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An open system is not conservative because energy can escape to the outside. As a result, the
time-evolution operator is not Hermitian in the usual sense and the eigenfunctions (factorized
solutions in space and time) are no longer normal modes but quasinormal modes (QNMs) whose
frequencies v are complex. Qausinormal-mode analysis has been a powerful tool for investigating
open systems. Previous studies have been mostly system specific, and use a few QNMs to provide
approximate descriptions. Here the authors review developments that lead to a unifying treatment.
The formulation leads to a mathematical structure in close analogy to that in conservative, Hermitian
systems. Hence many of the mathematical tools for the latter can be transcribed. Emphasis is placed
on those cases in which the QNMs form a complete set and thus give an exact description of the
dynamics. In situations where the QNMs are not complete, the ‘‘remainder’’ is characterized.
Applications to optics in microspheres and to gravitational waves from black holes are given as
examples. The second-quantized theory is sketched. Directions for further development are outlined.
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I. INTRODUCTION

A. Physical motivation

Many concepts in physics rely on the idea of the nor-
mal modes of a conservative system. Thus one speaks of
energy eigenstates, molecular orbitals, energy bands,
transitions between states, and excitation energies (at
the first-quantized level) or of propagators in a Feynman
diagram (at the second-quantized level). These concepts
for interacting quantum fields are rooted in eigenfunc-
tion expansions in terms of the normal modes of free
classical fields; e.g., the photon propagator in QED de-
pends on the free classical electromagnetic (EM) field
being expanded in plane waves. Such expansions are
possible because conservative systems are associated
with Hermitian operators.

On the other hand, if energy can escape to the out-
side, the system would be open and nonconservative,
and the associated mathematical operators would not be
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Hermitian in the usual sense. The eigenfunctions are
then quasinormal modes (QNMs) with complex fre-
quencies v . Figure 1(a) shows schematically the EM
spectrum observed outside a linear optical cavity of
length a , due to emission by a broadband source, e.g.,
fluorescent dye molecules. The resonances or QNMs,
spaced by Dv'pc/a (where c is the speed of light), are
characteristic of the cavity rather than of the source. The
resonance width g is determined (in the absence of ab-
sorption) by the amount of leakage. In the limit of zero
leakage, these QNMs reduce to the normal modes of a
conservative cavity. It would be both interesting and
useful if the physics of open systems could be discussed
in terms of the discrete QNMs, providing an eigenfunc-
tion expansion for the dynamics.

This task is nontrivial because there are very few
known results for eigenfunction expansions in noncon-
servative, non-Hermitian systems. Yet interestingly, as
we shall show in this article, the familiar formalism, with
very little alteration, applies to a wide class of them.

The problem of EM waves escaping from an open
cavity is directly relevant for cavity QED phenomena: in
Fabry-Perot cavities (De Martini et al., 1987, Heinzen
et al., 1987), in superconducting microwave cavities
(Kleppner, 1981, Goy et al., 1983), in semiconductor het-
erostructures Yokoyama et al., 1990) and in micro-
spheres that confine glancing rays by total internal re-
flection (see, for example, Chang and Campillo, 1996;
Sandoghdar et al., 1996). First, the spectrum is domi-
nated by the resonances. Figure 1(b) shows an experi-
mental spectrum observed from a microsphere, similar
in essence to Fig. 1(a). Second, the decay rate of an
excited atom or molecule is enhanced if the emitted ra-
diation falls on the resonances and suppressed if the
emitted radiation falls away from the resonances (Klep-
pner, 1981; De Martini et al., 1987; Heinzen et al., 1987;
Barnes et al., 1996). This phenomenon is intriguing as
the atom or the molecule of dimension ;0.1 nm
‘‘knows’’ about its environment, on a scale of ;1 mm,
even before any photon is emitted.
15450(4)/1545(10)/$17.00 © 1998 The American Physical Society
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FIG. 1. Electromagnetic spectrum observed outside a cavity. (a) Electromagnetic spectrum (schematic) observed outside a linear
optical cavity of length a , due to a broadband source inside the cavity. (b) Fluorescent spectrum (upper) of a dye-doped ethanol
microsphere. Resonance peaks correlate well with the computed resonances (lower). Figure 1(b) provided by A. J. Campillo and
J. D. Eversole.
Another example concerns gravitational waves, which
can be produced by matter falling into a black hole and
may soon be observed (see, for example, Abramovici
et al., 1992). The intervening space is curved, leading to
nontrivial wave propagation and scattering, which can
be described by an effective potential, from which the
gravitational waves eventually escape. In this regard,
this region of space is much like an optical cavity, which
likewise causes nontrivial EM wave propagation and
scattering, and from which the EM waves eventually es-
cape. Numerical simulations (Vishveshwara, 1970; Det-
weiler and Szedenits, 1979; Smarr, 1979; Stark and Piran,
1985; Anninos et al., 1993) show that the amplitude is
dominated, at intermediate times, by a ringing signal
(aje

2iv jt (Fig. 2). Each term, labeled by an index j , cor-
responds to a QNM, and the complex frequencies v j
contain information about the background geometry
rather than about the emitting source.

