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Natural patterns and wavelets

C. Bowman and A. C. Newell

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

An introductory review of pattern formation in extended dissipative systems is presented. Examples
from many areas of physics are introduced, and the mathematical analysis of the patterns formed by
these systems is outlined, for patterns near and far from onset. The wavelet transform is introduced as
a useful tool for the extraction of order parameters from patterns. [S0034-6861(98)00401-2]
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I. INTRODUCTION

Natural patterns turn up all over. They show up as
ripples in the sand washed by the tide or blown by a dry
desert wind. One sees them on the tips of one’s fingers
as fingerprints, as well as in the stripes of a tiger or zebra
and the spots of a leopard (see Murray, 1989). Patterns
occur in galaxies and stars, in the atmosphere and in the
oceans, in geological formations, and in plant morphol-
ogy. They turn up in the laboratory as well, in experi-
ments designed to measure the heat transfer of convect-
ing fluids, the strengths of thin shells, the behavior of
wide-aperture (‘‘fat’’) lasers, or the nature of flame
fronts. This is a colloquium about the reasons for the
appearance of such similar structures in physically di-
verse systems and about the attempts to integrate the
spectrum of pattern behavior into a mathematical
framework that will display the underlying mechanisms
behind the spontaneous formation of patterns.

The notion of pattern formation does not attach itself
exclusively to any particular area of science. Rather it
cuts across disciplines; the patterns seen in convecting
fluids have much in common with those seen in lasers,
on buckling shells, in interacting chemicals, etc. The cen-
tral theme in the study of patterns, therefore, is to un-
derstand the rules determining the large-scale (macro-
scopic) behavior of patterns which may arise from a
large class of physical (microscopic) systems. The fact
that virtually the same patterns occur in widely different
physical contexts suggests that one should look for their
common symmetries, for general principles that underlie
their formation, and for descriptions that emphasize
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their macroscopic structure. Connected with this task is
the effort to find a tool for mapping the connections
between data provided from experimental (see Assen-
heimer and Steinberg, 1994) and computed patterns (Pe-
sch, 1996) and those macroscopic order parameters
which arise naturally from the theoretical approaches.
There is just such a tool available. It is called the con-
tinuous wavelet transform.

The aims of this essay are to convey the message that
patterns and their defects are macroscopic objects with
universal behaviors and to communicate some of the ex-
citement and importance of the field. Open any journal
these days in physics, chemistry, biology, ecology, or the
mathematical sciences, and you will find several articles
on pattern formation. One of the reasons for this inter-
est is a curiosity as to why complicated systems organize
themselves into ordered structures. Another is that
more powerful methods (experimental, computational,
and analytical) are becoming available to help us under-
stand pattern behavior. There is also the possibility of
technological payoffs from understanding patterns. Can
they be used to store information in an efficient way?
Can we learn to control the instabilities in the patterns,
so as to construct more powerful laser arrays, or to
maximize heat transport in fluids? But perhaps the pur-
est reason of all to study patterns is the simplest. Like all
beautiful things, they are an interplay of order and dis-
order, mysterious and intriguing and full of open chal-
lenges for the fertile imagination to explore.

II. OBSERVATIONS

Before launching into the mathematical description of
patterns, it is reasonable to consider some examples of
the kinds of patterns that occur both in nature and in the
laboratory. Figures 1–15 show examples of patterns that
are observed experimentally or that arise in numerical
simulations. They fall into several classes.

First, Figs. 1 and 2 show a pattern of oriented stripes
in sand and on the surface of an angelfish, the Pomacan-
thus Imperator. The former arise as a consequence of
wind/sand interaction. The deformation of the sand con-
sists of almost straight parallel stripes across (normal to)
the direction of the wind. Nonuniformity in the local
wind strength produces nonuniform wavelengths in the
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sand waves. In all probability, the latter arise as the re-
sult of a diffusively driven instability in a reaction-
diffusion system. In both the sand and the fish, there is
nonuniformity in the pattern, either as a result of vary-
ing wind strength or due to the shape of the fish. As a
consequence of this nonuniformity, point defects called
dislocations are formed (where two wave crests merge
into one). Defects will play an important part in the
story of patterns. They too exhibit certain universal fea-
tures.

The second class of patterns in Figs. 3, 4, and 5 comes
from both experimental and numerical simulation of
convection in fluids, and from domains in ferrimagnetic
garnet films. Despite the fact that, at a microscopic level,
the ferrimagnetic system has little in common with fluid
convection, it displays the same sort of pattern. This em-
phasizes one of our central points, that similar patterns
occur in what are physically very different systems. In
the convection experiment, fluid in a thin container is
heated from below and begins to convect, with the hot
fluid rising to the top of the cell. In these experiments,
the motion of the fluid takes the form of a horizontal
rolling cylinder, with hot fluid rising on one side while
cooler fluid descends on the other. The bright and dark
lines in the picture are the loci of minimum and maxi-

FIG. 1. Sand waves on the Arizona desert.

FIG. 2. Stripe pattern of Pomacanthus Imperator (Kondu and
Asai, 1995).
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mum temperatures, respectively. They are produced by
shining light through the convecting layer of fluid. The
refractive index of the warmer, rising fluid is lower than
that of the colder, descending fluid, and consequently
the light focuses on the contours where the temperature
is lowest, creating the visual contrast. The local plan-
forms (tilings of the plane) in these patterns are again
stripes (or rolls), but the directional preference has been
removed, and the choice of local direction is made by a
local bias. Consequently the pattern consists of a mosaic
of striped patches with similar wavelengths but unre-
lated directions. Inside an individual patch both the
wavelength and the direction of the rolls are nearly con-
stant. Neighboring patches are mediated by line defects
called phase grain boundaries and amplitude grain
boundaries (PGBs and AGBs, respectively) which them-
selves meet at point defects. At PGBs the rolls bend
sharply, but no new rolls are formed, while AGBs look
like chains of dislocations.

Mathematically, it is convenient to think of a patch of
rolls as a 2p periodic function,

fS u5E k•dx;A D , (1)

FIG. 3. Pattern from experimental Rayleigh-Bénard convec-
tion (Surko, 1993).

