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Because of the well-understood nature of the electromagnetic interaction, the presence of a
well-defined center of force, and the relative unimportance of nonperturbative effects, the atomic
many-body problem is argued to be an ideal laboratory for the study of high-accuracy theoretical
many-body techniques. In particular, the convergence of many-body perturbation theory (MBPT) for
highly charged ions is so rapid that the relativistic generalization of the Schrödinger equation can be
accurately solved with MBPT through second order. Relatively large radiative corrections in these
ions require the integration of QED and MBPT, which can be accomplished by using S-matrix theory.
However, to reach high accuracy for neutral atoms, methods based on summation of infinite classes of
MBPT diagrams are required. Both RPA and Brueckner-orbital-type summations are needed to reach
the one-percent level for heavy atoms, and to proceed further the need for the evaluation of new
classes of diagrams involving triple excitations will be described. [S0034-6861(98)00801-0]
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I. INTRODUCTION

The basic atomic many-body problem is that of the
solution of Hc5Ec , where H5H01V , with
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Equations of this form are used as the starting point for
a wide range of physical problems: a great deal of chem-
istry, atomic physics, nuclear physics, equilibrium statis-
tical mechanics, and condensed-matter physics all stems
from variants of this equation. A common diagrammatic
language is used to describe the associated perturbation
theory and, in principle, provides a unified approach to
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these fields. In practice, however, the individual charac-
teristics of the physics of the different fields tends to
make for a marked nonuniformity in approach. In
nuclear physics, for example, a reformulation of the per-
turbation expansion forced by large short-range forces is
carried out early on, and in condensed-matter physics
one is often interested in ground states that cannot be
reached at all from perturbation theory. It is the purpose
of this review to show how the many-body problem
works in atomic physics, which is the field of physics in
which it should be expected to be tested with the highest
precision.

Briefly, the main characteristic of the atomic many-
body problem is that ordinary many-body perturbation
theory (MBPT) that starts from a Hartree-Fock poten-
tial works rather well for ‘‘simple’’ atoms and ions. By
simple we mean either closed-shell systems or systems
with one electron outside a closed shell. We shall discuss
more complicated atoms in the next section. In the par-
ticularly interesting case of highly charged ions, working
through second-order MBPT gives solutions so accurate
that quantum electrodynamic (QED) corrections are
clearly seen in the difference between MBPT and ex-
periment. Even in neutral atoms MBPT through second
order can give results accurate at the percent level.
However, to reach further accuracy, the same infinite
subsets of MBPT diagrams that play such important
roles in nuclear and condensed-matter physics must be
considered.

The atomic many-body problem is unique as a system
in which to test many-body methods. It is most similar to
quantum chemistry and can be thought of as a branch of
that field. However, because the atomic problem has a
single center of force, spherical symmetry can be used to
reduce greatly the number of wave functions that have
to be considered. For example, although cesium has 55
electrons, only 12 radial functions are needed to de-
scribe the atom nonrelativistically. The practical effect
of this is that the basis sets, whose use in carrying out
atomic calculations will be described in Sec. III C, can
be chosen to be large enough so that the associated
basis-set truncation error is negligible.

Turning to a comparison with nuclear physics, we note
the advantage of there being no uncertainty whatsoever
5570(1)/55(22)/$19.40 © 1998 The American Physical Society
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about the nature of the interaction, as the underlying
theory of atomic and molecular structure is QED. Re-
gardless of the completeness with which the Schrödinger
equation is solved in the nuclear problem, there will be
uncertainties associated with the exact form of the
nucleon-nucleon interaction and the role of three-body
forces, at least until quantum chromodynamics becomes
a practical calculational tool. [Three-body forces exist in
atomic physics, but as small and calculable QED effects
(Zygelman, 1989; see also Mittelman, 1971, 1989).] We
have already mentioned the fact that strong short-range
forces require a rearrangement of perturbation theory
for nuclear physics. In atomic physics no such rearrange-
ment is necessary, although Brueckner-orbital-type cor-
rections will be shown to play an important role when
treated perturbatively. The tensor interactions present
in the nuclear problem are also present in atomic phys-
ics, but they are well understood in the framework of
QED, corresponding to the exchange of a transverse
photon in Coulomb gauge, and are relatively small. A
final simplification is the absence of pairing forces.

The atomic many-body problem is also free of the
nonperturbative physics that affects many of the most
interesting condensed-matter problems such as super-
conductivity, many magnetism problems, and certain
transport problems like the Kondo effect, localization,
and the quantum Hall effect. In these cases one cannot
adiabatically continue from a picture of noninteracting
particles to the relevant regime. Even in the cases where
ordinary perturbation theory suffices to describe the
physics of the solid state, there are uncertainties in the
position of bands, effective electron masses, and life-
times. Of course, the atomic many-body problem does
not have the simplicity of Bloch waves for the Hartree-
Fock solutions, but atomic Hartree-Fock wave functions
and their related finite basis sets can be formed very
quickly on modern computers, so this is not a practical
problem.

While the dominant electromagnetic force in atoms is
completely understood, there are uncertainties stem-
ming from nuclear effects, though they are quite small.
The finite size of the nucleus alters energy levels of pen-
etrating states, and so, to the extent nuclear sizes are
unknown, energy levels are uncertain. The finite mass of
the nucleus can be accounted for by using the reduced
mass, but higher-order recoil effects, as well as QED
effects in general, have not been studied in the many-
electron case to the same extent as in hydrogenic sys-
tems. In fact, these latter effects are from the point of
view of quantum field theory perhaps the most interest-
ing feature of atomic physics, and in a sense the atomic
many-body problem is a background effect that needs to
be eliminated so that the behavior of QED in many-
electron systems can be studied.

Over the years a large arsenal of theoretical tech-
niques has been developed to deal with the many-body
problem. A very readable overview is given by Bishop
and Kummel (1987). The technique described in this re-
view is that of MBPT and extensions of it that sum infi-
nite classes of diagrams. There exists a particular atomic
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
physics problem that has determined this choice, which
requires calculations of energy levels and matrix ele-
ments of heavy atoms accurate at the one-part-per-
thousand level. This problem is the theoretical predic-
tion of parity-nonconserving processes in cesium, lead,
thallium, and bismuth. Recent reviews of this subject
have been given by Sapirstein (1996) and Martensson-
Pendrill (1992). To interpret the experimental results,
which have recently reached the level of a few tenths of
a percent in cesium (Wood et al., 1997), one must under-
stand the wave function beneath this level. The reason
for the importance of this problem is that electroweak
radiative corrections, which are sensitive to physics at
the TeV level, enter at the percent level. Any deviations
between theory and experiment can shed light on the
question of possible new physics at this level, a central
interest of modern particle physics. Because this process
involves very small distances (the parity nonconserva-
tion arises from exchange of a Z between the nucleus
and the electrons), this particular problem must be
treated relativistically, so we shall always incorporate
relativity from the start. This is easily done in MBPT; it
should be noted, however, that most of the many-body
issues we shall be concerned with are equally applicable
to the nonrelativistic case. Secondly, the experiments in-
volve excited states of open-shell atoms, with the experi-
ments in cesium, for example, involving a transition be-
tween the 6s and 7s states. A large portion of the many-
body literature is limited to calculations of the closed-
shell case, and only the smaller portion on open-shell
methods is applicable to this problem. Finally, because
the issue of accuracy is so central, we require a method
that can be systematically improved. We shall see that,
while MBPT is such a method, with more and more
physics included with each successive order of perturba-
tion theory, the systematic improvement needed comes
from reordering perturbation theory in terms of how
many electrons are excited from the valence and core.
This reordering involves the summation of infinite
classes of MBPT diagrams, and we refer to any method
that sums such classes as an all-orders method. The
method we describe below is closely related to the
coupled-cluster methods described by Bishop and Kum-
mel (1987) and Bartlett (1991).1

The organization of this review is as follows. Because
the main emphasis will be on relativistic MBPT and
QED issues, the next section presents a more general
discussion of the atomic many-body problem, designed
to direct the interested reader to literature that de-
scribes a wider variety of approaches. In the following
section we describe the physics of highly charged ions,
which is one area of atomic physics where extremely
accurate solutions to the many-body problem are avail-

1This is the first article of the first issue of a four-issue set
devoted to the proceedings of the Workshop on Coupled-
Cluster Theory at the Interface of Atomic Physics and Quan-
tum Chemistry, which took place at the Harvard-Smithsonian
Center for Astrophysics, August 6–11, 1990.
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able, and in which a full QED treatment is required. We
start, however, with a discussion of MBPT and give de-
tails about the basis-set techniques used to carry out
MBPT calculations in atomic physics. The connection of
MBPT with a QED treatment based on the S-matrix
approach is then described, and an example of a com-
bined MBPT/QED calculation in a many-electron ion is
given.

In the next section we briefly describe a second area
in which extremely accurate solutions have been found,
the few-electron atoms, helium and lithium. We also in-
troduce methods for summing all orders of perturbation
theory that are exact for helium and connect them with
the Bethe-Salpeter equation. In the following section
MBPT is applied to heavy alkalis through third order for
energies and matrix elements, and agreement with ex-
periment at the one-percent level is demonstrated. In
the final section ‘‘all-orders’’ techniques, which sum in-
finite classes of diagrams, are shown to allow even more
accurate determinations, and speculations are presented
as to what techniques could lead to tenth-of-a-percent or
lower precision.

We make the following comments about terminology
and units. Unless otherwise stated, atomic units are used
for energies, with 1 a.u. = 1 Hartree = 27.2114 eV. The
solution to the Dirac equation with angular momentum
k , magnetic quantum number m , and principal quantum
number n is

cnkm~rW !5
1
r S ignk~r !xkm~Vr!

fnk~r !x2km~Vr!
D , (3)

where the spherical spinors are defined conventionally.
We shall use the term ‘structure problem’ to refer to the
issues involved in solving the nonrelativistic Schrödinger
equation, even when the Dirac equation is used, and
‘‘field-theoretic effects’’ to refer to the extra physics
present in QED, specifically the effect of negative-
energy states, retardation of the photon propagator, and
radiative corrections. With the exception of the next sec-
tion, the only atoms considered will be alkali atoms, at-
oms with a single valence electron outside a closed shell,
and helium.

II. OVERVIEW OF THE ATOMIC MANY-BODY PROBLEM

The first application of diagrammatic many-body per-
turbation theory to atomic physics was made by Kelly
(1964). This paper is reprinted in Sinanoglu and Brueck-
ner (1970), which is a good source for the literature be-
fore 1970. In particular, early Hartree-Fock calculations
and the seminal paper by Goldstone (1957) are included,
along with papers treating atoms as a nonuniform elec-
tron gas, early work on the four-electron system of be-
ryllium, which we discuss below, and a particularly inter-
esting Green’s-function approach by Tolmachev. Three
textbooks on the subject of particular note are those of
Sobel’man (1972), Cowan (1981), and Lindgren and
Morrison (1986).
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While the Hartree-Fock method gives a relatively
good total energy for an atom, this energy is rarely of
experimental interest. Of more direct interest is the en-
ergy required to raise a valence electron to an excited
state. For these smaller energies the difference between
the results of a Hartree-Fock calculation and experi-
ment, defined as correlation, is sizable, and techniques
for the accurate calculation of correlation, which is of
course equivalent to the accurate solution of the Schrö-
dinger equation, must be developed. An important im-
provement of the Hartree-Fock method is the multicon-
figurational Hartree-Fock (MCHF) method (Froese
Fischer, 1986) and its relativistic generalization, multi-
configurational Dirac-Fock (MCDF; Desclaux, 1975,
1977; Grant et al., 1980; McKenzie et al., 1980). A text-
book discussion of the numerical implementation of HF
and MCHF methods is given by Froese Fischer (1977).
Computer packages exist for both MCHF and MCDF
and are very useful, in particular for obtaining relatively
accurate predictions for general atomic states. However,
it can be difficult to improve precision systematically: a
typical problem is the occurrence of numerical instabil-
ity when a relatively weak configuration is added. When
the orbitals are fixed instead of being allowed to vary,
one is dealing with configuration interaction, which will
be discussed in a subsequent section. Here we simply
note that while not allowing the orbitals to vary elimi-
nates the problem of convergence, the choice of which
orbitals to include must be made with care, and as the
number of included orbitals increases, extremely
computation-intensive calculations result.

