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The diffusion of muons and muonium through solids has been studied over many years using the
technique of spin relaxation. At low temperatures, the motion is due to tunneling between lattice sites,
and the competition between tunneling rates and decoherence rates is important in determining the
dynamics. Coherent propagation is seen in superconductors and insulators at low temperature where
dissipation is small. At higher temperatures the motion undergoes a crossover from bandlike
propagation to incoherent hopping between neighboring sites. This review covers both theory and
experiment, emphasizing the mechanisms for dissipation, the role of barrier fluctuations, and effects
of crystal disorder on the transport. The review of experimental data includes an analysis of barrier
penetration bandwidths for muon and muonium diffusion in a variety of metals and insulators.
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I. INTRODUCTION

The diffusion of muons (m1) and muonium (the
bound state of m11e2, called Mu) in solids is domi-
nated by quantum tunneling between lattice sites at low
temperature. This is a very interesting subject from a
theoretical point of view, with the many degrees of free-
dom of the solid environment playing an essential role in
the coherence and barrier penetration rates. Muons are
uniquely suited for particle transport tunneling studies
because of their intermediate mass, 200 times greater
than the electron but several orders of magnitude less
than the lattice nuclei. The atoms are too heavy to have
perceptible tunneling except in rare cases, and electrons
are so light they they are usually delocalized in the lat-
tice.

The dynamics of barrier penetration in a periodic lat-
tice is called quantum diffusion. There are several im-
929(3)/929(50)/$25.00 © 1998 The American Physical Society
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portant quantities in the theory of quantum diffusion,
which will be discussed in detail in the theoretical part of
the review. Most fundamental is the bandwidth D of the
m1/Mu states that form a band in a periodic lattice. This
is of course proportional to the tunneling rate in the
absence of perturbations. The ballistic transport of the
pure band picture is changed to diffusion by various per-
turbations, namely, lattice defects, thermal excitation of
phonons, and thermal excitation of electrons. Quantum
diffusion is observed over a wide range of temperatures
for both m1 and Mu, and the review will describe in
detail these couplings.

The experiments to observe muon diffusion are based
on the spin of the m1 and its anisotropic decay to give a
positron. The relaxation of the spin polarization of the
m1 or the Mu, called mSR and MSR, respectively, is
measured as a function of time. The experimental tech-
niques have been described in a number of excellent
reviews (Schneck, 1985; Cox, 1987; Brewer, 1994), and
we shall only concentrate on the general ideas. In a mSR
experiment, muons with almost 100% polarization in the
direction of the source are imbedded in a sample. The
muon comes to rest and experiences the local magnetic
environment through its spin. Later it decays asymmetri-
cally with the decay positron emitted preferentially
along the m1 spin direction.

The decays are typically recorded by two detectors
placed in the forward and backward directions. Ignoring
efficiencies and backgrounds, they record a time spec-
trum

N0e2t/tm@12P~ t !# , (1)

N0e2t/tm@11P~ t !# . (2)

Here tm52.197 ms is the muon lifetime, and P(t) is the
polarization function that provides information on the
m1 dynamics in the sample.

The simplest m1SR technique for m1 diffusion studies
is the transverse-field muon spin rotation experiment, in
which a large (with respect to internal nuclear magnetic
fields) external magnetic field B0 is applied perpendicu-
lar to the muon polarization, causing the muon spin to
precess about the external field. This, in turn, will cause
P(t) to be oscillatory with the characteristic frequency
vm5gm3B0.

Due to random orientation of nuclear moments,
muons experience different fields in different unit cells.
This results in a decay of the oscillatory signal with char-
acteristic exponential or Gaussian decay times. From
this one infers the nature of the diffusion process and
the characteristic energy and time scale. Experiments
are also done with longitudinal magnetic fields going
down to zero (Luke et al., 1991). In this case, P(t) has
no oscillatory component.

A number of reviews, monographs, and edited vol-
umes have already been devoted to mSR and its particu-
lar aspects. The recent advances in mSR techniques have
produced a rapidly growing body of new results, both
theoretical and experimental, as evidenced by the pro-
ceedings of mSR conferences [see, for example, the con-
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
ference proceedings edited by Cox et al. (1990), Brewer
et al. (1994), and Nagamine et al., (1997)]. Recent re-
views on the theoretical aspects of quantum diffusion
are given by Kondo (1986), Kagan and Prokof’ev (1992),
and Regelmann, Schimmele, and Seeger (1995). There
are some recent experimental reviews, including those
of Kadono (1992, 1993; Kadono and Kiefl, 1993), but
these tend to be focused on selected materials. There
has been considerable progress in the last few years with
an abundance of new data, especially in the quantum
diffusion of Mu in cryocrystals, and this seems an appro-
priate moment for a comprehensive review of the ex-
periments.

It is not our intention to discuss all the experimental
and theoretical results. This task seems to be impossible,
taking into account the enormous number of relevant
papers published during the past three decades. Instead,
we shall try to cover only those topics most pertinent to
our current understanding. A number of topics have to
be clarified, including inhomogeneous quantum diffu-
sion, long-ranged trapping phenomena, two-phonon in-
teraction at low temperatures, and one-phonon interac-
tion at temperatures comparable to the Debye
temperature of the crystal. Of special note are the re-
sults on inhomogeneous quantum diffusion in disor-
dered lattices (both metallic and insulating), which have
resolved some long-standing puzzles.

For the rest, we refer the reader to the original pa-
pers. The most comprehensive bibliography on the sub-
ject can be found in the well-documented proceedings of
the mSR conferences, edited by Gygax et al. (1979),
Brewer and Percival (1981), Yamazaki and Nagamine
(1984), Hartmann, Karlsson, Lindgren, and Wäppling
(1986), Cox et al. (1990), Brewer et al. (1994), and Naga-
mine et al. (1997).

II. GENERAL REMARKS ON QUANTUM DIFFUSION

In the context of traditional solid-state physics the
problem of the tunneling motion of an ‘‘impurity’’
(muon, proton, isotopic defect, etc.) is of special interest.
Typically, tunneling occurs between two or more poten-
tial wells which would be degenerate in a pure system.
In this case the quantum-mechanical coherence between
the particle’s states in different wells manifests itself (the
well-known example is the Bloch-wave propagation of
electrons in crystalline solids). The basic concept intro-
duced to describe this effect is that of a band motion
(coherent tunneling) of a particle with a bandwidth D
determined by the amplitude of the particle’s resonance
transitions between the potential minima (Andreev and
Lifshitz, 1969; Guyer and Zane, 1969).

At TÞ0, however, tunneling occurs on the back-
ground of strong coupling to the excitations of the envi-
ronment, which results in a fluctuating (dynamic) energy
bias between the potential wells and destroys coherence.
Since D is exponentially small, the tunneling kinetics in a
solid is a problem of motion in a system with weak quan-
tum correlations and strong dynamic interactions with
the excitations of the medium. One may character-
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ize the strength of the dephasing interaction by the
damping rate (or level broadening) V . Even at low tem-
peratures V may be as large as D ; a temperature rise
results in an exponential suppression of coherent tunnel-
ing transition amplitude and a crossover from coherent
band motion to incoherent tunneling (Kagan and Mak-
simov, 1973; Kagan and Klinger, 1974).

Here we encounter differing behavior of the diffusing
particle in a metal and in an insulator due to essentially
different infrared properties of the environmental spec-
trum. In a metal the crossover to incoherent tunneling
takes place at temperatures as low as T;D , with a pe-
culiar temperature dependence of the diffusion coeffi-
cient originating from the electron-polaronic effect
(Kondo, 1984; Yamada, 1984). In insulators, incoherent
tunneling takes over at temperatures T@D , which can
still be much lower than the Debye temperature Q . The
interaction responsible for the suppression of coherence
was found to be two-phonon in character (Andreev and
Lifshitz, 1969; Kagan and Maksimov, 1973). The one-
phonon interaction is not important in this temperature
range (except for the renormalization of D), taking over
only at temperatures comparable to Q . Although coher-
ent motion and incoherent tunneling are fundamentally
different regimes, they have the same temperature de-
pendences for the diffusion coefficient (Kagan and Mak-
simov, 1973). The value of V , being determined by the
relative fluctuations of the particle interaction with the
medium at neighboring sites, is independent of D . An
increase of the particle mass results in the exponential
reduction of D , which in turn leads to an exponential
decrease of the transition temperature from band mo-
tion to incoherent tunneling. In order to keep this tran-
sition temperature reasonably high, one is bound to con-
sider the tunneling dynamics of a reasonably light
particle.

Since D is so small, quantum diffusion is extremely
sensitive to crystal imperfections. Therefore particle lo-
calization often takes place at a relatively low defect
concentration. Until very recently theoretical studies of
m1 and Mu diffusion have focused on nearly perfect
crystals, in which bandlike motion persists at low tem-
peratures. Crystalline defects have been treated mainly
as local traps with trapping radii of the order of the
lattice constant a . The justification for such an approach
was that the characteristic energy of the muon coupling
to the crystalline distortion, U(a), is usually much less
than Q . However, this comparison is irrelevant to the
problem of particle dynamics, for which the crucial con-
sideration is that D is usually several orders of magni-
tude less than U(a). For example, a typical Mu band-
width in insulators is of order of D;0.01–0.1 K, whereas
in insulators U(a) could be as large as 10 K. In metals
the mismatch is even more drastic: U(a);103 K and D
;102121024 K may differ by seven orders in magni-
tude. Under these circumstances, the influence of crys-
talline defects extends over distances much larger than
a . If the ‘‘disturbed’’ regions around defects overlap, a
complete particle localization can result. In this case the
interaction with the thermal bath makes quantum diffu-
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
sion possible, and its study provides information on crys-
tal disorder. This phenomenon is common for both
‘‘dirty’’ insulators and ‘‘dirty’’ metals.

III. SOME THEORETICAL ASPECTS
OF QUANTUM DIFFUSION

During the last ten years our understanding of tunnel-
ing phenomena in interacting systems has evolved sig-
nificantly. Not only do we now understand better the
role played by different interaction Hamiltonians, like
the two-phonon or conduction-electron couplings, but
we also have a general framework in which to discuss
the effects of dissipation on tunneling, which originates
from the oscillator bath model of Caldeira and Leggett
(Caldeira and Leggett, 1983; Leggett et al., 1987). It is
simply impossible, however, to fit a thorough discussion
of the tunneling problem with all the derivations into
this review, and in fact we believe it is not necessary,
because the theory has been recently reviewed (see, e.g.,
Kagan and Prokof’ev, 1992; Weiss, 1993; Regelmann,
Schimmele and Seeger, 1995). In this section, we shall
instead discuss the basic concepts of the theory and skip
formal derivations. Also, we shall discuss quantum dif-
fusion, always bearing in mind mSR experiments and
possible relevance of quantum diffusion effects for the
muon relaxation.

A. Hamiltonian and coherent band motion
in a perfect crystal

We start by writing the Hamiltonian of the light par-
ticle in a crystal as

H5Ho1Vinh~rW !1Vint1Hmag , (3)

Ho52
1

2mm
¹21U~rW !, (4)

where U(rW) is the crystal potential when all the host
atoms are in their equilibrium sites and form a perfect
lattice, Vinh(rW) is the contribution to the potential com-
ing from crystal imperfections and impurities, Vint de-
scribes the coupling between the particle and crystal ex-
citations (phonons, electrons, magnons, etc.), and Hmag
couples the spin of the particle to the external magnetic
field BW o and to the local magnetic fields BW (rW) (see be-
low).

We assume that for the particle with the mass mm
@me , where me is the electron mass, zero-point vibra-
tions around local minima of the crystal potential are
small as compared with the interwell separation a (or
lattice constant, if there is only one minimum in the unit
cell). This condition implies that tunneling splitting of
the lowest levels in each well is much less than the zero-
point vibration frequency vo52pno , and the lowest
states are well separated from the rest of the particle
spectrum. The standard expression for the tunneling am-
plitude between the two nearest wells is given in the
semiclassical approximation (Landau and Lifshitz, 1974)
as (\51)
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Do5noe2So. (5)

Here the tunneling action So5*
rW1

rW2pdx is given by the

integral along the optimal path connecting turning
points rW1 and rW2 on different sides of the barrier. It fol-
lows immediately from the Bohr-Sommerfeld quantiza-
tion rule that So'pn , where n is the number of levels in
the potential well 2U(x) obtained by inverting the bar-
rier between the turning points. In what follows we con-
sider the case So@1, which in fact is already satisfied
when the barrier height (or activation energy) UB is
only a few times larger than the zero-point vibration
energy, because n'UB /vo (for qualitative estimations
we make no distinction between the zero-point vibration
energy in the well and in the inverted barrier potential).

In this review we restrict ourselves to the discussion of
quantum diffusion only and consider the low-
temperature particle dynamics, for which classical over-
barrier transitions are irrelevant. To define the crossover
temperature T* , one has to find the maximum value of
the transition probability between the wells (Lifshitz and
Kagan, 1972),

W12~T !5(
Ei

e2Ei /TWQ~E5Ei!, (6)

where WQ(E) is the probability of a quantum tunneling
transition at energy E , and the sum is over energy levels
in the well. Since WQ(E);e22So(E), one may rather ac-
curately estimate the crossover temperature from the
minimum of the semiclassical exponent, @2So(E)
1E/T* #E8 50, or, equivalently, 2no11/T* 50. At tem-
peratures

T!T* 5no , (7)

the maximum of Eq. (6) is obtained for the lowest level
in the well. At higher temperatures classical over-barrier
transitions take over. A more detailed discussion of dif-
ferent barrier shapes and the corresponding crossover
temperatures is given by Lifshitz and Kagan (1972).

The above two restrictions allow us to simplify the
problem considerably by truncating the original Hamil-
tonian (3) to the low-energy effective Hamiltonian deal-
ing only with the lowest particle levels in each potential
well. The first three terms in the Hamiltonian (3) then
become

Ho5(
nW ,gW

Do
~g !dnW 1gW

† dnW 1(
nW

enW dnW
†dnW , (8)

where the index nW is over all possible particle sites, the
index gW denotes nearest-neighbor sites, enW is the particle
on-site energy, and dnW

† creates particles on site nW . For
simplicity (and definiteness) we shall consider below the
case in which allowed particle sites form a simple cubic
lattice, as, for example, in alkali-halides. Then all Do

(g)

5Do , ugW u5a , and nonzero energies enW are due to crystal
defects only. Generalizations to other crystal symmetries
are obvious, and there are cases with many interstitial
positions for the muon inside the unit cell, e.g., m1 in Bi,
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
which requires the consideration of several different pa-
rameters Do

(g) and even nonzero enW in a perfect crystal (if
different interstitial sites have different energies). In a
perfect crystal the particle eigenstates are delocalized
and

EkW 52Do~cos akx1cos aky1cos akz!, (9)

with the bandwidth equal to D52ZDo , where Z is the
coordination number.

Assuming that muons are ballistically propagating in a
crystal, what are the consequences for the observed
mSR spin dynamics? The dominant mechanism for
muon spin relaxation in most nonmagnetic solids is due
to randomly oriented local magnetic fields produced by
nuclear moments. It is widely accepted that nuclear
fields in different unit cells are uncorrelated,

gm
2 ^BW ~nW !BW ~nW 8!&5d2dnW ,nW 8, (10)

where gm /2p50.01355342 MHz/Oe is the m1 gyromag-
netic ratio. [This assumption is valid provided that a
large number of nuclear moments contribute to BW (nW ),
and different nuclei are responsible for nuclear fields in
different unit cells.] Each time the particle changes its
position in the lattice it experiences a fluctuation in the
magnetic field acting on the particle spin. Since nuclear
field correlations are short ranged, mSR is most sensitive
to the particle dynamics on the atomic scale. For the
band spectrum (9) we may easily calculate the autocor-
relation function describing time fluctuations in the par-
ticle occupation numbers at some site nW :

CnW ~ t !5Tr r~0 !nW eiHtnW e2iHt[^nW ~ t !nW ~o !&. (11)

Here r(0)5e2H/T/Z(T) is the equilibrium density ma-
trix with the free-particle partition function Z(T)
5(kW exp$2EkW /T%5NIo

3(2Do /T), where N is the number
of unit cells and Io is the Bessel function. In the Fourier
representation Eq. (11) reduces to

C~ t !5(
kW ,pW

rk
~0 !ei~EkW 2EpW !t

[
Jo

3~2Dot !Jo
3~2Dot1i2Do /T !

Io
3~2Do /T !

(12)

[in the homogeneous case CnW (t) is independent of nW ].
In the high-temperature limit C(t) gives the probabil-

ity of return to the same site after time t for the simple
cubic lattice:

C~ t !5Jo
6~2Dot !, ~T.D!. (13)

Substituting this result into the definition of the on-site
correlation time, or the average time spent at a unit cell
(McMullen and Zaremba, 1978),

t5E
0

`

dtC~ t !'~2A2Do!21, (14)

we find it to be temperature independent in the coherent
high-T limit (Petzinger, 1982). These results will be used
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in our analysis of the low-temperature quantum diffu-
sion in pure crystals of KCl, NaCl, and GaAs.

Consider now the longitudinal relaxation of the par-
ticle spin assuming its coherent dynamics. Since in all
cases studied so far magnetic interactions with the
nuclear (dipole or contact in origin) fields were much
less than the particle bandwidth, we can use the pertur-
bation theory and thus write

T1
2152p (

kW pW ,ss8
rk ,s

~0 !U^pW ,s8u(
nW

gmSŴ BW ~nW !ukW ,s&U2

3d~EkW 2EpW 1vss8!, (15)

where SŴ is the particle spin operator. As discussed in the
next section, typically only one magnetic transition s
→s8 with the frequency vss8 contributes to the relax-
ation. Denoting the spin-matrix element squared as
Mmag

2 (BW o) (some particular examples are given in the
next section), we write Eq. (15) as (Kondo, 1992)

T1
215M2E

2`

`

dteivtTrr~0 !nW ~ t !nW ~0 ![M2C~v!. (16)

Obviously, T1
2150 when v>D because of the energy

conservation law, i.e., when the Zeeman energy is larger
than the bandwidth; near the threshold T1

21 goes to zero
as (27/2p3)M2(D2v)2/D3.

In the high-T limit the answer is remarkably simple:

T1
2152M2t ~T.D@v!, (17)

with t from Eq. (14). In the low-temperature region,
where one can use the long-wavelength expansion for
the energy spectrum EkW '2D/21kW 2/2m* 52D/2
1DokW 2a2, we find

T1
215

M2uvuev/2T

2~pDo!3/2AT
K21S uvu

2T D ~T ,v!D!, (18)

where K21 is the Bessel function. Now T1
21;v1/2 or

T1
21;T1/2 depending, on the ratio v/T . This result has a

clear physical interpretation. At low temperatures the
relevant length scale in the problem is the particle wave-
length l@a . The effective hyperfine interaction must be
averaged over the volume l3 with the result deff

2

;d2(a/l)3. On the other hand, it takes time teff;l/v
;1/T to move over a distance of order l . Using stan-
dard motional narrowing arguments (Abragam, 1961)
we then write the depolarization rate as deff

2 teff;T1/2

and recover the result by Kondo (1986).
We note also that the above results are independent

of the diffusion rate provided the mean free path is
much larger than the particle wavelength. The funda-
mental reason for this is the short-ranged character of
the nuclear field correlations in Eqs. (10) and (16), and
thus only the smallest length scale is relevant to the
problem. The physics of quantum diffusion with a large
mean free path is rather standard and is usually de-
scribed within the semiclassical Boltzmann equation
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
(see, for example, Kagan and Prokof’ev, 1992). Since it
has no effect whatsoever on the muon/Mu relaxation, we
do not consider it here.

B. Coherent (dissipationless) motion
in a disordered crystal

Let us now add crystal disorder to the coherent pic-
ture just described. The crucial point for the rest of the
discussion in this review is that disorder cannot be
treated as an uncorrelated random potential (Kondo,
1986; Sugimoto, 1986) and/or local traps. As we shall
see, both approaches are misleading in the general case
and quite often give incorrect results because (i) at low
defect content, xim5nima3!1 the disorder potential is
spatially correlated at least up to the distance between
the defects, R̄'a(4pxim/3)21@a ; (ii) in the motional
narrowing regime the depolarization rate is proportional
to the inverse hopping rate, and the procedure of aver-
aging the hopping rate is meaningless; (iii) in the case of
particle motion over large distances the effective diffu-
sion coefficient cannot be obtained by averaging the lo-
cal hop rate; (iv) trapping is out of the scope of the
random potential treatment.

In this subsection we ignore all inelastic interactions
and consider the problem of particle spin depolarization
assuming the dissipationless dynamics described by the
Hamiltonian (8). Imagine a particle in an extremely nar-
row tunneling band, and let us study its elastic scattering
cross section off the impurity potential

Vinh~rW !5U0~rŴ !~a/r !m, (19)

(m53 corresponds to the strain-induced field), with the
amplitude U0[U(a)@D . An obvious answer for the
cross section is s'pRD

2 @pa2 where

Vinh~RD!'D . (20)

The particle cannot penetrate elastically into the region
where potential energy exceeds the bandwidth, and
these regions around each impurity are rather long
ranged. For the same reason, if we put the particle inside
the impurity region it will never escape. Furthermore,
inside the radius Rloc defined by

a
]Vinh~Rloc!

]r
'D , (21)

the particle displacement even to the nearest neighbor-
ing lattice site is forbidden by energy considerations.
Thus, in the absence of inelastic scattering on phonons
and electrons, the particle will be moving fast in the
band or be static depending on the initial conditions, i.e.,
how far from the defect center it stopped after the ther-
malization process.

With increasing impurity concentration, less and less
space is left for coherent band propagation. Above some
critical concentration the impurity regions of radius Rloc
overlap, resulting in complete particle localization in a
crystal volume, and this concentration is very small:
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xloc'
3

4pS a

Rloc
D 3

. (22)

The above picture (Andreev, 1976; Kagan and Maksi-
mov, 1983, 1984) was observed experimentally for quan-
tum diffusion of 3He atoms in solid 4He (Mikheev et al.,
1983). We note that the strain potential between the
3He atoms is very weak, U0;1022 K, while in the case
of m1 or Mu one can expect it to be as strong as U0
>10 K in insulators and U0;103 K in metals. In all
experiments on m1 or Mu quantum diffusion carried out
so far, the tunneling band was found to be much less
than the typical amplitude of the impurity potential, e.g.,
D<1 K in KCl, NaCl, GaAs, N2, Ne, and Xe, while D
;1021, 1022, 1024 K in Al, V, and Cu, respectively.

Consider now how this physics will reveal itself in a
mSR experiment. To be specific, we consider m1 depo-
larization in the transverse-field geometry when external
magnetic field B0@B(nW ). By definition, the polarization
function in this case is given as an ensemble average,

P~ t !5K expF iE
0

t
dt8v„nW ~ t8!…G L , (23)

where v„nW (t)…5gm@B01B„nW (t)…# is the time-dependent
precession frequency, which changes each time the par-
ticle goes from one site to another. Here ^ . . . & stands
for the average over nuclear fields [see Eq. (10)] and
particle dynamics, both of which result from the statisti-
cal nature of the muon experiment. One may further
write Eq. (23) in the form

P~ t !'E drW

V
expF2

d2

2 E
0

t
dt8E

0

t8
dt9C~nW ,t82t9!G , (24)

where we made use of the correlation function C(t) [see
Eq. (11)], which now depends on the crystal site and is
defined as a local property. The approximation used in
Eq. (24) implies that there is no relaxation toward ther-
mal equilibrium during the time t , which is consistent
with the dissipationless dynamics.

In a long-ranged potential we have to distinguish be-
tween three possibilities: Those particles which stop af-
ter thermalization inside the regions of radius Rloc
around impurities are static, and their contribu-
tion to the polarization function is given by Ploc
5f locexp$21/2d2t2% where f loc'(4p/3)nimRloc

3 is the
fraction of the static component. Assuming the motional
narrowing effect to operate for fast-moving particles in
the band, we write the second contribution as Pb
5fbexp$2d 2tt%, where fb'(4p/3)nimRD

3 is the fraction
of particles delocalized in the band. In general there will
be particles that are delocalized over a few unit cells.
Their fraction, fd , is given by the volume between the
radii Rloc and RD and thus depends on the structure of
the impurity potential; it is comparable with the 12fb if
the defect regions do not overlap and the potential is
due to the strain field (19), because in this case
adVinh /dr!Vinh . If the potential is mainly due to the
electron-density oscillations around the impurity
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
Vinh~r !5U0cos~2kFr1w!~a/r !3, (25)

then for kFa;1 we find that adVinh /dr;Vinh (because
of the cosine term), and Rloc'RD . In this case we con-
clude that the third fraction plays essentially no role. An
exception may be the case of a semimetal with kFa!1,
where electron density oscillations are smooth on the
atomic scale—then we are back to fd;12fb . There is
no simple way to write down the third contribution to
the polarization function, because it is essentially inho-
mogeneous. Indeed, for the particle state delocalized
over Nd@1 unit cells Eq. (24) gives (Stoneham, 1983)
P(t)'exp$21/2(d2/Nd)t2% [the probability of finding
the particle in the same well at a long time is just C(t)
;1/Nd], which is Gaussian relaxation with the state-
dependent deff

2 ;d2/Nd . Since delocalized states range
from Nd;1 to Nd;RD

3 @1 one has to sum all the con-
tributions with the proper weighting W(Nd),

Pd5fd(
Nd

W~Nd!exp$21/2~d2/Nd!t2%. (26)

The result will depend on the potential. In the most
simple-minded approach, Nd is obtained from the rela-
tion that the energy change over a distance Nd

1/3a is of
the order of the bandwidth, Nd

1/3a@]U(r)#/]r;D . One
then finds W(Nd);(NdRD

3 /a3)23/4, but we do not be-
lieve that the result is accurate enough to be compared
with the experiments except, perhaps, the characteristic
time scale ;d21(RD /a)3/2. Thus in a disordered crystal
the polarization function will be split into three indepen-
dent contributions,

P5Pb1Pd1Ploc , (27)

with the relative weights depending on the potential, the
impurity concentration, and the value of D .

