
REVIEWS OF

VOLUME APRIL, 1935 NUMBER 2

Thermionic Electron Emission and Adsorption

Part I. Thermionic Emission*

J. A. BECKER, Bell Telephone Laboratories

TABLE OF CONTENTS

A. Introduction. . . , , . . . . . . . . . . 95
B. Empirical and Theoretical Richardson Formulae . . 96

1. The thermodynamic equation. . . , . . . . . . . . . . . 96
2. The statistical equations. 98

a. Classical treatment . . ' . . . . . . . . . 98
b. Quantum-mechanical treatment. . . . , . . . . . . 99
c. Treatment in terms of energies. . . . . . . . . . . 100
d. Comparison of classical and quantum-

mechanical treatment . 101
3. The temperature dependence of the work

function 102
4. On true and apparent surface areas. . . . , . . . . . 103
5. On the reflection'coefficient. . . . . . . . . . . . . . . . . 104

C. The ESect of Accelerating Fields and Retarding
Potentials. 104

1. Retarding potentials. 105
2. Accelerating fields 107
3. Theuseof theterm "effectiveworkfunction" . . 109

D. The Effect of Nonuniform Work Functions: Patch
Theory. 110

1. The simple condenser analog. . . . . . . . . . . . . . . . 110
2. The hill and valley checkerboard. . . . , . . . . . . . 112
3. Comparison between theory and experiment. . . 116
4. Checkerboardwithuniformchargedistribution. 120

E. The Values of the Work Function for Clean
Surfaces, 122

F. Currents Limited by Space Charge. . . . . . . . . . . . . 125
G. Miscellaneous Topics. 127

A. INTRQDUcTIQN

T HERE have appeared in the Reviews two
excellent summaries on thermionic emission,

one by Compton and Langmuir' and one by
Dushman. ' Compton and Langmuir, while deal-
ing primarily with discharge in gases, also
discussed many phases of thermionic emission.
Dushman's article is a comprehensive review on
thermionics. He faithfully reflects whatever view-
points and experiments appear in the literature.
Besides reviewing the work that has been
performed since 1930, the present article will be
an attempt to review in a critical manner some
of the matters which in the preceding reviews

* Part II. Adsorption (to appear later).

were left undecided. The present article will also
emphasize adsorption phenomena more than did
the preceding ones. On the other hand, no
attempt will be made to give a complete presen-
tation of all the views appearing in the literature.

Recently there have been published two com-
prehensive books on thermionics. One is in
English by A. L. Reimann. ' The other is Vol. IV
of Miiller-Pouillets Lehrbuch der Physik4 edited
by A. Eucken, with contributions by A. Eucken,
R. Suhrmann, L. Nordheim and others. The
topics which are fully covered in these two books
and in the book' by W. Schottky and H. Rothe,
Physik der Gluhelektrodem will not be covered
in detail in the present article. Since photoelectric
phenomena are closely associated with therm-
ionics, it is well to refer also to Linford's' review
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on the external photoelectric effect and the book
by Hughes and DuBridge~ on photoelectric
phenomena.

B. EMPIRICAL AND THEORETICAL RICHARDSON

FQRMULAE

One topic on which considerable confusion has
existed goes to the very root of thermionic
emission, It is the interpretation that is to be put
on the slope and intercept of a Richardson line
and how the slope and intercept are related to
certain quantities in theoretical formulae. Em-
pirically it is found that the thermionic emission
current density, i, is related to the temperature,
T, by the Richardson formula

i=A„T"exp (—b /T), (1a)

or its equivalent

logip i ——logip A +n logip T—(b /2. 3T). (1b)

A„and b are constants characteristic of the
surface. Their value depends on the value
.assigned to n. From such experiments it is
impossible to decide whether n should equal 0 or
4 or any value between these. There are good
theoretical reasons, which are given below, why
n=2. In that case

i =A T' exp (—b/T), (2a)

or logi —2 log T=log A —b/2. 3T. (2b)

If log i —2 log T is plotted ts. 1/T, a straight line
is usually obtained. Call this line a Richardson
line. Its slope is —b/2. 3, and its y intercept is
log A. Since we shall have numerous occasions to
refer to the slope and intercept of a Richardson
line, we will find it convenient to refer to them by
their equivalents —b/2. 3 and log A, respectively.
On those rare occasions when the Richardson plot
yields a curved line, we can draw a tangent at any
point on the curve. Eq. (2) will then represent
the equation for this tangent; —b/2. 3 and log A
will depend on the particular point at which the
tangent is drawn, so that b and A will depend
oil T.

1. The thermodynamic equation
The slope and intercept of experimental

Richardson plots are to be correlated with certain
quantities in one or the other of two theoretical

equations. The first of these* is based on the
first and second llaw of thermodynamics and the
assumption that the electron vapor acts like a
perfect gas. f The equation is:

logi~ ——log i~.+log t (1—r)/(1 —r') j+s log T'
T

—
s log T+(1/2. 3) (L„/RT)dT, (3)

T'

in which T' is any fixed temperature in the
experimental temperature range; r and r' are the
electron reflection coefficients at T and T',
respectively; L~ is the heat of vaporization per g
mole of electrons at constant pressure; R is the
gas constant per g mole.

Thermodynamics cannot tell us how L„varies
with T and until we know this we cannot
perform the integration indicated. By considering
the mechanism by which the electrons evaporate
from the metal, we can arrive at some con-
clusions regarding the temperature dependence
of L„.Since in the derivation of Eq. (3) it was
assumed that the electron vapor acts like a
perfect gas, it follows that when 1 g mole of
electrons are vaporized at constant pressure an
amount of work RT must be done against the
external pressure and an amount of heat (3/2)RT
must be provided to furnish the known mean
kinetic energy of the vaporized electrons. It then
becomes desirable to define a new quantity h by
the equation

/I, = (Lp/R) —(5/2) T. (4)

Since k plays an important role in the final
formula, it will be convenient to give it the name
"heat function. "f. The product kh, where k is
Boltzmann's constant, represents the average
heat of vaporization per electron less (5/2)kT.
Substituting Eq. (4) in Eq. (3),

log; = log i +log $(1—r)/(1 —r') j—2 log T'

T

+2 log T+(1/2.3) (h/T')dT. (5)
T'

* For a recent critical derivation see Becker and
Brattain 8

t This assumption is subsequently justified by ex-
periment.

f This is of course not the heat function used in thermo-
dynamics. The heat function defined here has the di-
mensions of temperature. It is often given in volts V= kh/e.
Later h will also be used for Planck's constant but we
believe no confusion will arise.
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Thermodynamics alone cannot tell us how the
heat function h varies with T and we cannot
perform the indicated integration until this is
known. However, we can deduce an important
theorem even without performing the inte-
gration: If the experimental value of log i—2 log T
is plotted vs. 1/T, the slope of the tangent at any
value of T is —h/2. 3.*

Hence for those surfaces for which the
Richardson lines are straight, h is independent of
T in the experimental range. For these surfaces,
Eq. (5) reduces to

log i= log iz"/(1 —r') (T')'+h/2. 3T'

+log (1—r)+2 log T—h/2. 3T

=log H(1 —r)+2 log T—h/2. 3T, {6)

where log H= log iq. /(1 —r')(T')'+h/2. 3T'.

Log H(1 —r) is the intercept of the Richardson
line on the y axis.

An alternative derivation of the thermody-
namic emission equation uses the absolute zero of
temperature as the lower limit in the various
integrals. In this way Bridgman derives the
equation, f

i= Ua(1 —r)T' exp 7 Ls/kT+@(T) j, (6a)

in which U is a universal constant equal to
2 ~Gk'me/h'= 120 amp. /cm' 'K' h (Planck's
constant), m, e and k have the customary
significance; G is the statistical weight which is
equal to 2 for electrons; a= exp {Ssp/k); Ssp is the
entropy per atom of a metal whose surface has a
charge density p at T=O; Lo is %he heat of
vaporization per electron at constant pressure
at T=O;

1 T

(C„,—C„)dT.
kT s

C» is the specific heat per atom at constant
pressure when the metal surface has a charge

* For the proof see Becker and Brat tain 8 In the proof it
is assumed that dr/dT is zero or very small. This assump-
tion is justifiable.

f See Eq. IV, 33 on page 99 of his book The Thermo-
dynamics of Electrical Phenomena in Metals.

density p while C„ is the specific heat for the
uncharged metal. In the derivation it is assumed
that the entropy of the uncharged metal at T= 0
is zero in accordance with the third law of
thermodynamics; it is also assumed that the
electron vapor acts like a perfect gas. The value
of U follows from the value of the entropy
constant of a perfect gas deduced from quantum
statistics. Up to the present time neither theory
nor experiment has yielded numerical values for
n or p(T). If, however, it is assumed that n= 1,
y(T) =0 and r=O then Eq. (6a) reduces to

i = UT' exp (—Lo/kT), (6b)

which is the equation derived by Dushmanf. in
1923. It predicts that all Richardson lines should
have the same intercept on the y axis, namely,
log U. Since this prediction is not fulfilled by
experiment it would appear that the assumptions
made in obtaining Eq. (6b) are not valid. It may
be well to point out also that adsorbed particles
on the surface probably contribute additional
terms to the expression for the specific heats and
entropy at absolute zero. These have not been
taken into account.

We are now in a position to show why the
exponent of T in Eq. (1a) should be 2. To do this
we consider h in Eq. (5) or L„in Eq. (3). The
heat of vaporization L„is defined as the heat
energy that must be added to the system in
order to evaporate one g mole of electrons at
constant pressure. We have seen that (5/2)RT
ergs must be added to account for the specific
heat of the vaporized electrons and work done
against the external pressure. The remainder,
Rh, which includes all other energies can be put
equal to P—K—T(dP/dT) where P is the in-
crease in potential energy of the electrons, and K
is the mean kinetic energy which the electrons
had in the metal. P includes work done against
the image force or any other electrical forces. So
little is known about the exact nature of P that
there is little point in examining the temperature
dependence of the quantity P—TdP/dT more
closely. On the other hand, the quantity K and
its variation with temperature does depend on
the particular assumption that is made with
regard to the energy distribution of the free

f S. Dushman, Phys. Rev. 21, 623 (1923).
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electrons in the metal. In particular Z is very
nearly independent of T if the electrons in the
metal have kinetic energies given by the Fermi-
Dirac function. * That this is the correct distri-
bution function is quite well established by the
numerous successes which this theory has had in
explaining experimental facts in connection with
metals. ' "For the Fermi-Dirac distribution X is
practically a constant term in the expression for
the heat function h. There is then no reason for
changing the form of Eq. (6) which contains the
term 2 log T. This is equivalent to an exponent of
2 in Eq. (1a).

The case was somewhat different before the
advent of the quantum theory. The electrons in
the metal were then assumed to act like a
perfect gas. Hence the energy E was taken to be
(3/2)RT. It was thus natural to subtract this
from the (5/2)RT for the electron vapor. In this
way one is led to an expression for log i similar to
Eq. (6), but instead of 2 log T there now appears
s log T. So that the exponent of T in Eq. (1a)
was taken to be &.

It is well to note that on the basis of this
thermodynamic argument, there is no good
reason why the heat function should be inde-
pendent of T and why the Richardson lines
should be straight. Experiment shows, however,
that for nearly all surfaces which are not close to
their melting point, the heat function is inde-
pendent of T to within experimental error. In the
neighborhood of the melting point, the heat
function varies with T. It should also be noted
that thermodynamics does not predict that all
Richardson lines should have a common intercept
on the y axis. This prediction which is true only
for special classes of surfaces has been made on
the basis of a statistical theory which we will now
discuss.

square cm of surface in one second. It was at
first assumed that the electrons inside the metal
acted like a perfect gas; the velocity distribution
is given by Maxwell's law

where u, v, m are the velocities in the x, y, s
directions respectively; n(u, v, m) is the number
of electrons per cm3 having u values in the range
(u, du), i.e. , between u and u+du, v values in the
range (v, dv), and m values in the range (m, dm); n
is the total number of electrons per cm', m is the
electron mass; and k is Boltzmann's constant.
The number of electrons having u components of
velocities in the range (u, du) is obtained by
integrating Eq. (7) with respect to v and m from
—~ to+~.

n(u)du =n(m/2vrkT) & exp (—mu'/2kT)du. (8)

The total number of particles striking a cm' of
surface per second is given by

N~ —— un(u)du =n(k T/2~m) &.

0

(9)

But only those electrons whose value of u
exceeds uo= (2p/m)& will escape from the surface.
The quantity p, called the work function, repre-
sents the potential energy of the electron outside
the metal; it is the work that must be done to
take an electron at rest in the metal and trans-
port it across the surface to a distance at which
the surface forces are negligible. The total
number, N, of electrons which can escape from 1
cm' of surface in 1 second is then

n(u, v, m)dudvdm

nm& —m(u'+v'+m')-
exp dudvdvv, (7)

(2nkT)& 2kT

2. The statistical equations

a. Chzssical treatment. If we knew the velocity
distribution and density of the electrons inside a
metal at various temperatures and the difference
in potential energy between an electron at rest
inside and outside the metal, it would be a
comparatively easy task to determine statisti-
cally how many electrons could escape from a

un(u)du
Qo

n(m/2~kT) &u exp (—mu'/2kT)du

=n(kT/2~m)& exp ( —p/kT).