Open systems are a special class of dissipative systems
in which the loss of energy is due to interaction with the
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
surroundings or a bath (Feynman and Vernon, 1963; Ul-
lersma, 1966; Caldeira and Leggett, 1983). The proper
treatment is first to include the bath degrees of freedom
and then to eliminate them from the path integral or
equations of motion. Similarly, an open cavity can be
embedded in a ‘‘universe’’ (linear dimension L→`),
with the space outside the cavity being the bath. The
totality of cavity plus bath is conservative, with the
modes of the universe forming a continuum (Dv}L21

→0). A rigorous theory of lasing in 1D cavities has been
developed using the modes of the universe (Lang,
Scully, and Lamb, 1973; Lang and Scully, 1973), and the
ideas can be generalized to higher dimensions, e.g., to
optics in microspheres (see, for example, Ching, Lai, and
Young, 1987a; 1987b).

The concept of resonance domination for cavity QED
was first discussed by Purcell (1946). He proposed that,
in the Fermi golden rule, the density of states per unit
volume d0(v)5v2/(p2c3) should be replaced by d(v)
;N/(2gV) for an N-fold degenerate QNM of width g
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in a cavity of volume V . This leads to an enhancement
factor of K5d/d0;(1/8p)NQ(l3/V) for spontaneous
emission, where l is the wavelength of light emitted and
Q is the quality factor of the cavity. Purcell’s ideas have
been demonstrated explicitly using the modes of the uni-
verse (Ching, Lai, and Young, 1987a; 1987b). The key
result is that the photon modes are redistributed: accu-
mulated at the resonance and depleted away from the
resonances.

A more natural way of stating these ideas is to use the
QNMs of the open system alone, rather than the modes
of the universe—in other words to eliminate the bath
degrees of freedom. This would be possible as an exact
statement only if the QNMs are complete. Complete-
ness relates to two issues. First of all, can any function
f(x) be expanded as

f~x !5(
j

ajf j~x !, (1)

where the f j(x) are the QNMs? More importantly, do
the resonances represent the dynamics exactly

F~x ,t !5(
j

ajf j~x !e2iv jt, (2)

for all t>0 and all x in the cavity? One would wish to
establish conditions under which these expansions are
valid and, in circumstances where they are not, to char-
acterize the remainder.

One should also be able to determine the coefficients
aj from f(x) via a projection formula, i.e., some sort of
inner product. Then, initial-value problems become for-
mally trivial: take the initial data, project out aj , and
evolve by aj°aje

2iv jt. Moreover, to the extent that
similarities can be established with the conservative
case, one should be able to transcribe the tools of math-
ematical physics and to establish a parallel formalism. A
particularly important goal, at the second-quantized
level, is to develop Feynman rules for cavity QED, in
which the field propagator is labeled by the discrete

FIG. 2. Numerical simulation of the amplitude f of linearized
gravitational waves propagating on a static, spherically sym-
metric black hole background as a function of time. The ring-
ing signal at intermediate times is due to the quasinormal
modes.
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QNM index j rather than by a continuous momentum
p—not only for computational convenience (sums rather
than integrals over closed loops), but also for conceptual
clarity (each term corresponds to a resonance).

This article reviews progress towards these goals.

B. The mathematical problem

Waves in open systems may be governed by the
Schrödinger equation (e.g., nuclear physics), the wave
equation (e.g., optics), or the Klein-Gordon equation
with a potential V [e.g., each angular momentum sector
of linearized gravitational waves (Chandrasekhar,
1991)]. The wave equation can be mapped exactly onto
the Klein-Gordon equation, and as far as time-
independent problems are concerned, the Klein-Gordon
equation can be mapped onto the Schrödinger equation
by relabeling v2 °v . Thus many properties are similar,
and we shall focus on the scalar wave equation, on a
certain domain R,

D F~r,t ![@r~r!] t
22¹2#F~r,t !50. (3)

This describes the scalar model of electromagnetism (r
5dielectric constant, and henceforth c51) or elastic vi-
brations (r5 density). In this article, we shall primarily
consider the 1D version (¹2°]x

2) restricted to a half
line 0<x,` ; the ‘‘cavity’’ is the interval R5@0,a# . Gen-
eralizations are cited later. A node is imposed at the
origin, and waves escape through the point x5a to the
rest of the ‘‘universe’’ in (a ,`). This model describes a
laser cavity with a totally reflecting mirror at x50 and a
partially transmitting mirror at x5a (Lang, Scully, and
Lamb, 1973), the radial problem of gravitational radia-
tion from a stellar object of radius a (Price and Husain,
1992), or the transverse vibrations of a string clamped at
one end x50 and loaded with a point mass at x5a (De-
kker, 1985; Lai, Leung, and Young, 1987).