The relevance of the above description for mSR ex-
periments depends on the nature of the inelastic pro-
cesses and the temperature range (Kagan and Prokof’ev,
1987). Of course, the formation of two (or three) quasi-
independent ensembles of particles in real systems holds
only at very low temperatures when inelastic interac-
tions with the thermal excitations are weak enough. At
higher T , particles will easily gain sufficient energy from
the crystal to overcome the defect potential and to move
even if the tunneling states are out of resonance. Then
particles can penetrate inside and outside the disturbed
spheres on the time scale of the muon lifetime, and the
decomposition into independent fractions is no longer
valid. How to proceed in this case and what are the con-
sequences for muon/Mu spin relaxation are discussed in
the coming subsections. Furthermore, coupling to
phonons and conduction electrons broadens energy lev-
els, and this broadening, V(T), in many cases exceeds
the particle bandwidth and the crystal disorder. Most
muon experiments in the past were carried out in nor-
mal metals where damping V;T was very strong and
masked the effects of long-ranged defect potentials, at
least at high temperatures. However, in the supercon-
ducting state, where electron scattering is suppressed,
and in insulators, low-temperature quantum diffusion is
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often dominated by crystal disorder, the long-ranged
character of which can no longer be ignored.

C. Coupling to the environment. Interaction Hamiltonians

Consider now what happens to the interaction term
Vint describing the coupling between the particle and
crystal excitations when we truncate the Hamiltonian.
The two examples that we shall discuss here, i.e.,
phonons and conduction electrons, are fundamentally
different because, for a light particle like a muon, strong
inequalities in the mass ratios are valid, Mh@mm@me ,
where Mh is the mass of the host atoms. Consequently
quite opposite adiabatic limits seemingly apply to these
two cases.

We start with the phonons and simply note that light
muon mass allows us to consider coupling to the host
atoms as motion in a slightly deformed crystal potential
due to atom displacements from the equilibrium posi-
tions $RW j

(0)%. That is, the interaction potential is obtained
by expanding U(rW ,$RW j%) in a series in uW j5RW j2RW j

(0) . All
corrections to the above procedure are expected to be
small, at least in the parameter (mm /Mh)1/2. However,
even with these corrections included (see Kagan and
Klinger, 1974, 1976) the structure of the coupling Hamil-
tonian hardly changes at all, except for the small renor-
malization of the effective coupling constants. Thus we
write the coupling to the lattice vibrations as

Ho1Vint→(
nW
V~nW !dnW

†dnW 1Do(
nW ,gW

eB~nW ,gW !dnW 1gW
† dnW , (28)

where the on-site interaction can be written as the sum
of one-, two-, and higher-order phonon processes by us-
ing the standard normal oscillator representation for the
atomic displacements V(nW )5V(1)(nW )1V(2)(nW )1•••

V ~1 !~nW !5(
j

]Vint

]Rj
~0 !

uj5(
a

Ca~nW !~ba1b2a
† !, (29)

V ~2 !~nW !5
1
2(jj8

]2Vint

]Rj
~0 !]Rj8

~0 ! ujuj8

5(
a ,b

Ca ,b~nW !~ba1b2a
† !~bb1b2b

† !. (30)

Here a and b denote different phonon modes, e.g., a

5(qW ,l), where qW is the phonon momentum and l is its
polarization state; ba

† is the Bose creation operator. We
are considering only one- and two-phonon terms, be-
cause the higher-order terms are small in the parameter
uj /a!1, and, according to our present understanding,
no new physics is introduced by these extra terms. One
may consider VnW as the variation of the particle zero-
point vibrational energy in the deformed lattice.

The site dependence of the coupling constants is gov-
erned by translational invariance. If there is only one
particle state in the unit cell, then

Ca~nW !5CaeiqW nW , Ca ,b~nW !5Ca ,bei~qW 1qW 8!nW . (31)
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In some cases, however, there are several interstitial
sites in the unit cell that have the same energy but
couple to phonons differently (Fujii, 1979). In this case
one has to describe each site in the unit cell with its own
set of coupling constants. As we shall see shortly, the
relevant quantity is the difference Ca(nW )2Ca(nW 1gW ),
which has differing dependence on the phonon momen-
tum for small qa in the two cases just mentioned (the
same consideration applies to the two-phonon coupling
constants).

We now turn to the second coupling term in Eq. (28),
which may be viewed as the variation in the tunneling
action So caused by the lattice distortion (Kagan and
Klinger, 1976) [we truncate the particle Hamiltonian in
an instantaneous potential U(rW ,$RW j%)]. Assuming that
the variation in the barrier height is small udUu!UB ,
where dU5U(rW ,$RW j%)2U(rW ,$RW j

(0)%), we write

S5E
rW18

rW28dxA2mm@U~x ,$RW j
~0 !% !1dU2vo/2#

'So1E
rW1

rW2 dx

v~x !
dU~x !2

p

2
dU~rW1!1dU~rW2!

vo
,

where v(x) is the particle velocity in the inverted poten-
tial (one has to account for the change in the position of
the turning points to get the correct result). This correc-
tion to the ‘‘bare’’ action So is written in Eq. (28) as an
operator B. The linear expansion in the atom displace-
ments then gives

B~nW ,gW !5(
a

Ba~nW ,gW !

vo
~ba1b2a

† !. (32)

The two interaction terms in the Hamiltonian have
opposite effects on the tunneling amplitude. Since Do is
small, in particular Do!Q , the particle will cause a lat-
tice deformation around its site to minimize the interac-
tion energy and will then find itself in an even deeper
potential well (or ‘‘self-trapped’’ state). Any attempt to
tunnel to the neighboring well without adjusting the lat-
tice deformation will be out of resonance. But the lattice
is not static and may fluctuate to a deformed state (not
energetically favored and thus very rare) in which the
two nearest wells come into resonance. At this moment
the particle may tunnel to another well, and the lattice
will then complete the transition by forming a self-
trapped state around the new particle site. Since now
not only the particle but also the surrounding host atoms
are involved in tunneling, we get an exponential sup-
pression of the effective tunneling amplitude known as
the polaron effect (Holstein, 1959; Flynn and Stoneham,
1970),

Do→Doe2F. (33)

This mechanism is quite general in nature and even
caused the misconception in the past that interaction ef-
fects must always suppress tunneling.

On the other hand the ‘‘barrier fluctuation’’ effect
(Kagan and Klinger, 1976) suggests that the potential
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barrier between the two wells may fluctuate to a lower
value, e.g., when the coupling between the particle and
the host atoms is repulsive and the atoms move away
from the tunneling path. Clearly, among different possi-
bilities, the particle will choose to tunnel when the bar-
rier height is the lowest. The effect will be to increase
the tunneling amplitude,

Do→DoeG. (34)

In fact, the polaron effect and the effect of the barrier
fluctuation interfere, and the net effect depends on the
system, i.e., the interaction potential, host atom mass,
tunneling configuration, etc. Although the barrier fluc-
tuation term contains an extra factor Q/vo!1 (which is
small according to our adiabatic approximation), one
has to admit that F and G are defined by the coupling to
the lattice in absolutely different regions—the first one
in the potential well and the second mostly in the middle
of the barrier. Thus no definite conclusion on whether
the interaction suppresses or promotes tunneling is pos-
sible in the general case.

We now turn to the problem of coupling to the con-
duction electrons, which apparently corresponds to the
opposite adiabatic limit me!mm . It turns out, however,
that the mass ratio is not at all the relevant parameter to
determine which system is following the other. Instead,
one has to compare the frequencies of the two (Kagan
and Prokof’ev, 1986). In a metal, elementary excitations
range from zero energy up to the Fermi energy eF@vo
(or the conduction bandwidth), and one has to treat
electron-hole pairs near the Fermi surface as slow uek
2ek8u,vo and the rest of them as fast. The role of fast
excitations is easy to understand. In the adiabatic ap-
proximation they adjust themselves to the instantaneous
position of the particle, and their only effect is to renor-
malize the effective crystal potential U(rW)→Ũ(rW), which
thus has to be understood as corrected, e.g., for screen-
ing effects (the change of the particle mass is small be-
cause of the large mass ratio).

Slow excitations in the Fermi liquid behave in exactly
the same way as lattice vibrations, i.e., they further con-
tribute to the self-trapped state in the well and to the
barrier fluctuations (Kondo, 1976; Vladar and Zawad-
owski, 1983). The effective Hamiltonian is given by the
same expression (28) with

Vel~nW !5 (
kW kW 8,s

VkW kW 8e
i~kW 2kW 8!nW akW s

† akW 8s , (35)

Bel~nW ,gW !5 (
kW kW 8,s

VkW kW 8
~b !

~nW ,gW !

vo
akW s

† akW 8s , (36)

where akW s
† is creating an electron in a state with momen-

tum kW and spin s . We do not expect any essential dif-
ference in the coupling constants VkW kW 8 and VkW kW 8

(b) because
the electronic state is essentially delocalized over the
unit cell, and the scattering off the particle may not
change drastically from one point to another. The
electron-polaronic effect is logarithmically enhanced at
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
low temperature Fel(T)'K ln(vo /T) (see below), and
since the barrier fluctuation term Gel is roughly propor-
tional to K;1 (Kagan and Prokof’ev, 1989a) and is thus
indistinguishable from the unknown numerical coeffi-
cient in the ln function in Fel , we shall ignore it in the
rest of the paper.

D. Incoherent tunneling

We are now ready to derive the interaction effects on
the particle dynamics. Detailed calculations are well rep-
resented in the literature (Grabert, 1987; Leggett et al.,
1987; Kagan and Prokof’ev, 1992; Weiss, 1993). Here we
shall only establish the framework for such calculations
and discuss the physics around it.

Even in the truncated Hamiltonian (28) most of the
environmental degrees of freedom have frequencies
much larger than D . It seems natural then to begin by
solving the on-site problem exactly (if possible), that is,
by assuming zero D , and then proceed with the pertur-
bation theory in D . This approach should work well in
the incoherent (or hopping) regime of quantum diffu-
sion, and its breakdown signals the onset of coherent
delocalization. Suppose that the solution of the on-site
problem is described by the unitary transformation con-
necting free and interacting environmental states, Ca

(0)

5Lab(nW )Cb
(int) , for the particle sitting at nW . In this site-

dependent representation of the environmental states
the effective Hamiltonian will take the form

H5Do(
nW ,gW

L†~nW 1gW !eB~nW ,gW !L~nW !dnW 1gW
† dnW

1(
nW

enW dnW
†dnW , (37)

that is, all the interaction effects are now contained in
the hopping term. For the one-phonon coupling the uni-
tary transformation is nothing but the famous normal-
oscillators displacement operator (see Flynn and Stone-
ham, 1970); an exact form of L was given by Kagan and
Prokof’ev for the two-phonon interaction in (1989b) and
for the coupling to conduction electrons in (1989a).

We start with the high-temperature limit, where the
coherent correlations between successive tunneling
events are suppressed, and the dynamics is described by
the hopping probabilities calculated in the second order
in D ,

WnW 1→nW 2
5Do

2E
2`

`

eijt^R
~nW 1 ,nW 2!

†
~ t !R ~nW 1 ,nW 2!~0 !&, (38)

where R(nW 1 ,nW 2)5L†(nW 1)eB(nW 1 ,nW 2)L(nW 2). Calculating the
thermal average is a straightforward, but lengthy proce-
dure. One finds the probability in the most general form
as (Kagan and Prokof’ev, 1992)

WnW 1→nW 2
5Do

2e2j/2TE
2`

`

eijte2Bo14G~T !2C~ t !dt , (39)
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where j5enW 1
2enW 2

is the energy bias between the wells,
and

C~ t !5E
0

vo
dv

3
f~v!@cosh~v/2T !2cos~vt !#1ih~v!sin~vt !

v sinh~v/2T !
.

(40)

We absorb all interaction effects into the definition of
spectral functions f(v)[f1ph(v)1f2ph(v)1fel(v) and
h(v)'h1ph(v). To simplify future notations we intro-
duce effective coupling constants C̄a[Ca(nW 1)2Ca(nW 2)
and the same definitions for C̄ab and V̄kW kW 8. Now,

Bo5(
a

C̄aB2a

vova
, G5

1
2(a

uBau2

vo
2 coth~va/2T !, (41)

f1ph5(
a

F uC̄au2

va
1

uBau2

vo
2 vaGd~va2v!, (42)

h1ph52(
a

C̄aB2a

vo
d~va2v!, (43)

f2ph5(
ab

uC̄abu2FNb2Na

va2vb
d~va2vb2v!

1
Nb1Na11
2~va1vb!

d~va1vb2v!G , (44)

fel52K , (45)

where K is the dimensionless electron coupling (the
most general expression for K was given by Yamada
et al., 1986); in the perturbation theory, K is given by the
Fermi-surface average K'2rF

2 ^uV̄kk8u
2&F . A straightfor-

ward generalization to the case of a superconducting
metal within the BCS theory gives (Black and Fulde,
1979)

fel5
4K

v F E
Dc

dEgEgE1v@E~E1v!2Dc
2#~nE2nE1v!

1u~v22Dc!E
Dc

v2Dc
dEgEgv2E@E~v2E !1Dc

2#

3S 1
2

2nED G . (46)

Here g(E)5(E22Dc
2)21/2, and Dc is the superconduct-

ing energy gap. We note that this expression was derived
by assuming a weak-scattering potential VkW kW 8. In the
strong-coupling case one has also to take into account
the change of the scattering matrix in the superconduct-
ing state. To our knowledge this effect has never been
calculated (see, however, Prokof’ev, 1995).

This set of equations can be used for computing the
tunneling rate over a wide temperature range both
above and well below Q down to the temperature where
coherent band propagation (if any) sets in. All existing
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
results concerning incoherent quantum diffusion in insu-
lators, metals, and superconductors can be obtained di-
rectly from Eqs. (39) and (40). We shall analyze the
high- and low-T limits for these equations in more detail
in the corresponding sections devoted to metals and in-
sulators to make it easier to connect them with the ex-
periments. Here we shall only describe the crossover be-
tween the coherent and incoherent regimes in a perfect
crystal to define the coherent tunneling amplitude and
the crossover temperature.

By ‘‘coherent’’ we usually mean a motion that pre-
serves phase correlations over a very long time scale. In
our case it would require tunneling without exciting the
environment, so that subsequent tunneling events could
interfere. To find the coherent tunneling amplitude we
consider the diagonal matrix element for the ‘‘dressed’’
amplitude in Eq. (37), i.e., Dcoh5Do^R(nW 1gW ,nW )&, with the
final result

Dcoh5DoeBo12G~T !expH 2E
0

vo
dv

f~v!

2v
cothS v

2T D J .

(47)

Clearly, the answer crucially depends on the low-
frequency limit of the spectral function f . The one-
phonon interaction is not dangerous in this respect, be-
cause f1ph;l1v21(2) at low frequencies [the factor two
in the parentheses corresponds to the ‘‘transport effect’’
in Eq. (31)]. On the other hand, both the two-phonon
and the normal-electron couplings give f(v)→const at
low frequencies, and the integral in the exponent of Eq.
(47) diverges. Since we expect (and prove below) that
the crossover temperature is much less than vo and Q ,
we use these inequalities to write the answer as

Dcoh5Do~T !exp$2tmax~V2ph1Vel!/2

1K@C„111/~2ptmaxT !…2C~1 !#%, (48)

Do~T !5DoeBo2F~T !1G~T !S 2pT

gvo
D K

, (49)

Vel52pKT , (50)

V2ph5p(
ab

uC̄abu2~Na11 !Nbd~va2vb!, (51)

where C(1)52lng is Euler’s constant, tmax
21 is the for-

mal low-energy cutoff and the damping rate is defined as
the zero-frequency limit, V5pTf(v→0). No matter
how strong, the one-phonon polaron exponent

F5
1
2(a

uC̄au2

va
2 coth~va/2T ! (52)

and the barrier preparation effect G are saturated at low
temperature and always preserve coherence. Indeed, as
can be clearly seen from Eq. (39), when only one-
phonon interaction is present, the integral over time di-
verges and is ill defined. In the past this difficulty was
avoided by subtracting the coherent channel from Eq.
(39) and treating the coherent tunneling separately
(Flynn and Stoneham, 1970).
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With the two-phonon or electron coupling added, the
situation changes drastically. Let us analyze first
whether coherence may exist even at T50. Calculating
Eq. (48), we made use of the unitary transformation re-
lating the free and interacting environmental states as-
suming a static particle. If it is moving, and its lifetime in
the well is given by t , then the low-frequency divergence
has to be cut at the energy scale tmax5t . If t is defined
by coherent delocalization, then t21'2A2Dcoh [see Eq.
(14)]. Thus we arrive at a self-consistent equation for
Dcoh . At T50 it reads (Schmid, 1983)

Dcoh5DoeBo2F1GS 2A2Dcoh

vo
D K

. (53)

For K,1 the solution has the form

Dcoh5Doe ~Bo2F1G !/~12K !S 2A2Do

vo
D K/~12K !

, (54)

(we remind the reader that the bandwidth is defined as
D52ZDcoh). In the superconducting state there is a
natural low-energy cutoff at the superconducting energy
gap Dc . If in the normal state we find Dcoh!Dc , then no
self-consistent solution is necessary, and one finds from
Eq. (47) that at zero temperature

Dcoh5DoeBo2F1GS eDc

2vo
D K

. (55)

If K>1 the only solution in the normal state is Dcoh
50, that is, coherence is suppressed even in the ground
state and despite the translational symmetry of the crys-
tal potential (disregarding longer-range hopping terms
as those are of only academic interest in our case). The
physical picture behind this phenomenon may be viewed
as follows: In a very short time t!Do

21 an electronic
cloud is formed around the particle. Any attempt to tun-
nel should now involve a reconstruction of this cloud
around another unit cell, which due to Anderson’s ‘‘or-
thogonality catastrophe’’ (Anderson, 1967) severely sup-
presses the tunneling amplitude. Hence the ‘‘waiting’’
time becomes longer, which in turn allows the electronic
cloud to extend in size, and its reshaping becomes even
more difficult. For K.1 the process never stops, and the
particle localizes at T50. The important question of
whether in a real muon problem, K can be larger than
the critical value seems to have been answered in the
negative. The general expression for K was given by
Yamada (1984) and Yamada et al. (1986) as K
51/8p2Tr ln2S(nW)S(nW1gW)

21 , where S(nW ) is the scattering ma-

trix centered at point nW . All eigenvalues of the matrix
S(nW )S(nW 1gW )

21 are equal to e2id j with ud ju<p/2 (Kagan and
Prokof’ev, 1989a); thus more than eight strong scattering
channels (including spin degeneracy) are necessary to
have K.1. The maximum value of K for the
s-scattering case (which results in four scattering chan-
nels in this nonlocal scattering problem) is only 1/2 (Ya-
mada et al., 1986). It seems that the screened potential in
most metals (Al, Cu, Nb) is simply not long ranged
enough to generate many strong scattering channels.
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
Consider now nonzero temperature and K,1. At
temperatures 2pT.Dcoh Eq. (48) simplifies to Dcoh

5Do(T)e21/2Vt, again with t21'2A2Dcoh . This equa-
tion has only a trivial solution Dcoh50 for

V.2eA2Do~T !. (56)

In metals the crossover happens at a temperature com-
parable with Dcoh(0) itself. In insulators it is shifted to a
higher temperature, T@Dcoh , but still T!Q . Thus we
find that when the phase-correlation damping rate V be-
comes of the order of the particle bandwidth, the coher-
ent delocalization stops. To be more precise it is sup-
pressed exponentially, because incoherent transitions
start contributing to t21, but Dcoh is exponentially small
for V@Vc and can be neglected. The same crossover
point can be derived by analyzing the transition prob-
ability integral (39). One can easily verify that the time
integral is convergent and well defined when two-
phonon or electron couplings are present; thus no artifi-
cial procedure of subtracting the coherent channel is
necessary. However, the very notion of the transition
probability makes sense only if the time integral is con-
vergent on a time scale t!W21. Since the convergence
is governed by V and W;Do(T)2/V , we arrive at the
same criterion for the onset of coherent motion.

E. Kinetic equation for spin depolarization
in the hopping regime

In this subsection we establish a mathematical frame-
work for the study of muon spin depolarization in the
incoherent regime, when its dynamics is described as un-
correlated jumps, i.e.,

]FnW ~ t !

]t
5L~F ![(

gW
@FnW 1gW~ t !WnW 1gW→nW 2FnW ~ t !WnW→nW 1gW # ,

(57)

where FnW (t) is the probability of finding the particle at
site nW . Between jumps the particle spin is precessing in

the local magnetic field sẆ(t)52gm@„BW o1BW (nW )…3sW(t)# .
One may then proceed in two ways. In computer simu-
lations we first prepare a ‘‘sample,’’ which is a 3D lattice
of possible muon sites with the defect potential and ran-
dom nuclear fields corresponding to a real crystal. Then
we put a particle at random at some initial site and or-
ganize its random walk through the lattice according to
the quantum diffusion theory and Eq. (57). For each
trajectory thus generated, nW (t), one may solve the equa-
tion for spin evolution to obtain sW(traj)(t). The statistical
sum of the results for spin evolution gives for polariza-
tion function PW theor(t)5^sW(traj)(t)& traj . In this way we
can directly compare the theory and experiment, thus
avoiding artificial model fitting. This approach, however
useful, nevertheless masks our understanding of why the
final results have the particular time decay of PW (t) or
why we get an unusual temperature dependence of the
depolarization rate. We thus consider below an alterna-
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tive approach, which allows us to gain a much deeper
insight into the physics involved.

Since the mSR experiment is statistical in nature, we
have to average the results of spin evolution over all
possible starting points and particle trajectories. The
first average is equivalent to considering an ensemble of
noninteracting muons forming a ‘‘spin liquid’’ with con-
stant density, sW(nW ,t50)5sWo5const. Statistically, we now
have to think not about the trajectories of a single par-
ticle, but rather about the diffusion flows in this liquid.
The muon polarization function is the sum over the lat-
tice sites,

PW ~ t !5N21(
nW

sW~nW ,t !, (58)

with the spin-distribution function obeying an equation
of motion

sẆ~nW ,t !2L~sW !52gm@„BW o1BW ~nW !…3sW~nW ,t !# , (59)

i.e., the change of the spin density at point nW is due to
particle transitions between the lattice sites and spin ro-
tation in the total magnetic field [the operator L(sW) is
identical to the operator L(F) in Eq. (57)]. The statisti-
cal average also means that we have to average over the
realizations of the nuclear fields. After this procedure
the effect of the local nuclear fields is to ‘‘evaporate’’
(depolarize) the spin liquid, with the depolarization rate
L(nW ,t) depending on the local muon motion (Kagan
and Prokof’ev, 1987, 1991),

sẆ2L~sW !52gm@BW o3sW~nW ,t !#2L~nW ,t !sW~nW ,t !. (60)

Thus we arrive at a picture in which the initially homo-
geneous distribution has to evolve toward its equilib-
rium distribution in the presence of the defect potential,
sWeq(nW )}e2Vinh(nW )/T (for simplicity we assume that in a
perfect crystal all relevant muon sites have the same en-
ergy) while being ‘‘evaporated’’ with a spatially inhomo-
geneous depolarization rate L(nW ,t).

For t@t the depolarization rate takes the form (mo-
tional narrowing)

L~nW ,t !5deff
2 t~nW !, (61)

where deff
2 depends on the experimental geometry (see

Sec. IV), and the local correlation time is given by
the integral (14) with the site-dependent probability
of return C(nW ,t) [formally C(nW ,t)5G(nW ,nW 85nW ,t),
where G is the lattice Green’s function: Ġ2L(G)
5d(t)d(nW 2nW 8)].

1. Long-range trapping

At low temperatures even rather weak defect poten-
tials introduce traps for muons with binding energies
Et;Uo@T . Assuming the long-ranged character of the
potential we can calculate the trapping rate L tr from Eq.
(57) in the continuum limit assuming smooth variation
of enW [Vinh(nW ) and F(nW ,t) on nW :
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]F

]t
1div JW50, JWa52Dab

]F

]rWb

1vW aF , (62)

where the diffusion tensor and the ‘‘hydrodynamic’’ ve-
locity

Dab~rW !5
1
2(gW

gW agW bWrW ,rW1gW , (63)

vW a52
Dab~rW !

T

]Vinh~rW !

]rWb

(64)

are defined via the local transition probabilities. At low
impurity concentration, trapping proceeds indepen-
dently at each defect center, and the total trapping rate
L tr is proportional to nim . To calculate the trapping rate
at a given defect center we adopt for simplicity the
spherical symmetry of the problem and make use of the
standard quasistationary solution of Eq. (62) in the form
L tr5nim4pr2J(r), with r2J(r)5const, and the bound-
ary conditions F(0)50 and F(`)5nim (Waite, 1957).
One finds then

L tr5
4pnim

H E dr
exp$Vinh~r !/T%

r2D~r !
J 54pctnimRTD~T ,RT!,

(65)

where ct;1 is a numerical coefficient, and the trapping
radius is defined by the condition uVinh(RT)u5T , or

RT5a~Uo /T !1/3. (66)

First, we note that the trapping radius depends on
temperature and RT@a at low T . Second, the tempera-
ture dependence of the diffusion coefficient at the trap-
ping radius can differ drastically from D(T) in a perfect
crystal, because it is defined in the region where the im-
purity potential is relatively strong. We shall see below
how the theory works for particular examples, such as
superconducting Al and insulating crystals.