The emission current in amp. per cm' is

(10)

* This function will be discussed below. i=Ne=A'T& exp (—p/kT) (11a)
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or log i —
~ log T= log A' —P/2. 3kT, (11b)

where A'= ne(k/2~m) &, (12)

e=charge on the electrons in coulombs=1. 59
X10—ss

If p is independent of T and if log i—-,'log T is
plotted versus 1/T, the slope = —P/2. 3k and the

y intercept = log A' or log ne(k/2mm)&. For clean
tungsten it is found by experiment that the
current density can be represented by

i=2.06 X 10'T& exp (—55,300/T).

From this it follows that ne(k/2~m)&=2. 06X10'
and that n=8.4X10" electrons/cm'. This is to
be compared with 635 X10"atoms/cm'. So that
if we postulate one "free electron" for every 75
atoms, we can account for the observed therm-
ionic emission classically.

Such a concentration of free electrons may be
considered to be in quite good accord with the
first of two possible deductions from experiments
on specific heats. From these it follows that: (1)
Either the number of free electrons must be
small compared to the number of atoms and the
mean kinetic energy per electron is (3/2)kT; or
else, (2) the number of free electrons is of the
order of the number of atoms but the kinetic
energy increase per degree rise in temperature is
much smaller for electrons than it is for atoms.
The correlation of experiment and classical
theory in the case of the optical properties,
electrical conductivity, thermoelectricity, Thom-
son and Peltier effects lead to certain incon-
sistencies. These disappear when theories based
on the Fermi-Dirac distribution are used for
these effects and it is postulated that the number
of free electrons in metals is of the same order as
the number of atoms. The classical theory for
Richardson's equation thus leads to values of n
which are incompatible with values deduced
from these effects. The newer theory has also
made progress in explaining ferromagnetism. It
is thus a better basis for a statistical theory of
electron emission. Such a theory was developed
by Sommerfeld' and Nordheim. '4

b. Quantum-mechanical treatment. The Fermi-
Dirac theory gives the velocity distribution as

Gm'
n(u, v, m)dudvdm=-

h3

1
X dudvdm, (13)M-~ exp (m(u3+v3+~3)/2kTj+1

G is the statistical weight; for electrons its value
is 2. h is Planck's constant. The quantity M is so
adjusted that the integral of n (u, v, m) gives the
total number of electrons/cm', This integration
is so difficult that no relatively simple and exact
expression for M can be found. However, in two
limiting cases good approximations have been
obtained.

In the first case M is so small a quantity that
M ' exp Lm(u'+v'+zv')/2k T7»1. It then follows
that

M =nb'm&/G(2~k T) & (14)

and, that Eq. (13) is the same as Eq. (7) for the
classical treatment.

In the second case M is a large quantity and
the 1 in the denominator' of Eq. (13) cannot be
neglected. Sommerfeld' has shown that in this
case

M=exp (K/kT), (15)
where

h3(3n/4' G):
K=

2m

(2mmkT)' Bn 4~3

X +
12&4 4mG

(16)

The second term in the brackets is usually a very
small numerical quantity and can nearly always
be neglected.

If we assume that n, the number of elec-
trons/cm', is equal to the number of atoms/cm'
in a metal or a small factor times this number, we
can compute M for case 1 by Eq. (14) or for case
2 by Eq. (15). In either case M turns out to be a
large quantity. Hence for metals the second case
is applicable while the first case is not. Hence

Gm3
n(u, v, w)dudvdm=-

133

'1
X dudvdm, (17)

-'m(u'+v'+ m') —K
exp +1

kT
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since M—'=exp ( —K/kT).

8(Q)du

Integrating this from —~ to + ~ with respect to
e and w Nordheim'4 has shown that the number
of electrons per cm' having velocities in the range
(u, du), i.e., between u and u+du, is

N(u)du
fCy

2m-Gm'k T K—-,'mu'
Q exp du

kT

2~Gmk'T' K——,'muc'
exp

h' kT

2mGm'kT K—~mu'
ln 1+exp du. (18)

k' kT

The number of electrons striking a surface
normal to the u direction per cd per sec. and
having velocities in the range (u, du) is given by
N(u)du= Qn(u)du; hence

2~Gmk' P —K

Finally

i =Nq = (2~Gmek'/Ii') T' exp L
—(P„—K)/k T]

= UT exp (—W/kT) = UT exp (—m/T)

= UT' exp. (—ye/kT) (22)
N(u)du

where
2~Gm'kT K——,'mu&-

u ln 1+exp du, (19) and
h' kT

U=2mGmek'/k' (23)

P —K=W=km= qe. (24)

Now only those having velocities greater than
u. will be able to cross the surface and escape
where u, is given by -,'muP =P . P is the
difference in potential energy between an electron
at rest inside and, outside the metal. Now P is
about 3/2 times as large as K and therefore
~mu, 2&1.5K. Also for the values of T encoun-
tered in thermionic experiments kT is small
compared with (-', mug —K). Therefore for values
of u&u„exp [(K——',mu')/kT] is a very small
quantity and

ln L1+exp ((K—-,'mu')/kT) ]
=exp L(K—-', mu')/kT]

to a good approximation. This follows, since
ln (1+b,)= (~——,'6'+-,'6' ——4'b, 4+ ) provided
LP(1. Hence, for u&u, and the temperatures
encountered in thermionic emission

2irGm'kT K- ~mu'
N(u)du = —u exp du. (20)

Ii' kT

The number that cross the surface per cm'
per sec. is given by

If i is expressed in amperes per cm', the value of
U is 120 amperes/cm' 'K'. The quantities W, m,
or p are called the work function; the difference
between them is merely one of units. q is ex-
pressed in volts, m in degrees Kelvin, and P„,K
and W in ergs. P is called the outer work
function and K, the inner work function.
Oftentimes it is convenient to refer to P, K and
W as if they were expressed in volts.

c. Treatment in terms of energies. For many
purposes it is convenient to have expressions for
the distribution in energies instead of in velocities.
We can then express these energies in equivalent
volts and obtain numerical values which are
more familiar. Let E= (m/2) (u'+v'+w'); E„
= (m/2) u', "the normal component of the
energy"; U„=E„/e; n(E)dE = the number of
electrons per cm' having energies in the range
(E, dE); similarly for n(E„)dE„;N(V„)dU„is the
number striking a cm~ of surface per sec. having
normal component of energies in the range
(V, dU).

Then

Q(E)dE

2+G Ek
=—(2m) & dE, (25)

k' 1+exp ((E—K)/kT]
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N(V„)dV„
2TEGemkT K —Ve

d V.. (28)
h' kT

Eqs. (25} and (26) are readily derived from
Eq, (18); while Eqs. (27) and (28) follow from
Eq. (19). It is also instructive to compare Eq.
(28) with the corresponding equation which is
based on classical statistics, namely,

N(V. )d V.
=n(e'/2nmkT) & exp (—V„e/kT)dV„. (29)

This is readily derived from Eq. (8).
d. Comparison between classical and cINantum-

mechanical treatment. Comparison between Eqs.
(28) and (29) is best brought out by a graph such
as Fig. 1 which shows log N( V„)vs. V„for the two
cases. It is to be remembered that N(U„)dV„is
the number of electrons in the metal which strike
1 ems of surface per sec. whose energy com-

n(E„)dE„
24Gm&kT 1 (K—E„)—ln 1+exp dE„, (26}

k' E 2 (kT)

N(E„)dE„
2x.Gmk T K—E„

In 1+exp dE„, (27)
k' kT

and

W(or P~ —K) =P—(3/2)kT, (30)

A =A'/eITI. (31)

From Eq. (30) it follows that the classical work
function p is larger than the quantum-mechanical
work function W or P —K by (3/2) kT and that
to obtain the same emission from the two
distributions the curves must be shifted by
K/e —3k T/2e.

ponents normal to the surface are in the range
(V, d V„)volts. It has been customary to plot
N(V„) vs. V„for Eq. '(28). At T=O, N(V )
decreases linearly with V„ from a value of
27TGemk/hs when V„=O,to zero when U„=K/e;
for V„&K/e, N(V„)=0.For T&0, the function
is much the same except in the neighborhood of
U =K/e and for U„&K/e; the curve is here
everywhere higher than the curve for T=O and
decreases exponentially. Since only those elec-
trons can escape for which V ~P &(3/2)K, we
are primarily interested in the exponential por-
tion of the curve. It is therefore more advan-
tageous to plot log N(V„)rather than N(V ).

In Fig. 1 curves 1 and 2 are for Eq. (28) at
T=O and T= 1800'K, respectively; while curve
3 is for the classical case or Eq. (29). For curves 1

and 2, the value of K/e has been taken as 5.75
volts which is the value appropriate for tungsten
assuming one free electron per atom. For curve 3
the value of n has been so chosen that this curve
is shifted with respect to curve 2 by K/e —3kT/2e
or 5.52 volts. The value of n which does this is
16.6X10"/cm'. To account for the observed
emission from tungsten we have previously
deduced a value -', as great or 8.4X10"/cm'. The
factor of 2 is due to the fact that the intercept of
the observed Richardson plot for tungsten
corresponds to 60 amp. /cm' 'K' while the
theoretical intercept corresponds to 120 amp. /
cms OK

At first sight it might appear that the shift
between curves 2 and 3 should be K/e rather
than K/e —3kT/2e. The additional term is ac-
counted for by comparing the classical or TI Eq.
(11a) with the quantum-mechanical or T' Eq.
(22). It is well known that the experimental
results can be made to fit either the T& or the T'
equation and that the constants in the two
equations are related by
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b=lv= W/k= ye/k and log A =log U. (32)

If the work function varies linearly with
temperature,

m'=Ieo+nT or W= Wo+nkT

or y= q p+n(k/e) T; (33)

where n= de/dt is a constant independent of T;
its units are degrees per degree. The slope of a
Richardson line is now —Ivp/2. 3 so that

while

b =Mp = Wp/k = T1ppe/k

log A =log U—n/2. 3. (34)

Since the slope is constant, the Richardson line is
straight. This line is determined either by the
empirical constants A and b or by the values of Iv
and tv/dT in theoretical equations.

If Iv is a general function of T, the Richardson
line will be curved. If a tangent is drawn at a
point corresponding to any temperature, the
slope of the tangent is —(1/2.3)(lv —Tdlv/dT)
and its intercept is log U —(1/2. 3)dlv/dT; zv and
dlv/dT are to be taken at the point of tangency.
Hence

b = Iv—TdvL1/d T

and log A = log U —(1/2.3)dm/d T. (35)

* For a detailed discussion see reference 8.

3. The temperature dependence of the work
function

Thus far little has been said about the temper-
ature dependence of the work function. While
there is no good theoretical reason for expecting a
large temperature dependence, there is also no
good reason to expect that the work function is
accurately independent of T. Experiments on
contact potential and photoelectric effect indicate
that there is indeed a small temperature effect. *
In investigating the effect of the temperature
dependence we shall limit ourselves to the
quantum-mechanical equations. However, a
similar treatment would be applicable to the
classical or T& equation.

If in Eq. (22), Iv or its equivalents Wor p are
independent of T, then the slope of a Richardson
line is —Iv/2. 3 or —W/2. 3k or —pe/2. 3k; the
intercept is log U. So that

iILOGU (I P)2' -i

LOG A 'g

-2

SLOPE = ' i SLOPE
w

23 w g '2.3

dw 2&[LGGL1 (I-r)-LGGA]
dT
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FIG. 2. Typical Richardson plot.

The distinction between the heat function h
and the work function Iv is strikingly brought out
in Fig. 2. The slope of the Richardson line is
—h/2. 3, while the slope of a straight line con-
necting any point on the Richardson line with
the intercept log U(1 —r) is —Iv/2. 3.

The theory that the work function is indeed a
function of temperature has been championed in
recent times by R. Suhrmann and his collabo-
rators. A good account of this work can be found
in Volume 4 of Muller-Pouillets Lehrbuch der
Physik. One method by which Suhrmann has
shown the temperature dependence of the work
function is that of the complete photoelectric
emission. The surface to be investigated is
illuminated by light from a source whose temper-
ature is varied. It is found that the resulting
photo-current obeys a Richardson law and the
slope of the Richardson line is taken as the work
function. The temperature of the cathode is now
altered and a new Richardson line is obtained

In a previous section it was shown that the
slope of the Richardson line is always equal to
—h/2. 3. Hence —h/2. 3= —(1/2.3) (Iv —Tdm/d T)
or

h = Iv —T(de/d T). (36)

This important equation gives the relation be-
tween the heat function and the work function.
It is similar in form to the relation between the
total energy F and the free energy F, vis. ,

F= F—T(dF/dT). (37)
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It is found that the slope has changed. It may be
worth while to analyze critically the theory of
this experiment to ascertain whether the slope is
related to the work function or to the heat
function.

