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168 J. H. VAN VLECK

CHAPTER I. GENERAL FEATURES
1. Introduction

HE valence concept was originally intro-

duced into chemistry to account for certain
whole number relationships in the combining
ratios of atoms and radicals. It is hardly neces-
sary here to mention how fruitful the idea proved
to be, particularly in organic chemistry, where
the structural formulae, based primarily on the
quadrivalence of carbon, have served so well.
As the structure and dynamical fabrication of
the atom became known, the physicist and
physical chemist have sought to understand
the empirical rules of valence of atoms and
radicals in terms of their electronic structure.
Only since 1926 has the proper tool, quantum
mechanics, been available. The nature, extent
and success of these attempts, will form the
subject matter of this review.

The first serious attempt to formulate a theory
of valence in terms of atomic structure was made
by G. N. Lewis! in 1916. Lewis’ theory, based
primarily on two ideas,—the idea that each
nucleus tends to become surrounded by a closed
shell of electrons corresponding to that present
in an inert gas atom, and the idea that a pair of
electrons shared between two nuclei constitutes
the homopolar bond—made an instant appeal
to chemists because it was able to correlate and
predict in a simple fashion an enormous number
of previously unrelated facts.

There are many objections to Lewis’ theory,
apart from its empirical nature. In considering
the shortcomings of the theory one must realize
that it was put forth in pre-quantum-mechanical
days, before the advent of the spinning electron
and of Pauli’s exclusion principle. According to
Lewis’ theory one would expect NO,~— -, FO,~,
but not PCls, SFg. The first two are unknown;
however, the last two are well known. Also,
since in BHj; all the valence electrons take part
in forming bonds one would not expect it to be
associated. However, B;H; exists, while BHj; is
unknown. Lewis, of course, realized these de-
ficiencies.

There were also many known anomalous
valences of atoms. Thus, the carbylamines or

1 G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916); cf. also
I. Langmuir, J. Am. Chem. Soc. 41, 868 (1919).
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isocyanides are known, in which carbon is
apparently divalent. Trivalent carbon is also
well known in, for example, the free radicals of
Gomberg. A familiar example is tribiphenyl-
methyl. Also, many atoms have several valences,
as, for example: BiCl,, BiCly; T1Br, T1Br,, T1Br3;
VClz, Vcla, VC14, VFs; BI‘F, Bl"Fs, BI‘Fs, etc.

Lewis’ theory did not concern itself with the
nature of the forces constituting the homopolar
bond, nor was it capable of explaining directed
valence,—e.g. the tetrahedral character of CH,.
The paramagnetism of Os was of course unintel-
ligible, as well as the structure of tri-iodide ion.

The material in the following sections will
show how present day theory enables one to
understand many of these facts as well as facts
considered normal in terms of Lewis’ theory.

The subject of valence is really concerned with
energy relations. If we knew the energies of all
the possible different kinds of electron orbits in
molecules, and also in the atoms out of which
the molecule is formed, the rules of valence
would automatically follow.

Now the principles of quantum mechanics
enable one to write down an equation for any
system of nuclei and electrons, the solution of
which would provide us with complete informa-
tion concerning the stability of the system,
spatial arrangement of the nuclei, etc. To quote
some now classic sentences of Dirac'’s 2

The general theory of quantum mechanics is now almost
complete, the imperfections that still remain being in
connection with the exact fitting in of the theory with
relativity ideas. These give rise to difficulties only when
high-speed particles are involved, and are therefore of no
importance in the consideration of atomic and molecular
structure and ordinary chemical reactions. . .. The
underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that
the exact application of these laws leads to equations much
too complicated to be soluble. . . .

The complexities of the #n-body problem are,
alas, so great that only for the very simplest
molecule, namely Hs, has it yet proved possible
to integrate the Schrédinger wave equation with
any real quantitative accuracy. Hence to date,
anyone is doomed to disappointment who is
looking in Diogenes-like fashion for honest,

2P. A. M. Dirac, Proc. Roy. Soc. Al123, 714 (1929).
(The italics are ours.)
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straightforward calculations of heats of dissoci-
ation from the basic postulates of quantum
mechanics. How, then, can it be said that we
have a quantum theory of valence? The answer
is that to be satisfied one must adopt the mental
attitude and procedure of an optimist rather
than a pessimist. The latter demands a rigorous
postulational theory, and calculations devoid of
any questionable approximations or of empirical
appeals to known facts. The optimist, on the
other hand, is satisfied with approximate solu-
tions of the wave equation. If they favor, say,
tetrahedral and plane hexagonal models of
methane and benzene, respectively, or a certain
order of sequence among activation energies, or
a paramagnetic oxygen molecule, he is content
that these same properties will be possessed by
more accurate solutions. He appeals freely to
experiment to determine constants, the direct
calculation of which would be too difficult. The
pessimist, on the other hand, is eternally worried
because the omitted terms in the approximations
are usually rather large, so that any pretense of
rigor should be lacking. The optimist replies that
the approximate calculations do nevertheless
give one an excellent ‘“‘steer’” and a very good
idea of “how things go,” permitting the system-
atization and understanding of what would
otherwise be a maze of experimental data codified
by purely empirical valence rules. In particular,
he finds that a mechanism is really provided by
quantum mechanics for the Lewis electron pair
bond, and for the stereochemistry of complicated
organic compounds. It is, of course, futile to
argue whether the optimist or pessimist is right.
In the present article we try to adopt a middle
ground between the two extreme points of view,
—a hope perhaps not realized. One thing is clear.
In the absence of rigorous computations, it is
obviously advantageous to use as many methods
of approximation as possible. If they agree in
predicting some property (for instance, the
tetrahedral structure of methane) we can feel
some confidence that the same property would
be exhibited by a more rigorous solution—
otherwise none. Consequently we shall discuss
both of the two main methods of approximation
which have been used; namely the method of
molecular orbitals, developed by Lennard-Jones,
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Hund, Herzberg and Mulliken,® and the strictly
homopolar method of Heitler, London, Slater
and Pauling.*

2. Some definitions

A molecular orbital® is defined as a wave
function which is a function of the coordinates of
only one electron, and which is, at least hypo-
thetically, a solution of a dynamical problem
involving only one electron. The method of
molecular orbitals seeks to approximate the
wave function of a molecule containing 7 elec-
trons as the product of #» molecular orbitals, so
that.

W=y1(x1, Y1, 51)¥2(X2, Y2, 22) * * *¥n(Xn, ¥ny 2n). (1)

Throughout the article we shall use a capital ¥
to denote the wave function for the entire
system, and small ¢ for the wave function of one
electron. In the method of molecular orbitals it
is convenient, but fortunately not a necessary
feature of the method, to express a molecular
orbital as a linear combination of atomic orbitals.
By an atomic orbital is meant a one-electron
wave function for an electron moving in a field
of only one atom. Then for a diatomic molecule
AB with two chemically important electrons in
equivalent states, the expression (1) becomes
.

Y= [aya (%1, y1, 21) +b¥s (%1, y1, 21)]

X[aya(xs, yay 22) +0yn(x2, ¥2, 22) ], (2)

where ¥, and ¢y are atomic orbitals referring to
atoms A and B respectively. If the atomic
orbitals be normalized to unity; i.e., if

SIS dv= S S ¥s’dv=1, 3

3J. E. Lennard-Jones, Trans. Faraday Soc. 25, 668
(1929); F. Hund, Zeits. f. Physik 51, 759 (1928); 63, 719
(1930); G. Herzberg, Zeits. f. Physik 57, 601 (1929); R. S.
Mulliken, Phys. Rev. 32, 186, 761 (1928); 33, 730 (1929);
Chem. Rev. 9, 347 (1931); Rev. Mod. Phys. 4, 1 (1932)
(all primarily diatomic molecules). M. Dunkel, Zeits. f.

hysik. Chemie 7B, 81; 10B, 434 (1930); F. Hund, Zeits. f.

hysik 73 1, 565; 74, 429 (1931-2); R. S. Mulliken, Phys.
Rev. 40, 55; 41, 49, 751; 43, 279 (1932-3); J. Chem. Phys.
1, 492 (1933) (polyatomic molecules).

4 Heitler and F. London, Zeits. f. Physik 44, 455 (1927);
W. Heitler, Zeits. f. Physik 46, 47; 47, 836 (1928); 51, 805
(1929); F. London, Zeits. f. Physik 46, 455 (1928); 50,
24 (1928); R. Eisenschitz and F. London, Zeits. f. Physik
60, 491 (1930); J. C. Slater, Phys. Rev. 37, 481; 38, 1109
(1931); L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931).

5 The ‘‘orbital” terminology is due to Mulliken, Phys.
Rev. 41, 49 (1932).



170 I.

then for ¥y, ¥» to be similarly normalized, the
coefficients @ and b must obey the relation

a?+b242abT=1,
where

T= JSS ¥a¥udv. 4)

If the wave functions of the two atoms overlap
but little, the value of T is nearly zero, so that
approximately

ar=1-b2 (5)

In the various normalization relations, etc.,
throughout the article we assume the wave
functions to be real. Otherwise the first integrand
of (3) would be |¢4|?% and that of (4) ¥a*ys.
This convention saves the repeated introduction
of conjugate imaginaries, and is allowable since
all the wave functions which we shall use are real
(except those for pr, and pr_ states). When we
multiply out the right side of (1) explicitly and
use obvious simplifications in notation, Eq. (1)
becomes

V=a%,(1)Ya(2) +b2¢n(1)‘{'n(2)
+ab[Ya(D)yn(2) +¥a(@)¥s(1)]. (6)

In (6), a term such as Y,(1)¥4(2) implies that
electrons 1 and 2 are both on atoms A, while
¥u(1)¢s(2) implies both electrons on atom B,
and Y4(1)¥s(2) means one electron on each
atom.® Terms of the first two types we shall call
tomic terms, as they require that instantane-
ously the molecule has an ionic structure. This
is not the same as saying that the molecule is
polar in the dielectric sense, for the mean
moment will be zero if the two electrons have
an equal tendency to congregate together on
atom A or atom B, for then the molecule spends
equal amounts of time in the configurations
A+B~ and A-B+. This will be the case if a*=5
in (6). If on the other hand, @ and b are unequal,
there really is a polar structure and we then say
that there are polar terms in the wave function.

6 It is not entirely rigcrous to say, as we do for our quali.
tative purpeses, that y, represents an electron entirely on
atom A and ¥ one entirely on atom B, as the wave function
of atom B overlaps that of atom A, and vice versa, and ac-
tually there is no sharp dividing line between whether an
electron is on one atom or the other. Mulliken notes that
because of the overlapping of ¥, and 3 it is possible to

obtain a small electric moment and hence some polarity
even when a=1b.

H. VAN VLECK AND A. SHERMAN
.

The word ‘““homopolar” is to be construed as
meaning that both polar and ionic terms are
wanting.

3. Preliminary contrast of the two main methods

Because of the term e2/r1, in the Hamiltonian
function, which represents the familiar Coulomb
repulsion, two electrons dislike being close to-
gether. Here 72 denotes the distance between
electrons 1 and 2, and the action of repulsions
of this character we shall often allude to as the
re effect. The great failing of the method of
molecular orbitals is the excessive presence of
ionic terms, due to inadequate allowance for the
12 repulsion. Consider, for instance, the case of
a symmetrical molecule, where a= =4b, as will
be proved in section 7. Then all coefficients in (6)
become equal in absolute value, and this situa-
tion demands that the molecule spend as much
time in the configurations A*B~ and A~Bt, taken
together, as in the neutral condition AB.
Actually there is much less A*B~ or A~“B+ than
AB at any rate in symmetrical molecules, since
ionization potentials are much larger than
electron affinities, because of the 7, effect (e.g.
13.5 vs. 0.7 volts in hydrogen, a rather extreme
example). Similarly, in a molecule composed of
more than two atoms the method of molecular
orbitals is characterized by a superfluity of ionic
terms. The maximum number of superfluous
electrons which can instantaneously accumulate
on one atom equals its valence. Thus in CH, the
method of molecular orbitals leads to no instan-
taneous structures involving H=— or H-—~ as
this would violate the Pauli principle? but there
can be momentary configurations involving
C~~~~ or H~. If one assumes that the ionization
potentials of H and of C are equal, one calculates
that CH; spends the following amounts of time
in various configurations:” C°(H,)°, 27 percent;
C+(Hs)~, 22 percent; C—(Hg*, 22 percent;
C++(H,y)~—, 11 percent; C——(H,)*+, 11 percent;
C3+(Hy)3-, 3 percent; C3*-(H,)*, 3 percent;
C*(Hy)*, % percent; Ct(Hy*, } percent.
Again the ionic effect is clearly too large.

To avoid this difficulty of inadequate recogni-
tion of the 7, effect, the Heitler-London method
goes to the other extreme, and assumes as its

7 For details see J. H. Van Vleck, J. Chem. Phys. 1, 181
(1933).



QUANTUM THEORY OF VALENCE

defiping characteristic that all ionic terms are
completely wanting. Thus in our two-electron
example it uses approximate wave functions
obtained by deleting the first two terms in (6).