FIG. 4. Magnetic domains in a ferrimagnetic garnet film with
roll patches shaded according to their orientation (Seul et al.,
1991).
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of a phase u whose local gradient ¹u5k gives the local
direction normal to the roll axes and the local wave-
length l52p/k , where k5uku. The parameter A mea-
sures the local amplitude of the pattern. Notice that in
all the examples A and k change much more slowly than
the microscopic field f everywhere in the pattern except
at line and point defects. PGBs are places where the
phase is continuous, but the pattern wave vector changes
abruptly, while AGBs are discontinuities in the phase of
the pattern and zeros of the amplitude. PGBs meet and
terminate at several types of point defects, the most im-
portant of which are called concave and convex disclina-
tions, which we shall denote as V and X, respectively (V
for concaVe, X for conveX). These objects are very im-
portant, as all point defects of two-dimensional patterns
turn out to be composites of V and X. Examples of these
defects are shown in Figs. 5 and 18.

The third class of patterns, shown in Figs. 6 and 7,
again comes from experiments with fluid convection, but
at different parameter values, at which the dominant
planforms are targets and spirals. One striking differ-
ence between Fig. 3 and Fig. 6 is the absence of PGBs
and disclinations. In general, sharp corners seem to have

FIG. 5. Numerical simulation of Rayleigh-Bénard convection
at infinite Prandtl number. Various forms of pattern defects
are marked.

FIG. 6. Target pattern in experimental convection with low
Prandtl number (Assenheimer and Steinberg, 1994).
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been replaced by rounder ones, although again a par-
ticular wavelength is dominant. One reason for this is
the presence of a soft mode in the system (in this case,
the vertically averaged flow of fluid in the horizontal
plane). Horizontal pressure differences induced by the
spatially nonuniform pattern drive these slow horizontal
currents, which in turn serve to advect the phase con-
tours of the pattern. This horizontal flow serves to round
off sharp PGBs. Soft modes like this are not only
present in fluid systems; they are ubiquitous and arise as
a consequence of some overall symmetries rather than
the system details. Many features of this class of patterns
are still not understood: the emergence of targets, the
transitions to spirals, the coexistence of hexagonal and
roll (in target form) planforms.

In the fourth class of patterns, shown in Figs. 8–11, a
different planform, the hexagon, is dominant. Indeed, in
extended, two-dimensional patterns with rotational sym-
metry, and near the initial onset of the pattern, hexagons
are the generic planform. Only the presence of another
symmetry inhibits them. The hexagon is (approximately)

FIG. 7. Target pattern in experimental convection. Hexagons
appear at point defects and target cores (Assenheimer and
Steinberg, 1996).

FIG. 8. Imperfections in a hexagonal Bénard convection cell.
Aluminum powder shows the motion of a thin layer of silicone
oil on a uniformly heated copper plate. The deformity to the
left of the pattern is caused by a tiny dent in the plate
(Koschmeider, 1974).
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a superposition of three roll configurations, and the
penta-hepta defect seen in Fig. 11 is simply a dislocation
in one of the roll fields. You can see this by running your
eye along the figure in a vertical direction. Figure 12
shows yet another planform, the square. This figure
comes from convection in liquid crystals.

In Fig. 13, taken from a numerical simulation of a
Raman laser, and Fig. 14, from experimental convection
in binary fluids (both He3/He4 and water/alcohol mix-
tures will do), the dominant planform is again the roll,
but this time the roll crests travel the direction of their
wave vector. These configurations tend to exhibit behav-
ior typical of dispersive wave packets. Like wave pack-
ets, they bunch up into regions of high and low ampli-
tudes.

Finally, in Fig. 15, we show an example, taken from an
experiment on Faraday waves, of an exotic cocktail of
pattern structures, far richer than rolls, hexagons, or
squares. In this case, the planform is the superposition of
six roll patterns, equally spaced around the circle (com-
pared to the three roll modes present in the hexagonal
planforms), resulting in a planform of 12-sided polygons.
Since 12-sided polygons cannot tile the plane, they are
each surrounded by 12 pentagons to fill space.

FIG. 9. Convection pattern showing, besides rolls, patches of
up and down flow hexagons (Assenheimer and Steinberg,
1996).

FIG. 10. Skeleton of the Radiolania Aulonia Hexagona
(Thompson, 1942).
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III. WHY DO PATTERNS APPEAR?

The patterns we talk about in this article arise in sys-
tems that are dissipative and driven far from equilibrium
by some external stress (see Cross and Hohenberg,
1993). Spatially extended means that the spatial size of
the system in at least one direction, l , is much larger
than the pattern wavelength l . The ratio 1/e5l/l is
called the aspect ratio of the system, and it is large. The
dissipative nature of the system means that, for small
values of the external stress parameter, the spatially and
temporally uniform state of the system is (usually)
stable. However, as the stress is increased, the uniform
state can become unstable to perturbations of a certain
wavelength, which reflects some length scale in the mi-
croscopic system. Generally speaking, this wavelength
allows the system to change in response to the stress,
while overcoming dissipation. At this critical value of

FIG. 11. Near-field, stationary light intensity pattern on two
counter propagating laser beams at subcritical values of beam
intensity in a weakly nonlinear Kerr focusing medium. The
basic pattern is hexagonal. Observe the presence of a penta-
hepta defect (bright spots surrounded by five or seven neigh-
bors).

FIG. 12. Square pattern from convection in liquid crystals (Jo-
ets and Ribotta, 1986).
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the stress parameter, the state of the system changes
abruptly and qualitatively (a phase transition). Certain
shapes and configurations are preferentially amplified
and grow to new equilibrium values. This leads to the
appearance of self-organization and order, resulting in
what we have been calling a pattern. At these phase
transitions, or bifurcations, some, although not all, of the
symmetries of the original state are destroyed, and the
system is attracted to a new solution, such as, for ex-
ample, the roll pattern in Fig. 5. As the stress continues
to increase, this new solution can itself become unstable,
leading to more symmetry breaking and more compli-
cated states, which can be time dependent, chaotic, and
eventually quite turbulent (see Gollub and Swinney,
1975).

FIG. 13. Supercritical traveling-wave state of a Raman three-
level laser.

