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The authors present a closed formulation of resonant point scatterers for classical-wave propagation
problems. A Green’s-function approach is employed in which all the small-distance singularities are
regularized. Application of point scatterers considerably simplifies multiple-scattering calculations
needed, for instance, for understanding the optical properties of dense cold gases and optical lattices.
In the case of the vector description of light, it is shown that two different regularization parameters
are required in order to obtain physically meaningful results. One parameter is related to the physical
size of the pointlike scattering particle, while the other is connected to its dynamic properties. All
parameters involved are defined in terms of physical observables leading to a complete and
self-consistent treatment. The applicability of the point-scatterer model to several physical models is
demonstrated. We calculate the local density of states of waves in the presence of one resonant point
scatterer. For the vector case, the bare polarizability is shown to enter the local density of states. For
a collection of resonant point dipoles, the Lorentz-Lorenz relation for the dielectric constant is
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I. INTRODUCTION

When describing interactions between light and mat-
ter one has to deal with both the radiative and the ma-
terial degrees of freedom. Treating both types of de-
grees of freedom on the same footing is often
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cumbersome, and one would like to integrate out one of
the two worlds. The choice for one or the other depends
on experimental and on theoretical considerations, but
also, to some degree, on taste. In atomic physics, for
example, one often chooses to enwrap or dress the
atomic properties with the (zero-point) radiative de-
grees of freedom. Matter is then described by an effec-
tive microscopic Hamiltonian and the radiative degrees
of freedom are reflected in the natural lifetimes and the
Lamb shifts of the atomic levels. A popular line of ap-
proach is the further simplification of the electronic
structure of the atom into a two-level atom. In this “all-
matter’” representation interactions are also fully de-
scribed in the space of the atomic degrees of freedom.
At not too large interparticle distances, two ground-
state atoms experience the van der Waals interaction
and an atom in the excited state and an atom in the
ground state feel the (resonant) dipole-dipole interac-
tion. Retardation effects become appreciable at large
distances and they require another approach than simply
integrating out the degrees of freedom of light.

If the response of a microscopic many-body system to
an external light source is studied, it makes more sense
to treat the material degrees of freedom in some effec-
tive manner by capturing them in physical quantities
such as the polarizability and conductivity that subse-
quently enter the equations of motion governing the
wave dynamics. Interactions between atoms are then ex-
posed as multiple-light-scattering phenomena. For in-
stance, the recurrent scattering of classical waves from
two polarizable particles can be mapped exactly on the
interactions so familiar in atomic physics: induced
dipole-dipole coupling, the van der Waals interaction,
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and nonretarded and retarded Casimir forces (van
Tiggelen et al., 1990; van Tiggelen and Lagendijk, 1994;
van Tiggelen, 1997).

Given the rapidly growing interest in more dense
atomic systems, like Bose-condensed gases (Anderson
et al., 1995; Bradley et al., 1995; Davies et al., 1995) and
optical lattices (Birkl efal, 1995; Tan et al., 1995;
Weidemuller et al., 1995), it is worthwhile to promote
the usefulness of the ““all-light” representation also in
atomic physics. Many advances and discoveries made in
other fields, predominantly condensed-matter physics,
have their counterpart not only in ordered or disordered
dielectric systems but also in atomic physics. The analo-
gies in these diverse fields are understood to stem from
the underlying wave nature of both (classical) waves and
quantum particles. We shall mention a number of con-
cepts that are all connected to multiple scattering of
waves. Many of these might be measurable in cold
atomic gases.

Photonic band-gap materials. In analogy with the for-
mation of electronic band gaps in periodic solids leading
to insulators and semiconductors, periodic dielectric
structures have been investigated intensely as a means
of creating a band gap for visible light (John, 1987,
Yablonovitch, 1987; Soukoulis, 1996; Vos et al., 1996).
The resulting manipulation and suppression of sponta-
neous emission in such lattices is both of fundamental
and of practical interest. Recent advances in the optical
cooling of atomic gases have made possible the con-
struction of lattices of cold atoms (Birkl et al., 1995; Tan
et al., 1995; Weidemuller et al, 1995). In completely
filled lattices, band structures for light and even photo-
nic band gaps have been suggested to exist (Deutsch
etal., 1995; Sprik et al., 1996; van Coevorden et al.,
1996).

Anderson localization of waves. This phenomenon
comprises the vanishing of any kind of propagation of
classical and quantum-mechanical waves in a strongly
scattering disordered sample due to interference
(Anderson, 1958, 1985; Abrahams et al., 1979; Akker-
mans and Maynard, 1985; Lagendijk et al., 1986). As a
precursor to Anderson localization, so-called weak-
localization effects (Bergmann, 1984), such as enhanced
backscattering of light from disordered media have been
experimentally observed (Kuga and Ishimaru, 1984; van
Albada and Lagendijk, 1985; Wolf and Maret, 1985) and
subsequently explained theoretically (Akkermans et al.,
1986; Stephen and Cwilich, 1986; Akkermans et al.,
1988; MacKintosh and John, 1988; van der Mark et al.,
1988). The phenomenon of Anderson localization was
first described for the scattering of electrons off impuri-
ties in solids (Anderson, 1958; Khmel’nitskii, 1984) and
is one of the cornerstones of present-day condensed-
matter physics. An unambiguous observation has, how-
ever, so far proven to be difficult due to the ubiquitious
presence of electron-electron interactions. Anderson lo-
calization of light has not yet been reported. The propa-
gation of near-resonant light through optical lattices that
are partially filled with ultracold atoms could possibly
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exhibit Anderson localization. In dense cold atomic
gases the phenomenon of enhanced backscattering
might also be observable.

Universal conductance fluctuations. Genack (1987) has
shown experimentally that speckles in the transmission
of light through disordered systems exhibit interesting
correlations, in analogy with conductance fluctuations
for electrons (Lee and Stone, 1985). It was found theo-
retically (Feng et al., 1988) that multiply scattered light
could be decomposed into short, long, and infinite-range
intensity correlations. This field is still an area of active
research [see, for example, Sheng (1995)].

Random lasers. The question addressed in this new
field is whether or not it is possible to combine laser
action in an amplifying medium with multiple scattering.
The gain in the system would be determined not by mir-
rors but by the multiple scattering of the light
(Letokhov, 1967; Lawandy et al., 1994).

Lorentz-Lorenz relation. The Lorentz-Lorenz relation
(Born and Wolf, 1980) describes the optical response of
a dielectric and is usually derived by employing the no-
tion of the Lorentz cavity in combination with some,
hitherto, implicit assumptions, rendering it an uncertain
theoretical foundation. For a review of a large number
of derivations see the work of van Kranendonk and Sipe
(1977) and Schnatterly and Tarrio (1992). A reformula-
tion of this problem into a genuine multiple-light-
scattering situation has recently produced a rigorous mi-
croscopic derivation of the Lorentz-Lorenz relation and
the Clausius-Mossotti equation for mixtures (Lagendijk
et al., 1997; also see Sec. V). This new approach permits
a systematic refinement of the above relations.

Energy-transport velocity of light. 1t has been shown
by van Albada et al. (1991) that the velocity determining
the transport of diffusive light in a disordered dielectric
medium may deviate appreciably from the phase and/or
group velocity appropriate for coherent propagation.
The marked differences in velocities were shown (La-
gendijk and van Tiggelen, 1996) to be due to the occur-
rence of resonances in the scattering cross section. In
gases the phenomenon of radiation trapping (Colbert
and Wexler, 1993) is well known. However, radiation
trapping is an incoherent process, whereas the phenom-
enon discussed here is coherent. ““Coherent” radiation
trapping might be observable in cold atomic gases.

Optical Hall effect. Investigation (van Tiggelen, 1995;
van Tiggelen et al., 1996) into the properties of multiple
scattering of light in magnetic fields has revealed the
existence of optical Hall currents. These currents appear
as a consequence of the anisotropy of the scattering
cross section of optically active atoms and materials.

All of the above phenomena allow for qualitative and
quantitative analysis in terms of multiple-scattering
theory. In practice the microscopic structures of the rel-
evant scattering building blocks are so complicated that
they give rise to rather cumbersome and technically
complicated computations. The latter is true even for a
spherical Mie scatterer. A tremendous simplification can
be obtained by employing pointlike scattering objects as
building blocks. In fact, many of the theoretical ad-
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vances concerning the above-mentioned topics have
been made possible by employing the notion of point
scatterers (Lagendijk and van Tiggelen, 1996). The sim-
plicity of the employed building block does not destroy
the subtle interference properties that underlie most of
these phenomena. The formulation of well-behaving
pointlike objects is not straightforward, but given the
enormous rewards if successful, this has to be pursued.
Among the problems that arise are the singularities in-
herent in Green’s functions when describing the propa-
gation of waves scattering off pointlike scatterers.

In atomic physics pointlike objects have been used
since the beginning of this century: In the interaction
with light the atom is often treated in the dipole ap-
proximation, and this means it is treated as a point di-
pole. However, the problems we are dealing with here
have never been fully addressed in atomic physics. In
this paper a consistent procedure for the formulation
and treatment of point dipoles will be presented. These
point dipoles can represent finite-size dielectric or me-
tallic spheres or finite-size systems with an internal de-
gree of freedom such as atoms in regimes where the
wavelength is much larger than any physical size.
Clearly, some of the essential physics has to be con-
tained when formulating and applying point scatterers.
For example, when considering multiple scattering of
light in a medium consisting of random dielectric objects
of an arbitrary shape having a large number of geometri-
cal resonances, one can adequately model such a system
with randomly distributed point scatterers exhibiting
one resonance. This approach is comparable to the use
of an effective two-level system or atom in solid-state or
semiclassical atomic physics. For frequencies w close to
the resonance frequency wg, the linear dynamic polariz-
ability a(w) of our point scatterers will be shown to be
equivalent to the well-known expression for a damped
harmonic oscillator or a two-level system,

2

@
a(w)= a(O)XW

o' —il'w’ @
where I is the linewidth of the corresponding resonance.
For single atoms, I" equals the rate of spontaneous emis-
sion or Einstein A coefficient.