4. On true and apparent surface areas

One other point in the correlation between
experiment and theory is to be noted. In the
empirical equation, i is the current per cm' of
apparent surface; while in the theoretical equa-
tion, i is the current per cm' of an ideal or true
surface. The real surface in thermionic experi-
ments is not smooth; it usually consists of a large
number of etch facets which are oriented at
various angles with respect to a mean surface
plane. The appearance of the surface is to be
compared with an airplane view of a city whose
gabled roofs have various designs and various
angles. The size and shape of the etch facets
depends on the material of the cathode, the
crystal size, the orientation of the crystal with
respect to the mean surface, the degree of heat
treatment and presumably some unknown factors.
Theoretically it is possible to deduce values of S,
the ratio of the true surface area to the apparent
surface area, for certain simple cases. Thus,
Tonks"' has computed the following average
values of S: For cubic facets or 100 planes,
1.500; for dodecahedral facets or 110 planes,
1.225; for 100 and 110 planes, 1.129. Some of the
assumptions on which these values are based are:
(1) The surface is covered with pyramids whose
sides are crystal planes; (2) the orientation of
crystal axes with respect to the surface is
random; (3) for a given type of etch plane or
'planes, the facets occur in such a way as to
give a minimum surface area. No one has made a
thorough investigation to test these assumptions
by experiment. Some microscopic pictures of
etched surfaces which I have seen showed
truncated pyramids in contrast with the first
assumption; they also showed sub-facets, thus
violating the third assumption.

Values of S have been obtained from experi-
ments on adsorption of gases on solid and liquid
surfaces. Particularly significant experiments are
those of Bowden and Rideal" on the adsorption
of hydrogen ions deposited on metal surfaces by

electrolysis of a solution of sulphuric acid, The
potential of these surfaces was deter mined against
a calomel electrode. They found that when the
electrolytic current exceeded a minimum value,
the surface potential increased linearly with the
quantity of electricity until it reached a new

steady value. For a mercury surface as well as
for a thin film of platinum on mercury the
potential increased by 1 volt for 6Y, 10 ' cou-
lomb/cm'. The direction of the potential change
and its amount are such as to be expected if
hydrogen ions are adsorbed on the surface. For
surfaces other than mercury the charge per cm'
required to change the potential by 1 volt was
S times 6X10 '. They obtained the following
values for S: smooth platinum, 2.0; platinum
black, 2000; sandpapered nickel, 10;oxidized and
reduced nickel, 50. They interpret this S as the
ratio of the true area to apparent area. Their
values are considerably greater than those ex-
pected from Tonks' theoretical calculations.

As a result of this it is my opinion that a
considerable amount of careful work must be
done before reliable values of S are obtained for
thermionic cathodes. For the present. it would,
seem best to consider S as an unknown whose
value lies somewhere between 1 and 10 for rough
surfaces such as those on oxide coated, filaments,
and between 1 and 2 for relatively smooth
surfaces such as tungsten. The exact value will no
doubt depend on the exact treatment of each
surface.

Fortunately the uncertainty of our knowledge
of Sdoes not seriously affect our correlation made
above. It is necessary to divide values of i and A
in the empirical equations by S to reduce to the
basis of true surface area before comparing them
with theoretical equations. The observed values
of i and A should thus be reduced by 25 to 50
percent for smooth surfaces and by larger values
for rough surfaces. Thus in the case of surfaces,
such as tungsten, molybdenum and tantalum,
for which A has the value 60, the true A should
be between about 30 and 45 as compared with a
theoretical value of 120. Since the deviations
from 120 are due to a temperature dependence of
the work function, it means that we must
postulate a somewhat larger value of a in Eq. (34)
than otherwise.
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S. On the reflection coefficient

There is still another topic that enters into the
correlation of experiment and theory, namely the
reHection coefficient. Thus far we have assumed
that every electron whose normal component of
velocity exceeded a certain value escaped while
those having less than this value failed to escape.
On the classical viewpoint this assumption is
justified but on the quantum-mechanical view-
point there i's a finite probability that the
electron considered as a wave will be reHected at
the surface even though its velocity is such that
it could escape; also a wave electron has a finite
probability of passing through a potential peak
when classically its velocity is not large enough
to permit it to pass over the top of the peak.
Consequently we should include an average
transmission coefficient D in the theoretical
emission formula. D= 1 —r where r is the
average reHection coefficient. Eq. (22) then
becomes

i = U(1 —r) T' exp (—w/T). (38)

A number of writers" have attempted to explain
the deviations between A and U by postulating
such values of r that A = U (1—r). This expla-
nation is possible only for cases for which A & U
since 0&r &1. Even when A & U the numerical
values turn out to be such that the difference
between A and U cannot be accounted for by

. computed probable values of r. These values of r
are determined chieHy by the shape of the curve
giving the work an electron must do to get to
various distances from the surface. Only when
this work-distance curve is postulated to have a
high sharp peak within a few atom diameters
from the surface, is it possible to deduce values of
r which are appreciable. Now we have good
reasons' for believing that no such peaks exist,
and that the maximum of the work distance
curve occurs at relatively large distances from
the surface in a region where the forces on the
electron are given by the well-known image law.
For the latter type of curve, the computed value
of r is less than 0.07 which is negligibly small.
Nordheim, who first pointed out that the
transmission coefficient might differ from unity
says: "However, the exact computation taking
into account the image force which must neces-
sarily be considered, has shown that such a
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FIG. 3. Retarding potential curves for parallel plates.

rounded-off potential curve yields a value of D
which differs inappreciably from 1.0."*A more
complete case showing that the values of the
reHection coefficient are negligibly small is given
by Becker and Brattain. '

C. THE EFFECT OF ACCELERATING FIELDS AND

RETARDING POTENTIALS

~ See Section by Nordheim in Miiller-Pouillets Lehrbtcch
der Physih', Vol. IV, Elektrizitat und Magnetismus, Part
IV, p. 294. See also footnote 2 on p. 290.

Thus far we have considered how the emission
current and the work function depend on the
emitting surface and its temperature; we have
implicitly assumed that the current was "satu-
rated" or that every electron which escaped from
the surface was collected by the anode. It is,
however, well known that the emission current
depends also on the applied fields and the applied
potentials. In considering the effects of these
fields and potentials we shall incidentally obtain
an insight into the nature of some of the forces
responsible for the work function.

For simplicity consider a large plane cathode
and parallel to it a large plane anode. If the
temperature of the cathode is high enough to
emit a small but appreciable current, log i will

vary with the potential applied to the anode in
the manner shown in Fig. 3. In drawing curve 1
in this figure three more simplifying assumptions
have been made", namely (1) that the contact
potential between cathode and anode is zero;
(2) that all portions of the cathode and anode
have the same work function, and (3) that space
charge effects are negligible. The eff'ect of these
assumptions will be considered later.
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The curve in Fig. 3 naturally divides itself into

corresponds to retarding potentials while the
h

'
ht f 0 corresponds to accelerating

potentials. In the latter region the current is said
to be "saturated" although strictly speaking the
current is never saturated but increases in-
definitely as U increases. Obviously, the effect of
V on the current is quite different in the two
regions an esed th two regions require different
explanations.

1. Retarding potentials

Consider first the retarding potential region in
—V thewhich log i decreases linearly wit —Vo, h

lied potential V. The explanation is to beapp ie
found in extending the theories which were
to derive the Richardson equation. In that

forces which the escaping electron had to over-

any electron which escaped from the catho e
would reach the anode. If a retarding potential
V,* is applied to the anode then only t ose
electrons whose normal component of velocity u
exceeas a va ue u, cd I can reach the anode; where u,
is given by

(39)mu, s/2—

in the classical case, or

mu, '/2=P +eV„
in the quantum-mechanical case. Fig. 4, curve 1,

* In discussing retarding potent'ntials it is convenient to
consider retarding potentials as positive even t oug e
anode potential is negative, so that V, = —V.

or

i =¹ =is exp (—V„e/kT), (41a)

log i = log io —(e/2. 3kT) V„, (41b)

where is=i when V„=0. The slope of the straight

If p, and cp, are not equal, the field between

anode. To produce zero field a potential must be
applied which neutralizes the Volta potentia.
The true potential V between anode and cat ode

illustrates t e po eh t ntial energy of an electron at
various distances between the cathode and anode

cathode. It is tentatively assumed that the anode
work function y, isf

'
is the same as the cathode

that the contact potential is zero. When V„=
nearly all the space between the cathode and
anode is field free as shown in curve 2; only in t e
immediate neig or od' '

hborhood of the cathode or the
anode is the electron subjected to any forces.
When a retarding potential is applied the elec-
trons must have sufficient energy to pass over the

i . 4 in order to reachmaximum in curve 1, Fig.
the anode.

T d t mine the number of electrons that cano eer
reach the anode we integrate Eq. (10) or
f = t u= ~ where u, is given by Eq.
(39) or (40), respectively. Whether we use t e
classica or t e quan uth ntum-mechanical statistics we
arrive at the same result.



106 J. A. BECKER

Since VV Pc Par (43)

V= V, +q, —p, . (44)

is the sum of the applied potential V, and Vv or

V= V,+ Vv. (42)
Vre/kT
log Te (ic/i)

1 2 3
0.2423 0.5827 0.9523

7 8 9
2.5369 2.9455 3.3567

4 5 6
1.3371 1.7312 2.1318

10 11 12
3.7698 4.185- 4 6024

14 16 18 20 25
5.4398 6.2812 7.1245 7.9714 10.0978

TABLE J. Values of log&0 ic/i for various values of V„e/lET
(Germer) '5

Since Vr = —l',

V, = —V —(97,—&.) = —V +&,—&,. (45)

V„is the true value of the retarding potential
and these values of V„are to be used in Eqs.
(39), (40) and (41). V and V, are measured from
the bre'ak point in Fig. 3. Fig. 5 illustrates the
case when y, )97. For V, =O, V is positive and
equal to q, —C)0,. To produce zero field V must be
negative and equal to p, —97,. The dashed line

gives the potential energy distribution for a
somewhat larger negative applied potential.

When the contact potential is not zero, the
break point in the log i vs. V, curve will occur
when the field is zero or when V, = —(y, —(I7,).
This is illustrated in Fig. 3 by the dashed line for
a case for which q.) 97 .

Usually thermionic experiments are not per-
formed with plane parallel cathodes and anodes
but with a small cylindrical cathode concentric
with a cylindrical anode. In the cylindrical case,
the normal or radial component of velocity is not
the only one which determines whether the
electron will reach the anode. Schottky17 derived
the following formula for this case on the
assumption that the emitted electrons leave the
filament with a velocity distribution given by
Maxwell's law (Eq. (7)) for a temperature T. As
we have seen above both the classical and the
Fermi-Dirac theory predict this distribution for
the electrons which escape from the filament.
This formula replaces Eq. (41).

i=ip(2/7r~) [U„e/kT]'exp {—V„e/kT)
0
CI-T.S0

I, E,AND 3 —CLEAN TUNGSTEN
AT I400, 1550,AND ITOD K

RESPECTIVELY

4 AND 5 —TNORIATED TUNCSIEN
AT l400 K —DW~0, 5 AND

LO VOI.TS 'RESPECTIVELY

V„e/kT taken from an article by Germer. '
Fig. 6 shows various ideal plots of log i vs. V

for cathodes of clean tungsten and thoriated
tungsten. It is assumed that the anode is clean
tungsten. Curves 1, 2 and 3 are for a clean
tungsten cathode at temperatures of 1400, 1550
and 1700'K, respectively. Curves 4 and 5 are for
a thoriated tungsten cathode at 1400'K activated
to such an extent that the work function is 4.03
and 3.53 volts, respectively. The dashed lines
indicate the currents for a plane cathode and
parallel anode.

Curves 1, 4 and 5 illustrate an important
theorem which follows from the analysis on
contact potential given in connection with Figs.
3, 4 and 5. The theorem is: The current collected
by an anode is independent of the work function
of the cathode provided that the cathodes are in
the same position and have the same tempera-
tures and that the retarding potential is suffi-

ciently great. This theorem v as verified ex-
perimentally by Davisson. "

The curves shown in Fig. 6 are for ideal

exp {—x )dx . (46)
(V„e/kT)l

It is assumed that the diameter of the cathode is
small compared to the diameter of the anode, and
that the current is not limited by space charge.
Table I gives values of logip (ip/i) for values of

-I.S -I.2 &.9 -0.5 -0.3 0 03 0,5 0.9 I.2 l.5 1.8 2.I
VO

—POTENTIAL APPLIED TO ANODE IN VOlTS

Fio. 6. Retarding potential curves for cylindrical electrodes.
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conditions. Experimental conditions frequently
differ from ideal conditions in at least five
respects: (1) The various portions of the cathode
are not at the same potential; (2) the work
function of the cathode is nonuniform; (3) the
work function of the anode is nonuniform; (4) the
temperature of the cathode is nonuniform; and
(5) the current is limited by space charge rather
than by the applied potential. The last two
conditions are discussed, in other treatises. The
first condition is usually due to the fact that the
cathode is a filament and is heated by passing a
current through it. As a result the observed curve
is the sum of a series of elementary curves, each
one of which is shifted along the V axis by the
amount of the potential drop along the filament.
Such a sum curve consists of a straight line
having the correct slope at sufficiently great
retarding potentials; the sharpness of the break
point in the curve is, however, destroyed and the
slope of the curve for small retarding potentials
is decreased, thus simulating the ideal curve for a
higher temperature. The best way to obviate this
difficulty is to work with equipotential cathodes
which are heated indirectly. This makes the
construction of the tube more difficult and has
been used only by Demski. "Most of the work has
been done .on filaments which were heated
intermittently by means of a mechanical or
electrical commutator.