For conservative systems, one usually imposes F50
on the boundary of R (x5a in the 1D case).1 The eigen-
functions or normal modes are factorized solutions
F(r,t)5f(r)e2ivt. The nodal condition on the boundary
implies that R is closed, so that energy cannot escape.
Mathematically, the operator 2r(r)21¹2 is Hermitian;
thus v is real and the eigenfunctions $f% form a complete
orthogonal set.

In contrast, if F satisfies the outgoing wave condition
on the boundary of R, the system is open. The eigen-
functions satisfy (in 1D) ]x

2f(x)52v2r(x)f(x), with
Im v,0. The question is then whether these $f% are com-
plete in the sense of Eqs. (1) and (2). The differential
equation by itself admits two symmetries: if the fre-
quency v and the function f is a solution, then so is that
obtained by (a) v°2v , f°f and (b) v°v* , f°f* .
However, in order to satisfy the outgoing boundary con-
dition as well, only the combination of these operations,
i.e., v°2v* , f°f* , would map an allowed solution to

1The Dirichlet condition can be replaced by the Neumann
condition.
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another. Thus if v is an eigenfrequency, then so is
2v* ; but, since v2Þ(2v* )2, the two eigenvalues are
distinct and the corresponding eigenfunctions f and f*
are linearly independent. Thus the modes are doubled
compared with the conservative case. Hence we shall
order the eigenfrequencies v j according to increasing
real parts, such that v2j52v j* . There could be QNMs
with Re v50; these would not be paired and will be
called zero modes and generically labeled as v0.

II. COMPLETENESS

The entire formalism hinges on a central result (Le-
ung, Liu, and Young, 1994a): the QNMs are complete
on R5@0,a# provided two conditions are satisfied. (a)
The discontinuity condition: r(x) must have a step or
stronger discontinuity at x5a so as to provide a natural
demarcation of a finite interval. (b) The no-tail condi-
tion: r(x)51 (or other constant value) for x.a , such
that outgoing waves are not scattered back. The no-tail
condition is especially natural in the case of optics,
where typically one has vacuum outside of the finite cav-
ity. It does not matter whether the inside of the cavity
has r larger or smaller than the constant outside value.

The proof of completeness will also provide the
framework for understanding other contributions when
the QNMs are not complete. The Fourier transform of
the Green’s function G(x ,y ;t) [defined by DG(x ,y ;t)
5d(x2y)d(t), with G50 for t<0] is given explicitly by
f(v ,x)g(v ,y)/W(v) for 0<x<y . Here f and g are ho-
mogeneous solutions at a frequency v , with f satisfying
the left nodal condition @f(v ,0)50# and g satisfying the
right outgoing wave condition @g(v ,x)}eivx for x→`];
W is their Wronskian.

For t>0, G(x ,y ;t) is evaluated by the inverse Fourier
transform with the contour of integration closed by a
large semicircle in the lower half v plane. In general
there are three different contributions:

(a) Large semicircle—prompt response. The large
semicircle (uvu→`) gives the short-time or prompt re-
sponse. For large t , the factor e2ivt provides sufficient
damping in the lower half v plane to control the
asymptotic behavior so that the prompt response always
vanishes for t.tp(x ,y), where tp(x ,y) is the geometric
optics transit time between x and y (Bachelot and
Motet-Bachelot, 1993; Leung, Liu, and Young, 1994a).

If the discontinuity condition is satisfied, one has a
stronger result: by a WKB estimate, this contribution
vanishes for all t>0. It is natural that the uvu→` behav-
ior should be sensitive to short spatial scales, in particu-
lar a discontinuity.

(b) Singularities in g—late-time tail. The function
f(v ,x) is obtained by integrating the time-independent
wave equation, in which v appears analytically, through
a finite distance from 0 to x . Crudely speaking, this is a
finite combination of analytic functions of v , so f(v ,x)
is analytic in v (Newton, 1960). But g(v ,x) could have
discontinuities in v (typically a cut on the negative Im v
axis), because one has to integrate from x→` .
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
However, if the ‘‘no-tail’’ condition is satisfied, then
one can impose the outgoing condition for g(v ,x) at x
5a1 and again integrate only through a finite distance.
Thus g is guaranteed to be analytic as well, and this
contribution is removed.

