a runaway case.

Having convinced ourselves that the functional de-
fined in Eq. (78) is well behaved, let us now estimate the
number of iterations necessary to minimize it. As is well
known, the error reduction per iteration step depends
on the condition number «, which is the ratio of the
largest curvature a,,,, to the smallest curvature a,,;, at
the minimum. These curvatures could be determined ex-
actly by calculating the Hessian matrix at the minimum.
Let us instead only derive an estimate of these curva-
tures by calculating the curvature along some represen-
tative directions. To do this let us now consider a
ground-state density matrix where some fraction x of an
excited state is mixed in

Net
F(x)=n§_‘,1 V)W, () —x¥7 (1) W (r) +x W7 (r)W,(r).

(83)

Here, the index / is a member of the N, eigenstates
below u, and the index J refers to a state above u. The
expectation value of the orbital minimization functional
for this density matrix is given by

Q(x)=Ti[BF(x)*=2F(x)*)(H— )]
N

= 21 €, +(3x%=2x%)(e,— €)) (84)

and its second derivative by
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PQ(x)

2 x:O:6(€J_€1)- (85)
The largest curvature will be roughly €,,,,— €,,;, and the
smallest curvature of the order of the HOMO-LUMO!
separation €,,,= EN,+17 €N, The condition number is
thus given by

= Apax - €max ™ €min . (86)

Amin Egap

In the conjugate-gradient method, which is the most
efficient method of minimizing the DMM functional, the
error e decreases as follows (Saad, 1996):

. k
e T @)

Je+1

The error e, is defined in this context as the length of
the vector, which is the difference between the exact and
approximate solutions at the kth iteration step. Under
realistic conditions « is large and the number of itera-
tions n;; to achieve a certain accuracy is therefore
nitM K= émax 6”’!”1. (88)
€gap

This is an important result, since it indicates that in an
insulator the number of iterations is independent of sys-
tem size. This result is also confirmed by numerical tests.

The use of a conjugate-gradient scheme requires line
minimizations along these conjugate directions. For ar-
bitrary functional forms this has to be done by numerical
techniques such as bisection (Press et al., 1986). For the
DMM functional, however, we have a cubic form along
each direction. The four coefficients determining the cu-
bic form can be calculated with four evaluations of the
functional. Once these four coefficients are known, the
minimum along this direction can easily be found.

Doing a series of minimization steps as outlined above
will, in general, result in a density matrix that does not
lead to the correct number of electrons. Thus one has to
do some outer loops where one searches for the correct
value of the chemical potential. For better efficiency,
these two iteration loops can, however, be merged into
one loop where one alternatingly minimizes the energy
and adjusts the chemical potential (Qiu et al., 1994).

The forces on the atoms are given by

dQ 00 gF 90 oH
AR, JF dR,  9H oR,’

(89)

a

Since the method is variational, d{)/dF vanishes at the
solution and the force formula simplifies to

aQ a0 oH

AR, oH oR,

(3F>—2F?) ok
dR,|’

(90)

which can easily be evaluated.
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FIG. 14. An analysis of the eigenvectors of the full and trun-
cated density matrix. In the case of the full density matrix the
eigenvectors were chosen to be simultaneously eigenvectors of
both F and H, and the eigenvalues with respect to F (occupa-
tion numbers) are plotted vs the eigenvalues with respect to
H. For the truncated density matrix, the eigenvectors can no
longer simultaneously diagonalize F and H. Therefore the ei-
genvalues with respect to F are plotted vs their energy expec-
tation values with respect to H. Note that in the energy ex-
pression (78) the purified density matrix 3F2—2F° enters
instead of F. The occupation numbers of the purified version
are closer to zero or one.

The introduction of a localization region leads again
to some subtleties. Whereas in the unconstrained case
the eigenvalues of the final density matrix F will all be
either zero or one, this is no longer the case when a
localization region is introduced. Hence the truncated F
is no longer a projection matrix but it is given by

My,

F= 2 Vo0V, (n), (1)

where now V¥, are the eigenfunctions of the truncated F
and the occupation numbers n,, are their eigenvalues. In
a certain sense the localization constraint introduces a
finite electronic temperature. This is actually not surpris-
ing, considering the relation between the temperature
and the localization properties discussed in Sec. II. Fig-
ure 14 shows the energy expectation values of the eigen-
vectors of F versus the occupation numbers, for a crys-
talline Si cell of 64 atoms, where the localization region
extends to the second-nearest neighbors. As one can
see, the energy expectation values (V,,|H|¥,,) of the
eigenvectors of F are very close to the exact eigenvalues
of H.

This close correspondence of the eigenvectors of F to
the eigenvectors of H explains why the number of itera-
tions needed to find the minimum does not increase as
one introduces localization constraints. Equation (85)
remains approximately valid if the occupation numbers

"Highest-occupied-molecular-orbital/lowest-unoccupied-molecular-orbital.
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for the occupied states are close to 1 and if the occupa-
tion numbers for the unoccupied states are very small, as
well as if the energy expectation values (V| H|W¥,,) are
close to the exact eigenvalues of the Hamiltonian. These
conditions are fulfilled as discussed above. Hence the
condition number for the minimization process does not
change appreciably in the truncated case.

All the arguments used to prove the absence of local
minima remain valid in the truncated case as well. The
force formula Eq. (90) remains equally valid.

An alternative derivation of this algorithm has been
given by Daw (1993). He considers a differential equa-
tion which describes the evolution of a density matrix
when the electronic temperature is cooled down from
infinity to zero. The change of the density matrix during
this process is equal to the gradient of Eq. (79).

E. The orbital minimization approach

The orbital minimization (OM) method (Mauri et al.,
1993; Ordejon et al., 1993; 1995; Mauri and Galli, 1994,
Kim et al., 1995) also calculates the grand potential in
the limit of zero temperature. In contrast to the previous
methods, it does not calculate the density matrix directly
but expresses it via the Wannier functions according to
Eq. (23). These Wannier functions are obtained by mini-
mizing the following unconstrained functional:

n i,j ? n,m i,j k [

where ¢} is the expansion coefficient of the nth Wannier
orbital with respect to the ith basis function and H; ; are
the matrix elements of the shifted Hamiltonian H — u/
with respect to the basis functions. In the original for-
mulation (Mauri et al., 1993; Ordejon et al., 1993; 1995;
Mauri and Galli, 1994) only N,; orbitals were included
in the orbital sums in Eq. (92), ie.,, n=1---N,;, m
=1-+-N,;. In the formulation of Kim ef al. (1995) more
than N,; orbitals are included in the sums. The func-
tional of Eq. (92) can be derived by considering the or-
dinary band-structure energy expression

Eps=2 2, ¢jHjc] (93)
noij

and by incorporating the orthogonality constraint by a
Taylor expansion of the inverse of the overlap matrix O
between the occupied orbitals,

on,ng e, (94)

up to first order. A family of related functionals can be
obtained by Taylor expansions to higher order (Mauri
and Galli 1994; Galli, 1996). Since these functionals do
not offer any significant advantage and are not used in
calculations we shall not discuss them. The gradient of
the functional of Eq. (92) is given by
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FTe)
——4; Hy; 7—2% ; H,'(’jc]’-”El cheln

ach
—z; c’,fz] cIH{cl. (95)

Let us first discuss this functional in the case when no
localization constraint is imposed on the orbitals. It is
easy to see that the functional (92) is invariant under
unitary transformations of the occupied (i.e., N,; lowest)
orbitals, so we can derive our results in terms of eigenor-
bitals rather than Wannier orbitals. The coefficients ¢/
are then the expansion coefficients of the eigenorbital.
Using the fact that in this case 2;c}c]"=5, , and that
3 ciH] icf'= 68, ,u(€,— p), we obtain

9:2; 2/ clH] el =2 2 ctH 1S,

n.m i,j

:E Z C;’H;]C]n:E en_lu’Nel?
n o ij n

which is the standard expression (11) for the grand po-

tential. Similarly the gradient equation can be simplified,

obtaining

90
M:Qj) Hy, 7—2%} }l‘, Hi '8,

_2CZZ 5n,m(6m_ :u’)
m

=22 Hj jcl'=2c}(e,— pu)=0. (96)
]

So the functional has indeed a vanishing gradient at the
ground state and it gives the correct ground-state en-
ergy. As was the case for the DMM functional, the gra-
dient vanishes not only for the set of ground-state orbit-
als but also for any set of excited states. Thus we have to
verify that these stationary points are not local minima
but saddle points. We do this by picking a certain direc-
tion along which the curvature is negative. In the OM
case an excited state is described by a set of N,; orbitals
V¥, where at least one index n=1, corresponding to an
occupied orbital 7, is replaced by an unoccupied orbital
J. Let us now consider the variation of the grand poten-
tial Q(x) under a transformation of the form WV,
—cos(x)¥;+sin(x)¥;. One can show that the curvatures
at these stationary points is given by

9 Q(x)
ax?

=—4(e;—€p). 97)
x=0
Since the unoccupied eigenvalue €; is higher in energy
than the occupied one €;, the curvature is negative and
we have indeed a saddle point. In the same way we can
again show that the condition number is given by Eq.
(86).
In analogy to the DMM functional, one can also show
that in the formulation of Kim ez al. (1995), the chemical
potential u determines the number of electrons by am-
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FIG. 15. The function (2—x2)x? relevant in Eq. (98).

plifying components below p and annihilating compo-
nents above it. Considering a state consisting of a set of
eigenfunctions ¥, of H, in which each eigenfunction is
multiplied by a scaling factor a,,, the expectation value
for the grand potential becomes

Q=§ (2—ap)aj(e,— u). (98)

The relevant function (2 —x2)x? is shown in Fig. 15. One
can see that the minimum of Eq. (98) is attained by a,
=0 if €,>p and by a,,= =1 if ¢,<pu. Again, this is only
true if a,, is within a certain safety interval. Otherwise
there can be runaway solutions. Infinitesimally close to
the solution u becomes ill defined in an insulator, as it
should.

Whereas the DMM functional keeps all its good prop-
erties when one introduces a localization constraint, the
OM functional loses most of them. The localization con-
straint is introduced in the OM functional by allowing
each Wannier orbital to deviate from zero only within its
own localization region. These localization regions are
usually atom centered and contain a few shells of neigh-
boring atoms. The basic idea of the OM functional,
namely, of describing an electronic system by a set of
Wannier functions with finite support, is already prob-
lematic. Orthogonality and finite support are mutually
exclusive properties, and so the orbitals that one obtains
in the minimization process are necessarily non-
orthogonal. The true Wannier functions are, however,
orthogonal. In addition, as we have seen in the DMM
case, a density matrix that is truncated has full rank, i.e.,
none of its eigenvalues is exactly zero. Thus N,; Wan-
nier orbitals are not sufficient to represent the density
matrix in this case. The generalized formulation of Kim
et al. (1995), in which more than N,; orbitals are used,
alleviates this problem, but does not completely fix it
unless the number of orbitals is equal to the number of
basis functions M, .

