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This article reviews the dynamics and observational signatures of particles interacting with monopoles,
beginning with a scholium in Newton’s Principia. The orbits of particles in the field of a gravomagnetic
monopole, the gravitational analog of a magnetic monopole, lie on cones; when the cones are slit open
and flattened, the orbits are the ellipses and hyperbolas that one would have obtained without the
gravomagnetic monopole. The more complex problem of a charged, spinning sphere in the field of a
magnetic monopole is then discussed. The quantum-mechanical generalization of this latter problem
is that of monopolar hydrogen. Previous work on monopolar hydrogen is reviewed and details of the
predicted spectrum are given. Protons around uncharged monopoles have a bound continuum.
Around charged ones, electrons have levels and decaying resonances, so magnetic monopoles can
grow in mass by swallowing both electrons and protons. In general relativity, the spacetime produced
by a gravomagnetic monopole is NUT space, named for Newman, Tamborino, and Unti (1963). This
space has a nonspherical metric, even though a mass with a gravomagnetic monopole is spherically
symmetric. All geodesics in NUT space lie on cones, and this result is used to discuss the gravitational
lensing by bodies with gravomagnetic monopoles. [S0034-6861(98)00402-4]
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I. INTRODUCTION

Poincaré (1895) seems to have been the first to discuss
the interesting motion of a charged particle in the field
of a magnetic monopole. Goddard and Olive (1978), in
their fine review of monopoles in gauge-field theories,
derive his result in vector form whereas Hautot (1972)
discusses the motion about a charged monopole by sepa-
ration of variables in r ,u,f coordinates. He extends his
results to relativistic motion. Schwinger et al. (1976) dis-
cuss the motion of dyons, charged monopoles in each
other’s fields. Goldstein (1980), in the second edition of
his book, poses an interesting example of motion in the
field of monopoles. However, no-one previously has
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pointed out Newton’s interesting insights relating to this
problem in his Principia. Our interest arose because one
of us was asked to review Chandrasekhar’s (1995) book
on Newton’s Principia (1686) for Notes and Records of
the Royal Society (Lynden-Bell, 1996). This led to his
reading passages of Cajori’s translation of the Principia
(1934). In his first proposition Newton shows that mo-
tion under the influence of a central force will be in a
plane and that equal areas will be swept by the radius
vector in equal times. In his second proposition he
shows that if a radius from a point S to a body sweeps
out equal areas in equal times then the force is central.
There follows this scholium: ‘‘A body may be urged by a
centripetal force compounded of several forces; in which
case the meaning of the proposition is that the force
which results out of all tends to the point S . But if any
force acts continually in the direction of lines perpen-
dicular to the described surface, this force will make the
body to deviate from the plane of its motion; but it will
neither augment nor diminish the area of the described
surface and is therefore to be neglected in the composi-
tion of forces.’’

What does this mean?
The words described surface have been translated

from a Latin word that carries the extra connotation of a
surface described by its edge. We shall take this to be
the surface swept out by the radius vector to the body
that is now describing the non-coplanar path. A force
normal to this surface at the body must be perpendicular
to r and v, which are both within the surface, so Newton
is considering extra forces of the form Nm0r3v where
N may depend on r, v, t , etc. We write the equation of
motion

m0d2r/dt252V8~r ! r̂1NL, (1.1)

where V(r) is the potential for the central force, r̂ is the
unit radial vector, and

L5m0r3v. (1.2)
427(2)/427(19)/$18.80 © 1998 The American Physical Society
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Taking the cross product r3Eq. (1.1) we have

dL/dt5Nr3L, (1.3)

from which it follows either geometrically à la Newton
or by dotting with L that

uLu5const. (1.4)

Now if w is the angle measured within the described
surface between a fixed half line ending at S and the
radius vector,

1
2

r2ẇ5
1
2

uLu/m0 , (1.5)

so equal areas are swept out in equal times just as New-
ton says. To see this angle more precisely it is perhaps
worthwhile to work in axes that are continually tilting to
keep up with the plane of the motion. In any axes rotat-
ing with angular velocity V(t), the apparent accelera-
tion r̈ is related to the absolute acceleration d2r/dt2 by

d2r/dt25 r̈12V3 ṙ1V̇3r1V3~V3r!. (1.6)

We shall apply this formula to axes that are always tilt-
ing about r̂ such that in these axes the motion appears as
planar. Thus putting V5V r̂ in Eq. (1.6), we find that

d2r/dt25 r̈1Vr21L/m0 . (1.7)

Inserting this into Eq. (1.1) and choosing

V5rN , (1.8)

we recover in these axes the equation we would have
had in inertial axes had Newton’s extra force}N been
absent, i.e.,

m0 r̈52V8 r̂. (1.9)

Thus relative to these moving axes r3m0ṙ5L is con-
stant not only in magnitude but also in direction, and

ur3 ṙu5r2ẇ5L/m0 , (1.10)

where w is the angle at S between some line fixed in the
moving axes and the current radial line (this is of course
equal to the earlier angle, since this moving plane is
‘‘rolling’’ on the described surface about the common
radius vector).

We now return to the inertial axes in which the direc-
tion of L varies in accord with Eq. (1.3). Dotting Eq.
(1.1) with v5dr/dt , we find that the N term goes out so
the energy equation is left unchanged and we have, re-
membering that L2 is constant,

m0

2
v21V5

m0

2 F ṙ21X L

m0
C2

r22G1V5E . (1.11)

Here ṙ is the same in fixed or rotating axes, since this r
is scalar. Equation (1.11) demonstrates that the radial
motion r(t) is precisely that which would have occurred
had N been zero. Furthermore Eqs. (1.9) and (1.10)
demonstrate that within the tilting axes, or [using Eq.
(1.5)] within the described surface, the solution r(w) is
precisely the same function that we would have found
for the truly planar motion that occurs with N absent.
Although this extension of Newton’s theorem is not in
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the Principia, it would surprise us if Newton had not
seen and understood it. There is interesting historical
research to be done here on Newton’s surviving manu-
scripts. We know from Whiteside that this scholium was
not in the first draft of Newton’s De Motu Corporum
written in Autumn of 1684 but appears in its revision,
which is probably dated to the Spring of 1685.

Although Eqs. (1.5) and (1.11) are sufficient for the
solution of the motion within the described surface, we
need to find that surface by solving Eq. (1.3) for a com-
plete description of the motion. This is not particularly
simple, and to do it we need to prescribe how N depends
on r, v, t , etc. However, dL/dt and d r̂/dt are always
parallel, since both are perpendicular to r and L. This
led us to consider under what circumstances they might
be proportional. In particular,

d r̂/dt52 r̂3~ r̂3v!/r52r3L/~r3m0!, (1.12)

so in full generality we have from Eq. (1.3)

dL/dt52~m0Nr3!d r̂/dt . (1.13)

This demonstrates that when m0Nr35Q* 5const we
have a beautifully simple solution to Eq. (1.13), to wit,

L1Q* r̂5j5const. (1.14)

Here j is the vector constant of integration; notice that
Q* has the same dimensions as L . Since L and r̂ are
perpendicular we deduce, dotting with r̂,

j• r̂5Q* , (1.15)

which shows that the angle between j and r̂ is constant
so r̂ moves on a cone whose axis is along j. Similarly
dotting Eq. (1.14) with L, we find L25j•L, so likewise L
moves on another cone with j as its axis. If this cone has
semi-angle x, then L/uju5cos x, but r̂ and L are orthogo-
nal and by Eq. (1.14) they are coplanar with j, so we may
choose [cf. Eq. (1.15)]

Q* /uju5sin x . (1.16)

Thus the angle between r̂ and j is p/22x , as shown in
Fig. 1. Notice from Eq. (1.16) that the angle of the cone
is determined completely from uLu and the force constant
Q* . Orbits with larger uju have smaller x, so the angular
momentum then moves around a narrow cone and r̂
then moves around a very open one. For uju@Q* that
cone is almost planar. Figure 1 illustrates two circular
orbits moving in opposite senses about the same axis.
Notice that the one moving right-handedly about the
upward-pointing axis is displaced above the center, sit-
ting like a halo about it, while that moving left-handedly
is displaced below the center like an Elizabethan ruff
below the head. One might have supposed that for j
@Q* these two circular orbits would approach the cen-
tral plane, but although the cone becomes much flatter
and more open the displacement between the direct and
retrograde orbits actually increases. For circular orbits
at distance a from S we have, for a Newtonian potential,
L25GMam0

2 and the displacement is

2 ĵ•r5a/AGMam0
2Q

*
2211→m0

21Q*
Aa/~GM !.
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We have been led to the case m0Nr35Q* 5const for
reasons of mathematical simplicity, but this case is more
than a mathematical curiosity because

(1) Of all the forces of Newton’s N type [see Eq. (1.1)]
only those of the form 2v3 r̂r22Q* (u ,f) derive from a
Lagrangian. For a monopole Q* is constant.