In this way Germer, "Demski and others have
shown that the distribution of thermionically
emitted electrons is Maxwellian and corresponds
to a temperature which is equal to the tempera-
ture of the cathode to within less than 5 percent.
Germer worked with tungsten for a series of
temperatures between 1440 and 2475'K. Demski
worked with tungsten and with oxide-coated
filaments. He used a mechanical and an electrical
commutator and also worked with equipotential
cathodes. Nottingham" and others have reported
that for thoriated tungsten and oxide-coated
filaments the temperature computed from the
shape of the log i vs. V curve for small retarding
potentials was about 1.5 times the temperature
of the cathode. Nottingham explains this as due
to a sharp peak in the potential distance curve
through which a part of the wave electrons can
penetrate. In my opinion it is much more likely
that these observations are due to nonuni-

formities in the work function of the cathode and
the anode.

If the work function of the cathode is non-
uniform, the observed curve should result from
the summing up of the currents for a series of
curves somewhat similar to curves 1, 4 and 5 in
Fig. 6. The sum curve will have the correct slope
at sufficiently great retarding potentials; but at
low values of V, the slope should be too small
corresponding to too high a temperature. The
break point will be less sharp.

If the work function of the anode is non-
uniform, the elements of the sum curve will
consist of a series of ideal curves shifted parallel
to the V axis. The sum curve will again yield'
correct temperatures at large values of V, but
too high temperatures at small values of U„.
That the work function of cathodes is usually
nonuniform will be shown in the next section.
It is to be expected that the anode work function
will also be nonuniform since the anode is more
difficult to heat treat than the cathode. However,
when one takes into account the effect of these
nonuniformities, it is seen that the experiments
abundantly confirm the theory that the distri-
bution of velocities of thermions is that given by
Maxwell'h law for an ideal gas.

2. Accelerating fields

As illustrated in Fig. 3, when positive po-
tentials are applied to the anode, log z increases
continuously; but the rate of increase becomes
progressively less so that the current is almost
independent of the anode potential. For many
purposes one can safely say that the current is
saturated; for some purposes, however, it is very
important to consider this lack of saturation.
More specifically a consideration of this effect
gives us direct evidence of some of the forces
which are responsible for the work function.
Thus, as the electron escapes from the surface, it
must overcome certain forces which tend to pull
it back. The electrical fields responsible for these
forces presumably decrease with the distance
from the surface. Call them surface fields F,.
When a positive potential is applied to the anode,
a field F, is produced near the surface of the
cathode which tends to help the electrons escape.
The value of the field depends on the dimensions
of the cathode and anode. This applied field
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P =Ps —Fek, (48)

and dP/dk =dP p/dk —Fe. (49)

At the maximum in the P vs. k curve, dP/dk=0
and k=k..

Since P depends on F, the true field (applied
+ contact potential field), it will be convenient
to designate values for curve 1 for which F= 0 by
the subscript 0. Then

0.3
0 SO 100 ISO 200 280 300 350 400 ASO T 10-8

2 —DISTANCE FROM CATHODE IN CENTIMETERS

FiG. 7. Potential energy es, distance from cathode
surface for image force and applied fields of zero or
40,000 volts/cm.

or the decrease in the work function due to an

applied field is equal to the decrease in the
maximum of the potential energy-distance curve.

neutralizes the surface fiejd at some distance k

from the surface; call this distance the critical
distance kSN If an electron can reach the critical
distance, it will escape, since beyond this distance
the sum of the applied and surface fields pulls the
electron toward the anode. Obviously the critical
distance moves closer toward the cathode as the
applied field is increased.

A more quantitative concept is obtained by
consideririg the eRect of the applied field on the
potential energy-distance curve similar to Fig. 4.
Now, however, we will be concerned more
particularly with regions close to the cathode, so
that we will greatly enlarge the distance scale.
Fig. 7, curve 1, shows such a curve when the true
field between cathode and anode is zero. The
true field F is the algebraic sum of the applied
field F, and the field produced by the contact
potential. Frequently it is convenient to use the
term "applied field" in the sense of "true field, "
i.e. , including the contact potential field. An

applied field decreases the potential energy of the
electron as shown in curve 2. The net potential
energy is shown in curve 3.

The maximum height in curves 1 or 3 repre-
sents the work function p in the classical theory
or the quantity P /e in the quantum theory. In
the latter case, since pe=P —K from Eq. (24)
and since K does not depend on the applied field,

bcp=bP /e (47)

Hence (dPo/dk)
~
.,= Fe. (50)

We require an expression for DP, the decrease in
P due to the field F. From Fig. 7 it is clear that

Hence from Eqs. (52) and (53)

d(dP )/dF=ek, .
Combining this with Eq. (47) we obtain

d(hy)/dF= k,.

(54)

(55)

Now from

log i=log U —2 log T—(cp —Dq)e/2. 3kT

=log is+A, ye/2. 3kT (56)

we obtain d logi/dF= (d(A p)/dF)e/2. 3kT. (57)

Combining this with Eq. (55) we obtain

d logi/dF=(e/2. 3kT)k, . (58)

This equation which was first derived by
Becker and Mueller" allows us to obtain nu-
merical values for k, from the slope of the experi-
mental log i es. F curve. At k. the surface field F,
is equal to the applied field F. Hence a plot of F,
vs. k can be obtained, and by integrating this
from k to oo, values of P s —Ps can be obtained
for various values of k greater than some mini-
mum value corresponding to the largest value
of F.

dP =distance A

+distance 8 =P s
—Ps~ s,+Fek. (51)

d(d, P )/dF= —dPP/dFI s=s,

+Fe(dk, /d F)+ek,. (52)

Now from Eq. (50)

dPs/dF] s=s, =dPs/dk) s,dk, /dF= Fedk, /dF. (53)
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TABLE II. Values of 69p, g„log i%s and i%s if the surface field is given by the image late.

F, volts/cm
QF
App, volts
sp cm
log i%p, T =1000'K

i%p
log i/ip, T =2000'K

i/ip

0
0
0

0
1.000

0
1.000

100
10

0.0038
1.89 X10 P

0.0191
1.045
0.0096
1.022

1000
3 1.6

0,0120
5.98 X10 P

0.0604
1.149
0.0302
1.072

10,000
100

0.0378
1 89 X 10-P
0.191
1.553
0.096
1.25

40,000
200

0.0755
9.45 X10 t
0.382
2.410
0.191
1.55

A particular case of a surface field, namely, that
given by the image law, is especially significant.
In this case F,=e/4s' and it can be shown that
the distances A and 8 in Fig. 7 are equal. At the
critical distance F= F, and F=e/4s, 2 or

s, = (e/4F) &. (59)

By substitution in Eq. (55) and integration from
0 to F it follows that

dy=(eF)&.

Substituting this in Eq. (56) yields

(60)

log i =log i0+(e&/2. 3kT) Q F, (61)

=log i0+(1.91/T) Q F.

This equation, which was first derived by
Schottky" and is called the Schottky equation or
law, predicts that a plot of log i vs. g F should
yield a straight line whose slope is e&/2. 3kT
or 1.91/T.

Experimental log i vs. Q F plots are found to be
straight and to have approximately the right
slope for sufficiently high applied fields. At low
fields, the line is curved and the experimental
slopes are greater than the predicted values.
These deviations from Schottky's law are slight
in the case of clean surfaces but become quite
pronounced for composite surfaces such as
thorium on tungsten or cesium on tungsten. We
shall show below that these deviations can be
ascribed to nonuniformities in the work function
for different regions of the cathode surface. The
prediction that the slope should vary as 1/T has
been verified by Dushman's experiments. '

Insofar as Schottky's law is verified by experi-
ment, we can conclude that the escaping electron
must in certain regions overcome the forces due
to its own image and no other forces. Thus for
clean surfaces the electron is acted on only by its
image force from about 10—"to about 50X10 7

cm from the surface; for composite surfaces this

region will depend on the size and degree of the
nonuniformities; for a particular surface of
thorium on tungsten the image law held from
6 X 10 7 to about 20 X 10 ' cm. When the critical
distance is very small, the emission is modified
because of sharp points on the surface and
because of "intense field, " emission. "When the
critical distance is larger than about 100X 10 ' or
1X10—' cm there are apparently other fields
superimposed on the image field. These are larger
than the image field at these distances and thus
cause deviations from the Schottky law. As we
shall see later these fields are due to nonuni-
formities on the surface. From all this we can
conclude that an appreciable part of the work
function is due to the image force and to other
surface fields.

Table II shows values of 697, s„log i/i0 and
i%'0 if the surface field is given by the image law.

3.The use of the term "effective work function "
There has been a tendency to restrict the term

work function to zero field and to use "effective
work function" for accelerating fields. ' ' " In
my opinion this tendency is to be deplored since
it is unnecessary and places too much emphasis
on zero field. Richardson's equation, and the
theories underlying it are just as applicable for
accelerating fields as they are to zero field. Since
the work function depends on T as well as F, it
would be just as logical to coin a new name for
the work function at any temperature other than
T=O. It seems to me more desirable to retain
"work function" in its general sense and to
recognize that it may depend on temperature and
on the accelerating field. The work function or
more precisely the quantity P /e would be
defined as the work required to take an electron
at rest inside the metal to a point at distance z,
from the surface, where s, is the distance at
which the accelerating field is equal to the
surface field.
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D. THE EFFECT OF NONUNIFORM WORK FUNC-

TIONS: PATCH THEORY

DPi 8PL
6

I

We shall now consider how the emission is
altered if the cathode work function is non-
uniform. Here again we shall find it necessary to
consider the effect of such nonuniformities on the
P vs. z curves, i.e. , on the curves for the potential
energy of the electron vs. distance from the
surface. For the present we shall not consider the
causes for the mechanism which is responsible for
the nonuniformities. We shall assume that the
surface work functions are nonuniform. As a
consequence, local fields must exist between the
various regions having different work functions.
The effect of these fields on the log i vs. F curve
will depend on the size, shape and degree of the
nonuniformities.

1. The simple condenser analog

Consider a simple case: The cathode is uniform
except in a circular region of radius R which is
covered with a positive charge density tr, a short
distance l above the surface. There is induced at a
distance l below the surface the image charge
density —o. These two sheets of charge act like a
finite circular condenser. The field between the
condenser plates will be 4vro e.s.u. or 300X4~a
volts/cm if Tr is expressed in e.s.u. If the zero of
potential is taken at the surface of the metal or at
the center of the condenser, the potential just
outside the outer sheet of charge will be 300
X4~ol. If the sheet of charge were infinite in
extent or if R were several times the distance
from cathode to anode, then the field outside the
condenser would be zero, and the work function
of the patch for electrons would be reduced by
300X4~ol or by 300X2vrM; where M=2ol the
moment per cm' of surface. Actually there is a
field outside the finite condenser which tends to
pull an electron back to the surface. The integral
of this field out to infinity or a distance large
compared to R is just sufficient to reduce the
potential to zero again. Hence when the applied
field is zero so that z, is very large, the work
function over the condenser or patch is not
reduced at all. Calculations show that if a small
accelerating field is applied, the work function is
reduced more than it would have been if there
had been no condenser. For a sufficiently large
applied accelerating field, z, .moves so close to the

I

DPP
I

Ij
) '96
Z

Q 0

Fzc
4

T
Ec

surface that z,«R. At this distance the potential
at z, due to the sheets of charge will not differ
greatly from the potential just outside the
condenser. The work function will now be
300X4~al less than it would have been without
the patch. Hence the extra reduction of the work
function due to the patch is zero at zero ac-
celerating field and increases with this field up to
its limiting value 300X4mol.

To treat this case in more detail consider the
curves in Fig. 8. Curve 1 is a plot of P;/e in volts
vs. z in cm. P; is the potential energy due to the
image force and is given by

P;/e =P„/e—300e/4z, (62)

where P is the potential energy when z= ~ and
F=O; e=4.774X10 ".Curve 2 is the potential
energy P„due to the patch or condenser along a
line normal to the surface at the center of the
condenser. R has been taken as 4X10 ' cm. The
equation of this curve is

P„=1200TrolLz/(z'+R') l] (63)

In' the derivation of this formula it has been
assumed that either R» l or else that z» l; for
our case the first of these assumptions will always
be fulfilled so that the formula is applicable when
z is equal to or larger than l; it is not applicable
for z less than l.

Curve 3 is the algebraic sum of P values for
curves 1 and 2. It represents the potential energy
along the central normal due to the image and

0.1
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PATCH 8=*0XIO CM

0 = 03 VOLT

-0.3
0 2 4 6 8 10 12 l4 16 ISXIO 6

2 DISTANCE FROM CATHODE IN CENTIMETERS

Fic. 8. Potential energy EIs. distance from cathode
surface for electrons moving against image field plus field
due to a uniform circular patch for applied fields of zero or
6000 volts/cm.
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patch fields. Curve 4 represents the potential
energy due to an applied field of 6000 volts/cm.
Curve 5 is the sum of curves 1 and 4; curve 6 that
of 3 and 4.