When implemented with localization constraints the
orbital minimization functional exhibits the following
problems:

e The functional has multiple minima (Ordejon et al.,
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1995). Depending on the initial guess one thus obtains
different answers, some of which are physically mean-
ingless (Kim et al., 1995). As we have shown above in
Eq. (97), the functional has no multiple minima in the
nontruncated case. The analysis we used to show this
was based on the eigenfunctions. Since the Wannier
functions have no resemblance to the eigenfunctions
this analysis cannot be carried over into the localized
regime. For the density-matrix minimization method
the absence of multiple minima could be proven using
the fact that the DMM functional is cubic. The orbital
minimization functional (92), however, is quartic with
respect to its degrees of freedom and will thus in gen-
eral have multiple minima. The problem of the mul-
tiple minima is alleviated by the formulation of Kim
et al. (1995), but it is not completely removed since the
functional still has quartic character. As a by-product
of the multiple-minimum problem, the total energy
cannot be conserved in molecular dynamics simula-
tions, which is an important requirement. Here again,
energy conservation is better in the Kim formulation
but still far from perfect (Kim et al., 1995).

In practical applications of the orbital minimization
approach to electronic structure methods, great care is
usually taken to construct input guesses that corre-
spond to the physical bonding properties of the mol-
ecule under consideration (Itoh ef al, 1996). If the
minimum that is closest in distance is always selected
during the subsequent line minimizations then one
will most likely end up in a physically reasonable
minimum that reflects the bonding properties of the
input guess (Stephan, 1998, private communication).
This is especially true if the localization regions are
large and if the topology of the total energy surface
within a reasonably large region around the physical
minimum is not too different from that in the non-
truncated case. Such a procedure is, of course, not
applicable to systems in which the exact bonding
properties are unknown.

e The number of iterations is very large whenever any
localization constraint is imposed together with tight
convergence criteria. This is due to the deterioration of
the condition number, a phenomenon that is easy to
understand (Ordejon et al., 1995). Introducing a local-
ization region destroys the strict invariance of the
band-structure energy under unitary transformations
among the occupied orbitals. When the localization re-
gion is large, this invariance will still approximately ex-
ist and one can find certain directions around the mini-
mum where the energy varies extremely slowly and
where the curvature is therefore much smaller than the
smallest curvature €,,, in the unconstrained case.
Whereas directions where the curvature is strictly zero
do not affect the condition number, these very small
curvatures will have a negative effect on it [Eq. (86)],
and the required number of iterations is consequently
much larger in the constrained case than in the uncon-
strained case. Even though the condition number de-
teriorates with increasing localization region, the detri-
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mental effect on the number of iterations will
disappear at a certain point where the gradient due to
these small curvatures becomes smaller than the nu-
merical threshold determining the convergence crite-
rion of the minimization procedure.

¢ The optimal localization regions would be centered on
the centers of the Wannier functions. Since these cen-
ters are not known a priori, atom-centered localization
regions are usually chosen. In this case the Wannier
functions do not generally exhibit the correct symme-
try (Ordejon et al., 1995). As a consequence molecular
geometries obtained from this functional can have bro-
ken symmetry as well. In a C¢, molecule, for instance,
there are only two equivalent sites. When treated with
the orbital minimization functional they are each
slightly different (Kim ez al., 1995).

¢ As follows from Eq. (98) there can be runaway solu-
tions. We have encountered this problem in test cases
with random numbers as input guesses. If one con-
structed a more sophisticated input guess, based on the
bonding properties of the system, this would probably
not occur. In the DMM method the possibility of run-
away solutions also exists but is never found in prac-
tice, even with the most trivial input guess.

e If the method is used in the context of self-consistent
calculations, where the electronic charge density is
used to calculate the Hartree and exchange-correlation
potentials, problems arise, since the total charge is not
conserved during the minimization iteration (Mauri
and Galli, 1994).

To overcome the competing requirements of orthogo-
nality and localization, a related approach has recently
been proposed by Yang (1997) in which the orbitals are
allowed to be non-orthogonal. This approach of Yang
has up to now not been applied in connection with a
localization constraint.

F. The optimal basis density-matrix minimization method

Despite its many advantages in the tight-binding con-
text, the DMM method has the big disadvantage that it
is very inefficient if one needs very large basis sets (i.e.,
many basis functions per atom). Large basis sets are
typically required in grid-based density-functional calcu-
lations. In this case it becomes impossible to calculate
and store the full density matrix in the DMM method,
even though it is a sparse matrix. From this point of view
the Wannier-function-based methods are advantageous
since they do not require the full density matrix. The
basic idea of the optimal basis density-matrix minimiza-
tion (OBDMM) method (Hierse and Stechel, 1994; Her-
nandez and Gillan, 1995) is first to contract the funda-
mental basis functions into a small number of new basis
functions and then to set up the Hamiltonian and over-
lap matrix in this new small basis. A generalized version
of the DMM method which can be applied to the non-
orthogonal context (a subject that will be discussed later
in the article) is then used to solve the electronic struc-
ture problem in this basis. The essential point is that one
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tries to do the contraction in an optimal way by mini-
mizing the total energy with respect to the degrees of
freedom determining the contracted basis functions V¥, .
Formulated mathematically the density matrix is given
by

F(r,r’)=l2j VK, Y (r'). (99)

The matrix K is a purified version of the the density
matrix within the contracted basis L, and it is given by

K=3LOL-2LOLOL, (100)

where O is the overlap matrix among the contracted
orbitals. The main difference between the formulation
of Hierse and Stechel (1994) and that of Hernandez and
Gillan (1995) is that in the first formulation the number
of contracted basis functions W; is equal to the number
of electrons, whereas in the second approach it can be
larger. In the formulation of Hernandez and Gillan
(1995) the contracted basis set can, for instance, be cho-
sen to have the size of a minimal basis set. The differ-
ence between this set and a standard minimal basis set in
quantum chemistry is that it is optimally adapted to its
chemical environment, since the contraction coefficients
are not predetermined but found variationally. In prac-
tice, the full density matrix is found by a double-loop
minimization procedure. In the inner loop one uses the
ordinary DMM procedure to find the density matrix for
a given contracted basis set. In the outer loop one
searches for the optimally contracted basis functions ¥,
for fixed L.

Unfortunately the minimization of the contracted ba-
sis functions W; is ill conditioned (Gillan ef al., 1998),
and the number of iterations is therefore, at present,
very large. As already explained before, ill conditioning
occurs if the curvatures in the minimum along different
directions are widely different. Three causes for the ill
conditioning are reported by Gillan et al. (1998):

¢ Length scale ill conditioning:

This problem is actually not related to the OBDMM
algorithm itself but to the (uncontracted) basis func-
tions that are taken to be so-called “blip” functions
in the present implementation. This kind of problem
can be found in all iterative electronic structure al-
gorithms if grid-based basis functions such as finite
elements are used. Its origin is easy to understand.
Let us imagine that we are searching for the lowest
state of jellium using a localized basis set associated
with an equally spaced grid. By symmetry the solu-
tion is a constant vector, i.e., all basis functions have
the same amplitude in the solution vector. Let us
now assume that we explore the energy surface
around the minimum along several directions. Let us
first “‘go” in a direction where we add components in
such a way that the sign of the amplitude of each
neighboring basis function changes. This corre-
sponds to a high-frequency plane wave and, since
the kinetic energy of such a plane wave is large, the
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total energy will rapidly increase if we add such a
contribution to our solution vector. If on the other
hand we add contributions that correspond to low-
frequency plane waves, the energy will increase
much more slowly. Since in grid-based methods the
basis functions are usually narrow and since one can
thus construct high-frequency functions, the condi-
tion number can be very bad. As one might suspect
from the above explanation, the different curvatures
can be estimated by means of a Fourier analysis.
With this information one can then use precondi-
tioning techniques to cure the length scale ill-
conditioning problem. Such a scheme has been pro-
posed by Bowler and Gillan (1998).

e Superposition ill conditioning:

This ill-conditioning problem is essentially identical
to the ill-conditioning problem of the OM func-
tional. If we have N,; contracted basis functions and
no localization constraints, the total energy is invari-
ant with respect to unitary transformations of these
functions. The introduction of a localization con-
straint destroys this invariance but there is an ap-
proximate invariance left which manifests itself in
very small curvatures in the minimum along certain
directions.

eRedundancy ill conditioning:

This problem can only be found in the formulation
of Hernandez and Gillan (1995), where the number
of contracted basis functions is larger than the num-
ber of electrons. In this case one spans a space that
contains not only the occupied orbitals but also
some unoccupied. As was shown before in the con-
text of the DMM functional, introducing a localiza-
tion constraint will not assign zero occupation num-
bers but small occupation numbers to components
corresponding to the unoccupied states in the uncon-
strained case. Since these components correspond-
ing to the unoccupied states have very little weight,
they have little influence on the total energy and one
has again certain directions in which the total energy
changes very slowly, resulting in very small curva-
tures.

Another open question is whether the OBDMM has
local minima. The functional is a sixth-order polynomial
with respect to the expansion coefficients of the con-
tracted basis functions, as can be seen from Egs. (99)
and (100). The two overlap matrices in Eq. (100) each
give a quadratic term, the two contracted orbitals in Eq.
(99) a linear term. Minimization with respect to the con-
tracted basis functions should therefore exhibit local
minima. Local minima have, however, not been re-
ported with this method so far. Perhaps the following
density-matrix minimization step, which is free of local
minima, saves the method from overall local minima.

IV. COMPARISON OF THE BASIC METHODS

It is certainly not possible to claim that a specific
method is the best for all applications. Nevertheless, the
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methods presented so far differ in many respects and
one can therefore clearly judge under which limiting cir-
cumstances certain methods will fail or perform well. In
this section these methods will therefore be compared
under several important aspects. The comparison will be
done in two categories. The first category applies to
electronic structure methods requiring a small number
of degrees of freedom per atom. The tight-binding
method belongs to the first category, requiring a few
basis functions per atom (or just a few degrees of free-
dom in the case of semiempirical tight binding). But we
shall also include the standard quantum chemistry meth-
ods in this first category, where one typically needs from
a few up to a few dozen Gaussian-type basis functions
per atom. The second category contains grid-based
methods such as finite-difference schemes (Chelikowsky
et al., 1994), or those in which the basis functions can be
associated with grid points such as in finite-element basis
functions (White et al,, 1989) or blip basis functions
(Hernandez et al., 1997). In these methods one has typi-
cally many hundreds of degrees of freedom per atom.
Even though the density matrix is sparse, O(N) methods
that calculate the full density matrix cannot be applied
to the second category of electronic structure methods.
The memory requirements alone are already prohibi-
tive. As pointed out before, we can expect that the lo-
calization region in a three-dimensional structure com-
prises on the order of 100 atoms. The density matrix will
exhibit significant sparseness only for larger systems. As-
suming that we have only 100 basis functions per atom,
the storage of the density matrix would require about 1
gigabyte of memory, which is the upper limit of current
workstations. The comparison in the class of large basis
sets will therefore comprise only methods that are Wan-
nier function based, namely, FOP, OM, and OBDMM.
The comparison in the small basis set class will comprise
FOE, DC, DMM, and OM, excluding two methods that
are explicitly targeted at large basis sets, namely, FOP
and OBDMM.