FIG. 14. Shadowgraph images taken of convection in binary
fluid mixture (Kolodner et al., 1989).
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The granddaddy of all pattern-forming systems is con-
vection in a thin, horizontal layer of fluid, often associ-
ated with the names Rayleigh and Bénard (Rayleigh,
1916; Bénard, 1990). It is a very rich system and provides
a useful paradigm for pattern formation in general. In
addition it is an easy system to visualize, and most of the
intuition and knowledge that is needed to understand
what is going on involves high school physics and under-
graduate mathematics. Consider a thin horizontal layer
of fluid between two plates, extended for a long distance
transversely, as shown in Fig. 16. Heat this system from
below by setting the bottom plate to a temperature
DT °C hotter than the top. The hot fluid at the bottom
of the cell, now less dense because of thermal expansion,
becomes buoyant and wants to move upwards. If DT is
small enough, the fluid viscosity will counteract this up-
ward force, and the heat will simply conduct through the
fluid from bottom to top. But if we raise DT above some

FIG. 15. Quasicrystal pattern from the vertical oscillation of a
container filled with fluid (the Faraday experiment) with two
simultaneous forcing frequencies (Edwards and Fauve, 1994).

FIG. 16. Schematic diagram of Rayleigh-Bénard convection,
showing (a) rolls and (b) hexagons, with downward fluid mo-
tion at the hexagon center.
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critical value, this mode of heat transport will not be
efficient enough to handle the increased load. The vis-
cosity will no longer counteract the buoyancy, and the
hot fluid will rise to the top. The hot fluid cannot rise
everywhere uniformly, however, since the cold fluid
must move down somewhere! Thus the initiation of con-
vection breaks the translational symmetry of the pattern
in the horizontal direction. This symmetry breaking is
shown in Fig. 16, in the guise of both convection rolls
and hexagons. In the former the fluid flows in circles on
a horizontal cylinder, whose width is equal to the wave-
length of the roll pattern, with the hot fluid rising on one
side of the cylinder, cooling at the top plate, and then

FIG. 18. Assorted pattern defects: (a) concave disclination, (b)
convex disclination, (c) saddle, (d) target, (e) vortex, and (f)
dislocation.

FIG. 17. Linear stability analysis for Swift-Hohenberg equa-
tion: (a) neutral stability curve (s50); (b) excited modes in
two dimensions. The box shows the modes around k5(1,0)
which are accounted for in Eq. (6).
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falling back to the bottom again. It is easy to see that
this cylinder will have a preferred width, which in turn
leads to a preferred wavelength in the pattern. If the
rolls are too fat, the viscous dissipation on the top and
bottom plates is excessive; if the rolls are too thin, the
rising and falling fluids are in close contact with each
other, and ‘‘dissipation’’ comes from both thermal con-
ductivity effects [there is heat transfer between the ris-
ing (hot) and the descending (cold) parcels of fluid,
which reduces the buoyancy of the former], as well as
viscous stress between the rising and falling fluid. The
optimal cylinder width gives rise to a pattern with wave-
length l of the order of d , the container thickness.

In hexagonal configurations, the warm parcels can rise
(or descend) like plumes along the core of an apple, and
then descend (or rise) along the apple’s surface. The air
motion that leads to the formation of cumulus clouds is
a good example of this type of convection. Observe that
there is a fundamental difference between the roll and
hexagon states. In the former, there is no preferred up/
down direction, and an upflow can be turned into a
downflow by a translation of l/2. On the other hand,
with the hexagons there is no translation that will re-
verse flows in the center of the hexagon from upward-
moving to downward-moving. Because of this, rolls will
dominate if the problem has a strong symmetry about
the horizontal midplane.

IV. MATHEMATICAL ANALYSIS NEAR ONSET

Let us consider the convection problem again, this
time with a little mathematics thrown in. Consider, as a
model for pattern formation, the ‘‘Swift-Hohenberg
equation’’ (Swift and Hohenberg, 1977)

]w

]t
1~¹211 !2w2Rw52w3, (2)

where w represents the vertical fluid velocity (see Cross
and Hohenberg, 1993). This is perhaps the simplest non-
trivial model imaginable for the fluid convection prob-
lem. It is obtained by applying some fairly brutal ap-
proximations to the real fluid equations, but
nevertheless it contains some of the same symmetries
and its solutions exhibit the same qualitative features
found in real fluids. It is an excellent toy model on which
to develop insight and intuition. The w50 solution cor-

FIG. 19. Typical form of the phase diffusion function B(k),
with stability boundaries marked.
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responds to the conduction solution in the fluid convec-
tion problem. The first goal of analysis is to find the
critical value Rc of the stress parameter R at which the
conduction solution loses its stability and identify the set
of shapes that play an important role when R2Rc is
positive and small. This is accomplished through linear
stability analysis. Linearize the equations around
w50 by letting w501dw and ignoring quadratic and
higher powers of dw . Now write dw in terms of its
Fourier series, dw5ŵ(t)exp(ik•x), and obtain ŵ(t)
5 ŵ(0)exp(s(R ,k)t), with s5R2(k221)2.

Since we are interested in the value of R where the
uniform solution first loses its stability, we look for the
minimum value of R (with respect to k) on the neutral
stability curve s50 (see Fig. 17). This happens for
R5Rc50, and k5kc51. At R50, all modes eik•x with
k5uku51, or any linear combination thereof, lose stabil-
ity and become candidates to replace the conduction so-
lution w50. When R increases to a value above zero,
nonlinear terms [in Eq. (2), the w3 term] come into play
and various configurations consisting of linear combina-
tions,

w~x,t !5S1
N@Aj~ t !exp~ ikj•x!1~* !# , (3)

[where (* ) denotes complex conjugate, so that w is
real], compete for dominance. The winning configura-
tion is the planform that is observed. Sometimes there
can be more than one winning configuration, in which
case the initial conditions determine which state is real-
ized. Configurations with N51 correspond to rolls;
those with N53 and k1, k2, and k3 120° apart in direc-
tion correspond to hexagons. We shall return to this
competition in more detail shortly, after taking a closer
look at the degeneracies and near degeneracies of the
linear stability problem.