2. Inhomogeneous T2 relaxation

In this section we consider a peculiar depolarization
mechanism, which is due to the diffusion’s slowing down
near the impurity. It applies to the case of transverse
relaxation, which is the fastest for static particles. In
many cases (see theory sections devoted to metals and
insulators) impurity-induced bias between the neighbor-
ing lattice sites, j(nW ,gW )5enW 1gW2enW , suppresses incoher-
ent tunneling, and

D~T ,r !;j~r !22}rs, (67)

where the exponent s is defined by the impurity poten-
tial derivative. For the strain field s58. For the oscillat-
ing potential (25) we find j(r);r23 (s56). The mecha-
nism we shall consider here is of importance only if the
particle depolarizes before it is trapped; thus we shall
ignore the velocity term in the mass current Eq. (62).
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To find the depolarization rate we have to solve Eqs.
(60) and (61) with t(r) related to the diffusion coeffi-
cient t'a2/4D . When the particle motion becomes very
slow its spin density ‘‘evaporates.’’ This induces the dif-
fusion flow toward the impurity center due to the gradi-
ent in the spin distribution function. To solve the prob-
lem we follow the same procedure as in the case of
trapping and consider the stationary equation (spheri-
cally symmetric)

1
r2

]

]r
r2D~r !

]

]r
s~r !5L~r !s~r !, (68)

with the boundary conditions s(0)50 and s(`)51. The
depolarization rate is defined by the integral L*
54pnim*0

`L(r)s(r)r2dr . For arbitrary power depen-
dence of D(r), Eq. (68) can be solved analytically with
the result

L* 5~4pc* nimR
*
2 a !d . (69)

Here c* is a numerical coefficient of order 1, and the
depolarization radius R* is defined explicitly from

dt~R* !5
s11

2 S a

R*
D . (70)

In fact, the radius R* is nothing but the distance from
the defect where the muon completely depolarizes be-
fore diffusing at a distance of order R* .

The most remarkable feature of Eq. (69) is that it
depends on quantum diffusion implicitly through the ra-
dius R* only. This happens because the depolarization
rate in the motional narrowing regime is inversely pro-
portional to the diffusion rate D , while the rate at which
particles may get to the slow-motion region is propor-
tional to D ; as a result, the diffusion rate drops from the
final answer. What is left is the volume of strong depo-
larization regions defined by R* . It follows from Eq.
(70) that the temperature dependence of the effective
depolarization rate is much weaker than expected from
the D(T) dependence in a perfect crystal (Kagan and
Prokof’ev, 1987, 1990a),

L* }R
*
2 }V22/~s21 !. (71)

Thus in a transverse field we may approximately di-
vide the crystal volume into two parts: one part consist-
ing of all those regions of radius R* around the defects,
where the hop rate is small and particles are static, the
other consisting of the rest of the crystal volume where
particles move fast with the hop rate t̄ and depolarize
only when they happen to approach the defect center
too closely [we assume here that R* ,R̄
5(4pnim/3)21/3; otherwise R* 5R̄]. We then write the
polarization function as

PTF'~12f* !e2L
*

t2d2 t̄t1f* g~ t !, (72)

where f* 5V(R* )nim5(4p/3)R
*
3 nim and g(t) is the

static relaxation function (see next section).

3. Inhomogeneous T1 relaxation

The physics of inhomogeneous longitudinal relaxation
at low temperatures is completely different, because in a
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
strong enough magnetic field the local depolarization
rate is proportional to the inverse t (see Sec. IV.B be-
low). More precisely, L(rW)52d2/@v2t(rW)# where v is
the Zeeman energy and we assume that vt(rW)@1. Now
particles that are far from impurities and diffuse rapidly
determine the longitudinal relaxation rate T1

21, and the
low-nim approximation as for T2

21 is not valid. In this
case the only characteristic distance is R̄ . Suppose that
diffusion is so slow that muons depolarize locally, and
there is no particle exchange between different parts of
the crystal during the measurement time. It is then pos-
sible simply to average the polarization function over
the sample and write (Storchak et al., 1995)

PLF~ t !5E dV

V
e2L~rW !t. (73)

One may further substitute the power-law dependence
t(r)215 t̄21(r/R̄)2s in Eq. (73) in order to express the
answer in terms of a single dynamic parameter t̄21—the
typical hopping rate far from impurities.

The validity of Eq. (73) depends on the impurity con-
centration. During the local depolarization time L21(rW),
the particle moves over a distance Dr;a/ALt
;av/(21/2d), which is independent of t . The assumption
of local depolarization holds as long as L(r1Dr)/L(r)
;sDr/r,1. Since the dominant contribution to the re-
laxation comes from distances r;R̄ we conclude that
Eq. (73) is valid only for nim,nc where

nc5
3

A2pa3S d

sv D 3

. (74)

When nim.nc , the majority of particles experience
all relevant diffusion rates during their longitudinal re-
laxation time. In this case the relaxation is exponential
with T1

21 obtained by a simple average over the volume,

PLF5e2^T1
21&t, ^T1

21&5E dV

V
L~rW !. (75)

It should be noted, however, that in the case of slow
diffusion one can expand the exponent in (73) up to the
second term and get the same result for ^T1

21& at short
times, thus the regions of validity of Eqs. (73) and (75)
overlap.

IV. EXPERIMENTAL TECHNIQUES

The techniques of muon spin relaxation have been
described in detail in a number of excellent reviews
(Schneck, 1985; Cox, 1987; Brewer, 1994). As mentioned
in the Introduction, the quantity that is directly mea-
sured is the polarization as a function of time, P(t). This
has a different functional form depending on the experi-
mental conditions.

A. Transverse-, zero-, and longitudinal-field
muon spin relaxation

The simplest m1SR technique for m1 diffusion studies
is the transverse-field muon spin rotation experiment, in
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which a large (with respect to internal nuclear magnetic
fields) external magnetic field Bo is applied perpendicu-
lar to the muon polarization, causing the muon spin to
precess about the external field. Due to the random ori-
entation of the nuclear moments, muons experience dif-
ferent local field at different unit cells. As a result, there
is a continuum of frequencies which can be param-
etrized with a Gaussian envelope,

Px~ t !5expS 2
1
2

d2t2D cos vmt . (76)

This applies if the muons are fixed in the lattice sites. In
the fast-diffusion regime (dtc!1) the time evolution of
P(t) is determined by the phenomenon well known
from NMR as motional narrowing (Abragam, 1961). In
this regime the polarization decay is given by

Px~ t !5exp~2T2
21t !cos vmt , T2

215d2tc . (77)

This phenomenon forms the basis for the muon diffu-
sion studies first carried out by Gurevich et al. (1972).

The smallest relaxation rate accessible by m1SR is ba-
sically limited by the muon lifetime. In a real experiment
special arrangements should be made to reliably mea-
sure a m1 relaxation rate lower than about 104 s21. The
local field from nuclear magnetic moments for the inter-
stitial position in a metallic lattice is about 1 G, which
corresponds to a typical value of d of about 105 s21.
Therefore, the highest muon hop rate in metals mea-
sured by transverse-field m1SR does not exceed
107 s21. The fastest relaxation rate of the m1SR signal
that can be measured is limited by the dead time of the
electronics which registers the incoming muons and out-
going positrons. This time typically does not exceed 10
ns. Therefore, the lower limit on the m1 hop rate that
can be measured by the transverse-field technique is set
by d (Slichter, 1980).

In zero-field and longitudinal-field techniques some of
these limitations are absent, which allows one to get
more information on m1 dynamics. The time evolution
of the muon polarization function in zero field and in a
longitudinal field is formulated in the classical treatment
of Kubo and Toyabe (1967; see also Hayano et al.,
1979). In the approximation of isotropic static local
fields with a Gaussian distribution

P~BW !;exp$2gm
2 B2/~2d2!% (78)

the m1 relaxation function in zero field for a static muon
is given by the Kubo-Toyabe formula

Pz
KT~ t !5

1
3

1
2
3

~12d2t2!expS 2
1
2

d2t2D . (79)

It should be noted that the initial (t!d21) relaxation is
faster than in a transverse field because Pz

KT(t)'1
2d2t2. This circumstance reflects the fact that in zero
field the muon interaction with the nuclei is determined
by the full dipole Hamiltonian, while in a transverse
field by the so-called secular part of it only (Slichter,
1980). The difference in relaxation rates may be not just
A2, but as large as A5 (Hayano et al., 1979). This fact
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can be taken as an unquestionable advantage of the
zero-field technique over the transverse-field one, as it
effectively extends the time scale limited by the muon
lifetime. Moreover, at short times one has more muons
and, therefore, the zero-field technique also has an ad-
vantage over the transverse-field technique in collecting
necessary statistics. The 1/3 asymptotic component in
Eq. (79) comes from muons’ having spin polarization
initially aligned with the local magnetic field. The re-
maining 2/3 of the muon polarization undergoes relax-
ation in transverse local fields.

The muon polarization function in longitudinal fields,
where an external field is applied along the initial muon
polarization, can be derived the same way as in zero
field (Hayano et al., 1979). The asymptotic value of the
m1 polarization in longitudinal fields is always higher
than 1/3, approaching 1 at high longitudinal fields. Usu-
ally this relatively simple Kubo-Toyabe model gives re-
sults precise enough to evaluate the muon polarization
in both zero and longitudinal fields in the static case.
However, direct theoretical calculation of m1 polariza-
tion function by solving the spin Hamiltonian for the
muon plus its nearest neighboring nuclei in the lattice
(Celio, 1986a) allows for a more accurate comparison
with experiment (Luke et al., 1991).

To move to the dynamic case, one has to solve the
spin Hamiltonian of the system ‘‘muon plus magnetic
environment’’ in the presence of m1 diffusion. In gen-
eral, this is a very complicated problem, as for low mag-
netic field several terms in the Hamiltonian (like the
dipole and quadrupole terms) cannot be treated as per-
turbations. However, the muon polarization function for
a diffusing particle can be described precisely enough by
‘‘dynamicizing’’ (under certain assumptions) the static
polarization function for both zero and longitudinal
fields (Hayano et al., 1979). The muon diffusion is often
approximated in the framework of a stochastic model
for the time evolution of a local field, experienced by the
moving m1, assuming a Markovian process (the so-
called strong-collision model),

^Bi~ t1tc!Bi~tc!&5d2/gm
2 e2t/tc i5x ,y ,z . (80)

Equation (80) assumes that there are no correlations be-
tween the local field experienced by m1 before and after
the hop, and one identifies tc

21 with the hopping rate
t21. This model is just an approximation of Eqs. (59)
and (60) for the homogeneous case, simple enough to
derive an analytic solution suitable for the experimental
fittings of dynamic effects. The probability that m1 is
still at its initial site is approximated here by an expo-
nential law. This assumption neglects the effect of ‘‘back
diffusion,’’ which brings the particle to already visited
sites (Celio, 1986b); for the same reason a2t21 and D
are related by a factor 1/4 instead of 1/6 (see Sec. III).
Figure 1 shows polarization functions for zero field and
longitudinal field for different muon hop rates obtained
numerically in the framework of the strong-collision
model (Luke et al., 1991).

In the slow-hopping limit (tc
21!d) for long times (t

@d21), the m1 polarization function is expressed by a
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FIG. 1. Muon polarization functions for zero field and weak longitudinal field for several muon hop rates, calculated using the
strong-collision model (Luke et al., 1991).
simple exponential decay of the ‘‘ 1
3 tail’’ in the zero-field

static Kubo-Toyabe expression

Pz~ t !.
1
3

expS 2
2
3

tc
21t D , (81)

which is independent of d . The value of d can be ex-
tracted from P(t) at short times where it is independent
of tc

21 . Thus, in a zero-field experiment the form of the
m1 polarization function allows one to extract indepen-
dently tc

21 and d even in the low-tc limit, in contrast to
a transverse-field experiment. In the fast-hopping limit
(d!tc

21), the polarization function is exponential,

Pz~ t !.exp~22d2tct !. (82)

The minimum in P(t) then disappears, as can be seen in
Fig. 1.

In real zero-field m1SR measurements the experimen-
tal time range limited by the muon lifetime is sometimes
not long enough for the asymptotic ‘‘tail’’ to be observed
with the required precision in order to determine the m1

hop rate. In this case the weak-longitudinal-field tech-
nique, which has several essential advantages over both
zero-field and transverse-field methods, can be applied.
First, the amplitude of the m1 polarization ‘‘tail’’ in a
weak longitudinal field is higher than 1/3. Second, this
‘‘tail’’ is shifted to earlier times, where there are statis-
tically more muons (an effective stretch of the m1SR
time window). Moreover, the change in shape of P(t)
versus t is more pronounced in a weak longitudinal
field. In addition, it is sometimes impossible to distin-
guish the almost static case with different muon site oc-
cupation (and, subsequently, different d) from the fast-
dynamics regime in zero field (Petzinger, 1980, 1981),
while in a weak longitudinal-field the static case is easily
distinguished from the dynamic one. Therefore, the
weak-longitudinal field technique developed by Brewer
et al. (1986, 1987) often seems to be the most adequate
one for m1 diffusion measurements (at least in the slow-
diffusion regime).
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B. Transverse-, zero-, and longitudinal-field
muonium spin relaxation

Since m1 is much heavier than an electron, the elec-
tronic structure of the Mu atom is almost the same as
that of the H atom, and Mu can be considered as a light
hydrogen isotope. This establishes a close analogy be-
tween the muonium spin resonance MSR and electron-
spin resonance (ESR) techniques. Although the instru-
mental arrangements of these techniques are quite
different, the physical concepts of the spin-relaxation
mechanisms could be directly transferred from ESR and
NMR (Abragam, 1961; Poole, 1967; Slichter, 1980).

The effective spin Hamiltonian of muonium in the
crystals in the case of isotropic hyperfine and nuclear
hyperfine interactions has the form

H5ASW e•SW m2gemBSW e•BW 2gmmmSW m•BW

1(
n

dMuSW e•SW n2(
n

gnmnSW n•BW , (83)

where A is the muonium hyperfine frequency (about
2.831010 s21 rad for the ground state in vacuum), and
the SW , g , and m are, respectively, the spins, g factors, and
magnetic moments of the various particles. The summa-
tions are over all nearby nuclei. The nuclear hyperfine
interaction between the muonium electron and neigh-
boring nuclear dipoles is characterized by the parameter
dMu (we have neglected a possible nuclear quadrupole
interaction).

Qualitatively, modulation of the nuclear hyperfine in-
teractions results in relaxation of the muonium electron
spin, which in turn leads to depolarization of the muon
spin via the muonium hyperfine interaction. As the muo-
nium hyperfine frequency usually turns out to be several
orders of magnitude higher than the nuclear hyperfine
frequency, it is the nuclear hyperfine interaction which
sets the time scale for muonium spin relaxation.

The first three terms in Eq. (83) are known as the
Breit-Rabi Hamiltonian. Its four eigenvalues are given
by
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E1,351
1
4

A6A
G2

2G1
x , E2,452

1
4

A7
1
2

AA11x2,

where G65 1
2 (gemB6gmmm) and x52G1B/A . The de-

pendence of the energy eigenvalues on the applied mag-
netic field is presented by the so-called Breit-Rabi dia-
gram (see, for example, Schenck, 1985).

For simplicity the nuclear hyperfine interaction term
is represented as isotropic in Eq. (83). The inclusion of
this term and the nuclear Zeeman interactions causes
energy-level splittings, which result in a very compli-
cated MSR spectrum (Patterson, 1988). However, there
are several limiting cases in which one can form an opin-
ion on the time evolution of the muon polarization func-
tion.

Let us forget for a moment about the last two terms in
Eq. (83). When the Zeeman interaction is small com-
pared with the hyperfine interaction, one usually ob-
serves four (out of six) allowed transitions between the
Breit-Rabi levels: v12 , v23 , v34 , and v14 (here vab
5Ea2Eb). All transitions that constitute a flip of the
muon spin lead to reduction of the muon polarization.
Precession frequencies of the order of A (typically about
10 10 s 21) are too high to be observed by the conven-
tional m1SR spectrometers (this restriction comes from
the limited time resolution). In a low transverse field
one may also neglect the x2 terms and write approxi-
mately

v125v235vMu5G2B . (84)

This is the well-known phenomenon of the triplet muo-
nium precession. It is standard practice to reveal Mu for-
mation in the sample by observation of this precession
signal with the characteristic frequency 1.39 MHz/Oe in
magnetic fields below about 10 Oe. At higher fields vMu
splits into two triplet Mu frequencies, v12 and v23 , from
which one can obtain the hyperfine frequency A using

A5
1
2F ~v121v2312vm!2

v232v12
1v122v23G . (85)

In a transverse magnetic field low enough to observe
only one line v12 , which is, however, higher than the
nuclear hyperfine frequency (vMu@dMu), we have the
familiar situation from the transverse-field technique for
m1 diffusion measurements. Expressions (76) and (77),
as well as the corresponding discussion of the relaxation
process, apply equally well to Mu. It should be noted,
however, that the Mu precession frequency exceeds that
of m1 by a factor of about 103 in the same transverse
field. Therefore the effect of dephasing (or frequency
‘‘spread’’) for Mu atoms precessing in different local
fields is enhanced greatly over that for m1. Now, for a
static Mu atom one finds T2

21>107 s 21. Such a high re-
laxation rate is close to the upper limit of the standard
spectrometers. In fact, in many solids the Mu relaxation
rate is further enhanced by contact interaction, which
may be much stronger than the dipole one. Also, in
transverse fields higher than about 10 Oe the intratriplet
frequencies are split, which introduces unnecessary com-
plication into the analysis. Thus muonium T2

21 measure-
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ments are restricted to being carried out in rather low
transverse fields, which are sometimes comparable with
the local magnetic fields (this makes the MSR signal
linewidth comparable to its frequency). Finally, preces-
sion amplitude of Mu drops by a factor of 2 due to the
distribution of the Mu polarization between singlet and
triplet states. All of the above reasons make T2

21 mea-
surements of static Mu relaxation in crystals very com-
plicated if not impossible. However, if the Mu atom dif-
fuses rapidly in the lattice its relaxation rate is
measurable in low transverse fields. Figure 2 shows a
perfect example of MSR time spectra taken in solid ni-
trogen (s-N 2) at different temperatures in order to mea-
sure Mu dynamics in a low transverse field (Storchak
et al., 1993). Solid nitrogen presents one of those rare
cases when T2

21 for muonium remains in the ‘‘MSR win-
dow’’ in the entire measured temperature range.

It is, however, possible to extend muonium diffusion
measurements by several orders of magnitude in the hop
rate by applying the longitudinal-field technique. If the
Mu atom is static, the polarization function is known to
be (Beck et al., 1975)

Pz~ t !512
12cos~AA11x2t !

2~11x2!
→

112x2

2~11x2!
, (86)

in a relatively high longitudinal field (G6B@dMu). The
oscillating component is unresolvable in the standard
MSR experiments and averages to zero. The Mu longi-

FIG. 2. Muonium precession signals in s-N 2 in a transverse
magnetic field of 8.9 Oe at several temperatures (Storchak
et al., 1993).
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tudinal spin relaxation can then be evaluated using Red-
field’s theory (see, for example, Slichter, 1980) by treat-
ing the nuclear hyperfine interaction as an effective
time-dependent (due to Mu diffusion) magnetic field
acting on the Mu electron, which causes transitions be-
tween the coupled spin states of the electron and muon.
A general expression involves various transitions, but a
reasonable approximation is obtained by considering the
lowest-frequency transition (within the muonium triplet
spin states), leading to an exponential T1

21-relaxation of
the residual non-oscillating component (86):

Pz~ t !5
112x2

2~11x2!
e2t/T1,

T1
21'S 12

x

A11x2D 2dMu
2 tc

11v12
2 tc

2 . (87)

For x!1, i.e., in a weak field, Eq. (87) reduces to

T1
215

2dMu
2 tc

11vMu
2 tc

2 , ~T1
21!max5

dMu
2

vMu
, (88)

where vMu5gMuB , gMu is the muonium gyromagnetic
ratio.

The main feature of Eq. (88) is the well-known
T1

21-maximum (better known from NMR as a
T1-minimum effect; Slichter, 1980) at vMutc51. The ob-
servation of the T1-minimum effect allows an indepen-
dent determination of the nuclear hyperfine frequency
dMu and an absolute calibration of the muonium hop
rate (Celio, 1987; Yen, 1988). Figure 3 shows an example
of T1

21 measurements in which longitudinal muonium
spin relaxation was proved to be due to Mu diffusion in
the lattice of a solid nitrogen crystal (Storchak et al.,
1994a). The temperature dependence of the T1

21 is
shown in Fig. 4. The T1

21 maxima are clearly seen at all
longitudinal fields used in the experiment. At tempera-
tures above about 12 K, T1

21 becomes independent of
magnetic field, as is expected in the fast-hopping regime
(vMutc!1) according to Eq. (88). The undoubted ad-
vantage of the longitudinal-field technique is the fact
that one can choose the magnitude of the applied field
to put T1

21 values into the MSR window (the most con-
venient range of the T1

21 is between 105 s 21 and
107 s21). This approach is restricted to the limit of rela-
tively high longitudinal fields, however, since the effec-
tive magnetic-field approximation is valid only if geB
@dMu .

Measurements in zero field and weak longitudinal
fields turn out to be much more sensitive to slow muo-
nium dynamics (as they are to slow m1 diffusion), at
least when relaxation is due to dipole interactions with
neighboring nuclei. This is due primarily to the fact that
these techniques involve the full dipole Hamiltonian
rather than its secular part (as is adequate for the
transverse-field technique; see, for example, Slichter,
1980). The approach of Kubo and Toyabe (1967) is
equally applicable for the triplet state of muonium,
which can be treated in low magnetic field as one par-
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
ticle with spin S51. However, the observation of Kubo-
Toyabe-type relaxation for Mu is impossible in most sol-
ids, because its characteristic minimum is shifted to the
dead time of a mSR spectrometer (because of the huge
value of dMu). The ‘‘1/3 tail’’ forms a time-independent
baseline that cannot be distinguished from any other in-
strumental baseline. To observe Kubo-Toyabe relax-
ation for Mu one has to choose a solid with a low abun-
dance of magnetic nuclear isotopes in order to reduce
the value of dMu and to shift the minimum of PKT(t) to
the experimentally observable time range. The basic
idea is to use the next-nearest neighbors as a source of
Mu relaxation; the ideal situation for the hcp lattice is to
have about 10% of nonzero magnetic moments. Also,
the compensation of any kind of external magnetic field
should be made to the level of about 10 mOe; this pro-

FIG. 3. mSR spectra in a longitudinal field in solid nitrogen at
different temperatures: m , for B i54 G; d , 8 G; h , 12 G (Stor-
chak et al., 1994a).
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cedure can be done using the Mu atom as a magnetome-
ter (the technique invented and adopted by J. H.
Brewer).

This idea was successfully implemented in a recent
experiment in solid krypton (s-Kr), which possesses only
11.55% of the isotope 83Kr with a nonzero nuclear mag-
netic moment (Storchak et al., 1996). Figure 5 presents
the time spectrum of the Mu polarization in s-Kr at low
temperature, where it is believed to be static. The line
drawn through the experimental points represents a best
fit to a ‘‘dynamicized’’ version (Brewer et al., 1987; Luke
et al., 1991) of Eq. (79), taking into account sites both
with and without nearest-neighbor 83Kr nuclear spins.
The former contribute a Kubo-Toyabe function with its
characteristic minimum shifted to very early times. The
‘‘1/3 tail’’ of this component constitutes a baseline to the
Kubo-Toyabe relaxation due to more distant nuclear
spins at the latter type of sites. For comparison, Fig. 5
also shows the muonium polarization function (stars) in
solid Kr for a weak longitudinal field of 5 G. This ex-

FIG. 4. Temperature dependences of Mu relaxation rates in
solid N 2 in several longitudinal fields: stars, 12 G; n , 8 G; % , 4
G (Storchak et al., 1994a).

FIG. 5. Time dependence of the muonium polarization in solid
Kr at T520.3 K: s , in zero magnetic field; stars, in a weak
longitudinal magnetic field B55 G. Note the Kubo-Toyabe
form of the muon polarization function in zero magnetic field
(Storchak et al., 1996).
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periment allowed direct [see Eq. (81)] measurement of
Mu hop rates two orders of magnitude slower than the
inverse m1 lifetime by using both zero field and weak
longitudinal field, in a regime of such slow dynamics that
it was previously inaccessible. The ideas, advantages,
and limitations of the weak-longitudinal-field technique
for Mu diffusion measurements are analogous to those
for m1. Figure 6 shows an example of the application of
the weak-longitudinal-field technique for measurements
of very slow Mu diffusion in a solid.

V. QUANTUM DIFFUSION OF m 1 IN METALS

A. Transition probabilities and diffusion rates in metals
and superconductors

In this section we present more specific expressions
derived from Eq. (39) for the case of particle diffusion in
metals. We begin with the transition probability in the
low-temperature limit. In metals, phonons do not influ-
ence quantum diffusion in any significant way at T!Q ,
and their only effect is the renormalization of the tun-
neling amplitude (49). We find then from Eq. (39)
(Fisher and Dorsey, 1985; Grabert and Weiss, 1985; Ka-
gan and Prokof’ev, 1986)

W~j ,T !52
Do

2~T !V

j21V2 ej/2T
uG~11K1ij/2pT !u2

G~112K !
, (89)

where V was defined in Eq. (50). In the zero-bias case
(perfect crystal) this gives the diffusion rate as [see Eq.
(63)]

D~T !5
Za2

3

Do
2~T !

V

G2~11K !

G~112K !
;T2~122K !. (90)

This result was first established by Kondo (1984) and
Yamada (1984). Usually K,1/2, and the diffusion rate
increases towards low temperatures.

The other interesting limit is that of large bias V ,T
!j , when

FIG. 6. Muonium polarization time spectra in solid Kr in a
very weak longitudinal magnetic field B50.22 G at different
temperatures: h , 25 K; s , 28 K; n , and 30 K (Storchak et al.,
1996).
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W~j!5
2pDo

2~j!

G~2K !j

1

12e2j/T
;S 1

uju D
122K

, (91)

with the bias-dependent tunneling amplitude Do(j)
5DoeBo2F(T)1G(T)(uju/gvo)K [compare Eq. (49)]. If,
for some reason, the coupling constant is very small, K
!1 (e.g., in semimetals), then there is a temperature
range T.j.V where

W~j ,T !52
Do

2~T !V

j2 ;
T112K

j2
, (92)

i.e., the temperature dependence is opposite to that in
Eq. (90).