A. Small basis sets

The comparison of methods applicable to small basis
sets is based on the following criteria:

e Scaling with respect to the size of the localization
region:

The size of the localization region is taken as the
number of atoms contained within it. Only the FOE
method has linear scaling with respect to the size of
the localization region. As one increases the size of
this region the nonzero part of each column of the
Chebyshev matrices increases linearly, implying a
linear increase in the basic matrix-times-vector mul-
tiplication part. In the DMM method the CPU time
increases quadratically, since the numerical effort
for the basic matrix-times-matrix multiplications
grows quadratically with respect to the number of
off-diagonal elements of the matrix. Neglecting ill-
conditioning problems, the orbital minimization
method exhibits quadratic scaling, since the numeri-
cal effort for the calculation of the overlap matrix
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[Eq. (94)] between the Wannier orbitals increases
quadratically. As the localization region grows there
are more matrix elements, and the calculation of
each matrix element is more expensive since each
orbital is described by a longer vector. Because the
ill-conditioning problem becomes more severe for
large localization regions, the number of iterations
increases in reality in a way that is difficult to model,
resulting in an effective scaling that is stronger than
quadratic. The DC method has a cubic scaling with
respect to the size of the localization region if each
subvolume is treated with diagonalization schemes.
Comparing the scaling behavior of all these meth-
ods, one can thus conclude that the FOE method
will clearly perform best if large localization regions
are needed. The FOE method is also the only
method that can be faster than traditional cubically
scaling algorithms if no localization constraints are
imposed. In this case its overall scaling behavior is
quadratic, whereas all other methods have a cubic
scaling with a prefactor that is significantly larger
than that for exact diagonalization.

Scaling with respect to the accuracy:

A detailed comparison of the polynomial FOE
method and the DMM method has recently been
made by Baer and Head-Gordon (1997a, 1997b) for
systems of different dimensionality. They conclude
that in the one-dimensional case the DMM has the
best asymptotic behavior, but its prefactor is much
larger than that of the FOE method, so that the
FOE method is more efficient in the relevant accu-
racy regime. In the two-dimensional case they have
the same asymptotic behavior, but the FOE method
has again a much smaller prefactor. In the most rel-
evant three-dimensional case the FOE method has
both the best asymptotic behavior and the best pref-
actor. These results are plausible after the preceding
discussion of the scaling with respect to the size of
the localization region. When one wants to improve
the accuracy the most important factor is enlarge-
ment of the localization region. It is also clear that in
higher dimensions the number of atoms within the
localization region grows faster than in lower dimen-
sions and that the scaling with respect to the number
of atoms will thus become the decisive factor in
three dimensions. In lower dimensions the number
of iterations has higher relative importance, favoring
the DMM method. A comparison of the FOE and
DMM methods applied to quasi-two-dimensional
huge tight-binding fullerenes by Bates et al. (1998) is
also in agreement with the above statements. They
found that the FOE and DMM methods gave nearly
the same performance with a small advantage for
the FOE method. As discussed before, the scaling of
the OM and DC methods is stronger than quadratic
with respect to the size of the localization region. It
is therefore clear that the required numerical effort
for increased accuracy will grow even faster for
these methods than in the DMM method.
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¢ Scaling with respect to the size of the gap:

In the FOE method the degree n,; of the Chebyshev
polynomial increases linearly with decreasing gap
[Eq. (69)]. At the same time the density matrix de-
cays more slowly. It follows from Eq. (37) that the
linear extension of the localization region grows as
eg_alp in the applicable weak-binding limit. The vol-
ume of the localization region and the number of
atoms contained in it consequently grow as egfp.
Taking into account the number of iterations
[Eq. (69)], we find that the total numerical effort
increases as e;;; in the FOE method. In the DMM
method the number of iterations also increases with
decreasing gap but more slowly, like e;alp/z, as fol-
lows from Eq. (88). Taking into account the above
discussion of the scaling properties of the DMM
method with increasing localization region we obtain
the overall scaling of egu?/z, which is higher than the
scaling behavior of the FOE method. Obviously the
scaling behavior of the OM and DC methods is
worse. So in contrast to what one might first think
the FOE method performs best in this limit. In
three-dimensional metallic systems, the FOE
method is thus expected to be the only method that

will work efficiently at good accuracies.

Finding a first initial guess:

No initial guess is required in the FOE and DC
methods (except perhaps for the potential in a self-
consistent calculation). In the DMM method an ex-
tremely simple and efficient input guess for the den-
sity matrix is just a diagonal matrix that sums up to
the correct number of electrons. In the orbital mini-
mization method this point is somewhat problem-
atic. As mentioned above, a Wannier function rep-
resents typically a bond or lone electron pair. If one
can draw the standard Lewis structure of a molecule,
where bonds are denoted by lines and a lone elec-
tron pair by a pair of dots, one knows where the
Wannier functions should be centered, and the
Lewis formula can be the basis for the initial guess.
This procedure cannot be used if the molecule is
characterized by two or more Lewis structures that
are resonating. Especially if the two Lewis structures
correspond to an electron transfer over a distance
larger than the range of the localization region, seri-
ous problems are to be expected with Wannier-
function-based methods. In such a case it might be
impossible not only to find an initial guess, but also
to describe such a molecule by N,; localized Wan-
nier functions.

e Number of iterations in electronic structure calcula-
tions:

In the variational methods (OM and DMM) the
number of iterations depends on the condition num-
ber of the energy expression. As pointed out, the
OM energy expression is ill conditioned under local-
ization constraints, and therefore the required num-
ber of iterations is very large. Even for modest accu-
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racy several hundred iterations are required (Mauri
and Galli, 1994; Ordejon et al., 1995). In the DMM
method, on the other hand, the number of iterations
is the same as one needs in ordinary [i.e., non
O(N)] electronic structure calculations, namely, 20
to 30 (Nunes, 1998, private communication). The
quantity that corresponds to the number of itera-
tions in the FOE method is the degree n,; of the
polynomial. While it is difficult to compare the cost
of one Chebyshev recursion step with the cost of a
DMM minimization step, such a comparison can be
made in the case of OM. In each orbital line mini-
mization step one has to calculate the minimum of a
quartic polynomial, which requires at least three ap-
plications of H to the wave function. One Cheby-
shev recursion step requires one application of H.

Number of iterations in molecular dynamics simula-
tions:

In molecular dynamics simulations as well as struc-
tural relaxation steps and self-consistent mixing
schemes, the density matrix or the Wannier func-
tions from the previous step are a good input guess
for the next step. Good initial input guesses are ben-
eficial in all methods except in the polynomial FOE
method and the DC method. It is difficult to quan-
tify the possible savings of such a reuse. To preserve
the quality of the solution of the preceding step as
an input guess in a molecular dynamics simulation, it
may be necessary to make the time step smaller than
the integration scheme would allow. How large the
maximum time step can be also depends, of course,
on the order and properties of the time integration
scheme used to propagate the molecular dynamics
simulation. Similar remarks apply to the case of
structural relaxations. The decisive factor determin-
ing the number of iterations per molecular dynamics
step is in this context again the condition number of
the functional. With the DMM methods, of the or-
der of 2 to 3 steps are needed both for accurate mo-
lecular dynamics simulations (Qiu, 1994) and for
structural relaxations (Nunes, 1998, private commu-
nication). The smallest number of iterations that was
used in molecular dynamics simulations with the or-
bital minimization method was 10, but at the price of
Very poor energy conservation.

e Crossover point for standard tight-binding systems:

The FOE method has the lowest reported crossover
point for the standard carbon test system in the crys-
talline diamond structure. For the FOE method it is
around 20 atoms (Goedecker, 1995), and for the
DMM it is estimated (Li et al., 1993) to be around 90
atoms. No crossover points were ever given for the
OM and DC methods, and presumably they are
much higher. All quoted crossover points for elec-
tronic structure calculations are for an accuracy of
roughly 1% in the cohesive energies, but in the rel-
evant publications not all computational details are
listed to ensure that these numbers are really com-
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parable in all respects. The low crossover point of
the FOE method can be understood in terms of its
scaling behavior with respect to the size of the local-
ization region discussed above. For small systems
the size of the localization region equals the size of
the whole system. The FOE method therefore starts
off with a quadratic scaling behavior, whereas all
other methods start off with a cubic behavior. Con-
sequently the crossover point for all other methods
can only be for system sizes larger than the localiza-
tion region, whereas the crossover point in the FOE
method can already be at smaller system sizes if it is
implemented efficiently.

In the context of molecular dynamics simulations the
crossover points are different because some of the
variational methods can benefit from good input
guesses. For the FOE method the crossover point
remains at 20 atoms, for the OM method Mauri and
Galli (1994) quote 40 atoms, and for the DMM
method Qiu et al. (1994) quote 60 atoms. Again no
crossover point is given for the DC method. It has to
be stressed, however, that the numbers for the FOE
and DMM methods were for highly accurate mo-
lecular dynamics runs where the total energy was
conserved, while in the benchmarks of Mauri and
Galli (1994) no satisfactory energy conservation was
obtained.

Influence of the range of a sparse Hamiltonian ma-
trix on the performance:

In the FOE method the numerical effort increases
strictly linearly with respect to the number of non-
zero elements per column, which depends cubically
on the range of the Hamiltonian matrix. In the case
of the DMM method it can be shown (Li et al., 1993)
that one has to calculate intermediate product ma-
trices only up to a range that is the sum of the ranges
of the density matrix and the Hamiltonian matrix.
As long as the range of the Hamiltonian is small
compared to the range of the density matrix, the
number of operation increases only very weakly with
respect to an increasing Hamiltonian range. The
DMM method therefore outperforms the FOE
method under such circumstances (Daniels and Scu-
seria, 1998). Hamiltonian matrices of relatively large
range are found in the context of density-functional
calculations using Gaussian basis sets. For tight-
binding calculations, in contrast, the range of the
Hamiltonian is usually small. The OM method
shows the same behavior as the FOE method. The
numerical effort increases linearly with respect to
the number of nonzero elements per column of the
Hamiltonian. In the DC method the numerical effort
is independent of the bandwidth, but even in this
case the DC method is not expected to outperform
the FOE or DMM methods.

Scaling with respect to the size of the basis set:

Let us now consider the case in which the number of
atoms and all other relevant quantities, such as the
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size of the localization region, are fixed and where
we only increase the number of basis functions per
atom m, . Both the number of columns »n and the
number of off-diagonal elements per column m of
the density matrix will then increase linearly with
respect to m;. We will also assume that the Hamil-
tonian is a sparse matrix with m, off diagonal ele-
ments per column. In the DMM method the numeri-
cal effort will consequently grow cubically with
respect to my, since the number of operations
needed for the multiplication of two sparse matrices
of linear dimension n with m off-diagonal elements
per column is proportional to nm?. The DC method
scales cubically as well, since it is based on diagonal-
ization. The FOE method likewise scales cubically,
since three factors are increasing—the number of
columns in the density matrix, the number of coeffi-
cients in each column, and the number of off-
diagonal elements of the Hamiltonian matrix. Thus,
in addition to the arguments showing the unrealisti-
cally large memory requirements of these methods
when used with large basis sets, we also find a cubic
scaling that prohibits the use of these algorithms in
this context. In the OM method both the application
of the Hamiltonian to the orbitals and the calcula-
tion of the overlap between orbitals scale quadrati-
cally with respect to m,; . This is due to the facts that
both the number of nonzero coefficients ¢} in the
Wannier function expansion and the number of non-
zero matrix elements in the Hamiltonian and over-
lap matrices increase linearly.