Degeneracy in this context refers to the fact that there
is not one unique mode excited as R→Rc . There are
several sources of degeneracy in this problem. The first
arises as a consequence of the rotational symmetry en-
joyed by the conduction solution and manifests itself in
the fact that all modes k with k51 have the same
growth rate. A second source of degeneracy arises from
the fact that, for R.0, the set of excited modes is not a
circle at k51, but rather an annulus, with width 2AR ,
around the circle k51. All the modes in this annulus
will in principle be candidates in the competition for
dominance once R.0. But there are other players in the
game which also must be considered. They too arise
from symmetries and correspond to Fourier modes that
are neither excited nor damped for any value of R .
These modes can thus be generated easily by nonlinear
interactions with the amplified modes once the pattern
begins to emerge. Such modes are generally referred to
as soft, or Goldstone, modes of the system. In Eq. (2)
there are no such modes, but in the real fluid convection
problem the horizontal mean flow is an example of such
a soft mode when the viscosity is small; it corresponds to
the horizontal Galilean symmetry of the system in the
inviscid limit.
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Life would have been easier (and less interesting) if
the linear stability theory had shown that of all the pos-
sible configurations of the system S, only a finite number
of modes were excited and the rest were strongly
damped. Call the set of excited modes A for active and
the rest of the modes P for passive. The amplitudes of
the active modes are called the order parameters. When
R2Rc is small and positive, the amplitudes of all the
modes in P rapidly decay. Thus their initial values can
be ignored, and we have only to worry about their being
regenerated by the nonlinear interactions of members of
A. But then the amplitudes of the regenerated passive
modes are simply determined algebraically by the order
parameters. A graph of the amplitude of the passive
modes as a function of the amplitudes of the active
modes, written P5P(A), is called the center manifold
M of the system at R . For R2Rc small, an initial point
in the phase space of the system is attracted quickly to
M and, on M , a slow dynamics (the time scale is the
inverse of the growth rate) involving a competition be-
tween the order parameters takes place.

In our case, however, because of the degeneracies,
there is no clean and unambiguous separation of modes
into A and P. The continuum of modes on k51 all grow
at the same rate, and the modes in the surrounding an-
nulus of width 2AR exhibit a continuous set of growth
rates from R to 0. Even the modes outside but close to
this annulus do not decay sufficiently fast that we can
lump them together into P. Indeed, the general problem
is still open. We simply do not have a convenient math-
ematical description for functions whose Fourier trans-
form has its support in an annulus around some curve.
So we do the best we can by arguing (i) that, very close
to R50, the local planform is chosen by the competition
between a finite number of modes lying on k51 because
they grow the fastest, and once established, inhibit the
rest, and (ii) once the local planform is selected, the
modes in the neighborhood of the active modes serve
only to modulate this local planform slowly, over long
distances. The reader can find the details of this analysis
in Cross and Hohenberg (1993; see also Joseph, 1976;
Newell, Passot, and Lega, 1993; and Pesch, 1996). Here
we sketch the results in narrative form.

A. Determination of a local planform

For R.Rc and small, expand w(x,t) in powers of am-
plitude

w5S1
N@Aj~ t !exp~ ikj•x!1~* !#1corrections, (4)

with ukju51, j51 . . . N , and substitute into the micro-
scopic field equation, Eq. (2). One finds that the correc-
tion terms can only be solved for if the growth rate of
each Aj is given in a power series in powers of $Al% l51

N .
For Eq. (2) this solvability condition is

]Aj

]t
5RAj23Aj

2Aj* 26AjS lÞjuAlu2. (5)

More generally, however, the microscopic equation will
contain quadratic nonlinearities, and these will lead to
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an additional term involving the quadratic product of
those amplitudes Ap , and Aq , such that the sum of their
wave vectors resonates with 2kj , namely, kp1kq52kj ,
with ukpu5ukqu5ukju51. This can happen only for wave
vectors 120° apart. Thus the appearance of this addi-
tional term, which is proportional to Ap* Aq* in the above
Landau equation (5) leads to the possibility that the hex-
agonal planform is dominant. In fluid convection, the
coefficient of this term is zero, leading to the dominance
of rolls, when there is symmetry about the midplane of
the convection layer. But if that symmetry is broken, say
by a temperature-dependent viscosity, then the hexago-
nal planform will be seen near onset. Furthermore, it
can appear as a subcritical bifurcation, namely at values
of R,Rc . So the local planform is chosen by looking for
the stable equilibrium of Landau equations, such as Eq.
(5). In most cases, this can be accomplished by minimiz-
ing a free-energy functional containing quadratic, cubic,
and quartic products of order parameters. For the mul-
timode configuration to dominate over the single one is
rare (except when the quadratic terms are important)
and only happens when the coupling coefficient b jl in
the cubic terms in Eq. (5) (b jl56 in our example) has
special properties. A good challenge for the reader is to
characterize the properties of b jl for N52,3,6 and n@1
mode configurations to give the lowest free energy (see
Newell, Passot, and Lega, 1993).

B. Slow modulation of patterns of rolls near onset

For now let us suppose the modal analysis discussed
above allows one to conclude that we have a pattern
with a roll planform. This analysis only settles the ques-
tion of local planform. It tells us nothing about the situ-
ations in Figs. 3 and 4, where rolls of one orientation
impinge on a neighboring patch of rolls of a different
orientation. It says nothing about the slow bending of
rolls, nothing about the labyrinthine patterns of Fig. 5,
and nothing about the targets and spirals of Fig. 6. Nei-
ther would it describe the hepta-penta dislocations seen
in the hexagonal lattice of Fig. 11, nor the change in
orientation of hexagons from one place to another.

These spatial variations have their origins in the two
degeneracies evident in Fig. 17. Because of the rota-
tional degeneracy, it will be local biases, often but not
always due to the boundary conditions, which determine
the local roll orientation. Thus roll patches with differ-
ent orientations will emerge at different places in the
pattern and need to be connected to each other via line
and point defects. Furthermore, because of the band-
width degeneracy, there is a certain narrow band of
wavelengths which can be tolerated by the system. Thus
the wavelength of the pattern can change slowly from
one place to another.