In this work we employ the Green’s-function formal-
ism to construct the 7" matrix (or dynamic polarizability)
describing the scattering of waves from a pointlike par-
ticle. We treat both scalar and vector descriptions of
electromagnetic waves. Contrary to the case of infinite-
and finite-range potentials, the use of a point interaction
leads to a T matrix of a single scatterer that has a math-
ematically simple form in both coordinate and momen-
tum space. This 7" matrix is therefore very suitable to
serve as a building block in multiple-scattering theory.
In coordinate space, singularities at »=0 of scalar and
dyadic Green’s functions are encountered. These singu-
larities are inherent in continuum-space Green’s func-
tions. They are not present in Green’s functions defined
on lattices due to the finite support in momentum space
of the corresponding Brillouin zone. For a proper and
self-consistent formulation of point scatterers these sin-
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gularities have to be regularized. We shall show that two
different regularization parameters have to be intro-
duced in the case of vector waves in order to obtain
physically relevant scattering objects. All parameters in-
volved in both the formulation of the point scatterers
and the regularization of the Green’s functions will be
related to physical quantities. Thus no free, adjustable
parameters will remain and a complete and self-
consistent description will be obtained.

When employing point scatterers the singularities at
r=0 of the Green’s functions may also show up explic-
itly in the computation of coordinate-dependent physi-
cal quantities. For example, in our approach they appear
in the local density of states (DOS) of waves in the pres-
ence of at least one point scatterer. In the case of vector
waves the latter singularities are nonintegrable and thus
unphysical. The same problem arises in the normaliza-
tion of the scattering solutions for vector waves. It is
therefore expedient to remove the singularities in such a
way that one obtains regularized expressions for Green’s
functions valid not only for r=0, but also for r#0. With
respect to the latter we adopt a practical approach. For
the typical applications that we consider, in which the
wavelength of light is very much larger than the spatial
extent of the scatterer, the finer details of the interaction
region are not easily accessible. In the following, where
we represent a finite-size scatterer by a point scatterer,
the scattering solutions to be obtained will not be re-
quired to be exact within the interaction region (size
being comparable to physical size). Hence employing
regularized Green’s functions for r#0 as well can be
considered to be consistent with the simultaneous use of
a point interaction.

In quantum mechanics the use of point interactions
has been studied extensively. For a review see, for ex-
ample, the monograph by Albeverio ef al. (1988). Exist-
ing literature on the scattering of electromagnetic waves
from pointlike objects has primarily focused on the for-
mulation of a physical (nonzero) scattering amplitude
(Wu, 1984; van Diejen and Tip, 1991; Nieuwenhuizen
et al., 1992). Pioneering work was done by Wu, who gen-
eralized the Fermi pseudopotential originally designed
for quantum particles to the electromagnetic case (Wu,
1984). In his work the singularities of the dyadic Green’s
function are not treated, but are circumvented by prop-
erly modifying the point interaction (Wu, 1984). In con-
trast to our approach, the resulting Fermi pseudopoten-
tial leads to a 7 matrix that does not exhibit resonant
behavior and, therefore, has only limited use.

In a different treatment of point scatterers (van Die-
jen and Tip, 1991), the ordinary Hilbert space is gener-
alized to a Pontryagin space in which an inner product is
formulated that is not positive definite. In the physical
subspace the singularities of the Green’s function can be
dealt with and a unitary S matrix can be formulated. It
must be noted that there the longitudinal component of
the electric field is projected out. In earlier work on
resonant point scatterers for light (Nieuwenhuizen et al.,
1992), the Green’s function was regularized by introduc-
ing an upper cutoff in momentum space. There the regu-
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larization was restricted to r=0 values of the Green’s
function. Moreover, the distinction between a transverse
and a longitudinal regularization parameter in the case
of vector waves was not fully recognized.

This review is organized as follows. In Sec. I the
Green’s-function scattering theory for a point scatterer
is treated and a scattering solution in terms of the T
matrix is obtained. The singularities of the Green’s func-
tions are discussed and procedures for regularizing them
are given and employed. In Sec. III the T matrix of a
point scatterer is treated in detail. For vector waves it is
found that the regularization parameter corresponding
to the longitudinal part of the dyadic Green’s function is
connected to the physical size of the microscopic scatter-
ing object, while the transverse parameter is connected
to the dynamic quantities w, and I'. The relevance of the
resulting 7" matrix for one point scatterer is discussed in
connection with behavior in certain regimes of several
physical one-particle models. The usefulness of the regu-
larized Green’s function approach is demonstrated in
Sec. IV by calculating the local DOS of waves in the
presence of one point scatterer. Results are given for the
various contributions that can be distinguished in the
local DOS. In the case of vector waves, the static polar-
izability «(0) that one measures in a scattering experi-
ment is unequal to the polarizability ap defining the
“bare” coupling between the waves and the point scat-
terer that enters the Maxwell equations. Both polariz-
abilities are shown to appear explicitly in the local DOS.
The Lorentz-Lorenz relation for the dielectric constant
is derived in Sec. V for two cases: a cubic and a disor-
dered arrangement of resonant point dipoles. The deri-
vation for the former case is valid in the long-
wavelength limit and follows quite straightforwardly
employing the notion of point scatterers. For the latter
case, the dielectric constant is obtained from a rigorous
microscopic multiple-scattering calculation, which in-
cludes particle correlations up to infinite order in the
density (Lagendijk et al., 1997). In Sec. VI we conclude
with a summary of our results. Some computational de-
tails are shown in the Appendix.

Il. GREEN’S-FUNCTION FORMALISM
A. Maxwell-Helmholtz equation

In scattering theory one identifies some zeroth-order
dynamics of which the exact solution is subsequently
used to analyze the properties of the wave problem of
interest. We first consider the dynamics of electric vector
fields having a velocity of light ¢ in a translationally in-
variant medium (not necessarily a vacuum). The
Green’s-function formalism is employed. In the scalar
description of light, in which the polarization depen-
dence is not regarded, the scalar Green’s function g
obeys the inhomogeneous Maxwell-Helmholtz equation
2

w . 2 + ’ ’
?2-+16+V golw™,r—1")=68(r—1"). )
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We have used the fact that in translationally invariant
media go(r,r')=go(r—r'). To ensure the correct ana-
lytical properties of g, in the complex frequency plane,
or equivalently, to obtain retarded outgoing field solu-
tions, an infinitesimally small and positive imaginary
part has been included: w*=w+ie. The well-known so-
lutions of Eq. (2) in Fourier and coordinate space are
(kT=w"/c)

+ —
g(]((,!) 7P)_k2_p2+i€, (3)
eik+r
+ —
go(w 71.)_ 477_’_ . (4)

In coordinate space, g, is characterized by outgoing
spherical waves and a 1/r singularity which is square in-
tegrable at r=0.

The dyadic Green’s function G, satisfies the inhomo-
geneous dyadic Maxwell-Helmholtz equation

I-VXVX|Gyo' r—1")=8(r—1")I, (5)

w2
— +ie
2

where 7 is the 3X3 unit tensor in polarization space.
Making use of the product rule VXVX=V®V—-V?Z,
in which ® defines a dyad or tensor product, and
Fourier-transforming Eq. (5) to momentum space gives

1
+ =
gO(a) ,P) (k2+i6)I_p2Ap
1 1 . .
T pirie w2 POP

=Gi(0*,p)+ G5 (0" ,p). (6)

Here A ;=7— pep represents a projector upon the space
normal to the unit vector p=p/p. The Green’s function
(6) can be decomposed into a transverse (7)) and longi-
tudinal (L) part with respect to the momentum p. The
former describes transverse propagating modes, whereas
the latter, having a pole at k=0, describes the nonpropa-
gating (electrostatic) modes.

The dyadic solution of Eq. (5) in coordinate space
reads (see the Appendix)

1 ikTr
+ —r —
go((x) ,l‘)— I+ kZ V®V 47Tr 5 (7)
L
=— 47Tr[ (ikr)I+Q(i r)r®r]+m ;

®)
in which the functions P and Q are defined by

_( | 3 3) 0
, Q(Z)=—+;—p- )

=1L
(z)= z | 22

Following Eq. (6) the decomposition into a transverse
and a longitudinal part in momentum space leads to (see
the Appendix)
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r o+ . I-3r®r ik PUkAT
Gol@ 0= s Gy LPURD)

+ Q(ikr)rer], (10)
and
. T-3teF  &(r)
Qo(w,r)=m+ml (11)

In the far-field regime kr>1, the transverse Green’s
function (defined with respect to momentum) also
becomes transverse with respect to r:Gi(w?.r)
~ —exp(ik*r)A/4mr. In the static limit w—0, or for r
—0, the “dipole” parts proportional to 1/r* in G} cancel
and terms «(Z+r®r)/r remain. Moreover, in the static
limit kG}(w™,r)—0. The transverse part of G, there-
fore, has the same singularity in r=0 as the scalar
Green’s function (3). The longitudinal part of G, exhibits
a nonintegrable 1/r® singularity. The occurrence of the
delta function in Qg is completely analogous to the well-
known case in electrostatics (Jackson, 1975, p. 141),
where it ensures that the average field over a small
sphere including a static point dipole is nonzero. The
delta function (Weiglhofer, 1989) in Egs. (8) and (11),
which in the literature is often ignored and has to be
added by hand, ensures that certain “sum” rules are sat-
isfied. For example, [drGy(w",r)=Gy(w*,p=0)=T/k>
[the angular average of Gy(w™,r) excluding the delta
function gives $go(w*,r)Z].

The Green’s functions or propagators g, and G, carry
the complete information about the spectrum and dy-
namics of electric scalar or vector fields described by the
corresponding homogeneous scalar or vector Maxwell-
Helmholtz equation. Electric fields E(w™,r) resulting
from introducing a source term S(w,r) in the homoge-
neous vector Maxwell-Helmholtz equation are then
given by

E(w*,r)zf dr' Gy(w™,r—1')-S(w,r'). (12)

A similar equation holds for the scalar case. The field
solutions of the homogeneous Maxwell-Helmholtz equa-
tion can be added to Eq. (12).