While in this review emphasis is put on helium and
alkali atoms and ions, an important test case in atomic
physics is the neutral beryllium atom. The state of the
art, as of 1976, for calculations of this atom, which has
strong mixing between the 2s2 and 2p2 configurations,
was summarized by Lindgren and Morrison (1986), who
showed a variety of methods to reproduce between 95
and 104 percent of correlation, with the classic
configuration-interaction calculation of Bunge (1976)
being the most complete. However, to compare this
nonrelativistic calculation to experiment, one must in-
clude relativistic, QED, and finite-nuclear-mass effects.
There has been considerable activity in this field re-
cently, and we refer the interested reader to the papers
of Liu and Kelly (1991), Lindroth et al. (1992, 1995), and
Chung et al. (1993).

There are a variety of ways of implementing pertur-
bation theory. Even when the interaction is time inde-
pendent, time-dependent methods can be useful: as an
example, the Goldstone paper used such a method.
When we treat QED, where the interactions are in gen-
eral time dependent, it is natural to use the language of
Feynman diagrams. When Feynman diagrams are used,
there is an additional integration present over a fourth
component of momentum. If this is carried out with
Cauchy’s theorem, a larger set of terms arises that cor-
respond to time-ordered perturbation theory. In the
many-body problem, these terms are represented by
Goldstone diagrams. As in the relativistic case, the use
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of Feynman diagrams is more compact, although the
cost is the presence of an additional integration. Exten-
sive calculations in which the integration is carried out
numerically have been performed out by the Novosi-
birsk group (Dzuba et al., 1986, 1989, 1995), as will be
discussed further below. We note also the variants of
Goldstone diagrams that automatically include exchange
diagrams, known as Brandow diagrams (Brandow,
1967): the use of these substantially reduces the number
of time-ordered diagrams that must be considered in a
given order.

We next turn to a discussion of the different ways of
implementing infinite sums of MBPT diagrams. There
are, particularly in quantum chemistry, a great number
of different methods, roughly divided along the lines of
how many electrons are excited. Almost all accurate
methods excite at least two electrons, although we note
that excitations of closed-shell atoms can be treated
fairly well with the essentially one-electron excitation
method of the random phase approximation (RPA; Fet-
ter and Walecka, 1971). The book of Lindgren and Mor-
rison (1986) gives a thorough discussion of the pair
equation, an equation that sums up two-electron excita-
tions. A particularly powerful and general method is the
coupled-cluster method (Bishop and Kummel, 1987;
Bartlett, 1991). The all-orders method described later in
this review is a linearized form of the coupled-cluster
method, though we will describe a nonlinear term in the
last section. The method has also been used extensively
in chemistry, nuclear physics, and condensed-matter
physics.

The Novosibirsk group also sums infinite classes of
diagrams, in this case, however, Feynman rather than
Goldstone diagrams. Despite the complication of having
to carry out an extra integration, they are able to sum a
particularly important set of polarization diagrams that
incorporate the effect of electron screening (Dzuba
et al., 1989). With this method, calculations that agree
with experiment somewhat better than the all-orders
methods described in this review have been carried out
on a number of atoms, notably cesium (Dzuba et al.,
1989), thallium (Dzuba et al., 1986), and francium
(Dzuba et al., 1995).

The method of quantum Monte Carlo (Ceperley and
Mitas, 1996) is beginning to be applied to the atomic
many-body problem. However, there is an important
problem with a recent application of the method to
lithium. One of the highest accuracies claimed for this
method was for an oscillator strength of lithium (Barnett
et al., 1995). At the time that calculation was presented,
the experimental situation (Gaupp et al., 1982) appeared
to indicate a discrepancy with theory, which was puz-
zling because entirely different theoretical techniques
were all in agreement. A very-high-accuracy Hylleraas
coordinate calculation, along with references to these
other theoretical calculations, is given by Yan and
Drake (1995). The result of Barnett et al. (1995), in con-
trast, agrees with experiment. However, several experi-
ments have been carried out since (Volz and Schmoran-
zer, 1996; Carlsson and Sturesson, 1989; McAlexander
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et al., 1995), all in agreement with non–Monte Carlo
theory and in disagreement with the earlier experiment,
and it is almost certain that some systematic effect was
not accounted for in the older experiment. Until this
discrepancy is resolved, we consider the utility of Monte
Carlo methods for high-accuracy atomic calculations to
be in question and strongly urge new calculations on
lithium.

While the treatment of angular momentum for a
single valence electron is trivial, it becomes rapidly more
complicated as more valence electrons are added. While
this is not a fundamental problem, there are two fea-
tures of atoms with complex spectra that make them less
suitable for high-precision work. One is simply the very
large number of states and transitions present. For ex-
ample, the compilation of Fuhr et al. (1988) gives infor-
mation on approximately 2000 allowed transitions in
iron. It is complicated to work out even the lowest-order
predictions for such a large set of transitions, and since a
fair amount of computing is required to go beyond low-
est order, as will be discussed below, there is a strong
incentive to concentrate on simpler systems with just a
few well-measured transitions. In addition, the large
number of configurations with similar energies leads to
mixing problems similar to, but more severe than, those
mentioned in connection with beryllium. We note that
the group-theoretic method of orthogonal parameters
(Hansen and Judd, 1986) has proven useful for these
more complicated systems.

III. THE MANY-BODY PROBLEM FOR HIGHLY CHARGED
IONS

One of the most interesting features of the atomic
many-body problem is the fact that it is based on our
most successful field theory, quantum electrodynamics.
This means that even if the structure problem is solved
exactly, small deviations from experiment must exist,
and these deviations should be calculable. These field-
theoretic effects require the full apparatus of QED for
their calculation. Given that it was developments in
QED that led to the modern form of the many-body
problem, it is clear that this theory is in principle pow-
erful enough to deal with both the structure and field-
theoretic parts of the problem. However, until recently,
most spectroscopic data available for atoms came from
neutral atoms, in which the QED corrections are very
small, the leading correction being the Lamb shift, which
enters in order Z4a3 atomic units. For transitions be-
tween outer electrons, which see a highly screened
nuclear charge, the effective Z is of order unity, and the
Lamb shift is generally smaller than the uncertainties of
the structure problem. There are two situations in which
QED corrections are enhanced in heavy atoms. The first
is when deeply bound electrons, which are not highly
screened, are probed, as is the case in the field of inner-
shell x rays, which was one of the first places in which
QED effects in many-electron atoms were studied
(Johnson and Cheng, 1985). There has been consider-
able recent progress in this field (Indelicato and Lin-
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droth, 1992; Lindroth and Indelicato, 1994). However,
more recently a wealth of data on highly stripped ions,
with Z@N , has become available, and in these systems
the screening plays a smaller role. For purposes of illus-
tration, we concentrate on sodiumlike platinum, on
which precise measurements have been carried out in an
electron-beam ion trap (Cowan et al., 1991). We shall
demonstrate below that MBPT converges very rapidly
for such ions. The basic reason for this rapid conver-
gence is the dominant influence of the nucleus, which
forces the electrons into near-hydrogenic orbitals. The
repulsive interaction between the electrons can then be
treated as a perturbation, although we shall see that with
eleven electrons present it is advantageous to build in
some of the effects of screening in the lowest-order
problem.

A. Relativistic many-body perturbation theory

Because relativistic effects are large in highly charged
ions, we generalize the original Hamiltonian of the in-
troduction to H5H01VC1B , where
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We have written an r-dependent nuclear charge to ac-
count for the finite size of the nucleus, which can give
sizable effects for s1/2 and p1/2 states. In practice, the
nucleus is generally modeled with a Fermi distribution.
Other distributions, as long as they are chosen to give
the same rms radius, give the same answer to a high
degree of accuracy. It is straightforward to include non-
spherical nuclei. We have also included the instanta-
neous Breit interaction because it gives a relatively large
contribution, entering in order Z3a2 a.u.

The above Hamiltonian is known to be ill defined
(Brown and Ravenhall, 1951) because it does not pro-
hibit transitions to negative-energy states. The problem
has been referred to (Sucher, 1980, 1984; see also Mit-
telman, 1981) as continuum dissolution. To address this
problem, we add the simple rule that, when carrying out
MBPT calculations, negative-energy states are to be ex-
cluded from sums over intermediate states. When we
introduce the QED formalism, we shall see that this ap-
parently ad hoc rule is justified, but that certain rela-
tively small field-theoretic effects involving the negative-
energy states enter in a well-defined way.

If H0 is treated as the lowest-order Hamiltonian, per-
turbation theory gives the 1/Z expansion (Doyle, 1969),
in which each succeeding order of perturbation theory is
accompanied by a factor of 1/Z . However, it is advanta-
geous for highly charged ions, and absolutely necessary
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for neutral atoms, to build in an approximation to the
screening of the nuclear charge by the electrons in the
lowest-order Hamiltonian. Therefore we rearrange the
Hamiltonian into H5H01HI1B , where now
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where U(r) is designed to account for the presence of
the other electrons and will be discussed further below.
We now wish to apply perturbation theory in the first
three orders for alkali-like systems.

Because this perturbation theory, particularly its dia-
grammatic representation, is very well known, we will
not rederive the formulas here: a standard reference for
MBPT in atomic physics is the book of Lindgren and
Morrison (1986). Because of the separation of the
closed-shell core from excited states, we introduce the
notation that a ,b ,c , . . . indicate summations over the
core, and m ,n ,r , . . . summations over excited states.
We reserve v and w for the valence states (which are,
unless otherwise indicated, included in summations over
excited states). When all states are summed we use the
letters i ,j ,k , . . . . For sodiumlike platinum the core
states consist of the 1s1/2 , 2s1/2 , 2p1/2 , and 2p3/2 states,
and the valence states will be the 3s1/2 and 3p3/2 states.
Note that in this highly relativistic system the splitting
between the 3p1/2 and 3p3/2 states is very large, and that
j-j coupling is the appropriate coupling scheme. The
second-quantized representation of a valence state is

uCv&5av
†u0C&, (9)

where

u0C&5 )
i51

N21

ai
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represents the closed-shell core. The second quantized
representation of HI is
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Here we have introduced the Coulomb integral

gijkl[aE d3rd3r8

urW2rW8u
c̄ i~rW !g0ck~rW !c̄ j~rW8!g0c l~rW8! (12)

and matrix elements of the model potential

Uij5E d3rc̄ i~rW !g0U~r !c j~rW !. (13)

We have written c̄ g0 rather than the equivalent c† in
the above to emphasize the connection with field theory:
the Coulomb matrix elements correspond to exchange
of a Coulomb photon in Coulomb gauge, and the model
potential is the fourth component of a four-vector.
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B. Choice of potentials