The assumption in the above discussion that all
other relevant parameters remain constant when in-
creasing m, is rather unrealistic concerning the ei-
genvalue spectrum. In general, the highest eigen-
value €,,,, will increase when basis functions are
added. In addition to the aforementioned consider-
ations of numerical effort for one step, one also has
to take into account that the number of steps will
increase due to a worsening of the condition num-
ber. Since n,; in the FOE method increases faster
[Eq. (69)] than the number of iterations n; [Eq.
(88)] in the DMM and OM methods, performance
will deteriorate more in the FOE than in the DMM
and OM methods. The DC method is insensitive to
this effect.

Memory requirements:

The DMM method requires the storage of the whole
sparse density matrix. If one takes advantage of the
fact that the matrix is symmetric, storage require-
ments can actually be cut into half. The OM method
requires only the storage of the truncated Wannier
orbitals and so the memory requirements are re-
duced by about 50% in the typical tight-binding con-
text compared to the case in which one stores all the
nonzero elements of the density matrix without tak-
ing advantage of its symmetry. If the formulation of
Kim et al. (1995) is used, the gain can come down to
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less. In both the DC and FOE methods only the
subparts, the columns of the density matrix that are
consecutively calculated, need to be stored. The
storage requirements are therefore greatly reduced
compared to the DMM and OM methods, roughly
by a factor of N,,;.

Parallel implementation:

Parallel computers and clusters of workstations are
standard tools in the high-performance computing
environment. The suitability of an algorithm for par-
allelization is therefore an important consideration.
It is of course always possible to ‘““‘parallelize” any
program; the question is whether this can be done in
a coarse- or fine-grained way, i.e., with a small or
large communication-to-computation ratio. Only a
coarse-grained parallel program will run efficiently
on clusters of workstations with relatively slow com-
munications as well as on a very large number of
processors of a massively parallel computer. Both
the Fermi operator expansion and the DC algo-
rithms are intrinsically parallel approaches in that
they subdivide a large computational problem into
smaller subproblems which can be solved practically
independently. For the FOE method (Goedecker
and Hoisie, 1997) the calculations of the different
columns of the density matrix are practically inde-
pendent [Eq. (49)]. For the DC method the calcula-
tions of the different patches of the density matrix
are practically independent as well. Both methods
can therefore be implemented in a coarse-grained
way. A program based on the FOE method won the
1993 Gordon Bell prize in parallel computing for its
outstanding performance on a cluster of eight work-
stations, obtaining half of the peak speed of the
whole configuration (Goedecker and Colombo,
1994b). Impressive speedups of up to 400 have been
obtained with the FOE method on an 800-processor
parallel machine (Kress et al., 1998). Even though it
is more difficult to implement the OM method in
parallel, two such implementations have been re-
ported. In the first scheme (Canning et al., 1996) one
associates with each processor a certain number of
localized orbitals. This data structure is optimal for
the application of the Hamiltonian to the orbitals,
but requires communication for the calculation of
the overlap between the orbitals. The second
scheme (Itoh ef al., 1995) associates with a certain
processor the coefficients of all the orbitals whose
localization region has an intersection with a certain
region of space. This data layout is optimal for the
calculation of the overlap matrix, but requires com-
munication for the application of the Hamiltonian.
The optimal basis DMM method has also been par-
allelized (Goringe, Hernandez, et al., 1997). Since
the OBDMM is more complex than the other meth-
ods that have been implemented on parallel ma-
chines, three different parallelization paradigms are
required.
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¢ Quality of forces:

For variational (DMM and OM) methods, the force
formula is particularly simple [Eq. (90)] since only
the Hellmann-Feynman term survives. It has to be
stressed, however, that this formula is only exact if
one has succeeded in reducing to zero the gradient
with respect to all variational quantities. If, in a
simulation, the gradient is not reduced to zero within
the required precision because too many iterations
would be required, errors will creep into the calcu-
lated forces, making them inconsistent with the total
energy. From this point of view the situation is
easier in the FOE method. Since the Fermi operator
expansion is not an iterative method (in the sense
that one iterates until a certain accuracy criterion is
met), the force formula of Voter [Eq. (58)] will al-
ways give forces consistent with the total energy. As
has already been discussed, no consistent force for-
mula exists for the DC method.

Consistent forces are a prerequisite for the conser-
vation of the total energy in molecular dynamics
simulations. Even with consistent forces, however,
there are other factors that can cause deviations
from perfect total energy conservation in molecular
dynamics simulations, such as finite time steps and
events where atoms enter or leave the localization
region.

Cases in which the methods become inefficient:

Cases in which different methods become inefficient
have already implicitly been pointed out when dis-
cussing the previous criteria. Let us finally mention a
special case in which the FOE method is inefficient.
As discussed above, a small gap usually implies
highly extended density matrices, and the FOE
method is highly competitive. There can, however,
be exceptions to this rule. If by symmetry restric-
tions there is practically no coupling between two
well-localized states that are close together, their en-
ergy levels can be split by a very small amount. If the
Fermi level falls in between these two levels, a very-
high-degree polynomial is needed to separate them
into an occupied and an unoccupied level. This sce-
nario can be found in the case of a vacancy in a
silicon crystal. A Jahn-Teller distortion leads to a
very small splitting between an occupied and an un-
occupied gap level. Using a high electronic tempera-
ture and a low-degree polynomial in the FOE
method does not reproduce this Jahn-Teller distor-
tion. A detailed study of this effect is given by Voter
et al. (1996), showing that a polynomial of degree
200 is needed instead of the typical degree 50 for
bulk silicon in the tight-binding context. From an
energetic point of view it is frequently not necessary
to track such Jahn-Teller distortions, since they lead
to a rather small energy reduction. In molecular dy-
namics simulations of metallic systems this suppres-
sion of the gap opening can even be beneficial
(Goedecker and Teter, 1995) since it leads to a
smoother density of states around the Fermi level.
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In summary, we see that performance depends criti-
cally on many parameters, which can change from one
application to another. Claims of superior performance
based on test runs of a particular system therefore have
to be taken with caution.

B. Large basis sets

Whereas the methods that are mainly applicable in
the context of small basis sets showed important differ-
ences under the various comparison criteria, the behav-
ior of the FOP, OM, and OBDMM methods are quite
similar under most of these criteria. The comparison of
the methods that are applicable to large basis sets will
therefore be based only on a smaller set of important
criteria:

e Scaling with respect to the size of the basis set:

As pointed out before, the methods compared in this
section all have a reasonable scaling with respect to
the size of the basis set, thus allowing their use in the
context of very large basis sets. In contrast to the
same point within the small basis set framework, the
number of nonzero matrix elements of the Hamil-
tonian is typically independent of the resolution of
the grid, i.e., of the number of basis functions. The
most important part of the FOP, OM, and optimal
basis DMM algorithms, the application of the
Hamiltonian matrix to a wave vector, therefore
scales linearly.

¢ Finding a first initial guess:

As discussed in the comparison of small basis sets, it
can be difficult to find an initial guess for Wannier-
function-based methods. This problem does not exist
in the OBDMM method if the number of orbitals is
larger than the number of electrons. In this case the
orbitals are just basis functions and, by analogy with
the usual tight-binding or LCAO basis sets, it should
always be possible to generate a physically moti-
vated initial guess for these orbitals.

e Required number of iterations:

As mentioned above, both the OM and the
OBDMM methods suffer from ill-conditioning prob-
lems and therefore require a frequently excessive
number of iterations. No such ill-conditioning exists
for the Fermi operator projection method.

e Cases in which the methods become highly ineffi-
cient:

None of the three methods has ever been applied to
metallic systems, and they are all expected to fail in
this case.

V. OTHER O(N) METHODS

The recursion method is a well-established method
which also exhibits O(N) scaling. It is principally a
method for calculating the density of states D(e€), but
once the density of states is known, the band-structure
energy can be calculated by integrating €D (€) up to the
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Fermi level. The recursion method has been described
extensively (Haydock, 1980; Gibson et al., 1993) and we
shall therefore not review it. Let us just point out that
within the original formulation of the recursion method
only the diagonal elements of the density matrix could
be calculated. For a calculation of the forces one would
also need the off-diagonal elements, so the applicability
of the recursion method is significantly reduced com-
pared to the O(N) methods described in Sec. III, which
all gave access to the forces. There have been several
attempts to overcome this limitation (Aoki, 1993; Hors-
field, Bratkovsky, Pettifor, and Aoki, 1996, Horsfield,
Bratkovsky, Fearn et al., 1996, Bowler et al., 1997). In
contrast to the methods of Sec. III, these bond order
potential methods are fairly complex and difficult to
implement. The basic idea in the bond order potential
method is to calculate the off-diagonal elements of the
density matrix as the derivatives of diagonal elements of
a density matrix defined with respect to a transformed
basis. Even though it is now possible to calculate forces
within the bond order potential method, they are unfor-
tunately not consistent with the total energy. In another
version of the recursion method, the generalized
density-of-states method (Horsfield, Bratkovsky, Petti-
for, and Aoki, 1996; Horsfield, Bratkovsky, Fearn et al.,
1996) the exact forces can be calculated. It is, however,
necessary to calculate some generalized moments H*
called interference terms from the recursion coefficients.
This inversion is ill conditioned and becomes unstable if
one tries to calculate more than 20 moments (Bowler
et al., 1997). With such a low number of moments it is
not possible to describe many realistic systems (Kress
and Voter, 1995), and the error one reaches when the
instability sets in is frequently still much too large to be
acceptable (Bowler eral, 1997). So recursion-based
methods seem not to be a general purpose tool for elec-
tronic structure calculations in which accurate energies
and forces are required. Bond order potential methods
can, however, give insight into basic bonding properties
of crystalline solids (Pettifor, 1995). Since these meth-
ods, which are related to the recursion algorithm, re-
quire the calculation of all the diagonal elements of the
density matrix, they are obviously not very efficient if a
very large number of basis functions per atom is used,
and they were indeed primarily proposed for tight bind-
ing or other schemes with a small number of basis func-
tions. The only exception is a version proposed by
Baroni and Giannozzi (1995), who suggested using delta
functions as a basis in a density-functional-type calcula-
tion. With this basis set the diagonal elements of the
density matrix are sufficient to determine the charge
density, whereas for more general basis functions the
off-diagonal elements are needed as well [Eq. (12)]. Be-
cause the number of delta functions has to be very large,
even in the most favorable case of silicon, the crossover
point was estimated to be around 1000 silicon atoms.
This method is clearly not competitive with most other
methods, in which the crossover point is much lower.
In addition to the recursion method, there are other
O(N) methods that calculate the density of states and
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thus give information about the eigenvalue spectrum of
a system. We shall not expand on these methods (Drab-
old and Sankey, 1993; Wang, 1994; Silver and Roeder,
1997) in this article, since our focus is on methods in
which the primary quantity is the total energy. In prin-
ciple, it would also be possible to derive total energies
and forces from the spectrum by an integration up to the
chemical potential. Attempts in this direction have, how-
ever, not been very successful up to now with the excep-
tion of the smeared density of states kernel polynomial
method (Voter et al., 1996), which is closely related to
the FOE method. A broader discussion of these meth-
ods based on the density of states can be found in a
review by Ordejon (1998).