How can one describe such behavior analytically? Un-
fortunately, as we have said, there is no convenient
mathematical description of functions whose support is
confined to an annular region of a curve in Fourier
space. Indeed, this is an open problem on which new
ideas are needed. Nevertheless, there are some avenues
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
open. First one can ask for a description that incorpo-
rates a finite bandwidth of modes about a fixed wave
vector, say k5(1,0). Such descriptions are possible by
approximating the annular region near (1,0) by a rect-
angle (see Fig. 17) with width equal to R1/2 and a height
of R1/4. With this consideration, the amplitude of the
pattern W(T5Rt) becomes instead an envelope, a func-
tion W(X5R1/2x ,Y5R1/4y ,T5Rt) that depends slowly
on the space and time coordinates. With this added flex-
ibility, new terms involving the spatial derivatives of W
appear in the evolution equation (5), which becomes, for
N51 and k5(1,0), the Newell-Whitehead-Segal (NWS)
equation,

]W

]T
24S ]

]X
2

i

2
]2

]Y2D 2

W5RW23W2W* . (6)

Equation (6), which is universal, describes many of the
important features of patterns. If the rolls are traveling
rather than stationary, the coefficients become complex,
so as to incorporate nonlinear and dispersive wave ef-
fects, leading to what is known as the class of complex
Ginsberg-Landau equations (see Newell, Passot, and
Lega, 1993) or complex Swift-Hohenberg equations (see
Lega et al., 1995). Such a description allows one to test
the stability of sideband solutions,

W5A124K2

3
exp~ iK•X!. (7)

These solutions of the amplitude equations correspond
to roll solutions of the original equations [Eq. (2)] with
wave number 11ARK . The region of existence of these
solutions is given by K2,1/4, which corresponds to
(k21)2,R , the parabola that fits the neutral stability
curve of Fig. 17 at k51. The region of stability of these
solutions, however, is smaller, given by 0<K<1/2A3.
For wave numbers k that correspond to K.1/2A3, the
mode (k ,0) undergoes what is known as an Eckhaus
instability to reduce its wave number. In two dimensions
this instability is not saturated and leads to the creation
of a pair of dislocations which move apart along roll
lines, removing a roll from the pattern. This is exactly
what is happening on the skin of the Pomacanthus Im-
perator in Fig. 2.

For patterns with wave number k,1 (K,0), the
mode with wave number (k ,0) gives up its energy to
conjugate modes with wave number k65(k ,6A12k2)
via a nonlinear four-mode interaction, 2k5k11k2 .
This instability is saturated by a zigzag pattern with al-
ternating patches of wave numbers k1, and k2. Equa-
tion (6) admits solutions which correspond to the tran-
sition between zig and zag regions. These solutions
correspond to (weakly bent) phase grain boundaries.
We challenge the reader to verify that

W5A~fX ,fY!exp@ if~X ,Y !# (8)

with f52KX1ln2 coshA2KY and k512ARK , is a
solution of Eq. (6) describing the evolution from a zig
state @W'(AR/3)exp(ikx2iA2KARy)1(* ) as Y→2`]
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to a zag state @W'(AR/3)exp(ikx1iA2KARy)1(* ) as
Y→`]. Find A as a function of fX and fY , and verify
that it tends to AR/3 as Y→6` .

V. ANALYSIS FAR FROM ONSET

In the previous subsection, we introduced the concept
of the envelope order parameter to capture the behavior
of patterns that everywhere in space had their wave
numbers k close to (1,0). This analysis assumed, how-
ever, that R was close to Rc and the amplitude of the
new state was small. When dealing with patterns far
from onset, this small parameter is no longer available,
and another approach is necessary. To find this new ap-
proach, we need to go back to the patterns themselves.
Look at Figs. 1–7 and suppose someone were to ask you
to suggest one piece of information at each point which
best describes the pattern macroscopically, i.e., a quan-
tity that changes slowly (significant changes occur only
over many pattern wavelengths) almost everywhere.
One natural choice is the pattern wave vector k, the
gradient of the local phase of the pattern. This vector
field is normal to the rolls of the pattern everywhere and
has a magnitude proportional to the inverse of the pat-
tern wavelength. The wave vector characterizes the pat-
tern, since the microscopic field can be reproduced from
the wave vector information (modulo an amplitude fac-
tor) by simply writing it as a periodic function of the
phase u5*k•dx. Away from defects, k changes slowly
compared to the pattern wavelength, making it a truly
macroscopic quantity, so the choice is a good one. The
wave vector k is indeed the most important macroscopic
coordinate, or order parameter, of the pattern. In the
near-onset situation, k is simply the unit vector in the x
direction plus the imaginary part of (W*

21
¹W).

The astute reader may note that there is a problem in
producing the phase u for several reasons. First of all, if
the pattern contains dislocations or other amplitude de-
fects, the wave vector field k need not be curl free, mak-
ing the phase ill defined. This is not a terribly important
difficulty, since we are concerned not with the phase of
the pattern, but rather with a 2p-periodic function of
that phase, and this periodicity will wash out the multi-
valuedness introduced by the nongradient part of k. An-
other, perhaps more fundamental problem in the defini-
tion of u is the fact that k is not actually a vector field at
all. There is no way in principle to distinguish rolls with
wave vector k from rolls with wave vector 2k. This may
seem to be an unimportant detail, but in fact it is of
fundamental importance in the lives of some defects.

Look at any disclination shown in Figs. 3–5 which
have been redrawn alone in Figs. 18(a), 18(b). Now pick
any closed curve around the center of either disclination
and continuously follow the wave vector around it. No-
tice that the wave vector changes sign as this curve is
circumscribed. These disclinations cannot exist as point
singularities of ordinary vector fields. To include them in
our description, we have to consider k as a director field
(a vector field without the arrowheads). It is perfectly
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fine to think of k as a proper local vector field, on open,
simply connected sets that do not contain any disclina-
tions. Globally, however, it has to be thought of as a
director field. To make k a proper vector field one needs
to define it on two covers of the (x ,y) plane which are
connected with each other in the following way: if the
number of disclinations is even, then the sheets are con-
nected on curves that join the disclinations; if the num-
ber of disclinations is odd, then the sheets are connected
on curves that join an even number of disclinations with
the extra point joined to ` . This is analogous to the
definition of z1/2 as an analytic function on the double
cover of the complex plane.