It is hard to say categorically whether the
method of molecular orbitals or the Heitler-
London method is the better. The latter un-
doubtedly is much preferable at very large
distances of separation of the atoms, at least in
symmetrical molecules, for then the continual
transfer of electronic charge from one atom to
another demanded by the ionic terms surely
scarcely occurs at all. On the other hand, at
small distances, the Heitler-London method
probably represents excessive fear of the 7y
effect, and the factorization into # one-electron
problems presupposed by the method of molecu-
lar orbitals may sometimes be quite a good
approximation. The molecular orbitals are often
the more convenient for purposes of qualitative
discussion, whereas the H-L. method has been
used the more frequently for purposes of quanti-
tative calculation, partly, but by no means
entirely, because of habit. One nice feature of
the method of molecular orbitals is the ease with
which it takes cognizance of polar terms.
Namely, in the example (2) or (6), simply by
varying the coefficient @ from zero to 4/% to 1,
one passes through all gradations of polarity
from A*B~ to AB to A-B*. For instance, if in
(6), a2=0.9 and 5*=0.1, then the molecule is
dominantly A-B+*. The importance of polar
effects has been somewhat overlooked in recent
days, due in large part to the homopolar influence
of Heitler-London calculations. There are ele-
ments of truth in the old-fashioned chemistry
that HCl has the structure H+Cl-, as the true
wave function of HCI is expressible as a linear
combination of various idealized types, and
certainly H*CI~ must be given some representa-
tion. In the present article we shall slide rather
lightly over polar effects, not because they are
not important, but simply because they do not
present any particular quantum mechanical
features. One great service of quantum me-
chanics is to show very explicitly that all
gradations of polarity are possible, so that in a
certain sense it is meaningless to talk of such
idealizations as homopolar bond, heteropolar
bond, covalent bond, dative bond, etc. For a
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further discussion of this subject the reader is
referred to Pauling’s interesting paper,® ‘“The
transition from one extreme bond type to
another.” He shows from empirical evidence that
the polarity of halogen compounds decreases as
the mass or radius increases. Fluorine compounds
are the example par excellence of polar valence.
The reason that one does not have NeH probably
lies fully as much in the old fashioned idea that
the low electron affinity of Ne due to its com-
pleted inert gas shell, makes Ne~H* an unstable
configuration as in the more recent explanations
in terms of exchange integrals, electron pairs,
and a neutral structure.

The objections to either of the two methods
can be obviated by adding extra terms to the
wave functions. For instance, ionic and polar
terms can be added in the Heitler-London
method. However, we then have what we shall
call refined procedures in distinction from the
more naive forms of the methods, for which
our usual terminology is intended. As an example
of a somewhat refined wave function we might
use (6) modified by making the coefficients of the
first two terms arbitrary, rather than zero as in
the H-L method, or with their product equal to
the square of the third coefficient as in the
method of molecular orbitals. Since polar terms
are so easily added in the Heitler-London
method, at least in principle, its advocates often
object to our stressing, as in the preceding para-
graph, the simple fashion in which the molecular
orbitals include polarity as in any sense a
characteristic feature of the latter. However, the
polar terms do seem more indigenous to molecu-
lar orbitals, since the arbitrary constant a
governing the amount of polarity appears of
necessity at the very beginning, whereas the
corresponding polarity correction, likewise a one
constant affair, is more or less optional in the
Heitler-London theory.

Clearly, it becomes meaningless quibbling to
argue which of the two methods is the better in
refined forms since they ultimately merge. In
fact, they may be regarded as simply two
different starting points of a perturbation calcu-
lation, corresponding to different choices of
unperturbed wave functions. The perturbation

8 L. Pauling, J. Am. Chem. Soc. 54, 988, 3570 (1932).
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development does not, however, take the same

succinct form as in atomic problems, where the
wave functions are orthogonal and where one
may conveniently use power series in a parame-
ter.

CuaprTER II. DiaToMic MOLECULES

4. Relation to the Hartree field in atomic spectra

We shall now consider the various methods in
some detail as applied to diatomic molecules.
Consideration of polyatomic molecules will be
deferred until Chapters I1I-IV. We shall begin
with the molecular orbital procedure, as it is the
simplest. It may be described as in principle the
molecular analogue of Hartree's familiar method
of the self-consistent field in atomic spectra.?
We insert the words “in principle” because
elaborate quantitative calculations based on the
Hartree method have really been consummated
in atoms, whereas the corresponding method in
the molecular case is commonly used mainly for
purposes of qualitative discussion, without any
attempt at quantitative evaluation of the fields
or wave functions.

The essence of the Hartree method is that
any given electron is imagined to move in the
‘“‘time exposure’’ rather than in the instantaneous
field of the other electrons. In other words, we
replace the momentary positions of the other
electrons by their averaged positions in com-
puting the force which they exert upon the given
electron. The force-field then obtained is, of
course, the same as one would compute from an
electrostatic distribution of charge whose density
in any region is proportional to the total fraction
of the time which the charges responsible for the
field spend in this particular region. The great
advantage of the Hartree method is that it
reduces the actual #-body problem to # one-body
problems, since the averaging process has made
the force on one charge independent of the
position of the other charges. It is clear that, in
consequence, inadequate cognizance is taken of
the fact that two electrons are seldom close
together because of the large repulsive force

® For an excellent syllabus on the Hartree method see
L. Brillouin, La Méthode du Champ Self-Consistent (Actu-
alit(:;,sl 59S)cientiﬁques, Hermann, Paris, 1933-4, Nos. 71
an .
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between them. Thus, as we have already men-
tioned in section 3, and as we shall analyze more
fully in section 11, the method of molecular
orbitals gives too large ionic terms,—for instance
too much probability that the ground state of
H; be instantaneously in a condition such as
H+H~ or H-H*. Trouble of this sort is obviously
to be expected, since, with the type of approxi-
mation made, one of the electrons in H, has no
way of knowing where the other is, and so the
two may inadvertently, as it were, find them-
selves on the same atom.

5. Quantum numbersin a field of axial symmetry!

In atoms in S states, the charge distribution
possesses central symmetry on the average so
that any given electron may be considered as
moving in a field of central symmetry. In a
diatomic molecule things are not quite so simple.
Here the “‘time exposure” field will at best be
one of axial symmetry. We must therefore
examine the quantization characteristic of the
motion of an electron in an electric field of axial
symmetry. In any field not departing greatly
from central character an electron is described by
four quantum numbers, three of which are
associated with the orbit, and one of which
determines the orientation of the spin of the
electron. First let us assume that the field has
only axial symmetry, but that the departures
from central symmetry are not too large. It is
well known that in a field of central symmetry
the three orbital quantum numbers are the
principal quantum number #, the azimuthal
quantum number , and the axial quantum
number \. The latter is really m,, the projection
of I upon the electric axis. In the diatomic
molecule this axis is the line joining the two
nuclei, and then, for some reason, it is customary
to replace m,; by a new symbol, A. Only the
absolute value of \ is usually of interest because
the state with A=+1, for instance, is of the
same energy as that for which A= —1. The
possible values of # are 1, 2, ---, while / can
assume any value in the range 0, -+ n—1.
The range for N\ is —I, —I+1, --- +1I. The
quantum number #,, which space quantizes the

10 For a fuller account of approved notation in molecular
spectra see R. S. Mulliken, Phys. Rev. 36, 611 (1930).
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spin, can only take on the values =% since the
spin quantum number for an individual electron
is always 3.

In molecular spectra it is customary to use
such a notation as

150%25022pa?2pm® 211 (7

to designate a state of the molecule. Here the
numbers in front of the small letters denote the
principal quantum numbers, the small Roman
letters supply the values of the azimuthal
quantum number (!=0, 1, 2, 3 --- for s, p, d,
f -+ respectively). The small Greek letters
yield the values of the axial quantum number \
according to the rule that A=0, 1, 2, 3 ---
for o, m, 8, ¢- - - respectively. It will usually not be
necessary to specify the sign of \, or whether
ms is +3% or —3%. The capital letter gives the
value of the total or collective orbital angular
momentum about the figure axis, which is de-
noted by the letter A, and is the algebraic sum
of the individual components of angular mo-
mentum about this axis, so that A=2\. (Here
attention must be paid to the sign of \.) The
superscript preceding the capital Greek letter
gives the value of the multiplicity, which is the
same as 25+ 1, where S is the total spin quantum
number for the molecule. The superscripts fol-
lowing the small letters give the number of
electrons inhabiting the corresponding individual
states. Thus in example (7), which happens to
be the ground state of the OH molecule, there are
two 1se electrons, two 2s¢ electrons, etc.

In assigning electrons to the different states
we must always bear in mind the limitations
imposed by the Pauli exclusion principle. This
principle requires that no two electrons can have
all four quantum numbers the same. At first
sight such a restriction might seem to require
that none of the superscripts could be greater
than unity. However, this is not really the case,
for we have not specified the sign of \ or of m,.
Since there are two sign choices for each of the
quantities X, 7, we see that the Pauli rule allows
four electrons to a given assignment of 7, |\|
except in the special case of a ¢ state, where A
vanishes and where hence there is no alternative
in sign except for m,. Thus, there can be at most
four electrons, for example, of any one of the
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following types: 2pm, 3dw, 3d3, etc., and at most
two 1se, or two 2po electrons.

The Pauli exclusion principle is the cornerstone
of the entire science of chemistry, for without it
one would not have an understanding of the
Mendeléef periodic table and the like. The
reader will recall that it, together with a knowl-
edge of the relative order of binding of the various
electronic orbits, yields the characteristic struc-
ture of the periodic table.! There are two
electrons absorbed in the elements of the first
period because the only two possible one quan-
tum electrons are those embodied in the formula
1s02. The eight electrons of the next period are
given by 2s5¢?2pe?2pr. The third period might
at first sight seem to require eighteen electrons
rather than the eight found experimentally
because there are eighteen possible 3-quantum
electrons. However, the s and p electrons are
considerably lower in energy than the d electrons,
so that a break comes after the addition of
25*2pa?2pw*. The ten 3d electrons are assimulated
in the midst of the acquisition of the 4s and 4p
electrons. This interruption gives rise to the
characteristic phenomena of the transition group,
and swells the fourth period from eight to
eighteen.

It may be well to contrast the notation (7) with that
used for Russell-Saunders coupling, which is characteristic
of free atoms not disturbed by external fields or by exces-
sively strong spin-orbit interactions. Here the angular
momentum of a given electron is not individually space
quantized. Instead the !'s of the atom are compounded
vectorally and quantized to a resultant L. Similarly, the
spins are compounded to a resultant S. (The latter
quantization takes place even in molecules.) Then L and
S are quantized to a resultant J. When the system has a
quantized ‘‘collective” resultant angular momentum L
(not to be confused with the axial component A of collec-
tive angular momentum quantized in Eq. (7)), of course
all vestiges of individual space quantization are lost. In
place of (1) one employs a notation such as

152252245 2Pyja. ®)

Here the capital letter gives the value of L (L=0,1,2,3 -- -
for S, P, D, F, respectively), the superscript the value of
2541, and the subscript the value of the inner quantum
number J.

In molecules one uses the notation (7) rather than (8)
because ordinarily molecular forces are strong enough to

break down the L, S coupling. The J coupling is broken

I For instance, Pauling and Goudsmit, The Structure of
Line Spectra, Chap. IX.
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down by external fields even before the L, S is.2? If the J,
but not the L, .S coupling, were broken down one would
space quantize separately the collective (but not the indi-
vidual) spin and orbital angular momenta. Capital Greek
letters would then have a meaning and in place of Psp in
(8) one would use a notation such as PIly.. The subscript
gives the value of A+ Mg.

The quantum numbers # and ! have a direct
significance only if the departure of the field
from central character is not too great. If most
of the vestiges of central symmetry are lost,
only those orbital quantum numbers which are
specified by Greek letters are relevant, since only
the component of angular momentum parallel to
the figure axis is constant in the arbitrary field
of only axial symmetry. The various spin quan-
tum numbers retain their validity since the spin
is rather insensitive to electrical forces; in
particular, one can still speak of the total spin S
of the molecule. Of course, when 7z and I lose
their meaning other quantum numbers take their
place since four numbers are always associated
with an electron, but the precise kinematical
significance of these other quantum numbers
will be complicated and depend upon the par-
ticular characteristics of the field. For instance,
quantum numbers associated with the separation
of variables in elliptic coordinates are appropriate
if the axial field is one of two attracting Coulomb
centers (e.g., Hot), but in other more complicated
axial fields not even a separation of variables
appears possible. To show that quantum num-
bers still exist, although of unknown kinematical
nature, Mulliken uses a letter near the end of
the alphabet, thus introducing terminology such
as um, uvr, wr, wo, etc., with the convention
that the energy decreases as one progresses
further in the alphabet. Thus %, v, w each really
stand for two quantum numbers, and a ovr
electron is more firmly bound than a ux one.