(c) Zeros of W—QNM contributions. Finally, there
are the zeros of W(v). At a zero v j of W , the functions
f and g are linearly dependent: f j(x)[f(v j ,x)
5Cjg(v j ,x); thus f j satisfies both the left nodal and the
right outgoing boundary conditions and is an eigenfunc-
tion or QNM.

In general all three contributions are present and cor-
respond nicely with the main features of the time-
domain signal (Fig. 3). The large semicircle in the v
plane leads to the initial transients—waves propagating
directly from the source point y to the observation point
x (rays 1a ,1b). The zeros of W give rise to the QNM
ringing at intermediate times, due to repeated scattering
from the potential (ray 2). The cut in the v plane, espe-
cially its tip near v50, then gives the late-time behavior:
waves propagate from the source point y to a distant
point x8, are scattered by r(x8), and return to the ob-
servation point x (ray 3).

We now focus on the case where both the discontinu-
ity and no-tail conditions are satisfied. At each zero v j ,
the residue is related to dW(v j)/dv , which can be
evaluated using the defining equations for f and g to be

2Cj

dW~v j!

dv
52v jE

0

a1

r~x !f j~x !2dx1if j~a !2

[^f juf j&. (4)

FIG. 3. Spacetime diagram illustrating the three different con-
tributions to the Green’s function: ‘‘direct’’ propagation with-
out scattering (rays 1a and 1b , prompt response); repeated
scatterings at finite x8 (ray 2, quasinormal-mode contribu-
tions); waves scattered at asymptotic x8 by V(x8) (ray 3, late-
time tail).
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Using the normalization (and phase) convention2 ^f juf j&
52vj , one then obtains

G~x ,y ;t !5
i

2(j

1

v j

f j~x !f j~y !e2iv jt. (5)

The initial conditions on G and ] tG lead to3

i

2 (
j

1

v j

f j~x !f j~y !50, (6)

r~x !

2 (
j

f j~x !f j~y !5d~x2y ! (7)

for x ,yPR. The identity (7) has an obvious analog in
conservative systems; the factor 1/2 accounts for the
doubling of modes. On the other hand, Eq. (6) becomes
vacuous in the limit of zero leakage.

The heart of the QNM expansion is contained in Eqs.
(5), (6), and (7). The identity (7) obviously leads to Eq.
(1), while Eq. (5) leads to Eq. (2). We stress that under
the two conditions stated at the beginning of this sec-
tion, this expansion and the results that follow are exact
and in no way limited to weak dissipation. In particular,
the dynamics in Eq. (5) applies to overdamped oscilla-
tions (represented by zero modes) as well.

III. ANALOGY WITH CONSERVATIVE SYSTEMS

The expansion of G leads to a description of the dy-
namics formally analogous to conservative systems.
Time-dependent problems require two sets of initial
data: f[F(x ,t50) and f̂[r(x)] tF(x ,t50) (Footnote
4). One is thus led to consider, from Eq. (2), the simul-
taneous expansion of a pair of functions,

S f~x !

f̂~x !
D 5(

j
ajS 1

2iv jr~x ! D f j~x !, (8)

using the same coefficients aj for both components. For
a QNM, the second component is explicitly f̂ j(x)5
2iv jr(x)f j(x), where v j is the eigenvalue.

The factor r(x) turns the second component into the
conjugate momentum. The use of two components is
natural (Feshbach and Villars, 1957; Unruh, 1974; Ford,
1975), but here the outgoing wave condition5 f̂(x
5a1)52f8(x5a1) links them in a novel way. Compared

2For higher-order poles, which cannot occur for 1D closed
systems, ^f juf j&50. This situation can be analyzed by letting
simple poles coalesce.

3Subject to the validity of term-by-term differentiation and
the limit t→01.

4These are assumed to vanish at infinity, representing waves
emitted at a finite time in the past.

5The last condition is specified at a1 because the system may
have discontinuities at x5a . However, f itself is continuous
since the positivity of r limits its singularity at x5a to at most
a d function; this has already been used in the last term of Eq.
(4).
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with the case of normal modes, twice the degrees of
freedom (aj and a2j) are used to satisfy double the con-
ditions (f and f̂).

The two-component expansion (8) is proved by start-
ing with the Green’s-function solution to the initial-
value problem

F~x ,t !5E
0

`

@G~x ,y ;t !f̂~y !