The director field nature of k, although making global
computation of u impossible, is really not that bad. Di-
rector fields have topological signatures which can be
used to locate defects. For example, let us look at the
winding of the director field around defects. We have
already noted that when you follow the director field
continuously around a disclination it rotates through an
angle of 6p . In fact, around V (a concave disclination)
the director twists through an angle of 2p , while around
an X (convex disclination) it twists by p . This twist is
additive in the sense that, if there are several defects
inside your contour, then the total twist of the director
field is the sum of the twists of the individual defects.
What is more, all point defects can be represented as
composites of V and X. In Figs. 18(c) and 18(f) we have
drawn a saddle (VV), a target (XX), a vortex (also XX),
and a dislocation (XXVV). Because of the additive
nature of twist, these composites have twists of
22p, 2p , 2p , and 0, respectively, making their local k
into vector fields, and therefore they can be thought of
as vector field singularities. In this case, we can define
another topological quantity, the circulation,
G5*Ck•dx, which is equal to the difference in phase as
you integrate around the point defect. For example,
G(dislocation)=62p.

There are other macroscopic order parameters which
are useful in the characterization of patterns. We have
already mentioned that, in order to reconstruct the mi-
croscopic dynamics from the wave-vector field, you need
to know the local amplitude of the pattern (in the near-
onset case this is simply uWu). At the onset of a new
state, the amplitudes of the various modes play an im-
portant role in the initial competition for the dominant
planform, as we have already seen in Secs. IV and IV.A.
Far from onset, however, when the pattern has settled
into some sort of equilibrium or quasiequilibrium state,
the role of the amplitude is less important because it is
slaved (algebraically related) to the wave vector almost
everywhere. This is analogous to the situation with non-
linear oscillators, whose amplitudes and frequencies are
algebraically related.

At some points in the pattern, notably at AGBs and
dislocations, the amplitude is forced to zero, a fact com-
patible and consistent with the 2p circulation of a dislo-
cation. Near such points, the amplitude is no longer
slaved and has a dynamics of its own. Because of this,
the neighborhood of points where the amplitude of the
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pattern vanishes are ripe regions for the nucleation of
new states. For example, it is often observed that when a
roll pattern destabilizes to a hexagonal one, the hexa-
gons will nucleate at dislocations in the roll field and
vice versa.

Other macroscopic order parameters may also play a
role in the pattern far from onset, but they tend to be
more subtle and far less visible on the pattern photo-
graph. Generally these correspond to the aforemen-
tioned soft modes of the pattern. Despite the difficulty
in detecting these modes in the actual pattern, they play
a central role in the pattern dynamics. In the context of
the fluid problem, the soft mode is manifested as a large-
scale horizontal mean flow, which is driven by large-
scale pattern nonuniformities. Although one cannot see
this flow in the pattern photograph, one can certainly
see the effects. As we have noted, the presence of the
mean flow serves to advect the phase contours so that
sharp shapes, like the PGBs in Figs. 3–5, change to the
more rounded, targetlike shapes of Figs. 6 and 7.

There are other possible reasons for curved textures
in patterns (Cross and Meiron, 1995). If the microscopic
system is a gradient flow, the dominant wavelength is
k5kB , which is the wave number where straight rolls
are marginally stable to bending, and which is also the
unique wave number preferred by circular patterns. In a
gradient system, another important wave number, kd ,
the wave number for which dislocations are stationary, is
equal to kB . However, if the microscopic system is non-
gradient, kd is in general different from kB , and thus
stationary patterns which contain dislocations will have
roll patches where the wave number is kdÞkB (other-
wise the dislocations would move, and the pattern would
not be stationary). In such regions, one might well ex-
pect the constant phase contours to be more curved.
There is also the possibility, in such cases, of ‘‘frustra-
tion’’ between kd and kB because of the competition
between the two preferred wave numbers, which can
lead to a continued time dependence of the pattern.

Far from onset, one does not have the advantage of a
small-amplitude parameter. Nevertheless, the observa-
tion that the pattern consists of large patches of some
planform (here we consider the roll case) in which the
local wave vector changes slowly, suggests that we may
be able to exploit another small parameter, namely, the
inverse aspect ratio e5l/l , where l is the pattern wave-
length and l is typically either the container diameter or
the average distance between defects. We also know
that there exist, in an infinite geometry, exact,
2p-periodic solutions,

w05f~u ;R ,A !5SAncos~nu!, (9)

to the microscopic equations. These correspond to the
rolls that emerged at the first instability. So we ask: Do
there exist slowly modulated solutions that can be rep-
resented as

w5fS u5E k•dx;A ,R D1ew11••• , (10)
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where now ¹u5k(X5ex,T5e2t) changes slowly in
space and time? The correction terms w1, etc. are in-
cluded in Eq. (10) because f(u) is no longer an exact
solution of Eq. (2). The correction term w1 obeys a non-
homogeneous linear differential equation obtained by
linearizing Eq. (2) around w5f(u) and having as a
source the terms coming from the slow temporal and
spatial variation of k5¹u . However, if f(u) is a solution
of Eq. (2), so is f(u1u0), for any constant u0, since this
addition of phase simply represents moving the pattern
in a direction normal to the wave vector. Thus ]f/]u
solves the homogeneous equation for w1, which demon-
strates that the linear operator acting on w1 has a non-
trivial nullspace, and consequently the forcing term must
satisfy a solvability condition (the Fredholm alternative)
in order for w1 to exist. This solvability condition relates
the spatial and temporal derivatives of u and is called
the phase diffusion equation. To order e4 it reads (with
Q5eu , so that k5¹xu5¹XQ)

t~k !
]Q

]T
1¹•kB~k !1e2h¹4Q50, (11)

where t can be thought of as a nearly constant, positive
function of k , and h is a positive constant. For a broad
class of problems, B(k) has the roughly cubic profile
seen in Fig. 19, although if the microscopic system is
nongradient, then B is not analytic at its interior zero.
The inclusion of the higher-order corrections to regulate
Eq. (11) is necessary because, for certain values of k ,
¹•kB is hyperbolic when written as a quasilinear,
second-order operator in spatial derivatives acting on Q .
Consequently Eq. (11) is ill posed. This particular choice
of regularization can be derived directly rather than in-
serted phenomenologically for a wide class of micro-
scopic gradient flows.