6. u and g states

In symmetrical molecules such as H,, Np, etc.,
there is a division of orbits into two categories
which is particularly helpful. An orbit is called
g or u (‘‘gerade” or ‘‘ungerade’) according to
whether its orbital wave function ¥ is even or
odd under the operation which the crystal-
lographer calls inversion, i.e., reflection of all the

12 For unusual cases where J coupling still persists in
molecules see Mulliken, Phys. Rev. 46, 549 (1934).
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coordinates in the molecular midpoint (i.e., the
point equidistant from the two nuclei). If the
midpoint is, as usual, chosen as origin of the
coordinate system, one thus has

g \P(x, Vs Z)= +‘l’(—xr - —Z),
u: ‘l’(xv Vs Z)= _‘p("xv ~Y _Z)'

One might, perchance, inquire why wave functions are
necessarily g or #. The proof that they must be is quite
simple. Suppose one had a solution which did not possess
the u or g property, say y(x, ¥, 2). Then since in a sym-
metrical molecule the wave equation is invariant under
inversion in the midpoint, y(—x, —y, —z) would also be
a solution of the wave equation, or, equally well, linear
combinations of y(x, ¥, z) and ¢¥(—%, —v, —z). The par-
ticular linear combinations

v(x, 3, 2) Y (—x, —y, —2)

represent two wave functions which are respectively even
and odd under reflection in the nuclear midpoint. The
states corresponding to these functions would both have
the same energy so that the system would be degenerate,
unless the wave function were already even or odd, in
which case one of the combinations is identically zero.
Hence either the wave functions are necessarily even or
odd, or they are not already so but can be made so without
loss of generality. In the latter case there is a twofold
degeneracy (not to be confused with other twofold de-
generacies such, for instance, as that regarding the sign
of \ or of m,). Actually this degeneracy does not occur, and
so the wave functions are inescapably even or odd.

It is clearly to be understood that in this discussion we
are reflecting only electronic coordinates, since the nuclei
are throughout regarded as fixed attracting centers so that
their coordinates do not enter. Symmetry properties when
nuclear coordinates are reflected as well, are another
matter, involving consideration of molecular rotation.

7. The united and separated atom parentages of
a state

At intermediate, i.e., actual, inter-nuclear dis-
tances, the self-consistent fields appropriate to
an atom do not show much semblance of central
character, so it is best to use the #, v, w- -+ nota-
tion. However, one can imagine the nuclei to
be gradually hypothetically drawn closer and
closer together. After a certain point in this
process the field will surely become more and
more nearly central in character, and is accu-
rately central when the nuclei are made to coin-
cide, thus forming what Mulliken calls the
“united atom’. Then notation of the type out-
lined in section 5 is clearly in order. It is, of
course, possible to correlate the quantum num-
bers appropriate to actual inter-nuclear distances
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with those appropriate to the united atom. The
Greek letters must be the same in both cases
since the component of angular momentum par-
allel to the figure axis remains invariant when the
nuclear distance is varied. Also the orbit pre-
serves its % or g character. For the united atom,
an orbit is # or g according to whether / is odd
or even. In other words, p and f states are u,
while s and d states are g. This is simply a state-
ment that spherical harmonics of odd and even
degree are respectively odd and even with respect
to reflection in the origin. (Thus, for example,
P°=cos 0 changes sign under the substitution
6—m—0 and ¢— e+, while P,'=%(3 cos? §—1)
remains invariant.

Instead of examining what happens to an orbit
when the nuclei are made to coincide one may
equally well inquire what happens when the
atoms are instead infinitely separated. Here
again the identity of the Greek letters must be
preserved. When one gives the quantum num-
bers #, I of the ‘‘separated” atomic orbit with
which a given molecular state is genealogically
related it is customary to write the Greek letter
before the two other letters so as to avoid con-
fusion with notation appropriate to the united
atom. Furthermore in a molecule composed of
two unlike atoms (e.g., HCI) one should also
specify which atom is the source, and so use
notation such as olsy, m2pc), etc. In molecules
composed of like atoms A and B, the energy
levels of the two separated atoms are the same,
and to every wave function ¥, of atom A, there
is a corresponding wave function yp relating to
atom B and involving the same energy. Hence
any linear combination of ¥, and ¥ is a solution
when the atoms are completely separated. When
the separation is very large, but not infinite, the
degeneracy is removed and the appropriate linear
combinations to use are the sum and difference.
This follows from the fact that these combina-
tions have the » and g property, so we may write

Yo, u= [1/2(1:1:7")]’(\1«:!:!//3). (9)

Here T is defined as in (4), and the radical factor
has been inserted to preserve the normalization.
Eq. (9) is an illustration of the fact that a
molecular orbital can always be expressed as a
linear combination of atomic orbitals. However,
only at large inter-nuclear separations is a molec-
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ular orbital at all accurately described as a linear
combination of a few atomic orbitals. Since the
totality of atomic orbitals form what mathema-
ticians term a ‘‘complete’ set of functions, one
can describe a molecular orbital appropriate to
an arbitrary distance of separation as a linear
combination of atomic orbitals if one uses an
infinite number of terms in the sum, but such a
development is obviously not very practical. In
quantitative rather than qualitative work it is
usually inadvisable to express the molecular or-
bital as a linear combination of atomic orbitals;
in fact, the best feature of the method of molec-
ular orbitals from the quantitative side is that
such an expansion is not inherent in its use.

One is now in a position to construct diagrams
correlating the states of the separated atoms with
those of the actual molecule and of the united
atom. Here the key to the construction is that
the quantum number N remains invariant, and
that the u, g property is always preserved in
molecules composed of like atoms. Furthermore,
curves associated with like values of X\, and of
similar %, g symmetry, should not intersect, in
accordance with a well-known ‘‘non-crossing”’
rule of quantum mechanics for states which are
capable of perturbing each other.® Namely, the
interaction between two states tends to spread
them apart and so the potential curves of two
interacting states cannot cross. Thus one arrives
at a correlation diagram such as is given in Fig. 1,
which is reproduced from one of Professor Mulli-
ken’s papers'* with his kind permission.

The reader will do well to study this figure,
for it is the essence of the “Aufbauprinzip’ or
“configuration theory” of Hund, Mulliken, Len-
nard-Jones and others.? This diagram might well
be on the walls of chemistry buildings, being
almost worthy to occupy a position beside the
Mendeléef periodic table so frequently found
thereon. Just as the latter affords an understand-
ing of the structure of atoms so does the former
afford an understanding of the structure of mole-
cules, with which the chemist is often concerned.

From Fig. 1, such correlation formulas as

25—0,25—20—250—2s; 25—0,25—yc—3po (10)

should become apparent. (A correlation such as

13 See F. Hund, Zeits. f. Physik 52, 601 (1928).
1 R, S, Mulliken, Rev. Mod. Phys. 4, 1 (1932).
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F16. 1. Correlation between states of the united atom (left) and separated atoms (right), for molecules composed of two
like atoms. The clue to the construction of the figure is the Pauli principle and the nonintersection of levels which have
the same symmetry (i.e., which have the same value of X and the same « or g property). A state of the united atom is
% or g according as / is odd or even. The abscissa is the ratio of the inter-nuclear distance to orbital diameter. The uide
lines emanating from the lower right corner are included to indicate the approximate position of some simple molecules in

the diagram. A uniform scale has not been used for either asbcissae or ordinates.

a,25—2pa, for instance, would be impossible since
2p is u rather than g; the correlation o,2p—2s
does not occur as 2s has been pre-empted by
ay2s.)

Fig. 2 gives an analogous diagram for a mole-
cule composed of two unlike atoms. Here the two
combinations formed from two atomic orbitals
cannot be described as # or g, and instead an
asterisk is used to distinguish one of them.

Of course the correlation rules which we have
discussed in some detail determine only where
the curves ‘“‘join on’’ at the extreme left and ex-
treme right of the figure, and do not determine,
except very roughly by interpolation the beha-
vior of the curves between the two extremes. In
sketching these curves, Mulliken has drawn to a
considerable extent upon empirical information
afforded by band spectra. The configuration the-
ory by itself, for instance, does not tell us that

042 is below m,2p at large inter-nuclear distances.
Indeed we have mentioned that the Heitler-
London theory is a better approximation than
molecular orbitals for large separations, and so
this theory should be appealed to where possible
in drawing the extreme right portion of the fig-
ures. No attempt should be made to deduce abso-
lute energies from the figures. In fact, a different
energy scale has been used for the united atom
than for the dissociation products: For example,
a 2p state of the united atom is clearly more
firmly bound, and so represents a deeper energy
level, than a 2p state of a completely dissociated
atom, since the former has a greater nuclear
charge than the latter. However, in the figures,
the same height has been assigned to both levels.
To illustrate the bonding effect of nonpromoted
orbits, the figures should be bent downwards on
the left side.
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One thing should become apparent by now,
from Fig. 1 or otherwise. The quantum numbers
n, 1 for the orbit of the united atom which is
associated with a given molecular orbital are not
necessarily the same as those of the atomic orbi-
tals for the separated atoms from which the given
molecular state is derived. For example, in Fig. 1,
the state yo is derived from the state 2s of the
separated atom, but passes over into the state
3p for the united atom. Orbits for which the
quantum number # has a larger value for the
united atom than for the separated atoms are
termed ‘‘promoted’’ orbits. Promoted orbits usu-
ally are a hindrance rather than an asset as far
as molecule formation is concerned, since the
energy increases when the principal quantum
number # is increased. In other words, because
of the Pauli principle, such electrons can be ac-
commodated in the united atom only if they are
housed in states of comparatively high energy,
so that they have higher energy in the united
atom than in the molecule. It is clear that many
of the electrons must be promoted in passing to
the united atom since here only one housing
structure is available for the electrons, whereas
two such structures are available for the separate
atoms. Electrons which are not promoted are
believed to be in general bonding electrons, un-
less they are sheltered in inner shells, since they
lead to lower energy for the united atom than
for the separate atoms on account of the higher
effective nuclear charge for the former. Besides
bonding and anti-bonding electrons there are
nonbonding electrons, viz. the inner electrons
whose wave functions do not appreciably overlap
two atoms at a time (before linear combinations
are taken) and for which the %, v, . . . nomen-
clature is not used. A nonbonding electron is
always potentially either a bonding or anti-bond-
ing one. The point is that its wave function is
built out of atomic orbitals from the two atoms
which do not overlap each other appreciably at
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the actual inter-nuclear distance, so that promo-
tion has not yet become much of a draw-back, or
nonpromotion an advantage. At smaller distances
of separation, the bonding or nonbonding effects
would begin to manifest themselves. Clearly K
electrons are to be considered nonbonding elec-
trons except in compounds containing hydrogen.

Thus in the examples taken from Mulliken
given at the beginning of the next section he does
not even deign to give a Greek nomenclature to
the four electrons contributed to each by the K
shells of the two atoms. Instead they are col-
lectively simply labelled KK in Table I. One
should not, however, form the impression that
the energetic effect of the so-called ‘‘non-bond-
ing" or “inner shell” electrons is entirely negli-
gible. Instead we shall see in the appropriately
numbered section 13, that it is large enough to
render void all attempts at quantitative calcula-
tions of heats of dissociation in which inner shells
are neglected.

Herzberg? defines the number of bonds as equal
to half the difference between the number of
bonding and anti-bonding electrons. In many
ways this definition leads to a helpful concept of
what is meant by a bond, but at the same time
it is a little artificial, as there can be varying

TABLE 1. Molecular orbital nomenclature for some simple molecules.

C[1s522522p2 3P ]+ N[1522522p® 4ST>CN[K K (20)*(y0)2(wr)4(x0) 2Z]
N[152252248 457+ N[ 15225223 4SF— Na[KK (20)2(yo)*(wm)4(x0)? 124]
C[1522522p? 3P ]+ O[1522522p* 3P ] CO[ K K (20)*(yo)?(wr)4(x0)? 1Z]
N[1s22522p% 457+ O[15?2522p¢ 3P }>NO[K K (20)*(yo)2(x0)*(wrr)*(vrr) 211]
O[ 15225224 3P+ O[ 15225224 P O:LKK (20)2(y0)? ()i (m ) (vr)? 32,]
F152252245 2P+ F[ 152252248 2P 1~ Fi[KK (30)2(30)*(xo)2(wr)s(vr) 12,]
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degrees of promotion and varying amounts of
energy decrease for the non-promoted electrons.
Thus in reality there is no hard and fast distinc-
tion between bonding, nonbonding, and anti-
bonding electrons.

8. Structure of some simple molecules

It is interesting at this point to sketch in
Table I the formation of some diatomic mole-
cules.

The electron orbits are written in order of de-
creasing firmness of binding. This order, for most
of the molecules, can be seen from Fig. 1.