Another approach to improving the scaling properties
is based on so-called pseudo-diagonalization (Stewart
et al., 1982). This method is closely related to the well-
known Jacobi method for matrix diagonalization.
Whereas in the original Jacobi method rotation transfor-
mations are applied until all off-diagonal elements van-
ish, only the entries that couple occupied and unoccu-
pied states are annihilated in the pseudo-diagonalization
method. One obtains thus not the occupied eigenvectors
of the Hamiltonian but an arbitrary set of vectors that
span the same occupied space. In its original formulation
(Stewart et al., 1982) this method still had cubic scaling,
but with a smaller prefactor than complete matrix diago-
nalization. Nearly linear scaling has been reported with
this method (Stewart, 1996) if the Hamiltonian matrix is
constructed with respect to a set of well-localized orbit-
als. In this way most of the elements in the block-
coupling occupied and unoccupied states are zero at the
start of the transformations. The annihilation of certain
matrix elements during the rotation steps causes only a
controlled spread of other rows and columns in the ma-
trix, so at the end each column and row extends over a
region comparable to the localization region in other
O(N) methods.

A method proposed by Galli and Parrinello (1992)
can be considered as a precursor of the orbital minimi-
zation method. The total energy is minimized with re-
spect to a set of localized Wannier functions. In contrast
to the orbital minimization method, however, one has
the old conventional functional [Eq. (93)], which has to
be minimized under the constraint of orthogonality,
rather than having the orthogonalization constraint con-
tained in the modified functional [Eq. (92)]. In this
scheme it is necessary to calculate the inverse of the
overlap matrix between the Wannier functions. From
timing considerations this is not a serious drawback,
since this part is only a small fraction of the total work-
load, even for large systems, and even if it is done with a
scheme that scales cubically. There are, however, prob-
lems of numerical stability. As pointed out by Pandey
et al. (1995), the overlap matrix becomes close to singu-
lar and the introduction of localization constraints can
under these circumstances falsify the results.

Also vaguely related to the OM functional are meth-
ods in which certain constraints are included by a pen-
alty function. Wang and Teter (1992) included the or-
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thogonality constraint in this way, Kohn (1996) the
idempotency condition of the zero-temperature density
matrix.

O(N) implementations of electronic structure meth-
ods based on the multiple-scattering theory have also
been reported. In the simplest version (Wang et al.,
1995) it is essentially a DC method, with the difference
that within each localization region the calculation is
done with the multiple-scattering method. A further de-
velopment was to replace the buffer region by an effec-
tive medium (Abrikosov et al., 1996, 1997). This can
considerably reduce the prefactor of the calculation, es-
pecially in metallic systems where large localization re-
gions are needed. For this class of methods, however, no
force formulas have been reported, a deficiency that re-
stricts their applicability.

A scheme that may lead to a reduced scaling behavior
has also been proposed by Alavi et al. (1994). It is based
on a direct representation under the form of a sparse
matrix of the Mermin finite-temperature functional
(Mermin, 1965), so it allows for a finite temperature, as
does the FOE method.

As was already mentioned, the polynomial FOE
method becomes inefficient for cases in which one has a
large basis set, causing the highest eigenvalue to grow
very large. This would necessitate a Chebschev polyno-
mial of very high degree. An elegant method for over-
coming this bottleneck within a polynomial method has
been proposed by Baer and Head-Gordon (1998a,
1998b). They write the density matrix at a low tempera-
ture T as a telescopic expansion of differences of density
matrices at higher temperatures Tq’:

FT:Fan+(Fanfl_Fan)+(Fan72_Fan71)
(101)

The factor g (¢>1) determining the geometric se-
quence of temperatures is chosen from considerations of
numerical convenience. As the temperature is lowered
the numerical rank of each difference term becomes
smaller and smaller, since the difference of two Fermi
distributions of similar temperature is vanishing to
within numerical precision over most of the spectrum.
Hence it is necessary to find Chebyshev expansions only
over successively smaller regions of the spectrum and it
is also possible to calculate the traces (which in turn
determine all physically relevant quantities) within
spaces of smaller and smaller dimension.

Ordejon et al. (1995) proposed a method based on the
orbital minimization method to calculate phonons from
the electronic structure with linear scaling.

+“‘+(FTqO_FTq1).

VI. SOME FURTHER ASPECTS OF O(N) METHODS

Hierse and Stechel (1994, 1996) examined whether
non-orthogonal Wannier-like orbitals are transferable
from one chemical environment to another similar one.
If this were the case one could reuse a precalculated
Wannier orbital as a very good initial guess. Such a
property would thus reduce the prefactor of any method
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regardless of its scaling behavior. Unfortunately, they
could find reasonable transferability only under rather
restrictive conditions. When they added CH, units to a
C,H,, 1+, polymer they found good transferability of the
orbitals associated with this building block within a
density-functional scheme (Hierse and Stechel, 1994).
But as soon as they started bending the polymer (Hierse
and Stechel, 1996), the transferability was lost in the
density-functional scheme. Only in a non-self-consistent
Harris functional scheme were some efficiency gains still
possible.

Hernandez et al. (1997) suggest a solution to the basis
set problem in O(N) methods. As mentioned in Sec. III,
O(N) techniques are difficult to reconcile with extended
basis sets such as plane waves. Plane waves, however,
have several important advantages and are therefore
widely used in conventional [i.e., not O(N)] electronic
structure calculations. One of their main advantages is
that the accuracy can easily be improved by increasing
one single parameter, namely the minimal wavelength,
which corresponds to the resolution in real space. Her-
nandez et al. (1996) have proposed a basis set of “blip”
functions which combines both advantages. It is local-
ized and its resolution can systematically be improved.
As an alternative to the “blip” functions
one could also use finite-difference techniques (Che-
likowsky et al., 1994) or wavelets (Goedecker, 1998b;
Goedecker and Ivanov, 1998; Lippert et al., 1998; Arias,
1999) since they share the same advantages. As shown
by Goedecker and Ivanov (1999), wavelets allow for a
highly compact representation of both the density ma-
trix and the Wannier functions, since they are localized
in both real and Fourier space.

Much of the work of Ordejon et al. (1996) is also
based on a new set of basis functions proposed by San-
key and Niklewski (1989). This basis set consists of
atomic orbitals that are modified in such a way that they
are strictly zero outside a certain spherical support re-
gion. This then gives rise to a Hamiltonian matrix that is
strictly sparse. By tabulating these matrix elements it is
possible to do density-functional calculations whose
computational requirements are in between the require-
ments of traditional density-functional calculations and
tight-binding calculations. Obviously one has to find a
compromise between accuracy and speed. If the basis
functions extend about a larger support region, one has
a more accurate basis, but the numerical effort increases
because the Hamiltonian is less sparse.

Horsfield and Bratkovsky (1996) have incorporated
entropy terms in O(N) methods within the FOE algo-
rithm. As soon as one has systems at nonzero tempera-
tures, these terms should, in principle, be added; how-
ever, in most systems their effects are very small at room
temperature. For computational convenience, tempera-
tures much larger than room temperature can be used.
Wentzcovitch et al. (1992) and Weinert and Davenport
(1992) showed that the inclusion of entropy gives simpli-
fied force formulas, since only the Hellmann-Feynman
term survives. The free energy A is given by
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A=Ti[FH—kgTS(F)], (102)
where the entropy S is a matrix function of F,
S=—[FIn(F)+(1-F)ln(1-F)]. (103)

Writing S as a Chebyshev polynomial in H and analyz-
ing everything in terms of the eigenfunctions of H, they
find that one has to do a Chebyshev fit to a distribution
very similar to the Fermi distribution but with some ad-
ditional features close to the chemical potential. Using a
formalism by Gillan et al. (1998), they then extrapolate
their results to zero temperature, obtaining faster con-
vergence to the zero-temperature limit in this way. Let
us stress again that with the FOE method it is possible to
build up density matrices corresponding to several tem-
peratures without significant extra cost. A set of gener-
alized Fermi distributions that allow an efficient ex-
trapolation to the zero-temperature limit by eliminating
arbitrarily high powers of T has also been proposed by
Methfessel and Paxton (1989).

As was mentioned in the Introduction, the fundamen-
tal cubic term in an electronic structure calculation
based on orbitals comes from the orthogonalization re-
quirement. In traditional pseudopotential calculations
based on a Fourier-space formulation there is, however,
a second very large cubic term, arising from the nonlocal
part of the pseudopotential. This second cubic term can
be eliminated by using pseudopotentials that are sepa-
rable in real space (King-Smith er al., 1991; Goedecker
et al., 1996; Hartwigsen et al., 1998).

VII. NON-ORTHOGONAL BASIS SETS

Up to now we have always implicitly assumed that we
are dealing with orthogonal basis sets, i.e., that

Non-orthogonal basis sets give rise to an overlap matrix
S,

Sl]:J ¢f(l‘)¢](l‘)dl‘

An orthogonality relation similar to Eq. (104) can be

(105)

obtained by introducing the dual basis functions ¢,(r)
given by
Bi(0=2 S (), (106)
i
where S! is the inverse of the overlap matrix S. It is
then easy to verify that

f @7 (1) pi(r)dr=15; ;. (107)
As has been mentioned in Sec. III, all realistic atom-
centered localized basis sets are non-orthogonal. Within
the tight-binding context, there are also many non-
orthogonal schemes on the market. There is thus cer-
tainly a need to apply O(N) techniques for these
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schemes. Most of the basic O(N) algorithms presented
previously have been generalized to the non-orthogonal
case, and we shall present these generalizations in this
section. In the context of a non-orthogonal scheme one
has to distinguish carefully between the eigenfunctions
¥, and the associated eigenvector ¢ which contains the
expansion coefficients ¢} such that ¥, (r)=2;c! ¢;(r).
The eigenvector ¢” satisfies the generalized eigenvalue
equation

Hcd'=¢,5¢". (108)

In the same way one has to distinguish carefully between
the density-matrix operator F(r,r") and the density ma-
trix F; ; itself. While Eq. (22) for the density-matrix op-
erator remalns the same,

F(r,r'>=§ Fle) WX ()W, (')

=2 fle) 2 el ef 4l (N g(r), (109)
the expression for the number of electrons [Eq. (13)] is
modified to

N, =Tt FS]. (110)

The expression for the band-structure energy (10), how-
ever, remains valid. In the definition of the density ma-
trix F; j [Eq. (9)] one has to use the dual basis functions
instead of the ordinary:

F,]=J J&f(r)F(r,r’)?ﬁi(r’)dtdr’

=> ci*cif(ey). (111)
n
This replacement can have important consequences for
the locality of the density matrix F; ;. If we have a set of
localized orthogonal basis functions (the only known set
of basis functions with this property are the Daubechies
scaling functions), whose extension is less than the oscil-
lation period of the density-matrix operator, then Eq.
(9) ensures that F; ; will have the same decay properties
as F(r,r’"). This does not necessarily hold true for Eq.
(111). Even if the basis functions ¢;(r) are well local-

ized, this is in general not true for their duals ¢,(r). If
the duals have a very slow decay then this slow decay
will be inherited by F; ; and it might not be possible to
use O(N) algorithms for the calculation of F;;. Prob-
lems might, for instance, arise if high-quality Gaussian
basis sets containing diffuse functions are used. Prelimi-
nary experience indicates that for small basis sets of
moderate quality the duals are not so delocalized as to
destroy the localization of Fj ;.