(2) We may rewrite this force in the form

NL52Q* v3r/r35
m0

c
v3Bg , (1.17)

where

Bg52Q r̂/r2, Q5Q* c/m0 . (1.18)

We have introduced the velocity of light c to make the
analogy with magnetic forces even more obvious. Bg is
clearly the field of a magnetic monopole of strength Q ,
but since this sort of magnetism acts not on moving
charges but rather on moving masses, it is a gravomag-
netic field. Such fields are well known in general relativ-
ity [see Landau and Lifshitz (1966) §89, problem 1].
They are position-dependent Coriolis forces associated
with what relativists less helpfully call the dragging of
inertial frames. The field Bg as we have defined it has
the same dimensions as g, the acceleration due to grav-
ity, and Q/G has the dimensions of mass. In electricity,
like charges repel, while in gravity, like masses attract. It
is the same with like magnetic monopoles. They repel

FIG. 1. The circular orbits about a central potential endowed
with a monopole. The orbits in opposite senses are displaced
above and below the center of force. For a Newtonian poten-
tial their vertical separation gradually increases as their radii
are increased. The orbits with a given angular momentum uLu
lie on cones with opening angle cos21(Q* /uju).
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
while the gravomagnetic monopoles of like sign attract
one another; hence the negative sign in Eq. (1.18) is best
left there rather than combined into a new definition of
the pole strength Q . We may find the Lagrangian corre-
sponding to the force (1.17) by analogy with the electro-
dynamic case. There we add a term qv•A/c where q is
the charge and A is the vector potential. For any poloi-
dal axisymmetric magnetic field one may choose A to be
of the form A¹f where f is the azimuth around the
axis. We require

2Q r̂/r25Bg5“3~A¹f!5¹A3¹f (1.19)

from which one readily finds that A5Q(11cos u) gives
the right Bg . Thus a Lagrangian for Eq. (1.1) is

L5 1
2 m0v22m0V~r !1Q* ~11cos u!v•¹f . (1.20)

Although the dynamic system is spherically symmetric,
the Lagrangian is not and cannot be made so. The only
spherically symmetric vector fields are f(r)r. If A were
of this form its curl would be zero and therefore could
not be the field of a monopole. Of course we can choose
any axis we like and measure u and f appropriately
from it. The A field will then be quite different but it will
give the same Bg field by construction. Thus the differ-
ence between any two such A fields will have zero curl,
showing that A85A1¹x , i.e., a gauge transformation.
The Lagrangian (1.20) is neither spherically symmetric
nor gauge invariant but it is a member of a whole class
of equivalent Lagrangians with different axes which are
related by gauge transformations. Whereas none of
these is individually spherical, the class of all of them is
spherically symmetric. The moral is that it can be restric-
tive to impose symmetry on a single member of the class
if the member is not gauge invariant.

So far everything holds for any spherical potential
V(r). We could, for example, choose it to be Henon’s
(1959) isochrone potential 2aV0 /(a1Ar21a2) or its
better known limits the simple harmonic oscillator a@r
or the Newtonian potential a!r . For all isochrones the
orbits can be solved using only trigonometric functions
(see, for example, Lynden-Bell, 1963; Evans et al., 1990).
Here we shall stick to the Newtonian potential V/m05
2GM/r . We have already shown that the motion lies on
a cone whose semi-angle is given by cos21(Q* /uju); fur-
thermore, if we slit that cone along w50 and flatten it,
the orbit will be exactly what it would have been in the
absence of N , i.e., a conic section. Of course when we
slit and flatten the orbit’s cone a gap appears whose
angle is g52p(12L/AL21Q2); see Fig. 2. An ellipse
with focus at S and apocenter at w50 would get back to
apocenter at w52p but unfortunately the gap inter-
venes. On the cone we identify w50 not with w52p but
rather with w52p2g . Thus on the cone the ellipse will
precess forwards by an angle g in each radial period
(Fig. 3). This angle g is an angle like w measured at S
within the cone’s surface. It is perhaps more natural to
measure angles h around the axis of the cone; these
angles are related through ḣ5ẇ/cos x5L/(m0r

2cos x),
so h5w sec x5wuju/L .

In these terms the precession per radial period is
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Dh52p~ uju/L21 !. (1.21)

Newton in his proposition on revolving orbits showed
that the addition of an inverse cube force led to an orbit
of exactly the same shape, but traced relative to axes
that rotate at a rate proportional to ḟ in the original
orbit. It is natural to ask whether such an additional
force can stop the precession around the cone of an or-
bit in the monopolar problem and so yield an orbit that
closes on itself in fixed axes. Wonderfully a simple
change in V(r) does this, not just for one orbit but for
all orbits at once. We thus obtain a new superintegrable
system in which all bound orbits close. By analogy with
Hamilton’s derivation of his eccentricity vector (Hamil-
ton, 1847) we take the cross product of the equation of
motion (1.1) with j5L1Q* r̂. On the right-hand side
two terms are zero and the remaining two are multiples
of d r̂/dt [cf. Eq. (1.12)] so we find

m0j3d2r/dt252~m0r2V81Q
*
2 r21!d r̂/dt . (1.22)

This will integrate vectorially if the bracket is constant.
Calling it GMm0

2 we find the potential must be of the
form

V/m052GMr211
1
2

Q
*
2

m0
2 r22. (1.23)

Evidently the required inverse cube repulsive force is
proportional to the square of the monopole moment Q .
Integrating Eq. (1.22) we have

dr/dt3j5GMm0~ r̂1e! (1.24)

where e is the vector constant of integration. Dotting
Eq. (1.24) with r̂ we have

l * /r5~11e• r̂… (1.25)

FIG. 2. When one of the cones is slit and flattened a gap opens
along the slit. On the cone itself the sides of this gap are iden-
tified. Orbits that close on a plane will not close on the cone
because of the gap. As a result they precess.

FIG. 3. An ellipse precessing around a cone of semi-angle 70°,
making a rosette orbit on it.
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where l * 5L•j/(GMm0
2)5const. Equation (1.25) is the

equation of a conic section of eccentricity e which de-
fines the direction to pericenter. But we have not yet
proved that the orbit lies in a plane so Eq. (1.25) actually
defines a prolate spheroid, paraboloid, or hyperboloid.
Nick Manton, by analogy with his work on monopoles in
Euclidean Taub space (Gibbons and Manton, 1986),
showed us that the motion is in fact planar; multiplying
Eq. (1.25) by Q* r and making use of Eq. (1.15), we
obtain

Q* l * 5~j1Q* e!•r.

This demonstrates that the orbit lies on a plane whose
normal is j1Q* e. As r also lies on a cone this provides
another proof that the motion lies along a conic section.

Notice that the vector integral e in Eq. (1.24), to-
gether with the integral j, appears to provide six inte-
grals of the motion. However, they are not all indepen-
dent because 2e•j5 r̂•j5Q* , so they provide five
independent integrals. Thus we have a new superinte-
grable dynamic system in which the bound orbits exactly
close (cf. Evans, 1990, 1991).

It was the beauty and simplicity of these results for
monopoles in classical mechanics that led us to believe
that a similar simplicity might well be discernible both in
quantum mechanics and in general relativity. We were
not disappointed; both had already attracted attention.
For motion in special relativity j is still conserved
provided L is interpreted as m0r3dr/dt5m0r
3v/A12v2/c2 (Hautot, 1972).

For comparison with quantum theory it is most re-
vealing to consider first the classical motion of a small
spinning charged sphere in the field of a monopole that
may or may not have a charge Ze . We call the spin
angular momentum of the sphere S and suppose it to
have magnetic moment g* S where g* is constant.

The monopole’s magnetic field is B5Q r̂r225Curl A
5Curl@2Q(11cos u)¹F#. The Hamiltonian is (Corben
and Stehle, 1960)

H5~2m0!21~p2qc21A!2

1qF1~2I !21@~S2g* IB!22S2# , (1.26)

where I is the sphere’s moment of inertia, q its charge,
and F5Ze/r .

Writing L5r3m0v5r3(p2qc21A), we find that the
conserved total angular momentum is

j5L2Q* r̂1S, (1.27)

where Q* 5qQ/c and the sign change from Eq. (1.14)
reflects the repulsion of like charges vis à vis the attrac-
tion of like masses. In Sec. II.D the 2Q* r̂ term is shown
to be the angular momentum in the Poynting vector of
the electromagnetic field that accompanies the charged
sphere. The spin magnetic moment reacts to the mag-
netic field, so

Ṡ5g* S3B. (1.28)

Evidently S2 is constant. For this reason we subtracted
(2I)21S2 from the Hamiltonian so as to make our en-
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ergy zero-point the spinning sphere at `. Substituting for
S on the right via Eq. (1.27) and using B5Q r̂r22, we
have

Ṡ5g* ~j2L!3B. (1.29)

But

L3B5Qm0~ r̂3 ṙ/r !3 r̂5d/dt~Qm0r̂!, (1.30)

so that term can be taken to the left in Eq. (1.29). If we
write S* 5S1 1

2 gQ* r̂ where g52m0cg* /q , then Eq.
(1.29) reads

dS* /dt5g* j3B. (1.31)

Since j is constant there is a new constant of the motion,

S* •j5C1 . (1.32)

Conservation of angular momentum (1.27) may now be
rewritten

j2S* 5L2~ 1
2 g11 !Q* r̂ (1.33)

so

~j2S* !25L21~ 1
2 g11 !2Q

*
2 . (1.34)

The energy (1.26) may now be rewritten putting S* 2 in
terms of S• r̂ in Eq. (1.34):

E5 1
2 m0ṙ21qZer211~2m0r2!21@L22gQ* ~S• r̂!#

1g2Q
*
2 Im0

22r24/8 (1.35)

5 1
2 m0ṙ21qZer211~2m0r2!21@j21S222C1

2~g11 !Q
*
2 #1g2Q

*
2 Im0

22r24/8. (1.36)

The coefficient of r22 can now be seen to be constant,
C2 /(2m0) say.