Let us consider the case of N, in more detail.
From Fig. 1, and the above definition of bonding
and anti-bonding electrons, it is clear that the
two zo electrons are bonding since they are not
promoted and move in the field of two nuclei.
The two yo electrons are promoted and anti-
bonding. (The 2s electrons in the separate atoms
are promoted to 3p states in the united atom,
and this promotion is already well under way in
N, as can be seen from the figure.) The four wr
and two xo electrons are bonding. The xo elec-
trons are, to be sure, ultimately promoted, but
at the actual inter-nuclear distance the resulting
anti-bonding effect has not begun to enter, and
instead one has the bonding action due to the
dip in the ¢,2p curve on the right side of Fig. 1.
Thus there are altogether eight bonding and two
anti-bonding electrons. Since the bonding elec-
trons are in excess the molecule will be stable,
and by Herzberg’s definition the number of bonds
present is 3(8—2)=3, in agreement with the
usual chemical version. But the difference be-
tween the present interpretation of N; and the
ordinary chemical concept of the structure of the
molecule is to be noticed. A chemist would say
that the valence of a nitrogen atom is usually
three, and that therefore N; is N=N. Since each
bond is an ordinary electron-pair bond there are
six electrons holding the molecule together. It
is clear from the above discussion, however, that
ten rather than six electrons are vitally concerned
in the formation of N.. The bonding action of
the two 2o electrons probably roughly cancels the
anti-bonding action of the two yo electrons, so
that the net bonding effect is approximately zero,
but this is far different from saying that these
four electrons do not play any part in the for-
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mation of Ny, and that hence their bonding action
is zero.

With the aid of the configuration diagram one
can immediately see why such molecules as H,,
Li,, etc., are stable, while He; and Ne, are un-
stable. In H, there are two electrons. They can
both be housed in the state o,1s—1sc and are
therefore both bonding electrons. In He, four
electrons must be accommodated. Because of the
Pauli principle only two electrons can be housed
in the deepest state. The next two electrons must
therefore settle in the next higher state, namely
o.1s—2ps, which is decidedly anti-bonding in
character, so that all told there are as many anti-
bonding as bonding electrons, and the resultant
bonding effect is nil.

In F; it is clear from Table I and Fig. 1 that
there are six bonding (xs and wr) and four anti-
bonding (v7) electrons, giving an excess of bond-
ing electrons, hence stable F,. (The 2o and yo
electrons are here essentially nonbonding.) On
the other hand when we come to Ne, there are
two more electrons which must be housed as
compared to Fs. These can only be accommo-
dated in the strongly anti-bonding state .2p.
The presence of these last two electrons is such
a drawback that Ne; is unstable. Similarly, turn-
ing to Fig. 2, we see that we can have a stable
molecule of the type OF but not of the form NeF
because the extra electron of Ne would be housed
in the strongly anti-bonding state %o or o*2p.

Perhaps the reaction of the reader at this stage
is that the above is all very well, but that after
all this configuration theory does not predict so
very much more than the old octet theory of
Lewis,! etc. The idea that any electrons present
beyond a closed shell for the united atom are
really a drawback to the molecule is, of course,
implicit in the old theory of Lewis and Lang-
muir.! The answer to this objection is fourfold:
(a) The configuration theory puts the old ideas
of forming closed shells on a more tangible and
definite quantum mechanical basis than hitherto.
(b) The configuration theory yields useful infor-
mation in intermediate cases in which the united
atom does not have either just the right number
of electrons for a closed shell, or one or two more.
For example, BeH is a molecule which is not
understandable in terms of the old valence the-
ory, but is in terms of molecular orbital theory.
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(c) The configuration theory is very useful in cor-
relating the excited states of the molecule with
dissociation products. For instance, it shows in
the (1s0)(3po) 12, state of H, the molecule dis-
sociates into one normal and one excited (2-quan-
tum) atom. A correlation of this character is not,
however, of interest to our immediate purpose of
formulating a theory of valence, which is con-
cerned obviously only with the normal state of
the molecule. (d) The configuration theory shows
in an easy way why it is that most stable diatomic
molecules are diamagnetic, but that O, is para-
magnetic, being abnormal among molecules with
an even number of electrons in this respect. This
must be regarded as one of the triumphs of con-
figuration theory, for the explanation'® with the
alternative Heitler-London theory is somewhat
less elementary. When two electrons have their
three orbital quantum numbers the same, the
spin quantum number m, must have the opposite
sign for the two. One can show that then the
spins of the two electrons cancel, so that the
resultant spin of the two electrons is zero. On the
other hand, when two electrons are in different
states the resultant spin can be either zero or one.
Hence there should be neither a spin nor an
orbital moment associated with groups such as
o2, 7* or &%, which may be regarded as closed
shells. A group such as 7* may be considered as
two pairs of the form 7,2, 7_2%, where we have
added subscripts to give the sign of \. There is
no orbital moment because N has the opposite
sign for m, and 7_ states, so that the moments
associated with r, and w_ cancel each other. On
the other hand, configurations such as 72 do not
represent closed shells. The three types of molec-
ular states which can arise from #? are my7_3Z2,
w2 1A, mym_1Z. All but the last of these should be
paramagnetic as they have non-vanishing values
of S'or A. In the first case the moment is due to
the spin, in the second to the orbit. One can show
that, all other things being equal, spins like to
be parallel (this is the common Hund rule that
the normal state is that of greatest multiplicity
consistent with the Pauli principle!®). Hence 32
is the deepest of the three states arising from =2.
Consequently molecules of a structure consisting
of closed groups (¢?, 7%, etc.) plus =% have an

18 W. Heitler and J. Peschl, Nature 133, 833 (1933).
16 See p. 165 of reference 11.
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incomplete outer shell, should be normally in a
3% state, and should be paramagnetic. Reference
to Table I shows that O, has such a structure,
whereas C,, Nz and F; involve only closed groups.
Therefore O, should be paramagnetic and indeed
the susceptibility found experimentally corre-
sponds precisely to the value which one calcu-
lates for a 32 state from the quantum theory of
magnetism, of which we shall not give the de-
tails.}” Also S, should be paramagnetic and there
is evidence that it indeed is.!”

The existence of the B;Hgs molecule is nicely
interpreted by molecular orbitals on the ground
that BH; is isoelectronic with O, so that if one uses
the united atom approximation B,Hg is similar
to O, in structure.’® However indirect magnetic
measurements indicate that B,Hs is diamag-
netic®® rather than paramagnetic. The explana-
tion of this surprizing fact is at present not clear.
A plane rather than the usually assumed trigonal
structure for B,Hg would lift the =,7_ degeneracy
and destroy the paramagnetism, but a plane
model might be inadmissible on other grounds.

Clearly, all molecules with an odd number of
electrons (e.g., NO,, NO, ClO;) should be para-
magnetic, as there is at least one uncompensated
spin. The molar susceptibilities of a large number
of odd molecules and free radicals?® have experi-
mentally the value 1.27X107 which one calcu-
lates on the assumption that only the spin con-
tributes to the susceptibility, and that there is
one free spin. One can show that in molecules
with more than two atoms all the susceptibility
should arise from the spin. The diatomic odd
molecule NO is normally in a 2II state. Quite
irrespective of the experimental evidence, this
state could be predicted from configuration the-
ory, as in Table I. From a 2II state the moment
arises both from the spin and the orbit, the orbi-
tal moment being required because As%0. The
observed susceptibility checks nicely with the
calculated value.!”

17 For details see Van Vleck, Electric and Magnetic Sus-
ceptibilities, Chap. X.

18 Cf. R. S. Mulliken, Phys. Rev. 43, 765 (1933); cf. also
L. Pauling, J. Am. Chem. Soc. 53, 3225 (1931).

191, Farkas and H. Sachsee, Trans. Faraday Soc. 30, 331
(1934). (Diamagnetism deduced from inability to produce
para-ortho conversion in hydrogen.)

20 N, W. Taylor, J. Am. Chem. Soc. 48, 854 (1926); S.
Sugden, Trans. Faraday Soc. 30, 18 (1934); H. Katz,
Zeits. f. Physik 87, 238 (1934).
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9. The method of Heitler and London

The H-L method* goes to the other extreme
from molecular orbitals and assumes that ionic
terms are completely wanting. For a molecule
composed of two atoms A and B, each having
one electron, an allowable structure from the
H-L viewpoint is that represented by the product
¥a(1)¥s(2) of atomic orbitals relating to atoms
A and B respectively, as then electron 1 is iden-
tified with atom A and electron 2 with atom B.¢
Another possibility is ¥4(2)¢s(1) wherein the
electrons have traded places as compared with
the preceding product. The proper linear combi-
nations of the two possible products are, as one
might expect, the sum and difference combina-
tions

Yun( 224, 4) = ClYa()¥n(2) £¢a(1¥a(2)], (11)
since the Hamiltonian function H will possess no
matrix elements connecting them, i.e. since

S S (12) BV ay, (32,)dvidv,=0.  (12)
‘The upper and lower sign ‘choices in (11) give
states which are respectively g and u as regards
inversion in the molecular center. Further the
orbital wave function (11) is either symmetric
(upper sign) or anti-symmetric (lower sign) as
regards permutation of the two electrons. Since
H is symmetrical in the two electrons, the inte-
grand of (12) is anti-symmetric, and hence the
integral (12) is indeed zero.?! If y,, ¥ are each
normalized to unity (Eq. 3), the normalization
factor C has the value

C=(2x2T*»74, (13)
with T'= S/ S ¥a(1)¥s(1)dos.

The upper and lower choices of sign in (11)
give respectively singlet and triplet states. This
is because the complete wave function is equal
to a product of a spin and an orbital function.
(This separability into 'spin and orbital factors
is, incidentally, not in general possible when there

21 When the integrand is anti-symmetric, the contribu-
tions of equal volume elements which differ only in the
permutation of the electrons cancel each other, making the
integral vanish. When the integrand is odd as regards in-
version, the integral is likewise zero, due to cancelation of
the contributions of volume elements at x1, y1, 21, %2, ¥, 22
and —x1, =y, —21, —%X2, —¥;, —22.

H. VAN VLECK AND A. SHERMAN

are more than two electrons, nor is it rigorously
true even with two electrons when we consider
the effect of spin-orbit distortion, which is fortu-
nately small except in heavy atoms.) Now the
Pauli principle demands that the total wave func-
tion be anti-symmetric as regards electron inter-
change. Hence a symmetric orbital state demands
an anti-symmetric, i.e., singlet spin factor, while
an anti-symmetric orbital state requires a sym-
metric,?? i.e., triplet spin part, as stated above.

The energy W associated with the two solu-
tions given in (11) is obtained in the usual way
by integrating them over the Hamiltonian oper-
ator H, i.e.

W= f e f\I/H‘I’d'Uld‘IJz (14)
provided ¥ is normalized to unity. If our mole-
cule is one of hydrogen, the Hamiltonian operator
H has the form

H= — (h?/8n*m)(V12+V2?) +e/ran—€%/ra1

—e2/rae—e?/rp1—e?/rpate?/rys, (15)
where V,? denotes the Laplacian operator for the
coordinates of electron 1, 7y is the distance be-
tween electrons 1 and 2, 7,5 is that between
nucleus A and nucleus B, 7,; that between nu-
cleus A and electron 1 and so on. We now sub-
stitute (15) in (14) and make use of the fact that
¥a(1) satisfies the equation
[(—h?/8n*m)v 12— (e2/7a1) — Wu¥a(1)=0, (16)
since ¥4(1) is an atomic orbital for a free hydro-
gen atom. Here Wy is the energy, —13.53 volts,
of the ground state of the hydrogen atom. There
are, of course, equations identical in type with
(16) satisfied by the other atomic orbitals, except
that the indices are different. One thus finds that
(14) becomes

W=2Wu+(KxJ)/(1£T?), 17)

where?23

22 For the symmetry properties of spin functions see, for
instance, Sommerfeld, Wellenmechanischer Erginzungs-
band, p. 275, or the chapter on helium in Pauling and
Wilson's forthcoming book.

2 The letters J,K have just the opposite significance with
us than with Slater, reference 50.
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K= f . f YA (1)90(2) (H = 2We)a(1)¥a(2)dvsdvs

¥a(l)?

il

781

(18)

1)%p(1)?
ECHY P L,
712

J= f . f Ua(Us(2) (H—2 W)Y (2)dn(1)dvidos

e?

g

In writing (18) and (19) terms have been com-
bined which are equal in virtue of the symmetry
of the molecule or parity of the electrons. For
instance, the integral given in (13) has the same
value if 2 be substituted for 1. The expression T
defined in (13) has been factored out where
possible.

The expressions K and J defined in (18) and
(19) are usually called, respectively, the Coulomb
and exchange integrals. The word exchange is
employed because electrons have traded places in
¥a(1)¥s(2) as compared with ¥,(2)¢s(1).

Evidently | W—2Wjx| is the bonding energy of
the molecule, since 2Wy is the energy of two iso-
lated hydrogen atoms. To compute this bonding
energy it is, of course, necessary to evaluate the
integrals in (18) and (19). To do this, use is made
of the explicit form

Va(l)=(1/mae®)le-"a1la,

781

(ao="h?/4r%*m) (20)

of the normalized wave function for the ground
state of the hydrogen atom. The integrals can all
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be evaluated in closed form except for the 7y,
term in (19), for which series expansions must be
used.