The Green’s functions g, and G, describe the propa-
gation of waves from an external &function source lo-
cated at r’ to the “observation” point r. For example,
see Jackson (1975, p. 395). Given an external oscillating
dipole moment d exp(—iwf) at r', the electric dipole
field at r (containing radiative and longitudinal parts) is
E(t,r)=—(k%*/e)Gy(w™,x—1")-d exp(—iwt), where & is
the background permittivity. One should note that the
dyadic Green’s function G, does obey the Maxwell equa-
tion

V-Gy(ot,r—1')=0, (13)

because both the transverse electric-field solutions of the
homogeneous vector Maxwell-Helmholtz equation and
the dipole field (for r#r') of a point dipole at r' do so.
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With the use of Eq. (12) and the delta function in G} it
follows that V-E=0 is satisfied for r=r' if simulta-
neously V-S=0.

B. Scattering from a point particle

In this subsection we formulate the T matrix of a
single scatterer, where the latter is regarded as a point
particle. The former may be an atom or a dielectric
sphere on/off resonance. The treatment will be given for
vector waves; the differences from the case of scalar
waves will be discussed in Sec. III.B. Our starting point
is the introduction of a source term on the right-hand
side of the dyadic Maxwell-Helmholtz equation (5). The
Green’s function G(w™) for the full problem, written as
a matrix in continuous coordinate space, obeys

w?

Gw")=10T— = XG(w™),

(14)
where 1® 7 denotes the direct product of the unit matri-
ces in coordinate and polarization space, 1(r,r')
=45(r—r'), and X=X(r)1 is the (dimensionless) electric
susceptibility. In the case of a spatially varying dielectric
medium, X(r)=g(r)—Z, where &(r) is the r-dependent
dielectric constant (relative to the one of a homo-
geneous medium with velocity of light c¢). In
terms of a frequency-dependent potential V()
=—(w/c)?X, Eq. (14) can be written as

G(w")=Gy(o™)+ G0 M w)G(w™). (15)

This equation is the starting point of a (multiple-)
scattering theory and is often called the Lippmann-
Schwinger equation. In the case of disordered media and
employing averaging techniques it is also called the
Dyson equation. The frequency dependence of the po-
tential constitutes a major difference from quantum-
mechanical scattering theories and has some important
consequences (Lagendijk and van Tiggelen, 1996).

We now define a point scatterer located at r=0 ac-
cording to

Ww,r)=—(wlc)*agd(r)107, (16)

where ap (dimension of a volume) is the “bare” polar-
izability describing the strength of the coupling between
the electromagnetic waves and where the pointlike par-
ticle represents effectively a microscopic finite-size scat-
terer. The ‘““polarizability” «p enters the equations of
motion as a potential term and, generally, can be a ten-
sor but is taken as scalar here for simplicity. As yet the
value of ay is still optional. In Sec. III particular choices
for the bare coupling ap will be discussed. We shall also
show that ap is related to the static polarizability «(0)
that one measures in an experiment. Note (Lakhtakia,
1990) that the dipole moment d can be expressed by
either d=a(0)E®*“ or d = agE, where E®*“ is the electric
field exciting the dipole and E is the field including de-
polarization effects. The scattering 7" matrix 7, defined
by

G(w")=Gy(0")+Gy(0 ) TTw")G(o™), (17)

is given by the well-known Born series generated by it-
erating G, in the integral equation (15),

I-VXVX

w?
— +ie
2
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To")=Ww)+ WV 0)G (o )W)
W )Gy )W (@)G(o )W w)+...,
=t(0")s(N1®7, (18)

where the T-matrix element (w™) is determined by

ap

H(0")I=~(wlc)® T+ (/) agGy(w ,r=0)"

(19)

The above Born series could be summed exactly, be-
cause of the simple form of the potential. For a point
scatterer located at r=Rp the T matrix, written out fully,
reads

To(w* 1) =t(w")8(r—Rp)8(r' —Rp)7, (20)

showing the extremely simple form of 7 that can be ob-
tained employing point scatterers. The 7T matrix
T(w™,r,x’) describes the scattering of the electric field
from position r to position r’ by a particle located at
Rp. The dynamic polarizability a(w) of the point scat-
terer is given by [see also Eq. (23)]

a(w)=—t(w)/(w/c)?. (21)

The T matrix given by Eq. (18), with the T-matrix ele-
ment given by Eq. (19), describes the scattering exactly
to all orders of the coupling ap. The corresponding
Green'’s function, following from Eq. (17),

Glotrr)=Gy o r—r')+t(w)G) (ot ,1)G (0™ 1),
(22)

is the exact solution exhibiting the dynamics of waves in
the presence of one point scatterer located at »r=0. Note
that the point scatterer breaks the translational symme-
try. The first term in Eq. (22) represents the unscattered
propagation of waves from a source point at r’ to the
observation point r. The second term describes the
propagation from r’ to the position of the point scat-
terer, the scattering process through ¢, and the subse-
quent propagation to r. In the far-field regime the
r-dependent factor of the latter term reads

kr=1 A 3rer—7
0+
H@)Go(0" 1) = —t(@)e " ET

4ar
(23)

where we have used the relation (21) between ¢(w) and
a(w). In the static limit w—0 only the ‘“dipole” part
remains. The Green’s function G, also represents the
field response of an oscillating dipole (Jackson, 1975), so
that Egs. (22) and (23) demonstrate that a point scat-
terer is equivalent to a point dipole.

As we saw in the previous subsection, the matrix
element of G, at r=0 is infinite, rendering a zero T
matrix. In order to retain a physical nonzero scattering
and nonzero polarizability, we therefore have to replace
Go(w™,r=0) by its regularized version. We shall now
discuss how this can be achieved.
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C. Regularization procedures

The singularities of the Green’s functions at r=0 are
connected to the large-p behavior in Fourier space. So,
in order to remove the singularities, one can modify this
behavior. The regularized scalar Green’s function, de-
noted by g, that we use is defined according to

2
8ol p)=go(0” P)Xf(A,p), JAP)=3a
(24)

The regularization factor f(A,p) moderates the large-p
behavior of go(w™,p) and is appropriate provided one is
not interested in variations over length scales smaller
than the inverse of A, i.e., the finer details of the inter-
action region are not of specific interest. The factor
f(A,p) has been used among others in electrodynamics
to regularize the so-called transverse delta function
(Cohen-Tannoudji et al., 1989). To have a relevant
point-scatterer description and to alter the zeroth-order
dynamics as little as possible, one has to take the cutoff
momentum A sufficiently large relative to w/c or the
inverse length scales one is interested in. Observe that,
for p<A, f(A,p)—1. The volume integral of gy(w™,r),
therefore, will equal the volume integral over g, giving
go(p=0)=1/k%. In coordinate space one obtains

_ . B eik+r_ e*Ar

go(w".r)= = —————Xf(A.k), (25)
which is a continuous function of r and converges expo-
nentially to the unregularized Green’s function. The real
and imaginary parts of g, still satisfy the well-known
Kramers-Kronig relations (Born and Wolf, 1980) ex-
pressing the inherent causal properties of the Green’s
function (25) in the complex frequency plane. The small-
r behavior of g, has now indeed become finite,

go(w*,r=0)=— (26)

Ak )
4ar i 4o’
Anticipating a description of point scatterers for appro-
priate frequency values only, we take k/A <1 and there-
fore have set f(A,k)=1 in Eq. (26). Note that the sin-
gular behavior of go(w™,r) pertains solely to its real
part and that for the frequencies of interest k/A<1,
similarly, only the real part of go(w™,r) will reflect the
cutoff momentum A.

The employed regularization procedure is of course
not unique, but it suffices for our purposes. The regula-
tor (A —p), where 6 is the Heaviside step function ex-
pressing a sharp momentum cutoff, could also have been
used [see, for example, Nieuwenhuizen et al. (1992)].
This choice leads to the same result as in Eq. (26). Evi-
dently, the form of the regularized g, for r #0 would be
markedly different from that of Eq. (25), viz., g0=go
—Si(rA)/2w?r, where Si is the sine-integral. The latter
term vanishes as 1/A for large A. Our choice of Eq. (24)
leads to a simpler expression for g, for r#0, which in
addition converges exponentially to g .
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We now turn to the vector case. Because the singulari-
ties of QOT and QOL differ, we allow for two regularization
procedures with different parameters, A and A; :

Gr(w*.p)=Gi (0" P)Xf(Ar.p),
4
g§(w+,P)EgoL(w+,P)XE+L—ﬁ- (27)

In coordinate space one obtains (see the Appendix)

—_— I-3tef [
go((l) ,l‘)z

T aak? | day LPURDT

—Aqpr

+Q(ikr)rar]— [P(—Ar)T

4ar

+Q(—=A)rer] [ f(Ar,k), (28)

and
~r _ I-3ter Lo Moo
go(w,r)—m—x{ —e [COS Lr
+Apr(cosA r+sinA;r)]}

Aie*AL’ sinA;r
iy Iotr, (29)

where we have absorbed a factor 12 in A;. It can
again be seen that the regularized Green’s functions
converge exponentially to their unregularized counter-
parts. The sum rule given by the volume integral over
g{ + gé now exactly amounts to T/k?, so that a delta-
function contribution is no longer required. Now, taking
powers of the Green’s function does not give rise to
awkward terms for r—0. We retrieve the original trans-
verse and longitudinal Green’s function (10) and (11) by
letting A 7,A; —o. The finite values of G} and G} at r
=0 are given by

~ Ay  k

Qo(w,r=0)=— 6_+l6_77 7, (30)
= 7

G5 (w,r=0)= et b (31)

where just as for the scalar case we have set f(A7,k)=1.
Equations (26), (30), and (31) are now properly behaved
and can be employed in the formulation of a physical
nonzero 7 matrix. The exponent of the regularization
parameter reflects the order of the singularity in r=0.
Results comparable to Egs. (29) and (31) can be ob-
tained using f?\L as a regularization factor instead of
A7/(A3+p*). The trigonometric terms in Eq. (29)
would then be replaced by polynomial ones, resulting
only in a different numerical prefactor in Eq. (31).