The choice of the model potential is in principle arbi-
trary, but in practice one clearly wants to have a lowest-
order solution that gives a reasonable approximation to
energies and matrix elements. It is possible to devise
model potentials with a number of parameters that can
be fit to an accuracy at the percent level (Johnson, Guo,
et al., 1986). While such potentials can be useful, for the
purposes of precision work it is actually better to use a
potential that gives less accurate starting values. This is
because model potentials are devised to give extremely
accurate lowest-order answers, but higher orders in per-
turbation theory will almost always give less accurate
answers. In practice, the Hartree-Fock potential pro-
vides a good starting point. It also has the advantage
that many terms in MBPT vanish automatically when it
is chosen. However, because it is a nonlocal potential,
the connection with QED cannot be made as directly as
with local potentials. The nonlocality also leads to a loss
of gauge invariance: energy shifts from one-photon ex-
change are different in Coulomb and Feynman gauge
when the Hartree-Fock potential is used (Mann and
Johnson, 1971; Gorceix and Indelicato, 1988; Lindgren,
1990; Chen, 1993). Thus it is useful to introduce two
potentials that are determined self-consistently in a
manner similar to Hartree Fock, but that are local. The
first of these we refer to as the core-Hartree potential. It
is given by

UCH~r !5(
a

~2ja11 !y0~a ,a ;r ! (14)

where

y0~a ,a ;r !5aE
0

`

dr8
1

r.
@ga

2~r8!1fa
2~r8!# . (15)

with r.5max(r ,r8). As r→` , y0→a/r , so that the
nuclear charge is asymptotically screened by the number
of electrons in the core, as is physically reasonable for
alkali systems. The wave functions ga(r) and fa(r) are
determined self-consistently. The second potential,
which we refer to as the modified core-Hartree poten-
tial, is

UMCH~r !5(
a

~2ja11 !y0~a ,a ;r !2y0~a0 ,a0 ;r !,

(16)

where a0 is the least strongly bound core state, 2p3/2 in
the present case. Its asymptotic charge is Z2N11,
which is most appropriate for closed-shell systems. The
final potential we shall consider is simply the nuclear
Coulomb potential, in which screening is treated entirely
perturbatively. Many-body perturbation theory with this
potential in the nonrelativistic limit, gives the previously
mentioned 1/Z expansion, in which the nth order of per-
turbation theory gives a contribution that scales as
Z(22n) a.u. For high Z we shall show that high accuracy
results from including MBPT through second order re-
gardless of the starting potential.
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The first two orders of MBPT give the standard re-
sults

E ~0 !5ev1(
a

ea (17)

and

E ~1 !5~VHF2U !vv1(
a

~ 1
2 VHF2U !aa . (18)

We have introduced here the nonlocal Hartree-Fock po-
tential VHF defined as

~VHF! ij5(
a

g̃ iaja (19)

where

g̃ ijkl[gijkl2gijlk . (20)

We note that, if the Hartree-Fock potential is chosen,
the valence part of the first-order energy vanishes.

Continuing to the second-order energy, we divide into
E(2)5Ecore

(2) 1Eval
(2) , with

Ecore
~2 ! 5

1
2 (

abmn

gabmng̃ mnab

eab2emn
1(

am

XamXma

ea2em
(21)

and

Eval
~2 !5 (

amn

gvamng̃ mnva

eva2emn
2 (

abm

gabmvg̃ mvab

eab2emv

1(
am

FXamg̃ mvav

ea2em
1

Xmag̃ vavm

ea2em
G2(

iÞv

XviXiv

e i2ev
,

(22)

where we have introduced the notations X5VHF2U
and eab•••z5ea1eb1 . . . 1ez . The problems with con-
tinuum dissolution first show up in this order. If the re-
striction of summing over only positive-energy states
were not in place, vanishing energy denominators could
occur in sums involving two excited states m and n . Spe-
cifically, the first term of Ecore

(2) involves the denominator
ea1eb2em2en . If n is a negative-energy state with
energy 2mc22D , the state m with energy
ea1eb1mc21D will lead to a vanishing energy denomi-
nator. We shall see later that when QED is fully imple-
mented such terms do not occur. However, the state
where both m and n are negative-energy states will en-
ter as a QED correction, but with a sign change.

The accurate evaluation of terms involving a single
sum over states can be carried out with differential-
equation techniques. However, the double summations
present in the second-order energy, while they can also
be treated with differential-equation methods (McKoy
and Winter, 1968; Musher and Shulman, 1968; Lindroth,
1988), are better treated with the numerical technique of
finite basis sets, which we now briefly describe.

C. Finite basis sets

The numerical evaluation of the second-order energy
can be carried out with high accuracy with the technique
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of finite basis sets. The sums over excited states involve
both an infinite summation over bound states and an
integration over the continuum, which are awkward to
deal with, especially when multiple sums are present.
The basic idea of finite basis sets is to replace this sum-
mation and integration with a single finite summation
over a pseudospectrum. There are a variety of ways of
doing this. Examples of the use of nonrelativistic basis
sets can be found in Chang and Tang (1991), Froese
Fisher et al. (1992), and Hansen et al. (1993), and of rela-
tivistic basis sets in Johnson and Sapirstein (1986), Bot-
tcher and Strayer (1987), Salomonson and Oster (1989a,
1989b, 1990), and Eliav et al. (1996a, 1996b). Relativistic
basis sets have recently been discussed in detail by
Grant (1996). The approach described here is taken
from a recent review (Sapirstein and Johnson, 1996).

The first step in forming a finite basis set is to confine
the atom in a cavity of radius R , which discretizes the
continuum and limits the number of bound states. The
radius is chosen sufficiently large so as not to distort the
states one is dealing with: typically a value of 40 a.u. is
chosen. The implementation of this boundary condition
requires some care in the relativistic problem: if one at-
tempts to confine the electron by making the fourth
component of a potential go to infinity for r.R , the
Klein paradox will lead to oscillatory solutions. The
same problem occurs when hadrons are treated as
bound states of quarks and is solved by making the mass
become large for r.R , as in the MIT bag model (Cho-
dos et al., 1974). This leads to the boundary condition
P(R)5Q(R) in the representation of the wave function

cnkm~rW !5
1
r S iPnk~r !xkm~Vr!

Qnk~r !x2km~Vr!
D . (23)

At this point there is a denumerable infinity of states.
The next step is to turn this into a finite number. One
way of doing this is to set up the radial Dirac equation
on a lattice of n points and use an approximation for the
derivative, which leads to an n3n eigenvalue problem.
This is the method used by the Goteborg group
(Salomonson and Oster; 1989a, 1989b, 1990). Here we
adopt a local approach by first forming the action whose
variation leads to the radial Dirac equation,

S5
1
2 E

0

R
drF 1

a
Pk~r !S d

dr
2

k

r DQk~r !2
1
a

Qk~r !

3S d

dr
1

k

r DPk~r !2
Z

r
@Pk

2~r !1Qk
2~r !#

2
2
a2 Qk

2~r !G2
1
2

eE
0

R
dr@Pk

2~r !1Qk
2~r !#

1Sboundary . (24)

The boundary conditions are implemented through the
last term, which is
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Sboundary~k,0 !5
1

4a
@Pk

2~R !2Qk
2~R !#1

1
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1

2a
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and

Sboundary~k.0 !5
1

4a
@Pk

2~R !2Qk
2~R !#1

1
a2 Pk

2~0 !

2
1

2a
Pk~0 !Qk~0 !. (26)

The surface terms from partial integration taken to-
gether with the variation of Sboundary force
Pk(R)5Qk(R) and Pk(0)50. The latter constraint
comes from the term in Sboundary which involves Pk(0)2.
The larger constant multiplying this term for the case
k.0 is chosen empirically in order to prevent the occur-
rence of spurious states. Spurious states are parts of the
pseudospectrum with nonphysical energies that lie in the
bound-state spectrum, typically having the lowest
bound-state energy. It is important to note that this is
not a fundamental problem: these states oscillate rapidly
and play a negligible role in sum-over-states calcula-
tions. However, it is easier to work with a spline basis set
if the first members directly correspond to physical
bound states. In the rare cases when the above choice of
boundary conditions allows such a state, it is simply
moved to the end of the set.

A pseudospectrum can now be formed by expanding
P(r) and Q(r) in terms of a set of functions Bi(r),

P~r !5(
i

n

piBi~r ! (27)

and

Q~r !5(
i

n

qiBi~r !, (28)

where we leave the precise form of these functions arbi-
trary at first. Inserting this form into the above action
then leads to a quadratic form in p and q . By then vary-
ing this form with respect to these coefficients, we obtain
a (2n)3(2n) symmetric eigenvalue equation. When
this is solved, n positive-energy eigenstates and n
negative-energy eigenstates result. The first few eigen-
values and eigenvectors of the pseudospectrum agree ac-
curately with the corresponding bound-state spectrum,
but as the principal quantum number increases the finite
cavity radius comes into play and makes the number of
bound states finite. The remainder of the pseudospec-
trum mocks up the effect of the continuum, which plays
a significant role in atomic calculations. As an example
of how a pseudospectrum works, we show in the nonrel-
ativistic case how the calculation of the second-order
Stark effect in ground-state hydrogen is done with a fi-
nite basis set. In this case we need to evaluate

DE ~2 !5 (
nÞ0

^0uVun&^nuVu0&
En2E0

, (29)
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TABLE I. The p-state basis-set energies En and the corresponding contributions Dn to second-order
Stark energy in units of E2a0

3; Fn is the accumulated sum of n terms.

n En Dn Fn n En Dn Fn

1 20.125000000 21.479810556 21.479810556 12 0.572938252 20.027136410 22.239070250
2 20.055554769 20.200265484 21.680076040 13 1.000339413 20.005524789 22.244595039
3 20.030709894 20.074730694 21.754806734 14 1.081844500 20.003290999 22.247886038
4 20.012210968 20.074847349 21.829654083 15 1.858618191 20.001790416 22.249676454
5 0.013028340 20.080520638 21.910174721 16 3.294396540 20.000282167 22.249958621
6 0.045678279 20.075118292 21.985293013 17 5.782998725 20.000036648 22.249995269
7 0.085332699 20.064650213 22.049943226 18 10.06435005 20.000004226 22.249999495
8 0.132033682 20.050887383 22.100830609 19 17.39480449 20.000000453 22.249999948
9 0.187982878 20.050069613 22.150900222 20 29.90376820 20.000000046 22.249999994

10 0.274396937 20.02629715 22.177197376 21 51.19778804 20.000000005 22.249999999
11 0.340020874 20.034736465 22.211933841 22 87.38274723 20.000000000 22.249999999
with V5eEz . This summation can be evaluated analyti-
cally by replacing the sum over n with the solution of a
differential equation (Schiff, 1968), with the result, in
units of E2a0

3, of 29/4. With finite basis sets we instead
directly carry out the sum over n in terms of a pseu-
dospectrum of p states. With a basis set of size 50, the
individual and accumulated contributions to the sum are
shown in Table I.

This procedure should be contrasted with the direct
evaluation of the sum in terms of an infinite sum over
the bound states and an integration over the continuum:
in the present case, only the first four states are bound,
and the remaining states are unbound. However, the
spline basis set is seen to be effectively complete to ten
digits, and greater accuracy can be obtained by using a
larger basis set.