We illustrate in Fig. 3 the theoretical energy
calculated from (17-18-19) for a system of two
hydrogen atoms as a function of the distance
between them. The discussion of the comparison
of the attractive curve with experiment will be
deferred until section 16. In spite of the fact that
the 32, state is repulsive, it is nevertheless to be
considered as having physical reality. It is used
to explain a certain continuous spectrum emitted
by Hs, due to transitions from an excited triplet
state, not shown in Fig. 3, down to the 32, curve.
Transitions down to this curve would obviously
lead to a dissociation of the molecule, giving rise
to a continuous spectrum.

10. Sign of the exchange integrals

Since the singlet state is computed to have a
lower energy than the triplet, the plus sign choice
in (17) gives a lower value of the energy than
does the minus. Hence the exchange integral (19)
is negative for a system composed of two hydro-
gen atoms. The conventional Heitler-London
theory of valence, in its most elementary or naive
form, is based on the assumption that exchange
integrals have negative signs in practically all
cases, and in the absence of adequate computa-
tions for other molecules, is, in a certain sense,
an extrapolation from hydrogen to the rest of the
periodic table. Of course the fact that the great
bulk of diatomic molecules are diamagnetic is
empirical, but quite definite evidence that singlet
states are usually deepest and exchange integrals
therefore normally negative. In ferromagnetic
materials, by exception, the exchange integrals
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are positive, as the basic idea of Heisenberg's
theory?* is that ferromagnetism arises because
the exchange forces favor the parallel alignment
of spins in ferromagnetic media.

In atoms, in distinction from molecules, the
energy is lowest when the spins are parallel, or
in other words, the exchange integral J is posi-
tive. This is, in fact, the essence of the Hund
rule that the deepest state for a given configura-
tion is that of highest multiplicity consistent with
the Pauli principle.’® That J is positive in atoms
can be seen from Eq. (19), as in atoms one is able
to make a perturbation calculation with wave
functions which are orthogonal, and for which
therefore the expression T defined in (13) van-
ishes. In such a calculation for a monatomic sys-
tem containing two electrons, ¥, and ¥ would
relate to two different states of the same atom,
rather than to different atoms as in our molecular
calculations. Now with 7’=0, all but the 7;; or
last part of (19) disappears, and so J is positive,
as the last integral in (19) is positive. It is only
because of the non-orthogonality, 7540, i.e., be-
cause of the portion of (19) inclosed in parenthe-
ses, that exchange integrals are negative in mo-
lecular examples.

That the complete expression (19) must usually
be negative can be seen by comparison with the
method of molecular orbitals illustrated in Fig. 1.
Usually a triplet state represents additional pro-
motion as compared with the singlet state. For
instance, if we consider the union of two 1s
atoms in Fig. 1, the lowest possible triplet state
involves the configuration 1s2po for the united
atom, whereas there is only a singlet state leading
to the united configuration 1s2, since spins must
be anti-parallel when two electrons are housed in
the same molecule orbital. According to (17) the
excess of energy of the triplet over the singlet
state is

W(Z.) — W(129)=
+1=7)/A-TH-1A+])/A+T?)~=2],

and hence J must be negative if there is even
qualitative agreement with Fig. 1. The same re-

24 W. Heisenberg, Zeits. f. Physik 49, 619 (1928) or Chap.
XII of reference 17.
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sult can also be seen graphically from Fig. 4
which is a contour map of charge density W¥?
computed from Egs. (11) and (20). The contours
near the nucleus are highest, i.e., represent the
greatest charge density, which in general de-
creases as one recedes from the nucleus. Fig. 4
shows that there is more electronic charge den-
sity between the nuclei for the singlet than for
the triplet, and so the nuclei tend to be drawn
together in the singlet case due to the attraction
of the electronic charge in the middle. This is the
reason why the singlet state is stable, and the
triplet state repulsive. At the same time the ap-
preciable electronic charge in the center region
means that the electrons are more often near
each other in the singlet than in the triplet state,
and so if the 7y, effect alone were important, the
triplet rather than singlet would be deepest. That
the 7,2 effect always favors the high multiplicity
is also in general apparent from the fact that in
the triplet state for a two electron system, the
orbital wave function is anti-symmetric and so
has a node when the electrons coincide, thus re-
ducing the influence of the repulsive 712 term.?

Of course there are cases where a two electron
molecular system can have a triplet state with-
out additional promotion. The behavior of the
last two electrons bound in the oxygen molecule
was a case in point, as we saw in section 8. In
such instances J must be positive if the Heitler-
London method is to yield a sensible result, and
so here, were the exchange integrals really evalu-
ated, it would presumably turn out that the part
of J arising from the nonorthogonality fails to
counterbalance the 7;; part.

ATTRACTION(‘ZS)

ReruLsion (JZ\,)

Fic. 4.

# For a more complete analysis and dissection of the
vaauglgs terms of the exchange integral see references 34
an, .
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11. Comparison of the states formed from two hydrogen atoms in the two methods?

At this stage, it is illuminating to compare the wave functions for a system formed by the union
of two hydrogen atoms in their ground states when these functions are computed (a) by the method
of molecular orbitals and (b) by the Heitler-London method. We have seen that with molecular
orbitals, two possible one-electron wave functions y,,, are built upon the ground state of the hydro-
gen atom. These two states are represented by the two lowest curves in Fig. 1, and are given, re-
spectively, by the upper and lower sign choice in Eq. (9) provided one makes the approximation,
adequate for present purposes of qualitative comparison, that the molecular orbital can be repre-
sented as a linear combination of atomic orbitals. Since in all two electrons are available for a system
composed of two hydrogen atoms, the complete wave function must be the product of two molecular
orbitals. There are three possible situations,—(1) both electrons may be housed in the o1s, state,
(2) they may both be in a o.1s state, or (3) there may be one in each. In the third case both a singlet
and triplet are possible, in the other two evidently only a singlet. To form the singlet and triplet
wave functions one must take the symmetric or antisymmetric combinations as regard electron
permutation. Hence the four possible states are

Yno (Z0) =v,(D¥a(2),  ¥mo('Z,)=¢u(1)¢u(2),
Wnmo (1 32,) = (1/\/2)[‘/114(1)\”(2)ﬁ'—“l’u(z)‘pn(l)]

We have indexed each state according to its symmetry when the complete wave function is reflected
in the molecular center. In this process the product of two « or of two g functions exhibits a g be-
havior, while the product of one » and one g is ». There are two !Z, states, and we distinguish the
second of these by a prime.

At this point one is apt to be perplexed by the fact that there are four states in (21), whereas only
two states are found in the usual Heitler-London approximation (11). This is because (11) is a
purely homopolar structure, not ever allowing two electrons on the same atom. To round out the
picture one should remember that another possibility besides (11) is a pure ionic structure wherein
both electrons are always on the same atom. When we take linear combinations to give the proper
u, g symmetry the pure ionic wave functions are

¥ron(*22) = Cl¥a(1)¥a(2) £¥a(1)¥s(2)] (22)

with C as in (13). Such wave functions are, of course, far indeed from physical reality, not only
because the electrons are usually on different atoms, but also because the 7, effect makes the wave
function of H~ quite different from the product of two wave functions for neutral H. By means of
(9), (11), (13), (21) one finds the following relations between the molecular orbital wave functions,
and those of the H-L method enriched by (22):

(21)

Unmo(1Z)=[(1+72)/2(1+ T)*P[¥ar('Z,) + ¥ 10n("Z,) ], (23)
Ymo('Z,)=[(1+7%)/2(1—T)*P[—¥ur('Zy) + ¥ 1on('Z,) ], (24)
Unmo('Zu) =¥ 10on("Zu))  ¥nmo(PZu) = ¥ur(®Z.). ) (25)

The exact agreement in the two last cases could have been predicted, as there is only one possible
13, or 3%, state in either form of approximation. That the ionic terms should be wanting for the
triplet state even in the method of molecular orbitals is to be expected, as only singlet structures are
possible when both electrons are in the same state on the same atom.

The excessive amount of ionic structure in ¥yo('Z,) has already been commented upon in the
introduction. Evidently the best results would be secured by a compromise

V=A[V¥uL('Zy) +c¥10n('Z()] (26)
26 This type of comparison was first suggested by Hund, Zeits. f. Physik 73, 1 (1932).
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between the two methods. According to Slater,?? the constant ¢ has the value 0.13 at the equilib-
rium distance of separation. Weinbaum?8 obtains the slightly different value 0.16, which is perhaps
more accurate. Thus the Heitler-London expression comprises the bulk of the wave function and
the ionic correction is rather small. However, we must note that if we write (26) in the form

¥=B[¥nmo('Zy) +d¥mo(*Z,") ], (26a)
then it turns out that the coefficient d is also small, about 0.13.2° This result is rather startling at
first, and superficially interpreted, gives the impression that the molecular orbital approximation
is as good as the H-L one. The only reason that d is so small is that the normalization factor is much
larger in (24) than in (23), since T is about 0.4. If one omits this factor, i.e., deletes the radicals in
defining the Wy, then the coefficient d is nearly unity. A similar sensitivity to the normalization
does not exist in connection with (26), as the normalization factor is the same in ¥y and ¥on

(cf. Egs. (11) and (22)).

12. The Ritz or variational method3’

This method is based on the fact that the
accurate solution of the Schrédinger equation
for the ground state is that which minimizes
the expression

S S YHYdY, - - -dyy, (27)
provided ¥ is normalized to unity. Also, the
correct value of the energy is an extremum of
(27).

As far as the calculation of bonding energies
is concerned, the beauty of the Ritz method is
that one can make an appreciable error in the
wave functions, and still the error in the energy
may be small, due to the fact that any expression
is insensitive to errors in its argument near its
extremum. Also one can be sure as to the sign
of the error, as with approximate functions the
calculated energy of the ground state is always
greater than it should be.

One can apply the Ritz method in two
fashions, (a) and (b), which are closely allied,
respectively, to the method of molecular orbitals
and to the Heitler-London method. In (a) one
uses for ¥ an expression which is a linear
combination of products of molecular orbitals
(one-electron wave functions), while in (b) one
uses linear combinations of the product of dis-

27 Slater, quoted by Mulliken, Phys. Rev. 41, 70 (1932).

28 S, Weinbaum, J. Chem. Phys. 1, 593 (1933).

29 See Mulliken, reference 27.

30 Courant-Hilbert, Methoden der Mathematischen Physik,
p. 157. We use the terms ‘‘Ritz”’ and ‘‘variational” as
synonymous but originally Ritz varied only coefficients of
a development in orthogonal functions, rather than arbi-
trary parameters, as in the modern quantum uses.

torted or “flexible’” atomic orbitals, each relating
to a different atom so that there are no ionic
terms. The linear combinations must be so
chosen as to give the proper symmetry as regards
electron interchange. The expressions thus tried
will contain certain parameters which are chosen
in such a way as to minimize (27). For instance,
a typical choice of the type (a) for the 1Z, state
of H,, is

V= Ca[ear,u+earm][eamz+emszl (28)

while one of type (b), used by Wang in Hy,® is
W= Cy[ex(rartrB2) f galrartran] (29)

where C,, Cp, are normalization constants and
where a is to be so chosen as to make (27) a
minimum. At finite distances of nuclear separa-
tion the parameter a will not have the value —1/a,
(cf. 20) characteristic of infinite distances of
separation, and so we have spoken above of
distorted in distinction from true atomic orbitals.
Better still one can, of course, use compromise
wave functions such as (26), with ¢ regarded as
a variable parameter of which the optimum
value is selected.? (This is how the previously
given estimates of ¢ were obtained.) Or one can
add to (28) a term involving the argument 7y,
rather than just 741, 742, 781, #82. The inclusion
of such a term can reduce the extent to which
the electrons accumulate at the same position,

3 S, C. Wang, Phys. Rev. 31, 579 (1928).

3 The compromise wave functions give little improve-
ment, however, unless they have a flexible rather than fixed
screening parameter (cf. first and second Weinbaum entries
in our Table I1). When (26) is modified by introducing such
flexibility, the value of ¢ becomes 0.25.
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and so at least partially counteract the excessive ionic tendency of the method of molecular
orbitals. Furthermore, if desired, terms can be inserted which allow for the polarization of one
atom by another. A good example is Rosen’s trial functions®

V= C,[eatrartrB) (1 4 g7, cOS 041) (140782 COS Op2)

+ea(rB1trA2 (1 4+ grp; cOS Op1) (140742 cOS O42) ] (30)

for H,. Here 6, is the angle between 7,; and 7,35,
and o is a variable parameter, found to attain a
value 0.1 for the equilibrium distance, and
decreasing to zero for extreme values of 7,p.
Naturally polarization corrections are not neg-
ligible. Mention of their existence is simply
another language for saying that a development
in terms of atomic orbitals is deficient if we
include only the orbitals belonging to the ground
state rather than also the many excited states
necessary for development in terms of a complete
orthogonal set.