1] tG~x ,y ;t !r~y !f~y !#dy . (9)

Inserting the expansion (5), one then obtains Eq. (8) and
also Eq. (2) with aj given by

aj5
i

2v j
H E

0

a1

@f j~y !f̂~y !1 f̂ j~y !f~y !#dy

1f j~a !f~a !J . (10)

All reference to the outside of the cavity is removed,
because the integral on (a ,`) can be collapsed to the
surface term by making use of the outgoing condition on
the initial data and the retarded condition on G . The
elimination of the outside is the crucial step in obtaining
a self-contained description of the cavity.

Consider the linear space of outgoing function pairs,
denoted as ket vectors uf&5(f ,f̂)T. Time evolution can
be written in Schrödinger form ] tuf&52iHuf& , where

H5iS 0 r~x !21

]x
2 0 D . (11)

The first component of the Schrödinger equation repro-
duces the identification of f̂ as r(x)] tF . The QNMs can
now be defined simply by Hufj&5v jufj&.

The projection (10) suggests a generalized inner prod-
uct between two vectors uf& and uc&,

^cuf&5iF E
0

a1

~cf̂1ĉf! dx1c~a !f~a !G , (12)

which is symmetric and linear in both the bra and ket
vectors (rather than conjugate linear in the bra vector).
The inner product of a QNM with itself reproduces the
generalized norm (4). Moreover, the coefficients aj can
now be written compactly as

aj5^fjuf&/~2v j!. (13)

Under the generalized inner product, the Hamiltonian
is symmetric: ^cu $Huf& %5^fu $Huc& %[^cuHuf&. The
proof of this statement requires an integration by parts;
surface terms are incurred because the functions do not
vanish at the end points, but these are compensated ex-
actly by the surface terms in the definition of the inner
product.

There is thus an almost complete parallel with conser-
vative systems, and the mathematical structure is in
place to carry over essentially all the familiar tools based
on eigenfunction expansions. For example, the symme-
try of H (similar to hermiticity in the conservative case)
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immediately leads to the orthogonality of the QNMs
and hence to the uniqueness of the expansion (8). The
only exception is the lack of a positive-definite norm,
and with it a simple probability interpretation—hardly
surprising since probability (or energy) is not conserved
in R.

Incidentally, the generalized inner product ^cuf& can
be put into the context of non-Hermitian Hamiltonians
by introducing a duality transformation D(f1 ,f2)T

[2i(f2* ,f1* )T. Then, ^cuf& is just the conventional in-
ner product between uf& and Duc&. Moreover, $ufj&% and
$Dufj&% are seen to constitute a biorthogonal basis (Le-
ung, Suen, Sun, and Young, 1998).

In the above, we have described the formalism for a
half-line problem with a nodal condition at one end (x
50) and a discontinuity at the other (x5a), with the
outgoing wave condition just outside the discontinuity.
It is straightforward to generalize the formalism to a full
line, with at least two discontinuities (x5a1 ,a2), and the
outgoing wave conditions just outside these discontinui-
ties. The completeness relationship then holds on the
interval (a1 ,a2), and the generalized inner product con-
tains two surface terms. Likewise, the formalism can be
generalized from the wave equation to the Klein-
Gordon equation [the ‘‘no-tail’’ condition is that V(x)
50 on the ‘‘outside’’ (Ching et al., 1995b, 1996)], and to
the presence of absorption (provided that it satisfies the
usual Kramers-Kronig dispersion relation); Leung, Liu,
and Young, 1994b). Much the same methods also apply
in 3D, though in the presence of a centrifugal barrier the
surface terms in the inner product become progressively
more complicated with increasing angular momentum l .

IV. TIME-INDEPENDENT PROBLEMS

The simplest and most useful applications concern
time-independent problems, especially time-
independent perturbation theory.

A. Perturbation

Let r(x)215r0
21(x)@11mV(x)# , where umu!1 and

V(x) is nonzero only in the cavity. The system with
r0(x) is exactly solvable with a complete set of QNMs.
The task is to develop a discrete representation for the
exact frequency v j5v j

(0)1mv j
(1)1m2v j

(2)1¯ . With the
formalism described in the last section, the perturbative
formulas can be obtained by simply transcribing the
textbook derivation for conservative systems, evaluating
the pertinent matrix elements ^fjuDHufk& using Eqs. (11)
and (12); e.g., the first-order shift is

v j
~1 !5

v j
~0 !