The exact choice of basis functions Bi(r) is in prin-
ciple arbitrary: popular choices in atomic and molecular
physics are Slater and Gaussian functions. The table
above and subsequent results presented in this review
use basis sets based on B splines (DeBoor, 1978), poly-
nomials that vanish everywhere except in a limited
range. One advantage of these functions is that the ma-
trices that enter the eigenvalue problem described above
are automatically banded, which allows very large basis
sets to be formed without problems of linear depen-
dence. A typical basis set used in the atomic correlation
calculations described here will consist of 40 eigenfunc-
tions for each value of angular momentum and will be
accurate to about five digits. If greater accuracy is de-
sired, 50 or 60 eigenfunctions will be used. To calculate
atomic parity nonconservation, which is particularly dif-
ficult owing to the need to describe the atomic wave
function accurately at both small and large scales, 70 are
required.

D. Angular momentum

Because of the spherical symmetry of atomic physics,
angular momentum techniques play a central role in the
many-body problem. The basic building block of many-
body perturbation theory, gijkl , can be reduced to a
., Vol. 70, No. 1, January 1998
summation over two-dimensional radial integrals by car-
rying out a partial-wave expansion of the urW2rW8u de-
nominator,

gijkl[aE d3rd3r8(
lm

4p

2l11

r,
l

r.
l11

3Ylm~V!Ylm* ~V8!c̄ i~rW !g0ck~rW !c̄ j~rW8!g0c l~rW8!.

(30)

Putting in the explicit form of the wave functions allows
the angle integrations to be done analytically, leading to
the expansion

gijkl5(
lm

~21 ! j i1j j2m j2mkCl~ ik !Cl~ jl !Rl~ ijkl !

3S l j i jk

m m i 2mk
D S l j l j j

m m l 2m j
D , (31)

where

Rl~ ijkl !5E drE dr8
r,

l

r.
l11 @gi~r !gk~r !1f i~r !fk~r !#

3@gj~r8!gl~r8!1f j~r8!f l~r8!# (32)

and

Cl~ba !5~21 !~ jb11/2!A~2ja11 !~2jb11 !

3S l jb ja

0 mb 2ma
DP~ la ,lb ,l !, (33)

where the parity factor P is 1 if la1lb1l is even and 0
otherwise.

When a sum over states is present, it is broken up as

(
n

5 (
kn52`

`

(
m52jn

jn

(
n51

N

, (34)

where k is the angular momentum, m the magnetic
quantum number, and n the principal quantum number,
which is now a finite sum because of our use of basis
sets. The sum over m can always be carried out analyti-
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cally, but the sum over k is in general unbounded. Thus,
for example, the angular reduction of the second-order
energy for ground-state helium results in

E ~2 !5(
l50

` l

~2l11 !3 (
mn

Rl~mn1s1s !2

2e1s2em2en
U

k5l

1(
l50

` l11

~2l11 !3 (
mn

Rl~mn1s1s !2

2e1s2em2en
U

k52l21

.

(35)

While the sum over l cannot of course be directly ex-
tended to infinity, the bulk of the contribution is picked
up by including in the basis set all states that are associ-
ated with low values of l , as illustrated in Table II.

For high-accuracy work, the remaining part of the
partial-wave summation can be included by noting the
behavior of the high-l terms: typically a 1/l4 behavior
has set in by around l58, which allows the extrapolation
of the sum to infinity, as done in Table II. (Some rela-
tivistic effects converge only as 1/l2, which requires in-
clusion of more partial waves.) In the case of helium,
Schwartz (1962) has shown that the exact high-l behav-
ior goes as 1/(l1 1

2 )4, which follows from considerations
of the cusp of the helium wave function. Ground-state
helium is simpler than most cases in that only two values
of k can contribute for a given l . In general the number
of allowed values increases rapidly, and increasing the
maximum value of l rapidly increases the amount of
computation required. This fact is one of the main limi-
tations on the accuracy when evaluating MBPT expres-
sions, as there is always some uncertainty in the extrapo-
lation to infinity.

E. Many-body perturbation theory applied to sodiumlike
platinum

The high-accuracy electron-beam ion trap experiment
on sodiumlike platinum (Cowan et al., 1991) mentioned
above measures the transition between the 3p3/2 and
3s1/2 states. This transition is in the x-ray region and
corresponds to the energy 653.44(7) eV. We shall see
that MBPT gives an answer about 1 percent higher than
this measurement, which is accounted for almost en-
tirely by one-loop radiative corrections. To study these
corrections it is crucial to solve the MBPT part of the

TABLE II. E(2)(l) for He with a (50,9) spline basis set in a
cavity radius R = 40 a.u.

l ENR
(2)(l) l ENR

(2)(l)

0 20.12535611 6 20.00009556
1 20.02649241 7 20.00005422
2 20.00390465 8 20.00003298
3 20.00107694 9 20.00002119
4 20.00040562 10 20.00001424
5 20.00018467 112` 20.00004357

Sum 20.15768216
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problem to high accuracy. This is the same issue as men-
tioned in connection with parity nonconservation in neu-
tral atoms: to study relatively small radiative corrections
in atoms, the structure problem must be solved to well
below the level at which the radiative corrections enter.
The problem of reliably determining the accuracy of
MBPT when calculated to a given order is in general
very challenging in the case of neutral atoms, as will be
discussed later. However, the scaling of the nth order of
MBPT with the nuclear charge in the 1/Z expansion,
Z22n a.u., suggests that third- and higher-order contri-
butions will be strongly suppressed in highly charged
ions. To test this in practice, we shall in this section cal-
culate energy levels of sodiumlike platinum using four
different potentials and include all contributions
through second order. In addition, we shall explicitly in-
clude the third-order energy for the Hartree-Fock case
and show that it is much smaller than the field-theoretic
effects.

With the basis-set methods described above, it is
straightforward to calculate the second-order energy
correction. Note that because what is measured is a tran-
sition between two valence states, the contributions
from the energy of the core cancel out and are thus not
included in the calculation. Neglecting the Breit interac-
tion, we find that the four potentials discussed above
behave as in Table III.

We make the following comments about the behavior
of MBPT in this case. First, the Hartree-Fock potential
behaves particularly well, having no first-order correc-
tion and a relatively small correlation correction. The
core-Hartree and modified core-Hartree potentials start
out in lowest order differing by about 10 eV, but this is
reduced to a few tenths of an eV after the first-order
corrections are included. The Coulomb potential, how-
ever, because it entirely leaves out screening, starts out
below the Hartree-Fock result by 50 eV, and first-order
perturbation theory overcompensates, taking it to 15 eV
above. However, upon inclusion of the second-order en-
ergy, the potentials that include screening all agree to
within a few hundredths of an eV, and even the Cou-
lomb potential has come into agreement at the tenth-of-
an-eV level. The third-order energy has only been evalu-
ated in the Hartree-Fock case and contributes a
negligible 20.0002 eV. Thus it is reasonable to assume
that the ‘‘structure’’ part of the calculation is reliable at
below the tenth-of-an-eV level.

Before comparing with experiment, two other effects
must be included. The first is the instantaneous Breit
interaction along with MBPT corrections to it. The sec-
ond is the finite mass of the nucleus (the finite size is
incorporated in the Coulomb calculation), which gives

TABLE III. Behavior of many-body perturbation theory for
different potentials: units eV.

Order HF CH MCH Coulomb

0 659.63 649.40 647.47 626.73
0+1 659.63 659.44 659.81 674.95
0+1+2 659.56 659.59 659.57 659.72
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rise to reduced mass and mass-polarization effects.
These change the above answer only slightly, and the
final result for the Hartree-Fock potential for this tran-
sition is

E3p3/2
2E3s1/2

5659.50 eV. (36)

There is simply no untreated term in the structure prob-
lem as we have defined it that can account for the 6.1-eV
discrepancy of this result with experiment. The explana-
tion is of course quantum electrodynamics (QED), as
the Lamb shift is relatively large in highly charged ions.
It is perhaps fortunate that such large corrections did
not have to be dealt with when the Schrödinger equation
was introduced. Discrepancies at the percent level that
could only be understood with QED, for which calcula-
tions only became practical 25 years after the equation
was first written down, could have interfered with the
general acceptance of this supremely useful equation.2

F. Quantum electrodynamic treatment of the many-body
problem

If one is concerned with applying many-body pertur-
bation theory to a given order to atoms or ions, the re-
lation to quantum electrodynamics is quite simple in
principle: one simply has to use Furry representation
QED (Furry, 1951) with the external potential chosen to
be the same as that used in the lowest-order Hamil-
tonian that defines the MBPT expansion. Of course, if it
is not possible to apply MBPT to a sufficiently high or-
der to reduce the wave-function uncertainty below the
size of QED effects, this is of academic interest only.
The question of how to integrate QED with more pow-
erful techniques that solve the many-body problem with
high precision is an open one; however, in general such
techniques are not yet in existence for most neutral at-
oms. An exception is helium, and we shall describe how
QED effects are calculated in that system in the next
section. However, for highly charged ions MBPT does
converge rapidly, and Furry representation QED pro-
vides a completely consistent framework for the treat-
ment of both the structure problem and field-theoretic
effects. In this section we describe the set of one- and
two-photon diagrams that arise in a QED treatment and
how they relate to the MBPT described above, which
will allow for the precise definition of the field-theoretic
effects.

Furry representation is similar to the interaction rep-
resentation, with the difference that the free Hamil-
tonian incorporates the nuclear Coulomb field as an ex-
ternal classical field. However, there is nothing to keep
one from extending the representation to modify that

2We recall that Schrödinger was supposedly held back for a
while from publishing his nonrelativistic equation because he
started from the Klein-Gordon equation, which did not prop-
erly account for hydrogen fine structure. A discussion of the
evidence that this actually happened is given by Kragh (1982).
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field to include some effects of screening. In this exten-
sion the Hamiltonian of QED is broken into
H5H01HI , where

H05E d3xc†~x !FaW •pW 1bm2
Za

uxW u
1U~ uxW u!Gc~x !

(37)

and

HI52E d3xc†~x !U~ uxW u!c~x !

2eE d3xc†~x !aW •AW ~x !c~x !

1
a

2 E d3xd3x8

uxW 2xW 8u
c†~x !c~x !c†~x8!c~x8!. (38)

If U50, one is dealing with the original Furry represen-
tation, but if one chooses this potential to be a local
potential such as the core-Hartree or modified core-
Hartree discussed above, this approach to QED will
build in some screening and will lead to a close connec-
tion with the MBPT based on the potential. The repre-
sentation is reached by making a unitary transformation
on the Schrödinger-picture wave function ucS& to an
interaction-picture wave function ucI&,

ucI&5eiH0tucS&. (39)

The usual interaction representation is reproduced when
H0 consists of the free Hamiltonian, and the Furry rep-
resentation comes from incorporating the nuclear Cou-
lomb field into H0, but the formalism is clearly general
enough to encompass the above breakup of the QED
Hamiltonian. ucI& satisfies

i
]

]t
ucI&5eiH0t@H2H0#e2iH0tucI&[ĤIucI&. (40)

We construct a perturbation theory to relate Feynman
diagrams to energy shifts with Sucher’s extension
(Sucher, 1957) of the Gell-Mann–Low (1951) formalism.
In this approach an adiabatic damping factor is multi-
plied into HI ,

H5H01e2eutuHI . (41)

Rather than evolving the wave function at large negative
times (at which point it is essentially identical with the
lowest-order MBPT wave function) to t50, Sucher’s ex-
tension continues the evolution to large positive times
and leads to an e-dependent S matrix, defined by

ucI~`!&[Se~` ,2`!ucI~2`!&. (42)

Energy shifts can now be calculated with the formula

DE5
ie

2
lim
e→0

lim
l→1

]

]l
ln^Se ,l&, (43)

where we have slightly generalized the S matrix to

Se ,l5T~e2il*dx0HI~x0!e2eux0u
!. (44)

Expanding S leads to expressions that can be repre-
sented as Feynman diagrams, though the conservation
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of the fourth component of momentum at vertices,
which is exact when dealing with Feynman diagrams for
free particles, is here enforced by factors involving the
small parameter e that act as delta functions in the limit
e→0. We first consider the Feynman diagrams of Fig. 1
that involve one photon or one screening counterterm
for the case of an alkali-like ion. When the photon ex-
changed is a Coulomb photon [Fig. 1(a)] or when a
single screening counterterm is involved [Fig. 1(b)], it is
straightforward to show that the associated energy shift
is precisely the MBPT formula for E(1). However, a dif-
ference arises when the exchanged photon is a trans-
verse one, as in Fig. 1(c). In this case, the fact that en-
ergy flows through the photon line when exchange is
considered modifies a term in Eq. (6) with, say, i51 and
j52, to

B1252aFaW 1•aW 2

eivr12

r12
2aW 1•¹W 1aW 2•¹W 2

~eivr1221 !

v2r12
G ,

(45)

where v is the absolute value of the energy flowing
through the photon line. Only if the limit v→0 is taken
is the instantaneous Breit interaction that we have used
to define the structure problem reproduced. The differ-
ence is the first field-theoretic effect we encounter:
power counting arguments show that its imaginary part
has the leading order Z4a3 a.u. and the real part Z5a4

a.u. The former is of the order of the Lamb shift, but is
imaginary and contributes only to the decay rate, as will
be discussed further in connection with the self-energy
diagram below. The latter is an easily seen effect in this
system because of the high power of Z , and for the ion
we are considering amounts to 20.74 eV. In practical
calculations of one-transverse-photon exchange, the di-
vision between structure and field-theoretic effects we
have been using is often not made, since the calculation
of the exact effect is very simple.