It is also worth mentioning here that the large damp-
ing rate in a metal (Vel;T even for K;0.1) almost
eliminates the possibility of observing crystal disorder
effects through particle diffusion in the bulk. The disor-
der is of importance (excluding the special case of ex-
tremely small K) only when j.T , but at this point the
muon is already trapped. Thus most of the mSR data in
the normal state can be interpreted in terms of the dif-
fusion rate in a perfect crystal, Eq. (90). The only point,
then, where the long-range character of the defect po-
tential enters the problem is the temperature depen-
dence of the trapping radius.

In the superconducting state the appearance of the
gap Dc in the electron spectrum and an exponential de-
crease in the number of normal excitations has a twofold
effect on quantum diffusion. On the one hand, the tem-
perature dependence of the tunneling amplitude stops at
a level determined by Eq. (55). On the other, the rate at
which phase correlations are lost now decreases expo-
nentially when the temperature is lowered. From Eq.
(46) we find

VS5
4pKT

11exp$Dc /T%
. (93)

Thus in a perfect crystal we expect an exponential in-
crease in the diffusion rate in the superconducting state
right from the transition point (with infinite derivative at
Tc) (Black and Fulde, 1979; Morosov, 1979),

D~T !'
Za2

3

~Dcoh
~s ! !2

VS
. (94)

The crucial difference from the normal-metal case at
T!Tc is that now even small bias (but still, j.D) will
localize particles, because at j@VS the transition prob-
ability goes to zero as [compare with Eq. (92)]

W~j ,T !52
~Dcoh

~s ! !2VS

j2
. (95)

This law is slightly modified near the threshold T!j
,2Ds (Kagan and Prokof’ev, 1991):

W~j.0 !52
~Dcoh

~s ! !2VS

j2 S pT

16j~11j/2Ds!
D 1/2

. (96)

(An obvious Boltzmann factor is not mentioned here.)
To summarize, the effect of the superconducting transi-
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tion is to ‘‘liberate’’ particles in the unperturbed lattice
regions (j,D) and ‘‘freeze’’ them otherwise. The best
confirmation of these predictions has been recently
found in experiments performed on doped supercon-
ducting Al samples.

As was mentioned above, these equations hold true
up to rather high temperatures, comparable with Q ,
where the temperature dependence of F(T) and G(T)
in the exponent is important. Now the T dependence of
the transition probability is dominated by one-phonon
processes, while the role of conduction electrons is re-
duced to almost constant renormalization of the bare
tunneling amplitude, Do→D̃o'DoeBo(Q/gvo)K. Thus
in the high-temperature limit (in fact, already at T
,Q) we find

W~T !5
Ap

2

D̃o
2

A~E1E1!T
e2E/T1T/EB2TnB

2 /[16~E1E1!],

(97)

where different parameters are given by spectral
sums: E5(auC̄au2/(4va), E15(auBau2va /(4vo

2), EB
21

54(auBau2/(vo
2va), nB54(aC̄aB2a /(vova) (Kagan

and Klinger, 1976). Using the Schwartz inequality one
can prove that the sum of the two terms linear in T has
a positive sign. If we neglect barrier fluctuations (Ba
50), then Eq. (97) reduces to the small-polaron expres-
sion (Flynn and Stoneham, 1970)

W~T !5D̃o
2A p

4ET
e2E/T, (98)

which has been widely used to fit the experimental data
at high temperature. The crossover temperature Tmin ,
from Eqs. (90) to (97), may be obtained by comparing
these two expressions. If the two-phonon processes are
of any importance in a metal, then their role may be
seen near the crossover point only, provided
V2ph(Tmin).Vel(Tmin) [see Eq. (51)], in which case
one has to understand V in Eq. (90) as the total dephas-
ing rate, V2ph1Vel (Kondo, 1986).

We observe that at high temperatures the relative role
of the on-site interaction (polaronic effect) and barrier
fluctuations may change and the latter always dominate
at high T . The reason seems to be rather obvious: at
high T it is much easier for the lattice to fluctuate to the
state where the two nearest sites are in resonance, while
the increase of lattice vibrations with temperature cre-
ates more opportunities for the particle to tunnel when
the barrier height is the lowest.

B. Experimental results on m1 quantum diffusion
in metals

Starting from the first experiment of Gurevich et al.
(1972), m1 diffusion has been studied in a large number
of different metals: Cu and Al, Nb and V, Bi and Au,
etc. Quantum tunneling was suggested as a cause of m1

dynamics in metallic matrices from the very beginning of
these studies more than two decades ago. However, it
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was not until the breakthrough results of Kondo (1984)
and Yamada (1984), which recognized the crucial role of
the conduction electrons, that we obtained a consistent
understanding of muon quantum diffusion in metals
[scattering on electrons was in fact discussed already by
Andreev and Lifshitz (1969) and later by Jäckle and
Kehr (1983), but these theories were perturbative band-
type (large-mean-free-path) calculations, which simply
do not apply to the problem of m1 relaxation]. It turns
out that, in all metals, the tunneling band is so large that
coherently moving muons do not depolarize because of
the motional narrowing effect. Spin relaxation takes
place only in regions where coherent motion is not pos-
sible, i.e., when j or V exceed D . When j.V ,D , the
problem is essentially inhomogeneous, requiring a solu-
tion of the kinetic equation taking into account both m1

local diffusion and local relaxation with space-
dependent tc

21(nW ,T) (Kagan and Prokof’ev, 1992). In
the case V.j ,D one may introduce a space-
independent parameter tc

21(T). In this section we shall
give a detailed description of both homogeneous and
inhomogeneous processes in metals, employing the cases
of m1 diffusion in Cu and Al. We shall also briefly re-
view some other metals in which m1 dynamics is be-
lieved to be quantum in character.

1. Copper

A perfect example of a system that can be treated as
homogeneous is copper. The first measurements of
muon diffusion in copper (Gurevich et al., 1972; Grebin-
nik et al., 1975) were carried out in a transverse field B
562 Oe. The m1 hop rate was determined using the
motional narrowing effect and was found to depend
strongly on temperature in the range of 80–330 K. The
m1 hop rate was extracted using an approximate inter-
polation formula by Abragam (1961),

P~ t !5exp~22d2tc
2@e2t/tc211t/tc# !. (99)

Below about 80 K the relaxation rate was temperature
independent. This was considered to be evidence of
static relaxation, and the value of d was readily found to
equal d50.2523106 s 21 in the polycrystalline Cu. In the
single crystal of copper this parameter was slightly (al-
beit, noticeably) higher (Hartmann et al., 1980). Good
agreement between d and the Van Vleck (1948) value
for the second moment of the field distribution due to
dipole coupling to unlike spins in a strong transverse
field has supported the assumption that m1 localizes at
interstitial sites, later identified as octahedral (Camani
et al., 1977).

The temperature dependence of the m1 hop rate ex-
tracted from Eq. (99) using a fixed value of d is pre-
sented in Fig. 7. Grebinnik et al. (1975) fitted this tem-
perature dependence to the Arrhenius law

tc
215nmexp~2E/T ! (100)

with the parameters nm'107.5 s 21 and E'550 K. These
parameters indicate unambiguously the quantum nature
of m1 diffusion in Cu in the temperature range 100–250
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
K. First, the preexponential factor is about six orders of
magnitude less than the particle vibration frequency in
the well (which is as high as 1013 s21). Second, the acti-
vation energy E is about an order of magnitude less than
that for proton diffusion in copper (Katz et al., 1971). At
temperatures above 250 K the deviation of the experi-
mental results from the Arrhenius law with the above
parameters was attributed to over-the-barrier transi-
tions. The analysis of the experimental data by Teichler
(1977) showed, however, that one can get a better fit by
using the small-polaron expression with the
temperature-dependent preexponential factor, Eq. (98).
Subsequent experiment (Schilling et al., 1982) in a single
crystal confirmed that this is indeed the case. The results
for the polaron energy and the tunneling matrix element
were found to be E5920635 K and D̃050.2160.01 K.

It was not until Hartmann et al. (1980) carried out the
transverse-field experiment in a Cu in a magnetic field of
520 Oe, down to about 60 mK, that the m1 transverse
relaxation rate was found to decrease below about 2 K.
The sample used in this experiment was a high-purity
polycrystalline copper with less than 20 at. ppm of re-
sidual impurities. Some decrease in the muon relaxation
rate was also found in a single crystal, but the data were
available only down to 2 K. All experimental spectra
were corrected for background arising from muons stop-
ping in the sample holder and the cryostat walls, and all
agreed with Grebinnik et al. (1975) and Camani et al.
(1977) in the temperature range between 10 K and 75 K.
Subsequent transverse-field experiments (Welter et al.,
1983, 1984) confirmed that the muon spin-relaxation
rate decreases below about 20 K with decreasing tem-
perature. Below about 0.5 K it seemed to have reached a
temperature-independent value of about 0.153106 s 21,
while the muon site was determined to be still octahe-
dral (Chappert et al., 1982). Some experimental attempts
were made to see the influence of weak crystalline dis-
order on the muon spin-relaxation rate through

FIG. 7. Temperature dependence of the m1 hop rate in Cu
(Grebinnik et al., 1975).
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trapping-detrapping effects. Radiation damage in thin
(50m) foils of Cu, resulting in a defect concentration of
approximately 80 ppm, was shown to have no effect
(Echt et al., 1978). Experiments on isotopically enriched
samples containing over 99% of either 63Cu or 65Cu also
revealed almost no deviation from the natural composi-
tion samples (Welter et al., 1984). To summarize, attrib-
uting the decrease in m1 relaxation rate below 20 K to
the motional narrowing effect, one was bound to con-
sider quantum diffusion, because t21(T) was increasing
with decreasing temperature [the failure of the trapping
model (Petzinger, 1980, 1981) in explaining the data was
later verified by zero-field experiments (see below)].
However, the precision of the transverse-field experi-
ments was not sufficient to measure reliably the tem-
perature dependence of the muon hop rate.

The first zero-field m1SR measurements in copper
(Clawson et al., 1982; Clawson et al., 1983) confirmed an
increase in the m1 hop rate at low T . Two high-purity
samples—a slice of the same polycrystal used by Hart-
mann et al. (1980) and an oxygen-annealed single crystal
with a residual resistivity ratio (RRR) of 4000—both
showed a dynamically narrowed Kubo-Toyabe relax-
ation function below 5 K. Although experimental spec-
tra appeared to be almost identical up to about 4 ms, the
tails of the relaxation function were qualitatively differ-
ent at T55.15 K and T50.63 K (Fig. 8), indicating dy-
namic behavior at the lowest temperature. Identical
shot-time behavior further proved that d5const, and the
difference in the relaxation function at long times was
then attributed entirely to the increase of the m1 hop
rate from about 10 5 s 21 at 5 K to about 43105 s 21 at
0.5 K. This was made possible due to the intrinsic power
of the zero-field technique, in which it is possible to de-
termine independently the static linewidth and the par-
ticle’s hop rate. The octahedral position for m1 and tem-
perature independence of d at all relevant T were also
confirmed later by the level-crossing resonance tech-
nique (Luke et al., 1991).

The extension of zero-field measurements in Cu down

FIG. 8. Time dependences of the muon polarization in copper
at different temperatures in zero magnetic field (Clawson
et al., 1983).
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to 70 mK (Kadono et al., 1984, 1985, 1986, 1989) con-
firmed these results. All of these experiments revealed a
minimum in the muon hop rate in the temperature in-
terval 30–70 K (although there is a large variation in the
fitted values of tc

21 at this minimum), and leveling off
below 0.5 K even in ultrapure samples (RRR 18 000 and
7350). Thorough analysis (Kadono et al., 1989) showed
that the experimental spectra are better approximated
using the Celio model (Celio, 1986a) which goes beyond
the Kubo-Toyabe Gaussian approximation for the local-
field distribution and accounts exactly for the m1 inter-
action with nearest nuclei in the lattice (see also Celio
and Meier, 1983; Holzschuh and Meier, 1984). The dif-
ference is most pronounced in the quasistatic region,
where the difference in the tails of relaxation functions
in the two models is the largest. The resultant tempera-
ture dependence tc

21(T) is shown in Fig. 9 (circles).
Below the minimum the increasing hop rate was

found to obey a power law,

tc
21;T2a, (101)

where the value of a is expected to determine the scale
of the muon interaction with the conduction electrons
K5(12a)/2, [see Eq. (90)]. The parameter a depends
on the temperature range used to extract it. The data
between 0.5 and 10 K follow Eq. (101) with a50.67
60.03, which agrees with the value a50.7 obtained
from transverse-field measurements (Welter et al.,
1983). Similar analysis in the extended temperature re-
gion (up to ;80 K) gave a50.860.02. This ambiguity
leads to a scattering of the muon-electron constant be-
tween K50.16 and K50.1. The uncertainty mostly
originates from rather large error bars in the tempera-
ture range 10–80 K, where the m1 hop rate is too small
(tc

21;1032104 ms 21) to be accurately extracted from
zero-field data (see Sec. IV), and the results extracted in
this region are extremely sensitive to the choice of the-
oretical model.

Experiments using the weak-longitudinal-field tech-
nique (Brewer et al., 1986, 1987; Luke et al., 1990, 1991)
were much more precise in the determination of slow

FIG. 9. Temperature dependences of the m1 hop rate in high-
purity copper; data by two groups: circles, Kadono et al.
(1989); squares, Luke et al. (1991).
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muon hop rates (see Sec. IV). At each temperature a
series of spectra were taken at several values of longitu-
dinal field. In addition to the inherent advantages of this
technique, discussed in Sec. IV, there are further advan-
tages in taking a series of runs at several fields, since one
may then compare the results of fittings and estimate
their uncertainty. The choice of the longitudinal field
allows one to apply a field that is most sensitive to small
changes of tc

21 , which is very important around the
‘‘T1

21 minimum,’’ as illustrated in Fig. 10. Furthermore,
the analysis of the experimental data using an exactly
solved, quantum-mechanical, microscopic Hamiltonian,
which determines the time evolution of the static m1

polarization function (Luke et al., 1990, 1991), made it
possible to avoid theoretical modeling. The temperature
range of the weak-longitudinal-field measurements was
extended down to 12 mK.

Weak-longitudinal-field results for the hop rate are
presented as a function of temperature in Fig. 9, along
with the results of Kadono et al. (1989). The greatest
difference appears in the temperature range near the
minimum of the hop rate. [Apart from the less sensitive
technique of the tc

21 measurements in zero field, the
source of the discrepancy around the minimum may be
explained by the difference in muon beams. The pulsed
structure of the muon beam at KEK along with the
rather higher energy of the incoming muon (backward
decay muons) with respect to that of the dc surface
muon beam at TRIUMF may also cause an underesti-

FIG. 10. Dynamic muon relaxation functions in zero field and
weak longitudinal field, as a function of the muon hop rate
(Luke et al., 1991).
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mate of m1 hop rates in the quasistatic limit (Luke et al.,
1991).]

Some misinterpretations of the results in cited papers
should be noted. The high-temperature region was cor-
rectly described using Eq. (98). The values of the po-
laron energy E5697615 K and D̃o5(36.163.2)31026

eV were extracted from the tc
21(T) in the temperature

range 100–190 K by Kadono et al. (1989). However, it
should be pointed out that at temperatures above about
150 K the muon hop rate exceeds the frequency of the
electric quadrupole splitting of the Cu nuclei (;1
MHz), which effectively increases the static dipole
width. The absolute values of the muon tc

21 in Cu at
temperatures above 150 K extracted from the ‘‘dynami-
cized’’ static relaxation function in a weak longitudinal
field or zero field can no longer be considered as reliable
due to the fact that the strong-collision model no longer
gives accurate results (Luke et al., 1991). When the m1

hop rate exceeds the characteristic quadrupole splitting
frequency one should rather use the transverse-field
technique as the most accurate in this region. Therefore
we are inclined to believe that the results of Schilling
et al. (1982) are the most reliable for m1 dynamics in
copper at high temperatures.

In the temperature range between 1 K and 10 K, the
data of Luke et al. (1991) are best fit with a50.553(7).
In terms of the Kondo-Yamada theory this implies a
muon-electron coupling parameter in copper of K
50.224(4). We consider this value of K as the most
reliable so far. It should be compared with the theoret-
ical estimate of Ktheor50.33 obtained by Hartmann et al.
(1988) from the results of the Fermi-level phase shifts
for atoms in a homogeneous electron gas (Puska and
Nieminen, 1983).

It is easy to estimate the value of the coherent tunnel-
ing amplitude for the muon in copper by taking, say, the
experimental values for K and tc

21 at T51 K and em-
ploying Eqs. (90), (53), and (49). The estimate thus ob-
tained gives

Dcoh;1024 K. (102)

Clearly, at all temperatures studied, the muon dynamics
is incoherent and thus described by the theory of Kondo
and Yamada. To check the consistency of the high- and
low-temperature data, we may separate the electronic
polaron effect by assuming vo50.1 eV, and extract the
one-phonon renormalization of the tunneling amplitude.
We have found that the value of F(0)2G(0)'4 –5 is
necessary to account for the renormalization Dcoh→D̃o

[D̃o defines the preexponential factor in Eq. (98)].
Within the Debye model for the phonon spectrum and
the simplest assumption for the muon-phonon coupling
constants f1;v2, one finds E5(1/3)QF(0), which is
not in contradiction with the experimental value, keep-
ing all the reservations for the uncertainty of such a cal-
culation. Thus we conclude that all the data are consis-
tent with the tunneling model.

Some ambiguity exists concerning the shallow maxi-
mum in the hop rate at about 0.2 K. Most experiments
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claim that the data are not sensitive to the crystal disor-
der, at least in the purest samples (see above). However,
one has to accept that at temperatures as low as 0.1 K
the trapping radii in metals are as large as RT;20a [see
Eq. (66)], and muons that move faster at low tempera-
tures will undergo trapping to these long-ranged traps.
On the other hand, more and more muons are stopped
and localized in the regions where the bias energy ex-
ceeds T . Even a simple minded estimate shows that, at
10 ppm doping, the regions of radius RT overlap below
0.1 K. Both effects will be seen in the current interpre-
tation of the data as an effective decrease in the hop
rate. The data on doped samples are obviously too in-
complete to make a more definite conclusion.

2. Aluminum

In sharp contrast to Cu, all the results on m1 diffusion
in Al have been obtained in doped samples. The very
first m1SR experiments in Al revealed no relaxation in
pure samples (about 99.9995% Al) down to 1 K (Hart-
mann et al., 1977) and up to the melting temperature
(Gauster et al., 1977), in spite of the fact that 27Al has a
larger magnetic moment than both 63Cu and 65Cu (see
also Heffner et al., 1978; Hartmann et al., 1980). The ob-
vious explanation of this behavior is that the muon
bandwidth in Al is much higher than in Cu. It was found
that alloying Al with Cu (up to 0.42 at. %) and quench-
ing to produce a dislocation density of about 109 –
1010 cm2 (Kossler et al., 1978), as well as irradiating it
with neutrons (Dorenburg et al., 1978), caused substan-
tial relaxation of the muon polarization with peaks be-
tween 2.6 and 297 K.

Early experiments (see also Brown et al. 1979; Nakai
et al., 1981) were unable to extract even general trends
of the m1 dynamics at low temperatures. However, it
was realized that the hop rate could be deduced from
trapping studies, where m1 diffuses to impurities that
have been deliberately introduced into a pure Al
sample. Once m1 is trapped due to the change in impu-
rity concentration or increase in the hop rate, its polar-
ization is inevitably lost due to static relaxation. At high
temperatures, m1 can experience trapping and subse-
quent detrapping due to thermal activation. In this case
the relaxation rate can be increased or decreased de-
pending on how fast m1 is trapped and for how long it is
trapped. The hop rate is deduced from the time required
for the muon to reach the trap. Following this picture
one should be aware that the hop rate extracted from
trapping studies may differ from that in the pure system.
Moreover, in trapping studies tc

21 is always obtained by
employing some theoretical model. Strong dissipation in
the normal state, however, allows one to consider muon
diffusion in Al as essentially homogeneous before it is
trapped. As we shall see, the damping rate V(T);T
and the bias energy in the denominator of Eq. (89) have
no noticeable effect on the muon diffusion.

Measurements of the T dependence of the muon re-
laxation rate in pure Al and crystals doped with Mn (500
ppm and 1300 ppm) showed that muons are essentially
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
localized at temperatures below 15 K in the latter, while
they exhibit delocalization down to 2 K in the former
(Hartmann et al., 1978). The extension of these mea-
surements to lower temperatures down to 100 mK and
to lower Mn concentrations (42 ppm and 57 ppm) indi-
cated that muons are increasingly trapped below 1 K
with increasing Mn content (Hartmann et al., 1980). The
m1 localization site was found to be temperature depen-
dent and identified as tetrahedral at T515 K. A compre-
hensive trapping study of muon diffusion in Al doped
with different impurities (Mn, Li, Ag, Mg, Ga, Si, Ge) in
a wide range of impurity concentration (from 5 ppm to
1300 ppm) and temperatures within the range 50 mK–
200 K was presented by Kehr et al. (1982) and Hart-
mann et al. (1988; see also Hartmann et al., 1986). The
relaxation function was approximated as either expo-
nential or Gaussian. The temperature dependences of
the Gaussian relaxation rate, T2

21 (for historical reasons
the notation s for the relaxation rate is also widely used
in the literature), in different samples are summarized in
Fig. 11.

The interpretation of these results is based on
diffusion-limited trapping (Waite, 1957). The increase of
the relaxation rate s(T) at the lowest temperatures is
common for all doped samples, and the slope of s(T) in
this region is almost independent of impurity type,
which indicates that it is characteristic of the host metal.
The concentration dependence studied for AlMn (Hart-
mann et al., 1980; Kehr et al. 1982) is a little slower than
linear, s;nim

0.7 , but, as we argue, this might be the first
‘‘signature’’ of large trapping radius, which results in no-
ticeable multidefect corrections. The peak in s(T) at
higher temperatures is also due to trapping, apparently
to some other trapping sites. The explanation commonly
used to account for this behavior is that the muon hop
rate goes through a minimum at around 3 K and in-
creases again so that muons reach deep traps with in-
creasing probability. Above 15 K muons escape traps
due to thermal activation and diffuse so fast that ‘‘dy-
namically narrowed’’ s is close to zero. The procedure
of extracting the absolute values of tc

21 was carried out

FIG. 11. Temperature dependences of Gaussian relaxation
rate of the m1 polarization in aluminum samples doped with
different impurities (Hartmann et al., 1988).
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in the framework of the two-state trapping model
(Borghini et al., 1978; Kehr et al., 1978; Richter and
Springer, 1978; Richter, 1986): one state was assumed to
be the free muon, which experiences relaxation in the
homogeneous lattice, and the other state was suggested
to be the trapped muon, which undergoes static Gauss-
ian relaxation. Solving a set of integral equations dealing
with repeated ‘‘capture and release’’ transitions, one ob-
tains P(t) as a function of the trapping rate [which is
then related to the diffusion rate; see Eq. (65)] and the
trapping energy. Solid lines in Figs. 11 and 12 present
the results of such a fit, which were summarized by the
authors in the empirical expression

tc
215aT20.71be220/T1cT21/2e2370/T. (103)

It should be noted that the absolute values of tc
21 were

derived under certain assumptions about the values of
the trapping radii. These typically were estimated to be
on the atomic scale [the absolute values for different
impurities range between 2 Å and 12 Å (Hartmann
et al., 1988)] and their dependence on T in the fitting
was neglected.

Our present understanding of the above results is,
however, quite different (Kagan and Prokof’ev, 1987,
1991; Prokof’ev, 1995). We start from the low-
temperature data (below 1 K) where L tr}T2a with a
50.7. As noted already in Eq. (25), the potential origi-
nating from the electron-density oscillations around im-
purities is as large as Uo;300 K in Al (Mahajan and
Prakash, 1983). Thus at low T we are dealing with the
temperature-dependent trapping radius [Eq. (66)]. Sub-
stituting Eq. (90) into the expression for the trapping
rate (65) we find

a5122K11/3. (104)

The data at low temperatures, however, were analyzed

FIG. 12. Temperature dependence of the muon hop rate in Al
derived from various trapping experiments on impurities be-
low 50 K and from vacancies above 50 K. The dashed curve is
the extrapolation of the low- and high-temperature depen-
dences (Hartmann et al., 1988).
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as tc
215T2a, with a5122 K, thus resulting in an un-

derestimated value of the muon-electron coupling pa-
rameter, K50.15. Theoretical calculations in Al pre-
dicted Ktheor50.27 (Hartmann et al., 1988). From Eq.
(104) one obtains K50.32, which is in better agreement
with the theory. We may also roughly estimate the co-
herent tunneling amplitude from these data using the
above given value of Uo and vo'0.1 eV. First we de-
rive the effective tunneling amplitude Do(T) from the
trapping rate, say at T50.5 K, and then use Eqs. (53)
and (54) to get

Dcoh;331023 K. (105)

This estimate cannot be considered to be very accurate,
because the numerical coefficient in the formula for the
trapping rate in the oscillating potential is not yet
known. Still, we believe that coherence is suppressed in
the normal state down to the lowest measured tempera-
tures.

According to the theory of quantum diffusion in met-
als, at temperatures as low as 2220 K (compared with
Q5428 K) one-phonon processes play no role, and t21

decreases, according to the Kondo-Yamada law, with in-
creasing temperature. No minimum in the hop rate is
possible in this temperature range unless the theory of
quantum diffusion is really wrong. However, the only
experimental fact at our disposal is that the trapping rate
increases above 5 K. This paradox may be resolved as
follows. The high-T peak is due to the traps nearest to
the defect sites, which are surrounded by potential bar-
riers from all sides. Such a configuration is not at all
surprising because of the radial oscillations in the elec-
tron density around the defect, Eq. (25). In order to get
to the deepest traps m1 has to overcome the potential
barrier; thus at the trapping radius we have to use Eq.
(91) with negative bias and uju.T . This picture naturally
explains the data without going into the contradiction
with the current theory and makes it clear that the acti-
vation energy 20 K in Eq. (103) results from the poten-
tial barrier height which separates the trap from the
bulk. Thus all the data between 3 K and 50 K need to be
reanalyzed.