To see that ¹•kB is hyperbolic, set e50 in Eq. (11)
and linearize about the roll solution by setting
Q5k•X1c to find

t~k !cT1BcYY1
]

]k
~kB !cXX50. (12)

Thus the signs of kB and (kB)k determine the stability
of rolls. For narrow rolls with wavelengths shorter than
2p/kE (see Fig. 19), (kB)k is positive and the rolls are
unstable to perturbations in the direction of their wave
vector. This instability corresponds to the aforemen-
tioned Eckhaus instability. For rolls that are fatter than
2p/kB , kB is positive and the rolls are unstable to the
zigzag instability, which results in an interaction be-
tween the modes (k ,0) and (k ,6AkB

2 2k2). This insta-
bility is saturated by the presence of the regularization
and nonlinear terms and leads to the phase grain bound-
ary solution,

Q5kBXsin~a!1ln$2cosh@kBYcos~a!#% (13)

with bend angle 2a (a5p/2 corresponds to straight
rolls). The region kB<k,kE for which ¹•kB is elliptic
negative is called the Busse balloon (Busse, 1978) and
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corresponds to a band in which straight rolls with wave-
length 2p/k are linearly stable.

And now a miracle occurs. We observe that Eq. (11)
can be written as a gradient flow

]Q

]T
52

dF

dQ
(14)

with free energy

F@Q#5E 1
2

e2~¹2Q!21
1
2

G2~k !dx, (15)

G2~k !52
1
hEkB

2

k2

B~k !dk2, (16)

with two contributions. The first is the cost of roll bend-
ing, while the second is the cost of the wave number’s
being different from the optimal kB . An infinite field of
rolls with k5kB of course minimizes F , but because of
the constraints of boundary conditions, etc., this is not
viable for us. We expect the minimizing solutions to be
ones which almost everywhere have k5kB , but where
the bending contributions come into play on point and
line defects.

A little calculation will show that, for the solution
given in Eq. (13), the two terms of the energy balance
exactly. There is no a priori reason we should have ex-
pected this. Encouraged to exploit this fact, we may ask:
When do solutions of

e¹2Q56G (17)

satisfy the time-independent version of Eq. (11), i.e.,
minimize F@Q# from Eq. (15)? The answer is whenever
J5fXgY2fYgX [where k5(f ,g)], the Jacobian of the
map from X to k is zero (Newell et al., 1996). The quan-
tity J is proportional to the Gaussian curvature of the
phase surface Q and is exactly zero for the knee solution
in Eq. (13).

Not only is Eq. (17) a reduction of the original phase
diffusion equation, but, to a good approximation, it can
also be linearized. The reason is that G'uk22kB

2 u so
that Eq. (17) is just

e¹2Q56@~¹Q!22kB
2 # , (18)

which linearizes to the Helmholtz equation,

e2¹2c2kB
2 c50, (19)

via the transformation Q56elnc. Now, for rather gen-
eral cases, we can show that the asymptotic (e→0) so-
lutions of the phase diffusion equation have the prop-
erty that J50 almost everywhere. The story does not
end here, however.

Because J is proportional to the Gaussian curvature
of the phase surface, we can bring to bear a variation of
the Gauss-Bonnet theorem, relating curvature and twist.
A little analysis (vector calculus and the divergence
theorem) shows that

2E
V

Jdx dy5E
]V

k2df . (20)
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But, if k5kB on the boundary ]V of V , the right-hand
side of the above equation simply measures the twist
discussed in Sec. V. Because this twist is a topological
quantity, J must be conserved on regions with k5kB on
their boundaries. Furthermore, because of energy con-
siderations, we can expect to see k5kB across large re-
gions of the pattern, and, consequently, J50 except at
point defects, the centers of twist, and perhaps on some
line defects. The reader can see that as e→0 the curva-
ture term in F becomes less important and k→kB across
the pattern. Thus, in the small-e limit, J must focus in on
points like a d function, although with possibly non-
trivial angular dependence, or on PGBs joining point
defects. Thus the graph of the phase surface u , as drawn
on a double cover of the (x ,y) plane, resembles a piece
of crumpled paper with many flat surfaces and all of the
Gaussian curvature stored in point defects. The reason
for the focusing behavior of the Jacobian (Gaussian cur-
vature), as well as the nature of the singularities of J ,
remains an open problem.

VI. WAVELETS—A BRIDGE BETWEEN THEORY
AND EXPERIMENT

At this point the reader should appreciate the general
dichotomy inherent in the study of patterns. Experimen-
talists, both physical and computational, produce pat-
terns in the microscopic field variables. Most of the the-
oretical work on patterns, however, relies on the
knowledge of macroscopic order parameters, like the lo-
cal wave-vector field k. It would be desirable to have a
way of transforming one to the other. We have already
mentioned ways of reconstructing the microscopic signal
(at least locally) from the order parameters. What re-
mains is a way of extracting order parameters from real
signals.

To this end we want to find a way to transform the
microscopic field into the order parameters. This trans-
formation should be local in space, to account for the
slow variation of the order parameters, a criterion which
eliminates the usefulness of the ordinary Fourier trans-
form because, while it is local in wave number, it is com-
pletely nonlocal in space. The power spectrum one
would obtain from Fourier-analyzing the pattern would
give information on the average rather than the local
wave vector. Despite this difficulty, Fourier methods are
often used in pattern analysis to attempt such order-
parameter extraction, but they are not perfect. Instead
let us look for a local version of the Fourier transform.
Several such objects exist and have been well studied,
and, of all of them, the continuous wavelet transform
seems to best suit the goal of extracting order param-
eters.

The continuous wavelet transform is much like the
Fourier transform, except that instead of convoluting
the pattern with dilated and rotated plane waves eik•x

one uses dilated, rotated, and translated copies of a
wave packet (say a Gaussian amplitude over the carrier
wave). The transform is now local in both space and
wave number, at the cost of introducing an extra degree
of freedom, the location of the center of the wave
packet.
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The basic idea behind the wavelet analysis of a pat-
tern is simple and takes advantage of the fact that the
order parameters of the pattern vary slowly with respect
to the pattern wavelength l . To determine the local
wave number at a particular spot in the pattern, simply
lay the wave packet you choose over the pattern, cen-
tered on the point of interest. Now dilate and rotate the
wavelet until its wave vector matches the local wave vec-
tor of the pattern. Do this at every point in the pattern,
and you extract the local wave vector everywhere in the
pattern. Once this is available, other order parameters
like amplitude and mean flow are easily reconstructed,
both at points where they are slaved and at points where
they are not. For more detail we refer the reader to
Tchamitchian and Torrésani (1992), Guillemain and
Kronland-Martinet (1996), and Bowman et al. (1997).
Readers are also invited to investigate more general
works on wavelets, for example, Daubechies (1991),
Farge (1992), and Meyer (1993).