Practically all attempts at quantitative calcu-
lation of heats of dissociation within the last two
or three years are based on the variational
method in some form or other. It is the method
when more than a qualitative procedure is
desired, and it is particularly convenient to have
a scheme based on trial functions because the
loss of the orthogonality in molecular problems
means that systematic perturbation theory is
much more difficult and less satisfying than in
atomic problems.

13. The nightmare of inner shells

In the calculation of the heats of dissociation
of molecules other than hydrogen, it has often
been assumed that the only important forces are
those between valence electrons not in closed
shells. Unfortunately this pleasant state of
affairs is actually not the case, as James* has
shown most conclusively. He disquietingly shows,
for instance, that the nice agreement that
Bartlett and Furry®® found between their calcu-
lated value 1.09 volts of the heat of dissociation
of Li; by the Heitler-London method and the
observed value 1.14 is completely destroyed when
one includes the effect of the 1s electrons. The

3 N. Rosen, Phys. Rev. 38, 2099 (1931).

3 H. M. James, J. Chem. Phys. 2, 794 (1934); Phys.
Rev. 43, 589 (1933).
(1;53{.) H. Bartlett and W. H. Furry, Phys. Rev. 38, 1615

calculated value is then 0.3 volt. Consequently
better wave functions are needed than those in
the Heitler-London method. James finds that
by using a variational method he can increase
the calculated value to 0.7 volt.

The inner shells cause trouble not only because
the forces from them are important but also for
another reason. If one is using the Ritz method
for an excited state, it is essential that the wave
function be orthogonal to all the wave functions
of lower states. Otherwise the computed wave
function tends to become more and more like
that of the lowest state, and the calculated
energy creeps more and more towards that of
the deepest level, so that it has no significance
as the energy of an excited state. Consequently
we cannot use the Ritz method to determine
the wave functions of the valence electrons unless
we are sure that they are orthogonal to all the
wave functions of the inner electrons. This
situation is most unfortunate, as unless great
care is taken it prevents our using the variational
method on a system composed of the valence
electrons alone, moving in some sort of an
assumed field, and some cruder nonvariational
method for the inner shells. One could, of course,
use the variational method with an anti-sym-
metric function (inclusive of spins) for the entire
system of all electrons, but such a procedure is
usually excessively laborious. Much of the litera-
ture on calculations of molecular energies by the
variational method does not take cognizance of
the fact that the wave functions of the excited
states must be orthogonal to those of the inner
shell. Those investigations which neglect the
effect of inner shells are indicated by an X in
Table III of section 16.

A procedure for avoiding the inner shell troubles has

been proposed by Hellmann.3¢ On the basis of an argument
involving the Thomas-Fermi statistical method of treating

% H. Hellmann, J. Chem. Phys. 3, 61 (1935); Acta
Physicochimica U. R. S. S. 1, 913 (1935).
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systems of many particles he suggests that the effect of
the inner shells might be obtained by replacing them by
a potential field which contains not only the usual electro-
static terms, but also a term designed to replace the ex-
change effects. Then the energy of a one-quantum orbit
in this effective potential field would be the energy of the
lowest quantum orbit not included in completed shells
(e.g., in sodium a 1s state in Hellmann’s potential field
would correspond to the real 3s state). Since the Fermi-
Thomas treatment gives in the case of the most favorable
alkali atom, caesium, a result which is not entirely satis-
factory, he proposes to find the best equivalent field by
an empirical method based on observations of the atomic
spectrum. Then by using this field the problem of finding
the binding energy of the lowest state of Cs,, for example,
is reduced to that of finding the energy of a definite two-
electron system. The present theoretical background for
this procedure is not at all convincing, and the empirical
evidence as to its value is still inadequate.

14. Interaction operators

Heats of dissociation are differential effects,
i.e., energy differences between combined and
separated atoms. For this reason they are
difficult to compute accurately, and so the tables
in section 16 should be viewed charitably. To
make agreement between theory and experiment
impressive, one should document the observed
and calculated values of the energy required to
blow a molecule to pieces into separated electrons
and nuclei at infinity. On this basis, for instance,
the observed energy of the hydrogen molecule
becomes 31.80 volts, while the computed value
for the Heitler-London method becomes 30.2
volts and James and Coolidge’s result 31.77
instead of the values uniformly 27.07 volts
smaller recorded on the differential or dissocia-
tion basis in section 16. However, the latter is
what is of physical interest.

When we come to molecules formed out of
other atoms than hydrogen, there is the obvious
difficulty that the assumed atomic orbitals used
in the actual variational procedures are not
solutions of the dynamical problem for the
separated atom, since only in hydrogen and
helium are good wave functions available. The
question immediately arises whether one should
subtract the calculated or the actual energies of
the separated atoms in order to make the fairest
appraisal of what the calculation has done. In
practise, one often uses a rather rough procedure
in place even of either alternative. One often
assumes in the Heitler-London method that the
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binding energy can be obtained by integrating
in (14) over an ‘‘interaction’” operator H which
is only part of the complete Hamiltonian func-
tion. This interaction operator vanishes at in-
finite separation of the atoms, and so (14) is then
assumed to give the heat of dissociation directly.
For instance, one might try to obtain the heat
of dissociation of' say Li, regarded as a two
electron system, by using (17-18-19) with
—e?/ra1, etc., replaced by a potential V which is
assumed to represent the effect of a nucleus
screened by the K shell. The difficulty with this
procedure is not merely that the Li; molecule
cannot be treated as a two electron system, as
we saw in section 13, but there is further trouble
because of the fact that the assumed wave func-
tions probably do not reduce at infinite separa-
tion to solutions of (16) (with of course V(rs1)
substituted for —e?/r,;). For further analysis of
the difficulty arising from this cause the reader is
referred to an article by James.?* He shows that
sometimes the approximation made in using
interaction operators is so crude that the calcu-
lated heats of dissociation are rather meaningless.
Computations open to this objection are labelled
I in Table III, section 16. When a more
accurate calculation is made, the purported
agreement with experiment is usually lost,
almost suggesting a theorem that in most so-
called calculations of heats of dissociation,
doubtless influenced by the answer to be desired,
the nice agreement achieved at the nth approxi-
mation is usually lost at the #+ 1th stage!

15. Molecules with an odd number of electrons®

In odd molecules there is always one electron
which has no partner in any scheme of electron
pairing. The influence of this unmated electron
in holding the molecule together is usually
spoken of as a ‘‘one electron bond.”%® The
method of molecular orbitals is at its best in the
treatment of one-electron bonds, since these
depend for their stability on the approximate
symmetry of the potential field with respect to
the atoms concerned. Even when the interaction
of the bonding electron with all other electrons
is considered there is no tendency for it to favor
a particular atom and it may be regarded as

37 Sections 15 and 16 have been written by Dr. H. M.

James.
3 Cf, Pauling, J. Am. Chem. Soc. 53, 3225 (1931).
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flitting continually from one atom to another.
The flitting effect, expressed analytically in the
so-called resonance integral /.f./ "y (1)Hyp(1)dv,
is the major feature of the so-called ‘‘one electron
bond.” The Heitler-London method thus loses
its advantages over the molecular orbital
method ; in fact, the crudest form of molecular
orbital function may be identical with the
approximate Heitler-London function,

The molecule Hy* gives us the example par
excellence of the one-electron bond. In this case
the complete program of the molecular orbital
method can be carried through, and the energy
may be determined with any desired precision.
Complete agreement with the rather indirect
determinations of the spectroscopist are thus
obtained. The variational method has also been
used in a number of attacks on this problem
which have yielded surprisingly good results.
Finkelstein and Horowitz?® find, with the func-
tion A(e~2"A4-¢~2"B), a binding energy too small
by only a fifth and an essentially correct equi-
librium distance. Results accurate to less than
0.01 e.v. are found by Guillemin and Zener,*
using the function Ae~**(e~B#+-¢f*), and by
James,* using Ae~**(1+4Bu2---). Here X\ and p
are the elliptical coordinates

A= (7a+78)/7an, (31)

One may hope that these approximate molecular
orbitals will prove to be useful in more complex
problems.

James* has treated Li;* (not yet observed) in
a similar manner, representing the inner shells
by atomic orbitals, the binding electron by
e 2, ,.CrnaA™u. He finds that the one-electron
bond in Liy* is stronger than the two-electron
bond in Liz, contrary to the usual assumption as
to their relative strengths. The molecular orbital
constructed as a sum of atomic orbitals, on the
other hand, gives a binding which is only 1/5
that obtained by the more powerful method.
This crudest form of the molecular orbital is

= (ra—178)/74p.

39 B. N. Finkelstein and G. E. Horowitz, Zeits. f. Physik
48, 118 (1928).

40V, Guillemin and C. Zener, Proc. Nat. Acad. Sci. 15,
314 (1928).

4 H. M. James, J. Chem. Phys. 3, 9 (1935).

42 For further references on Hy* see Hylleraas, Zeits. f.
Physik 71, 741 (1931); an interesting general article has
been written by Pauling, Chem. Rev. 5, 173 (1928).
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thus of dubious value for quantitative con-
siderations.

A closely related molecule, He,*, in which
three electrons are actively engaged in the
binding, has been considered by Pauling and by
Weinbaum.*3

16. Comparison with experiment for molecules
with an even number of electrons®

The relative merits of the various methods of
treating even molecules are best illustrated in the
case of H,. Here the simplicity of the problem
has made convenient a large variety of attacks,
and has made it possible to avoid the doubtful
approximations which are so disturbing else-
where. The results of nine computations on the
ground state of this molecule are included in
Table II. Comparisons are made throughout in
terms of the maximum binding energy (i.e.,
binding energy for a hypothetical molecule
without the actually unavoidable half-quantum
of vibrational energy). The maximum binding
energy differs from the dissociation energy by
the zero-point vibration energy. This distinction
has been ignored in some of the work on this
subject, with the result that too favorable
comparisons with experiment have been made.
All the calculations in Table II except Sugiura’s
use the variational method in some form or
other. In a few cases the vibration frequency has
been computed; this is a difficult quantity to
calculate theoretically as it involves the determi-
nation of the curvature of the potential curve at
its minimum.

The binding energy given by the H-L method,
too small by a third, is the poorest of the values
given. As suggested in section 11, however, this
is distinctly better than the crudest form of the
method of molecular orbitals can do. The
excessive equilibrium separation of the nuclei,
as given in this computation, seems to be
characteristic of the H-L method. Indeed, one
must expect this, in view of fact that the virtues
of the method lose significance as the nuclei

43 L, Pauling, J. Chem. Phys. 1, 56 (1933). Calculations
by Pauling’s student, Dr. Weinbaum, which will appear
shortly in J. Chem. Phys. will not assume the same screen-
ing constant for all three electrons and so are more rigorous
than previous efforts. Weinbaum obtains a heat of dissocia-
tion of 2.2 volts, in good agreement with the experimental
value 2.5. An early paper on He,™ was written by Majorana,
Nuovo Cimento, 8, No. 1 (1930).
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TaBLE I1. Treatments of the ground state of Hs.

MAXIMUM BINDING EQUILIBRIUM VIBRATION
ENERGY SEPARATION FREQUENCY
Heitler-London; done by Sugiura® (Eq. 11) 3.13e.v. 0.87A 4.8X 103 cm™
Molecular Orbltals Hylleraas* 3.6 .70
Heitler-London with variable shxeldmg, Wang® (Eq. 29) 3.77 73 4.9
Wang+ Polarization; Rosen® (Eq. 3| 4.02 74 4.26
Heitler-London +Ionic Term; Wembaum*‘i (Eq. 26) 3.21 90
Wang+Ionic; Weinbaum?? 4.00 74 4.75
Wang +Ionic+ Polarization; Weinbaum 28 4.10 —
James and Coolidge,* no 72 (Eq. 32) 4.27 —
{‘:ames and Coolidge,*® with 7,2 4.70 74
xperiment 4.725+.01 74 4.38

approach; the rigidity of the wave function
results in a rapidly increasing error in the
computed energy, so that the integral (14) and
hence the computed potential curve are too high
at small distances. Accordingly, when a ‘‘Heitler-
London” computation yields too small an equi-
librium separation the auxiliary approximations
must be questionable. (Compare, for instance,
the results in the alkali metal molecules, which
will be discussed later.)

Conversely, since the method of molecular
orbitals is in error by an amount which increases
as the nuclei are separated, the computed energy
is too high at large separations and the equi-
librium distance found from such computations
may safely be considered a lower limit to the
actual value. This is well illustrated by a result
of Hylleraas,* who constructed his wave function
from molecular orbitals which were solutions of
the Hyt problem and of the related problem with
nuclear charges je. Essentially his assumption
was that one of the electrons would go into the
lowest state of Hpt, the second moving in the
field of the nuclei half shielded by the first.
This gives a distinct improvement over the
cruder forms of the method, in which the same
orbital is used for both electrons. He thus found
an equilibrium distance too small by 6 percent,
associated with a distinctly better binding energy
than that obtained by the Heitler and London
method.