The final term is of order I/(m0r2) times the one be-
fore it, so when r is greater than the classical radius of
the electron it may be ignored. The problem then re-
duces to classical motion in a Coulomb potential but
with L2 replaced by the square bracket of Eq. (1.36) or
(1.35). However, there can be an important difference
because the new square bracket can be negative. For
example, if we start our sphere with L small and S along
Q* r̂ then the square bracket C2 starts negative and,
since it is constant, it remains so. This occurs when the
attraction of the monopole for the spin magnetic mo-
ment overcomes any centrifugal barrier, so there is noth-
ing to stop the sphere from falling onto the monopole
unless the r24 term we neglected is resurrected. Such
attractive r22 potentials also cause trouble in quantum
theory, as we shall see. Using Eqs. (1.27) and (1.32), one
may evaluate L•S5C11 1

2 gQ
*
2 2S21(12 1

2 g)Q* r̂•S.
Thus for the very special case g52—e.g., the Dirac
electron—we find that L•S is constant as a result of the
integral (1.32). This allows a very simple treatment of
the Dirac equation (Sec. II.E).
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II. DIRAC’S MONOPOLE AND THE SPECTRA
OF MONOPOLAR ATOMS

A. Introduction, gauge transformations, and Dirac’s
quantized monopole

Dirac (1934, 1948), in developing his theory of quan-
tized magnetic monopoles and quantized charges, solved
Schrödinger’s equation in the field of a magnetic mono-
pole and showed that it had no bound state. Stimulated
by this Harish-Chandra (1948) asked whether the mag-
netic moment of the spinning electron could alter this
result. By a clever but involved separation of the Dirac
equation he showed that Dirac’s result was
unchanged—no bound state exists.

Hautot (1973) realized that Dirac’s equation was still
separable in the field of a charged monopole and rapidly
extended Harish-Chandra’s result to give what we be-
lieve to be the first derivation of the formula for the
energy levels of the bound states. Goldhaber (1965) had
already discussed the scattering of fast particles by mag-
netic monopoles, and papers by Kazama and Yang
(1976) and Kazama et al. (1977) showed this subject had
considerable theoretical interest.

More recently work has extended to cover the rather
strange behavior of the energy levels when an
Aharanov-Bohm string of confined magnetic flux is
added to the problem, which is then still separable. (Ho-
ang et al., 1992). We believe that the flat bottom to Fig.
4 helps the understanding of that behavior but it is not
considered here. Villalba (1994), while in general agree-
ment with that work, finds further solutions of the hy-
pergeometric equation that obey the normalization con-
ditions so there is incomplete agreement. To elucidate
the problem he turned to the simpler case of the Schrö-
dinger equation for a nonspinning electron in orbit
about a charged monopole with an Aharanov-Bohm
string (Villalba, 1995). We, too, initially found difficul-
ties with the multitude of special cases of the hypergeo-
metric function, but we chose the problem without the
added string and by following the old precepts of the
book by Pauling and Wilson (1935) we found no ambi-
guities. With the energy levels known since Hautot’s
1973 work, it is somewhat surprising that no discussion
of the allowed transitions, nor any drawn-out diagrams
of the energy levels, nor any tables of allowed transi-
tions are to be found. Although such calculations are
simple to perform, experimenters and observers are far
more likely to look for accurately predicted spectral
lines if they are presented with such diagrams and
tables, so one of the purposes of this paper is to stimu-
late interest in such searches by performing this service.
The spectra are therefore worked out in detail and tabu-
lated here. The dipole transitions follow a selection rule
unlike that of normal hydrogen, which is Dl 561. The
nearest equivalent to that selection rule in monopolar
atoms is DJ561 or 0. Thus transitions directly down
the J50 states are allowed (as are those down J51).
These may be considered as analogous to the l 50 (and
l 51) states of normal hydrogen down which dipole
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FIG. 4. j values allowed by the conditions j
> 1

2 (umu1um2Nu). j cannot be less than the
average of the two faint V lines in the dia-
gram. Unit monopole N 5 1 above, N 5 2
below.
transitions are forbidden. The quantum number J
above, while containing contributions from the Poynting
vector of the electromagnetic field where the electric
field of the electron crosses the magnetic flux of the
magnetic monopole, is (initially) for a nonspinning elec-
tron and thus obeys the above Wigner-Eckhart theorem
selection rule even when there is no contribution from
electron spin.

Those with a knowledge of the old quantum theory
and the correspondence principle will expect that the
precession of the orbits around cones found in Sec. I will
split the energy levels by h3 (precession frequency);
indeed, the degeneracy of the s ,p ,d ,f . . . levels so char-
acteristic of normal hydrogen is broken by this preces-
sion rate (which depends on the angular momentum).
When such splittings are added to the extra freedom in
the dipole selection rules we find an unexpectedly rich
spectrum for monopolar hydrogen with two Lyman se-
ries, five Balmer series, eight Paschen series, etc. It
might be thought that the magnetic field of the mono-
pole would not have a major influence on the energy
levels, but it has a profound influence on angular mo-
mentum [see Eq. (1.14)] and in practice even one Dirac
monopole halves the binding energy of the ground state.

While we consider that it ought to be possible to ar-
gue solely from the hypergeometric function solutions of
the Schrödinger equation that the magnetic monopole
strength Q must be an integral multiple, N , of 1

2 \c/e ,
the Dirac monopole, we have not found a way to do this
directly. Probably this reflects our inadequate knowl-
edge of hypergeometric functions. However, this leads
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us to give our version of the arguments that led Dirac to
his quantized magnetic monopoles and to relate them to
the Aharanov-Bohm effect. Schwinger’s (1966) investi-
gations led him to believe that the true unit of monopole
strength was twice the Dirac unit. We have therefore
calculated the spectra both for one and for two Dirac
monopoles attached to the nucleus.

We give the derivation of the energy levels and spec-
tra not merely because we had to rederive them to un-
derstand fully what others did earlier. We also believe
that use of the angular momentum operators and their
commutation relations circumvents the difficult part of
Harish-Chandra’s work and therefore gives an easier
path to the energy levels. We give the solution of the
no-spin Schrödinger equation first as this is much more
easily understood and helps to isolate the effects of the
monopole on the nucleus from the effects of the elec-
tron’s spin and magnetic moment. We hope also that
others, who do not use quantum mechanics on a daily
basis, may enjoy an elementary refresher course with the
added interest of the ‘‘new’’ twist given by the monopole
on the nucleus.

The Lagrangian for a particle of mass m0 and charge
2e in an electromagnetic field is

L5 1
2 m0ṙ22e ṙ•A/c1eF~r !,

where F is the electrostatic potential and B5Curl A is
the magnetic field. The momentum conjugate to r is

p5]L/] ṙ5m0 ṙ2eA/c ,

which is not a gauge-invariant quantity. However the
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particle’s momentum m0ṙ5p1eA/c is gauge invariant
and therefore has greater physical significance. The
Hamiltonian is given by

H5p•v2L5~2m0!21~p1eA/c !22eF . (2.1)

For Schrödinger’s equation we replace p by 2i\¹ and
solve Hc5Ec for the wave function of a steady state. A
given magnetic field B can be described by many differ-
ent vector potentials A related by gauge transformations
A85A1¹x . Each will give us a different Hamiltonian.
Let us first see how the different wave functions corre-
sponding to these are related. Define a new function c8
such that

c5exp@ iex/~\c !#c8. (2.2)

Then (2i\¹1eA/e)c5exp@iex/(\c)#(2i\¹1eA/c
1e¹x/c)c8 and the combination A85A1¹x has ap-
peared. Applying the above operator twice, we see that

Hc5exp@ iex/~\c !#H8c8

where H8 is H with A replaced by A8. It follows that
Schrödinger’s equation Hc5Ec implies H8c85Ec8,
so under gauge transformation c transforms to c8 given
by Eq. (2.2).

This is a perfectly good wave function whenever x is
single valued, but following Aharonov and Bohm (1959)
we now consider the wave function of a particle outside
a small impenetrable cylinder R5a . If we take ¹x
5¹(Ff/2p), R>a where f is the azimuth, this corre-
sponds to the same magnetic field outside the cylinder
but a different magnetic flux within it because

E B8•dS5 R A8•dl 5 R ~A1¹x!•dl

5E B•dS1F ,

which identifies the constant F as the extra flux thread-
ing the cylinder. If we adopt our transformation of wave
function for a gauge transformation we get the phase
factor

exp@2ieFf/~hc !# , (2.3)

which is only single valued when the flux takes the spe-
cial values

F5N~hc/e !, (2.4)

where N is an integer (positive, negative, or zero). (This
N is not the force coefficient of Sec. I.) Thus while we
get the correct wave function for those particular values
of F , we need to solve the problem anew with the cor-
rect boundary condition that c8 must be periodic in f
whenever F is not an integer multiple of the flux quan-
tum hc/e . Indeed, when it is not, there is interference
between the two parts of a beam of electrons that pass
on either side of such a cylinder just because their
phases differ by erDA•dl /(hc)5eF/(hc). It was just
this phase shift that was observed in the experiments
demonstrating the Aharanov-Bohm effect of the mag-
netic flux even when the electron beams were untouched
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
by the magnetic field. There is an intimate connection of
this result with Dirac’s (1931) earlier quantum of a mag-
netic monopole from which one flux unit [Eq. (2.4)]
emanates. This comes about because in the presence of
a monopole rA•dl is itself multivalued.