The result Eq. (31) can also be derived using the fol-
lowing argument, which in addition allows for an inter-
pretation of the momentum cutoff A; . Maxwell’s equa-
tions are basically a macroscopic theory, so pointlike
objects in fact represent some microscopic structure that
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cannot be resolved on the scale of the wavelength of
light. The 1/r* behavior of G in Eq. (11), when appear-
ing in combination with a 7T-matrix expression, can then
be considered to apply only for r>a, where a is some
microscopic length, while the delta function can be re-
placed by a constant being the inverse of the volume
Vo=4ma’/3. In this way it follows that the parameter
A, is inversely proportional to a (static) microscopic
length

A1

In the next section we show that the transverse param-
eter Ay, or A for scalar waves, can be related to the
dynamic quantities w, and I' of a resonance at finite
frequency.

Note that regularization and setting f(A,k)=1 and

f(A7,k)=1 for the frequency values of interest essen-
tially modifies only the real part of g, and G,. Since the
imaginary part of the Green’s functions (see Sec. IV)
describes the continuous-wave spectrum, the low-
frequency eigenvalues of the scalar and dyadic Maxwell-
Helmholtz equations (2) and (5) remain practically un-
changed. For low frequencies, the regularization
procedure has primarily affected the behavior of the
eigenfunctions on very small length scales such that kr
<1,rA<1,and rA;  <1.
__ We have thus defined zeroth-order dynamics (g, and
Go) for both scalar and vector waves. The regularized
versions are appropriate for setting up a (multiple-)
scattering theory that can accommodate point interac-
tions for relevant frequencies.

ll. T MATRIX FOR A POINT SCATTERER
A. General solution for vector waves

In this subsection we continue the treatment of Sec.
IL.B and give the physical and exact solution for the T
matrix of a point scatterer. To this end, we replace in
Eq. (19) the Green’s function at r=0 by Gy(w™,r=0),
which we calculated above. In this manner a physical
nonzero T matrix can be formulated. Neglecting terms
of higher order than w/cA 7, i.e., setting f(A,k)=1, we
obtain from Egs. (19), (30), and (31)

(wl/c)?

ag'+A; 67— (w/c)?Al6m—i(w/c)6m
(33)

Note that in Eq. (19) ap is taken to be a scalar that is yet
to be chosen. We first treat the case of a frequency-
independent ap. In Secs. IILLE and IILF the extension
to a frequency-dependent bare coupling will be dis-
cussed.

Next, we relate the parameters in the resulting
T-matrix element with the appropriate physical quanti-
ties of the finite-size scatterer we wish to represent by
employing a point-scatterer model. Let us first note that
in the denominator of Eq. (33) the terms proportional to

t(w)=—
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agl and A3L are independent of frequency. Conse-

quently, with Egs. (21) and (23) the parameters g and
A} can be related to an experimentally accessible static
polarizability «(0) as

ap

@(0)= 1+ apAl/6m

(34)
In the T-matrix element ¢(w) a Lorentzian-type reso-
nance can be identified with resonance frequency w, and
linewidth I" given by

6 B w(z)
ATO{(O) ’ B cA T )
In terms of the quality factor Q= w,/I" of the resonance,

the transverse regularization parameter is determined
by

(0p/c)’= (35)

AT: (l)oQ/C. (36)

Observe that A; and Ay are related to static and dy-
namic quantities, respectively. Note that the imaginary
term in #(w) results from the coupling of the point scat-
terer with transverse modes described by QOT . l.e., the
finite width of the resonance is due to radiative damp-
ing.

Having expressed the parameters ag, A;, and A; in
terms of the physical quantities pertaining to an effec-
tive two-level system, we finally arrive at

t(w)=—(wlc)*a(0)X @
(@)=—(wle) a0 X o S T ovwl)’
where the set {wg,I",a(0)} consists of two independent
quantities determining the point scatterer. The corre-
sponding polarizability is in agreement with Eq. (1) and
relates to the case of a two-level system or an atom ex-
hibiting one resonant (electric dipole) transition. The T
matrix (18) is diagonal in polarization space, but it can
be generalized straightforwardly for tensorial ap. At
resonance one obtains an imaginary 7T-matrix element
t(wo)=—i(wy/c)*a(0)Q. Equations (37) and (18) de-
scribe a Rayleigh scatterer: at low frequency the cross
section (see below) vanishes as w* and the anisotropi-
cally scattered intensity exhibits the angular distribution
(1+cos? ). An important property of t(w) is that
it obeys the optical theorem (Newton, 1982; Lagendijk
and van Tiggelen, 1996)

(37)

Im t(w) |t(w)|?
- mk(w =| (6a;_| za-scat(w)- (38)

This relation says that the extinction (left-hand side)
from the incoming light is transformed entirely into scat-
tered intensity, given by the scattering cross section
Ogcat» 1-€., there is no absorption. It also confirms that
Eq. (37) features only two independent quantities, which
was already implicit in Eq. (35). For the optical theorem
to hold, the physical observables in Eq. (37) should sat-
isfy
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B 6
C= A0 (w0

For atoms the quality factor is very high, O>1, so that
Eq. (39) indicates that the ratio of the resonantly en-
hanced scattering cross section and the geometrical cross
section of the point scatterer (associated with the static
polarizability) is very large. Indeed, at resonance we
have (A g=2mc/wy)

(39)

3N}
Tscat( @g) = E

P (40)
which is the unitarity limit of oy, (Newton, 1982). Note
that Egs. (34) and (39) together imply that «(0), Q, A7,
and A should satisfy the (equivalent) inequalities

0<a(0)<6m/A3=0=cAr/wy=(cAL/wy)’. (41)

Since ¢cA 7 /wy>1, one finds that 1/A;<1/A, . In fact,
1/A 7 can be much smaller than 1/A; for specific cases.

It is interesting to compare Eq. (39) with Fermi’s
“golden rule” expression for the Einstein spontaneous
emission coefficient of an atom in free space. The partial
static polarizability in terms of the electric dipole matrix
element u of two atomic levels is a(0)=2|u|*/eohw,.
Inserting the latter in Eq. (39) gives the well-known re-
sult (Loudon, 1983) T'= wj| u|?/37eficy.

In order to describe simultaneously, for instance, two
(overlapping) atomic transitions with resonance fre-
quencies w; and w, and partial static polarizabilities
a1(0) and a,(0) [such that a(0)=a(0)+ a,(0) is the
total static polarizability of the atom], one may write the
T-matrix element as a linear combination of the 7" ma-
trices ¢; and ¢, of the form (37). In t=t¢,+1,, interfer-
ence effects from the two transitions have then been
neglected. The transverse regularization parameters
A7(12) enter the appropriate Green’s function, appear-
ing in expressions of the form (1Gy)(1,) [see, for ex-
ample, Eq. (61)], denoting the propagation of waves
scattered off the atom. For both transitions the longitu-
dinal parameter A, is the same, i.e., A ' is approxi-
mately equal to the atomic size.

We now return to Eq. (34) and discuss the determina-
tion of ap and A; . Generally, an experimentally deter-
mined static polarizability does not fix the values of both
ap and A; . In Sec. IV it is shown that the bare polar-
izability explicitly enters expressions for the local DOS
of waves providing another independent connection be-
tween ap and a physical quantity. On the other hand, in
the preceding section it was argued that A; can be in-
terpreted as an inverse microscopic length scale [see Eq.
(32)]. Identifying this length scale with the actual size of
a small finite particle, one obtains A3 ~V, ' with V,
now being the volume of the scattering particle. If this
volume is known, the static polarizability sets the value
of ay. For an atom, A; ' should then be related to the
“size” of the electronic wave function, i.e., the Bohr ra-
dius. An alternative approach would be to use a micro-
scopic theory to calculate a priori the source term X in
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the Maxwell-Helmholtz equation. Subsequently, by an
appropriate length scaling, a suitable coupling oz may
be derived for an effective point-scatterer description. A
more rigorous identification for @z and A; can be made
in the cases where our formulation of point scatterers is
applied to small dielectric or perfectly conducting
spheres. These cases will be treated in Secs. III.C and
IILE.

Summarizing this subsection, we have obtained a self-
consistent description of a point scatterer for classical
waves with no adjustable parameters. The regularization
parameters and bare polarizability have been connected
with physically observable quantities. For vector waves
it is important to distinguish between a static and a dy-
namic parameter.

B. Classical scalar and quantum-mechanical waves

We shall now indicate the differences between vector
and scalar waves. Clearly, the most important difference
is the absence of a longitudinal part in g, in Eq. (19).
Hence the bare polarizability ey entering the scalar ver-
sion of the Maxwell equations equals the static polariz-
ability «(0) that is measured in an experiment. The
equations above (and below) remain valid for scalar
waves provided one performs the substitutions A;— A,
A;—0, and 67—47 (alternatively 3—1). This makes
t(w), and correspondingly «(w), almost identical for sca-
lar and vector waves. The restrictions (41) on «(0) and
0O, however, do not apply to scalar waves. Furthermore,
the physical size of the pointlike scatterer enters the sca-
lar description only through ap= «(0).

In the case of quantum-mechanical wave scattering
from a pointlike particle, described by a frequency-
independent potential V(r)=Uy46(r)1 and U, a con-
stant, an approach similar to the one above leads to a
renormalization of Uy: U=U,/(1+ UyA/47). The re-
sulting 7-matrix element ¢(w)=1/(1/U+ik/47) obeys
the optical theorem and goes to a nonzero constant for
w—0 as expected. The parameter U is determined by
the cross section o, . The T-matrix element, however,
does not exhibit any resonance.