The other one-photon diagrams do not have an
MBPT counterpart and are pure field-theoretic effects.
They are the self-energy and vacuum polarization
graphs of Figs. 2(a) and 2(b). At high Z they must be

FIG. 1. Feynman diagrams corresponding to the first-order en-
ergy.

FIG. 2. One-loop radiative corrections.
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treated in an exact manner, as opposed to the expansion
in Za that is generally applied to low-Z systems. Spe-
cifically, the Lamb shift can be parametrized as

DE5
Z4a3

n3p
Fn~Za!, (46)

where at low Z one can expand

Fn~Za!5A401A41ln~Za!221A50Za1••• . (47)

For high Z , the perturbation expansion can be shown to
completely break down in the sense that including the
next higher order can actually change the sign of Fn ,
and an exact approach is required. Extremely-high-
accuracy evaluations of this function for the point-
Coulomb case have been carried out by Mohr and col-
laborators (Mohr, 1992; Mohr and Kim, 1992), and
recently high-accuracy techniques for the evaluation of
the non-Coulomb case have been introduced (Blundell
and Snyderman, 1991; Persson et al., 1993; Cheng et al.,
1993). The self-energy part of the Lamb shift has an
imaginary part that accounts for one-photon decays of
excited states into lower energy states. It would appear
that the ground state of sodiumlike platinum would de-
cay because of this, as the 3s self-energy has an imagi-
nary part associated with decay to 2p states. The stabil-
ity of the state is accounted for by the imaginary parts of
one-photon exchange discussed above, which exactly
cancel the imaginary part of the self-energy. This is of
course a manifestation of the exclusion principle, which
is built into the QED formalism. When excited states
are considered or a vacancy is created in the core, the
cancellation is incomplete, and a nonvanishing decay
rate results.

The results for the self-energy and vacuum polariza-
tion for the core-Hartree potential are 26.81 eV and
1.42 eV, respectively. Including the frequency-
dependent Breit term, we end up with a prediction of
26.13 eV, almost exactly the field-theoretic effect in-
ferred from the comparison of MBPT and experiment.
Note that in the case of the Coulomb potential field-
theoretic effects amount to 27.0 eV, so that significant
screening is present.

A number of interesting issues are raised by the two-
photon diagrams, in which the field-theoretic effects are
unfortunately relatively small. Representative graphs
are shown in Fig. 3. The first has to do with two-
Coulomb photon exchange. For the ground state of he-
lium, the diagram of Fig. 3(a) can be shown (Sapirstein,
1989) to correspond to the integral

FIG. 3. Representative two-photon Feynman diagrams.



66 J. Sapirstein: The relativistic atomic many-body problem
DE5
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3
gabmng̃ mnab

@ea2k02em~12id!#@ea1k02en~12id!#
.

(48)

The prime indicates that the state m5n51s is excluded.
Because this is a quantum electrodynamics calculation,
the negative-energy-state part of the propagators is
present. By applying Cauchy’s theorem to the above,
one can see that the integral has poles on the same side
of the axis when one state is positive energy and the
other negative energy, and thus such terms do not con-
tribute. Specifically, carrying out the k0 integration leads
to

DE5
1
2 ( 8

abmn

gabmng̃ mnab

2ea2em2en
Fmn (49)

with

F1152F2251;F125F2150. (50)

The term with both states of positive energy can be
shown to be equivalent to Eq. (21) and is entirely part of
the structure problem. However, the term with both
states of negative energy was defined to be a field-
theoretic effect: power counting arguments show it to
enter in order 1/Z of the leading Lamb shift. As an ex-
ample of the relative importance of the two terms, at
Z550, the structure part of the graph contributes
20.17301 a.u., while the field-theoretic effect is
20.00017 a.u. The vertex diagrams of Fig. 3(b) also en-
ter in order Z3a3 a.u. Corrections of this order can be
thought of as screening corrections to the Lamb shift, as
the phenomenological change Z→Z2s changes Z4 to
Z424Z3s , with the second term being of the order of
the field-theoretic effects just discussed.

The last set of two-photon diagrams is associated with
the two-loop Lamb shift: a representative diagram is
shown in Fig. 3(c). The two-loop Lamb shift contributes
starting in order (Za)4 a.u. There is at present consid-
erable interest in the evaluation of the entire set of two-
photon diagrams for highly charged ions. Rather than
discuss this interesting field further, we simply empha-
size the point that this branch of many-body physics is
becoming a subfield of quantum electrodynamics, in the
sense that evaluation of a well-defined set of Feynman
diagrams provides an accurate and unambiguous theo-
retical prediction. The fact that many electrons are
present is accounted for automatically, as would be ex-
pected of an intrinsically many-body mathematical for-
malism such as quantum field theory. However, the
great bulk of atomic spectroscopic data has to do with
neutral or near-neutral atoms, so we now turn to a dis-
cussion of the issues involved in the accurate calculation
of these systems, first in helium and lithium, and then in
the heavier alkalis.

IV. FEW-BODY ATOMS

Just as the deuteron and triton play special roles in
nuclear physics because of the relative simplicity of the
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
many-body problem, so helium, and to a lesser extent
lithium, play a special role in atomic physics. The first
accurate solutions to the helium problem by Hylleraas
(1928, 1929) played an important role in early quantum
mechanics, since, unlike the case with hydrogen, this was
a problem that the old quantum theory failed in. With
modern techniques, while the Schrödinger equation for
helium cannot be solved analytically, it can be solved for
many states to accuracies well under experimental un-
certainty, and for lithium to the nano-Hartree level. As
with highly charged ions, differences with experiment
are clearly seen that are attributable to relativistic and
QED effects. The difference is that the effects are much
smaller. At the same time extremely accurate experi-
ments coupled with theory allow the study of these ef-
fects, though not quite at the level afforded by hydro-
genic systems. Because the variational techniques
rapidly become more difficult to apply as the number of
electrons studied increases, we discuss this approach
only briefly, referring the interested reader to a recent
review by Drake (1996).

Over the years, increasingly accurate solutions to the
spectrum of helium have been obtained in roughly three
stages. As just mentioned, the first accurate variational
calculations were made by Hylleraas (1928, 1929)
shortly after the introduction of the Schrödinger equa-
tion. After the introduction of computers, Kinoshita
(1957) and later Accad et al. (1971) achieved much
higher accuracy. Most recently, Drake (1996) and Mor-
gan (1989) have achieved 16-digit and higher accuracy,
the former by introducing two exponential scales and
the latter by including certain logarithmic terms in the
variational wave function we now describe.

The basic form of this wave function is

C~rW1 ,rW2!5 (
i ,j ,k

aijkr1
i r2

j r12
k e2ar12br2, (51)

where exchange terms are implicit and we deal with S
states. The angle dependence is contained in the
r125urW12rW2u terms. We note the similarity to the discus-
sion of finite basis sets above. The sums are made finite
by restricting the sum of i , j , and k to be less than or
equal to V . A clear pattern of convergence is seen by
increasing the maximum value of V . In the original cal-
culations a very small number was used, but accuracies
better than Hartree-Fock still resulted. The second stage
of calculations used up to several hundred basis func-
tions and achieved under 1 ppm accuracy, which is the
level of QED radiative corrections. The most recent cal-
culations achieve even higher accuracy by using the dif-
ferent forms mentioned above: Morgan includes another
factor of the form @ ln(r11r2)# l, and Drake doubles the
basis set by including another set of exponential param-
eters (a ,b). While the accuracies achieved are well un-
der experimental precision, this apparent ‘‘overkill’’ is
actually necessary for the calculation of operator matrix
elements. Because the approach is completely nonrela-
tivistic, relativistic effects must be treated as perturba-
tions, such as the relativistic mass increase operator
p4/8m3. However, it is generally true that a method that
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gives an accuracy of e2 for energies gives matrix ele-
ments accurate to order e . Thus the very-high-accuracy
methods of Drake and Morgan are required. Once the
essentially exact nonrelativistic energies are combined
with relativistic effects, comparison with experiment
shows the presence of QED effects, just as in the sodi-
umlike platinum example. Here, of course, the effects
are much smaller, entering at the ppm level rather than
the percent level, and their evaluation requires a differ-
ent form of QED, the Bethe-Salpeter equation.

Before we turn to a discussion of the all-orders meth-
ods and the Bethe-Salpeter equation, we mention recent
progress in applying variational techniques to lithium
(King, 1989; McKenzie and Drake, 1991; Yan and
Drake, 1995). While considerably more computation is
involved than in the case of helium, these calculations
have been able to reach the nano-Hartree level. How-
ever, the difficulty of this kind of calculation grows ex-
tremely rapidly with the number of electrons, and other
techniques must be used for atoms with large numbers
of electrons.

A. All-orders methods and the Bethe-Salpeter equation
for helium

A low-order MBPT calculation of helium energy lev-
els, while sufficiently accurate for high Z , is inadequate
for neutral helium, and some method for including all
orders is required. In this section we make contact be-
tween a Green’s function approach to atomic physics,
the Bethe-Salpeter equation, and the first of the all-
orders equations we shall discuss in this review. While
the approaches seem quite different, with the former
dealing with the position of poles in the electron-
electron four-point function and the latter dealing di-
rectly with the Schrödinger equation, the end equations
will be shown to be identical. We note that heliumlike
ions have also been treated with the so-called ‘‘unified
method’’ (Drake, 1988), with multiconfiguration Dirac-
Fock (MCDF) methods (Hata and Grant, 1983, 1984;
Indelicato et al., 1988, 1987), and with Green’s-functions
methods (Shabaev, 1993).