Consider the integral rA•dl around a small loop; this
is clearly the flux of B through the loop but such a flux is
ambiguous in the presence of a monopole, since it de-
pends on whether the surface spanning the loop is cho-
sen to pass above or below the monopole, i.e., S1 or S2
in Fig. 5. The difference between these two estimates is
just *S12S2

B•dS54pQ by Gauss’s theorem. Inserting
this D*A•dl in place of F in Eq. (2.3) we see that the
wave function will only have an unambiguous phase pro-
vided

4pQ5N~hc/e !, (2.5)

i.e., provided that the monopole strength is quantized in
Dirac units of 1

2 \c/e'137e/2.
The quantum of magnetic flux, Eq. (2.4), is inversely

proportional to the charge. Quanta of half this size are
observed in the Josephson effect in superconductivity,
where the effect is due to paired electrons. There is
some evidence for the larger unit, Eq. (2.4), in ordinary
conductors at low temperatures (Umbach et al., 1986).

Returning to Schrödinger’s equation (2.1) and using
the vector potential [cf. under Eq. (1.19)]

A52Q~11cos u!¹f (2.6)

we have the correct magnetic field for a monopole of
strength Q , but we notice that A is singular along the
line u50 although it is regular along u5p . Near the
singular line A→22Q¹f , which is the vector potential
of a tube carrying a flux 4pQ downwards. Thus Eq.
(2.6) represents the vector potential of a magnetic
monopole fed its flux by the singular half line u50. This
half line gives an unobservable Aharanov-Bohm effect
provided 4pQ5Nhc/e , that is, provided the monopole
is a multiple of the Dirac (1931, 1948) unit. Extra inter-
est in his monopole comes from Dirac’s argument that it

FIG. 5. A monopole and its B field showing the surfaces S1 ,
S2 and S3[S12S2 .
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can also be read as a reason for charge quantization,
because, if Q is the least monopole, then e must be a
multiple of \c/Q ; thus, in his picture, charge quantiza-
tion and monopole quantization spring from the same
source. It is of interest that A in Eq. (2.6) is single val-
ued. It has avoided the multivaluedness alluded to above
by having the singular string at u50 down to the mono-
pole. This plays the role of the cut in multivalued func-
tions in the complex plane (Wat and Yang, 1976). An
interesting historical remark is that Schrödinger in 1922
saw that quantum conditions in the old quantum theory
led to G[e/c@rFdt2A•dx#5nh , while Weyl’s gauge
theory led him to consider exp(2G/g) with g as yet un-
specified. He realized that the identification g52i\
would lead naturally to such quantum numbers and, af-
ter de Bröglie (1925), he built on this idea to invent his
wave mechanics in 1926 (Schrödinger, 1926) (see Yang,
1987).

B. Solution of Schrödinger’s equation

Written in spherical polar coordinates, Schrödinger’s
equation is

2
\2

2m0r2 H ]

]r S r2
]c

]r D1
]

]m F ~12m2!
]c

]mG
1

1
12m2 F ]2c

]f22iN~m11 !
]c

]f
2 1

4 N2~m11 !2c G J
2eFc5Ec . (2.7)

Here m has been written for cos u and N is the number
of Dirac monopoles on the nucleus. f only occurs as
]/]f in the above equation, so we may take one Fourier
component with c}exp(imf) and m an integer positive,
negative, or zero in order that c be single valued. On
multiplication by 22m0r2/(\2c) we then find the sepa-
rated equation

1
c

]

]m F ~12m2!
]c

]mG2
@m2N 1

2 ~m11 !#2

12m2

52C52
1
c

]

]r S r2
]c

]r D2
r22m0

\2 ~E1eF!.

(2.8)

Writing c5cr(r)cm(m), we see that the left-hand side
is a function of m alone and the right-hand side is a
function of r alone, so both must be a constant, which
we call 2C . The resultant equation for cm has regular
singular points at m561. The indicial equations for the
series solutions about m561 have regular solutions be-
having as (12m)1/2um2Nu and (11m)1/2umu, respectively,
so we remove those factors by writing

cm5~12m!1/2um2Nu~11m!1/2umuF~m!. (2.9)

After some algebra the equation for F takes the form

~12m2!F91@~ umu11 !~12m!2~ um2Nu11 !

3~11m!#F81 1
2 @2C2m~m2N !2umuum2Nu
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2um2Nu2umu#F50. (2.10)

We now write z5 1
2 (11m), so z(12z)5(12m2)/4

and dz5 1
2 dm , which reduces the above equation into

the standard form for the hypergeometric equation, i.e.,

z~12z !d2F/dz21@c2~a1b11 !z#dF/dz2abF50
(2.11)

where

c5umu11, (2.12)

a1b5umu1um2Nu11, (2.13)

and 22ab is the final square bracket in Eq. (2.10).
The hypergeometric function finite at m521, z50

diverges like (12m)c2a2b at m51, that is, twice as fast
as the first factor in Eq. (2.9) converges, so in order to
get convergence the hypergeometric series must termi-
nate. This occurs only if a or b is a negative integer or
zero. W.l.g. taking b52K we find that F reduces to a
Jacobi polynomial PK

ab(m) so that cm takes the form

cm5Ckmn~12m!1/2um2Nu~11m!1/2umuPK
um2Nu,umu .

(2.14)

Here *21
11cm

2 dm51 and Ckmn is the normalization

F ~2K1um2Nu1umu11 !K!~K1um2Nu1umu!!
2 um2Nu1umu11~K1um2Nu!!~K1umu!!

G 1/2

.

The condition that b52K gives

22ab52K~ umu1um2Nu111K !

and hence [noticing that K50 leaves Eq. (2.14) finite]
we have

C5K~K11 !1K~ umu1um2Nu!1 1
2 @m~m2N !

1umuum2Nu1um2Nu1umu# . (2.15)

If we write j5K1 1
2 (umu1um2Nu), then we notice that

j is a positive half integer and j> 1
2 (umu1um2Nu),

C5j~ j11 !2N2/4. (2.16)

Thus C and j are integers only when N is an even inte-
ger. When N is odd, C and j are an integer 6 1

2 . For
given j and N>0, m2N/(2) takes the 2j11 values from
2j to 1j in steps of 1. For N51 the ground state has j5
1
2 and C5 1

2 rather than the values 0 familiar from the
normal hydrogen atom. The j5 1

2 states with m51 and
m50 are degenerate (see Fig. 4). Note that j(j11)h2

are the eigenvalues of the conserved uju2 defined in Eq.
(1.14). See Sec. II.D for its identification with angular
momentum.

With the value of Eq. (2.16) for C we now turn to the
radial equation for cr , Eq. (2.8). Here the treatment is
very close to the classical case clearly laid out by Pauling
and Wilson (1935). We take F5Ze/r , Ze being the
nuclear charge, and E negative. We write

a2522m0E/\2 (2.17)

z5m0Ze2h22a21 (2.18)

and use a normalized radius r̃52ar . As all the radii in
the rest of this section are so normalized we shall forget
the tilde and take it as read. Equation (2.8) now takes
the form
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1
r2

d

dr S r2
dcr

dr D1S 2
1
4

2
C

r2 1
z

r Dcr50. (2.19)

The asymptotic form of this equation for large r is cr9
5cr/4 so cr→exp(r/2) or exp2(r/2). Of these only the
second is acceptable so we write

cr5exp~2r/2!rsf~r !, (2.20)

where f(r) may be expanded in series about the origin
in the form

(
p50

`

aprp

and s is chosen so that a0Þ0. The indicial equation
found by substitution of the series from Eq. (2.20) into
Eq. (2.19) is

@s~s11 !2C#a050,

but by hypothesis a0Þ0, so using Eq. (2.16) we obtain s
by

~s1 1
2 !25 1

4 1s~s11 !5 1
4 1C5~ j1 1

2 !22 1
4 N2. (2.21)

The recurrence relation for general p is then

p~p12s11 !ap5~s1p2z!ap21

and the asymptotic form for large p is ap→ap21 /p ,
which shows that f→er. In that case cr would diverge at
large r . This is unacceptable, so the series must termi-
nate. Thus there must be a positive integer p5n811
such that

z5p1s5n81s11 (2.22)

with s given by Eq. (2.21). Returning to Eqs. (2.18) and
(2.17), we see that this gives the eigenvalues for the en-
ergy in the form

E52
m0Z2e4

2\2

1

~n81s11 !2 52
m0Z2e4

2\2

1

~n1D!2

(2.23)

where n5n81J11, and J replaces the usual l , where J
takes values 0,1,2, . . . ,

J5j2 1
2 uNu>0.

Here N is the number of Dirac monopoles on the
nucleus and

D5A~J1 1
2 !~J1 1

2 1uNu!2~J1 1
2 !>0. (2.24)

Notice that D depends on J as well as uNu and is only
zero when N50. For large J/uNu,

D→ 1
2 uNuF12

1
4

uNu

J1 1
2

1
1
8 S uNu

J1 1
2
D 2

2¯G ,

while for the ground state J50

D5 1
2 ~A2uNu1121 !,

which becomes 1
2 ()21) for N51. So D is not small.