The effect of the applied field is to reduce the
critical distance z, and the work function. A given
applied field will reduce z, more for a clean surface
than for one with the patch; but the converse is
true for the work function. The reduction in the
work function is equal to the reduction in the
value of P /e. This consists of three parts as
indicated in the figure for curve 6. AP~/e is the
decrease in P due to the image forces from z=z,
to z= ~; AP„/e is the decrease due to the patch
field from z= z, to z= ~; Fz, is the decrease in P
due to the applied field from z=0 to z=z, .
These quantities can be evaluated after one has
determined the value of z, as follows:

The peak or maximum in curve 6 occurs at a
value of z=z, at which

so that

R2
= 1200Tro-le

(z'+R') ~

3.58X10 ' R'F- +120.0m.a t— (65)
z2 (z'+R') &

dP/dz =dP;/Cz+dP„/dz = Fe. (64)

From Eq. (62) dP;/dz=3. 58 X10—'/z'

and from Eq. (63)

dP9, 1 z2—= —(1200Tro.l)e- +
dz (z'+R') & (z'+R') &

From this equation F is plotted for various values
of z. For any value of F a value of z can be read
off. This value of z will be the critical distance z,.
To obtain Ay, z, is substituted in the equation,

eked = b,P;+DP p+ Fz, =P—3 58X10 s

zc
+1200Trol 1 — +Fz, . (66)

(z'+R') &

0 LN VOLTS~~
~0.

4

This d q is the decrease in the work function for a
region near the center of the patch. For other
regions on the patch hy will be smaller; for
regions on the uncovered portion of the surface
Arp will be still smaller until at large distances
from the patch hq& will correspond to the hy
appropriate for the image law.

To obtain the effect of the patch on the log
i vs. F or log i es. Q F curve it is necessary to
divide the entire surface into small regions,
compute b, q for each and substitute these in Eq.
(56); the values of is in this equation are the
same for all regions of equal area since at large
distances P has the same value over all regions.
The values of i are then added up for all regions
and log i is plotted vs. Q F. Since this process is
very tedious, and since in most thermionic
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FIG. 9. Variation of emission current with applied field
for circular patches of various sizes; T and 0 constant.
Comparison with experimental curve for thoriated tungsten.

FIG. 10.Variation of emission current with applied field for
circular patches; 0 variable, T and R constant.
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= log aio+Aye/2. 3kT, (6&)

where aio is the current from the patch area when
F=0.

Hence log x%0 = (b, pe/2. 3k T). (68)

Values of b, ye obtained from Eq. (66) are substi-
tuted in Eq. (68) and log ~/io is plotted as a
function of Q F. Figs. 9 and 10 show such plots.

Fig. 9 shows the effect of varying the radius R
of the patch while the charge density o is kept
constant. The value of o is so chosen thai
1200 pro.l is equal to 0.3 volt. It will be con-
venient to treat o as if it were expressed in volts,
i.e., as if o stood for 1200 ~al. If the patch were
very large o in volts would be the decrease in
the work function due to the patch. It is to be
noted that a typical curve starts along a line
having the Schottky slope; but soon it rises at
a much more rapid rate and continues until it
almost reaches an upper line having the Schottky
slope; then it bends rather sharply and ap-
proaches this line asymptotically. For the larger
patches, the curve starts to rise at very small
values of Q F and it is very steep. For smaller
values of R, the curve follows the lower Schottky
line for an appreciable distance and its slope
never attains very large values; also the place
at which it bends toward the upper Schottky line
moves to large values of Q F. Note also that as
long as o is constant all curves are bounded by
the same two Schottky lines.

experiments one is not likely to deal with a single
patch, it is not worth while to make such an
exact computation. It is, however, instructive to
make some further computations based on
simplifying assumptions.

Suppose we assume: (1) That for all regions on
the patch, d, q has the same value as for the
central region, and (2) that the current from the
patch is large compared to the current from the
uncovered portions of the surface. These as-
sumptions approximate the true conditions for
some cases and the errors due to the first
assumption tend to balance out those due to the
second. If "a" is the area of the patch then

log ai = log a+ log U+ 2 log T

—
q e/2. 3k T+ (Ay) e/2. 3k T

Fig. 10 shows the effect of varying o. while R is
kept constant. The distance between an upper
Schottky line and the lower Schottky line is
directly proportional to o. In fact this shift is
given by

b, log i/io ——o.e/2. 3k T. (69)

It is also apparent from Fig. 10 that increasing o

results in a steeper curve and in an increase in
the value of Q F at which the curve bends toward
the upper Schottky line.

Actually, of course, the observed current will
be composed of the current from the uniform
part as well as that from the patch. The amount
by which the patch current influences the total
current will depend on the ratio of the patch
area to the total area.

2. The hill and valley checkerboard
Instead of being covered with a single patch,

the surface of most thermionic cathodes consists
of numerous patches of varying sizes and varying
work functions above and below some mean
value. To treat this case would obviously require
very complex expressions. We can simplify the
problem without departing too far from actual
conditions by postulating a surface which is
divided up into a large number of squares
arranged in a checkerboard fashion. We might
suppose that all black squares have the same o.

and all white squares are bare or else have a
smaller o. It turns out, however, that the for-
mulas and the computations are much simpler if
we suppose o is largest at the center of each black
square and is least at the center of each white
square; between the centers o is given by a
cosine law. In other words on the black squares
we have a hill of charge while on the white
squares we have a valley of charge. It will be
found that such a charge distribution predicts
changes in emission with applied fields, which
agree rather well with experiment if the size of
the squares is comparable with the crystal size
and the difference in contact potential between
the hil ls and valleys corresponds to several
tenths of a volt.

To represent such a charge distribution, choose
the origin of coordinates at the center of a
covered square; let x be measured parallel to
one edge of the squares while y is measured
perpendicular to this edge as indicated in Fig.
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11A. Let the length of each square be b. Then
the surface charge density o is given by

o = p+ p, cos (7rx/b) cos (~y/b) = p+pP, (70)

in which p is the mean value of o, p+p, is the
maximum value of o., p —p, is the minimum o,
and P=cos (mx/b) cos (vy/b); P has values be-
tween +1 and —1. It readily follows that along
the edges of the squares P= 0 and o = p. Fig. 11B
shows o as a function of x when y= 0, b, 26 or nb.

The great advantage of this particular charge
distribution is that we can represent the potential
due to this charge and its image at any point
above the surface by means of a comparatively
simple formula, viz. ,

P,/e= —300 X4~lgp+pP exp (—$2vrz/b) j, (71)*

P is the potential energy of an electron due to
the charge di;tribution at a point which is z cm
above the surface over a region at which the
charge density is o. The charge distribution is
located in a plane which is l cm above the
surface. This charge distribution induces a corre-
sponding negative charge di'stribution at z= —l,
i.e., l cm below the surface. p and )Is are in e.s.u.
of charge per cm', Sometimes it will be con-
venient to treat p and p, as if they were expressed
in volts, i.e., as if p and p, stood for 1200 ~pl or
1200 ~pl, respectively, The total potential energy
of an electron at z cm from the surface is given

B For the derivation of this and several other formulas I
am indebted to Professor V. Rojansky now at Union
College, who worked with me on this problem in the
summer of 1930.
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FIG. 12. Potential energy Ets. distance from the surface
above the center of the d&Eerent subcheckers of the hill
and valley checkerboard; zero applied field.

by P in

P =P;+P,—Fes

=P„—300e/4s —1200' l

XLp+pP exp (—s42~/b) j-Fez, (72)

where P;=P —300e/4s and e=4.774X10 ".
In Fig. 12, curve 1 shows P; vs. s; curve 2 shows

P, for various values of P; the curve for /=+1
is for the normal taken at the center of a hill;
P= —1 is for the center of a valley; P=O is for
the edge of the squares; all other curves must
lie between those for P = +1 and P= —1. Curves
3 show P,+P, for P= 1, 0 and —1.

For all values of P between 1 and 0 the curves
have the same maximum value which occurs
when s,= ~. The value of this maximum is
P —1200'-lp. This means that for all points of
a hill checker the work function is reduced by
the same amount, namely, 1200slp', and this
amount is the same as would occur if the charge
density of the hill and valley checkers were
uniformly distributed over the entire surface.
On the other hand for P between 0 and —1,
i.e., for points on a valley checker, the value of
z depends on the particular point chosen. The
reduction in the work function is less than
1200s.lp and varies from point to point.
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The next step is to ascertain the effect of an
accelerating field on these P vs. s curves. Fig. 13
shows this for P=1, 2, 4, —~, —

2 and —1,
respectively, for F=5000 volts/cm. The effect of
the field is to decrease s, and P . From Figs. 12
and 13 it follows that the decrease in s, and in
P due to F varies with P and is much larger for
points above a hill checker than for points above
a valley checker. Values of s, and P are shown
in Fig. 14.

Fig. 14A shows s, at various values of x for
y=0; it also shows s, at various values of x for
y= b/3. Fig. 14B shows P for these same values
of x and y. Since P —K= pe, it is clear from
these figures that different portions of the surface
will have different work functions, or stated

1.2

0.8

04

-02

-o.6

b= I xlo 4 CM
pl» 0.30 VOLTS
7 =1160 H

/

/i, --
y P'

A

O.S

10.0

9.7

(
~~10

f(

-0.8

"1.0

-1.2
0

-1.0

20 40 80 80 100 120 140 160 180 200

~F (ffVOLTS PER CM )

2
O.S

0.4

8.3

F=5000 VOLTS PER CM

b I X 10-4 CM

P»I 10.0 VOLTS

33 0.168 VOLTS

P O.EOO VOLTS

9.2

1600

~ 1200

tf
Soo

9
+ 400
M

F Sooo VOLTS
PER CM

b I xlo xcM
Plo» 10.0 VOLTS

A fl»0.168 VOLTS S»0

/-. 4 /, -5

8.6 '

b P Eb + Sb
X

Fro. 14. A. Distance to critical plane for various points
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FIG. 13. Potential energy vs. distance from the surface
above the center of,the different subcheckers of hill and
valley checkerboard; applied field of 5000 volts/cm.

FIG. 15. Variation of emission current with applied field
from different types of subcheckers for hill and valley
checkerboard; also average curve.

more precisely, the energy an electron must
have to cross the critical surface (loci of the
values of s,) depends upon where it crosses
the critical surface. This in turn means that the
chance that a given electron will escape depends
not only on its normal component of velocity
but also on the place at which it leaves the
surface and on the angle its path makes with
the surface.

To compute accurately the emission current
is a very difficult task. It would appear that the
following procedure should give a good approxi-
mation to the true current. Divide a "hill"
square and a neighboring "valley" square into
nine subsquares each, as indicated in Fig. 11C.
It is apparent that the B squares are all alike;

'similarly the C, B' and C' squares are alike.
Determine the P for the center of each sub-
square. For the A, B, C, A', B' and C' subsquares
the values of f8 are, respectively, 1, —',, ~, —1, ——,

'
and —4'. Then compute the P vs. s curve for
the normals at the center of each subsquare.
These are the curves shown in Fig. 13. Next
compute the current for each subsquare assuming
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Fio. 16. Variation of average emission current with
applied field for hill and valley checkerboard; b variable,
T and i4 fixed.

this to be the same as it would be for an equal
area of a large surface having the same work
function as that for the center of the subsquare.
This is equivalent to assuming that the effect of
the velocity components in the x and y directions
average out. Do this for various values of F. At
each F, add up the currents for all 18 subsquares
and multiply this by 1/2b', the number of pairs
of squares in a cm'. This will give the current
per cm' of surface for various values of F.

Fig. 15 shows the values of the current for the
various subsquares; more precisely it shows
log i/i .vs. g F wl..erei„is the current that would
be obtained from an equal area at zero field for
a surface covered with a charge density p which
is the average value of the charge density for
the entire surface. i00 is equal to the current
from the hill or active subsquares at zero field,
but the current from the valley subsquares is
usually less than i„.The reason for this is clear
from an inspection of the curves in Fig. 12.
Fig. 15 also shows log i/i, for the average
current for 18 subsquares in a pair of hill and
valley squares; more precisely, i/i„is the sum
of the current for the 18 subsquares divided by
the current that would be obtained if the charge
density were uniform and the applied field were
zero. As the field is increased the relative con-

0 20 40 60 80 100 120 140 160 180 200
~F (/VOLTS PER CM)

Fra. 17. Variation of average emission current with
applied field for hill and valley checkerboard; is variable,
T and b fixed.

tribution to the sum current from the central
hill square becomes larger and larger, while that
from the valley squares becomes less and less.
At very large fields the curve for any subsquare
approaches a straight line whose slope is the
Schottky slope; hence the sum curve also ap-
proaches a straight line having this same slope.
The area which is now contributing most of the
current is, however, considerably less than the
entire area. Roughly speaking, one might say
that at low fields something more than half the
area is "effective" in emitting electrons; as
the field increases the "effective" area decreases;
at large fields and high values of p, 50 percent of
the total current comes from about 5 percent
of the total surface; one might say that the
"effective" area is approximately twice as large
as this or 10percent. The values of the "effective"
areas depend on the value of p: as ts increases
the "effective" area decreases.

Such average curves as the one shown in Fig.
15 depend on three variables, b, ts and T. This
dependence is illustrated in Figs. 16, 17 and 18:
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Frc. 18. Variation of average emission current with
applied field for hill and valley checkerboard; T variable,
b and p fixed.

in each case two of the variables are kept con-
stant. Fig. 16 shows log i/i„es.g F for three
values of b. This curve is similar to Fig. 9 for a
single circular patch. All the curves still approach
a Schottky line at high values of Q F but because
of the averaging process they do not start out
from a common value when F=0 and the initial
slope is not equal to the Schottky slope. In both
figures as the size of the patch decreases, the
curves get less steep and the place at which the
curves bend over toward the upper Schottky line
moves to higher values of F. Note also that
beyond this bend, the curves are approximately
straight but only approximately and that the
values are still somewhat below the theoretical
Schottky line.