Wavelet analysis gives exactly what is needed to make
the connection between experiment and theory, namely,
the order parameters. With the wave-vector field known,
it is easy to compute important derived quantities of the

FIG. 20. Numerically generated pattern after wavelet analysis:
(a) the pattern with regions of high k.kB marked in white; (b)
the pattern itself; (c) the wave-number histogram computed
with the wavelet algorithm (solid line) as well as with Fourier
transform techniques [the structure function averaged over
angle (dotted line)]; (d) the correlation of the pattern along
various cross sections (horizontal, vertical, and diagonal); (e)
the Jacobian of the map; (f) the magnitude of L , the curl of the
vector field k.
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pattern, like the phase diffusion energy density F , or J ,
the Jacobian of the map from X to k. Knowledge of J ,
and where it gets large, provides a convenient way to
detect and locate point defects. Once the location of
these points are known, the wave-vector field can be
used to compute topological quantities like twist and cir-
culation in order to classify the types of defects. An ex-
ample of this analysis and the kind of information it
allows you to extract is shown in Fig. 20.

The wavelet transform allows one to extract wave vec-
tor information from the pattern. Consequently it is easy
to compute pattern wave number histograms, as shown
in Fig. 20(c). This analysis can also be performed with
Fourier methods, but the nonlocality of the transform
makes it inherently less accurate and tends to broaden
the resulting histogram by a large amount. An accurate
histogram allows one to make important statements
about the pattern, such as whether the pattern lies in the
stable region of the Busse balloon, for example. Further-
more, since the wavelet transform is local, the histogram
data can be viewed spatially, showing at a glance where
the pattern has wave number greater than kB , for ex-
ample [Fig. 20(a)]. Since the wave-number data ex-
tracted from the wavelet algorithm are smooth, it is easy
to compute quantities like J [Fig. 20(e)] or the curl of
the wave vector k [Fig. 20(f)]. Finally, the possibility ex-
ists that the wavelet-based algorithm outlined in Bow-
man et al. (1997) can be conveniently implemented op-
tically. If this is the case, it may be possible to build a
device that would implement this algorithm ‘‘on the fly’’
and provide experimentalists a real-time look at the or-
der parameters in their systems.

Other methods that do not involve the wavelet trans-
form have been recently proposed. In particular Egolf
et al. (1998) use derivatives of the pattern intensity to
extract k. Their method appears to be very computation-
ally efficient, and shows promise for the future.

VII. CONCLUSION

Patterns are macroscopic objects whose behaviors are
governed by universal equations. The structure of these
equations depends on the overall symmetry properties
of the original system, rather than on its microscopic
details. While progress on the computational, experi-
mental, and theoretical fronts has been encouraging,
there are many, many open problems. We invite you to
come explore this wonderful world with us.

REFERENCES

Assenheimer, M., and V. Steinberg, 1994, Nature (London)
367, 345.

Assenheimer, M., and V. Steinberg, 1996, Phys. Rev. Lett. 76,
756.

Bénard, H., 1990, Ann. Chim. Phys. 7 (Ser. 23), 62.
Bowman, C., T. Passot, M. Assenheimer, and A. C. Newell,

1997, Physica D (in press).



301C. Bowman and A. C. Newell: Natural patterns and wavelets
Busse, F. H., 1978, Rep. Prog. Phys. 41, 1929.
Cross, M. C., and P. C. Hohenberg, 1993, Rev. Mod. Phys. 65,

851.
Cross, M. C., and D. Meiron, 1995, Phys. Rev. Lett. 75, 2152.
Daubechies, I., 1991, Ten lectures on Wavelets, CBMS Lecture

Notes Series (Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA).

Edwards, W. S., and S. Fauve, 1994, J. Fluid Mech. 278, 123.
Egolf, D. A., V. I. Melnikov, and E. Bodenschatz, 1998, Phys.

Rev. Lett. (to be published).
Farge, M., 1992, Annu. Rev. Fluid Mech. 24, 395.
Gollub, J. P., and H. L. Swinney, 1975, Phys. Rev. Lett. 35, 927.
Guillemain, Ph., and R. Kronland-Martinet, 1996, Proc. IEEE

84, 561.
Joets, A., and R. Ribotta, 1986, J. Phys. (Paris) 47, 595.
Joseph, D. D., 1976, Stability of Fluid Motions Vol. I and II

(Springer, Berlin).
Kolodner, P., C. M. Surko, and H. Williams, 1989, Physica D

37, 319.
Kondu, S., and R. Asai, 1995, Nature (London) 376, 765.
Koschmieder, E. L., 1974, Adv. Chem. Phys. 26, 177.
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
Lega, J., J. V. Moloney, and A. C. Newell, 1995, Physica D 83,
478.

Meyer, Y., 1993, Wavelets: Algorithms and Applications, trans-
lation by R. D. Ryan (Society for Industrial and Applied
Mathematics, Philadelphia, PA).

Murray, J. D., 1989, Mathematical Biology (Springer, Berlin).
Newell, A. C., T. Passot, C. Bowman, N. Ercolani, and R. In-

dik, 1996, Physica D 97, 185.
Newell, A. C., T. Passot, and J. Lega, 1993, Annu. Rev. Fluid

Mech. 25, 399.
Pesch, W., 1996, Chaos 6, 348.
Rayleigh, Lord, 1916, Proc. R. Soc. London, Ser. A 93, 148.
Seul, M., L. R. Monar, L. O. Gorman, and R. Wolfe, 1991,

Science 254, 1616.
Surko, C. M., 1993, private communications.
Swift, J. B., and P. C. Hohenberg, 1977, Phys. Rev. A 15, 319.
Tchamitchian, Ph., and B. Torrésani, 1992, in Wavelets and

Applications, edited by M. B. Ruskai et al. (Jones & Bartlett,
Boston), p 123.

Thompson, D., 1942, On Growth and Form (Cambridge Uni-
versity, London).