For a spinless electron, the degeneracy of a state of
given J and n is 2j1152J111uNu with m2 1

2 uNu taking
values from 2j to 1j . Notice that the ground state
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
J50, n51 is a doublet for N51 and has j value 1
2 with

m50 and m511 states even before we have allowed
for further degeneracy due to electron spin. A single
Dirac monopole thus gives some effects reminiscent of
spin 1

2 particles (Goldhaber, 1976).
The dependence of D upon J lifts the degeneracy of

the different J states (l states) that occurs in normal
hydrogen. The energy levels are near to those for an
atom with a true spinning electron, as laid out in Figs. 6,
7, 8 and Tables I and II. It is because the precession
rates around the cones in Sec. I depend on J that we find
this J dependence of the energy levels in the quantized

FIG. 6. Energy levels for a spinning electron in hydrogen with
0, 1, 2, or 3 Dirac monopoles on its nucleus. Excepting ‘‘isoto-
pic’’ shifts due to the changed nuclear mass and relativistic
corrections, the energy levels of the ground states are in the

ratio 1: 1
2 : 1

3 : 1
4 . These levels do not include the unstable reso-

nances which occur for N51 at the same levels as the s states
of common or garden hydrogen (N50). Such resonances also
occur for N53,5, . . . , etc.
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atom. The degeneracy would return if the extra repul-
sive potential 1

2 Q2/(m0r2c2) of Eq. (1.23) were added to
the problem. Then the precessions would stop and the
2 1

4 N2 in Eq. (2.21) would be cancelled, so s would be-
come equal to j as in the normal hydrogen atom (where
j is l ). In Sec. I we saw that orbits with positive z angu-
lar momentum were displaced up the axis; it is this dis-
placement that gives the asymmetry in the wave func-
tions with a definite m which makes the Jacobi
polynomials replace the Legendre polynomials. Thus the
change of selection rule can be traced to the lack of
reflection symmetry of the wave functions of definite m
in the plane z50.

C. Selection rules

The string to the monopole makes it look nonspheri-
cal but this is not truly the case, as putting the string in

FIG. 7. Energy-level diagram E(n ,J) for N51, hydrogen with
one Dirac monopole on its nucleus. The nucleus has been as-
sumed to be fixed. These levels do not include the unstable
resonances alluded to under Fig. 6.
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any other direction can be achieved by a mere gauge
transformation. Therefore without loss of generality we
may evaluate transition moments by taking the displace-
ment in the z direction, in which case we get

Rab5E ca* rmcbd3r

52pdmamb
E

0

`

cracrbr3drE
21

11
cmamcmbdm .

The radial integral is that for normal hydrogen, but the
scales have changed since s in Eq. (2.22) is no longer l
but is given instead by Eq. (2.21). We shall concentrate
on the important change in selection rules given by the
final integral.

Whereas for the Legendre polynomials in normal hy-
drogen wave functions we have

mP l ~m!5
l 11

2l 11
P l 111

l

2l 11
P l 21 ,

FIG. 8. Energy-level diagram E(n ,J) for N52, hydrogen with
two Dirac monopoles on its nucleus.
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TABLE I. Wavelengths in Angstroms of the two Lyman series, the five Balmer series, and the eight
Paschen series of hydrogen with (N51) one Dirac monopole attached to the proton (see Fig. 7). The
wavelengths after the dots are those of the series limits. These wavelengths do not include those of
transitions to or from the unstable resonances.

Lyman Series: n→1

Fine structure transiton n5323
521911.0

Paschen Series. n→3

2774.62 2733.78 26439.6 25832.0
2199.98 2190.74 17635.2 17486.2
2030.99 2027.32 14821.9 14758.3
1955.97 1954.13 13481.2 13447.0
1915.65 1914.58 12716.1 12695.2
1891.33 1890.66 ••• •••

1875.50 1875.05 10622.4 10622.4
••• ••• J5020 J5120
1822.52 1822.52
J5020 J5120

Fine structure transiton
n5222

185695.00
Balmer Series n→2

Fine structure transition
n5323

1287750.0
Paschen Series. n→3

10622.40 10410.50 27850.5 27177.1 26912.1
7577.90 7527.15 18251.9 18092.4 18028.0
6629.30 6608.14 15255.2 15187.7 15160.3
6187.80 6176.68 13838.6 13802.6 13787.9
5941.13 5934.48 13033.6 13011.7 13002.8
5787.67 5783.34 ••• ••• •••

••• ••• 10845.1 10845.1 10845.1
5311.20 5311.20 J5021 121 221
J5020 J5120

Balmer Series
n→2

Paschen Series.
n→3

11266.90 11028.80 10935.20 27763.0 27486.5 27338.0
7900.30 7845.16 7822.92 18350.2 18284.0 18248.1
6874.73 6851.97 6842.71 15369.0 15340.9 15325.6
6401.10 6389.20 6384.34 13952.2 13937.1 13928.9
6137.50 6130.40 6127.49 13144.6 13135.4 13130.4
5973.86 5969.25 5967.30 ••• ••• •••

••• ••• ••• 10935.2 10935.2 10935.2
5467.58 5467.58 5467.58 J5122 222 322
J5021 121 221
so that *21
11P l 8mP l dm is only nonzero when l 82l 5

61, for the Jacobi polynomials in monopolar hydrogen

mPK
ab5~a1PK11

ab 1a2PK
ab1a4PK21

ab !/a3 ,

where

a152~K11 !~K1a1b11 !~2K1a1b!,

a25~2K1a1b11 !~a22b2!,

a35~2K1a1b!~2K1a1b11 !~2K1a1b12 !,

a452~K1a!~K1b!~2K1a1b12 !,
., Vol. 70, No. 2, April 1998
so that *21
11(12m)a(11m)bPK8

abmPK
abdm will be nonzero

when K82K561 or 0. (The 0 term is only absent when
a250, i.e., a[um2Nu5b[umu. This occurs for N50
always, for N52 when m51, but never for N51.)

Thus there is a significant change in the selection rules
for electric dipole transitions. Some might imagine that
magnetic dipole transitions should be important, but the
magnetic monopole is on a heavy nucleus and barely
responds to an oscillating magnetic field, so it is still the
electric dipole transitions of the electron that are impor-
tant. Since m is unchanged for a dipole along the z axis,
DK561 or 0 leads directly to Dj and hence DJ561 or
0 for such transitions.
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TABLE II. Wavelengths in angstroms of the Lyman, Balmer, and Paschen series of hydrogen with
two Dirac monopoles attached to the proton (see Figs. 6 and 8).

Lyman Series
n→1

Fine Structure Transition
255290.0

Paschen Series n→3

4570.98 4374.06 33578.1 31527.5
3484.27 3437.35 22031.7 21512.5
3156.71 3137.52 18323.6 18098.5
3008.48 2998.60 16547.3 16425.2
2927.58 2921.78 15528.9 15453.9
2878.22 2874.50 J5020 J5120
2845.76 2843.23
J5020 J5120

Fine Structure Transition
101532.00

Balmer Series n→2

Fine Structure Transition
583813.0

Paschen Series n→3

14655.70 13860.00 38663.5 35969.7 34894.2
10202.60 10004.90 24112.7 23492.1 23225.7
8801.13 8717.08 19740.4 19479.4 19364.7
8142.84 8098.08 17694.2 17554.7 17492.6
7772.09 7745.05 16534.6 16449.6 16411.6
7539.83 7522.11 J5021 J5121 J5221
J5020 J5120

Balmer Series n→2 Paschen Series n→3

17128.10 16051.20 15621.70 38331.4 37112.4 36450.6
11342.40 11098.50 10994.00 24477.1 24188.0 24025.4
9636.45 9535.78 9491.59 20151.8 20029.1 19959.2
8852.83 8799.96 8776.47 18098.9 18032.9 17995.2
8416.35 8384.65 8370.47 16926.6 16886.2 16863.1
8144.66 8123.98 8114.68 J5122 J5222 J5322
J5021 J5121 J5221
Even order-of-magnitude estimates show that the in-
teraction of the electron spin’s magnetic moment with
unit monopole gives not a delicate fine structure but sig-
nificant changes in the eigenvalues. Thus to find the true
eigenvalues the Dirac equation is a necessity. Before
treating it we clear up some details. We took the form of
Eq. (2.2) for A corresponding to a monopole with a
string along m511. For uNu>2 we could have taken
two or more inwardly directed strings of flux. Are these
different string configurations really different mono-
poles or do they all give the same eigenvalues? The ef-
fect of such a change is to add a unit flux string along the
z axis. It is simple to show that this is equivalent to
adding one to m everywhere that it occurs. Provided we
do that also to m in the definition of j under Eq. (2.15),
the final spectrum remains unchanged. What does
change are the K and m values associated with a given j
value.

A second detail is the value of m0 , which for N50
would be the reduced mass of the electron, so for hydro-
gen it is m05memp /(me1mp).

Particle physicists expect a heavy mass for any mono-
., Vol. 70, No. 2, April 1998
pole, so any monopolar hydrogen will have a nucleus
much heavier than the proton, and me should be substi-
tuted for m0 in predicting spectra. A third detail for
later reference is the energy spectrum of the relativistic
Klein-Gordon equation. Here we follow Schiff’s treat-
ment and obtain, writing az5Ze2/(\c),

E5m0c2H F11
az

2

~n1D1!2G 1/2

21J (2.25)

where

D15A~J1 1
2 !~J1 1

2 1uNu!2az
22~J1 1

2 !. (2.26)

D. Angular momentum

Returning to the classical conserved quantity of Eq.
(1.14) we see the conserved quantity is not the particle’s
angular momentum L5r3m0v but rather that supple-
mented by eQc21r̂. The physics behind this supplement
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lies in the Poynting vector of the electromagnetic field,
which carries an angular momentum

1
4pc E r83S E3

Q

r82 r̂8Dd3r8

5
Q

4pc E ~E•¹! r̂8d3r85
2Q

4pc E r̂8¹•Ed3r8

51
eQ

c
r̂51

1
2

N\ r̂

where ¹•E52e4pd3(r82r). The total angular momen-
tum is thus j5L1eQc21r̂.