C. Small dielectric sphere

In this subsection and those that follow, we compare
our point-scatterer formalism to several physical models
and elucidate under which conditions the latter may be
described by our point-interaction model. We first treat
the case of small dielectric spheres.

1. Electrostatics

For a dielectric sphere with volume V=4ma%/3 and
(relative) dielectric constant ¢ it is well known from
electrostatics (Jackson, 1975) that the experimentally
observed polarizability is not the bare polarizability
given by ap=(e—1)V, which enters the Maxwell-
Helmholtz equation, but in fact
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€

a(0)=3 ) v, (42)
due to the boundary conditions on the surface of the
sphere. Using Eq. (34) one finds that

A3 16m=1/3V. (43)

One thus recovers Eq. (32) with V=V,,. Equation (34)
can be written as

ap=a(0)/[1—a(0)/3V], (44)

indicating that Ai expresses a geometrical depolariza-
tion effect. In the case of a perfectly conducting sphere,
electrostatics (Jackson, 1975) gives the result «(0)
=3V (see also Sec. III.E). Observing that for a perfect
conductor the effective dielectric constant e — — one
finds az— — and Eq. (32) with V=V,. Hence one can
indeed rigorously relate A; ' to the actual physical size
of pointlike scatterers. Note that for dielectric and con-
ducting spheres resonances are of geometrical origin,
while for atoms the resonances are internal ones, i.e.,
they correspond to an internal degree of freedom.

The exact scattering solution in terms of vector
spherical harmonics is known for a finite-size dielectric
sphere (van de Hulst, 1957; Bohren and Huffman, 1983).
The Mie scattering coefficient a;(x,e), corresponding to
the electric dipole normal mode, is expressed in terms of
the size parameter x=wa/c, & and Riccati-Bessel func-
tions and satisfies the optical theorem for real . The
T-matrix element of the above normal-mode solution is
tvie(w)=Fi6aca; /o (the sign depending on the defini-
tion of a; in the literature). By examining tyg;.(w) for
small size parameters and varying ¢ one may find behav-
ior comparable to Eq. (37) in certain cases. Employing
Egs. (33) and (34), one can obtain expressions for A
and A7 given that ag=(e—1)V. We now discuss the
resonant and Rayleigh regimes.

2. Resonant regime

For small size parameters x<<1 and simultaneously
large &, the above tyg, exhibits resonant behavior (van
de Hulst, 1957). The size parameter at resonance is de-
termined (van de Hulst, 1957) by Jexo=r;/(1+1/g)
with r; being one of the roots of the spherical Bessel
function j;. Near the resonance frequency, behavior
equivalent to ¢ of Eq. (19) is found: tyh.=t(w)[1
+0(x3)[1+0(xo—x)]. For large &, ap may be ne-
glected, leading to

Ai_ SX% AT_ & 45
6m 12ma>’ 6w 12mwa’ (45)

It can be seen that A > A;~1/a.

3. Rayleigh regime

For x<1 and Jex<1 no resonant scattering is ob-
tained. The ¢ matrix may simply be written as #ye
=—k?a(0), where a(0) is given by Eq. (42). To ensure
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that the 7 matrix satisfies the optical theorem it may
also be expressed in a form similar to Eq. (37),

e—1
1— ——[(e+10)x%/10

C— 12
tMlC k a(O)X 8—|—2

-1
+i2x3/3]] [1+0(x%)]. (46)

The “resonance” lies at frequencies where the above
approximation does not hold. From Eq. (46) one derives
again Eq. (43) for A, together with

Ay (e+10)/10

61 dara

(47)

D. Lorentz model for an atom

For an atom, the parameter A; should be related to
the “size” of the electronic wave function. An adequate
estimate of A; in terms of the parameters of the atom
can be obtained by considering the local depolarization
field of the induced charge distribution. Using the har-
monically bound electron or Lorentz model for an atom
in a static external field, one gets for the ground state
a(0)=e?/mwje,, where e and m are the charge and
mass of the electron, respectively. To lowest order in an
external field Ez the induced electronic charge distri-
bution exerts a local or near field given by
—a(0)E /(672 with /?=h/mw,. (The second
moment of the unperturbed ground-state wave function
is 2/2) Equating this expression with
—a(0)A} E /67 [see also Eq. (44)], one identifies
A =1/7.

From the radiative damping of the Lorentz oscillator
I'=we?/6meymcy and using Eq. (35) one obtains

Ar 1
5_47770’

(48)

where ry=e’/4megmc} is the classical electron radius.

E. Frohlich mode of a small metallic sphere

We now treat a case in which the bare polarizability
entering the Maxwell-Helmholtz equation is frequency
dependent. Consider a small metallic sphere with vol-
ume V =4ma>/3 for which the skin depth is much larger
than the radius a. Writing ag(w®)=[e(w’)—1]V with
2

) (49)

1|2
e(w")=1 (w+

where w
obtains

, is the (bulk) plasma frequency, one readily

=3V @) 50
a(w”)= W3—(w ) (50)

where Eqgs. (33) and (43) have been used. One recog-
nizes that the static polarizability equals 3V, as is known
from electrostatics. The resonance frequency
wy=w, V3 of the so-called Frohlich mode (Bohren and
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Huffman, 1983) corresponds with &(wg)=—2. For the
latter value of the dielectric constant the Mie coefficient
of the electric dipole normal mode exhibits a resonance
with a finite width for a small sphere (Bohren and Huff-
man, 1983). The resonance and the width depend on the
radius of the sphere. The resonance condition to second
order in the size parameter x is e = — (2+ 12x%/5). In our
point-scatterer model the size-dependent shift of w, can
be taken into account by the term proportional to A 7 in
Eq. (33), giving

Ap 1

67 5Sma’

(1)

For the resulting 7" matrix Eqs. (35) and (36) are no
longer valid due to the fact that A7 describes only the
frequency shift. On the other hand, Eq. (39) still applies
and the 7 matrix satisfies the optical theorem with I’
:2(1)0((1)061/6')3/3.

F. Modeling an internal resonance

In this subsection we propose an improved approach
for modeling an atomic or two-level resonance without
recourse to an elaborate microscopic theory. In Secs.
III.A, II1.B, and III.D a resonance comes out a poste-
riori by means of the transverse regularization param-
eter Ay. The internal dynamics of a microscopic system
can alternatively be captured by defining the frequency-
dependent bare polarizability

2
ap(0") = ap(0) X —— (52)

where wp is the (bare) resonance frequency in the ab-
sence of any coupling to radiative modes. With this defi-
nition, a 7" matrix of the form of Eq. (37) satisfying the
optical theorem can be obtained. The coupling to the
imaginary part of the transverse Green’s function G,
leads to a resonance with a finite width (radiative line
broadening): I'=wja(0)/6mc>. Substituting Eq. (52) in
(33) and employing Eq. (43) leads to Eq. (34) with ap
replaced by az(0) and to

Ap 1 (1 . wy— W}
3V ag(0)w;)’

6mc” o)
where w is the observed resonance frequency. The pa-
rameter A4 accounts for a frequency shift of the reso-
nance. The relation Ar=wyQ/c consequently no longer
holds, in fact A r<wyQ/c.
The above approach is more general than the one fol-
lowed in Sec. IIL.A.

(53)

IV. LOCAL DENSITY OF STATES IN THE CASE OF ONE
POINT SCATTERER

In this section we demonstrate the usefulness of our
description of regularized Green’s functions and 7" ma-
trices by investigating the problem of how a point scat-
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terer influences the wave spectrum in its environment. It
is shown that removing the singularities of the Green’s
functions leads to a well-defined local DOS at the posi-
tion of the point scatterer, in contrast to using unregu-
larized Green’s functions.

The complete information on the frequency eigenval-
ues and eigenfunctions of a system is contained in the
corresponding Green’s function. The imaginary part of
the Green’s function gives the (local) DOS belonging to
the continuous or propagating spectrum (Economou,
1979). Before we proceed, an important distinction (La-
gendijk and van Tiggelen, 1996) for classical waves has
to be made due to the fact that the potential V=
—(w/c)*X entering the integral equation (15) depends
on the frequency eigenvalues. To properly count the
number of eigenvalues N( w2)=2j5(w2—wj2) between
w? and w?+dw? of a system with dielectric permeability
e=1+X, one must introduce a suitably defined Green’s
function:

&Esl/zgswz. (54)

Here G is the solution of Eqs. (14) and (15). The Green’s
function G pertains to a properly symmetrized equation
of motion, where & is now connected to the Hermitian
“kinetic-energy” term (Lagendijk and van Tiggelen,
1990),

2

w
— +ie
2

I—-e (VX VX)e G(oh)=18T.
(55)

Since ¢ is diagonal in coordinate space, one obtains for
the diagonal elements of G

tr&(aﬁ,r,r) =tr{e(r)G(w ", r,r)]=trG(w*,r,r)
+tr[ A0 G(w ™" ,r,r)], (56)

where tr denotes the trace operation in polarization
space and use has been made of its cyclic property. The
local DOS N(w,r) can be written as (Economou, 1979)

2w A
N(w,r)=— — Im trG(w™,r,r). (57)

The Jacobian factor 2w/c? originates from d(w/c)?
= (2w/c?)dw. Equation (56) indicates a partitioning
(Lagendijk and van Tiggelen, 1996) of the modes de-
scribed by G into radiative modes (rad) and modes rep-
resenting the energy stored in the scattering matter
(mat),

N(C!),I')ENrad(C!),l')+Nma[((l),l'), (58)
where the radiative local DOS is defined by

2
Noog(w,5)=— W—z} Im trG(w*,r). (59)

For real and scalar dielectric permeability (r) and sus-
ceptibility y(r) one sees that

N(w,r)=¢(r)Nq(w,r),
Nmat(w9r):X(r)Nrat((‘)ar)- (60)
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The local DOS N, equals the density of energy stored
in the material degrees of freedom of the scatterer. Out-
side the scatterer N,,,=0 and the local DOS is entirely
given by N 4. The local DOS N4 can be shown
(Snoeks et al., 1995; Barnett et al., 1996) to be the rel-
evant part of the DOS entering Fermi’s ““golden rule” in
descriptions of the rate of spontaneous radiative decay
of atoms inside dielectrics.