For the DC method the generallzatlon to the non-
orthogonal case is trivial. Since it is based on diagonal-
ization within each subvolume, one only has to solve the
generalized eigenvalue problem [Eq. (108)] instead of
an ordinary one. In the density-functional context, the
DC method has actually been used only with non-
orthogonal orbitals.
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The Fermi operator expansion method using a Cheby-
shev representation of the density matrix has been gen-
eralized in the non-orthogonal case by Stephan and
Drabold (1998). It is easy to see that all the central
equations of the FOE method remain correct if the
Hamiltonian H is replaced by a modified Hamiltonian

H (that is no longer Hermitian) given by
H=S""H. (112)

In particular, it remains true that the density matrix is
given within arbitrary precision by

¢ & —
F~21+Y, ¢,T,(H), (113)
2 j=1

if a sufficiently large n,, is used. The problem is how to
find H efficiently. Even if § is a sparse matrix, the in-

verse S~ ! is not sparse in general and H would be a full
matrix as well, destroying immediately the linear scaling.

However, it turns out that the matrix elements of H
decay faster than the corresponding matrix elements of
H (Gibson, 1993; Stephan and Drabold, 1998). One can

therefore cut off the tight-binding Hamiltonian H at the
same distance where one would usually cut off H. In this
way all the matrices involved are reduced to sparse ma-

trices and H can be constructed by solving the set of
linear systems

SH=H. (114)

Since both the right-hand side in H and the solution

vectors making up H are sparse, different systems of
equations are only coupled by sub-blocks of S. So the
big matrix inversion problem is decoupled into many
small systems of equations and the scaling is therefore
strictly linear.

If the FOP method is used in connection with a ratio-
nal approximation, the generalization to the non-
orthogonal case can be done straightforwardly and with-
out any approximation (Goedecker, 1995):

WV
F:EV e (115)
One has then to solve a system of linear equations,
which is a generalization of Eq. (73):

(H—z,5)F,=1, (116)

F=> w,F,. (117)
A similar approach was adopted by Jayanthis et al
(1998). They formulated their method in terms of the
Green’s function. However, F, in Eq. (116) is a Green’s
function for a complex energy z, and the methods are
essentially equivalent.

If the FOE method is used to calculate Wannier func-
tions, the required projection operator F), is slightly dif-
ferent from the density matrix and it is given by

Rev. Mod. Phys., Vol. 71, No. 4, July 1999

w,S
FP:EV H—-z,S"

(118)

The density-matrix minimization method has also
been generalized to the non-orthogonal case (Nunes and
Vanderbilt, 1994). Introducing a modified density matrix

F defined as

F=S"'Fs7, (119)
one finds that the DMM functional (78) becomes
QO=Ti[(3FSF—2FSFSF)(H—ul)]. (120)

This has the advantage that one does not have to invert

S if one minimizes directly with respect to F. The calcu-
lation of the gradient of the DMM functional in the non-
orthogonal case is a tricky point. The definition of the
gradient is not as absolute as one might think. It is the
direction of steepest descent per unit change of the vari-
ables, and one must therefore define a norm for the mul-
tidimensional space of variables before defining the gra-
dient (Vanderbilt, 1998, private communication). Two
different gradient expressions have been proposed by
Nunes and Vanderbilt (1994) and by C. White et al.
(1997), which correspond to two different choices of
metric. The gradient of White etal (1997) requires
fewer minimization steps (Gillan et al., 1998), but each
step is more expensive, since it requires the calculation
of the inverse of the overlap matrix. From the point of
view of overall numerical efficiency it is therefore not
clear which gradient expression is more efficient.
Another generalization (Daniels et al., 1997, Millam
and Scuseria, 1997) of the DMM method, which is simi-
lar in spirit to Stephan’s generalization (Stephan and
Drabold, 1998) of the FOE method, consists in first per-
forming a transformation to an orthogonal basis set by
finding the LU decomposition of the overlap matrix

s=U'uU, (121)

where U is an upper triangular matrix. If, in addition, U
is approximated as a sparse matrix with m off-diagonal
elements, then Eq. (121) can be solved with a scaling
proportional to nm?, where n is the dimension of the
matrices involved. Thus the scaling with respect to the
size of the system is linear, as it should be.

The orbital minimization method can easily be gener-
alized to the non-orthogonal case (Ordejon et al., 1996).
The orbital overlap =,cjc)" in the functional [Eq. (92)]
has to be generalized to X, ,c}'S, k¢

VIll. THE CALCULATION OF THE SELF-CONSISTENT
POTENTIAL

We shall now discuss an issue that is relevant only in
self-consistent electronic structure calculations, namely,
the calculation of the potential arising from the elec-
tronic charge. This potential consists essentially of two
parts, the electrostatic or Hartree potential and the
exchange-correlation potential.
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A. The electrostatic potential

The solution of Poisson’s equation to find the electro-
static potential arising from a charge distribution p is a
basic problem found in many branches of physics. Solu-
tion techniques are described in a wide variety of books
and articles. We shall therefore only point out a few
features that are important in the special context of
O(N) electronic structure calculations.

If one is dealing with an electronic charge density that
has only one length scale, Poisson’s equation can be
solved efficiently and with a scaling that is close to lin-
ear. Charge densities of this type are encountered in the
context of pseudopotential calculations where one has
eliminated the core electrons and where the characteris-
tic length scale is the typical extension of an atomic va-
lence electron. One can, for instance, use plane-wave or
multigrid techniques (Briggs, 1987), which both have a
scaling proportional to n log(n), where n is the number
of grid points.

The situation becomes problematic when core elec-
trons are included. In this case one could, in principle,
still use the above-mentioned techniques with an in-
creased resolution. One would still have linear scaling,
but the prefactor would be so large as to make it com-
pletely impractical in terms of both timing and memory.
Exactly the same arguments apply to the representation
of the wave functions, and for this reason ordinary plane
waves are not used for all-electron calculations.

A widely-used basis set for all-electron calculations
are Gaussian-type basis sets (Boys, 1950). By varying
the width of the Gaussians one can describe both core
and valence electrons. The popularity of Gaussian-type
basis functions comes from the fact that many important
operations can be done analytically (Obara and Saika,
1986). One property that we shall use is that the product
of two Gaussians is again a Gaussian, centered in be-
tween the two original Gaussian-type functions. The ma-
trix elements of the electrostatic potential part of the
Hamiltonian with respect to a set of Gaussian orbitals

gi(r), i ..M are given by
o~ Frugr(r')g,(xr")
Hir= drg"(r)( f dr' 3, =5 e g,
| [r—r'|
(122)
The elementary integral
r ’ l',
f fd ,8i(r g](|l.g];(| )gi(x") (123)

can also be calculated analytically (Obara and Saika,
1986). A straightforward evaluation of Eq. (122) would
then result in a quartic scaling. There are, however,
many well-known techniques (Challacombe et al., 1995)
to reduce this scaling. The most obvious trick comes
from the observation that there is a negligible contribu-
tion to the charge density p if the Gaussians g; and g,
are centered far apart. Consequently the charge density
is not a sum over M; product Gaussians G,, (G,,
=gig;), but only over M, such Gaussians,
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The size of the auxiliary basis set M, is proportional to
M, with a large prefactor, which depends on the ratio of
the largest to the smallest extension of the Gaussians as
well as on the accuracy target. In a similar way matrix
elements H; ; become negligible if the basis functions g;
and g; are centered very far apart. Using these two ap-
proximations, one obtains a quadratic scheme with a
very large prefactor. An approximate quadratic scaling
is also found in numerical tests (Strout and Scuseria,
1995).

Another widely used method consists in fitting the
charge density by a set of M, auxiliary Gaussians G;.
Even though we use the same symbols (M,,G;) as
above, they now denote somewhat different quantities.
The allowed number of auxiliary Gaussians M, is now
much smaller, namely, a few times M, . The auxiliary
functions themselves are no longer taken to be all the
possible product functions, but are determined by em-
pirical rules in such a way as to give the best possible fit
in Eq. (124). The fitting involves the solution of an ill-
conditioned system of linear equations and therefore has
cubic scaling, but with a small prefactor. The evaluation
of the matrix elements using this representation of the
charge density then has quadratic scaling, if one again
neglects small elements.

To obtain an even better scaling behavior requires the
introduction of completely new concepts. One possibil-
ity is to build upon algorithms that solve the classical
Coulomb problem for point particles. The classical Cou-
lomb problem requires the calculation of the electro-
static potential arising from all the N particles with
charge Z; at all the positions r;

(124)

Z
U(r,) ; T (125)
By grouping particles into hierarchical groups and by
describing their potential far away from such groups in a
controlled, approximate way by multipoles, these fast
algorithms allow us to evaluate Eq. (125) with linear
instead of quadratic scaling. There are now several pro-
posals (C. White et al., 1994; Strain et al., 1996; Perez-
Jorda and Yang, 1997) for modifying one of these fast
algorithms, the fast multipole method (Greengard, 1994)
in such a way that it can also handle the continuous
charge distributions arising in the context of electronic
structure calculations. The basic idea is fairly straightfor-
ward. As we saw, the charge distribution is always given
as a weighted sum of auxiliary Gaussians [Eq. (124)].
Now the electrostatic potential of such a Gaussian par-
ticle looks the same from a distance as the potential of a
point particle. Concerning the far field, one can thus es-
sentially take over the existing algorithms. To account
for the nonpointlike nature of the Gaussian particles
one has, however, to correct the near field. Since the
calculation of these local corrections has linear scaling,
the whole procedure has linear scaling as well. There are



1116 Stefan Goedecker: Linear scaling electronic structure methods

two problems with this kind of approach. First, one has
only linear scaling with respect to the size of the basis set
if the volume covered by the basis set grows at least as
fast as the size of the basis set. If one adds, for example,
basis functions for a molecule of fixed size, to improve
the accuracy of the basis set, one no longer has linear
scaling. This is related to the fact that one can now apply
the fast far-field treatment to a smaller number of
Gaussian particle interactions. This behavior can be eas-
ily understood by considering the extreme case in which
all Gaussian particles are centered very close together
within a radius that is smaller than their width. In this
case one, evidently, cannot use any more any far-field
techniques. The second problem is closely akin to the
first. If one adds extended Gaussians to the system, the
efficiency deteriorates.