The other computations represented in the
table use the variational principle, but differ
markedly in the method of approach. We con-

s E, A. Hylleraas, Zeits. f. Physik 71, 741 (1931).

4 Y, Sugiura, Zeits. f. Physik 45, 484 (1927).

46 H, M. James and A. S. oohdge J. Chem. Phys. 1, 825
(1933).

sider first those using orbitals of atomic type.
Wang made the Heitler-London function flexible
by introducing the variable parameter « in the
fashion (29). The best value of o was found to
correspond to an effective nuclear charge Z=1.16
for the equilibrium distance. The error in the
binding energy was thus reduced by 40 percent.
Rosen has amplified Wang's treatment by using
wave functions of the form (30) and thus
introducing into the atomic orbitals a term
intended to represent the polarization due to the
neighboring atom. Finally, Weinbaum?® has
further extended this method of attack by adding
ionic terms to the Wang and Rosen functions.
A quite different form

V= Emﬂi,‘cmm.ke—a(h-”‘z)

XM Ne uriue® M "NeurFue?)  (32)
for the function to be varied has been used by
James and Coolidge.*® Here A, p are elliptical
coordinates defined as in (31). It is to be noted
that such a function can be constructed from
molecular orbitals in the usual manner only if
certain relations exist between the Cpajx. The
greater flexibility of these functions corresponds
to the abandonment of the self-consistent field
approximation, and makes it possible to obtain
the advantages of the Heitler-London method
without sacrifice of the virtues of .the molecular
orbitals. For instance, the function e=2*(1 — cuyuz)
is large when the electrons are near different
nuclei (the u's have different signs) and small
when they are near the same nucleus. By adjust-
ment of the constant ¢ one can strike the happy
medium between the two extreme methods.
With a single term from (32), viz. e~*®itM),
it is possible to obtain results comparable to
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TaBLe II1.4

MAXIMUM BINDING ENERGY

EQUILIBRIUM SEPARATION

COMPUTED BSERVED COMPUTED OBSERVED

Li: Heitler-London,® I, X. 1.0%.v 1.14e.v. 24 A 2.67A

Heitler-London® [ .33 3.07

Heitler-London® .28 3.18

Variational* .62 —
LiH Heitler-London*” [, X 2.30 2.56 1.44 1.6
Na, Heitler-London*8 [,X .81 .76 2.83 3.08
K. Heitler-London* I,X 55 51 4.18 3.91

Semi-empirical,’® with H-L method .19 4.0
KH Semi-empirical,3 with H-L and Ionic terms .8 2.06 2.0

X denotes neglect of inner shells (cf. section 13); I signifies use of interaction operator (section 14).

those of the Heitler-London method. With a
much more complicated function James and
Coolidge have obtained a binding energy of
4.27 e.v., and there is reason to believe that this
is about the best that can be done with a function
of this form. The approximation inherent in this
method, as well as all others we have mentioned,
is that the trial wave functions depend on only
four coordinates, while the energy, and hence the
correct wave function, must contain five. None
of these functions has depended directly on 7y,
though the importance of the electronic inter-
action makes it clear that they should. This
does not mean, of course, that the character of
these wave functions was not affected in an
important manner by the presence of the term
e?/re in the energy. Each of the functions takes
account of the electronic repulsion in its own
way—the molecular orbital method (in the more
accurate forms) by tending to prevent large
accumulations of charge anywhere, the Heitler-
London method by tending to keep the electrons
near different nuclei, the function (32) by doing
both. What all these functions fail to do is to
take account of the effects of the electronic
repulsion in a defatled manner, rather than an
averaged one. In order to eliminate this remain-
ing error James and Coolidge have finally added
712 terms by regarding the coefficients C in (32)
as polynomials in 7y.

Other Molecules. In the study of more compli-
cated molecules only the Heitler-London method
and its simplest derivatives have found extensive
application. A considerable portion of this work
has been concerned with excited or ionized states
of the molecules, and so does not concern us here.
The only results, however, which might lead one

to be optimistic concerning the possibility of
accurate predictions in this field are concerned
with one-electron bonds (section 15), and with
the basic states of molecules homologous to H,
—Li;, LiH, Na,, etc. Results on the latter
molecules are summarized in Table III. The
most impressive of these, it will be noted, are
characterized by the presence of approximations
which reduce the problem to a H,-like one,
except that instead of hydrogenic wave functions
for the electronic orbitals, there were used
orbitals supposed to represent the valence elec-
trons of the respective atoms. The choice of such
orbitals is highly arbitrary, but in these investi-
gations the simplest orbital to use turns out to
give remarkably good results. Apparently, how-
ever, because of difficulties mentioned in sections
13 and 14, we must ascribe the satisfactory
character of these results to a good fortune, as
to the continuance of which we can obtain no
assurance.

An attempt to improve these results by a
straightforward variational treatment involves
one in serious computational difficulties. The
most obvious improvement would involve the
use of a function of the sort indicated in (32) to
describe the valence electrons, while the inner
shells are introduced by means of simple atomic
orbitals. The molecular energy thus computed

47 E. Hutchisson and M. Muskat, Phys. Rev. 40, 340
(1932). Calculations on LiH by the variational method,
inclusive of inner shells, will be published shortly by J.
Knipp. His computed heat of dissociation differs from the
observed by a little less than a volt.

48 N. Rosen and S. Ikehara, Phys. Rev. 43, 5 (1933); N.
Rosen, Phys. Rev. 38, 255 (1931).

49 Additional calculations on the ground states of diatomic
molecules include Gentile, Zeits. f. Physik 63, 795 (1930)
(He H, He,); Furry and Bartlett, Phys. Rev. 39, 210 (1932)
(Bez); C. Ireland, Phys. Rev. 43, 329 (1933) (BeH).
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would then be compared with the energy of the
separated atoms, computed with the same inner
shell functions, to determine the binding energy.
James has found that with Li; such a procedure
gives a binding energy some 0.5 e.v. too low;
the omission of 75, terms here thus introduces
approximately the same error as in H,. The
difficulties involved in the introduction of these
terms, due to the presence of other electrons,
seem to be an effective check to further im-
provements in the calculations. In principle,
then, we appear to have a way in which to treat
diatomic molecules with any desired precision.
Unfortunately, the limits of human patience
restrict the usefulness of the complete method.

CHAPTER III. PoLyATOMIC MOLECULES TREATED
BY THE HEITLER-LONDON-PAULING-
SLATER METHOD

We shall now turn to molecules composed
of more than two atoms, and shall, for the
present, employ entirely homopolar approxima-
tions of essentially the Heitler-London type,
deferring the method of molecular orbitals until
Chapter IV. We do this mainly because much of
the literature has been dominated by the homo-
polar approach, and the two methods are not as
easily handled simultaneously as in the diatomic
case. To be sure, we have seen in Chapter II
that the Heitler-London method was somewhat
of a disappointment from a quantitative stand-
point in diatomic molecules. However, there are
features of interest even in a qualitative theory
when we come to complicated molecules, as
there are all the various general questions of the
spatial arrangement of the atoms, bond struc-
tures, modes of vibration, etc. Hence information
of value can be obtained even though the
quantitative accuracy may not be sufficient to
permit reliable calculations of heats of dissocia-
tion which, as we have emphasized in section 14,
are sensitive differential effects.

17. The Dirac vector model

If the complete wave function is expressible
as a product of individual wave functions, then

=y1(1)Y2(2)¥s(3)  + - ¥a(n), (33)
where in the Heitler-London method the ¢¥'s
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must be taken to be atomic rather than molecular
orbitals. Here and elsewhere ¢,(1) is an abbrevia-
tion for ¥1(x1, y1, 21), etc. However, along with
(33), owing to the fact that one electron is
indistinguishable from another, there are obvi-
ously n!—1 other products which are equally
good and which differ from (33) only in that the
arguments of the various ¥'s have been per-
muted, or in other words, the electrons inter-
changed. For instance, instead of (33) an equally
good product is ¥1(2)¥a(3)y¥s(1): - -¢.(n). The
question immediately arises as to what are the
proper linear combinations of the #! products to
use. The situation is far more complicated than
in a two electron system, where there are only
two rather than #! products, and where one is
led immediately to the symmetric or anti-
symmetric combinations (11). There are three
ways of answering this question.

(a) One procedure is to use group theory with-
out including spin factors in the ¥’s, so that we
deal entirely with orbital wave functions. How-
ever, the technique of the permutation group is
complicated, and more general than needed for
practical purposes because the Pauli principle
must be satisfied after addition of the spin. In
the language of group theory, many ‘‘characters”
for the orbital permutation group are not com-
patible with the Pauli principle, i.e., are not
capable of extension into an antisymmetric
representation when spin as well as orbital
arguments are permuted. Thus the character
theory is too general. Hence it is simpler to
include the spin at the outset. This is the essence
of

(b) Slater’s method.® This utilizes the fact
that if spin factors are already included in the
¥'s, only the antisymmetric combination of the
various products should be used. This is an
excellent method and furnishes a straightforward
way of making perturbation calculations. We
pass over it rather lightly, partly because it is so
frequently described in the literature, and partly
because we do not pretend to enter on any
detailed calculations. A particular form of
Slater’s method commonly employed in chemical
problems is the so-called method of bond eigen-

0 J, C. Slater, Phys. Rev. 34, 1293 (1929), cf. also M.
Born, Zeits. f. Physik 54, 729; 65 718 (1930).
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functions.® A third procedure is that furnished
by

(c) The vector model. This is the method
which we shall employ, as it is particularly
“‘anschaulich,” and enables one to visualize the
various bonding situations in terms of spin
alignment.

We saw in section 9 that the exchange energy,
i.e., the part of the energy involving the exchange
integral J defined in (19), depended on the
way the spin was aligned. In this respect it
differed from the “Coulomb’ energy. Namely,
if we neglect products of the order JT, the
exchange energy was —J when the spins were
parallel, and +J when they were anti-parallel.
The answer was thus similar to that which would
be obtained were there a large amount of spin-
spin coupling. Actually, the only forces between
spins are magnetic forces which are exceedingly
small, and the only reason that the spin figures
in the answer is that the constraints imposed by
the Pauli principle correlate different spin align-
ments with different electrostatic exchange ener-
gies. Thus the spin is only an “indicator,” and
the physical situation is different than in the old
theories of Parsons, Lewis and others, where
magnetic forces between spins or magnetons
were held responsible for chemical bonds. How-
ever, the formal results are in a certain sense
rather similar.

The query immediately arises as to whether
this correlation of spin alignment with exchange
energy carries over to systems of more than two
electrons. The answer is in the affirmative, as
Dirac has shown,’ but the mathematical proof
will be deferred until the appendix. It will there
be shown that the solution of the problem of the
exchange or permutation degeneracy, subject to
the constraints of Pauli principle, is formally
equivalent to solution of a problem in spin-spin
coupling with the Hamiltonian function

H=Q—-%Z,»>i(1+4s,~-s,«)./,-,'. (34)

% G, E. Kimball and H. Eyring, J. Am. Chem. Soc. 54,
3876 (1932); L. Pauling, J. Chem. Phys. 1, 280 (1933);
Eyring and Kimball, J. Chem. Phys. 1, 239, 626 (1933);
Eyring and Sun, J. Chem. Phys. 2, 299 (1934); Bear and
Eyring, J. Chem. Phys. 3, 98 (1935); Eyring and Gershino-
witz, J. Chem. Phys. 3, 224 (1935); G. W. Wheland, J.
Chem. Phys. 3, 230 (1935).

2P, A. M. Dirac, Proc. Roy. Soc. A123, 714 (1929); cf.
also applications of J. H. Van Vleck, Phys. Rev. 45, 405
and R. Serber, Phys. Rev. 45, 461 (1934).
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Here s;-s; denotes the scalar product of the spin
s; of the electron in orbit ¢ and that s; of the
electron in orbit j. Angular momentum is
throughout to be measured in multiples of 4/2,
and J;; is the exchange integral5?

o= f o [UOR@R O @ddn, G5)

connecting states ¢ and j. The additive constant
Q in (34) is the “Coulomb’” energy. The expres-
sions s;, s; appearing in (34) are really vector
matrices, and they will be discussed more com-
pletely in the appendix. For the present purposes
of qualitative discussion, no particular harm will
be done, if they are regarded as ordinary alge-
braic vectors by readers not familiar with
angular momentum matrices.

In (34) we have supposed that no two electrons
describe the same orbit. Such electrons we shall
say inhabit ‘free” orbitals. In addition there
may be what we shall term “filled orbitals”
which occur twice and so have the full quota 2
of electrons allowed them by the Pauli principle.
We shall use Greek letters for filled orbitals. We
obviously do not have exchange energy con-
necting two identical filled orbitals, as one must
not talk of a trade of places when the places are
the same, and all the necessary energy has
already been included in the Coulomb portion.
There is, however, exchange energy connecting
members of different filled orbitals or connecting
filled orbitals with free ones. This part of the
energy has the value

—'%Ei.ujl'n—%zbujpv (36)
and should be added to (34). Then Q in (34) is
to be understood to denote the Coulomb energy
of the entire system, including both free and
filled orbitals.