In the following we concentrate on a relativistic calcu-
lation of the ground-state energy of helium, keeping
only the effects of the Coulomb interaction. In this case
the energy is known to be (Blundell et al., 1989) 22.903
86 a.u. Many-body perturbation theory through second
order, starting from the Coulomb potential and the
Hartree-Fock potential, gives results of 22.907 67 a.u.
and 22.899 05 a.u., respectively. These differ from each
other and the exact result at the level of a tenth of a
percent, and it is clearly desirable to achieve higher ac-
curacy. This can be done in two ways. The first is going
to higher order in perturbation theory. The nonrelativ-
istic (relativistic corrections are negligible) third-order
MBPT results are (Musher and Shulman, 1968) 0.00434
a.u. for the 1/Z expansion case and 20.00377 a.u. for
the HF case, which brings the results to within several
hundredths of a percent of one another and the exact
result. Rather than continue in this direction by going to
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fourth-order perturbation theory, we instead introduce a
method that evaluates all orders of perturbation theory
at once. This can be done by expressing the exact wave
function in terms of products of the creation operator
ai

† , which is an operator that creates an electron in one
of the states i included in the basis set. Thus a general
state of helium would be expressed as

C5(
ij

r ijai
†aj

†u0&, (52)

where we have for simplicity suppressed factors that cre-
ate eigenstates of angular momentum. Knowledge of all
the quantities r ij then provides an exact description of
the state, provided that a sufficiently large basis set is
used. There are two ways to do this. One is an iterative
procedure (Plante et al., 1994). In this the above form
for the wave function is used in the Schrödinger equa-
tion (H01V)C5EC to obtain an equation for the co-
efficients r ij of the form

~e i1e j!r ij1
1
2 (

kl
g̃ ijklrkl5Er ij . (53)

For the ground state, for example, one starts the itera-
tion procedure by setting E52e1s , r1s1s51, and all
other r’s equal to zero. Then the above equation allows
the generation of nonzero values for the other r’s, and a
convergent iterative scheme results. This procedure ef-
fectively sums up all orders of perturbation theory and
gives results that agree with the known result for
ground-state helium to about six digits. The other
method is the configuration interaction method, in
which the matrix equation is directly solved: an example
of a very-large-scale relativistic configuration interaction
calculation is the work of Chen and Cheng (1996). The
main source of error in both methods is the fact that the
partial-wave expansion, as described in the case of the
second-order energy, cannot be directly summed to in-
finity. The relative slowness of convergence of the
partial-wave expansion is connected to the existence of
cusps in the wave function, which arise from the factor
r,

l / r.
l11 in the definition of the radial integral. An inter-

esting recent development has been the demonstration
by Goldman (1994, 1995, 1997) and Goldmann and
Glickman (1997) that greatly increased convergence can
be obtained by including r, and r. in the behavior of
the wave function.

B. Relation to Green’s-function methods

In this section we describe how the above reformula-
tion of many-body perturbation theory can be related to
a Green’s-function approach to helium. In fact, the most
accurate treatment of helium that incorporates QED is
based on the Bethe-Salpeter equation, which in turn is
based on a treatment of the four-point function (Araki,
1957; Sucher, 1957; Douglas and Kroll, 1974). We first
introduce the electron propagator in the external field of
the nucleus,
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S~x ,y !5E dp0

2p
e2ip0~x02y0!S~xW ,yW ;p0!, (54)

where

S~xW ,yW ;p0!5(
n

cn~xW !c̄ n~yW !

p02en~12id!
(55)

satisfies the equation

Fp0g01igW •¹W x1
Za

uxuW
g02m GS~xW ,yW ;p0!5d3~xW 2yW !.

(56)

It is convenient to work with the Fourier transform of
the above,
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S~pW ,pW 8;p0!5(
n

cn~pW !c̄ n~pW 8!

p02en~12id!
. (57)

The propagator for two electrons with total energy E
interacting with the external field but not one another is
then

S~E ,k0 ,kW 1 ,kW 2 ;kW 3 ,kW 4!

5(
mn

cm~kW 1!c̄ m~kW 3!

E/21k02em~12id!

cn~kW 2!c̄ n~kW 4!

E/22k02en~12id!
.

(58)

This propagator then enters the equation for the inter-
acting two-electron propagator, or four-point function,
G~E ;k0 ,k08 ;kW 1 ,kW 2 ;kW 3 ,kW 4!52pS~E ;k0 ;kW 1 ,kW 2 ;kW 3 ,kW 4!d~k02k08!

2iE dp0

2p E d3k5d3k6d3k7d3k8S~E ;k0 ;kW 1 ,kW 2 ;kW 5 ,kW 6!

3K~E ;k0 ,p0 ,kW 5 ,kW 6 ;kW 7 ,kW 8!G~E ;p0 ,k08 ;kW 7 ,kW 8 ;kW 3 ,kW 4!, (59)
where K is the irreducible two-body kernel that is domi-
nated by one-Coulomb photon exchange,

KC~E ;k0 ,p0 ,kW 5 ,kW 6 ;kW 7 ,kW 8!

52
a

2p2

d~kW 81kW 72kW 52kW 6!

ukW 52kW 7u2
, (60)

and we have suppressed exchange terms. At this point
we note that G has poles at the bound-state energies of
helium, and near a pole of energy E0 must behave as

G→
cn~kW 1 ,kW 2 ;k0!c̄ n~kW 3 ,kW 4 ;k08!

E2E0
. (61)

While the noninteracting propagator has poles at bound-
state energies that are the sums of the individual hydro-
genic bound-state energies, these are at different posi-
tions from the full energy, so the inhomogeneous term
drops out if we multiply by E2E0 and take the limit
E→E0. This results in the Bethe-Salpeter equation for
helium,

c0~k0 ;kW 1 ,kW 2!52iE dp0

2p E d3k5d3k6d3k7d3k8

3S~E0 ;k0 ;kW 1 ,kW 2 ;kW 5 ,kW 6!

3K~E0 ;k0 ,p0 ,kW 5 ,kW 6 ;kW 7 ,kW 8!

3c0~p0 ;kW 7 ,kW 8!, (62)

which is still exact in this form.
If we replace the kernel with its dominant part KC ,

we can exploit the fact that there is no dependence on
k0 or p0 in that kernel (a well-defined perturbation
theory allows inclusion of the full kernel). This is done
by integrating the equation over k0 and defining a new
wave function

f0~kW 1 ,kW 2!5E dk0c0~k0 ,kW 1 ,kW 2!. (63)

The integral over k0 of S(E0 ;k0 ;kW 1 ,kW 2 ;kW 3 ,kW 4) is exactly
of the form given in Eq. (48). As in the treatment dis-
cussed there, we make the further approximation of
keeping only the positive-energy states, treating the
negative-energy-state contribution as a perturbation.
We then have

f0~kW 1 ,kW 2!5
a

2p2 (
m1n1

E d3k3d3k4d3k5

3
cm~kW 1!c̄ m~kW 3!cn~kW 2!c̄ n~kW 4!

En2em2en

3
1

ukW 52kW 3u2
f0~kW 5 ,kW 31kW 42kW 5!. (64)

If we operate on this equation with the operator
E02H(kW 1)2H(kW 2) and further define a projection op-
erator

L11~kW 1 ,kW 2 ;kW 3 ,kW 4!

5 (
m1n1

cm~kW 1!c̄ m~kW 3!cn~kW 2!c̄ n~kW 4!, (65)

we find
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@En2H~kW 1!2H~kW 2!#f0~kW 1 ,kW 2!

52
a

2p2E d3k3d3k4d3k5L11~kW 1 ,kW 2 ;kW 3 ,kW 4!

3
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ukW 32kW 5u2
f0~kW 5 ,kW 31kW 42kW 5!. (66)

The final step is to insert an extra positive-energy pro-
jector in between the Coulomb interaction and the wave
function, which induces another small perturbation term
involving (12L11), after which we finally end up with
the so-called Coulomb-ladder equation (Douglas and
Kroll, 1974),

@En2H~kW 1!2H~kW 2!#f0~kW 1 ,kW 2!

5E d3k3d3k4d3k5d3k6d3k7L11~kW 1 ,kW 2 ;kW 3 ,kW 4!

3
a

ukW 52kW 3u2
L11~kW 5 ,kW 31kW 42kW 5 ;kW 6 ,kW 7!

3f0~kW 6 ,kW 7!. (67)

The projection operators in the above equation serve to
eliminate any negative-energy-state components of the
wave function. At this point the above equation can be
recognized as precisely the ‘‘all-orders’’ equation we in-
troduced to sum all orders of MBPT. Specifically, we
first represent the wave function in a manner analogous
to Eq. (52),

f0~kW 1 ,kW 2!5(
ij

r ijc i~kW 1!c j~kW 2!, (68)

with the understanding that the sum includes only
positive-energy states. The two projection operators in-
volve a sum over four positive-energy states, and there
remains an integral that can be recognized as the Fou-
rier transform of gijkl . Finally, multiplying the left- and
right-hand sides of the equation by c̄ i(kW 1) and c̄ j(kW 2)
followed by integrating over kW 1 and kW 2 gives an equation

TABLE IV. MBPT results for lithium energies: units a.u.

2s1/2 2p1/2 2p3/2 3s1/2

E(0) 20.19632 20.12864 20.12864 20.07380
E(2) 20.00165 20.00137 20.00137 20.00035
Sum 20.19797 20.13001 20.13001 20.07415
Expt. 20.19814 20.13024 20.13024 20.07418

TABLE V. MBPT results for sodium energies: units a.u.

3s1/2 3p1/2 3p3/2 4s1/2

E(0) 20.18203 20.10945 20.10942 20.07016
E(2) 20.00587 20.00178 20.00177 20.00125
Sum 20.18790 20.11123 20.11119 20.07141
Expt. 20.18886 20.11160 20.11152 20.07158
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for the r ij coefficients identical, except for the exchange
term we have suppressed, to that described in the previ-
ous section.

After that equation is solved, of course, the small per-
turbations associated with the two steps involving pro-
jection operators above must be included, as well as the
non-one-Coulomb exchange kernels. This perturbation
theory has been carried out to the order of a4 Rydbergs
for the splitting of 2P states in neutral helium (Douglas
and Kroll, 1974), and present interest is in calculation of
the order of a5 Rydberg contributions (Zhang and
Drake, 1996).

It should be stressed that this way of framing MBPT
within QED is different from the S-matrix approach
previously described: the wave function in the S matrix
has only whatever correlation is built in by the choice of
the potential, while f0 sums an infinite set of ladder
diagrams. For highly charged ions, the rapid conver-
gence of perturbation theory makes either approach
valid, but the breakup of perturbation theory is quite
different. The extension of the Green’s-function ap-
proach to more complicated atoms is a fundamental
problem in QED, but as stressed above, we first need to
understand how well all-orders methods work for these
atoms. We now introduce this problem by discussing the
behavior of MBPT for the neutral alkalis.

V. NEUTRAL ALKALI ATOMS

A. Energy calculations through second order

We have illustrated in the QED section the behavior
of many-body perturbation theory for highly charged
ions. Treatment of low orders succeeded because of the
1/Z expansion, but for valence electrons of many-
electron neutral atoms, even when Z is high, almost all
nuclear charge is screened, and there is no reason to
believe that MBPT in low orders will work as well for
neutral atoms as for highly charged ions. We illustrate
the situation for the application of MBPT through sec-
ond order for the alkali-metal atoms in Tables IV–IX

TABLE VI. MBPT results for potassium energies: units a.u.

4s1/2 4p1/2 4p3/2 5s1/2

E(0) 20.14749 20.09571 20.09550 20.06109
E(2) 20.01245 20.00462 20.00455 20.00286
Sum 20.15994 20.10033 20.10005 20.06395
Expt. 20.15952 20.10035 20.10009 20.06371

TABLE VII. MBPT results for rubidium energies: units a.u.