A method that scales strictly linearly with respect to
the size of the basis set, independently of whether the
volume is increased at the same time or not, and which
can be applied within the context of any basis set, is
based on wavelets (Goedecker and Ivanov, 1998a). As
the input to this method, the charge density is needed on
a real-space grid, which can have varying resolution.
Thus near the core region of the atoms in a molecule the
resolution can be arbitrarily increased. Using interpolat-
ing wavelets, one can map this charge density uniquely
to a wavelet expansion, since a wavelet expansion can
compactly describe nonuniform functions. In the wave-
let basis one can then iteratively solve Poisson’s equa-
tion,

V2V =—4mp. (126)

The matrix representing the Laplace operator V? is
sparse and the matrix-times-vector multiplications
needed for the iterative solution of Eq. (126) scale lin-
early. Using a preconditioning scheme in a basis of lifted
wavelets, one finds that the condition number is inde-
pendent of the size and of the maximal resolution of the
wavelet expansion; the number of iterations is therefore
constant. Thus one obtains an overall linear scaling.

B. The exchange correlation potential

Within the most popular versions of density-
functional theory the exchange-correlation potential is a
purely local function. For the local-density approxima-
tion (Parr and Yang, 1989) the exchange-correlation po-
tential at a certain point depends only on the density at
that point; for generalized gradient approximations
(Becke 1988; Lee et al., 1988; Perdew et al., 1996) it also
depends on the gradient of the density at that point. If
one uses real-space methods such as finite differences or
finite elements as well as plane-wave methods for which
the calculation of the exchange-correlation potential is
done on a real-space grid, as well, it is obvious that the
numerical effort is linear with respect to the system size.
If one uses more extended basis functions, such as
Gaussian-type orbitals, it becomes more difficult to
achieve linear scaling (Stratmann et al., 1996).

For Hartree-Fock calculations the exchange energy
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2 ffdrdl_,q’i(l’)q’j(r)q’i(l")q’j(l") (127)
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seems to be as nonlocal as the Coulomb potential. Using
Eq. (23) one can, however, rewrite Eq. (127) to obtain

JJ drdr ,F(rr’)F(lrr),

showing that the exchange energy in an insulator is in-
deed a local quantity whose locality is determined by the
decay properties of the density matrix. A linear method
for evaluating exchange terms within Gaussian-type
electronic structure calculations, based on the aforemen-
tioned locality properties, has been devised by Schwe-
gler and Challacombe (1996). An alternative method
based on the fast multipole method has been developed
by Burant et al. (1996).

(128)

IX. OBTAINING SELF-CONSISTENCY

To do a self-consistent electronic structure calcula-
tion, one needs to blend two ingredients. The first is the
calculation of the density matrix in a fixed external po-
tential, the main focus of this article. The second is the
calculation of the potential from a given electronic
charge density, which was discussed in the preceding
Section (VIII). Even if both of these basic parts exhibit
linear scaling, it is, however, not yet granted that one has
overall linear scaling. It might happen that the number
of times one has to repeat these two basic parts in-
creases with the size of the system.

The easiest scheme for combining the calculation of
the density matrix and the calculation of the potential is
the so-called linear mixing scheme. Given an input
charge density p;,, which determines the potential, one
obtains [after the calculation of the density matrix for
this potential via Eq. (12)] a new output density p,,,; .
The new input density p’7" is not the output density
Pour» but rather a linear combination of the old input
density and the output density

Pi (1) = pin(1) + al poui () = pin(r)]. (129)

Here « is the mixing parameter. Overall linear scaling is
endangered if one has to decrease « for reasons of nu-
merical stability as the system becomes bigger and if one
consequently needs a larger number of iterations.

The standard theory of mixing (Ho et al., 1982; De-
derichs and Zeller, 1983) is based on the dielectric re-
sponse function in k space. Within this theory numerical
instabilities arise if the dielectric response functions tend
to infinity as k tends to zero. This happens in a metal but
not in an insulator, where the dielectric response func-
tion always remains finite. Following the general phi-
losophy of this paper to remain within a real-space for-
malism, we shall elucidate mixing from this real space
perspective. The final conclusions are, of course, the
same as those based on the Fourier-space theory.

Let us first consider a metal. We assume that we are
doing a calculation for a one-dimensional metallic struc-
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ture of length L. Let us also assume that due to devia-
tions from the converged self-consistent charge density
we transfer an incremental charge A Q;, from one end of
the sample to the other. Using the basic formula for the
potential in a capacitor, we get a constant electric field in
the sample, giving rise to a potential difference of AU
=LAQ),;, between the two ends. In a metal this potential
difference will most likely be larger than the HOMO-
LUMO separation (which vanishes for large systems),
and we get a large charge transfer AQ,,;. This charge
transfer is related to the density of states at the Fermi
level, D(w), which in our one-dimensional case is the
number of states per length unit and per energy unit.
Hence the total charge transfer AQ,,, is given by

AQout%D(/’“L)LAUv:D(/J')LzAQin' (130)

If this induced charge transfer AQ,,, is larger than the
initial transfer AQ;, , then the charge transfer will expo-
nentially increase in subsequent iterations and we have
the numerical instability called ‘“‘charge sloshing.” To
avoid this the mixing factor « has to be proportional to
1[D(w)L?]. Doing the same analysis in a three-
dimensional structure all the lateral dimensions cancel
and we get the same result concerning «. Denoting the
volume of our sample by v we find that « is proportional
to v~ 23. So « has to be decreased with increasing vol-
ume, and the number of iterations in the mixing scheme
increases with increasing system size. Fortunately, and
contrary to the implications of Annett (1995), this
charge sloshing can be eliminated by state-of-the-art
techniques (Kresse, 1996). One possibility (Kerker,
1981) is just to do the mixing in Fourier space and to

have a k-dependent mixing parameter a(k)
= ao[K*/(K*+kg)1:
kZ
p:lrlew(k):pin(k)+aOmZ[pout(k)_pin(k)]- (131)
0

As we can see, long-wavelength components (corre-
sponding to small k values) are now strongly damped by

) 2\?
aok =y T

and the dampening has the correct dimensional behavior
with respect to the wavelength N\, which corresponds to
the length L in our dimensional analysis above. Short-
wavelength contributions are just damped by «;, and
this constant dampening sets in when k becomes com-
parable in magnitude to k,. We know that for wave-
lengths of the order of the interatomic spacing a mixing
parameter somewhat smaller than 1 works well, and so
we can determine by these conditions the values of «
and k.

Let us next examine whether we can have charge
sloshing in an insulator. We shall assume that the poten-
tial difference across the sample is not larger than the
gap, in which case the discussion for the metallic case
would apply instead. Again we consider a sample of
length L. According to the modern theory of polariza-
tion in solids (King-Smith and Vanderbilt, 1993) a polar-

(132)
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ization arises because the centers of the Wannier func-
tions are displaced under the action of an electric field.
Since the Wannier functions are exponentially localized,
the charge that will build up at the two surfaces of our
sample is mainly due to displacements of the Wannier
function in the elementary cells of the crystal right on
the surface, and the charge AQ,,,, is thus practically in-
dependent of the length of the sample. So the optimal
mixing constant « is nearly independent of the size of
the system and the number of iterations as well.

In conclusion, we see that linear scaling can also be
obtained in the self-consistent case and that, even in a
metal, charge sloshing problems can be overcome.

Mixing is the natural choice if the divide-and-conquer
or the FOE methods are used in a self-consistent calcu-
lation. If methods based on minimization (density-
matrix and orbital) are used, one can alternatively also
obtain the ground state by a single minimization loop
(Car and Parrinello, 1985; Stich et al., 1989; Teter et al.,
1989; Payne et al., 1992) without distinguishing between
density-matrix optimization cycles and potential mixing
cycles. As is not surprising after our discussion of mix-
ing, one finds (Annett, 1995) that in an insulator the
number of iterations does not depend upon whether one
has a self-consistent type of calculation, where the po-
tential is varying during each minimization step, or
whether one has a fixed potential. In other words there
is no charge sloshing. In metallic systems it is essential to
have finite electronic temperature (Weinert and Daven-
port, 1992; Wentzcovitch et al., 1992; Kresse, 1996), and
therefore the minimization schemes cannot be applied
straightforwardly in any case. Thus Annett’s analysis
(1995) showing that for metals the scaling is at least pro-
portional to N*?3 is irrelevant.

A completely different approach to the mixing prob-
lem has recently been proposed by Gonze (1996). He
calculates the gradient of the total energy with respect to
the potential. His gradient expression does not depend
on the wave functions and could thus well be combined
with O(N) schemes.

X. APPLICATIONS OF O(N) METHODS

This section is not intended to be a comprehensive
review of all the applications to date using O(N) meth-
ods. It is rather intended as an illustration of the wide
range of areas where O(N) methods have made possible
the study of systems that were too big to be studied with
conventional methods. In general, one can say that most
large-scale tight-binding studies nowadays are done us-
ing O(N) methods. Systems comprising from a few hun-
dred up to many thousands of atoms are typically stud-
ied. Treating such a large number of atoms with O(N)
density-functional methods is much more difficult. For
density-functional calculations, the benchmarking and
verification aspect has usually dominated, whereas in
tight-binding calculations the focus has been, in most
cases, on solving challenging physical problems.

Questions concerning extended defects in crystalline
materials were one of the main focuses of these tight-
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FIG. 16. (a) Symmetric reconstruction of the 90° partial dislo-
cation in silicon. Shaded area indicates stacking fault; (b) the
single-period symmetry-breaking reconstruction; (c) the
double-period symmetry-breaking reconstruction. The figure is
reproduced with the kind permission of the authors, from
Nunes et al. (1998).

binding studies. Because several good tight-binding pa-
rameters are available for silicon, most studies were
done on this material. The 90° partial dislocation in sili-
con was the subject of a series of tight-binding studies.
The three structures that were examined are shown in
Fig. 16. The energy difference between the structures (a)
and (b) in Fig. 16 was studied both by Nunes et al.
(1996) and by Hansen et al. (1995). Even though they
used different tight-binding parameters and different
O(N) algorithms (DMM and FOE), they both obtained
exactly the same energy difference of 0.18 eV/A in favor
of structure (b). Later Benetto et al. (1997) discovered a
new structure (c) that is even lower in energy. To vali-
date their tight-binding results they did conventional
density-functional calculations for smaller subsystems
and found perfect agreement with the O(N) tight-
binding results. This new structure is experimentally dif-
ficult to distinguish from structure (b), and so this result
i1s a convincing illustration of the power of these new
O(N) algorithms in materials science. All of these tight-
binding calculations necessitated electronic structure
calculations involving a few hundred atoms and would
therefore have been unfeasible with standard algo-
rithms.

Extended {311} defects in silicon systems containing
more than 1000 atoms and their relation to point defects
were studied by Kim et al. (1997) using the orbital mini-
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mization method in the improved version of Kim et al.
(1995). An understanding of these processes is impor-
tant for the fabrication of semiconductor devices, since
defects have a strong influence on the diffusion proper-
ties of semiconductors. Unfortunately, the more realistic
questions involving boron dopant atoms in addition to
the bulk silicon atoms cannot be treated with current
tight-binding models.