2
Vjj , (14)

with Vjk5*0
afj

(0)r0Vfk
(0)dx . However, these formulas are

now complex and give the shifts in both the resonance
positions and their widths; thus they contain twice the
information of their superficially similar conservative
counterparts.
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The first-order correction has been known for a long
time for the Schrödinger equation, but here the normal-
ization [see Eq. (4)] involves a surface term rather than
a regularization (Zeldovich, 1960), the latter being less
convenient computationally. The first-order result has
been generalized to the EM case (Lai et al., 1990), and
in fact applies also to systems without discontinuities.

More importantly, the transcription also gives the
higher-order shifts, e.g.,

v j
~2 !5(

kÞj

v j
~0 !vk

~0 !Vjk
2

4~v j
~0 !2vk

~0 !!
. (15)

The (slow) convergence of Eq. (15) is readily acceler-
ated using identities such as (6) (Leung, Tong, and
Young, 1997b). The wave functions can be calculated in
a parallel way (Leung et al., 1994).

B. Physical examples

Some interesting applications relate to optics, where
the interface between two media gives a discontinuity
and the vacuum outside the system naturally satisfies the
no-tail condition. Consider a microsphere of radius a
and refractive index n . Glancing rays suffer total inter-
nal reflection and are confined, but evanescent waves
cause some leakage, which makes the microsphere an
open system. In practice, experiments are often done on
droplets falling in air; the droplets are slightly oblate
(ellipticity e;102321022) due to viscous drag. The
breaking of spherical symmetry lifts the degeneracy
among the 2l11 members of a multiplet. This splitting
has been calculated numerically by brute force (Barber
and Hill, 1988), but the perturbative formalism allows an
analytic expression (Lai et al., 1990),

vm
~1 !

v~0 !
52

e

6F12
3m2

l~ l11 !
G , (16)

in which m is the azimuthal quantum number, and e
5(rp2re)/a , where rp and re are the polar and equato-
rial radii, respectively, and a5(rpre

2)1/3. Equation (16)
has been used to interpret spectroscopic measurements
on the splitting between neighboring lines (m and m
11); Chen et al., 1991), on the total spread of the mul-
tiplet from m50 to m56l (Chen et al., 1993), and on
time-domain variations in intensity arising from the
beating among different m’s, which can also be regarded
as a precession of the photon orbit (Swindal et al., 1993).

A levitated droplet is also distorted when subjected to
a quadrupole field EQ , with e}EQ /s , where s is the
surface tension. Determination of e from the splitting
then allows s to be found, down to length scales of tens
of mm (Arnold, Spock, and Folan, 1990). (Previously,
surface tension was known only macroscopically, at
length scales of 1 mm or more.)

On a very different length scale, the perturbation re-
sults have also been applied to black holes perturbed by
interactions with their surroundings (e.g., a massive ac-
cretion disk). The first-order shifts in the QNM frequen-
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cies of gravitational waves are expressed by the Klein-
Gordon analog to Eq. (14), further generalized to allow
for a ‘‘tail’’ (Leung et al., 1997).6 Consider, for example,
a Schwarzschild black hole perturbed by a thin static
shell of matter. Figure 4 shows, in the complex v plane,
the locus of the lowest QNM for l51 scalar waves, as a
light shell (0.01 times the mass of the hole) is placed at
different positions rs . The first-order perturbative re-
sults (dashed lines) capture the qualitative features of
the exact results (solid lines). Since these shifts depend
on the perturbation, they may provide a useful probe of
the intervening spacetime curvature. The possible appli-
cations in this direction have yet to be fully exploited.

V. SECOND QUANTIZATION

An important goal of the formalism is second quanti-
zation (Ho, 1997; Leung, Maassen van den Brink, and
Young, 1997; Ho et al., 1998). First of all, the fields f

and f̂ may be regarded as dynamical variables of the
entire universe—which is conservative and Hermitian,
and therefore can be quantized in the usual way; thus
these fields are promoted to operators by imposing the
canonical equal-time commutators @f(x),f̂(y)#5id(x
2y). Since the coefficients aj are given by projecting
these operators onto the c-number functions f j in the
manner of Eq. (10), one immediately obtains their com-
mutation relations,

6With a ‘‘tail,’’ the QNMs are not complete, but clearly this is
irrelevant for the first-order shift.