This theoretical line has an intercept given by

log i8/i, .=log (1/18) t exp pe/kT

+exp —pe/k T+4(exp Ije/2k T

+exp —pe/2k T) +4(exp ye/4k T

+exp —pe/4kT) j. (73)

This equation which defines is is based on a sub-
division of the hill and valley checker into 18
subcheckers. The exponentials contain the value
of P for each type of subchecker, in this case 1,
~ and o. If each checker were divided into a
larger number of subcheckers the number of
terms would be increased, but fortunately the
value of log is/i„would not be greatly aRected.

This is particularly true as long as pe/kT is
less than 5. Since e/kT 0.1 this means that
values of log i8/i„are essentially correct for p
less than 0.5 volt. We have plotted log is/i00
vs. pe/kT for 9 subcheckers and for 25 sub-
checkers. For pe/kT=5 the former curve is only
4 percent higher than the latter; for IJ.e/kT=10
the difference is about 6 percent; for pe/kT less
than 5 the diRerence is negligible. This makes us
feel that our average curves which are based on
18 subcheckers is essentially the same as would
be obtained for a much larger number of sub-
checkers. Eq. (73) is analogous to Eq. (69).
Note that it depends on p, but not on b.

Fig. 16 might have shown log i/is instead of
log i%„.To convert it to this coordinate it is
merely necessary to reduce all values of the
ordinate by log is/i„or by 1.44. The advantages
of this ordinate will become apparent when we
compare theoretical and experimental curves.
For the latter it is quite easy to obtain log is but
not so easy to determine log i„.

In Fig. 17 we have thus shown log i/ia ts. g F
for constant b and T but varying p, . Had log i/i„
been plotted the curves would have been close
together at F=O but would have approached
upper Schottky lines whose position varied
greatly. As it is, all curves approach the same
upper Schottky line but "fan out" toward lower
values of Q F. Note that the curves do not cross
over as they do in Fig. 16; note also that as y
increases the curves become steeper and the
bend toward the Schottky line occurs at larger
values of Q F.

At first sight it might appear that by plotting
T log i%8 it would be possible to eliminate T as
a parameter; while this is true for any one sub-
checker for which P is a constant, it is not true
for the average curves. This is illustrated in
Fig. 18 which shows (kT/e) log i/i 8 es. Q F for
constant b and, p and varying T. Note that the
departure from the Schottky law is more pro-
nounced for the low temperatures.

3. Comparison between theory and experiment

It has been found possible to choose values of
b and p, such that the calculated average curve
fits a given experimental curve over its entire
range. The agreement is not perfect; but a
perfect fit is not to be expected when one con-
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siders that in an experimental filament the
patches are not all of the same size and neighbor-
ing patches do not have the same differences in
work function. One example is illustrated in Fig.
19 which shows (kT/e) log z%„zs.Q F for a
thoriated tungsten filament, 70 percent of whose
surface was covered with thorium. For this
curve i„is merely an arbitrary constant, chosen
so as to give the best fit with the computed
curves. By comparing the experimental curve
with calculated curves in Figs. 16 and 17, we
decided to try b=3.0X10 4 cm and p, =0.50
volt. * The average curve for these values is
shown in the figure. It appeared that b was too
small and p, was too large and a new curve was
computed and plotted assuming b=4.5 X10 4 cm
and p, = 0.47 volt. The agreement is better.
Probably a slightly better fit could be obtained
with b=4.0X10~ cm and p, =0.48 volt. For
other thoriated tungsten filaments we have found
values of b from 1X10 ' to 1 X10 ' and y values
from 0.25 to 0.48 volt.

An examination of a number of thoriated
tungsten filaments with a microscope showed
that the diameter of the tungsten crystals was
of the same order as the values of b given above,
namely 10 4 to 10 ' cm. These filaments had
been given the customary heat treatment in a
vacuum at temperatures near 2800'K for times
measured in minutes and at temperatures near

« In choosing these values some allowance had to be
made for the fact that the experimental curve was for
T=1380'K, while the calculated curves were for T
= 1160'K.

2100'K for many hours. It was natural, there-
fore, to form the hypothesis that different
crystals have different adsorptive properties and
that consequently different crystals in the same
filament should be covered with varying amounts
of thorium. Different crystals will then have
different work functions. The values of p, found
by the above analysis are consistent with this
hypothesis since 2p, which is the difference in
work function between a hill checker and a
valley checker, is always considerably less than
2.0 volts which is the maximum difference in
work function between clean tungsten and
thorium on tungsten.

If this hypothesis is true, then as a thoriated,
tungsten filament is activated, the curves for
the various stages of activation should all corre-
spond to approximately the same value of b.
Fig. 20 shows such a family of experimental
curves taken by W. H. Brattain of these labora-
tories. Curves 3, 4, 5 and 6 were tTaken at T
=1270'K; curve 1 is extrapolated'from data at
T=1650'K; curve 2 is extrapolated from data
at 1503 and 1650'K. The extrapolations were
made by extending Richardson lines; curves 1
and 2 are, of course, not quite as certain as data
taken at 1270'K. The currents at any V or F
vary by large factors as f, the fraction of the
surface covered with thorium varies. In order to
compare the curves more effectively log i/zv —ipp

has been plotted. This is equivalent to shifting
the log i curves until they pass through a
common point at V=100 or Q F=60.5. A com-
parison of this family of curves with the com-
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FiG. 21. Electron-micrograph (above) and photo-micro-
graph (below) of platinum ribbon.

puted curves in Figs. 16 and 17 shows a great
similarity with Fig. 17 but not with Fig. 16.
In Fig. 17, b was constant while tt was varied.
From this similarity it follows that the experi-
mental curves in Fig. 20 are consistent with an
approximately constant value of b but vary-
ing p, .

From the position and shapes of the curves in
Fig. 20, we estimate that the value of b or the
crystal size is about 4X10 4 cm. This value is
probably too large for curve 1 and too small
for curve 6 but unless a complete analysis were
made, it is not desirable to discuss small varia-
tions in b. It is apparent from the figure that tt

changes with f. We have estimated the following
values of tt, the second significant figure being in
doubt:

TABLE III. Values of f, the fraction of surface covered neith
thorium and values of p, in volts (Eg. (71)) p in

volts = 1ZOOm- pl.
f=0.04 0.33 0.57 0.86 1.0 1.11

p (volts) =0.23 0.44 0.45 0.36 0.28 0.23

These values of tt are reasonable. Furthermore,
the way in which p, varies with f is to be expected
from the shape of the work function vs. f curve
which will be discussed later under adsorption.

A particularly interesting test of the patch
theory is furnished by Taylor and Langmuir's"
electron emission from cesium on tungsten be-
cause in this case the crystal size of the tungsten
is known. In Figs. 11, 12 and 13 of their article
they give log i vs. U or Q U curves. Since the di-
ameter of the filament is given as 2 mils, it is
possible to convert values of U to values of I'
and to obtain log i vs. g F curves. We have done
this for the curve for 0=0.60 and have then
analyzed it on the basis of the hill and valley
theory. This analysis gave b=0.8X10 ' cm and
p, =0.20 volt. The article states* "the average

~ Taylor and Langmuir, reference 23, page 431.

Fio. 22.$ Electron-optical pictures at various stages of
heat treatment for a nickel surface coated with oxide.

grain size in these filaments was about one-
fifth the diameter of the wire, " So that the
average grain size was about 1X10 ' cm which

is about the same as the calculated value of b.

Another striking confirmation of the hy-
pothesis that various crystals of a filament have
different work functions and thus emit electrons
with greatly varying intensities, is given by
pictures of such filaments obtained by means of
electron optics. f Fig. 21 shows an electron and
photo-micrograph( of a portion of a platinum
filament. Corresponding crystals have been la-

beled by 1, 2, 3 and 4. The reader can find more

cases of correspondence. Of course, a perfect
correspondence is not to be expected since two

neighboring crystals may have the same re-

flection properties for light while the electron
emissivities differ and vice versa.

Fig. 22 shows a series of electron-optical
pictures taken by W. Knecht'4 of part of a
nickel surface covered with BaO and SrO. The
original magnification is 27-fold. Several lines

were scratched on the surface. The filament was

mounted in a vacuum tube and activated.
Picture "a" shows the electron emission from
the various granules of the oxide. At this stage
the cathode had the chara teristic appearance of

f We take this opportunity to thank the publishers of the
Annalen der Physik for permission to reproduce this
figure from Knecht's article in Annalen der Physik 20, 180
(1934).

)For an interesting and instructive account of the
technique and applications, see the book: Geometrische
Elektronenoptik by E. Bruche and 0. Scherzer, published
by J. Springer (Berlin, 1934).

f I am gratefully indebted to Dr, C. J. Davisson and
Mr. C. J. Calbick of these laboratories for this figur.
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ordinary oxide coated filaments. The filament
was then flashed at a comparatively high tem-
perature for successive intervals of time. After
each interval another electron picture was taken.
As a result of this treatment the oxide evaporated
so that the filament had a metallic appearance.
However, there is good reason for believing that
metallic barium had been alloyed with the nickel,
and the emission was much greater than that
from clean nickel. The pictures show that when
the oxide has disappeared, different areas emit
electrons with greatly different intensities. The
shapes and sizes of these areas are strikingly
similar to those obtained in ordinary optical
pictures. In fact Knecht states that the pattern
is that of the nickel crystals.

Numerous other pictures similar to Fig. 22
can be found in the book by Bruche and Scherzer
referred to above. Some of these indicate that
there is a fine structure nonuniformity inside of a
single crystal as well as the nonuniformity
between crystals.

The emission from thoriated tungsten has also
been investigated by electron optics and while
the pictures are not as striking as those for
barium on nickel, they prove rather conclusively
that the emission varies from one crystal to the
next or from one region of a crystal to the next.
Finally the emission from surfaces to which no
impurity has purposely been added have been
investigated. These too show patchy emissions.

It has generally been felt and frequently
stated that the emission from clean surfaces,
particularly clean tungsten, varied with applied
field according to the Schottky equation. While
this is true at moderate and high fields, I have
never seen data which showed agreement at low
fields, but have seen data which showed dis-
agreement. The deviation is less pronounced
than it is for thoriated tungsten but in my
opinion it is none the less real. This I have
interpreted to mean that even in a polycrystalline
surface of clean tungsten, individual crystals
have work functions which vary by one-tenth or
a few tenths of a volt. This interpretation
receives strong support from the work of Farns-
worth and Rose." They showed that a (111)
surface of a single crystal of copper had a
contact potential with respect to a (100) surface
equal to 0.463 volt. The direction was such that

the work function of the (111)surface was 0.463
volt less than that of the (100) surface. Even
after heating the crystals to about 900'C for as
much as 1000 hours, the contact potential differ-
ence was still 0.378 volt and had remained
practically constant during the last 700 hours.
This decrease is ascribed to the formation of new
crystal facets, which produce more nearly equal
work functions for the two surfaces. That differ-
ent crystal planes have different work functions
also follows from the photoelectric work of
Nitzsche" on single crystals of zinc. The work
function for a surface normal to the hexagonal
axis was found to be 3.28 volts while that for a
surface parallel to this axis was 3.09 volts.
These observed differences in work function of
different surfaces of single crystals are quite
large enough to account for the deviations from
the Schottky law for clean surfaces.

Still another prediction of the patch theory is
verified by experiment. In connection with Fig.
15 it was pointed out that at low applied fields
something more than half the area is effective in
emitting electrons; as the field is increased the
effective area decreases until the log i vs. Q J"

curves approach the Schottky line when the
effective area attains a constant value whose
order of magnitude is 0.1. From this it follows
that if Richardson lines are obtained for a series
of applied potentials, the intercepts or values of
log A should d,ecrease as V increases, but should
approach a constant value for sufficiently large
values of V. Experimental values of log A es. V
are given in Fig. 14 of Brattain and Becker's'~
article on thorium on tungsten. They show the
predicted trend. Furthermore, the change in

log A with U should be most pronounced for
large values of p, . It was shown above that the
largest values of p, occur in the neighborhood of
f= 0.6 while near f= 1.0, p, is comparatively
small. The experimental curves show the largest
dependence of log A on V for f= 0.6 and only a
small dependence for f=1. In this respect too,
experiment confirms the theory.

Nonuniformities on the cathode affect the
shape of the retarding potential curves as was
explained in a previous section. Here too, there
is at least qualitative agreement between theory
and experiment.

In connection with the analysis of log i es. g J"
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curves we have, in the course of the last five or
six years, developed a number of simple methods
for computing approximate values of b and p,
We have also proven a number of useful the-
orems. If and when the interest in this subject
warrants it, we intend to publish these methods
and theorems.

4. Checkerboard with uniform charge distri-
bution

While the agreement between experimental
log i vs. Q Ii curves with theoretical curves based
on a hill and valley charge distribution over a
checkerboard array is quite good, it is probable
that even better agreement could be obtained if
the charge density over the black squares was
assumed to be uniform and equal to p+p while
over the white squares it was assumed to be
uniform and equal to p —p. In terms of the
previous notation, P = + 2 for all points of the
black squares while P= —1 for all points of
the white squares.