Adopting this explanation, there must be many peaks
at low temperature, because potential wells and barriers
are reproduced again at larger distances. We note, how-
ever, that far from impurities the difference between the
minima and maxima in Vinh(r) is so small that traps
become ineffective (closed by barriers) at the same mo-
ment as they start accumulating particles due to the
Gibbs factor. Furthermore, at r.a there are many more
paths allowing the particle to penetrate the traps by
avoiding large barriers, provided 2kFa.p (which is the
case in Al). It is thus more probable that peaks at lower
T are smoothed out and the collective effect of many
different traps is actually seen below 1 K. However, the
most surprising experimental fact (usually not discussed
at all) is that there are small peaks and irregularities
around 5 K and lower temperature, e.g., in Ge- and Si-
doped samples (Kehr et al., 1982).
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The experiments on muon quantum diffusion in Cu
and Al unambiguously confirm the role of particle-
electron coupling effects at low temperatures. This was
demonstrated most prominently in m1 quantum diffu-
sion experiments in superconducting Al with impurities.
The first experiments (Hartmann et al., 1989; Kadono,
Kiefl, Kreitzmann, et al., 1990) observed a marked dif-
ference in the depolarization rates between the normal
and superconducting states. The most detailed data are
presented by Karlsson et al. (1995), who studied a high-
purity (6N) polycrystalline aluminum and three samples
doped with nominally 10 at. ppm, 20 at. ppm, and 75 at.
ppm Li, later analyzed to be 8.3 at. ppm, 17.5 at. ppm,
and 76(4) at. ppm, respectively. The m1SR spectra in
the normal state were taken in an external transverse
magnetic field of 130 Oe (10 and 20 ppm) and 200 Oe
(75 ppm), which was sufficient to quench superconduc-
tivity (the critical field at T50 is Bc5100 Oe). Measure-
ments in the superconducting state were carried out in
zero field. Figure 13 presents the temperature depen-
dences of the muon depolarization rate in a sample Al
175 ppm Li in both the normal (filled symbols) and the
superconducting (open symbols) states.

These data cannot be explained by the theory of
quantum diffusion in a perfect crystal. With D(T) in-
stead of D(T ,RT) in Eq. (65), the trapping rate must
increase with infinite derivative right below Tc51.2 K,
while it demonstrates almost no effect at Tc (see Fig. 13)
or even develops a tiny peak near Tc in the low-doped
samples. An exponential increase in the depolarization
rate is observed only below ;0.5 K, which saturates at
0.2 K. The activation energy deduced from the steep
increase below 0.5 is less than the superconducting gap
Dc by a factor of 2.

For Li concentrations of 20 and 10 ppm at low tem-
perature the signal is clearly composed of two
concentration-dependent contributions P(t)5P1(t)
1P2(t), one a constant and the other closely resembling
a Kubo-Toyabe function (see Fig. 14). This feature gives
us the most evident clue to the physics of what is hap-
pening below Tc . As discussed in Sec. III.B [Eq. (27)],

FIG. 13. The m1 depolarization rate vs temperature in Al
doped with 75 ppm Li: filled symbols, in the normal state; open
symbols, in the superconducting state (Karlsson et al., 1995).
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such behavior is characteristic of depolarization in a
doped sample when inelastic processes are ineffective.
In the oscillating potential we do not expect a substan-
tial fraction, fd , of finite-size delocalized states; thus the
signal consists of contributions coming from coherently
moving muons and those stopped inside the localization
region r,Rloc [see Eq. (21)]. The fraction of the static
component should be proportional to the Li concentra-
tion and eventually becomes 100% when impurity re-
gions of radius Rloc overlap. This picture agrees com-
pletely with the data (Karlsson et al., 1995). All muons
are localized at nim575 ppm as it should be for the po-
tential strength U(a);30 meV and the bandwidth D
'2zDcoh

(s) ;50 meV [obtained from Eqs. (105) and (55)].
The counterintuitive behavior at Tc is explained by

noting that the trapping rate is defined by the local dif-
fusion rate at RT , where the bias is relatively large, j
;T . In the normal state, D(RT ,T), increases as the
temperature is lowered according to Eq. (90). Slightly
below Tc there might be an initial even steeper rise in
D(RT ,T) because of the reduced damping rate, which
is, however, immediately followed by an exponential de-
crease of the trapping rate according to Eq. (95). At
lower temperatures the depolarization rate (not the
trapping rate) increases again, this time due to the muon
localization and depolarization inside the radius R* ,
Eq. (72), until this process is completed at 0.2 K, when
regions V(R* ) overlap. The boundary between the
moving and static particles, R* , increases with tempera-
ture as eDc/5T [see Eqs. (70) and (71)]; thus L* ;e2Dc/5T

and the fraction of static particles f loc;e3D/5T, which ex-
plains the reduced value of the activation energy in the
intermediate temperature range.

The most direct comparison between theory and ex-
periment is obtained through Monte-Carlo-type simula-
tions (Prokof’ev, 1994). In these simulations the theory
has only two constant fitting parameters, Dcoh and Uo ,
from which all the curves P(t) for different Li concen-

FIG. 14. Time dependences of the muon polarization in Al in
zero field at 0.1 K for different Li doping: (a) 75 ppm, (b) 20
ppm, (c) 10 ppm, and (d) high-purity (6N) Al (Karlsson et al.,
1995). Note the decomposition of muon polarization into re-
laxing and nonrelaxing fractions.
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trations and temperatures are supposed to be repro-
duced. The obtained fitting is quite good (Karlsson et al.,
1995).

By formally fitting the data for the moving fraction of
muons to the standard trapping model, Karlsson et al.
(1995) found that P(t) is reproduced if the number of
muons trapped at time t is given by the stretched expo-
nential Pmoving(t);exp$2(nt)b%. The fraction of moving
particles as a function of nim and T , as well as the de-
pendences n(nim ,T) and b(nim ,T), were treated as fit-
ting functions. At first sight this approach has no physi-
cal background; still we gain from this analogy, because
it tells us that long-range trapping in the oscillating po-
tential created by randomly distributed defects may re-
semble the situation with a wide distribution of trapping
energies and trapping rates.

We should also mention here another experimental
system in which quantum diffusion has been observed
and studied in detail. The neutron-scattering experi-
ments in Nb(OH) x (x50.002 and 0.011), where the pro-
ton shows tunneling dynamics in a double-well potential
(Steinbinder et al., 1988), also found that the proton hop
rate obeys the power law tc

21}T2(122K) with K50.05 in
the temperature range from 10 K to 50 K. Both the ef-
fective tunneling amplitude and the phase-correlation
damping V in normal and superconducting phases show
temperature dependences in complete agreement with
the theory (Grabert et al., 1986; Grabert, 1987; Wipf
et al., 1987).

3. Other metals (V, Nb, Bi)

In this section we discuss experimental results on the
m1 diffusion in vanadium, niobium, and bismuth, which,
although studied in less detail than Cu and Al, clearly
show quantum diffusion effects in muon dynamics. Ex-
perimental data in some other metals show distinct pe-
culiarities that may be interpreted as quantum diffusion,
but the experimental situation there is far from being
clear. Therefore we direct the interested reader to the
Proceedings of the m1SR conferences edited by Gygax
et al. (1979), Brewer and Percival (1981), Yamazaki and
Nagamine (1984), Hartmann, Karlsson, Lindgren, and
Wäppling (1986), Cox et al. (1990), Brewer et al. (1994),
and Nagamine et al. (1997), where these experiments are
described.

a. Vanadium

The first transverse-field measurements (37 Oe, 58
Oe, and 1786 Oe) in V crystal indicated very early an
increase of s when the temperature was lowered from
300 K down to 5.5 K, with a small peak around 80 K
(Fiory et al., 1978). The sample used in this experiment
was a polycrystalline V containing 0.4 at. % impurities,
mostly Al (1300 ppm), O (1300 ppm), and Fe (600 ppm).
[Later measurements (Grebinnik et al., 1978; Hartmann
et al., 1978; Heffner et al., 1978), although showing varia-
tions of the relaxation rate, revealed qualitatively the
same temperature dependence.] The observed field de-
pendence of the m1 relaxation rate was attributed to the
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interplay between muon Zeeman and muon nuclear
quadrupole interactions (Hartmann, 1977). The m1 hop
rates were extracted using Abragam’s expression (99),
where d was considered as a fitting parameter. Thus the
obtained linear in T dependence of the muon tc

21 at
temperatures below about 50 K was interpreted as an
indication of a one-phonon-assisted tunneling mecha-
nism. The maximum at 80 K was attributed to trapping-
detrapping processes, with the final conclusion that t21

monotonically decreases over the entire temperature
range.

The first systematic study of impurity effects was car-
ried out by Heffner et al. (1979). For the highest-purity
V (a special, rather complicated procedure of purifica-
tion was applied to obtain a sample with less than 50 at.
ppm of metallic impurities and an RRR of about 1000;
none of the later experiments was done in that pure
material) the temperature behavior was found to differ
considerably from the earlier results. The temperature
dependences of the relaxation rate in samples with dif-
ferent oxygen concentration, along with earlier measure-
ments (Heffner et al., 1978), are presented in Fig. 15. In
the pure sample s is significantly lower than in the
sample with 500 ppm oxygen impurities, which indicates
that muon relaxation is dynamically narrowed in a per-
fect crystal. This directly contradicts the previous inter-
pretation of t(T) in terms of one-phonon-assisted tun-
neling, which is slower in a pure system.

A qualitative explanation of the m1 dynamics in V
could be suggested as follows (Kagan and Prokof’ev,
1987, 1992). The well-defined peak at 80 K is not due to
trapping, but rather indicates a change of the diffusion
regime. The steep decrease of s(T) above 100 K is char-
acteristic of the small polaron diffusion. At 80 K, in
close analogy with quantum diffusion in copper, the dif-
fusion rate goes through a minimum and then increases
as T→0. The linear dependence, s;T between 80 K
and 30 K, is then nothing but a standard metallic behav-
ior t21;T2K21 with K!1 in the motional narrowing
regime where s;t . This also explains in passing why
the position of the peak is impurity-type independent
and the peak maximum is not affected by impurities at
low concentrations (Heffner et al., 1979). Below the
minimum the m1 hop rate becomes high enough to
reach impurity traps, and dynamic narrowing gives way
to trapping. Now, in complete analogy with Al, relax-
ation is defined by L tr;RTD(T);T24/312K, and ex-
perimental data at low temperature qualitatively agree
with this law. In the 500-ppm sample the trapping pro-
cess dominates at T,80 K. A quantitative analysis of
the m1SR data (Heffner et al., 1979) is required, how-
ever, to see whether the picture just described is consis-
tent over the entire temperature range.

Summarizing results on quantum diffusion measure-
ments in vanadium, we conclude that muon dynamics in
this metal are determined by quantum effects (Heffner
et al., 1979). Although the data are incomplete (the di-
mensionless parameter K is not known, although K!1
seems to be the case here), we may try to derive the
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FIG. 15. Temperature dependence of the m1 exponential relaxation rate for three vanadium samples with different impurity
content (Heffner et al., 1979).
effective tunneling amplitude in V from the tc
21 values

between 30 and 80 K using Eq. (90). We find it to be

Do~50 K!;5AK31022 K, (106)

that is, intermediate between the Cu and Al cases. It
follows immediately from this analogy that effects simi-
lar to those in Al are expected in V below the supercon-
ducting phase transition.

b. Niobium

Quantum diffusion of m1 in Nb was expected from
the very beginning of experimental studies, as the first
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
low-temperature measurements of hydrogen diffusion in
this metal showed significant deviation from the classical
Arrhenius law (Schaumann et al., 1970; Sellers et al.,
1974; Wipf and Alefeld, 1974; Wipf and Neumaier,
1984).

Initially, just a leveling off of the transverse-field
Gaussian relaxation, interpreted as ‘‘freezing’’ of the
muon dynamics, was observed below 60 K (Hartmann
et al., 1977). However, the measured s (sometimes the
relaxation rate is denoted as L in the literature; we use
the notation s everywhere) was noticeably less than the
Van Vleck value for the interstitial positions (0.285
60.015 ms 21 and 0.35–0.37 ms 21, respectively). A non-
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monotonic temperature dependence of s was first ob-
served by Birnbaum et al. (1978) and Borghini et al.
(1978). It was then suggested by Borghini et al. (1978)
that the presence of N, O, and C impurities would domi-
nate the m1 relaxation process in Nb. The relaxation
rate, determined as the inverse time for the polarization
decay to 1/e of its initial value, was found to depend
strongly on impurity type, as is evident from the data for
three samples with 10–20 ppm, 60 ppm, and 3700 ppm
impurities, shown in Fig. 16. A characteristic ‘‘double-
humped’’ behavior with the minimum around 20 K
(most pronounced for purest sample, III) was also seen
in two single crystals of Nb by Birnbaum et al. (1978).
Above 100 K muon polarization is almost nonrelaxed in
all samples. Tantalum impurities were thought originally
to have no influence on m1 dynamics, as they are not
effective traps for hydrogen (Matsumoto et al., 1975).
However, later experiments (Brown et al., 1979; Hart-
mann et al., 1983) unambiguously showed that Ta impu-
rities do influence the m1 dynamics in Nb at low tem-
perature.

The interpretation of the results in both papers was
carried out in the framework of the diffusion-limited
trapping model. It was suggested that the muon was
trapped by nitrogen impurities (Borghini et al., 1978) be-
tween 30 K and 50 K. The sharp drop in s above 60 K
was ascribed to the beginning of the release processes
from the traps and subsequent motional narrowing. On
the other side of the peak, the decrease of s was ex-
plained by ineffective trapping because of the slowing
down of the small polaron (self-trapped) state. Accord-
ing to this picture muons become immobile below 10 K,
and one observed static Gaussian relaxation. Within this

FIG. 16. Temperature dependences of the muon relaxation
rate in three Nb samples with different impurity content
(Borghini et al., 1978).
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interpretation, however, it was hard to explain several
peculiarities. First, the value of s on the plateau 30–60
K is consistently lower for lower impurity content (see
Fig. 16). Trapping sites are expected to have little effect
on the m1 relaxation rate, as both natural 16O and 12C
have zero nuclear moments, and the nuclear moment of
14N is small. The static value s5d is therefore expected
to be given by m1 interaction with the host 93Nb nuclei
only. Second, s is not, in fact, constant for sample III in
this temperature region. Third, the value of s below 10
K is too small to be explained by self-trapped state lo-
calization.

Subsequent experiments figured out the role of differ-
ent impurities. First, Brown et al. (1979) have found that
oxygen had little effect on s even at the level of 560
ppm, probably due to clusterization. Second, the de-
crease of the Ta content from 200 ppm down to 3 ppm
led to the strong suppression of the two humps around
the 20-K dip. Essentially the same picture was observed
by Metz et al. (1979) in a Nb crystal with fewer than 2
ppm of N impurities and about 5 ppm of Ta impurities
(RRR 5000). These experiments proved that the in-
crease of the m1 relaxation rate below 20 K observed by
Borghini et al. (1978) and Birnbaum et al. (1978) was not
due to self-trapping. Finally, s was measured to be as
low as 0.1 ms 21 at low temperatures in the ultrapure Nb
sample, with fewer than 2 ppm interstitial impurities and
about 3 ppm of Ta as a substitutional impurity (Niiniko-
ski et al., 1979). Structured temperature dependence of
s was barely identified in this sample around 40 K, thus
indicating that a small fraction of muons may end up in
traps. Doping with 500 ppm of V, however, led to the
reproduction of the ‘‘two-humped’’ shape with a dip
shifted to 25 K.

All of the above-mentioned experiments showed that
different impurities could affect m1 diffusion in Nb even
when present in only tiny amounts. The high- and low-
temperature plateaus in s were associated with intersti-
tial (mostly N) and substitutional (V, Ta) impurities, re-
spectively. This was also demonstrated by Hartmann
et al. (1983, 1984) in transverse-field measurements in
Nb with nitrogen and Ta impurities. These measure-
ments present results for the purest Nb samples (RRR
7500 and 11600) to date. The m1 diffusion was found to
be so fast that the difference between samples contain-
ing interstitial impurities of N, C, and O on the level of
1 ppm was measurable by the standard m1SR
transverse-field technique. All the experimental spectra
were fitted to a Gaussian relaxation function indepen-
dently of the temperature range and impurity content.
The results are presented in Fig. 17. The purest Nb
sample shows a low but nonzero and almost constant
relaxation rate from 70 K down to about 0.1 K. It is
about four times lower than the expected d for static
muons in Nb, but about an order of magnitude higher
than the lowest measurable value.

The conventional diffusion-limited trapping model
fails to explain these results. It was suggested by Hart-
mann et al. (1983, 1984) that the muon ensemble con-
sisted of two fractions with different dynamic behavior.
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The model was based on the assumption that muons do
not always end up in a small polaron state immediately
after thermalization (Emin, 1973, 1981; Emin and Hol-
stein, 1976); self-trapping was assumed to be induced by
static strains close to impurities (Browne and Stoneham,
1982). It was also suggested that the trapping rate was
independent of temperature, in analogy with positron
trapping, in order to explain the constant muon relax-
ation rate for the pure sample. With these assumptions it
is virtually impossible to explain the consistently strong
temperature dependence of s in doped Nb, e.g., near
the dip. Thus the whole picture looks rather confusing,
since none of the measurements confirms it directly.

In any event, these experiments suggest a rather high
value for the tunneling amplitude in Nb (bare or renor-
malized). For local tunneling of protons in niobium the
tunneling splitting 2Dcoh was found to be 0.22 meV
(Wipf et al., 1987). It seems probable that Dcoh for
muons may be even larger, which will then naturally ex-
plain the anomalous sensitivity of the muon experiments
to crystal defects. High-mobility muons easily find traps
even at the level of 1 ppm. Existing data do not allow us
to estimate accurately the actual tunneling amplitude,
since all of them are controlled by impurities.

c. Bismuth

In bismuth the number of conduction electrons is
more than five orders of magnitude smaller than that in
Cu. It is expected, therefore, that the muon-electron

FIG. 17. Temperature dependences of the m1 Gaussian relax-
ation rate in different Nb samples. The ‘‘middle pieces’’
sample in (a) is the purest measured; the effect of doping with
Ta and N impurities can be seen in (b)–(d) (Hartmann et al.,
1983).
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coupling in Bi is reduced considerably. Early transverse-
field measurements were explained in terms of the two-
phonon mechanism for diffusion (Grebinnik et al.,
1977). Later experiments led the authors to consider the
influence of disorder as well, although the sample mea-
sured was ultrapure Bi with RRR 900 and impurity con-
tent below 6 ppm (Barsov et al., 1983; see also Barsov
et al., 1984). The temperature dependence of the Gauss-
ian relaxation rate in this sample is shown in Fig. 18.
Note that there was a very small, although measurable
difference between the ultrapure Bi and the sample with
100 ppm impurities used by Grebinnik et al. (1977). The
solid curve in Fig. 18 presents the fit of the experimental
results to the quantum diffusion expression for the hop-
ping rate in a bias (Kagan and Maksimov, 1980), in an
attempt to model disorder effects using a single param-
eter j [see Eq. (108) below]. The best fit was obtained
for j'0.3 K and D;1023 K. In the high-T regime the
data were well described by the Arrhenius law with
rather large activation energy E51470 K and preexpo-
nential factor nm'1011 s 21, thus indicating classical
over-barrier diffusion.

There is a significant discrepancy with the experimen-
tal results around the flat minimum in s(T) between 20
K and 60 K, which was suggested (Barsov et al., 1983) to
originate from the spatial distribution of energy levels in
the sample (neglected in the theoretical fit). This point is
precisely confirmed by the result (71), which predicts s
5L* ;V22/7; a much weaker temperature dependence
than that for the biased homogeneous result with sharp
minimum s;(j21V2)/V used in the original fit (the
new fit has never been done for reasons given below).

Another explanation (Ivanter, 1984) suggests a turn-
over from long-range diffusion at low temperatures to
local motion within an extended trap region at interme-
diate temperatures. At higher temperature detrapping
and long-range diffusion were assumed to come into

FIG. 18. Temperature dependence of the m1 Gaussian relax-
ation rate in an ultrapure Bi sample (Barsov et al., 1983). The
solid curve presents a fit to quantum diffusion theory in an
imperfect crystal.
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play again. This approach involves three different states
for m1 in Bi: two different sites at low and high tem-
peratures for the static muon and an extended (delocal-
ized) state. However, the nature of the muon states and
diffusion mechanisms was not discussed by Ivanter
(1984), thus making the entire explanation a bare fit.

An identification of the muon states (static and delo-
calized) in high-purity Bi with about 10 ppm impurities
has been carried out by Gygax et al. (1988; see also Bau-
mann et al., 1986a) using a single crystal and studying
the angular dependence of d . These results have con-
vincingly proved that m1 is well localized below 10 K
(tc

21 values were determined to be less than 0.1 ms 21)
and between 90 K and 100 K in different interstitial sites
in these two temperature regions, in remarkable corre-
lation with different angular dependences of the m1

Knight shifts below 10 K and in the range 90–100 K
(Gygax et al., 1986; see also Baumann et al., 1986b). This
fact alone rules out the validity of the previous interpre-
tation in terms of quantum diffusion proceeding via only
one type of interstitial positions (Barsov et al., 1983).

Although the overall temperature dependence of
s(T) in these experiments was rather close to that pre-
viously observed, the absolute values were different, and
the major difference was in the temperature-independent
relaxation rate in the minimum (almost a straight pla-
teau). Above 10 K a reduction of s was interpreted as
the result of dynamic narrowing, and the data were ana-
lyzed using the dynamic Kubo-Toyabe function. This
conclusion was made on the basis of nearly constant an-
isotropy of the relaxation rate between 10 K and 15 K,
despite its reduction [a procedure that was objected to
by Kadono et al. (1988) on the basis of mainly
longitudinal-field measurements; however, the longitudi-
nal fields of 10 Oe used in this experiment seem to be
too high to make a definite conclusion]. On the plateau
between 20 and 60 K, however, this picture completely
breaks down, since no anisotropy in the second moment
was detected at these temperatures, and a T-
independent s can hardly be explained in terms of any
diffusion theory. Gygax et al. (1988) proposed that a
fast, locally restricted motion over few positions was re-
sponsible for the observed relaxation. Local motion was
thought to be a tunneling or hopping along the chains of
alternating positions, which are stable sites for m1 at low
temperatures and in the 90–100 K range. The result of
such a limited motion would be a reduced effective sec-
ond moment ;dm

2 /Nd (see Sec. III.B). The spatial exten-
sion of the local motion was suggested to be limited by
lattice impurities and imperfections and estimated to in-
clude few lattice spacings (depending on the sample
quality). The local delocalization of m1 in the tempera-
ture range 20–60 K was also suggested by Kadono et al.
(1988). In this paper an alternative fitting of the experi-
mental spectra was done under the assumption that the
m1 polarization consisted of two contributions: from
muons in the stable and in the metastable states. The
origin of the metastable state, however, was not clearly
specified.
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To sum up, concerning m1 diffusion in Bi, one could
argue that experiments do not even prove unambigu-
ously that it is of quantum nature below 90 K. The ques-
tion still remains open whether the temperature inde-
pendence of the m1 relaxation rate between 20 K and 60
K is due to spatial distribution of the energy-level shifts
in the regime of static destruction of the band (Barsov
et al., 1983) or due to local tunneling (Gygax et al., 1988;
Kadono et al., 1988), analogous to that found for hydro-
gen in Nb(OH) x (Wipf et al., 1987; Steinbinder et al.,
1988). The first explanation is much less probable, be-
cause it predicts a weak, but not constant s(T). In our
opinion the most reasonable physical model should em-
ploy both ingredients, e.g., the Kagan-Maksimov picture
with an even deeper minimum, which is, however, cut in
the region of the fastest diffusion by the finite-size delo-
calized states. In this connection we should also like to
mention recent results on muon depolarization in Sc at
low temperature, which have been interpreted in terms
of muon delocalization between the two adjacent sites
(Gygax et al., 1994, 1995).

VI. QUANTUM DIFFUSION OF MUONIUM ATOMS
IN INSULATORS

The formation of a muonium atom in matter usually
takes place at times much shorter than the characteristic
time of Mu dynamics (Schenck, 1985; Cox, 1987;
Brewer, 1994), even in the case of delayed muonium
formation (at least for a certain fraction of muons)
(Storchak, Brewer, and Morris, 1994a, 1995a, 1995b,
1996a, 1997; Storchak, Brewer, and Cox, 1997; Storchak,
Brewer and Eschenko, 1997). The huge ionization en-
ergy of Mu ensures that the captured electron follows
the m1 adiabatically.

The quantum diffusion of Mu in insulators, like that
of m1 in metals, shows both homogeneous and inhomo-
geneous regimes. However, much weaker coupling to
the crystal defects and the superb quality of insulating
crystals has hampered the observation of the inhomoge-
neity in Mu quantum diffusion. The phonon broadening
of Mu energy levels V and large bandwidth D in many
cases overcome crystal disorder. At low temperature,
the phonon coupling is suppressed, and quantum diffu-
sion may be dominated by impurities. This results in
drastic changes both in the temperature dependence of
the muonium hop rate and the time decay of the polar-
ization function. In this section we shall describe Mu
quantum diffusion in insulating crystals of alkali halides
and van der Waals cryocrystals, as well as in compound
semiconductors GaAs and CuCl. Both the one-phonon
regime at high temperatures and the two-phonon regime
at low temperatures will be discussed in detail along
with the band motion regime. Inhomogeneous quantum
diffusion and trapping phenomena in insulators will be
considered in comparison to those for m1 diffusion in
metals.

It is worth mentioning that Mu quantum diffusion
shares many common features with another notable sys-
tem: 3He solid solution in a 4He crystal (Mikheev et al.,
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1977; Allen and Richards, 1978); many of the ideas are
equally well applicable to both systems.