We now calculate N(w,r) for a point scatterer located
at r=0 and described by the susceptibility A(r) [see Eq.
(16)], the Green’s function (22), and the 7T-matrix ele-
ment given by Eq. (37). Since the solution G leads to
nonintegrable singularities, we consider the following
regularized version:

Glo* ) =Gyl 11 +1(@)Go(e NG 1),

(61)

where in the secorlgi term on the right-hand side G, has

been replaced by G,. This replacement can also be in-

troduced when considering the normalization of the

scattering solutions corresponding to Eq. (22). Note that

Go converges exponentially to G, [see Egs. (28) and

(29)]. The local DOS corresponding to the zeroth-order
dynamics of the system reads

2w N w?
No(w,r)=— ? Im trGy(w™,r=0)= WENO((D)-

(62)

The local DOS N, is constant in coordinate space, as
expected, and is solely due to the transverse part of Gg;
see also Eqs. (30) and (31). As already observed in Sec.
I1.C, the singularities at =0 appear only in the real part
of the Green’s functions and applied regularization pro-
cedures therefore do not primarily affect the imaginary
part. Employing the susceptibility X(r)=apd(r)197
gives the local DOS

N(w,r)=Ng(o,r)[1+agd(r)]. (63)

Note that the bare polarizability ap has entered the lo-
cal DOS. The second terms of Egs. (56), (58), and (63)
are nonzero only at the position of the point scatterer
where X'#0. Replacing the delta function for =0 by a
constant 1/V, given by Eq. (32) and defining ap= (e
—1)V,, one obtains

N(wJ:O):SeffNrad(w’rZO)' (64)

We now focus on the calculation of N4 using Eq. (59).
Since G, consists of a transverse and a longitudinal part,
the second term in the Green’s function (22) gives rise
to three contributions in the local DOS in Eq. (59): two
contributions resulting from gg and gé , respectively,
and one “‘mixed” contribution. It can be shown that the
volume integral of the latter contribution equals zero.
The analytical result for N, ,q(w,r=0) reads
| ()]

Niag(@,r=0)=Ny(w) 2 > (65)
ap

where the dynamic polarizability a(w) is given by Eq.
(21). Note that a has again entered in an expression for
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FIG. 1. Local DOS N, 4(w,r)/Ng(w) (solid line) for light scattering from one point scatterer at »=0 as a function of the scaled
radial distance. The local DOS N, corresponds to the zeroth-order dynamics. The transverse (7', dashed line), longitudinal (L,
long-dashed line), and “mixed” (7L, dot-dashed line) contributions are also shown. The inset displays the behavior near the
origin. The chosen parameters are w=wy, QO =100, cA;/wy=100, and cA; /wy=2.3.

a local DOS. Defining the contributions from the

transverse and longitudinal parts of 50 according to
Nyag(@,r=0)=Ny(w)[D7(w)+D(w)+ D7 (w)], one
obtains

) a(w) |?
Di(w)=0%| 75 (66)
p a(w) |?
Di(0)=(cAp/0y)’|—A] > (67)
2

The contribution from the unscattered part of the
Green’s function (22) is included in D y(w). Using the
inequality (41) one derives D;(w)<Dy(w) and
—Dy(0)<2D(w). At resonance |a(wy)/a(0)Q]
=1. Remember that the static polarizability a(0) can be
expressed in terms of w(/c and Q [see Eq. (39)] and that
it is related to ap and A through Eq. (34).
Neglecting the longitudinal part of G, in G would re-
sult in the local DOS N q4(w,r=0) being given by
No(w)|a(w)/a(0)|>. One might have expected the lat-
ter expression in Eq. (65). It is, however, known in solid-
state physics (Mahan, 1981; Lagendijk and van Tiggelen,
1996) that due to certain conservation relations, i.e., the
so-called Ward identities, dynamic corrections to bare
parameters may or may not cancel one another, depend-
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ing on the physical quantity under study. For example,
the effective mass determining the group velocity of
electrons in a medium does not enter the electronic con-
ductivity, but the bare mass does (Mahan, 1981). The
enhancement factor for the mass cancels against the one
for the relaxation time.

Another argument for the appearance of ap in Eq.
(65) follows from noting that for dielectric spheres the
quantity a(0)/az=3/(¢+2) (Jackson, 1975; Born and
Wolf, 1980); see also Eq. (42). This so-called Lorentz
field factor expresses how the internal field differs from
the macroscopic field outside the dielectric. Since the
Green’s function is a two-fiecld correlation function, the
local DOS [see Eq. (57)] should be proportional to
(a(0)/ap)?.

Near a resonance the scattered intensity of light expe-
riences strong delay or retardation effects, i.e., it takes
time to accumulate and discharge energy in the dielec-
tric matter. The dwell time 7;(w) of light inside a scat-
tering object S can be expressed (Lagendijk and van
Tiggelen, 1996) as

_ deerat(w,r)
NO(w)Uscat(w)c ’

denoting the ratio of the stored energy and the current
that carries energy away. Note that the maximal value of
the cross section o, is bounded by the unitarity limit in
Eq. (40), which is independent of the value of Q. For
our point scatterer one finds for the vector case, using
Egs. (21), (38), (62), and (63),

Td( o (69)
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6mc?
Ty(w)= q- (70)

apw

For scalar waves, 6 7—4 . It is interesting to observe
that in the latter case equating 7,(w=wy) =1/" one ex-
actly recovers Eq. (39) relating w,/c, Q, and «(0). Gen-
erally, for finite-size scatterers, the inverse dwell time
near a resonance is of the order of the linewidth. Off
resonance (except for w—0), the dwell time is much
smaller. The dwell time enters expressions (Lagendijk
and van Tiggelen, 1996) for the diffusion coefficient of
light. Cancellation effects similar to those mentioned
above for the electronic conductivity occur in the Ein-
stein relation for light relating the conductivity or trans-
mittance, describing steady-state transport in a disor-
dered dielectric medium, to the product of the DOS and
the frequency-dependent diffusion coefficient. The con-
ductivity or transmittance are bounded from above,
while the DOS for frequencies near a resonance may
become very large (< Q?). Necessarily, near a resonance
the behavior of the diffusion coefficient must cancel that
of the DOS, implying a very sharp decrease (Lagendijk
and van Tiggelen, 1996) in the diffusive transport of
light. The physical picture in the latter case is that near a
resonance the dwell time becomes very large.

We give numerical results for the radiative local DOS
as a function of the radial distance from the point scat-
terer using cA; /wy=2.3. In Figs. 1-3 we show the local
DOS N, 4(w,r)/No(w) for various values of w/w, and
Q. The contributions of D(w,r), D;(w,r), and
D 7 (w,r) are also given. The insets show the finite val-
ues of these quantities at r=0, corresponding to Eqgs.
(66)—(68). The transverse contributions converge to
unity for sufficiently large distances, whereas the longi-
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tudinal and “mixed” contributions decay to zero. Com-
parison of Figs. 1-3 demonstrates that at resonance (w
=w) the amplitude of the spatial oscillations of the lo-
cal DOS are maximal, in accordance with the unitarity
limit (40) of the cross section oy, . At resonance the
local DOS also attains its maximal value proportional to
Q2. In Fig. 4 the local DOS N, 4(w,r)/Ny(w) is de-
picted for various values of Q. For sharper resonances
(higher Q), the local DOS is “pulled” more towards the
origin, i.e., the available mode density is increasingly
concentrated near the scatterer. The vector and scalar
cases are compared in Fig. 5. The scalar local DOS can
be seen to follow closely the transverse contribution to
the vector local DOS.

The analytical results above also apply to scalar waves
using Ny(w)=w?(27*c?) and A, —0. In addition, one
now has ap=a(0). The local DOS N 4(w,r) for the
scalar case takes the form

Nrag(@,1) ?

No(w)

a(w)

a(0)Qurlc
X{Q[1—(w/wy)*][sin 2kr—2e A" sinkr]
+(w/wy)3[cos2kr—2e Acoskr+e 2M 7},

(71)

=1+(w/w0)

where A=wyQ/c. The regularization terms cancel the
1/r? singularity. Note the exponential behavior as a func-
tion of A, which is due to the exponential behavior of
the regularized scalar Green’s function (25).
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V. DIELECTRIC CONSTANT
AND THE LORENTZ-LORENZ RELATION

In this section we consider the electromagnetic re-
sponse of a collection of polarizable point particles. The
cases of lattices with cubic symmetry and of configura-
tionally disordered media such as gases and liquids will
be treated. The dielectric constant is seen to satisfy the
Lorentz-Lorenz relation (LLR; Born and Wolf, 1980).
For cubic lattices the presented results are exact for low
frequencies. In the case of disordered systems we discuss
a rigorous microscopic derivation of the LLR (La-

gendijk et al., 1997), which includes particle correlations
up to infinite order in the density.