5s1/2 5p1/2 5p3/2 6s1/2

E(0) 20.13929 20.09082 20.08999 20.05870
E(2) 20.01501 20.00544 20.00519 20.00346
Sum 20.15430 20.09626 20.09518 20.06216
Expt. 20.15351 20.09619 20.09511 20.06177
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taken from Johnson et al. (1996). The calculations are
complete in the sense that all core states are summed
over and very complete basis sets were used to essen-
tially eliminate basis-set truncation error, and finally the
partial-wave expansion is extrapolated to infinity.

We have several comments concerning these results.
The first is that the Hartree-Fock energies start off ac-
curate to about one percent for lithium, but degenerate
to worse than ten percent for the heavy alkalis. Inclusion
of second-order MBPT then significantly improves
agreement with experiment, from one-tenth-of-a-
percent accuracy for lithium to one or two percent for
francium. The very good agreement at potassium is for-
tuitous, arising from the fact that the second-order en-
ergy underestimates correlation for light alkalis and
overestimates it for heavy alkalis, with potassium near
the crossover point. This behavior seems promising for
the application of low-order MBPT, but in fact when we
calculate the next order we shall see that this is not the
case. Before that, we review the situation for transition
matrix elements.

B. Matrix elements

While the calculation of energies is a good test of
many-body perturbation theory, one is often more inter-
ested in other properties of the atom, for example hy-
perfine constants and oscillator strengths. In particular,
parity-nonconserving transitions are a kind of oscillator
strength, but with one state of the ‘‘wrong’’ parity be-
cause of the weak interactions. The first two orders of
MBPT for matrix elements in alkalis can be set up in a
straightforward way. We deal with a general one-body
operator

Z5(
ij

zijai
†aj . (69)

If we call the initial state v and the final state w , the
lowest and first orders are given by

TABLE IX. MBPT results for francium energies: units a.u.

7s1/2 7p1/2 7p3/2 8s1/2

E(0) 20.13107 20.08591 20.08044 20.05596
E(2) 20.02164 20.00840 20.00612 20.00478
Sum 20.15271 20.09431 20.08656 20.06074
Expt. 20.14967 20.09392 20.08623

TABLE VIII. MBPT results for cesium energies: units a.u.

6s1/2 6p1/2 6p3/2 7s1/2

E(0) 20.12737 20.08562 20.08378 20.05519
E(2) 20.01774 20.00691 20.00618 20.00420
Sum 20.14511 20.09253 20.08996 20.05939
Expt. 20.14310 20.09217 20.08964 20.05865
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and

Z ~2 !5(
am

zamg̃ wmva

eav2emw
1(

am

g̃ wavmzma

eaw2emv
. (71)

We have specialized to the Hartree-Fock potential. The
next order is somewhat complex, and we divide it into
Z(3)5ZRPA

(3) 1ZBO
(3)1ZSR

(3)1ZNorm
(3) . The first term is given

by

ZRPA
~3 ! 5 (

abmn
F g̃ wnvazbmg̃ amnb

~emw2ebv!~enw2eav!
1c.c.G

1 (
abmn

F g̃ mnabzbmg̃ awvn

~env2eaw!~emw2ebv!
1c.c.G . (72)

The notation c.c. refers to complex-conjugate terms that
are obtained graphically by reflection about a horizontal
axis. Z(2) and ZRPA

(3) are the first two terms in the well-
known RPA series. This series can be summed to infin-
ity, and this will be done in the tabulations below. A
point of note is that the usual method of summing in-
volves solving differential equations, which automati-
cally include both negative- and positive-energy inter-
mediate states. Thus small differences arise when the
above formulas are used with the usual restriction of
allowing only positive-energy intermediate states. This
point is addressed in greater detail by Johnson et al.
(1995).

The next term is referred to as a Brueckner-orbital
correction. It is given by

ZBO
~3 ! 5 (

abmi
F gabmvzwig̃ miba

~e i2ev!~evm2eab!
1c.c.G

1 (
abmi

F gaimnzwig̃ mnav

~e i2ev!~enm2eav!
1c.c.G . (73)

This term is closely related to the second-order energy
and plays a particularly important role numerically,
which is associated with the fact that the second-order
energy is relatively large, particularly in the case of the
heavier alkalis. The remaining parts of Z(3) are numeri-

TABLE X. E1 transition amplitudes for light alkalis.

Atom Lithium Sodium Potassium
Transition 2p1/2→2s1/2 3p1/2→3s1/2 4p1/2→4s1/2

Z(1) 3.3644 3.6906 4.5546
Z(2) 20.0116 20.0385 20.1578

ZRPA
(3) 20.0019 20.0034 0.0132

ZRPA
(41) 20.0004 20.0013 20.0094

ZBO
(3) 20.0239 20.1021 20.3129

ZSR
(3) 0.0007 0.0030 0.0173

ZNorm
(3) 20.0013 20.0050 20.0235

Sum 3.3260 3.5433 4.0815
Experiment 3.317(4) 3.525(2) 4.102(5)
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cally less important, and we refer the interested reader
to Johnson et al. (1996) for more details. Reduced ma-
trix elements for a transition of multipolarity JM , de-
fined through

Zwv5~21 ! jw2mwS J jv jw

M mv 2mw
D ^wuuZuuv&, (74)

are tabulated for the light alkalis in Table X and for the
heavier alkalis in Table XI.

The most important thing to note about these results
is that both the RPA and Brueckner-orbital contribu-
tions play important roles in bringing theory into rela-
tively good agreement with experiment: particularly in
cesium, a 17% disagreement is brought down to under
3% primarily because of the two contributions, which
are at roughly the same level. Another feature of note is
that high orders of the random-phase approximation
contribute at the percent level for the heavy alkalis,
which is an indication that all-orders methods will be
necessary to reach precisions lower than 1%. As men-
tioned above, the SR (structural radiation) and Norm
(normalization) terms are numerically less important.
Again, as with energies, MBPT appears to be working at
the tenth-of-a-percent level for light alkalis and the one
percent level for heavy alkalis. However, to reach the
tenth-of-a-percent level for the latter case, higher orders
of MBPT must clearly be investigated, and we now turn
to that topic.

C. Third-order many-body perturbation theory

It is possible, using the basis-set techniques described
above, to carry out a complete calculation of all dia-
grams contributing to the third-order energy for alkali-
like atoms and ions. While for the highly charged ion
case these terms will be very small, they will be much
more important for neutral atoms. The fact that each

TABLE XI. E1 transition amplitudes for heavy alkalis.

Atom Rubidium Cesium Francium
Transition 5p1/2→5s1/2 6p1/2→6s1/2 7p1/2→7s1/2

Z(1) 4.8189 5.2777 5.1437
Z(2) 20.2237 20.3344 20.4136

ZRPA
(3) 0.0280 0.0760 0.1092

ZRPA
(41) 20.0173 20.0446 20.0652

ZBO
(3) 20.4183 20.5816 20.6375

ZSR
(3) 0.0269 0.0445 0.0580

ZNorm
(3) 20.0332 20.0508 20.0629

Sum 4.1813 4.3868 4.1317
Experiment 4.231(3) 4.499(6)

FIG. 4. Representative third-order Goldstone diagrams.
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graph can be accurately evaluated will play an important
role when we treat such systems with all-order methods.
If an all-orders method, no matter how apparently el-
egant, does not include a third-order diagram that can
be shown to be numerically significant, the method must
be modified to include it.

There are 84 terms contributing to the third-order
Ev

(3) (we suppress the third-order core energy for the
usual reasons). They can be written more compactly by
including direct and exchange contributions together
with the previously introduced notation
g̃ ijkl5gijkl2gijlk . Then an algebraic or graphical deriva-
tion leads to 12 terms,

EA
~3 !5 (

abmnr

g̃ vbmrg̃ mnvag̃ mnva

~eav2emn!~ebv2erm!
,

EB
~3 !52 (

abcmn

g̃ canvg̃ nbcmg̃ mvba

~eac2env!~eab2evm!
,

EC
~3 !5 (

abmnr

g̃ avmng̃ nbvrg̃ mrab

~eav2emn!~eab2erm!
1c.c.,

ED
~3 !52 (

abcmn

g̃ abnvg̃ vcbmg̃ nmac

~eab2evn!~eac2emn!
1c.c.,

EE
~3 !5 (

amnrs

g̃ avsrgrsnmgmnav

~eav2emn!~eav2ers!
,

EF
~3 !52 (

abcdm

g̃ cdmvgabcdgmnab

~eab2evm!~ecd2evm!
,

EG
~3 !52 (

abmnr

gabrvgrvmng̃ mnab

~eab2evr!~eab2emn!
1c.c.,

EH
~3 !5 (

abcmn

gavmngbcvag̃ mncb

~eav2emn!~ebc2emn!
1c.c.,

EI
~3 !52 (

abcmn

g̃ acmng̃ vbvcgmnab

~eac2emn!~eab2emn!
,

EJ
~3 !5 (

abmnr

g̃ abrng̃ vrvmgmnab

~eab2ern!~eab2emn!
,

EK
~3 !52 (

abcmn

g̃ vavmgcbang̃ mncb

~ea2em!~ebc2emn!
1c.c.,

EL
~3 !5 (

abmnr

g̃ vavmgbmnrg̃ rnab

~ea2em!~eab2enr!
1c.c. (75)

TABLE XII. Breakdown of third-order contributions as per-
centage of 6s1/2 Hartree-Fock energy of cesium.

Diagram Percentage Diagram Percentage

A 3.2 G 0.3
B 20.2 H 20.2
C 23.1 I 38.7
D 20.3 J 238.6
E 23.3 K 1.4
F 0.1 L 22.2



72 J. Sapirstein: The relativistic atomic many-body problem
Examples of the associated Brueckner-Goldstone dia-
grams are shown in Fig. 4. The most difficult computa-
tionally is EE

(3) because of the fourfold summation over
excited states. However, all terms can be evaluated in a
matter of hours on modern workstations, though the
partial-wave expansion of the term just mentioned can-
not be treated as thoroughly as the others. We collect
the results of a third-order calculation (Blundell et al.,
1990) in Table XII.

One of the most striking features of the third-order
energy is the very large but canceling contributions from
diagrams I and J . These come from factors with large
overlap of the wave function, but general arguments can
be made (Sushkov, 1986) that explain the almost com-
plete cancellation. Of the remaining diagrams, A , C , E ,
and K are the most important. However, to reach a pre-
cision of 0.1%, each diagram must be included. The net
result, unfortunately, takes the energy from 1.4% too
large to 2.5% too small in magnitude. Thus straightfor-
ward perturbation theory is not converging in a uniform
manner, and higher orders must be treated in some fash-
ion.

It is also possible to reorganize the third order calcu-
lation in terms of Feynman diagrams (Dzuba et al.,
1989). The Novosibirsk group evaluate the four Feyn-
man diagrams shown in Fig. 5. These can be shown to
account for the largest of the third-order diagrams; how-
ever, diagrams not included amount to about two per-
cent of the valence energy. Thus the agreement between
theory and experiment found by that group presumably
relies upon cancellation of uncalculated terms.