If we use the coordinates indicated in Fig. 11A,
such a charge distribution can be represented by
the following double Fourier series

16P (—1)&N—i»2 2rNx
&r= p+—Zw cos

7r2 N b

(—1)&x '»2 2rKy
Zx cos —,(74)

K b

in which N takes on all values 1, 3, 5, 7, etc. , and
for each N, K takes on all the values 1, 3, 5, 7,
etc. If such a charge distribution is located at a
distance l above the surface while its image is
located at a distance l below the surface, then
the potential energy of an electron due to this
double layer is given by

P,/e= —300X4m pl

300 X65Pl (—1)&&+x&&2

QEQK
NK

—7r(N'+E') & N~x K7ry
Xexp z cos —cos . (75)

b b b

This formula is accurate provided l/b«1, which
is always fulfilled in any case in which one is.

likely to be interested. The electric field normal
to the surface due to the double layer is

1 dP, 300X64pl ( 1)&~+K» (N PK )
~KZK

edz b NK

—7r(N'+E') & xN m-E
Xexp z cos —x cos —y. (76)

b b b

Eqs. (74), (75) and (76) reduce to the corre-
sponding equations for the hill and valley dis-
tribution if 16@/vr2 is replaced by p, and if only
the first term of the double series is used, i.e. ,

if N=1 and K= i. See Eqs. (70) and (71).
Recently Mr. Albert Rose working with Pro-

fessor L. P. Smith at Cornell University has
made calculations for a checkerboard with uni-
form charge distribution and has compared his
computations with experiment. The agreement
is as good as we have found and his computed
values of b and p are about the same as ours.

Linford' in an excellent review on the external
photoelectric effect has shown that a checker-
board distribution of charge or potential satis-
factorily accounts for a number of photoelectric
phenomena observed with composite surfaces.
His Eq. (42) is almost identical with Eq. (75)
above if his V0=8m-gl, his 2j+1=N and his
2k+1 =K. His equation is not quite as general as
ours since he deals only with the case for which

p p-

Compton and Langmuir* in 1930 presented an
interesting discussion of the poor saturation in

composite surfaces. They too proposed a checker-
board or patch distribution like the one we are
discussing, and on page 151 of their paper they
give an equation for the potential above such a
surface. Unfortunately there is an error in this
equation which was pointed out by Linford. s

They use only a single summation whereas a
checkerboard distribution requires a double
summation. However, since they only use the
first term of their summation and since this first
term is the same as the first term of the correct
equation, this error is not serious in their case.
Their formula too is less general than Eq. (75)
since they deal only with the case p=P; this is
equivalent to assuming that the white squares

* Reference 1, especially pp. 146—160.
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are clean tungsten and only the black squares are
covered.

They reject their patch theory because (1)
"to obtain departures from the Schottky curve
comparable with those observed, the patches
est be assumed to contain many thousands of
atoms, " and (2) "the patch theory predicts a
departure from the Schottky curve which is
small with small fields and increases with large
fields, whereas exactly the reverse is the actual
case. "* From what has been said above it is
clear that their second objection is really tied up
with their first one, for if larger patch sizes are
assumed their statement is incorrect and quite
good agreement is found with experiment. They
assumed a value of b=10 ' cm whereas the
experimental curves require b 10 4 cm. They
feel that such "extremely nonuniform distri-
butions" or "such large clusters of adsorbed
atoms" are "very improbable. " One reason for
this belief is that "Becker has shown, for example,
that a thorium layer at emission temperatures
behaves like a two-dimensional gas on the
surface. "

In my opinion these objections to the checker-
board or patch theory are not well founded. It
seems quite natural to me that various crystals
on the surface or various crystal facets may have
somewhat different adsorptive properties and
that consequently different crystals would be
covered to different extents with thorium and
would thus have different work functions. It is
probable that the size of the squares should be
comparable with the crystal size which is of the
order of 10—4 cm. This is still true if thorium
migrates over the surface of the tungsten. The
successes of the patch theory presented above far
outweigh these objections.

More than this, some of the very data pre-
sented by Compton and Langmuir support the
generalized checkerboard theory as we have
presented it, i.e. , taking into account that both
the black and the white squares may be covered
with thorium but to different extents. On page
155, Compton and Langmuir discuss two log

vs. Q J" curves obtained by Reynolds~8 for
thoriated tungsten. Curve A in their Fig. 4 is a
"normal" curve while curve C is taken after the

~ Reference 1, p. 157.

surface has been bombarded by positive ions.
They state "this bombardment must have
roughened the surface and there is evidence that
it also fractured the surface layer of tungsten
crystals. " In our notation this means that b has
been decreased because of the roughening and p,

has been increased because the amount of
thorium removed in some spots was larger than
that removed in others. Now the decrease in b

should shift the region at which the curve
approaches the Schottky line to higher values of
F or Q F; while the increase in p should result in a
steeper curve and should decrease log i„.(See
our Fig. 16.) But this is precisely what curve |."
does.

Reynolds" in discussing this same data says:
"The effect of bombardment was a semi-
permanent one. Subsequent activation and de-
activation by temperature (below 2700') shifted
the curve along the current axis but did not
otherwise alter its unique character. Flashing at
2700'K or higher, where rapid sintering of
tungsten is known to take place, destroyed the
effect of bombardment and subsequent activation
produced normal log i vs. V& curves. " Every
detail of this behavior is just what is to be
expected on our view; the "semi-permanent"
effect is caused by the decrease in b which does
not become normal until the damage to the
crystals has been repaired by high temperature
treatment; the shifting of the curves along the
current axis is caused by changes in p and y
brought about by activation and deactivation.

On page 156 Compton and Langmuir' discuss
Kingdon and Langmuir's data for thoriated
tungsten at various degrees of activation (8 or f)
and at various temperatures. Some of the results
are shown in their Fig. 5 which is a plot of T log i
vs. 4 P. They point out three and only three
distinctive features of these curves. All three
support the checkerboard theory. They say: "At
the highest field strengths (about 10,000 volts/cm)
the curves are seen to approach the theoretical
slope. " Our analysis shows that this means that
all surfaces have about the same b irrespective of
8 and T. This is predicted by our theory since b

is determined by the crystal size which is
independent off and T. In discussing curves for a
constant f they say: "In every case the de-
partures from the Schottky line become greater
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as the temperature is lowered, —." The theory
predicts this as shown by Fig. 18. There may
however be another reason: As T increases p may
decrease. If there are differences in concentration
between neighboring crystals, and if the tempera-
ture is high enough for migration to occur,
Boltzmann's law would require that the differ-
ence in concentration should decrease as T
increases.

About the third feature they say: "These
results indicate that with nearly complete
thoriation of the surface (f=0.91) and with a
bare surface (f=0.00) the approach to the
Schottky curve is fairly close, but relatively large
departures occur with incomplete thoriation. "
This fact which is abundantly confirmed by my
experience not only with thorium on tungsten
but also with cesium on tungsten, cesium on
oxygen on tungsten, and barium on tungsten
means that as f increases, p increases at first,
rises to a maximum and then decreases. Such a
variation of p with f is to be expected from the
shape of the log i vs. for q vs. f curve which will be
discussed more fully later on, As f increases, q

decreases rapidly at first, then more and more
slowly until it passes through a minimum when
f=1; beyond this point y increases again. It is
natural to expect that 6f, the difference between f
for the black and the white squares, should
increase with f; Af is probably nearly proportional
to f. From this and the shape of the p —f curve
it follows that hy, the difference in q between
black and white squares, is small when f is small;
as f increases Ay increases at first but later on it
decreases; when f approaches 1.0, d y approaches
0 and the surface has a uniform work function.
Since p, and Ay are proportional, p should vary in
the same way. Hence this feature of Compton
and Langmuir's curves as well as the first two is
entirely in agreement with the predictions based
on the checkerboard theory.

Whether the uniform charge distribution or the
hill and valley distribution gives better agree-
ment with experiment has not been decided.
This, however, is not very important or very
pressing. In an experimental filament the distri-
bution is probably neither one nor the other but
something in between. Furthermore, it should be
emphasized that in an experimental cathode the
patches are not all of the same size nor is the

contact potential between two neighboring
patches a constant; both of these quantities
fluctuate about a mean value. Nevertheless I
believe that a sufficiently good case has been
made out to show that nonuniformities play an
important role in many thermionic experiments,
and that the checkerboard theory can be used as
a powerful tool in the study of adsorption phe-
nomena, where nonuniformities almost always
occur.

This analysis of the effect of nonuniformities
has brought out that the work function is not a
characteristic of a given substance but rather of a
given surface of a given substance. Strictly
speaking, one should not talk about the work
function of tungsten but rather of the work
function of a particular surface of tungsten. This
is true even if the surface is clean tungsten.

E. THE VALUES OF THE WORK FUNCTION FOR

CLEAN SURFACES

The experimental determination of the therm-
ionic work function or the heat function for clean
metal surfaces has been the subject of many
investigations. In the case of a number of
elements, the determinations by different investi-
gators are not in accord. This is due, in most
cases, to adsorbed layers of foreign material
caused by either poor vacuum conditions or
impurities in the metal which have not been
eliminated by a proper heat treatment. Although
these measurements have been summarized and
discussed in other reviews, it seems advisable
that the summary be brought up to date and the
most probable values selected from the existing
data. Since the photoelectric work function is
equal to the thermionic work function, ' the
determination by photoelectric methods should
also be included.

A summary of the data is shown in Table IV.
The values of the photoelectric work function
and the thermionic heat function are expressed in
volts. The reference for each value is indicated by
the superscript. As discussed in an earlier section,
the heat function is the slope of a Richardson line.
The photoelectric work functions are mostly
calculated from the long wavelength limit except
in the case of recent determinations which are
made by an analysis of the data by Fowler's"
method. The photoelectric values listed in the
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TABLE IV. Compilation of values of photoelectric and thermionic II&orh functions in volts and the value of the heat function.

ELEMENT PHOTOELE CTRIC WORK FUNCTION THERMIONIC HEAT FUNCTION
PROBABLE VALUE

OF HEAT FUNCTION

Ag
Al
Au
Bi
C
Ca
Cb
Cd

'Ce
Co
Cr
Cs
Cu
Fe
Ge
Hf
Hg
K
Li
Mg
Mo
Na
Ni
Os
Pb
Pd
Pt
Rb
Re
Rh
Sb
Se
Sn
Sr
Ta
Th
U
W
Zn
Zl'

(4.58 to 4.75)" (4.71 to 4,75)»
(2.99)7&

(4.75 to 4.84)'2 (4.86 to 4.92)»
(4.05)e& (3.74)7 (4.37)48
(4.72)'8 (4.81)«
(2.76)'0 (3.20)46

(4.07)2
(2.84)46

(4.12 and 4.25)4
(4 60)ss
(1.67) 60

(4.49) 81 (4.08)»
(4.72)s (4.77)24
(4 85)80

(4 53)18, 27, 47

(1 77)6& (2 P)S2
(2 21)so
(approx. 2.43)8

(4.15)'8
(1 80)4& (2 '&5) 44, SS (1 94)60

(5 Pl)24

(3.50)«(3.97)'0 (4, 14)» (3.97)»
(4.97)»
(6.30) '4

(1.82) 60

(approx. 5.0)"
(4.95 to 4.57)»
(4.02)80
(4.62)28
(&84.50; T4.38; Iiq. 4.24)» (p4.39)22
(2.06)"
(4.10-4.14)» (4.12-4.19)6 (4.12)46

(3.34)«(3,57)» (3.38)46
(3.63)46

(4.69 and 4.54)» (4.60)46
(3.61)'8 (3.68)48 (3.08)» (3.32 and 3.57)10
(3.73)46

(4.08)»

(4.32)»

(3 93)se
(3.02)» (2.24)»
(3 96)67

(1.81)64
(3 85) 68 (4 33)26
(4.04)» (4,77)62 (4.04)"

(3.53)«

(4.08)» (4.39)66 (4.59)» (4.44)20 (4.38)» (3.48)«(4.14—4.17)» (4.32)'

(4.41)» (2.77)" (4.31)» (4.63)» (5.03)28
(4,7)8

(4 99)17
(6.27)» (5.40)"(5.93)42+

(4.58)»

(4 2)ss (4 51)ss (4.18)«(4 07)2o (4 04) Se

(3.35) '4

(4.52) 2 (4.53)»+

(4.13)04

4.7
3.0
4.8
4.1
4.7
3.2
4.0
4.1
2.8
4,2
4.6
1.8
4.1
4.7
4.9
3.5
4.5
1.8
2,2
2.4
4.3
1.9
5.0

4.0
4.98
6.0
1,8
5.0
4.6
4.0
4.6
44
2.1
4.10
3.4
3.6
4.52
3.3
4. 1
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table were selected as representative of values
for the best outgassing of ehch element. For a
listing of all determinations see Hughes and
DuBridge's book. In most cases, the heat func-

tion and the thermionic work function differ
only by small amounts so that for practical
purposes we can compare the photoelectric work
function with the heat function. The most
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probable values of the heat functions tabulated
have been chosen from the several determinations.

Recently several attempts have been made to
find an empirical relation between the work
function and the atomic properties of the ele-
ments. Such a correlation, if applicable to all of
the metallic elements, would be of value in
predicting values of the work function for the
cases in which the existing data are inadequate
or no data are available. The work of Rother and
Bomke" gives the best correlation thus far
obtained. In their article they have given a
summary of the early attempts at a correlation
and therefore, we will not consider them here.