A. Cubic lattices

Consider a periodic arrangement of identical point di-
poles. Borrowing concepts from solid-state physics, one
can express the electric field as

Eow,r)=2, E(w,k—K)e!k KT (72)
K

-y
o
T
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FIG. 4. The local DOS N,,4(w,r)/Ny(w) for various values of the quality factor Q. As in Fig. 2 we have w=0.950,. Solid line,
0 =100; dashed line, Q =200; long-dashed line, O =300; dot-dashed line, O =400.
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where k is the Bloch wave vector in the first Brillouin
zone and {K} are reciprocal-lattice vectors. The periodic
potential V, entering the vector Maxwell-Helmholtz
equation for the electric field, can also be expanded in
terms of K vectors,

V(iw,r)=- (w/c)zaBg S(r—R)= ; V(w,K)eXr,

ViwK)=—(w/c)® <. (73)
in which {R} are lattice vectors and () is the volume of
the primitive cell of the direct lattice. Note that for point
dipoles V(w,K) is independent of K. The secular 3 X3
determinant of the vector Maxwell-Helmholtz equation

is now simply given by

=0,

(74)
which implicitly determines the dispersion law w(k). The
solutions w(k) also follow from considering the poles of
the T matrix of the entire lattice, which can be shown
(Ziman, 1965) to be fixed by the Korringa-Kohn-
Rostoker (KKR) condition in the case of muffin-tin-like
potentials. In our case it reads

‘ R70

where Gy(w)=lim, |, Go(w+ie) [see Eq. (8) and Kohn
and Rostoker (1954)] and the 7T-matrix element # is de-
fined by Eq. (19). Note that the properties pertaining to

Ly 1 I
0% (W) T- kKA ¢ (0l0)ay

M RGy(w,R) —tl(w)I’ = (75)
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the lattice structure and the single-particle potential en-
ter Egs. (74) and (75) separately.

The equivalence of the two determinantal conditions
can be understood by recognizing that the sum in Eq.
(74) can be represented by (Kohn and Rostoker, 1954)

1 s 1
Q€ (w/c)T-k—K?A_k

=2 e M RG (0, R)=G(r=0),

(76)
R

where Gy (r=0) denotes the lattice Green’s function or
Greenian evaluated at r=0. Taking together Gy(w,r
=0) and the single-particle potential term finally yields
the T-matrix element, Eq. (19). Gy(r=0) is real and
self-adjoint, since the Greenian Gy(r) is Hermitian
(Kohn and Rostoker, 1954). Therefore the imaginary
parts of the two terms in Eq. (75) cancel each other. The
treatment of the singularities of the Green’s function
and the subsequent formulation of the 7" matrix have
been discussed in Secs. II.C and III.A, respectively. Ob-
viously, the singularities of G, are also present in the
reciprocal wave-vector representation. The sum in Eq.
(74) contains divergent contributions, which can be
treated in the same manner as before. We write

> 1

% (0/c)’T—|k—K|*A_g

1
:% (w/c)*—k—K| Ak-xk
1
TR (k-K)®(k—K) |,
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1
:; (w/c)*T— k- K[*A_x
(1= 0Ky) IS
K2 Ak (/6)2K®K Ig; KZAK
+> ! kek 77
K (w/c)2 o8 ( )

where the divergences have been identified and taken to
be independent of k. In accordance with the singularities
of Gy(r=0) being proportional to the unit dyadic [see
Egs. (30) and (31)], we define

1 1 1 2 Ay

Q& N 02 3k ek (78)
1 A oA 1 1 A3
5; K®K=5; 3T=c T (79)

For cubic lattices these sums are indeed diagonal and
isotropic in polarization space. For other lattice symme-
tries, the sums in Egs. (78) and (79) may be approxi-
mated for large K by integrals giving (infinite) contribu-
tions proportional to the wunit dyadic, while the
summations over the smaller K vectors give rise to ad-
ditional (finite) terms having a different structure in po-
larization space. From now on, we shall consider only
lattices with cubic symmetry. Employing Eqgs. (34) and
(35), we find that condition (74) finally reduces to

1 1 2(1- 5gy)
= T _1l2 + 2
Q K (Q)/C) T |k K| Ak—K 3K

7z

1
3wl I} - y_l(w)I‘ =0, (80)

where the “effective” interaction v is defined according
to

Y(w)=—(w/c)’a(w), (81)
- @}
a(w)=a(0)><m. (82)

The interaction term 7y resembles the T-matrix element
(37) except that the imaginary part in the latter is now
absent. Note that the third term in the sum of Eq. (80) is
also present for K=0. The singularity of the longitudinal
Green’s function can also be thought of as originating
from the & function in Eq. (11) (see Sec. I1.C). Using the
identity 2gd(R)=1/Q2k1 one then immediately recog-
nizes how to subtract the delta function of G5 from the
Greenian of Eq. (76).! Equation (80) allows for a very
efficient procedure for determining the dispersion law
(k). Instead of numerically diagonalizing a 3NX3N
matrix (where N is the number of K vectors taken into

IThis subtle point was overlooked in the paper by van Co-
evorden et al. (1996) leading to the incorrect result in the long-
wavelength limit for cubic lattices that £(0)=1+2(0)/Q.
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account), one needs to find the roots of an w-dependent
equation. Using Eq. (80) and its scalar version (Sprik
et al., 1996, van Coevorden et al., 1996), one computes
optical band structures of face-centered-cubic lattices of
resonant point dipoles.

The dielectric constant for the lowest frequencies can
be obtained analytically from Eq. (80). For the longest
wavelengths the K#0 transverse contributions are neg-
ligible, while the sum of longitudinal terms with K+#0
cancels against Sk ¢Z/[3(w/c)?]. The resulting expres-
sion, [(w/c)?T—k*Ay] ' —[3(w/c)?] 1T equals the con-
tinuum Green’s function (6) minus a factor that effec-
tively removes the delta-function contribution in direct
space. It then easily follows that the electric-field solu-
tions E(w,k) are transverse and that

e(@) =W (WK =1+ 7 a(w)/ i) (83)

—a(w)/3Q°

where « is given by Eq. (82). The dielectric constant is
seen to satisfy the well-known LLR (Born and Wolf,
1980). Usually, the LLR refers to Eq. (83) when solved
explicitly for the polarizability. Its zero-frequency ver-
sion is often called the Clausius-Mossotti equation. The
obtained Bloch wave E(w,k) is an exact solution with a
real-valued w(k)? and therefore represents a state with
an infinite radiative lifetime. Correspondingly, € is real,
since «a is real. (If Eq. (83) were valid for all frequencies
e would not be a proper response function. Application
of the Kramers-Kronig relations to Eq. (83) would give
g(w)=1+a(0™)/[Q(1-a(w*)/3Q)], which is com-
plex only at the resonance frequency w%,=wj
—(0)/302.) These results are consistent with those
from Hopfield (1958), Lamb et al. (1980), Knoester and
Mukamel (1989), Sozier et al. (1992), and Juzeliunas
and Andrews (1994).

Sozuer et al. (1992) have studied the convergence
problems that arise when diagonalizing the Maxwell-
Helmbholtz equation in reciprocal space for lattices of
dielectric hard spheres. They show that care should be
taken to obtain correct results. Here, Eq. (83) seems to
be found using only the K=0 transverse term. It must
be remembered that (infinitely many) K+#0 contribu-
tions, representing the singularities of G, enter into the
formulation of the polarizability @(w). Compared to the
case of dielectric hard spheres (Sozuer et al., 1992), it
may then be expected that in our case convergence
properties are considerably improved for the higher fre-
quencies, where the K#0 terms are important.

B. Disordered media

This subsection is based on recently published work
done in collaboration with van Tiggelen and Nienhuis
(Lagendijk et al., 1997). The dielectric function of a con-
figurationally disordered system originates from the col-
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lective response of dipoles excited by the incoming field
and the rescattered fields of all other dipoles. Finding an
exact solution is very difficult, since it involves a genuine
many-body problem. Within the framework of standard
response theory the dielectric constant is given by

g(w)=1+pa(w), (84)

in which p and «, respectively, represent the density and
the (complex) polarizability of the microscopic constitu-
ents. By postulating the existence of a dynamic “local
field” differing from the macroscopic field, Eq. (84) can
be modified considerably, resulting in a very accurate
description for gases and liquids (Bottcher, 1973). The
connection between the local field and the macroscopic
Maxwell field is given by the so-called Lorentz local-
field factor (Born and Wolf, 1980). In its simplest form
this factor is (¢ +2)/3, yielding for the dielectric constant
the LLR

pa(w)

1-ipa(w)
(85)

The LLR apparently involves terms up to infinite or-
der in the density. The local-field concept, however, is
not expected to be exact and one would like to know
which many-body contributions are included in the LLR
and which are not. Many alternative and/or simplified
derivations of the LLR rely on the concept of a local
field and the application of macroscopic considerations
based on Maxwell’s equations, see, for example, van
Kranendonk and Sipe (1977), Born and Wolf (1980),
and Schnatterly and Tarrio (1992). The theoretical foun-
dation of the LLR is therefore hard to assess and diffi-
cult to improve upon. In the conventional approaches it
is generally assumed that the positions of the constituent
dipoles can be replaced by a continuous dipole density,
and one then applies arguments of the mean-field type.
Some remnant of particle correlations are included by
excluding a small sphere—the so-called Lorentz cavity—
around some origin. A shortcoming of these conven-
tional derivations can readily be pointed out: In
multiple-scattering contributions, many-particle correla-
tions have been taken into account only approximately.

In the scattering approach the exact Green’s function
G, describing the dynamics of the dielectric medium, can
be expanded into a series of scattering events that can
be classified either as singly or multiply connected
(Frisch, 1968). A singly connected event can, in contrast
to a multiply connected event, be written as the product
of lower-order events. Employing the Green’s-function
formalism proves to be very useful, since the dielectric
constant is determined completely by the multiply con-
nected scattering events. For liquids and gases G(ry,r,)
is averaged over all particle positions: (G(r;,r,))=G(r;
—r,) (Frisch, 1968). Its Fourier transform G(p) can then
be written as

g(w)+2

e(w)=1+pa(w)X 3

1
8(w+,p)(w+/c)21—p2Ap’

Gw",p)= (86)

Rev. Mod. Phys., Vol. 70, No. 2, April 1998

where the dielectric constant ¢ is connected to the self-
energy (Frisch, 1968) of the averaged Green’s function.
The dispersion law given by the poles of G is generally
complex valued, since plane or Bloch waves are not ex-
act eigenstates of a disordered system. The use of point
scatterers [see Eq. (16)], or Rayleigh hard-sphere par-
ticles considerably simplifies the computation of many-
body contributions to the dielectric constant. For a
single point scatterer, the scattering solution is exactly
determined by the T matrix (20) and the T-matrix ele-
ment (37). The corresponding polarizability is complex,
since the 7 matrix satisfies the optical theorem. There-
fore, contrary to the LLR given by Eq. (83) valid at low
frequencies for cubic lattices, the above LLR is
complex-valued.