FIG. 4. The locus of the lowest quasinormal mode for l51
scalar waves propagating on a Schwarzschild background, as
the shell of magnitude m50.01 is placed at different positions
measured by rs ; solid line, the exact results; dashed line, the
first-order perturbative results; the square, a shell position of
rs /Ma52.22 (the extreme value that satisfies the dominant-
energy condition); the triangle (on the solid line) and the
crosses (on the dashed line), to rs /Ma from 6 to 60 at intervals
of 6. The first-order result is seen to capture the qualitative
features.
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@ak ,aj
1#5

vk1v j*

4v j* vk

Ijk , (17)

where the overlap integral is

Ijk5E
0

a1

rf j* fk dx'd jk , (18)

in which the last approximate expression refers to j ,k
.0 and is valid in the limit where the leakage is negli-
gible. Thus these are (apart from normalizing factors
A2vk, etc.) the analogs of the creation and annihilation
operators for the field quanta in a particular mode.

More importantly, the Feynman propagator can be
written as

G̃F~x ,y ;v!5(
j

f j~x !D j~v!f j~y !. (19)

The factors f j(x) and f j(y) represent the coupling to the
mode j at x and y , while the propagator for the field
quanta is now labeled by a discrete index j and given by

D j~v!5@2v j~ uvu2v j!#
21 (20)

for real v ; contrast the analogous quantity D(p ,v) for
the propagation of a quantum with continuous momen-
tum p in the modes of the universe approach. With Eq.
(19), one has achieved the goal set out at the beginning:
to obtain cavity Feynman diagrams for cavity QED.

As an illustration, consider a stationary atom with two
levels 6s/2 placed in the cavity at position x . The en-
ergy and decay rate of the upper state are obtained by
locating the poles V i of the retarded-atom propagator

@v2s/22S̃↑(v)#21 [continued from v.0 (Abrikosov

et al., 1975)]. The self-energy of the excited level S̃↑(v)
is calculated using only the lowest-order diagram
(i.e., emission and subsequent absorption of a virtual
‘‘photon’’) generated by H int5lf(x)u↓&^↑u1H.c.,
and assuming domination by the resonance v j in the
photon line (Ho et al., 1998). In terms of h
[uf j(x)f j(a)u2/4uv ju2uImv ju (Ho et al., 1997) (with h
}uImv ju0 in the closed limit), two cases must be consid-
ered:

[(a)] l2hs!us2v ju2, a broad resonance (i.e., weak
coupling). One pole represents a transient, while
for the other 22ImV252l2hsuImv ju/us2v ju2 is the
resonance-enhanced (the vacuum rate being l2/s)
golden-rule decay rate (Purcell, 1946) also obtainable
using the modes of the universe.

[(b)] l2hs@us2v ju2, a narrow resonance (strong
coupling). One finds V1,25v j/26lAhs , which repre-
sents revivals (Rabi, 1937) with the atomic frequency
lAhs and decay with the much slower cavity leakage
rate uImv ju.

The ‘‘unit weight’’ of narrow resonances here emerges
as a result and need not be assumed (Lai, Leung, and
Young, 1988); see also (Ho et al., 1998).

Besides using the Feynman rules directly as above,
one can calculate the vacuum fluctuations of the fields
and relate physical processes to them, e.g., spontaneous
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emission being ‘‘stimulated’’ by the vacuum fluctuations
(Ho, 1997); or one can deal with the density of states,
which is the imaginary part of the Green’s function. In
any of these equivalent methods, the quantities of inter-
est are expressible exactly as a sum over QNMs. This
then provides a clean justification for many semiempir-
ical approaches based on dominance by one or a few
resonances. Furthermore the decay of a two-level atom
coupled to an open cavity with Lorentzian resonances
can be solved exactly in the rotating-wave approxima-
tion (Lai, Leung, and Young, 1988; Garraway, 1997a,
1997b). Thus the completeness of QNMs, and their use
in a second-quantized theory, serve as powerful tools to
analyze resonance-dominated optical phenomena in
open cavities.

VI. NONRESONANT CONTRIBUTIONS

For cases in which the QNMs are not complete, there
are nonresonant contributions. Interesting examples are
gravitational waves and waves governed by the Schrö-
dinger equation. Gravitational waves from Schwarzs-
child black holes are described by the Klein-Gordon
equation; the potential V(x), related to the background
metric, is continuous and goes asymptotically as x23logx
as x→1` (apart from a centrifugal barrier), violating
both the discontinuity and the no-tail condition. We
here indicate how this situation affects the dynamics
(Ching et al., 1995a; 1995c).