A. Transition probabilities, trapping, and diffusion rates
in insulators

We discussed in Sec. V.A the high-temperature limit
for incoherent tunneling in metals and found that it is
governed by one-phonon processes. Thus all the results
presented there are valid for insulators as well, except
that in Eq. (49) one has to set K50.

At low temperatures and in a perfect crystal the one-
phonon processes are forbidden by conservation laws.
The special role of the two-phonon interaction was clear
in our discussion of coherence in Sec. III.D. Formally,
the theory is identical to that considered for metals if
one assumes a temperature-dependent coupling con-
stant K5V2ph /pT!1. Thus we find for the incoherent
regime (for simplicity in the rest of this section we shall
use V[V2ph , so as not to confuse it with Vel)

D~T !5
Za2

3

Do
2~T !

V
. (107)

This result was first obtained by Kagan and Maksimov
(1973). It should be emphasized that the asymptotic law
V;T71(2) [again, the factor 2 in parentheses is present
for translationally invariant coupling (Fujii, 1979)] works
only at sufficiently low temperatures T,Q/102Q/20 in
real crystals (Kagan and Prokof’ev, 1991). At higher
temperatures (but still T!Q) it depends crucially on the
details of the phonon spectrum and approaches V;T2

at T&Q [see Eq. (51)].
Let us now analyze the role of one-phonon processes

at low T . To this end we consider the time-dependent
terms in C(t) in Eq. (39) as a weak perturbation and
expand the exponent up to the second term. We obtain
the correction to the first-order result (107) in the form
W(1)52pDo

2(T)T@f1ph(v)/v2#v→0. This gives nonzero
W(1) only if f1ph;l1v2 at low frequencies, that is, for
tunneling between the sites that may not be obtained by
translational invariance. One then finds (Kagan and
Maksimov, 1980; Teichler and Seeger, 1981)

W ~1 !52pl1

Do
2~T !T

Q2 . (108)

Obviously, the correction is negligibly small at low tem-
peratures. The correction is nonzero because, having
more than one particle site in the unit cell, we have few
bands in the momentum representation. In this case
one-phonon scattering between the tunneling bands is
not prohibited by the conservation laws.

Consider now the biased case. If the bias energy j is
small enough (see below), then only two-phonon pro-
cesses are important, and (Kagan and Maksimov, 1980,
1983)

W5
2Do

2~T !V

j21V2 ——→
j@V

2Do
2~T !V

j2 . (109)
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We see that just as in superconductors there is a strong
tendency toward localization at low temperatures. How-
ever, the law W;V/j2 may not hold for long as T→0,
because one-phonon processes will take over (momen-
tum conservation is not an issue in the disordered crys-
tal). With the one-phonon processes included we have
the transition probability

W5
2Do

2~T !

j21V2 ~V1pT@f1~j!1h~j!#!
j/T

12e2j/T
. (110)

The crossover temperature Tj is evidently defined from
V(Tj)/pTj5f1(j)1h(j). Since h(v);h1v4 at low fre-
quencies, barrier fluctuation effects are important in the
particle dynamics only for translationally invariant cou-
pling, when f(v);l1v4 also. At T,Tj the transition
probability has a linear temperature dependence

W'2pl1

Do
2~T !T

Q2 S j

Q D ~2 ! j/T

12e2j/T
. (111)

We see that not only the temperature dependence, but
also the bias dependence, changes below the crossover.
Now the particle dynamics are either completely inde-
pendent of the disorder (unless it is trapped, j.T) or
W(j);j2 and the disorder promotes tunneling. The re-
sult seems trivial to those who used to study phonon-
assisted transitions in, say, NMR, but it is certainly not
in the mainstream of the intuition developed while start-
ing from the coherent delocalized states in a perfect
crystal. Note that at the trapping radius (66) we always
have j.V , and the local diffusion rate goes to zero as
T→0, no matter how far RT is from the defects.

As before, the crossover temperature Tmin between
the low-temperature (110) and high-temperature (97)
asymptotic expressions is obtained very accurately by
matching the two results. It depends, of course, on one-
phonon coupling (shifting Tmin downwards for large
C̄a) and two-phonon couplings (shifting Tmin upwards
for small C̄ab).

B. Experimental results on muonium quantum diffusion
in ionic insulators, compound semiconductors,
and cryocrystals

1. Two-phonon muonium diffusion

The theory of quantum diffusion in insulators predicts
the existence of an ubiquitous minimum in the tempera-
ture dependence of the diffusion coefficient D(T) (An-
dreev and Lifshitz, 1969; Kagan and Maksimov, 1973),
and divergent D(T)}T2a dependence with a 5 7 or 9
in the low-temperature limit. Surprisingly, the experi-
mental results on Mu diffusion in ionic insulators (Kiefl
et al., 1989; Kadono, 1990; Kadono et al., 1990) and com-
pound semiconductors (Kadono, Kiefl, Brewer, et al.,
1990; Schneider et al., 1992a; 1992b) indicate that a is
generally close to 3; this ‘‘universal’’ power-law behavior
even led Stamp and Zhang (1991) to suspect that muo-
nium diffusion is governed by one-phonon scattering,
but the numbers obtained for tc

21 were too high to ex-
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plain the data (as was later recognized by the authors).
As explained above, 2,a,7 is not at all in contradic-
tion with the two-phonon scattering processes. The first
direct observation of the T27 temperature dependence
for the Mu hop rate was reported in a van der Waals
insulating crystal of solid nitrogen (s-N 2) (Storchak
et al., 1994a) whose phonon spectrum is much closer to
the Debye model (see also Storchak, Brewer, and Mor-
ris, 1996b).

a. Ionic insulators

Measurements of the muonium diffusion in KCl (Kiefl
et al., 1989; Kadono, 1990), NaCl (Kadono, 1990; Ka-
dono et al., 1990) and KBr (Kadono, 1990) were carried
out using the longitudinal-field technique (see Sec.
IV.B). We were unable to find the temperature depen-
dence of the muonium hop rate in KBr in the published
literature, although the slow-relaxing component shows
T1

21(T) relaxation with a characteristic minimum very
similar to that in KCl and NaCl. Therefore we shall con-
centrate on analysis of the experimental results in KCl
and NaCl only.

Muonium diffusion measurements in KCl and NaCl
were performed in pure single crystals. The temperature
dependences of T1

21 for both crystals are shown in Fig.
19. Although the data in KCl and NaCl look pretty
much the same, in NaCl the relaxation rates are consid-
erably different at the two maxima. The spin Hamil-

FIG. 19. Temperature dependences of the average muon-spin
relaxation rate in KCl and NaCl in longitudinal magnetic
fields: circles, 200 Oe; squares, 500 Oe; triangles, 1500 Oe (Ka-
dono, 1990).
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tonian for Mu in the tetrahedral interstitial site in alkali
halides is similar to Eq. (83) (one should also take into
account the anisotropy of the nuclear hyperfine interac-
tion; Spaeth, 1969). ESR and electron-nuclear double-
resonance results on the hydrogen center (Spaeth, 1969)
have shown that the dominant nuclear hyperfine inter-
action is with the four nearest-neighbor spins of the Cl
nuclei. Below 200 K the observed Mu relaxation is at-
tributed entirely to the motion of interstitial muonium,
since it is consistent with the results of transverse-field
measurements (Kiefl et al., 1984). This is compatible nei-
ther with charge-exchange reactions seen at higher tem-
peratures (Nishiyama et al., 1985; Morozumi et al., 1986)
nor with spin-exchange reactions on paramagnetic impu-
rities (Kiefl et al., 1989). In KCl dMu is independent of
temperature, yielding on average the same value as de-
rived from the high-transverse-field data at room tem-
perature (Baumeler et al., 1986) and the corresponding
value for the hydrogen atom from ESR and electron-
nuclear double-resonance data (Spaeth, 1969). As for
dMu in NaCl, analysis (Kadono et al., 1990) revealed its
significant temperature dependence. It should be men-
tioned that in KCl a small nonrelaxing component of
muon polarization was observed at temperatures above
about 200 K (Kadono, 1990), which may reflect the con-
version of Mu into a diamagnetic state (Nishiyama et al.,
1985; Morozumi et al., 1986). In NaCl the same effect
was seen above 200 K and below 20 K (we shall com-
ment more on this below).

The Mu hop rate tc
21 and nuclear hyperfine interac-

tion parameter dMu were determined within the frame-
work of the effective-field approximation by simulta-
neous fitting of the m1SR time spectra taken at two or
three external magnetic fields using the general expres-
sion for muon spin relaxation derived from the Redfield
equations (see Sec. IV.B). The maxima in T1

21(T) for
both crystals are clearly seen at about 20 K and 200 K
and reflect the T1-minimum effect. The temperature de-
pendences of Mu tc

21 and dMu for both crystals are
shown in Fig. 20. First, we notice the spectacular in-
crease of tc

21 by 2.5–3 orders of magnitude with de-
creasing temperature below Tmin . This is a direct mani-
festation of Mu quantum diffusion. Below about 10 K
tc

21 levels off, indicating the onset of coherent propaga-
tion. Second, above Tmin the hop rate increases by al-
most two orders of magnitude, which also undoubtedly
reflects the sub-barrier motion of muonium, as the pre-
exponential terms in the corresponding activation de-
pendences lack about three orders of magnitude to be
explained by classical diffusion. In the entire tempera-
ture range Mu shows remarkable dynamic properties
with at least 200 hops during its lifetime.

The nature of the Mu diffusion between 10 K and the
corresponding minimum, which was approximated by a
power law as T2a with a'3, has caused some confusion
(Kadono et al., 1990; Kadono and Kiefl, 1991; Stamp and
Zhang, 1991; Kadono, 1992). Although it was initially
recognized that large a clearly reflects the difference be-
tween metals and insulators in light interstitial diffusion,
the nature of Mu diffusion in KCl and NaCl in this tem-
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perature range was first interpreted as coherent hopping
(Kiefl et al., 1989; Kadono et al., 1990). However, any
observed temperature dependence inevitably involves
particle interaction with the phonon bath. The low value
of a (smaller than 7) cannot be explained by the one-
phonon interaction assuming a wide coherent band D
;Q for Mu in KCl (Stamp and Zhang, 1991), for two
reasons: (i) The experimental correlation time (between
107 and 331010 s21) is incompatible with that estimated
from D;Q ; (ii) the diffusion rate in the coherent regime
has nothing to do with the measured tc

21 , because only
correlations local in space are measured in the mSR ex-
periment, and tc

21 does not depend on the large mean
free path lmfp@a , as explained in Sec. III.

It was shown by Kagan and Prokof’ev (1990a) that the
temperature dependence of tc

21 in KCl and NaCl below
Tmin is not at all in contradiction with the two-phonon
scattering theory, provided the real structure of the pho-
non spectrum of these crystals [measured in inelastic
neutron-scattering experiments (Bilz and Kress, 1979)]
is accounted for. In crystals with many atoms in the unit
cell, this structure deviates from the Debye law well be-
low Q . For the experimental data of Kiefl et al., (1989)
and Kadono et al. (1990), intermediate phonon frequen-
cies are essential, and V2ph;T7 cannot be applied. The
results of these theoretical calculations, including
smooth interpolation between coherent and incoherent
tunneling in the form tc

215t0
21/(11Vt0), are presented

in Fig. 21. Only one fitting parameter for the two-
phonon constant l2ph was used in this analysis, that is,
the unknown function C̄ab was approximated as uC̄abu2

FIG. 20. Temperature dependences of (a) the nuclear hyper-
fine frequency parameter dMu and (b) the Mu hop rate in KCl
and NaCl (Kadono et al., 1990). Arrows in (a) indicate the
values estimated for a hydrogen atom in each material.
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5l2phvavb to account for the correct low-frequency
properties of C̄ab in this crystal. This approximation is
very simple indeed. Still, without rigorous calculations of
the coupling constants from first principles, one can use
l2ph for rough estimates. This parameter controls the
scale but not the shape of the tc

21(T). The agreement
between experimental and theoretical results is never-
theless reasonably good. The results of the numerical
calculation lead to a53.5 for KCl, while in Kiefl et al.
(1989) it was 3.3(1). For NaCl the calculation gave a
54.3.

It should be noted that the irregular character of the
experimental data in NaCl around 20 K seems to be
related not to the behavior of t21, but rather to the
drastic variation of the hyperfine interaction. While in
the earlier work (Kiefl et al., 1989), where t21 was ex-
tracted with the fixed value of dMu , experimental points
show a smooth dependence of t21(T), in later publica-
tions (Kadono et al., 1990; Kadono, 1990, 1992) we see
distinct correlations between the irregular behavior of
tc

21 and variations of dMu . This might be the result of
the instability of the x2 fit of the experimental time spec-
tra.

b. Compound semiconductors

When implanted into semiconductors positive muons
often form Mu, as happens in insulators (Patterson,

FIG. 21. Low-temperature behavior of the Mu hop rate in (a)
KCl (Kiefl et al., 1989) and (b) NaCl (Kadono et al., 1990). The
parameters of theoretical curves (Kagan and Prokof’ev, 1990a)
are described in the text.
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1988). The application of the longitudinal-field tech-
nique for Mu diffusion measurements developed by
Kiefl et al. (1989) to GaAs has revealed that tc

21 varies
by more than two orders of magnitude. Although two
types of Mu have been observed in GaAs [an isotropic
atom with a formation probability of about 60% (Kiefl
et al., 1985), which exhibits remarkable dynamic proper-
ties, and a highly anisotropic center (Kiefl et al., 1987)],
the isotropic atom is readily distinguished from the an-
isotropic center, because its hyperfine coupling constant
A is more than an order of magnitude larger. From now
on we shall discuss the study of the former while the
latter just causes a nonrelaxing part of the muon polar-
ization, as its frequencies are completely decoupled in
the high longitudinal fields used in the experiments.

The first measurements of Mu diffusion in GaAs, car-
ried out in the temperature range 3–300 K, revealed
tc

21(T) with a characteristic minimum around 90 K, lev-
eling off below 10 K (Kadono, Kiefl, Brewer, et al.,
1990). The experiment was performed using a single-
crystal GaAs wafer of high resistivity (83107

Ohm3cm). The observation of the T1 minimum at high
temperatures (around 240 K) allowed Kadono et al. to
determine dMu5236(3) MHz (see Sec. IV.B). This
value was fixed throughout the analysis in order to ex-
tract tc

21(T), which was done by following the same
procedure as for KCl (Kiefl et al., 1989). Note that the
sensitivity of the longitudinal-field measurements was
insufficient to prove that dMu is T independent over the
entire temperature range. The extension of the Mu dif-
fusion measurements in GaAs down to 20 mK in the
same sample and measurements of two other undoped
samples of comparable resistivity (Schneider et al.,
1992a) revealed essentially the same tc

21(T). Figure 22
shows the temperature dependence of the average relax-
ation rate at three different applied longitudinal fields
obtained by fitting the individual spectra separately with
a single exponential (a), and the muonium tc

21 resulting
from the simultaneous fit of the three spectra per tem-
perature point (b). Below 90 K the hop rate increases by
almost two orders of magnitude with decreasing tem-
perature, according to T2a with a53.0(1), pretty much
resembling tc

21(T) in ionic insulators.
A rather anomalous picture of Mu dynamics was ob-

served in CuCl (Schneider et al., 1992a; Schneider et al.,
1992b). High-transverse-field m1SR experiments (Kiefl
et al., 1986) have shown that in CuCl there are two dis-
tinct muonium centers, Mu I and Mu II, with small but
comparable isotropic hyperfine coupling parameters. Al-
though the two centers coexist at low temperatures, one
of them, Mu I, is metastable and eventually converts into
the stable form, Mu II, above about 100 K. Subsequent
muon level-crossing resonance experiments (Schneider
et al., 1990) established unambiguously that both Mu I

and Mu II are centered at a tetrahedral interstice and
their nuclear hyperfine interaction parameters differ
very little. This puzzle was resolved by Schneider et al.
(1992a), who found that Mu I undergoes fast but local
tunneling between the four off-center positions, while
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
Mu II is localized. Therefore the dependence t21(T) in
CuCl shown in Fig. 23 corresponds to local tunneling of
Mu I. It obeys a power law T2a with a52.7(1) below 30

FIG. 22. Temperature dependences of (a) the average longitu-
dinal muon relaxation rate at three different magnetic fields
and (b) the muonium hop rate tc

21 in GaAs (Schneider et al.,
1992).

FIG. 23. Temperature dependences of (a) the average T1
21

relaxation rate and (b) the corresponding muonium tc
21 in

CuCl (Schneider et al., 1992a). Diamonds, triangles, and circles
in (a) correspond to magnetic fields of 1000 Oe, 2000 Oe, and
4000 Oe, respectively. The unmarked arrows indicate T1
minima.
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K, in remarkable similarity to ionic insulators. Although
we are reluctant to change our opinion that this behav-
ior is due to two-phonon scattering, we cannot ignore
the importance of one-phonon processes at very low
temperatures, because the momentum conservation law
does not apply for local tunneling.

The overall temperature dependence of tc
21(T) re-

sembles that in GaAs, having a characteristic minimum
at 30 K, but at low temperatures tc

21(T) does not level
off. At the lowest measured temperature (about 1 K),
the hop rate is higher than in GaAs by about two orders
of magnitude and even exceeds T . In Sec. VI.B.1.c we
demonstrate that what was interpreted as tc

21 in CuCl is
in fact a ‘‘nonphysical’’ parameter.

c. Solid nitrogen

The ‘‘universality’’ of the power law tc
21;T2a with

a'3 below the minimum was upset by the experiments
in solid nitrogen (Storchak et al., 1993; 1994a; see also
Storchak, Brewer, and Morris, 1994b, 1996b; Storchak,
Brewer, Hardy, et al., 1994a), which reported that below
Tmin the temperature dependence of the Mu hop rate
obeyed the same power law but now with a close to 7.
Measurements were done in perfect, absolutely trans-
parent crystals of ultrahigh-purity nitrogen (14N 2 with
;1025 impurity content). Muonium formation was first
detected in a weak transverse field by observing the trip-
let Mu precession. Typical weak-transverse-field-m1SR
spectra in s-N 2 are shown in Fig. 2. Time spectra taken
at 28 K in transverse fields of up to 170 Oe were ana-
lyzed using Eq. (85) to obtain the hyperfine coupling
constant A54494(5) MHz, significantly higher than the
vacuum value 4463 MHz. This suggests that the Mu
atom is slightly compressed by interactions with the
crystal lattice.

Measurements in transverse fields revealed a strong
nonmonotonic temperature dependence of T2

21. Below
about 10 K there is a typical leveling off of T2

21, ex-
pected for very slow diffusion (tc

21&d), which gives the
value of the nuclear hyperfine interaction parameter
dMu5T2

21. Subsequent T1
21 measurements were carried

out to study slow Mu dynamics (see Sec. IV.B); one can
see the mSR time spectra in longitudinal fields in Fig. 3.
The observed relaxation is attributed entirely to the
muonium fraction, as the relaxation rate of the diamag-
netic complex N 2m1, which is known to be static (Stor-
chak et al., 1992), is about 0.13106 s 21, i.e., far slower
than that evident in Fig. 4. Moreover, the amplitude of
the relaxing component in a longitudinal field is equal to
the amplitude of the muonium precession signal in a
transverse field. Complete quenching of the low-
temperature relaxation in longitudinal fields '1 kG al-
lows one to rule out spin-exchange reactions with pos-
sible paramagnetic impurities (e.g., O 2) as the cause of
muonium spin relaxation. We are therefore confident
that the relaxation presented in Fig. 4 is due entirely to
Mu motion.

Figure 24 shows the temperature dependence of T2
21

in a transverse field and T1
21 for several values of longi-
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tudinal field for Mu in solid nitrogen. The
T1

21-maximum effect is clearly seen around 10–11 K for
all longitudinal fields. Using the standard analysis de-
scribed in the Sec. IV, the value of dMu514.9(0.8) MHz
(which is within 7% of the value obtained from
transverse-field measurements at low T) and the tem-
perature dependence of the hop rate were extracted.
These results are presented in Fig. 25. First we notice
the characteristic minimum at T550 K with a steep in-
crease of tc

21 between 50 K and 30 K as the temperature
is lowered — an unambiguous manifestation of Mu
quantum diffusion. In the temperature range 30,T
,50 K, the hop rate exhibits an empirical temperature
dependence tc

21}T2a with a57.3(2). This is a direct
experimental confirmation that the dependence of
tc

21(T) is not at all ‘‘universal’’ below Tmin , and higher
values of a are also possible, although in this particular
case we do not think that the observed dependence is
entirely due to the two-phonon scattering mechanism. It
is somewhat puzzling that the asymptotic low-

FIG. 24. Muonium relaxation rates in ultra-high-purity solid
N 2 in a weak transverse field [circles, triangles, diamonds, and
inverted triangles correspond to different samples] and several
longitudinal fields: stars, 12 G; squares, 8 G; crosses, 4 G (Stor-
chak et al., 1994a).

FIG. 25. Temperature dependence of the muonium hop rate in
ultra-high-purity solid N 2. Stars correspond to the combined
longitudinal-field measurements; circles, triangles, diamonds,
and inverted triangles correspond to transverse-field measure-
ments in different samples (Storchak et al., 1994a).
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temperature dependence is observed at temperatures as
high as Q/2 in solid nitrogen. It may not be explained by
the V(T) dependence, at least at temperatures between
50 and 30 K, even within the Debye model for the pho-
non spectrum (in solid nitrogen Q583 K; Verkin and
Prikhotko, 1983). Rather, one gets V(T) close to T2 in
this temperature range. An alternative explanation may
be based on the relatively high value of Tmin.Q/2. In
this temperature range (as we learned from all the pre-
vious examples) one-phonon effects are very strong and
may result in a strong temperature dependence of
Do(T). Apparently the strong temperature dependence
of tc

21 near the minimum is largely due to one-phonon
exponential renormalization of the tunneling amplitude.
To answer this question one has to calculate the hop
rate in nitrogen with all the interactions included, Eq.
(39).

Below about 30 K the hop rate levels off, presumably
due to Mu band motion. This regime of Mu diffusion in
solid N2 is discussed in Sec. VI.B.2 below. Surprisingly,
and quite in contrast with the other materials considered
above, Mu motion slows down again below about 18 K.
This happens, presumably, due to the orientational or-
dering of N2 molecules. Heat capacity (Bagatskii et al.,
1968), thermal expansion (Manzhelii et al., 1966), and
NMR data (DeReggi et al., 1969) in solid nitrogen all
show peculiarities at about 20 K which are attributed to
‘‘orientational defects’’ caused by an anisotropic interac-
tion between N2 molecules. Above about 20 K, large-
angle librations of the host molecules average the
Mu-N2 interaction energy to a well-defined, site-
independent value; below the ordering temperature, Mu
energy levels at neighboring sites may differ by a typical
static shift j , which impedes Mu diffusion according to
Eq. (109). However, independent experimental data
confirming this assumption are not available. For H at-
oms in solid nitrogen these energy shifts are j;1 K
(Sieghban and Lui, 1978); the value of the Mu-libron
interaction is most probably of comparable magnitude.
Since tc

21(T) below 18 K is unaffected by doping with
up to 0.01% impurities (Storchak et al., 1993), this slow-
ing down of Mu diffusion at low temperature is believed
to be an intrinsic property of solid nitrogen. For T,18
K and down to ;8 K, the data in Fig. 25 obey tc

21

5t0
21(T/Q)a with t0

2153.6(8)31013 s 21 and a
56.7(1). The change in the temperature dependence of
the Mu hop rate to a T7 law reflects the crossover from
Eq. (107) to Eq. (109). In this temperature range we
hardly expect that the one-phonon dependence of
Do(T) plays any role, and the observed law has to be
due to two-phonon dissipation (Kagan and Maksimov,
1983, 1984).

We note here that the two-phonon scattering mecha-
nism was also found to determine quantum diffusion of
3He atoms in solid 4He (Mikheev et al., 1977; Allen and
Richards, 1978; Allen et al., 1982), where the diffusion
rate diverges in the dilute limit as D(T);T2a with a
5962.
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2. Muonium band tunneling

Muonium band motion occurs if disorder is weak, j
!D , and coherence is preserved, V!D (see Sec. III). In
this case Mu tc

21 is temperature independent and de-
fined by Eq. (14). This section is devoted to the band
motion regime observed in ionic insulators, compound
semiconductors, neon, and nitrogen.

a. Ionic insulators, GaAs and CuCl

The band motion of Mu in KCl (Kiefl et al., 1989),
NaCl (Kadono et al., 1990), GaAs (Kadono, Kiefl,
Brewer, et al., 1990; Schneider et al., 1992b), and in CuCl
(Schneider et al., 1992a) is seen as tc(T) levels off at low
temperature. Initially it was attributed to Mu interaction
with crystal imperfections. The fact that impurities can-
not result in the T-independent tc is evident from Eq.
(109), which is relevant because disorder may influence
particle dynamics on an atomic scale only if D,j (see
Sec. III). Thus one expects an inevitable decrease in tc

21

as the temperature is lowered in this case, in contradic-
tion with the experimental data. Moreover, at low
enough temperatures Mu relaxation in disordered insu-
lators should show a multicomponent time dependence,
also not observed in these experiments (Sec. III.B). The
formal averaging procedure proposed by Kondo (1986)
and Sugimoto (1986) is obviously ill defined for (V ,j)
,D (apart from other weak points mentioned in Sec.
III), because it uses an incoherent expression for the cor-
relation time in a regime where the particle is already
propagating coherently in the band. A special set of
measurements was carried out (Schneider et al., 1992b)
in the temperature range 3–40 K in three different crys-
tals of GaAs (expected to have noticeably different pu-
rity due to different sources of the samples), with the net
result that weak disorder had no effect on tc

21 in GaAs.
Muonium band motion presents an obvious explana-

tion of the temperature-independent tc
21 at low T , Eq.

(14). From the plateau value of tc
21 one can derive the

coherent tunneling amplitude Kagan and Prokof’ev
(1990a) found it to equal Dcoh'0.13 K in KCl [in a later
experiment (Macfarlane et al., 1994) this was corrected
to 0.157(5) K], Dcoh'0.07 K in NaCl, and Dcoh'0.03 K
in GaAs.