A very common approximation involves scattering
from as many particles as many times as possible, but
never more than once from the same particle. In addi-
tion, particle correlations are neglected. This indepen-
dent scattering approximation (ISA) amounts to consid-
ering only the events that are lowest order in the density
and yields as a result Eq. (84), which also follows from
response theory. Within the ISA, the scattering from
particle i to particle j is counted as 7;Gy7; in the Green’s
function G for all possible positions of particles i and j.
In the following we fully account to all orders in the
density for those configurations in coordinate space
where point particles overlap, ie., R;=R;, to be re-
ferred to as the forbidden region. It turns out that the
LLR is obtained by adding to Eq. (84) contributions to
all orders of the particle correlations in this region.

The probability distribution g,,(1,...,m) for observ-
ing m particles at positions Ry, ... ,R,,, can be decom-
posed using the irreducible correlation functions
h,,(1,...,m) according to

gi(l)=hy(1)=1,

§2(12)=hy(1)h(2) + hy(12),

g3(123)=1+h(1)hy(23)+h{(2)hy(13)
+h1(3)hy(12)+h3(123), (87)

and so on. The irreducible correlation function 4, con-
tains that part of g,, that cannot be written as a linear
combination of products of correlation functions 4 of
lower order. In the forbidden region these functions are
denoted by a union sign: g, and &,, . For classical par-
ticles clearly g =0 for m>1. Then it follows that 45 =
-1, hg =42, and hf =—6, and so on. The computation
of high-order k! quickly becomes cumbersome. The
correlation functions {4,,} enter when the Green’s func-
tion G, expanded as a series of scattering events, is aver-
aged over the particle positions. Singly and multiply con-
nected events can then unambiguously be distinguished.
For the dielectric constant only the latter should be con-
sidered.

For example, by considering the multiply connected
two-particle contribution h5' (i 7)T:GoT; to &, one is able
automatically to take into account in G the singly con-
nected three-particle events A5 (i 7)7:G07,GoT; and
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h5 (jk)T:GoT,GyTy. (note the order of the particles in
h,,). Hence the remaining three-particle events,
h;(ik)?jgﬂ;g(ﬂ}( and héj(ijk)ZQ(ﬂ}g(ﬂ}(, which are
multiply connected, completely determine the third-
order density contribution to the dielectric constant.

When averaging over the particle positions and taking
into account only the forbidden region, one finds that
the dominant contribution comes from the delta func-
tion in the Green’s function (8) (Lagendijk and van
Tiggelen, 1996), since for point scatterers the “effective”
range of A, is always smaller than the wavelength. It can
then be shown that the dielectric constant ¢ to all orders
in the density becomes

pa(w))’”’ (88)

s(w)=1+pa<w)mZ:O Hmﬂ(— 3

where H,, denotes the sum of those products of 4\’ (n
<m) that enter in multiply connected scattering dia-
grams involving h, 7, and G,, e.g., Hy=h(j)h5 (ik)
+h3 (ijk)=1. It can be proven that

Hy=(—1)"", (89)

The latter result was found earlier by Felderhof et al
(1983), who followed an alternative approach for deriv-
ing the Clausius-Mossotti equation. Substituting Eq.
(89) into Eq. (88) finally gives the LLR.

Microscopic derivations of the second-order term
1p*a? of Eq. (85) employing point dipoles have already
been obtained by Kuz’min et al. (1994) and Morice et al.
(1995). The remarkable property that H,,.,=H,,_,
X H, means that uncontrolled approximations may turn
out to give correct answers. Note that applying the Kirk-
wood superposition approximation (Hansen and Mc-
Donald, 1976), leading to entirely different expressions
for the irreducible correlation functions #,,, would not
reproduce the LLR in the above way.

Our approach can also be applied to AB mixtures,
giving

m»

paastppag
EABT 1+ 1 1 .
( 1—=3pacs— §PBa’B)
Transforming the densities into volume fractions, Eq.
(90) essentially represents the well-known Maxwell-
Garnett formula (Garnett, 1904).

(90)

VI. SUMMARY

Exact solutions describing the scattering of waves
from one finite-size scatterer with or without an internal
structure are generally too complicated and unmanage-
able to be useful in computations dealing with multiple-
scattering effects. Going beyond the independent-
scattering (Boltzmann) approximation one is basically
faced with a complicated many-particle problem. A
point scatterer representing a finite-size scatterer may
then serve as an appropriate building block for this
problem at appropriately chosen frequencies. Important
information for adequately describing multiple-
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scattering phenomena can be contained in the exact
scattering solution for one point scatterer: elastic scat-
tering, polarization effects, tensorial polarizabilities, and
internal (finite) resonance may all be taken into account.
The point scatterer is equivalent to the (effective) two-
level model system often used in atomic physics and
quantum optics.

We have presented a closed scalar and dyadic
Green’s-function description of the scattering of classi-
cal electromagnetic waves from pointlike objects—
pointlike in the sense that their structure cannot be re-
solved on the scale of the wavelength of light. Our
approach has the following implications: The correct fi-
nite values of “global” scattering quantities such as the
T matrix and the static or dynamic polarizability are en-
sured. Divergences in r-dependent quantities such as the
local DOS appearing in the proximity of the scatterer
have been removed. The singularities of Green’s func-
tions in coordinate space have been given a finite value
in accordance with values for physical observables. The
resulting regularized Green’s functions are continuous
functions in coordinate space. The nonuniqueness of the
employed regularization procedures does not pose a
problem, since the length scales (1/Ay ;) involved are
much smaller than the wavelength. The parameters 1/A 7
and 1/A; can be shown to be smaller or of the order of
the physical size of the finite-size object represented by
the point scatterer, so a completely self-consistent de-
scription has been obtained. In multiple-scattering calcu-
lations one may straightforwardly consider higher-order
scattering processes involving higher powers of G which
would otherwise give divergent results.

We saw that in the case of scalar waves a single regu-
larization parameter is required, whereas in the vector
description two different ones are to be distinguished.
One, the longitudinal parameter A , is associated with a
static quantity, i.e., the size of the point scatterer. The
parameter A7 is determined by dynamic parameters,
1.e., the resonance frequency w, and the quality factor Q
of the resonance. The static parameter relates the bare
polarizability ap with the static polarizability «(0). Mak-
ing the choice A~ A leads to the unphysical result Q
<1 [cf. Eq. (41)]. Moreover, at resonance one then has
Ar<wgy/c, which would not be consistent with the
point-scatterer approach.

The obtained 7 matrix for the point scatterer has
been related to the behavior of several physical models
in certain regimes. The usefulness of the regularized
Green’s functions has been shown by calculating the ra-
diative local DOS in the presence of one point scatterer.
We have also applied our approach to the description of
the electromagnetic response of a collection of dipoles.
The Lorentz-Lorenz relation (LLR), relating the polar-
izability and the dielectric constant, has been derived for
cubic lattices and for liquids and gases.

We have discussed the advantages of employing the
notion of point scatterers in multiple-scattering prob-
lems. Much theoretical progress has been achieved using
point scatterers as a microscopic building block in very
diverse fields of physics. These include weak localization
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and diffusive transport of light [for reviews see Sheng
(1995) and Lagendijk and van Tiggelen (1996)], photo-
nic bandgap materials (Sprik et al., 1996; van Coevorden
et al., 1996), Bose-condensed gases ( Anderson et al.,
1995; Bradley et al., 1995; Davies et al., 1995), optical
lattices (Birkl et al., 1995; Tan et al., 1995; Weidemuller
et al., 1995), and the optical analog of the Hall effect
(van Tiggelen, 1995; van Tiggelen et al., 1996). Undoubt-
edly, further developments in these fields are possible.
For example, the study of theoretical refinements to the
Lorentz-Lorenz relation for gases and liquids may be
pursued further; see also Cichocki and Felderhof (1988a,
1988b, 1989) and van Tiggelen et al. (1990). Using a clas-
sical multiple-scattering formalism, one can consider
possible Lorentz local-field corrections to stimulated
emission of atoms in a dielectric environment. In this
way, using Einstein’s thermodynamic argument relating
stimulated and spontaneous emissions, one can study
the interesting problem of finding the correct local-field
correction to the Einstein A coefficient, without re-
course to quantum-mechanical calculations [see, for ex-
ample, Knoester and Mukamel (1989) and Barnett et al.
(1996)]. The velocity dependence of the free-space spon-
taneous emission of atoms (Wilkens, 1993) may also be
investigated employing approaches described in this
work.
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APPENDIX: COMPUTATION OF DYADIC
GREEN’S FUNCTIONS

In the computation of Gy(w™,r), Gi(o™,r),
Gi(w™,r), and their regularized versions using the cor-
responding expressions in momentum space, one has to
evaluate the angular integral [ dp/(4m)exp(ip- r)p®p
(Remember that V,=Z—p®p.) Employing exp(ip-r)p
®p=—(1/p*)VeV exp(zp r) one obtains

f dp e 1V Vf dp
Eexp(zp‘r)p@)p— 2 ® — exp(ip-1),
1 sin pr
=— .V ,
p’ pr
_Ji(pr)

I-ja(pr)rer, (A1)

pr
where the spherical Bessel functions j; and j, are given
by ji(x)=sin x/x’—cos x/x and j,(x)=(3/x*—1)sin x/x
—3 cos x/x%. Integrals over p can be evaluated by per-
forming contour integrations in the complex plane. The
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appearance of a delta-function contribution is discussed
in Sec. IL.A. Representation (7) of the solution Gy(w™,r)
simply follows from

®
ot 0= | s explip. r)( v p)
1
“K—pTvie (A2)

and from treating the factor exp(ip-r)p®p as above.
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