As we saw above in Eq. (2.1), m0v5p1eA/c in the
presence of a magnetic field, so the operator repre-
senting j is r3(2i\¹1eA/c)1 1

2 N\ r̂. The commuta-
tors @2i\] j1eAj /c ,2i\]k1eAk /c#52i\ec21« jklBl
52i\eQc21« jklx

l/r3 and @2i\] j1eAj /c ,xk#52i\] j
k

enable one to derive the commutator

@ j j ,jk#5i\« jklj l ,

which demonstrates that j obeys the angular momentum
algebra of the rotation group. One may also demon-
strate that j2 commutes with j and that j65jx6ijy are
the raising and the lowering operators for jz . From
which it follows by the usual argument that the eigenval-
ues of jz are 2j\ to 1j\ and that the eigenvalues of j2

are j(j11)\2. But uju25uLu21 1
4 N2\2, so the eigenvalues

of uLu2 are @ j(j11)2 1
4 N2#\2. Now looking at our sepa-

ration of variables expression [Eq. (2.8)] we see that the
left-hand side is just 2\22uL2u by construction and
hence C5„j(j11)2 1

4 N2
…, which agrees with Eq. (2.16)

and identifies the j defined there with the generalized
angular momentum eigenvalue defined in this section.
Note that for a single Dirac monopole and a nonspin-
ning electron we showed [Eq. (2.16)] that j took half
odd-integer values.

In the next section we look at the Dirac equation for a
spinning electron. There the correct generalization of
the total angular momentum is j5L1 1

2 N\ r̂1 1
2 \s.

This new j obeys the angular momentum algebra of
the rotation group, but now its eigenvalues are j(j
11)\2 with j taking integer (or half integer) values
> 1

2 uuNu21u, depending on whether N is odd or even.

E. Dirac equation

The Dirac equation may be written in standard nota-
tion

Hc5@2ca•~p1eA/c !2bm0c21V#c5Ec .

With the newly defined j we find dj/dt5@j,H#50, so
that each component of this generalized j commutes
with the Hamiltonian, always provided that A is a vector
potential for the monopole. Following Schiff’s treatment
(1955) we define pr5r21(r•p2i\) and ar5r21(a•r)
and \k5b@s8•(r3(p1eA/c))1\# . No A term is
needed in pr since r•A50 for our monopole.

The Hamiltonian is now written
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H52carpr2i
\c

r
arbk2bm0c21V

and as before ar , b, and pr all commute with k . The
eigenvalues of k follow by squaring the definition and
using L3L5i\(L2ec21rr•B)5i\(L2 1

2 N\ r̂):

\2k25~s8•L!212\s8•L1\2

5L21is8•L3L12\s8•L1\2

5j21 1
4 \2~12N2!,

so k2 has eigenvalues (j1 1
2 )22 1

4 N2>0. Notice that for
N51 one of these eigenvalues is k5j50. Save for this
change of k the usual separation of the Dirac equation
goes through unscathed and, following Schiff, one ob-
tains the energy levels

E5m0c2H F11
az

2

~s1n8!2G21/2

21J
where s5(k22az

2)1/2 and az5Ze2/(\c) and if n850,
k,0. Notice there is trouble in s if k50.

Here n8 is the radial quantum number. Inserting our
eigenvalues k25(j1 1

2 )22 1
4 N2 with j5J1 1

2 (uNu11)
and J50,1,2, etc., we have

E5m0c2H F11
az

2

~n1D!2G21/2

21J
where n5n81J11 and

D5A~J11 !~J111uNu!2az
22~J11 !. (2.27)

These energy levels were first derived by Hautot (1972,
1973). We have drawn the bound energy levels that re-
sult in Figs. 6, 7, and 8 and derived the wavelengths of
the lines of ‘‘monopolar hydrogen’’ with one or two
Dirac monopoles attached to the nucleus in Tables I and
II. Schwinger (1966) suggested that the unit monopole
should have the strength of two Dirac monopoles. With
colleagues he also calculated the motions of charged
monopoles, dyons, under their mutual attraction
(Schwinger et al., 1976). While monopoles may seem
esoteric, it is worthwhile looking for lines of monopolar
hydrogen in the spectra of exotic astronomical objects.

We now return to the strange history of the k50 lev-
els that do not give real values of s . In 1951 Malkus
solved for the energy levels of the Pauli equation, which
is the nonrelativistic approximation to the Dirac equa-
tion. He found these singlet s levels which in our nota-
tion would have n851,2 . . . and J521. They have ex-
actly the same energy levels as the s states of hydrogen
without a monopole, and he gives the wave functions of
these states. However, the az

2 that causes the trouble is
neglected in the Pauli approximation because it is of
order 1024. When we make that same approximation we
find s50 instead of a complex value, and we get
Malkus’s extra levels. Why is their existence or nonex-
istence so sensitive to such a small correction? The an-
swer lies at the end of Sec. I. From our quantum num-
bers for j, S and L•S, we can find C1 and putting g52
and Q* 5N\/2 we can evaluate the coefficient C2 of the
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effective r22 term. It is \2(k26k), that is, zero for the
j50 states just as it is for l 50 states of normal hydro-
gen, so the normal hydrogen s-state spectrum is found,
as Malkus (1951) says. But when we move to the rela-
tivistic Dirac equation for the monopole, C2 becomes
negative. Without spin we have two ground-state levels
with m2 1

2 N56 1
2 and an L1 1

2 N r̂ of 1
2 . With spin we get

a triplet j51 state, but the singlet j50 state with n8
51 has k50 and is weakly nonstationary because the
energy level has (k22az

2)1/2. The 2az
2 term comes from

what Schift calls the ‘‘relativistic correction to poten-
tial.’’ These states are replaced by propagating waves
that take the electron into the monopole. Only the in-
tervention of some term like the final one in our classical
expression can stop this, and no term due to the finite
moment of inertia of the electron is in the Dirac equa-
tion (should it be amended?). If some such term were
included there would be a whole hierarchy of extra lev-
els, with the electron very strongly bound by nearly its
rest mass. Banderet (1946) already pointed out that be-
cause the proton has a larger g factor it likewise has a
continuum of negative-energy states that propagate in.
We should therefore regard monopolar hydrogen as an
atom with an unstable resonance below its lowest truly
stationary state, and from this resonance it will decay by
propagation into the monopole. Once a monopole has
swallowed a proton it becomes charged, and so any
other proton will be repelled at large distances. How-
ever, electrons are attracted and they can likewise be
swallowed. Since the monopolar magnetic field is not
altered by this, monopoles may grow continually into
surprisingly massive nuclei which, due to the magnetic
fields in space, may acquire very large momenta. Per-
haps the suggestion that the highest-energy cosmic rays
may contain monopoles is not as far fetched as it first
seemed. It is important to recognize that, although there
are no stationary states of a proton in the field of an
uncharged monopole, nevertheless there is a bound con-
tinuum of propagating states, which would give highly
bound levels if the final term in the classical energy were
included. Dirac electrons do not fall into uncharged
monopoles. Protons only fall in because their magnetic
moments give C2}2(g22) and so an r23 attraction.
Electrons can propagate onto charged monopoles be-
cause the relativistic correction to the potential energy is
attractive.

III. GRAVOMAGNETIC MONOPOLES IN GENERAL
RELATIVITY, NUT SPACE

A. NUT space, the general spherically symmetric
gravity field

In Sec. I we followed up Newton’s remarks and were
led to introduce gravomagnetic forces and gravomag-
netic monopoles. However, gravomagnetic forces are al-
ready part of general relativity, as explained by Landau
and Lifshitz, although they are more usually referred to
by relativists (who eschew the idea of gravitational
forces) as the dragging of inertial frames. Rindler (1997)
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has recently emphasized that dragging of inertial frames
is a poor way of understanding the phenomena and that
gravomagnetism gives a better picture. Here by giving
the names Eg and Bg to the gravitational fields that one
finds in any stationary spacetime we emphasize that the
electromagnetic analogy gives useful insights even when
very strong gravitational fields are present. To define Eg
and Bg we need a timelike Killing vector so, for the
present at least, these fields are only defined for station-
ary states.