As for the possibility of Mu delocalization (band mo-
tion) at temperatures just below 200 K in NaCl (Kadono
et al., 1990; Kadono, 1990, 1993), we doubt that it can be
physically justified. This idea was introduced on the ba-
sis of a steplike reduction in dMu below 200 K (see Fig.
20). The indication of a further reduction in dMu was also
found below 20 K, although the fit of the experimental
time spectra in this temperature range was not always
satisfactory (Kadono et al., 1990). The reduction of dMu
was explained as an averaging of the magnetic interac-
tion between muonium and nuclear spins over all nuclei
in the region of coherence, dMu→dMu /ANd, where Nd is
the number of Mu sites inside the region of coherence
(Stoneham, 1983). To explain the data one needs Nd to
be as large as 100. The origin of the delocalized state
below 200 K was attributed to delay in the formation of
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a small polaron (Browne and Stoneham, 1982), while
above 200 K such a delay is absent. The authors thus
arrived at a picture in which Mu participated both in the
delocalized coherent motion, described by reduced dMu ,
and in incoherent hopping diffusion, described by tc

21 .
In the absence of any microscopic calculations explain-
ing how this might work consistently (including ‘‘coher-
ent on top of coherent’’ motion at low temperature) we
shall not comment further on it.

It was suggested by Kagan and Prokof’ev (1990a) that
Mu may be an off-center interstitial in NaCl. In com-
parison with the cubic lattice of Mu sites in KCl, each
position in NaCl is further split into four equivalent
wells, having the same host atoms around them. If this is
the case, then Mu will undergo two types of motion
simultaneously—one corresponding to local four-level
tunneling with tc1

21 and very small d1, and another cor-
responding to Mu transitions between the different unit
cells of a simple cubic lattice with tc2

21 and large d2 (as in
KCl). This interpretation is only qualitative and requires
more elaborate calculations along with a more flexible
fitting of the raw experimental data, which have to allow
at least two sets of d and tc

21 . It should be pointed out
that peculiarities in dMu in NaCl are accompanied by
irregularities in muonium tc

21 . This may imply the exis-
tence of several minima in a x2 fit of the experimental
spectra and ambiguity in the determination of dMu and
tc

21 at each temperature.
A careful search for direct evidence of muonium co-

herent motion has been carried out in KCl at very low
temperatures (Macfarlane et al., 1994) in an attempt to
see coherence, which is expected at T ,vMu!D , through
the spectral analysis of the signal to confirm the square-
root laws, T1

21;T1/2 and T1
21;vMu

1/2 [see Eq. (18)]. For
incoherent muonium diffusion, tc

21 is extracted from the
relaxation functions by invoking the effective-field ap-
proximation model (see Sec. IV). The local magnetic
field is assumed to be uncorrelated in space (for unpo-
larized nuclei) and the field autocorrelator is expressed
by Eq. (80), yielding the Lorentzian spectral density for
the field fluctuations J(v)5tc /(11v2tc

2). This expres-
sion does not apply for coherently moving Mu, for which
the correct spectral function is given by C(v) (see Sec.
III.A). The experiment was performed in an ultrahigh-
purity single crystal of KCl. The muon polarization time
spectra were measured in a longtidinal field up to 0.4 T
in the temperature range from 20 mK to 2 K. Single
exponential fits to the polarization time spectra below 2
K showed no significant temperature dependence of the
muonium T1

21, though the field dependence of the initial
asymmetry was found to be qualitatively different from
that at high temperatures. This peculiarity was attrib-
uted to the existence of an unobservably fast-relaxing
Mu precursor. It was found that the muonium tc

21 is
constant in the entire measured temperature range. The
use of the spectral density function for the delocalized
particle did not improve the fits significantly, which was
not too surprising since both spectral densities have very
similar shapes, and the sum of the two relevant contri-
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
butions at frequencies v12 and v14 is almost insensitive
to the actual line shape. Thus the data did not allow an
unambiguous discrimination between the two mecha-
nisms.

No evidence for a decrease in T1
21 was found, even for

temperatures T!Dcoh . This quite surprising circum-
stance suggests that the Mu atom does not reach thermal
equilibrium with the environment during its lifetime
(Macfarlane et al., 1994). This explanation seems to be
plausible, since the phonon scattering of Mu is greatly
suppressed at such a low temperature. Indeed, from the
onset of coherent delocalization at T515 K we know
the value of V(15 K) to be of order 2A2Dcoh;0.5 K. At
low temperatures we expect V;T7, which gives ex-
tremely long thermal relaxation times, V21(0.5 K)
;1 s . Even the empirical law V;T3.3 is sufficient to
claim that at T;Dcoh muonium is not in thermal equi-
librium with the lattice. The unfortunate delay in Mu
thermalization is thus the most probable reason for the
T-independent correlation time down to 20 mK in all
insulating materials.

It was mentioned in Sec. VI.B.2.a that the case of
CuCl is singular, because in this material Mu undergoes
local tunneling between four equivalent positions. This
case requires a more detailed explanation of why there
is no leveling off in the temperature dependence of T1

21

for local tunneling and how one may resolve the un-
physical result tc

21@T at the lowest temperature. The
solution is found in the fine structure of the spectral
function for the nuclear field fluctuations. Consider first
the simplest case of local tunneling between two equiva-
lent states, well studied in the literature (Kagan and
Maksimov, 1980; Weiss and Wollensak, 1989; Kagan and
Prokof’ev, 1990b). The two-level system autocorrelation
function at T.Dcoh has the form

J ~2 !~v!5
Dcoh

2 V

~v22Dcoh
2 !21v2V2

. (112)

When V@Dcoh it is well approximated by the simple
Lorentzian J(2)(v)'tc /(11v2tc

2) with tc5V/Dcoh
2 .

This limit corresponds to the incoherent regime of mo-
tion and agrees completely with the Celio model (Celio,
1987; Yen, 1988). The crossover to coherent dynamics at
V,Dcoh is seen as a transformation of the single
Lorentzian centered at v50 into two Lorentzian peaks
centered around v56Dcoh , which are well separated
when V!Dcoh . However, the low-frequency response is
as before, J2(0)[V/Dcoh

2 or J2(0)5tc if we use the
same formal definition for tc (clearly, now tc has noth-
ing to do with the hop rate between the wells, nor has it
any physical meaning of, say, relaxation time, when V
!Dcoh). By measuring T1

215d2J(0)[d2tc at low fre-
quencies we miss the crossover and observe an ‘‘as if’’
diverging correlation time. This problem does not arise
in the band continuum, where J(v) acquires a limiting
form at low temperature.

The same considerations apply to the four-level case,
although the spectral function is more complicated now.
It is thought (Schneider et al., 1992a) that in CuCl the
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four-level Hamiltonian has the form Hnn8
5(1/4)Dcoh@12dnn8# , with the energy spectrum E1,2,35
2Dcoh/4, E453Dcoh/4. Introducing the damping rate for
the phase correlations between the wells V , we write the
density matrix equation as

@ iv2V~12dnn8!#rnn82i@Ho ,r#nn850. (113)

The rest is just the standard procedure of solving for the
eigenvectors ux& and eigenvalues Ex of these 15 linear
equations (Trr51) and then calculating the on-site cor-
relation function C(v). Omitting rather standard details
we write here only the final answer,

J ~4 !~v!5
Dcoh

2 V

2

3
v21V21Dcoh

2 /2

v2~v22Dcoh
2 2V2!21V2~2v22Dcoh

2 /2!2
.

(114)

As before, when V@Dcoh , we are back to the Lorentz-
ian line around v'0 with the linewidth defined by tc
52V/Dcoh

2 . In the opposite limit three peaks are devel-
oped in the spectral function, centered at v50 and v
56Dcoh . The peak at the zero frequency is due to the
ground-state degeneracy of the original problem. We
note that in very weak fields the temperature depen-
dence, T1

215d2(tc11/V), is nonmonotonic and will be
interpreted in the standard Celio model as particle local-
ization as T→0. On the other hand, at some intermedi-
ate frequency, say Dcoh/2, the dependence of T1

21 on
temperature is monotonic after the T1-minimum effect
and will be misinterpreted at low T as a diverging tc

21 ,
in exact analogy with the two-level case. At present we
do not see any other way to explain the observed data in
CuCl. An interesting test of the theory would be the
level-crossing resonance at low temperature when v
'Dcoh .

b. Solid neon and solid nitrogen

Solid Ne is one of the rare-gas solids, which are char-
acterized by very weak van der Waals interatomic inter-
actions about several tens of K (Verkin and Prikhotko,
1983), whereas in ‘‘regular’’ solids this value can be as
high as 10 4 K. One may expect the potential barriers to
be rather low for Mu diffusion in such solids. Muonium
spin relaxation, while it diffuses in natural s-Ne, differs
from that observed in other materials because of the low
concentration of the nuclear magnetic moments (only
one isotope of neon— 21Ne with natural abundance xg
50.27%—possesses nonzero spin). Usually the local
field at muonium changes at each hop. In a solid with
low abundance, xg , only long-range muonium diffusion
can be determined from the transverse-field spin-
relaxation measurements (short-range diffusion might
be hidden).

In a recent experiment (Storchak et al., 1994b) Mu
diffusion was studied in ultrahigh-purity natural Ne (im-
purity content xim;1025). Muonium formation and the
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
hyperfine interaction energy A were detected using a
conventional scheme (see Sec. IV.B). The electronic
structure of Mu was found to be almost unaffected by
the lattice since the hyperfine frequency was found to be
very close to vacuum value of A . Figure 26 shows the
temperature dependences of the muonium relaxation
rate T2

21 in pure and doped (with H2 and CO) samples.
In the ‘‘dirty’’ samples, T2

21 is evidently independent of
the kind and amount of impurity, which rules out the
trapping, or chemical reaction, mechanism of relaxation
on impurities. This fact strongly suggests that T2

21(dirty)
5 0.2 MHz is an intrinsic Ne property, which can be
considered to be the result of dipole interaction with the
dilute Ne magnetic moments. The corresponding esti-
mate gives a T2

215d(xg)5gNegMu4png /3 very close to
the experimental result. It seems that the effect of impu-
rities is mainly to generate long-range crystal disorder,
which establishes a spatial distribution of energy-level
shifts j(r) among otherwise equivalent Mu sites, dis-
rupting the free diffusion of Mu and producing a char-
acteristic ‘‘static’’ relaxation rate T2

21. Mu atoms are
seen as static if the energy shifts between the defects
localize Mu on a length scale given by the natural abun-
dance of 21Ne, xg52.731023. Assuming that j(r) is due
to the elastic strain fields [see Eq. (19)], we find the
corresponding criterion as

4p
Uoxim

4/3

xg
1/3 .D , (115)

which is satisfied in doped samples.
The above condition does not necessarily mean that

Mu is static, even on the time scale of T2
21; what is re-

quired is that it does not move as far as the distance
between the 21Ne nuclei in a time T2. Thus dynamic
effects of incoherent hopping are hidden if tc

21

<gNegMu /a3'10 MHz, which makes transverse-field
measurements rather ineffective in magnetically dilute
substances. Only when tc

21 is sufficiently high can it in-
fluence spin relaxation through the motional narrowing

FIG. 26. Temperature dependences of the Mu T2
21 relaxation

rate in ultra-high-purity samples: squares, Ne; crosses,
Ne11.531024 CO; circles, Ne11.731023 H 2; triangles,
Ne13.431024 H 2 (Storchak et al., 1994b).
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effect. Generally (Abragam, 1961)

T2
21.H d~xg! for tc

21,gNegMu /a3,

d2~xg!3tc /~4pxg! for tc
21.gNegMu /a3.

(116)

In pure Ne, muonium apparently diffuses rapidly
enough that dynamic narrowing takes place, and the
lower part of Eq. (116) applies, giving tc

21'3.5
3107 s21. The absence of any dramatic temperature de-
pendence of tc

21 accompanied by unmistakable dynamic
narrowing prompted Storchak et al. (1994b) to suggest
bandlike motion of Mu in pure Ne. Rough estimates do
not exclude this possibility at low T. If we calculate the
static level shifts due to the strain fields (19) caused by
residual impurities, using xim;1025 and Uo;10 K, then
Eq. (115) gives D.531024 K, in line with the value
deduced from tc

21 using Eq. (14), namely, D
'(Z/A2)tc

21;1023 K. This interpretation, however,
has some difficulty explaining why the two-phonon scat-
tering is so small that V,D up to 25 K.

There are some other problems not answered by the
experiments in solid Ne. It is known that dipole fields
due to dilute magnetic moments have Lorentzian field
distribution (Abragam, 1961). However, in the experi-
ment of Storchak et al. (1994b) the relaxation function
was rather Gaussian in dirty samples. In pure Ne, the
relaxation function is slightly closer to exponential, as
would be expected for a dynamically narrowed regime,
but it is still inconsistent with a Lorentzian field distri-
bution. The reason for this discrepancy is not under-
stood and actually leads us to think that the explanation
of the experimental data proposed here is only the most
straightforward one; it may radically change when more
experimental data become available.

This discrepancy is obviously absent in solid nitrogen
(all nitrogen nuclei have nonzero magnetic moments),
where the temperature-independent tc

21 between 20 K
and 30 K was attributed to Mu band motion (Storchak
et al., 1994a; Storchak, Brewer, and Morris, 1996b). The
renormalized bandwidth was estimated to be Dcoh
;1022 K, in agreement with the value deduced from the
high-temperature data (see Sec. V1.B.3 below). In fact,
the temperature dependence of muonium tc

21 in solid
nitrogen above 20 K is very reminiscent of that in ionic
insulators and GaAs.

3. One-phonon muonium quantum diffusion

The main issues we shall address in this subsection are
(a) whether Mu diffusion at T.Tmin is quantum in na-
ture and (b) what is the relative role of different one-
phonon couplings in this regime, i.e., the polaron effect
versus fluctuational preparation of the barrier. This kind
of study is impossible to conduct at low temperature
because one-phonon interactions are then reduced to
constant renormalization Do→Doexp$Bo2F1G%, and
different terms in the exponent may not be discrimi-
nated. The high-T dynamics of the small-polaron expres-
sion [Eq. (97)], allows for the separation of the polaron
effect from fluctuational preparation of the barrier
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
through their temperature dependences—the polaron
effect disappears as ;1/T , due to increased lattice vibra-
tions, and for exactly the same reason the barrier fluc-
tuation effect increases as ;T .

The conditions under which one can experimentally
separate the effects of fluctuational preparation of the
barrier from the polaron effect (Storchak, Brewer, Mor-
ris, et al., 1994; Storchak et al., 1996) are rather specific:
the best choice would be to study the temperature range
T.Q , but still T,T* 5no , to ensure that classical dif-
fusion may be disregarded. To separate the energy
scales Q and no , one should study tunneling of a very
light particle (to increase T* ; Mu perfectly satisfies this
condition) in a crystal with low Debye temperature.
Small Q may result both from the heavy mass of the
host atoms and from ‘‘soft’’ interatomic forces; the last
idea leads to van der Waals crystals of Xe and Kr.

In this subsection we shall discuss high-T quantum dif-
fusion in KCl, NaCl, and GaAs, which are already famil-
iar to the reader, along with N 2 and the rare-gas solids
of Kr and Xe.

a. Ionic insulators and GaAs

In KCl the high-T data were initially interpreted as a
classical Arrhenius-type diffusion (Kiefl et al., 1989).
However, the low value of the preexponential factor
nm58.2(8)3109 s 21 along with the low value of the ac-
tivation energy E5388(12) K, which is more than five
times smaller than the corresponding value for hydrogen
diffusion in KCl, EH52300 K (Ikeya et al., 1978), clearly
indicated that Mu diffusion above Tmin was quantum in
nature. It was argued by Kagan and Prokof’ev (1990a)
that an analysis in terms of the polaron effect alone (Ka-
dono, 1990) was inconsistent with the low-temperature
data and barrier fluctuations must be involved as well.
Below we shall follow the analysis given in this work.

Both the polaron effect and the barrier fluctuation ef-
fect lead to the increase of tc

21 with temperature. The
idea of separating the two contributions is to impose
restrictions on the tunneling amplitude renormalization
exponent F2G , which can be done by invoking precise
knowledge of Dcoh at low T (see Sec. VI.B.2 above). In
the rest of this section we shall often assume the sim-
plest form of the Mu-phonon coupling,

uCau25l1vQ , uBau25lBv/Q . (117)

Suppose that lB50. The preexponential factor, polaron
energy, and Dcoh then constitute three equations that
are to be satisfied simultaneously by fitting DoeBo and
l1. In addition [since the two-phonon scattering is fixed
by known tc(T) behavior below Tmin] one may require
the position of the minimum and tc

21(Tmin) to be repro-
duced. This rather stringent test shows [the numerical
calculation was done using the actual phonon spectrum
of KCl and NaCl (Bilz and Kress, 1979)] that with lB
50 a consistent description of the data is not possible,
missing the data by orders of magnitude. On the other
hand, the overall fitting is very good assuming l150 and
a nonzero value of lB . The curve in Fig. 27 was ob-
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tained using two independent parameters l2ph and lB
for the two-phonon and one-phonon regimes, respec-
tively. The parameters obtained @lB50.25, or G(0)
'0.4, EB'50 K and g'40 K; see Eq. (97)] reflect only
a small renormalization of D0 at low temperatures, while
the barrier fluctuation effect turns out to be quite impor-
tant at high temperatures.

The striking contrast between the two limiting cases in
KCl left little doubt that the barrier fluctuation effect
governs Mu quantum diffusion at high temperature.
This is probably related to the structure of the ionic
crystals in which the Mu-ion interaction strongly de-
pends on their proximity. This interaction has its maxi-
mum value when the tunneling particle goes through the
atomic plane between neighboring wells and it is rela-
tively weak for Mu in the potential well.

We note that the strict correlation between high- and
low-temperature parameters disappears immediately if
one tries to describe the experimental data assuming a
separate set of tc

21 and dMu at each temperature [as was
done in NaCl by Kadono et al. (1990)]. The difference
between the results of the same theoretical analysis in
KCl and NaCl can be taken as additional evidence of the
need for a thorough analysis of the experimental time
spectra in NaCl.

In contrast to the case of KCl, all the data in GaAs
(Kadono, Kiefl, Brewer, et al., 1990; Schneider et al.,
1992b) seem to be in good agreement with the standard
fit, which takes into account only the polaron effect.

b. Solid nitrogen

The same analysis relating low- and high-temperature
data was done for N 2 by Storchak et al., (1993, 1994a).
In the original treatment the authors tried to utilize the
low-temperature results for the plateau below 8 K. Later
on, precise measurements revealed that the T2

21 of muo-
nium is temperature independent in s-N2 between 20 K
and 30 K, which strongly supports the hypothesis of par-
ticle band motion in this temperature range and makes

FIG. 27. The result of the numerical calculations of the Mu
quantum diffusion in KCl (solid line) (Kagan and Prokof’ev,
1990a). The parameters of the calculations are presented in the
text.
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Dcoh'1022 K available directly from experiment.
Three possibilities were considered separately for the
high-temperature behavior: the polaron effect, fluctua-
tional preparation of the barrier, and classical diffusion.
The results of fitting were then tested for self-
consistency within the Debye model for the phonon
spectrum, when F(0)53E/Q and G(0)53Q/32EB ,
and for the Einstein model, when F(0)52E/Q and
G(0)5Q/8EB. Unfortunately, in nitrogen the high-T
regime is restricted from above by a rather low melting
temperature (Tm563.1 K); thus only large discrepancies
were taken into account.

By considering the polaron effect alone one gets E
'300 K and nMu'1010 s21 (or Do'2 K), which, after
the recalculations described above, gives Dcoh between
1023 and 1024 K (depending on the model). This is one
or two orders of magnitude smaller than the experimen-
tal value. Fitting the data to the barrier fluctuation ex-
pression alone gives a much better description:
EB'10 K, G(0)'0.8, and the corresponding tunneling
amplitudes DoeBo'1022 K, Dcoh'231022 K. Classical
diffusion [which, in fact, is very close in fitting to the
small-polaron expression (98)] was ruled out because of
the smallness of the preexponential factor nMu'1010 s21.
The conclusion made in this study was that the high-
temperature Mu dynamics in solid N 2 are due to tunnel-
ing, with dominant one-phonon coupling originating
from potential barrier fluctuations.

c. Solid xenon and solid krypton

Despite the strength of the arguments in favor of the
barrier fluctuation effect in KCl and nitrogen, it is only
through the theoretical estimates that one can judge
whether they are valid or not. The high-temperature
data are not sufficient on their own for separating the
linear term from the polaron term in the exponent in
Eq. (97) in these substances. Hydrogen diffusion in met-
als is usually explained in terms of the polaron effect
alone (see, for example, Steinbinder et al., 1988). Still,
some of the data (Völkl and Alefeld, 1978), were found
to be in disagreement with the simple activation-type
dependence, and theoretical attempts were made to ex-
plain this discrepancy by the fluctuational preparation of
the barrier (Teichler and Klamt, 1985; Klamt and Te-
ichler, 1986). Comparatively small variations of tc

21 at
high temperature in all previous experiments precluded
any firm conclusion about the nature of particle tunnel-
ing in this regime. At temperatures above 200 K one
also has to worry about a possible change of the inter-
stitial site visited by the diffusing particle and crossover
to over-barrier classical diffusion. The idea of studying
Mu diffusion in a material with the heaviest possible
lattice atoms, in order to expand the temperature range
where the full expression (97) is expected to be valid,
was realized in solid xenon (Storchak, Brewer, Morris,
et al., 1994) (Q564.0 K) and solid krypton (Storchak
et al., 1996) (Q571.7 K). For the first time the data on
quantum hopping became available on a scale (muo-
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nium tc
21 has been measured to vary by about four or-

ders of magnitude) that allowed a direct test of the
theory.

Experiments in solid Xe were carried out both in
research grade (99.999% purity) natural Xe
(129Xe–26.2%, 131Xe–21.2%; other isotopes have zero
spin) and in pure (99.996%) 136Xe. By standard meth-
ods, the hyperfine parameter AMu was measured in iso-
topically pure 136Xe (to exclude fast nuclear hyperfine
interaction relaxation) with the result AMu54325(8)
MHz; this value is believed to be the same in natural
s-Xe, suggesting that the Mu atom is slightly expanded
in the Xe lattice. The nuclear hyperfine interaction pa-
rameter dMu for Mu in s-Xe is not known but can be
inferred from the value for atomic hydrogen (dH'35
MHz; Foner et al., 1960), which should be only slightly
different due to zero-point vibrations. The high-
longitudinal-field technique was then applied in order to
extract values for both dMu and tc

21 in natural s-Xe by
simultaneous fitting of the m1SR time spectra taken at
three or four external magnetic fields using an expres-
sion for the muon spin relaxation in the framework of
the effective-field approximation (see Sec. IV). The ob-
served relaxation was attributed entirely to the Mu frac-
tion, since the small diamagnetic fraction is believed to
be due to the molecular ion Xem1 (Storchak, Kirillov,
et al., 1992), in analogy with the directly observed N 2m1

ion (Storchak et al., 1992), which should be nonrelaxing
in high longitudinal fields. Moreover, weak-transverse-
field measurements in 136Xe, where long-lived Mu pre-
cession was observed, yielded the same value for the
muonium amplitude as that measured in longitudinal
fields; one has no reason to expect the probability of Mu
formation to be different for natural Xe and 136Xe.

Figure 28 presents the temperature dependence of the
average muonium relaxation rates T1

21 (taken at various
values of longitudinal field) and T2

21 (in a weak trans-
verse field of 5.2 G) in natural Xe. The same figure
shows T1

21 for a longitudinal field of 362 G and T2
21 for

FIG. 28. Temperature dependences of the muonium T2
21

(crossed diamonds) and T1
21: crosses, 21 G; stars, 72 G;

squares, 363 G; circles, 725 G; triangles, 1451 G in natural
s-Xe; T2

21 (diamonds) and T1
21 (inverted triangles, 363 G) in

136Xe (Storchak, Brewer, Morris, Arseneau, and Senba, 1994).
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a weak transverse field of 5.2 G in 136Xe. Below about
125 K the magnetic-field dependence of T1

21 in natural
s-Xe was found to be consistent with the Celio model.
Above this temperature muonium spin relaxation was
claimed to be no longer primarily due to the nuclear
hyperfine interaction, as illustrated by the fast relaxation
in 136Xe; instead, above 125 K, Mu spin-exchange pro-
cesses were suggested to be dominant. Therefore the
analysis of Mu diffusion was restricted to temperatures
below 125 K, where clear T1

21 maxima were seen around
100 K at three magnetic fields. For lower longitudinal
fields the T1 minimum was shifted to lower tempera-
tures, indicating that Mu slows down with decreasing
temperature. Both the Mu hop rate tc

21 and nuclear hy-
perfine interaction frequency dMu (shown in Fig. 29)
were calibrated at the T1 minima conditions.

An approximation of the experimental data by ex-
pressions taking into account the polaron effect or fluc-
tuational barrier effects separately gave poor fits in both
cases. Therefore the two effects were considered simul-
taneously according to Eq. (97). The bandwidth in the
Debye approximation was estimated to be Dcoh'1029

K. In the Einstein approximation it was considerably
larger: Dcoh'1026 K. Preference was given to none of
these models, but these calculations showed that they
both imply very strong one-phonon interactions. Fitting
indicates that the polaron effect plays a dominant role in
the temperature region from 40 K to about 70 K, while
the barrier fluctuation effect prevails at higher tempera-
tures.