Ismail-Beigi and Arias (1998) examined the surface
reconstruction properties of silicon nanobars, finding
that the influence of edges in these small structures is
strong enough to lead to surface reconstructions that are
different from those in bulk silicon. They also both em-
ployed traditional density-functional calculations and
O(N) FOE tight-binding calculations and found good
agreement between both for small subsystems that are
accessible to both approaches.

Roberts and Clancy (1998) simulated vacancy and in-
terstitial diffusion processes in silicon using the FOE
tight-binding method. The diffusion constants they ob-
tained are in good agreement with similar calculations
based on classical force fields and density-functional cal-
culations. Compared to the density-functional calcula-
tions, they could also significantly enlarge both the num-
ber of atoms (216) and the simulation times. The
diffusion constant predicted by all these simulations is,
however, orders of magnitude larger than the experi-
mental one, a fact for which no explanation is known
until now.

Besides silicon there is another material for which
several good tight-binding schemes are available,
namely, carbon. Fullerene systems are therefore another
focus of tight-binding studies.

Galli and Mauri (1994) did a molecular crash test of
Cgp fullerenes colliding with a diamond surface using the
OM method. They found three different impact energy
regimes, in which the impinging fullerenes (i) survived
the collision undamaged, (ii) survived slightly damaged,
or (iii) were completely destroyed. Even though the in-
teraction region between the impinging fullerene and
the surface did not comprise a very large number of
atoms, their computational box contained more than
1000 atoms. The box had to be this large so that the
phonons emitted during the collision would not be re-
flected back from the walls of the box during the time
scale of the collision. This reflection of phonons is also a
serious problem in classical force-field simulations of
crack propagation, and for this reason systems compris-
ing several million atoms are sometimes necessary
(Zhou et al., 1997). In the case of this molecular crash
test most of the carbon atoms were propagating the
phonons. Phonons are well described by classical force
fields, and one could use this scheme for the majority of
the atoms, while it would be necessary to use the more
expensive tight-binding scheme only for the atoms in the
collision region. Unfortunately such schemes, combining
molecular methods of different speed and accuracy,
have not yet been developed and thus a feature of many
O(N) calculations is their overkill in a certain sense,
treating a large number of essentially inactive atoms
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FIG. 17. Tight-binding equilibrium geometries of selected
icosahedral fullerenes viewed along the C, symmetry axis. This
figure is reproduced with the kind permission of the authors,
from Xu and Scuseria (1996; reprinted from Chem. Phys. Lett.
262, 219, with permission from Elsevier Science).

with highly accurate methods. Canning et al. (1997) ex-
amined thin films of C, fullerenes with the same
method, finding that thin superatom films can be
formed.

The equilibrium geometries of large fullerenes such as
C,4 were also studied by several groups with O(N) tech-
niques. The central question here is whether such large
fullerenes have a spherical form or a polyhedrally fac-
eted shape, where nearly flat polyhedral regions alter-
nate with edges where the curvature is concentrated.
York et al. (1996) used the original formulation of the
DC method in terms of densities to do density-
functional calculations of C,y and found spherical
shapes. Itoh et al. (1995), on the other hand, using both
empirical and ab initio tight binding in the context of the
orbital minimization method, found polyhedral shapes.
This result is also supported by Xu and Scuseria (1996),
who investigated fullerenes up to Cggy using the DMM
method. The optimized geometries they found for vari-
ous large fullerenes are shown in Fig. 17.

Ajayan et al. (1998) used tight-binding FOE molecu-
lar dynamics to simulate irradiation-mediated knockout
of carbon atoms from carbon nanotubes. In agreement
with experimental observations they found that this
atom removal leads to a shrinking of the diameter of the
nanotube, but leaves the nanotube essentially intact un-
til the diameter is practically zero. They could identify in
their virtual 400-atom sample processes on the atomic
level that are responsible for the rapid healing of the
defects created by the removal of atoms.
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Recently developed tight-binding parameters (Hors-
field, Godwin, et al., 1996) have also made it possible to
study composite system, namely, hydrocarbons. This set
of tight-binding parameters includes self-consistency by
imposing a local charge neutrality requirement. Local
charge neutrality is essential if different phases are stud-
ied because it prevents any unphysically large charge
transfer between regions containing different phases
arising from different chemical potentials in different
phases. Using this new tight-binding scheme, Kress et al.
(1998) studied the dissociation of CH, under high pres-
sure using FOE molecular dynamics. Previous density-
functional-based molecular dynamics studies by Ancil-
otto et al. (1997) were limited to very small system sizes
of 16 CH, molecules and short simulation times of 2 ps.
At variance with experimental findings, these density-
functional simulations could not find a phase separation
of methane into hydrogen and carbon. FOE molecular
dynamics allowed the treatment of much larger systems
of 128 molecules and much longer simulation times of 8
ps. After 4 ps a phase separation was indeed observed.

York et al. (1996) used the DC method in the context
of the semiempirical AM1 method (Devar et al., 1985)
to calculate heats of formation, solvation free energies,
and densities of states for protein and DNA systems
containing up to 2700 atoms.

Daniels and Scuseria (1998) reported AMI1 semi-
empirical benchmark calculations for up to 20 000 atoms
using DMM, FOE, and pseudo-diagonalization meth-
ods.

Sanchez-Portal et al. (1997) compared the experimen-
tal x-ray structure of a large DNA molecule comprising
650 atoms with the geometric structure obtained from a
density-functional-based orbital minimization relax-
ation. They obtained a root-mean-square deviation from
the experimental geometry of 0.23 A. This was the first
attempt to apply O(N) algorithms within density-
functional schemes to realistic problems. Their method
relies, however, on fairly drastic approximations, result-
ing in errors that are by far larger than the error one
generally expects from a density-functional calculation.
A similar study of a large biomolecule is reported by
Lewis et al. (1997).

Applications of O(N) methods within density-
functional theory that use basis sets large enough so that
basis set errors do not dominate the density-functional
error do not exist at present. However, benchmark cal-
culations exploring the feasibility of such techniques
have been published. Goringe et al. (1997) evaluated the
performance of such schemes in calculations of a cell
containing 6000 silicon atoms.

With the advent of faster computers and improved
algorithms, the situation concerning sufficiently accurate
density-functional O(N) schemes will certainly soon
change. It is also interesting to note in this context that
the 1998 version of the very popular Gaussian software
package will contain O(N) algorithms.

Let us finally come back to a point briefly mentioned
in the Introduction. The development of O(N) methods
has also deepened our understanding of locality in
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quantum-mechanical systems and has thereby fostered
the development of theories based on a local picture
rather than the conventional nonlocal Bloch-function
picture. An example is the theory of polarization in crys-
talline materials by King-Smith and Vanderbilt (1993).
Their theory is based on a local picture in terms of Wan-
nier functions and allows for an intuitive understanding
of these phenomena which were difficult to understand
before.

XI. CONCLUSIONS

O(N) methods have become an essential part of most
large-scale atomistic simulations based on either tight-
binding or semiempirical methods. The physical founda-
tions of O(N) methods are well understood. They are
related to the decay properties of the density matrix.
The use of O(N) methods within density-functional
methods is not yet widespread. All the algorithms that
would allow us to treat very large basis sets within
density-functional theory have certain shortcomings.
The OM and OBDMM methods suffer from ill-
conditioning problems, and in both the OM and the
FOP method detailed knowledge about the bonding
properties is required to form the input guess. Thus
some algorithmic progress will probably be necessary
before these obstacles can be overcome. It is also un-
clear what the localization properties of very large com-
plicated molecules are and whether perhaps a quadratic
scaling rather than a linear scaling is the optimum one in
certain cases. It is clear that the elimination of the cubic
scaling bottleneck is a very important achievement and
that it will pave the way for calculations of unprec-
edented size in the future. Such calculations will not
only be beneficial to physics, but they will also nourish
progress in many related fields such as chemistry, mate-
rials science, and biology. Even with O(N) algorithms it
will not be possible in the foreseeable future to treat
systems containing millions of atoms at a highly accurate
density-functional level using large basis sets, as would
be necessary for certain materials science applications.
Such problems can only be approached if one succeeds
in combining methods of different accuracy such as
density-functional methods with classical force fields, ap-
plying the high-accuracy method only to regions where
the low-accuracy method is expected to fail. Hybrid
methods of this type will certainly be based on the same
notions of locality as O(N) methods and will employ
similar techniques.
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APPENDIX: DECAY PROPERTIES OF FOURIER
TRANSFORMS

The density matrix in a periodic solid is defined in
terms of a Fourier transform given by Eq. (26). The de-
cay properties of the density matrix are thereby closely
related to the decay properties of Fourier transforms.
All the properties described in this paragraph are well
known; for completeness we shall briefly outline them.

For simplicity let us consider a one-dimensional Fou-
rier transform

s(= | gk, (A1
where g(k) is an integrable function tending rapidly to 0
for k tending to *oo.

For any function g(k) of this type, g(r) will obviously
tend to zero when r tends to infinity. In this case e’*" is a
very rapidly oscillating function. The product e*"g (k)
will therefore change sign very rapidly and thus the in-
tegral will tend to zero. The exact decay properties de-
pend on how many derivatives are continuous. Let us
consider first a function that is piecewise constant and
has only a finite number of discontinuities. A function
that falls into this class is the function g(k), which is 1 in
the interval [ —1:1] and zero everywhere else. Calculat-
ing the Fourier transform one finds g(r)=2{[sin(r)]/r}.
Since any piecewise constant function g(k) can be writ-
ten as a linear combination of the above prototype func-
tion, its transform g(r) will always decay like 1/r. Using
integration by parts we see that

- [
r%U)=J;£ﬁkﬁ‘{é%)d”dk

% o \!
=(—o*{f e*{——)gUQdk. (A2)

o dk
If the /th derivative is integrable, then the integral will
vanish for the reasons discussed above. So if we can do /
integrations by parts, each transformation will accelerate
the decay by one inverse power of r, and we can do such
a transformation whenever our function has at least con-
tinuous first derivatives. Hence we arrive at the rule that
if / derivatives of g(k) are continuous, g(r) will decay
like r~ (D).

If we have a function g(k) that is analytic, i.e., one for
which an infinite number of derivatives exists, then the
transform will decay faster than any power of r. One
then says that it decays exponentially instead of algebra-
ically. This notion of exponential decay does not neces-
sarily mean that it decays strictly like an exponential
function. As an example we could take g(k)
=exp(—k?), where we know that the transform is again
a Gaussian and thus decays faster than an ordinary ex-
ponential function. The rate of decay will be related to
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the smallest length scale of g(k). If the smallest length
scale of g(k) is k,,;,, then g(r) will roughly decay like
exp(—c|rlk,nin), Where ¢ is a constant of the order of 1.
This follows from the fact that one will have an impor-
tant cancellation of terms of opposite sign in the integral
in Eq. (A1) only if several oscillations occur within the
interval k,,;,, .

Another qualitative feature of the Fourier transform
is that it will have oscillations whenever g(k) is shifted
off center. The oscillation period is determined by this
shift. As an example let us look at the Fourier transform
of a shifted Gaussian g(k)=-exp[—3(k—a)*]. The result
is g(r) =2 exp(iar) exp(—31r?), which is the transform
of the unshifted Gaussian times an oscillatory term.
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