Taub (1951), in his general studies of metrics with sev-
eral symmetries, discovered the interesting empty cos-
mological spacetime that is still named after him. By
proceeding through its horizon and relabeling appropri-
ately one arrives in NUT space, which was discovered by
another method by Newman, Tamburino, and Unti
(1963) and is named appropriately both for the authors
and for its strange properties. Ehlers (1957) had earlier
given his transformation by which one may readily find
it. In spite of its symmetries (four Killing vectors) the
metric of NUT space while stationary is only axially
symmetric. The relationship of NUT space to Taub
space and many of its paradoxical properties have been
beautifully illuminated by Misner and Taub (1969).
NUT space was early recognized as a generalization of
Schwarzschild’s metric which contained a second param-
eter besides the mass—the so-called NUT parameter.
The fact that NUT space was really the spacetime pro-
duced by a mass which had also a gravomagnetic mono-
pole was found by Demiansky and Newman (1966), who
also found the three-parameter NUT version of Kerr
space which has angular momentum mass and the NUT
parameter, which is of course the gravomagnetic mono-
pole strength. Dowker and Roche (1967) independently
rediscovered this interpretation of the NUT parameter
(as indeed we did 30 years later). A mass endowed with
a gravomagnetic monopole is a spherically symmetrical
object. Why then is its metric not spherically symmetri-
cal? The reason lies in our common-sense intuition that
time is absolute, which we know is untrue. Spherically
symmetrical objects do not always have any coordinate
system in which the metric has spherical symmetry. They
do have to possess many equivalent coordinate systems
in which any apparent asymmetry can be made to point
in any direction we choose. Just as the vector potential
of a magnetic monopole cannot be chosen to be spheri-
cally symmetric but can be chosen to have any axis, so it
is with the metric in the space of a gravomagnetic mono-
pole. Similar considerations for cylindrical symmetry
have been explored by one of us elsewhere (Nouri-
Zonoz, 1997). Here we give a new and more elementary
derivation of NUT space based on the spherical symme-
try of its gravelectric and gravomagnetic fields Eg and Bg
and the spherical symmetry of its spatial metric gab . All
these are ‘‘gauge’’ invariant under position-dependent
changes in the zero point of the time coordinate. We
then prove that, as in Sec. I, all geodesics of NUT space
lie on spatial cones and use this interesting theorem to
determine the gravitational lensing properties of NUT
space. Light rays are not merely bent but twisted as they
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pass the gravomagnetic monopole lens. The differential
twisting produces a characteristic spiral shear in lensed
objects. Such spiral lensing is peculiar to gravomagnetic
monopoles; it is not produced by the Kerr metric. To
complete our survey of classical monopoles we have
brief sections on Dirac quantization of monopoles and
its implications of a periodicity in time, as well as on the
observability of monopoles.

Zelmanov (1956) and Landau and Lifshitz (1966), in
developing their very physical approach to general rela-
tivity, consider stationary spacetimes and put the metric
in the form

ds25e22n~dx02Aadxa!22gabdxadxb (3.1)

where n>0 and Aa and gab are independent of x0

5ct . (Our n is 2 1
2 n of Landau and Lifshitz.)

However, this form is not unique since a transforma-
tion of time zero x805x01x(xa) leads to

ds25e22n~dx802Aa8dxa!22gabdxadxb

where Aa85Aa1¹ax , so under such a change A under-
goes a gauge transformation. Landau and Lifshitz also
show that gab can be regarded as a metric of space, i.e.,
the quotient space V4/L1 (Geroch, 1971)—as opposed
to spacetime. They show that test bodies following geo-
desics of spacetime depart from the geodesics of space
as if acted on by gravitational forces, which in our nota-
tion take the form

f5
m0

A12v2/c2 S Eg1
v
c

3e2nBgD (3.2)

where the gravitational field

Eg5c2¹n (3.3)

and

Bg5c2Curl A. (3.4)

The conserved energy of the particle in motion is

«5m0c2e2n~12v2/c2!21/2, (3.5)

where e2n,1 is the redshift factor by which energy is
degraded.

Rewriting Landau and Lifshitz’s form of Einstein’s
equations (§95 problem), we find

div Bg50, (3.6)

Curl Eg50, (3.7)

div Eg52c22F4pG
~rc213p !1v2/c2~rc22p !

12v2/c2

2
1
2

e22nBg
22Eg

2G (3.8)

where r is the energy density in the rest frame of the
fluid, 3p is the trace of its pressure tensor, and v its
velocity defined locally by local time synchronized along
the fluid’s motion. For nonrelativistic velocities this
equation reduces to Poisson’s equation with the primary
term on the right being 4pGr . The remaining term has
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the form of a negative-energy density contributed by the
gravity fields. The next equation takes the form

Curl~e2nBg!52c23~16pGjg22cEg3e2nBg!. (3.9)

Notice that e2nBg occurs also in that combination in the
expression for the force. It is attractive to regard the
final term as an energy current corresponding to a Poyn-
ting vector flux of gravitational field energy. Here jg , the
matter energy current, is given by

jg5
rc21p

12v2/c2 v.

The final Landau and Lifshitz equation for the three
stress tensor is

Pab2Eg
a ;b5~Tab1 1

2 Tgab!1e22n~Bg
aBg

b2Bg
2gab!

1Eg
aEg

b , (3.10)

where Pab is the three-dimensional Ricci tensor con-
structed from the metric gab. Those familiar with the
Maxwell stresses of magnetic and electric fields in, say,
magnetohydrodynamics will find some interest in the
field terms on the right. The matter terms may be rewrit-
ten as physical quantities for an isotropic fluid in motion,

Tab1
1
2

Tgab5
8pG

c4 F ~p1rc2!vavb

c22v2

1
1
2

~rc22p !gabG .

It should be stressed that all these equations hold good
even when spacetime is strongly curved. Unlike some
treatments they are not restricted to nearly flat space,
but it is assumed that the spacetime is stationary.

To find the general spherically symmetric solution for
empty space we take dl25gabdxadxb5e2ldr21r2d r̂2

where r̂ is the unit Cartesian vector (sin u cos f,
sin u sin f, cos u). Then d r̂25du21sin2u df2, but the ad-
vantage of the vector notation is that no axis for u,f
need be taken. In spherical symmetry Bg must be radial
and divergenceless, so Gauss’s theorem gives uBgur2

5Q5const which is the field of a gravomagnetic mono-
pole,

Bg
r 52Qe2l/r2. (3.11)

Reinserting Eg5c2¹n into Eq. (3.8) we have

R0052n91n8222n8/r1l8n81 1
2 e2~l2n!Q2~cr !24

50. (3.12)

To form Pb
a we need the three-dimensional Christoffel

symbols

lmn
s 5 1

2 gsh~ghm ,n1ghn ,m2gmn ,h!, (3.13)

which are
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lms
s 5 1

2 g g ,m lff
s 52 1

2 gshgff ,h

lrr
s 5H 0 sÞr

1
2 grrgrr ,r s5r

luu
s 5H 0 sÞr

2 1
2 grrguu ,r s5r

lfs
s 50 lrt

s 5 1
2 gshght ,r . (3.14)

Equations (3.6), (3.7), and (3.9) are identically satisfied.
The surviving equations of Eq. (3.10) are

Rrr52n91n821l8n822l8/r50 (3.15)

and

Ruu5Rff5l8e22l2
e22l

r
1

1
r

1
1
2

e22nQ2c24r23

1n8e22l50. (3.16)

Equations (3.12), (3.15), and (3.16) must be solved for n
and l. Eliminating n9 from Eqs. (3.12) and (3.15) we
find

2~l82n8!1 1
2 e2~l2n!Q2c24r2350, (3.17)

which integrates on division by e2(l2n), giving

e22~l2n!52q2r221C (3.18)

where q5Q/2c2 which has the dimensions of a length.
Multiplying Eq. (3.16) by e2n and using Eqs. (3.17) and
(3.18) we have

~C2q2r22!~r2122n8!5q2r231e12n/r .

Dividing by e2n(C2q2r22) we obtain

~e22n!81
1
r S Cr222q2

Cr22q2 D e22n2
r

Cr22q2 50,

which is linear in e22n and readily solved by integrating
factors to give

e22n5
1
C

2
2q2

C2r2 1
2C̄

r2 ACr22q2 (3.19)

where C and C̄ are both constants. It follows from Eq.
(3.18) that

grr5e2l5~C2q2r22!21e12n. (3.20)

To get e22n and gab asymptotically of Schwarzschild
form we need C51 and C̄52m̃ , the asymptotic mass
GM/c2. Thus we find

g005e22n5122r22~q21m̃Ar22q2!, (3.21)

grr5~12q2r22!e12n, (3.22)

which are the metric components of NUT space. Notice
that when Q52qc250 this reduces to Schwarzschild’s
metric. The metric is completed by taking a vector po-
tential Aa for the gravomagnetic field Bg ; any one will
do, since they are connected by gauge transformation
which merely changes the zero point of time. As we saw
in Sec. I, it is impossible to choose a spherically symmet-
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ric vector potential, but this does not affect the spherical
symmetry of the physics. A suitable vector potential is
that given in Eq. (1.19), which gives us the metric

ds25e22n@cdt22q~11cos u!df#2

2~12q2/r2!e12ndr22r2d r̂2, (3.23)

where e22n is given by Eq. (3.21). This metric is more
commonly written in terms of the radial variable r̃
5Ar22q2 because the square roots disappear, leaving
an analytic expression. However, we have preferred the
variable that makes the surface area of the sphere 4pr2

as in Schwarzschild space. Of course the metric of Eq.
(3.23) appears to have a preferred axis, but this is illu-
sory because we can switch it into any direction we like
by a gauge transformation; see the discussion under Eq.
(1.20). The horizon where g00 changes sign is given by
r̃5m̃1Aq21m̃2, at which point grr changes sign, as in
Schwarzschild space.