The hyperfine interaction parameter dMu displays a
dramatic temperature dependence (Fig. 29) with a step-

FIG. 29. Temperature dependence of the Mu hop rate tc
21 and

the nuclear hyperfine frequency coupling constant d in natural
s-Xe (Storchak, Brewer, Morris, Arseneau, and Senba, 1994).
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like increase above about 70 K, similar to that observed
in NaCl (Kadono et al., 1990). However, Storchak,
Brewer, Morris, et al., (1994) and Storchak, Brewer and
Morris (1994b), have given another interpretation of
such an increase in dMu based on a classical evaluation of
the spin dynamics for a rapidly diffusing particle. The
Mu atom produces a large magnetic field Beff;dMu /gN
at the lattice nuclei. For slowly diffusing Mu (2pdMutc
@1), fast Larmor precession of the surrounding nuclear
spins leads to averaging of the nonsecular part of the
interaction. When the Mu hop rate becomes higher than
dMu , it leaves the unit cell before the nearest nuclei un-
dergo noticeable rotation in its magnetic field. There-
fore, for rapidly diffusing Mu, one has to consider the
full nuclear hyperfine interaction Hamiltonian, which in
turn results in a higher effective dMu . Thus the high-
temperature value d'100 MHz corresponds to the full
magnitude of the interaction, whereas the low-
temperature value, dMu530–40 MHz, is consistent with
that of a static hydrogen atom in s-Xe (Foner et al.,
1960). This classical picture is valid only in the high-
magnetic-field limit, when vMu is much higher than dMu
[the same restriction as for the effective-field approxi-
mation (Kiefl et al., 1989)]. Comparison of the tc

21 and
dMu values shown in Fig. 29 reveals that the increase in
dMu takes place when 2pdMutc;1, as expected. These
considerations may also apply to NaCl.

Measurements of muonium diffusion in solid krypton
(s-Kr) were performed in ultrahigh-purity (less than
1025 impurity content) samples (Storchak et al., 1996).
As in the cases of N 2 and Xe, it was possible to separate
and ignore the contribution of the diamagnetic fraction
(due to Krm1 ions and m1 stopped in the sample walls).
The analysis below is restricted to the temperature
range up to 55 K only, where muonium relaxation was
attributed to dipole or hyperfine interactions between
the Mu spin and 83Kr nuclei (natural abundance
11.55%). At higher temperatures two-component relax-
ation was observed [also reported in the first experiment
by Kiefl et al. (1981) at 90 K], most probably due to Mu
interactions with paramagnetic species liberated in the
incoming muon’s ionization track (Storchak, Brewer,
and Cox, 1997; Storchak, Brewer, and Morris, 1994b,
1995a, 1995b, 1996a, 1997; Storchak et al., 1997). An ad-
ditional fast-relaxing component was also observed at
high temperatures in the Mu relaxation function for
solid Xe (Storchak, Brewer, Morris, et al., 1994), Ar
(Storchak, Brewer, and Morris, 1996c), and ice (Cox
et al., 1994).

The increase in T2
21 observed in s-Kr as the tempera-

ture was lowered to 40 K (Fig. 30) may be explained by
the slowing down of the diffusion. It is tempting then to
consider the characteristic maximum and abrupt drop in
T2

21 around 40 K as the onset of fast coherent motion
and resulting dynamic narrowing. This drop, however, is
accompanied by a drop in the amplitude of the
transverse-field precession signal from 0.0671(5) to
0.0395(5), equivalent to a reduction of the Mu fraction
to 58.9% of its value at higher temperatures. This behav-
ior cannot be explained by the onset of a fast-diffusion
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
regime. It can, on the other hand, be explained in terms
of the isotopic composition of krypton and the conse-
quent fact that not all crystallographically equivalent
sites have equivalent local nuclear magnetism. Particles
that localize at sites having 83Kr as nearest neighbors
experience strong nuclear hyperfine interactions and are
rapidly and completely depolarized, whereas particles
having only spinless nearest neighbors (experiencing
only much smaller, and predominantly dipole, local
fields from remote 83Kr nuclei) exhibit a relatively
slowly damped precession signal. Within this picture Mu
sites in Kr were readily identified as tetrahedral. This
contrasts with the H atoms deposited in Kr, which ap-
parently take up a substitutional position (Foner et al.,
1960). It is not surprising, therefore, that the nuclear
hyperfine interaction parameters for muonium and hy-
drogen in solid Kr were found to be considerably differ-
ent (Storchak et al., 1996). The abrupt decrease of T2

21

with decreasing temperature was explained by localiza-
tion (or diffusion freezing) of the Mu atoms. Above
about 35 K, particles began moving faster, and all Mu
atoms experienced strong nuclear hyperfine interactions
with 83Kr nuclei in the course of diffusion through the
lattice. This was seen as a stepwise increase in T2

21(T).
The hypothesis of muonium localization in s-Kr at low

temperatures was unambiguously confirmed in a subse-
quent zero-field experiment (Storchak et al., 1996) Fig-
ure 5 presents the time evolution of the muon polariza-
tion (circles) and shows that it exhibits a relaxation
function of the static Kubo-Toyabe type (79). The fit of
the experimental spectrum took into account both Mu
sites with nearest-neighbor (NN) 83Kr nuclear spins and
those without. The correlation time tc was assumed to
be the same for both types of sites, since they are elec-
trostatically identical. Very slow muonium diffusion
rates were measured both in zero field and in a very
weak longitudinal field (0.2 G). Typical weak-
longitudinal-field time spectra are shown in Fig. 6. Both
the Mu hop rate tc

21 and the nuclear hyperfine interac-
tion frequency dnnn (with next-nearest neighbors) were
determined by simultaneous fits of zero-field and weak-

FIG. 30. Temperature dependence of the muonium relaxation
rate T2

21 in solid Kr in a transverse magnetic field B52 G
(Storchak et al., 1996).
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longitudinal-field data to corresponding dynamic Gauss-
ian Kubo-Toyabe relaxation functions (Brewer et al.,
1987; Luke et al., 1991) with D[dnnn . At temperatures
above about 30 K, the high-longitudinal-field technique
was applied to measure faster hop rates. The tempera-
ture dependence of T1

21 for different values of applied
field is shown in Fig. 31. Between about 30 K and 55 K,
the longitudinal-field relaxation data were interpreted in
terms of muonium diffusion, as the variation of T1

21 with
magnetic field is consistent with a diffusion model (Ce-
lio, 1987; Yen, 1988). Muonium nuclear hyperfine inter-
action parameters for nearest neighbors and next-
nearest neighbors were determined to be dnn 5 55(5)
MHz (from longitudinal-field data) and dnnn 5 0.67(6)
MHz (from zero-field and weak-longitudinal-field data),
respectively. That huge difference between the two val-
ues suggests that these interactions are, respectively,
contact and dipole in character.

The temperature dependence of tc
21 for Mu in s-Kr is

shown in Fig. 32 along with that for s-Xe. The overall
range of the muonium hop rates, spanning over six or-
ders of magnitude, is especially noteworthy. A fit of the

FIG. 31. Temperature dependences of the muonium relax-
ation rate T1

21 in solid Kr in several longitudinal magnetic
fields: stars, 40 G; circles, 60 G; triangles, 120 G; diamonds, 180
G. Note the T1 minima (T1

21 maxima) around 50 K (Storchak
et al., 1996).

FIG. 32. Temperature dependence of the muonium hop rate in
solid Kr (stars; Storchak et al., 1996) and solid Xe (circles;
Storchak, Brewer, Morris, Arseneau, and Senba, 1994).
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experimental tc
21(T) dependence in s-Kr for 25 K,T

,55 K to the Arrhenius law gave the preexponential
factor nm51.6(3)31011 s 21 and E5409(2) K. Although
the value of n is rather large in this case, it is still at least
two orders of magnitude less than n0, which was consid-
ered as sufficient grounds to exclude classical diffusion.
Analysis showed that the polaron effect is much stron-
ger than the barrier fluctuation effect. Fitting the data to
Eq. (98) (lB50) gave a better x2 parameter than fitting
to Eq. (97) with l150. The parameters obtained from
the polaronic-effect fitting were D̃o53.2(1)31025 K
and E5432(2) K. Keeping both effects in the analysis
did not produce marked improvement. Unfortunately,
Mu relaxation on nuclear spins was masked in solid Kr
by the onset of additional relaxation mechanisms at tem-
peratures comparable to and above Q . This hampered a
quantitative separation of the polaron effect from the
barrier fluctuation effect. Yet again, as in many previous
studies, the narrowness of the temperature range was
the main reason why Storchak et al. (1996) could not
extract precise values for the parameters of both effects.

4. Muonium quantum diffusion in imperfect crystals

The influence of crystalline imperfections on quantum
diffusion of neutral particles in insulating crystals is
much harder to observe than that on charged particles in
metals for two reasons: (i) the strain fields are so much
weaker than the potential due to charge oscillations in
metals (e.g., for a 3He atom in a 4He crystal Uo;1022

K), and (ii) the Mu bandwidth 2ZDcoh in insulators usu-
ally turns out to be several orders of magnitude higher
than D for m1 in metals, partly due to specific electronic
polaron effect. Still, the inequality D!Uo holds even in
insulators, and disorder may cause drastic changes in Mu
quantum diffusion. Inhomogeneous diffusion has direct
consequences for the T2

21 and T1
21 spectra (see Secs.

III.B, III.E.2, and III.E.3). In this section we describe
experiments on inhomogeneous muonium quantum dif-
fusion in s-N 2 and KCl with impurities. We also analyze
the Mu trapping phenomena in insulators, employing
the case of Mu diffusion in s-N 2 with CO impurities.

a. Inhomogeneous quantum diffusion in solid nitrogen

As we have mentioned already, at temperatures be-
low 18 K a gradual Mu localization takes place, which
reflects the suppression of band motion by static disor-
der (Storchak et al. 1993, 1994a; also see Storchak,
Brewer, and Morris, 1994b, 1996b). Inhomogeneous
muonium quantum diffusion in s-N 2 has been detected
in weak-longitudinal-field experiments at low tempera-
tures (Storchak, Brewer, and Morris, 1996d). Typical
mSR time spectra in B58 G are shown in Fig. 33. At
temperatures above about 10 K, excellent fits to the data
were obtained using Eq. (88), which assumes that all Mu
atoms diffuse at the same rate during their lifetimes.
However, below 10 K it was impossible to fit experimen-
tal spectra using a single exponential relaxation func-
tion. Figure 33 clearly shows that at low temperatures
the polarization function consists of at least two expo-
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nential terms. At temperatures below about 8 K, a large,
almost nonrelaxing component (on the mSR time scale)
was observed. It was attributed to an almost static part
of the Mu ensemble. A multicomponent P(t) is clear
evidence for the spatial inhomogeneity of the crystal;
muon diffusion experiments in superconducting Al with
impurities also show a multicomponent P(t) (Karlsson
et al., 1995).

Experimental time spectra were compared with the
simplest possible two-component expression,

A~ t !5AFexp~2T1F

21t !1ASexp~2T1S

21t !, (118)

where AF and AS are the asymmetries (amplitudes) of
the fast- and slow-relaxing components and T1F

21 and

T1S

21 are their relaxation rates. Figure 34 shows the tem-
perature dependences of these asymmetries (a) and re-
laxation rates (b). Above 10 K there is no measurable
fast-relaxing component. As the temperature is reduced
below 10 K, AS decreases and the fast-relaxing compo-
nent correspondingly increases, clearly indicating the
onset of inhomogeneous Mu diffusion. At lower tem-
peratures both AS and AF level off, accounting for
about 70% and 30% of the Mu polarization, respec-
tively. At T56 K, T1F

21 exceeds T1S

21 by more than two
orders of magnitude. Figure 34(c) displays the tempera-
ture dependences of the Mu hop rates for the fast and
slow components derived from Eq. (88), with a fixed
value of d514.9(0.8) MHz obtained from
T1

21-maximum conditions. Above about 9 K, Mu exhib-
its quantum tunneling with a characteristic tc

21}V/j2

}T7 temperature dependence. Below this temperature
the slow component displays strong localization, while
the fast component shows temperature-independent Mu
motion with about two jumps per muon lifetime.

The reduction of the Mu diffusion rate in solid nitro-
gen at low temperatures has been explained (Storchak
et al., 1994a) in terms of orientational ordering of N2

FIG. 33. Muon-spin relaxation spectra for muonium in solid
nitrogen in a longitudinal field of B58 Oe: diamonds, at
T510 K; triangles, at T58 K; circles, at T56 K (Storchak
et al., 1995; Storchak, Brewer, and Morris, 1996d). Note the
presence of two components in the relaxation function at low
temperatures.
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molecules in s-N 2. This is a peculiar intrinsic property of
crystalline nitrogen, which can be considered as homo-
geneous at high temperature but has the properties of a
translationally disordered lattice below 20 K, presum-
ably due to frozen orientational defects, which produce
‘‘crystal disorder’’ for Mu diffusion. The hop rate is also
decreased according to Eq. (109). This picture is consis-
tent with the behavior of the slow-relaxing component.
The nature of the fast-relaxing component and its
temperature-independent hop rate remains a puzzle and
requires further investigation. Some possibilities include,
coherent motion with the reduced bandwidth in the ori-
entationally ordered state, local tunneling between few
near-resonance sites, etc., but existing data are too in-
complete to continue this argumentation.

FIG. 34. Temperature dependences of muonium signals in
solid nitrogen: s , slow-relaxing; stars, fast-relaxing (Storchak
et al., 1995; Storchak, Brewer, and Morris, 1996d). (a) slow
(AS) and fast (AF) muonium asymmetries (amplitudes); (b)
slow (T1S

21) and fast (T1F

21) longitudinal relaxation rates; (c)
slow (tcS

21) and fast (tcF

21) muonium hop rates.



972 V. G. Storchak and N. V. Prokof’ev: Quantum diffusion of muons and muonium
FIG. 35. Temperature dependences of the muonium hop rate and partial asymmetry in KCl ([Na] 5 2.731023 and 2.731022)
compared with the data in pure KCl ([Na] ,1024, shown by diamonds). Triangles are AS and the hop rate tS

21 of the slow
component, filled circles are AF and the hop rate tF

21 of the fast component, and squares are AS1AF in each sample. Lines are
to guide the eye (Kadono et al., 1996).
b. Inhomogeneous Mu diffusion in Na-doped KCl

Experiments in pure KCl (Kiefl et al., 1989; Kadono,
1990) give us a perfect example of homogeneous quan-
tum diffusion in a regular lattice. Therefore it is an ideal
starting point to study disorder effects due to deliber-
ately inserted impurities. Measurements in single crys-
tals of KCl with Na concentrations of 2.7(3)31023 and
2.7(3)31022 were carried out in a longitudinal field (Ka-
dono et al., 1996). The diffusion-limited trapping on Na
centers was discarded by comparing the estimated trap-
ping rate with the Mu relaxation rate in both crystals.
This result agrees with the general conclusion on the
ineffectiveness of trapping phenomena in insulators at
low temperatures due to suppression of the inelastic in-
teraction with the environment (Prokof’ev, 1994; Stor-
chak, Brewer, and Morris, 1996d). An analysis of the Mu
relaxation time spectra below about 50 K revealed the
existence of at least two distinct components with differ-
ent correlation times, while only a single component was
observed at higher temperatures. For simplicity it was
assumed that the time spectra were described by a two-
component expression similar to Eq. (118). Common
values were adopted for the muonium hyperfine param-
eter A52p34280 MHz (Kiefl et al., 1984) and the
nuclear hyperfine interaction parameter dMu52p360(2)
MHz (Kadono et al., 1990) throughout the analysis.

The temperature dependences of the muonium asym-
metries and tc

21 in both samples are shown in Fig. 35,
where the data of pure KCl (nominally 99.99%) are also
included for comparison. It is evident from Figs. 35(d)
and 35(e) that the hop rate in both samples is not af-
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fected by the presence of sodium impurities above 50 K,
except for a very slight enhancement in the sample with
2.7% sodium. In the sample with 0.27% sodium, tc

21(T)
of the fast-diffusing component observed below 50 K
virtually coincides with the muonium tc

21(T) in pure
KCl. Plainly, the spheres of radius Rloc , Eq. (21),
around impurities do not overlap, and a substantial vol-
ume of the sample supports delocalized states. A slowly
diffusing component emerges below 50 K and increases
with decreasing temperature as inferred by As in Fig.
35(b). The hopping rate associated with this component
shows that Mu localizes at low temperatures.

The effect of 2.7% sodium is more drastic [see Fig.
35(e)]. There is no increase of tc

21 with decreasing tem-
perature below 50 K and no further leveling off below
10 K. Thus one may conclude that spheres of radius RD

overlap [note that RD and Rloc differ in insulators, Eqs.
(20) and (21)]. It is quite surprising, therefore, that the
analysis (Kadono et al., 1996) showed a leveling off of
the tc

21(T) for the fast-relaxing component, suggesting
temperature-independent dynamics with tc

21 about two
orders of magnitude less than that for Mu band motion
in pure KCl. This leveling off can be explained neither
by a ‘‘single-phonon scattering’’ nor by a ‘‘residual dis-
order’’ outside disturbed spheres (Kadono et al., 1996).
A one-phonon scattering mechanism would inevitably
produce some temperature dependence, which is in evi-
dent contradiction with the experiment. The alternative
possibility is that even at 2.7% doping there are ‘‘lakes’’
(in the percolation theory sense) of finite-size delocal-
ized states with j,D (the fraction fd described in Sec.
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III.B). These ‘‘lakes’’ do not overlap, but a small frac-
tion of Mu stopped there may be responsible for the
observed behavior. Note also that in the experiment this
fraction is vanishingly small and the actual behavior at
T→0 is not known.

The slow-relaxing component shows a power law
tc

21}T3.2. This is consistent with the reverse tempera-
ture dependence of the muonium tc

21 in pure KCl,
where tc

21}T23.3 (Kiefl et al., 1989), in accordance with
Eqs. (107) and (109). The complete Mu localization in
KCl with 2.7% Na impurities at low temperatures was
unambiguously demonstrated by measurements of the
magnetic-field dependence of the muon polarization in a
longitudinal field, which was in good agreement with the
theoretical prediction for static Mu in the presence of a
nuclear hyperfine interaction with surrounding nuclei
(Beck et al., 1975).

We should also like to mention recent experiments in
solid methanes (CH 4 and CD 4) (Storchak, Brewer, Es-
chenko, et al., 1997), which also claim to observe Mu
bandlike propagation disrupted by disorder, but we are
running out of space to discuss it here.

c. Trapping phenomena in insulators

At low temperatures, even a weak interaction with
defects may be larger than T , leading to effective traps
for diffusing particles. As a result, for many years m1

and Mu quantum diffusion in crystals was discussed in
terms of trapping effects regardless of the temperature
range or the nature of the crystal (see, for example, Ka-
dono, 1992, and references therein). Here we present
strong experimental evidence that trapping effects,
which are very important in metals (Hartmann et al.,
1988), are rather ineffective in insulators at low tem-
peratures. This was demonstrated in experiments on Mu
diffusion in s-N 2 doped with 1023 CO impurities (Stor-
chak, Brewer, and Morris, 1996d; see also Storchak,
Brewer, and Morris, 1994b, 1996b).

Figure 36 shows the temperature dependence of the
transverse relaxation rate T2

21 of muonium in pure and

FIG. 36. Temperature dependences of the muonium trans-
verse relaxation rate (a) in pure nitrogen crystals (triangles,
two different samples) and (b) in a crystal of N2 1 10 23 CO
(Storchak, Brewer, and Morris, 1994b, 1996b).
Rev. Mod. Phys., Vol. 70, No. 3, July 1998
doped samples. When Mu moves rapidly (causing low
values of T2

21 due to dynamic ‘‘narrowing’’), it easily
finds a CO impurity and reacts chemically [probably to
form the MuCO radical (Cox, Eaton, and Magraw,
1990)], which explains why the maximum T2

21 value for
Mu in s-N 21CO significantly exceeds the static relax-
ation rate dMu . Here we are dealing with the standard
diffusion-limited chemical reaction, which is described
by Eq. (65) with the obvious replacement of RT with the
lattice constant a—the reaction radius in a crystal.

At high temperatures the clear maximum in T2
21 in

s-N 21CO marks the crossover from fast to slow Mu dif-
fusion near CO impurities, which in turn reflects the in-
terplay between V(T) and j;Uo in the denominator of
Eq. (109). Note, the energy shift j that the particle has
to overcome is much larger near the defect than far from
it, making the hop rate strongly dependent on distance
from the defect when V,j(r). Above the maximum,
when V.Uo , the diffusion rate at the reaction radius
(and T2

21) increases towards low temperatures. When
V,Uo , Mu atoms are stuck (or ‘‘frozen’’) at some dis-
tance far from CO impurities, which can be seen as a
reduction of the reaction rate (Mu T2

21). Note that this
reduction starts at 30 K, when Mu has the fastest dynam-
ics far from impurities, as is evidenced by the motional
narrowing effect in T2

21 in a pure sample. At very low
temperatures, Mu atoms simply cannot approach CO
impurities due to suppression of the inelastic interac-
tions, and T2

21 becomes the same in pure and doped
crystals (Fig. 36).

VII. CONCLUSIONS

Looking back over the last few decades one cannot
help noticing how difficult was the progress in our un-
derstanding of quantum diffusion phenomena experi-
enced by m1 or Mu in crystals. From the very beginning
of the extensive m1SR study of this problem, quantum
diffusion experiments have continued to bring new
puzzles. There have been a number of occasions when
early conclusions derived from the experiments were
misleading. We have mentioned a few examples. By no
means, however, do these accidental erroneous interpre-
tations cast a shadow upon the quality of the experi-
ments. Rather, they underline the difficulties which
hampered attempts at progress.

The advancement in our understanding of m1 and Mu
quantum diffusion phenomena, however, has been quite
substantial. This has been made possible by the real
progress in experimental techniques for measurements
of m1 and Mu dynamics by application of zero-field and
longitudinal-field (especially, weak-longitudinal-field)
methods. These experimental achievements have been
accompanied by progress in the theory of m1 quantum
diffusion in metals. Subsequent experimental findings of
Mu quantum diffusion in alkali halides have strongly
supported theoretical predictions for insulating systems.
Experiments in heavy solid rare gases have opened the
way for studying particle interaction with a phonon bath
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at high temperatures. Substantial progress in the theory
and in experiment (in superconducting aluminum and
nitrogen) has been connected with m1 and Mu quantum
diffusion in inhomogeneous media. Our current under-
standing of m1 and Mu quantum diffusion allows us to
estimate the key parameter of the phenomenon—the
tunneling amplitude Dcoh—in different substances (see
Table I).

It is simply impossible to indicate all the aspects of
our current knowledge of quantum diffusion. Let us,
however, list some of them that we consider to be crucial
to the phenomenon. We know that the screening of m1

by conduction electrons, which cannot follow the par-
ticle adiabatically, greatly reduces its tunneling probabil-
ity. It is well established that below the superconducting
transition m1 dynamics are considerably enhanced be-
cause of the freezing out of electron excitations. It is
generally accepted that in insulators and semiconductors
the two-phonon interaction governs Mu quantum diffu-
sion at low temperatures. At high temperatures, the
one-phonon interaction takes over via both the polaron
effect and the effect of fluctuational preparation of the
barrier in insulators, while in metals m1 diffusion can be
explained by the polaron effect only. We now under-
stand that in an inhomogeneous crystal both m1 and Mu
show spatial distributions of tc

21 in their quantum diffu-
sion. Trapping phenomena in quantum diffusion in met-
als and insulators are now considered separately because
of essentially different damping, due to interaction with
the phonons and conduction electrons.

Summarizing this substantially enhanced knowledge,
one obviously faces the question of where to proceed.
The field has become so large and diversified that we
expect progress in many directions. There is no doubt
that new metallic systems will be found to support our
current understanding of muon quantum diffusion (in
fact, even in ‘‘old’’ systems like Nb, V, and Bi, the situ-
ation with quantum diffusion is far from clear). Experi-
ments in superconducting materials will deepen our un-
derstanding of the interaction with conduction electrons.
We believe that measurements in insulating systems will
shed a new light on the phenomenon of Mu quantum
diffusion. But one direction, to our mind, deserves par-

TABLE I. Bandwidth Dcoh in different materials.

Substance Particle Dcoh , K

Cu m1 1024

Al m1 331023

V m1 5AK31022

Nb m1 .1
Bi m1 1023

KCl Mu 0.16
NaCl Mu 0.07
GaAs Mu 0.03

N 2 Mu 0.01
Ne Mu .531024

Kr Mu 331025

Xe Mu ,1026
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ticular attention. This is quantum diffusion in inhomoge-
neous crystals. It seems that our understanding of the
phenomenon has achieved a level at which quantum dif-
fusion may be developed into an extremely sensitive mi-
croscopic tool for measurement of the impurity content
in crystals, energy-level shifts produced by impurities,
phonon constants, etc.
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(Mößbauer Effect to Nuclear Structure), p. 23.

Brewer, J. H., et al., 1986, Hyperfine Interact. 31, 191.
Brewer, J. H., R. F. Kiefl, and P. W. Percival, 1994, Eds., Pro-

ceedings of the 6th International Conference on Muon Spin
Rotation/Relaxation/Resonance (mSR), Maui, Hawaii, 1993,
Hyperfine Interact. 85-87, 3-122.

Brewer, J. H., S. R. Kreitzman, K. M. Crowe, C. W. Clawson,
and C. Y. Huang, 1987, Phys. Lett. A 120, 199.

Brewer, J. H., and P. W. Percival, 1981, Eds., Proceedings of
the Second International Topic Meeting on Muon Spin Rota-
tion, Vancouver, Canada, 1980, Hyperfine Interact. 8, 307.

Brown, J. A., et al., 1979, Hyperfine Interact. 6, 233.
Brown, J. A., R. H. Heffner, M. Leon, M. E. Schillaci, D. W.

Cooke, and W. B. Gauster, 1979, Phys. Rev. Lett. 43, 1513.
Browne, A., and A. M. Stoneham, 1982, J. Phys. C 15, 2709.
Caldeira, A. O., and A. J. Leggett, 1983, Ann. Phys. (N.Y.)

149, 374.
Camani, M., F. N. Gygax, W. Rüegg, A. Schenck, and H.
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65, 662 [Sov. Phys. JETP 38, 307 (1974)].
Kagan, Yu., and L. A. Maksimov, 1980, Zh. Éksp. Teor. Fiz.
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