First, without a discontinuity, there is a prompt signal.
Second, the asymptotic part of V(x) leads to a cut in the
Green’s function on the negative Imv axis, the tip of
which near v50 determines the late-time dynamics. Ge-
nerically, if V(x);x2a(log x)b, then f(x ,t)
;t2m(log t)n, where m and n are determined by a , b ,
and the angular momentum l . For example, if b50 or 1,
in general m52l1a and n5b . However, there is an ex-
ception when a,2l13 is an integer; in that case the
leading term vanishes, and the late-time dynamics is
dominated by the next leading term, which is ;t2(2l1a)

for b51 and ;t2(2l1a11) for b50. It turns out, inter-
estingly, that the case of the Schwarzschild black hole
(a53, b51) belongs to this exceptional category, and
the late-time behavior is a pure power. Figure 2 shows
precisely such a power-law tail. However, the signal at
intermediate times would still be dominated by the
QNMs, so that in practice a restricted and approximate
notion of completeness still holds.

For the Schrödinger equation, outgoing waves are de-
fined by f(x);eikx as x→` , where k5A2v instead of
k5v . Thus a cut in the lower half v plane is unavoid-
able, and the system decays by a power-law t2a at large
times, due to the contribution near threshold (k'0),
even though V(x) vanishes exactly outside some inter-
val. This phenomenon was first noted by Khalfin (1957)
and Winter (1961), with a t23/2 tail being generic. How-
ever, if the potential is unbounded from below, no finite
threshold exists, and the large-t behavior is again given
by the QNMs (Suen and Young, 1991). This applies to
some models of minisuperspace, in which x is essentially
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
the scale factor of the universe (Suen and Young, 1989),
and there is the intriguing possibility that the wave func-
tion of the universe at the end of the quantum era is
given by the lowest QNM, independent of cosmological
initial conditions.

The power-law decay in the case of the Schrödinger
equation comes from the threshold, whereas the power
law in the Klein-Gordon case comes from the spatial tail
of V(x). The origins of the two are entirely different.

Despite these complications, in time-independent
problems, one is free to relabel v2 °v , so the Schrö-
dinger case should not be different from the Klein-
Gordon case. An application in this restricted time-
independent sense is given in Leung and Young (1991).

VII. CONCLUSION

We have considered linear, classical waves in open
systems of a certain type, and sketched a formalism in
terms of a QNM expansion, in a manner analogous to
the description of conservative systems by their normal
modes. Dissipation is contained in these discrete QNMs
themselves, especially in Imv j . The analogy with con-
servative systems is achieved by the introduction of a
generalized inner product, in terms of which the time-
evolution operator is symmetric. Apart from this modi-
fication, almost nothing needs to be changed, and the
familiar tools for Hermitian systems can be carried over.
These results are nontrivial, in that if either the discon-
tinuity condition or the no-tail condition is violated, the
QNMs would not be complete. The most significant fea-
ture in these cases is a power-law tail in the long-time
behavior.

It is useful to place the present formalism in the gen-
eral context of dissipative systems (Feynman and Ver-
non, 1963; Ullersma, 1966; Caldeira and Leggett, 1983).
In all cases, one starts with a system-plus-bath descrip-
tion. The key result is that reference to this bath (here
the ‘‘outside’’) can be eliminated. For example, in Eq.
(10) the outside contribution has been collapsed to a
surface term. The no-tail condition ensures that earlier
data are not scattered back, so that the system R does
not have memory; this is analogous to taking an ohmic
bath spectrum, without which the conventional treat-
ments would likewise exhibit memory. These rigorous
treatments differ fundamentally from those introducing
irreversibility by coarse graining or by assuming random
phase.

The wave systems under discussion differ from con-
ventional models in two interesting respects. First, in the
conventional models, the system (say Qi) and the bath
coordinates (qn) are coupled through a potential
lV(Qi ,qn) (bilinear in the simplest cases). Such cou-
plings are ‘‘soft’’ and can be switched off (l→0); thus
the overall Hilbert space is the same as that for l50,
i.e., the product VS^ VB of the system and bath spaces.
In the wave systems, coupling is achieved through
boundary conditions on F(x ,t) and its derivative across
x5a . Such couplings are ‘‘hard’’ in that they cannot be
turned off, and the Hilbert space is not VS^ VB . Factor-
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ization occurs only in the decoupled limit (obtained by
imposing a node at x5a), where one loses one degree of
freedom, namely F(a ,t).

Second, conventional models typically involve few
Qi , i<N . In contrast, the region R has an infinite num-
ber of degrees of freedom, and thus their optimal repre-
sentation becomes an issue. The QNM expansion re-
places the continuum F(x ,t) with the set $aj(t)%. Each
aj represents a resonance, so that the formalism is espe-
cially suitable when one resonance dominates. More-
over, it closely parallels the conservative case.

By using the tools presented in this review, a begin-
ning has been made in dealing with cavity QED, such
that field propagators are labeled by the discrete QNM
basis, opening the way to a simpler and more transpar-
ent description.
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