In the preceding sections the thermionic work
function W was shown to be equal to P—E'
where P is the difference in potential energy
between an electron at rest inside and outside of
the metal and X is given by Eq. (16). If we
assume that there is one free electron per atom in
the metal for all elements, then

X/e = 25.9(D/M) I, (77)

where D is the density of the metal and 3f the
atomic weight.

From values of E/e given by Eq. (77) and
experimental values of W/e, Rother and Bomke
calculated P/e for a number of elements. Their
values of P/e were said to be in accord with the
empirical equations

P/e= 12.6(Dz/M)& for some elements (78)

and

P/e= 16.3(Dz/1l/I)& for all other elements, (79}

where z is the maximum chemical valence of the
element.

We have computed values of E'/e from Eq.
(77) and with the most probable values of W/e
from Table IV have determined the probable
values of P/e. Since the work function and the
heat function differ by only small amounts, it is
justifiable to use the heat functions for W/e. To
test Eqs. (78) and (79) we have plotted log P/e
vs. , log (Dz/3I) in Fig. 23. According to Eqs. (78)
and (79), the points should fall on two straight
lines in this plot. The two lines are shown in the
figure and have a slope of —,. The values of z

used in this plot are those given by Rother and
Bomke. The points lie in the general neighbor-

hood of the lines but there is no clear indication
of a division into two groups. . The deviations in
about half of the cases are larger than the
possible experimental error.

Bomke" has recently found that his values of
P/e (from calculated E'/e and experimental W/e)
plotted against the compressibility gave a smooth
curve. The equation of this curve was

P/e =0.30k—
&, (80}
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Fro. 23. Correlation of P with atomic properties.

where k is the compressibility. Unfortunately he
plotted his data on a linear scale and most of the
points on his plot were clustered near one axis
where the curve was steep, making it difficult to
estimate the deviations. A plot of log P/e tts. k

which is similar to Fig. 23 showed that the
deviations were of the same order of magnitude
as the deviations in Fig. 23 previously discussed.
Hence values of P/e calculated from Eq. (80)
will only be approximate. The approximation is
about the same as computing P/e from Eqs. (78)
or (79). Eq. (80) has the advantage that P/e is
given by a single function.

Chittum" has related the work function to the
bulk modulus of compressibility in a different
manner than that used by Bomke. His computed
values of the work function deviate from the
experimental values by about the same amount
as do the values computed from Eqs. (77) and
(80).

From the fact that metals with large atomic
spacing have a low' P while those with small
atomic spacing have a high P, it might be
expected that P would depend on the spacing of
the atoms in the surface layer and that different
faces of a single crystal would have different
work functions. In fact, Farnsworth and Rose"
have shown that the contact potential for
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FIG. 24. Currents between parallel plates limited by
space charge.

F. CURRENTS LIMITED BY SPACE CHARGE

Thus far we have only considered the eRect of
the surface and applied fields on the number of
electrons that escape from a cathode and reach
the anode at a particular temperature. However,
an electron traveling from the cathode to the
anode is also subjected to a field due to all of the

different faces of a single crystal of Cu varies by
about 0.4 volt; and Nitzsche" finds the photo-
electric work function of two planes of a single
crystal of zinc different by about 0.2 volt. Now
the values of (D/M) or of the cubic compressi-
bility used in the above calculations do not take
into consideration any dependence on the crystal
face exposed and, therefore, we would not expect
P to be a single-valued function of these prop-
erties. This fact may explain the failure to
correlate exactly the body properties of the
metal with P or the work function. It is quite
likely that a better correlation exists between
the work function or P and the atomic spacing
which prevails on the crystal faces which develop
when a metal is heated in a vacuum.

electrons in the space between the electrodes. If
the electron density in this space is large enough,
the current that reaches the anode will be
determined by these charges rather than by the
work function and temperature of the cathode.
The current is then said to be limited by space
charge. If, on the other hand, the applied
potential is raised to a sufficiently high value, the
current is no longer limited by the charges in the
space but is then determined by the work
function and temperature of the cathode. The
current is then said to be saturated or limited by
emission. The space charge and saturated emis-
sion regions are illustrated by curve 2 in Fig. 24
which is a plot of log s tts. log V. In the region to
the left of point A, the current is limited by space
charge and increases rapidly with the applied
potential. To the right of A, the current is
limited by emission. Curve 2 has been calculated
from equations that will be discussed later. A
sharp break point is indicated at A, whereas
experimental curves usually show a gradual
transition. This gradual transition is due to
nonuniformities in work function.

When the current is limited by space charge,
the charges in the space increase the height of the
potential barrier which electrons must cross in
traveling from cathode to anode. The current is
determined primarily by the applied potential
and electrode geometry and secondarily by the
temperature of the cathode and magnitude of the
saturated emission. The problem of relating the
current to these quantities is very difficult but
has been solved on the basis of certain simplifying
assumptions for several forms of electrodes by
Child, " Schottky, '~ Epstein, ' Fry, Lang-
muir" 4' and others. These assumptions together
with the solutions will be summarized in this
section.

In all of these solutions it is assumed that the
maximum of the potential hill which is due to the
surface forces and the applied potential, occurs
right at the cathode surface. Actually, in the
absence of space charge, the maximum in the
work distance curve occurs at a small but finite
distance from the surface, about 3X10 ' cm for
the image equation with moderate applied fields.
The space within this distance has a much larger
density of electrons than if the potential had its
maximum value at the surface. The above
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assumption, therefore, neglects the influence of
these excess charges on the space charge. This
has been justified by Schottky'4 and Laue" who
concluded that the effect of these charges is
negligible. For convenience, the zero of potential
is taken not inside the metal but at a point where
the electrons have just overcome the surface
forces. Because of the assumption made above,
this point is taken at the cathode surface.

In order to obtain a solution, some assumption
regarding the velocity distribution of the emitted
electrons must be made. The simplest assumption
is that the electrons are emitted from the cathode
with zero velocity. From this assumption and the
assumption discussed in the preceding paragraph
it follows that the potential maximum always
occurs at the cathode surface and the emitted
electrons are accelerated everywhere in their
path between cathode and anode. The current to
the anode is determined by the potential distri-
bution in the space.

A better assumption is that the electrons are
emitted with a Maxwellian velocity distribution.
For this case the potential maximum occurs at
some distance from the cathode. The position and
value of the maximum depends upon the work
function and temperature of the cathode, the
geometry of the electrodes and the applied
potential. In order that an electron shall reach
the anode, its initial velocity normal to the
surface must correspond to an energy which is
equal to or greater than the potential maximum.

For parallel plates and cylindrical electrodes
the following solutions have been obtained for
the two assumptions in regard to the velocity
distribution of the emitted electrons.

1. Electrons emitted with zero velocity

For.infinite parallel plates.

i= (Q2/97r) (e/m) &( V&/X')

=2.33X10 '(V3/x') (81)

where i is the current to the anode in amp. per
cm', x the distance in cm between cathode and
anode; and V is the applied potential in volts
corrected for the contact potential; e and m are
the charge and mass of the electron, respectively.

For long coaxial cylinders.

i = (2 ~2/9) (e/m) &( V&/RP')

= 1.48 X 10 '{V~/RP') (82)

P is a function of R/rp where R and rp are the
radii of anode and cathode, respectively. Table V

TABLE V. Values of P'.

R/rp 1.0 2.0 5.0 7.0 10.0 20.0 40.0
ep 0.000 0.279 0.767 0,887 0.978 1.072 1.095

R/rp 70 100 200 400 1000 5000
Pp 1.088 1.078 1.056 L036 1.017 1.002 1.000

shows a few values of P' as a function of R/rp
taken from a table given by Langmuir and
Blodgett 4'

The equation for coaxial cylinders only applies
to an equipotential cathode. Ordinarily the
cathode is a filament and the potential varies
along its length because of the heating current.
It is of interest to. examine the modification of
the equation due to this effect. It can be shown
that for V,)V/

i = (2/2/9) (e/m) &(V~&/RP')

X L1 3 V//4 Up+ 3/24( Vf/ Vp) ) (83)

where U„is the applied potential between anode
and negative end of the filament and Vf is the
total potential drop along the filament.

For the case in which V„(Vf

i = (2/2/9)(e/m) &(2 V,"'/SRP'Vf)

=5.92 X 10 'l '7'/R Vf. (84)

For concentric spheres.

i = {4/2/9) (e/m) &(U&/a') =2.96X10 'U&/n' (85)

where cP is a function of R/rp and has been
tabulated by Langmuir' and Blodgett. 4' 0.2 in-

creases with R/rp. For R/rp=5. 0, n'=1.141; for
R/rp= 10, 0! = 1.777; foi R/rp= 100& a =3.652.

2. Electrons emitted with Maxwellian velocity
distribution

For infinite parallel plates the space charge
limited current is given by

i=($2/9')(e/m)&((V —V )&/(x —x )')
XLi+2.66(kT/(V —V )e) &)

=2.33X10 '((V—V )&/(x —x )2)

XL1+2.48 X 10—'(T/( V—V ))&g. (86)
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In this equation

V„,=(—2.37k/e) log (i,/i) = —1.98

and

X 10-4T log (i,/i) (87)

x,„=1.092 X10 'T"'g1/7';I, (88)

where V is the potential applied between cathode
and anode corrected for the contact potential;
V„ is the value of the potential maximum
measured with respect to the zero of potential
previously defined; x the distance between
cathode and anode; x the distance from the
cathode to the potential maximum; T the
temperature of the cathode; and i, the value of
the saturation electron emission. g1 is a function
of ln (i,ji). Table VI gives a few values of gl as a

TAELE VI. Uoh&es of I ~.

1 n (i Ji) 0.00 0.30 0.60 1.00 1.60 2.40
0.000 0.979 1,312 1.600 1.881 2.117

34 45 7.0 100 150 250
2.293 2.404 2.511 2,544 2.553 2.554

function of In (i,/i). The values listed in the table
were selected from a more extensive table given
by Langmuir. 4' From Eq. (87) it follows that
space charge acts as if the work function of the
surface were increased by V .

An expression for 7', as a function of U could be
obtained by eliminating U and x between
Eqs. (86), (87) and (88). Because of the nature
of these equations an analytical expression for 7',

cannot be given. However, for any temperature
and electrode spacing it is possible to calculate 7',

as a function of V. The effect of introducing the
Maxwellian distribution of velocities can be seen
by comparing curves calculated from Eqs. (86),
(87) and (88) with Eq. (81).Such a comparison is
made in Fig. 24. Eq. (81) gives a straight line
with a slope of 3/2 on such a plot and is repre-
sented by curve 1.Curves 2 and 3 were calculated
from Eqs. (86), (87) and (88) for parallel plates
of tungsten spaced 1 cm apart at 2000 and
3000'K, respectively. The introduction of the
Maxwellian velocity distribution causes the
currents to be somewhat higher than predicted
by the simple 3/2 power law, especially at low
applied potentials. Furthermore, at applied
potentials considerably less than necessary for
saturation, the slope of log 7 t&s. Iog V is less than

3/2. Near the break point, the slope is practically
3/2.

For long coaxial cylinders, Schottky' and
Langmuir4' 4' have pointed out that the effect of
introducing the Maxwellian velocity distribution
is less important than its introduction in the
plane parallel case. Langmuir" has discussed an
approximate formula for this case.

3. Effect of Fermi-Dirac velocity distribution

The introduction of the newer theory that the
free electrons in the metal have a Fermi-Dirac
velocity distribution requires no modification of
the space charge equations deduced on the
assumption of a Maxwellian distribution. This is
because of the fact that the electrons which
escape across the potential barrier at the surface
have a Maxwellian distribution, as was shown in
connection with Fig. 1. In this connection it is
of interest to compare some calculations by
Bartlett44 assuming a Fermi-Dirac distribution
in the metal at 3000'K with calculations based on
a Maxwellian distribution. This comparison also
is shown in Fig. 24, curve 3. The circles were
taken from a curve by Bartlett and the line was
calculated by Eqs. (86), (87) and (88). The two
calculations agree, thus indicating that the
assumption of a Fermi distribution in the metal
leads to the same result as the assumption of a
Maxwellian distribution.

G, M IscELLANEQUs TQPIcs

In order not to lengthen unduly this review we
have omitted a discussion of a number of topics.
Such topics have either been adequately treated
in the reviews and books referred to in the
introduction or else no significant advances have
been made recently. Some of these topics are:
Secondary electron emission, high field emissions,
thermionics as related to photoelectricity and
contact potential, * and cooling and heating
effects accompanying the emission or absorption
of electrons. In connection with the last topic we
feel that a critical analysis of how the quantities
determined by experiment are related to the
work function and heat function should be made.
Most of these experiments were performed before

* For a critical discussion of this relationship, see
Becker and Brat tain. '
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the day of the Fermi-Dirac-Sommerfeld contri-
butions and should thus be reinterpreted.

It gives me pleasure to acknowledge the help I
have received in the preparation of this article
from my colleagues at the laboratories. I ac-
knowledge in particular the benefit of numerous
discussions with Dr. C. J. Davisson and Dr. W.

H. Brattain and Mr. R. W. Sears. Professor V.
Rojansky, now at Union College, is responsible
for some of the more complicated equations used
in the checkerboard theory. Mr. R. W. Sears
deserves a great deal of credit for his painstakihg
efforts in preparing the figures and tables and in
assembling some of the data.
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