B. Orbits and gravitational lensing by NUT space

The geodesics of NUT space may be determined from
d*ds50 using the metric in the form of Eq. (3.1). When
ds2Þ0 we write t for the proper time and when ds2

50 we replace it by an affine parameter (which we also
call t). Varying ṫ5dt/dt and using the fact that the met-
ric is stationary we have

e22n~cṫ2Aaẋa!5«5const. (3.24)

Varying xa we find

dxaH d

dt
@e22n~cṫ2Abẋb!Aa1gabẋb#

1
1
2

]

]xa @e22n~cṫ2Abẋb!22gbgẋbẋg#J . (3.25)

Using Eq. (3.24) and transferring the «dAa /dt
5« ẋb]bAa term into the second bracket we find the
equation of motion, in which A occurs only through
]aAb2]bAa5habgBg

g where habg is the antisymmetric
tensor, Ag times the alternating symbol,

dxaF d

dt
~gabẋb!1

1
2

]

]xa ~e22n!«2e14n

2
1
2

gbg ,aẋbẋg2«habgBg
gẋbG50. (3.26)

We now write gab in the form involving the unit Carte-
sian vector r̂,

gabdxadxb5e2ldr21r2~d r̂!2.

Here d r̂, the variation of r̂, is an arbitrary small vector
perpendicular to r̂. Thus making variations with r fixed
we deduce from Eq. (3.26), using Eq. (3.11) for Bg

r ,

d r̂•F d

dt S r2
d r̂
dt D1«

d r̂
dt

3Q r̂G50.

Since d r̂ is an arbitrary vector perpendicular to r̂ we
deduce that
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r̂3
d

dt S r2
d r̂
dt D5

dL
dt

52
d

dt
~«Q r̂!,

L1«Q r̂5j5const. (3.27)

Except for the factor «, which reduces to m0c2 in the
nonrelativistic case, we see that this is precisely the vec-
tor integral (1.14). Dotting Eq. (3.27) with r̂, we find
j• r̂5«Q , showing that r̂ lies on a cone. Similarly L•j
5L25j22«2Q25const, so L moves around a cone. The
radial equation of motion is redundant, since we may
use the energy and the equation (ds/dt)25U51 or 0
instead. U is 1 for timelike geodesics and 0 for lightlike
ones.

This gives us

«2e12n2 ṙ2e2l2L2r225U . (3.28)

To see the geometry of the trajectory we introduce the
curvilinear angle w of Sec. I measured around the cone’s
surface. Then r2ẇ5L , so Eq. (3.1) can be integrated by
quadrature,

w2w05E Lr22dr

A«2e22~l2n!2~U1L2r22!e22l
. (3.29)

In general this integral cannot be performed explicitly
for the l and n of NUT space even after substitution in
terms of r̃ to make it more analytic. We therefore turn
to the r2@q21m̃2 limit well away from the event hori-
zon. This is the important case in all gravitational lenses
observed to date. In that limit the q2/r2 term in the ef-
fective potential is attractive and therefore of the wrong
sign to give the nonprecessing orbits of Sec. I. The pre-
cession around the cones is faster than in the classical
Kepler1monopole problem by a factor 3/2. To the first
order in m̃/b , where b is the impact parameter, we find
a bending angle measured like w of Dw54m̃/b just as
for the Schwarzschild metric; however, the difference is
that this angle is measured around a cone, not in a plane.
Again to first order we can find the effect of the gra-
vomagnetic field by integrating the momentum transfer
along the unperturbed straight-line path. This gives an
out-of-plane bending of 4q/b ; a result that is confirmed
by the full NUT-space calculation [Nouri-Zonoz and
Lynden-Bell (1997)]. Thus the major effect of the gra-
vomagnetic monopole Q is to twist the rays that pass it.
While the bending angle is proportional to b21, the ef-
fect is exaggerated when looking down the line toward
the NUT lens by the factor DL /b , so the twist around
the lens is 4qDL /b2. Here DL is the distance from the
observer to the lens. The same exaggeration factor oc-
curs for the normal gravitational bending, so for a
source at infinity and an image at (b ,u) in the plane of
the sky at the lens distance, the apparent position of the
source is

~bs ,us!5FbS 12
4m̃DL

b2 1
8q2DL

2

b4 D ,u2
4qDL

b2 G .

This expression defines a map from image to source.
From this map one can work out both the shear and the
magnification of a NUT lens in the large-impact-
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parameter régime. The magnification of area and thus
luminosity is, dropping the tilde on m,

db2/dbs
25@1216b24DL

2 ~m21q2!#21. (3.30)

A small circular source will be imaged into an ellipse of
axial ratio

b214DL~m1Am21q2!

b214DL~m2Am21q2!
,

with the short axis of the ellipse inclined to the radius at
the angle (see Fig. 9):

tan21S q

m1Am21q2D .

This is 45° for q@m and 13° for Q52qc25mc2. This
spiral conformation of the images about a NUT lens is
very characteristic. It is not displayed in normal gravita-
tional imaging, and the gravomagnetic lens due to a ro-
tating object seen pole on does not show it because the
twist of the ray as it approaches such a lens is canceled
by the opposite twist as it recedes. Thus the discovery of
a spiral shear field about a lens would indicate the pres-
ence of a gravomagnetic monopole. Such effects should
be looked for by those studying gravitational lenses. The
expectation must be small, but the reward might be an
amazing discovery.

C. Quantization of gravomagnetic monopoles
and their classical physics

By analogy with Dirac’s argument for the quantiza-
tion of magnetic monopoles and charges, Dowker and
Roche (1967), Dowker (1974), Hawking (1979), and Zee
(1985) have suggested quantization of gravomagnetic

FIG. 9. Gravitational lensing by NUT space of a small circular
source at S appears as an inclined ellipse at the image I . Many
such images make a spiral effect around the NUT lens L .
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monopoles and energy. Corresponding to Dirac’s Qme
5 1

2 N\c for magnetic Qm , they have Qm05 1
2 N\c for a

gravomagnetic monopole Q . This implies that both Q
and mass m0 are quantized in conjugate units Q1 and
m1 obeying Q1m15 1

2 \c . Whereas such ideas are natu-
rally attractive, they do not naturally lead to a self-
consistent relativistic theory. For instance, looking at the
Klein-Gordon equation in NUT space and separating
variables with c}ei(mf1vt), one finds an eigenvalue
equation for v. The Dirac monopole quantization con-
dition, Q(\v/c2)5 1

2 N\c with N an integer, shows us
that the only possible eigenvalues v are integer mul-
tiples of 1

2 c3/Q and the corresponding energy \v is the
total energy of the ‘‘orbit’’ including rest mass. How-
ever, this condition conflicts with the energies of the
bound states,1 which are not integer multiples of any
unit (Mueller and Perry, 1986). Thus if such ideas are
viable at all a more radical change in basic theory is
needed. In 1112 NUT space it does not appear to be
possible to build a consistent quantum theory like
Dirac’s magnetic monopole theory. This is what Ross
(1983) concluded and is related to Misner’s (1963) find-
ing that NUT space contains closed timelike lines, with
time being periodic every 8pq/c . For a discussion of the
energy levels in 1111 Taub-NUT space, the reader is
referred to the paper by Gibbons and Manton (1986).
This space was shown to be relevant to the interactions
of monopoles by Atiyah and Hitchin (1985a, 1985b). If
magnetic monopoles exist, Maxwell’s equations must be
changed to include div B54prm , Curl E1(1/c)
3(]B/]t)54pjm , where rm is the monopole density
and jm is the monopole current density. Such modified
Maxwell equations do not come with a vector potential.
It is natural to ask how general relativity must be modi-
fied to allow for gravomagnetic monopole densities and
currents. While this is not so obvious, we conjecture the
generalization will be to spaces with unsymmetric affine
connections which have nonzero torsion. It would be in-
teresting to demonstrate this conjecture, as it could in-
troduce a greater degree of physical understanding of
those spaces.

IV. OBSERVABILITY

Following Kibble’s (1980) suggestion that magnetic
monopoles would be a natural consequence of the Big
Bang, they have long been sought.

We have concentrated on the spectra of monopolar
atoms and the lensing properties of gravomagnetic
monopoles since these are ways in which, at least in
principle, monopoles might be discovered observation-
ally. Spectroscopically one may argue that the best place
to look is in the spectra of supernovae, quasars, or active
galactic nuclei, where the basic Lyman a lines of Tables
I or II might be seen as very weak absorption lines in
very-high-resolution spectra. Quasars have the advan-

1To get definite bound states one must impose a potential
barrier, so that the black hole is not reached.
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tage that these lines will be shifted into the visible. We
have looked at IUE ultraviolet spectra of Supernova
1987A and seen no lines at the wavelengths 2774.62 or
2733.78. More supernovae and stacked high-resolution
spectra of quasars should be pursued, although in re-
gions of observed magnetic fields the limits obtained
spectroscopically will fall far short of the Parker (1970)
bound. While the nature of the dark matter that consti-
tutes most mass in the universe remains unknown, such
esoteric possibilities are worth pursuit.

Searches on Earth have produced one unrepeatable
event and a monopolar observatory under the Gran
Sasso that has so far found no monopoles in cosmic rays.
There has been a speculative suggestion, Kephart and
Weiler (1996), that the leveling up on the numbers of
cosmic rays at the highest energies might be due to
monopoles, but there is no confirmation of that idea. To
date the best limit on the numbers of monopoles in in-
terstellar space comes from the Parker (1970, 1971a,
1971b) bound. This arises from the idea that too many
magnetic monopoles would ‘‘short out’’ the galactic
magnetic fields that are observed. A good general dis-
cussion of such limits may be found in the book of Kolb
and Turner (1991). For more recent work on monopoles
in field theory see reviews by Olive (1996, 1997) and the
papers by Sen (1994) and by Seiberg and Witten (1994).
More details of the fundamental work on monopoles in
field theory by ’t Hooft (1974) and by Polyakov (1974)
can be found in the review by Goddard and Olive
(1978).
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