D. All-orders methods

One possibility that one can consider at this point is
the direct investigation of all fourth-order many-body
perturbation diagrams affecting the energy. However,
several hundred diagrams would have to be considered,
and we are not aware that they have even been tabu-
lated for the open-shell case, although they have for the
closed-shell (Wilson, 1985). It is possible explicitly to
evaluate individual fourth-order diagrams that might be
expected to be important. This was done by Blundell
et al. (1990), who included the diagrams of Fig. 6. While

FIG. 5. Feynman diagrams contributing to the third-order en-
ergy.
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they had in fact the effect of bringing the energy into
agreement with experiment, this is not a satisfactory
procedure, and some method of treating all, or at least
the most important, sets of fourth-order diagrams, is
needed. Such a method is afforded by the use of the
all-orders methods we have already discussed in connec-
tion with helium. All-orders methods not only generate
infinite classes of diagrams, but can also generate many
different diagrams in a given order in a compact man-
ner. We now describe a particular all-orders method that
was used for high-accuracy calculation of parity noncon-
servation in cesium (Blundell et al., 1992).

As in the case with helium, we consider the structure
of the wave function written in second-quantized form.
For an alkali, the first-order correction to the ground-
state wave function, C0[av

†u0C&, is

u1C&5S (
amn

gnmva

emn2eav
am

† an
†aaav

1
1
2 (

abmn

gmnba

emn2eab
am

† an
†abaaDC0 , (76)

where we have assumed that the potential is Hartree-
Fock. When u2C& is calculated, similar structures arise
(Blundell et al., 1987), such as

u2C&a5 (
amnrs

gnmrsgrsav

~emn2eav!~ers2eav!
am

† an
†aaavC0 .

(77)

We refer to such terms as double excitations because two
electrons (one core electron a and the valence electron
v) have been destroyed and replaced with excited states.
Such terms enter in each order of perturbation theory,
and it rapidly becomes impractical to evaluate them ex-
plicitly in higher orders. However, it is possible to do
this in another way, by treating the coefficient of
am

† an
†aaavF0 as an unknown coefficient rmnva . This

quantity is a generalization of the r ij coefficients intro-
duced in the case of helium. We note the difference that
in the case of helium the vacuum was the true vacuum,
while here we work relative to a filled core plus valence
state. Thus there is a set of coefficients that can be or-
dered with respect to how many electrons of the atom
are destroyed and replaced with excited states, which we
call singles, doubles, triples, etc. Explicitly, we assume
the following form for the wave function:

FIG. 6. Numerically important fourth-order Goldstone dia-
grams.
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C5NvS 11(
am

rmaam
† aa1( 8

m
rmvam

† av1
1
2 (

abmn
rmnabam

† an
†abaa1 (

amn
rmnvaam

† an
†aaav

1 (
abcmnr

rmnrabcam
† an

†ar
†acabaa1 (

abmnr
rmnrvabam

† an
†ar

†abaaavDC0 , (78)

where Nv is a normalization factor. The second and third terms describe single excitations, the third and fourth
double excitations, and the last two triple excitations. Substituting this form for the wave function into the Schrö-
dinger equation, one obtains a set of coupled equations for the expansion coefficients. If we make the approximation
of neglecting the effect of the triple excitations on the right-hand side of the equation for triples, the following set of
equations results:

~em2ea2dEv!rma5(
bn

rnbg̃ bman1(
bcn

g̃ bcanrnmcb1(
bnr

g̃ bmnrrrnba , (79)

~em2ev2dEv!rmv5(
an

rnag̃ amvn1(
abn

g̃ abnvrnmab1(
anr

g̃ amnrrnrva1 (
abnr

g̃ abnr~rrnmvab2rrmnvab1rmrnvab!, (80)

~emn2eav2dEv!rmnva52gmnva1(
rs

gmnrsrsrva1(
bc

gbcvarnmbc1(
r

rragmnrv1(
r

rrvgnmra1(
b

rnbgbmav

1(
b

rmbgbnva1(
br

g̃ bmrvr̃ rnab1(
br

g̃ bnrar̃ rmvb1(
brs

g̃ bmrs~rsnrvab1rrnsvab2rnrsvab!

1(
bcr

g̃ cbra~2rrnmvbc1rnrmvbc2rnmrvbc!, (81)

~emn2eab2dEv!rmnab52gmnab1(
rs

gmnsrrrsab2(
cd

gcdabrmncd1(
c

~rncgcmba1rmcgcnab!1(
r

~rrbgmnra

1rragnmrb!1(
cr

~ g̃ cmbrr̃ rnac1 g̃ cnarr̃ rmbc!, (82)

~emnr2eabv2dEv!rmnrvab52rrbgmnva1
1
2

rrvgmnba1(
c

g̃ crbvrmnac1(
s

gmnsvrsrab2(
c

gcmbarnrvc

1(
s

gmnsar̃ rsvb1••• , (83)

where

dEv5 (
amn

g̃ vamnrmnva1 (
abm

g̃ abvmrmvab1(
am

g̃ vavmrma1 (
abmn

g̃ abmn~rvmnvab1rnvmvab1rmnvvab!. (84)
While this approach is formally quite similar to con-
figuration interaction methods, an important difference
is that unlinked terms involving the shift in the core en-
ergy dEc have dropped out of the above equations: in a
configuration interaction approach one would, for ex-
ample, encounter factors such as (em2ea2dEv2dEc)
rather than (em2ea2dEv) multiplying rma .

We begin the discussion of these equations by neglect-
ing the triple excitation terms. If one approximates the
equation for rmnav by dropping dEv and keeps only the
first term on the right-hand side, one sees that this re-
produces the analogous term in u1C&. Further, by taking
this form and adding it perturbatively to the second
term, one can see the origin of u2C&a . However, when
one iterates the entire set of equations, an approxima-
tion to the wave function results that encompasses large
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
parts of arbitrarily high-order contributions to the wave
function. Convergence to six digits can be achieved with
a sufficient number of iterations, though, because of the
neglected triples, agreement with experiment at this
level need not necessarily be expected. It is possible to
trace the effect of this approximation on the third-order
energy. While the second-order energy is entirely ac-
counted for, 36 of the 84 third-order diagrams are left
out. These can be added perturbatively, or they can also
be obtained by including the triples coefficient in the
equation for the singles coefficient rmv . It is this proce-
dure that is followed in the calculations of parity non-
conservation in cesium reported by Blundell et al.
(1992). As an example of the kind of accuracies that are
reached with this method, we show in Table XIII a com-
parison of theory and experiment for a few energy levels
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in cesium. It can be seen that agreement with experi-
ment at the level of a few tenths of a percent has been
reached. In Table XIV we also show the results of the
Novosibirsk group (Dzuba et al., 1989) and a singles-
doubles coupled-cluster method based on Gaussian ba-
sis sets (Eliav et al., 1994, for the same energy levels,
which are even closer to experiment. While this is em-
pirical evidence that the terms not included by the dif-
ferent calculations are relatively small, the next step is
clearly to introduce methods that include more diagrams
to ensure that the agreement with experiment is not be-
cause of fortuitous cancellations.

A first step in this direction is a more complete treat-
ment of triples. While the entire third-order energy is
accounted for by including the effect of triples on the
singles coefficient, we have not included the effect of the
triples on the equation for the doubles coefficient rmnav ,
and this means certain fourth-order diagrams have been
omitted. There is no problem in principle with carrying
out this calculation, although computationally it is ex-
tremely intensive. We note in passing that the third-
order energy actually contains only double-excitation-
type denominators, and that singles-doubles methods
can be devised that pick up the entire third-order ener-
gies, notably the Hermitian formalism of Lindgren
(1991).

A more challenging numerical issue is iterating the
equation for the triples coefficient itself: in the equation
for the triples given above, we kept only those terms on
the right-hand side that involved singles and doubles.
Because of the large size of the basis set needed for
accurate cesium calculations, direct storage of the triple
excitation coefficients is difficult unless the size of the
basis set is reduced to a point where basis-set truncation
error becomes a problem. However, given advances in
the memory and speed of computers, it is likely that
these problems will be overcome, and then an almost
complete set of fourth-order diagrams will be accounted
for. It seems highly likely that at this point theoretical
predictions reliable to the tenth-of-a-percent level for
neutral alkalis will be forthcoming and that a proper

TABLE XIII. All-orders results for cesium energies: units a.u.

6s1/2 6p1/2 6p3/2 7s1/2

E(0) 20.12737 20.08562 20.08378 20.05519
E(22`) 20.01521 20.00636 20.00572 20.00326
Sum 20.14257 20.09198 20.08951 20.05845
Expt. 20.14310 20.09217 20.08964 20.05865
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treatment of field-theoretic effects will become neces-
sary.

A last set of fourth-order diagrams is associated with
the coupled-cluster method (Bishop and Kummel, 1987;
Bartlett, 1991). The all-orders method we have pre-
sented is essentially a linearized version of that method.
If we rewrite our representation of the wave function as

C5Nv~11X11X21X31••• !C0 , (85)

with X1 a shorthand for single excitations, etc., we can
write the coupled-cluster form as

C5NveS11S21S31•••C0 . (86)

Here it is understood that the coefficients S are repre-
sented by connected diagrams, as opposed to the coeffi-
cients X , which are represented by both connected and
disconnected graphs. Doing this automatically accounts
for certain corrections to the wave function that would
in the linearized method described here be categorized
as quadruple excitations. Explicitly, the second-order
correction to the wave function consists of singles,
doubles, and triples, plus one extra term (Blundell et al.,
1987),

C45
1
4 (

abcdmnrs

gmnabgsrcd

~emn2eab!~emnrs2eabcd!

3aaabacadam
† an

†as
†ar

†C0 , (87)

which upon symmetrization can be seen to be discon-
nected. However, this term can be identified as part of
1
2 S2

2C0 and would be accounted for automatically in the
full coupled-cluster method in second order, while it
would not be picked up by the linearized method unless
fourth-order terms were considered. We refer the inter-
ested reader to a calculation in this framework of energy
levels of neutral sodium (Salomonson and Ynnerman,
1991).

VI. CONCLUSION

The first conclusion we should like to emphasize is
that the atomic many-body problem is in principle ex-
tremely well understood, as it is directly based on QED.
However, the Schrödinger equation is still difficult to
solve, and the atomic many-body theorist faces the same
numerical difficulties as many-body theorists in other
fields. Two cases, however, stand out in which these dif-
ficulties can be circumvented; first, the spectroscopy of
highly charged ions (where MBPT is rapidly conver-
gent), and second, heliumlike ions and helium, where
TABLE XIV. Comparison of different calculations of cesium energies: units a.u.

6s1/2 6p1/2 6p3/2 7s1/2

Eliav et al. (1994) 20.14326 20.09212 20.08962 20.05867
Dzuba et al. (1989) 20.14325 20.09214 20.08961 20.05889
Blundell et al. (1992) 20.14257 20.09198 20.08951 20.05845
Expt. 20.14310 20.09217 20.08964 20.05865
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the structure problem can be treated exactly. In these
cases, the interest shifts to the proper calculation of
QED effects in many-electron systems. We have also
treated the more difficult problem of neutral alkali at-
oms. In this case, law orders of MBPT can give results
accurate at the percent level. It is only when the tenth-
of-one-percent level is attempted that the full complex-
ity of the many-body problem enters. While we have
chosen to attack the problem with an all-orders ap-
proach based on including increasing numbers of excita-
tions of core and valence electrons as the best method
for reaching this level, many other many-body tech-
niques have been developed by the community over the
years, and it is quite possible that another method could
prove more successful: one aim of this review is to
stimulate the interest of many-body theorists in other
fields who use different techniques, which may well be
able to achieve higher accuracy. Given the great in-
crease in computer power over the past few years and
new developments in many-body theory, it is likely that
the situation described in this review for few-electron
atoms and highly charged ions, in which the Schrödinger
equation can be solved to such precision that relativistic
and QED effects have to be understood, will be re-
peated for more and more of the periodic table over the
coming years.
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