To see that (36) is the proper value for the part of the
exchange energy involving filled states let sy, s, be the
two spins associated with a given pair of filled orbitals
u, #" and s; be any other spin, which may be associated
with either a free or filled orbital. Then the exchange energy
connecting u, p’ with j is

% The reason that the term —2Wy appears in the inte-
grand of (19) but not in (35) is simply that a different
origin for the energy has been used in the two cases.
Unfortunately the exchange integral is not invariant of the
origin when the wave functions are not orthogonal.
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—3iu(1+4s;-8,) — 3T (1 +4s;-54)

=—Jiu[14+2s; (su+su) 1= —Tiu, 37)
since Jjy=Jj, in virtue of the identity of u and ' and
since su+s,-=0 inasmuch as the Pauli principle requires
zero spin for two particles in the same orbital. The factor }
enters in (36) since we have included both the filled obritals
in (37), so that (37) comprises the results of two terms in
a sum such as (36).

We are now in a position to enumerate how
many states of a given spin can arise from a
system involving n free orbitals. There can in
addition be any number of filled orbitals as they
do not affect the multiplicity. We first note that
if Si, Sz be two spin (or more generally, angular
momentum) quantum numbers, the spin quan-
tum number Si;» associated with the resultant
of the two parts 1, 2 can have the values

Sipe=[S1— S|, | S1—S:| +1, -'-,'51+Sz. (38)

The two extremes correspond classically to the
vectors being parallel and anti-parallel. Of course
if parts 1 and 2 are each one electron, then
S1=S,=% and the resultant can only be 0 or 1.
However, the parts compounded may already
be the resultant contribution of several electrons.
For instance, if a third electron is added, then
we must compound % with 0 or 1 thus obtaining
for the resultant of all three the values 3 (twice)
and 3/2. In this fashion one obtains the ‘‘branch-
ing diagram’ given in Fig. 5, which is more or
less self-explanatory. It shows that the permu-
tation problem for a system of six electrons is
such that there are 5 states with spin quantum
number S=0, nine with S=1, five with S=2
and one with S=3. An analytical formula

=()-() s

is available for the number of states N in the
general case, but the branching diagram is more
instructive. It will be noted that the number of
states, after summing over S is still considerably
less than the number 7! of possible permutations.
For instance with 4 electrons, there are by Fig. 5
only six states in all whereas 4!=24. This is
mainly because the Pauli principle limits the
number of possible combinations, as already
mentioned on p. 190. In the perturbation prob-
lems connected with the lifting of the exchange
degeneracy, the' secular equation is readily
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factored according to the value of the spin S.
Thus in a system with eight electrons available
for bonding and with zero total spin, one is
confronted with a secular equation of degree 14,
as one sees by extending Fig. 5 or using (39).
Further factorization is possible if the molecule
has elements of symmetry. Thus methane, which
is a system involving eight valence electrons,
the equation of 14 splits into factors all of degree
3 or lower because of the tetrahedral symmetry.
The factorization is achieved by means of group
theory, and for an account of how it is down,
the reader is referred to the original articles.%

18. Troubles with higher order permutations and
nonorthogonality

It is to be emphasized that (34) is not a
rigorous formula even were the Heitler-London
method adequate. Namely (34) neglects non-
orthogonality in certain places, though not in
others. It is the generalization to the # electron
problem of replacing the denominator 172 by 1
in (17). Here T denotes the overlap or non-
orthogonality integral, as in (13). Use of (34)
does not require that 7’=0 in (19). It would be
a much worse approximation to set =0 in (19)
than in (17), since we have seen in section 10,
that without the terms involving T the expres-
sion (19) would have the wrong sign. Thus the
denominator effect of 7" in (17) is one of higher
order. Eq. (34) also neglects higher order per-

% Eyring, Frost and Turkevich, J. Chem. Phys. 1, 777
(1933); F. Seitz and A. Sherman, J. Chem. Phys. 2, 11
(1934); A. E. Stearn, C. H. Lindsley and H. Eyring, J.
Chem. Phys. 2, 410 (1934); R. Serber, J. Chem. Phys. 2,
697 (1934).
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mutations, i.e., assumes that /*- - /"W H¥dy, - - dv;
if ¥ and ¥ are products analogous to (33)
which differ from each other by more than a
simple permutation. The neglect of these inte-
grals involving higher order permutations is
closely related to the neglect of nonorthogonality.
Since no term in H contains the coordinates of
more than two electrons such integrals always
involve T as a factor and so would vanish were
there complete orthogonality.

The approximations mentioned in the pre-
ceding paragraph would be warranted were the
inter-nuclear distance very large, but the trouble
is that (34), or equivalent formulas in the Slater
method, are actually used at distances for which
the approximation is not a good one. For
instance, the value of T at the equilibrium dis-
tance in Hs is 0.42, and so T is not negligible in
comparison with unity. This point has been
stressed particularly by Coolidge and James.%®
who show that Eyring’s calculations of the
activation energy for the process H+H,—H;+H
are radically changed when corrections are made
for higher-order permutations and nonorthogo-
nality. However, good qualitative results are
obtained from (34), and the quantitative agree-
ment with experiment is better than one would
expect. Because ionic effects are not negligible,
the Heitler-London approximation is not .an
accurate one even when one takes higher order
permutations and nonorthogonality into account,
and it is quite conceivable the computed energies
are not improved when these factors are con-
sidered. Empirically, this seems to be the case,
and of course in any case Eq. (34) should give
the qualitative trend of the energy with di-
rectional arrangement when the latter is varied,
thereby changing the J;;.

It should not be inferred that the troubles
with nonorthogonality and higher order permu-
tations are peculiar to the vector model. Similar
approximations are usually made with the Slater
method, as without them the calculations either
become excessively laborious, if the integrals are
really reckoned out, or involve too many
undetermined constants to be significant, if the
integrals are regarded as parameters to be evalu-

8 A. S. Coolidge and H. M. James, J. Chem. Phys. 2,
811 (1934).
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ated by comparison with experiment. Unless
otherwise stated, it will be supposed that all
calculations quoted in the present chapter do
not include the effect of nonorthogonality and
higher order permutations, so that we do not
need to allude again to this omission.

Inglis® gives a calculation which apparently
shows that in a system composed of # electrons,
the error factor due to nonorthogonality is of the
order (1—%nT?) rather than 1—7? as in (17)
for a two electron system. In this event, Heisen-
berg’s calculations on ferromagnetism would be
devoid of all meaning, as here # is an enormous
number, viz. the number of electrons in the
micro-crystal. However, as one of us will show
elsewhere, there is a counterbalancing correction
from the higher order permutations, so that the
error factor is probably always of the order 1 — T
rather than 1 —3inT2

19. Electron pair bonds

The extreme values which can be assumed by
any given term in (34) are +J;;, —J;;. This
result is fairly apparent from examination of the
two electron problem (cf. Eq. (17) with 7'=0)
and is also proved in the appendix, where it is
shown that the eigen-values of —3}(1-+4s;-s;)
are +1. The two extremes +J;;, —J;; corre-
spond to the spins being respectively anti-parallel
and parallel. Since the exchange integrals are
usually negative (cf. section 10), the extreme
+J;j is the desirable state of lowest energy. An
electron pair bond may be described as two
electrons in different atoms whose spins are anti-
parallel, so that their resultant is zero, and the
corresponding exchange term —3$(144s;-s;)J:;
has its extreme value J;;. It is impossible for all
terms to realize their minimum values simultane-
ously, as not all of the spin vectors can be
mutually anti-parallel at once. It is obviously
desirable to minimize the large terms in (34)
even at the expense of unfavorable values for the
small terms. This is the state of affairs envisaged
in what may be called the approximation of
electron pair bonds. Electrons may be paired
for either of two reasons: (a) they may be
electrons of the same atom in identical orbits,
in which case the Pauli principle requires their

% D, R. Inglis, Phys. Rev. 46, 135 (1934).
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resultant spin to be zero, or (b) the exchange or
apparent spin-spin coupling between them may
be much larger than the corresponding coupling
of either of the two with other spins, so that the
two are determined to be partners at all costs.
Usually electron-pair bonds are achieved in
virtue of directional valence, to be discussed in
section 22, wherein individual wave functions
project out in particular directions from the
central atom, and so have an especial affinity
for the particular attached atom which is located
along this direction. It is to be understood that
any electron already paired because of (a) is
unable to participate in any pairing of the type
(b) of the chemical bond type. For instance, an
atom in a configuration 2s22p? is unable to form
more than two electron-pair bonds with outside
atoms because the two 2s electrons are already
paired with each other because of (a). On the
other hand, the Pauli principle (effect a) does
not require that the two 2p electrons be paired
with each other, as the spatial quantum number
(Greek letter) may be different for the two
electrons, so that each 2p electron is able to
form an electron-pair bond of the form (b).

Of course, electron-pairing often may not be
a good assumption since the molecular arrange-
ment may be such that there are not any
naturally designated couples (e.g., four mono-
valent atoms at the corners of a square, or six
monovalent atoms forming a regular plane
hexagon, or eight such atoms at cube corners).
However, when electron-pairing is a good ap-
proximation the expression for the exchange
energy takes a particularly simple form, being
a linear function of the various exchange inte-
grals. Let us denote by 1, 7 two electrons which
are paired, and let J;; be the exchange integral
connecting two electrons 7, j. Then the exchange
energy is

W=Zus:iJir —3Zi>iG%in T ir- (40)
Do not confuse the Hamiltonian (34) which is a
matrix, and the energy value (40), which is a
number and is an approximation to the lowest
eigenvalue of (34) (with Q=0) if the assumption
of electron pairing is nearly correct. We shall call
the coefficients of the exchange integrals in the
expression for the energy the ‘‘exchange coeffi-
cients.” We see according to (40) that within a
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pair the exchange coefficient is +1, while it is —%
between two electrons not belonging to the same pair.

To prove that the exchange coefficient is —3} for two
electrons not in the same pair we have to show that in
—3(144s;-s;) the term s;-s; effectively vanishes if s; is
paired to a spin other than s;. Let s;» be the partner of s;
in the spin pairing. Then on the average only the com-
ponent of s; parallel to s;+si: is effective as s;, sir
precess around their resultant s;+s;.. Furthermore this
component is }(s;+si/) inasmuch as s; and s;s are equal
in absolute magnitude. Hence

=G =0

since s;+s;-=0. This derivation involves retention of only
the average value, i.e., of the diagonal matrix element in
a system of representation in which s;+s;. is diagonal.
This is allowable only if electron pairing is a good approxi-
mation, and for this reason (40) is not an exact expression.
However, all our discussion will be based, at least im-
plicitly, on formula (40), unless otherwise stated, until we
come to section 27,

Since the exchange integrals are assumed
negative in the Heitler-London theory, the
exchange energy will be positive for transposi-
tions involving electrons already paired with
other atoms, inasmuch as their exchange coeffi-
cients in (40) are —3. Hence already paired
electrons tend to repel other electrons.

We may illustrate (40) by the case of CH..
As we will later see, there are four tetrahedral
carbon wave functions which project out towards
the four hydrogen atoms. Let Jgm be the
exchange integral connecting a tetrahedral wave
function and the nearest H atom, and let Jeu'
be the integral connecting it with any of the
other H atoms, which are equidistant in virtue
of the tetrahedral symmetry. Let Juu be the
exchange integral connecting two hydrogen
atoms, and let Joc be that between the tetra-
hedral orbitals of carbon. Then, according to
(40), on counting the number of exchanges of
various types, we have

W=4Jou—12X3Jcn’ —6 X5 un—6X35Jcc. (41)

Since Jyy is negative and has a minus coefficient
in (41), we see that the exchange energy con-
necting the H atoms is repulsive.

Very generally, according to (40), “‘corner’
atoms attached by bonds to a central atom will

57 This retention of only average values is analogous to
that in the well-known calculation of the Landé g-factor;
cf. p. 68 of reference 11.
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tend to repel each other, as presumably exchange
integrals decrease in absolute magnitude with
increasing separation, making
—%a];;/an,-<0 if "‘%J.‘j>0.

Repulsions due to this cause are subordinate to
the effects of true directional valence as we shall
see later. However these exchange repulsions
between distant atoms may be connected with
the fact that dielectric constant measurements
show us that there is not completely free rotation
in a molecule such as C;Hg. Since the C—C bond
is here only a single one, the effects of directional
valence do not interfere with the rotation of
either Hj group about the C—C axis, and so the
“exchange repulsions” between the two H;
groups may be the main cause hindering the
rotation.’® The energy will be lowest when the
azimuthal angles of one group of H atoms differ
by 60° from those of the other set of H atoms.
One should not expect this exchange repulsion
to be large, inasmuch as the two sets of hydrogen
atoms are so far removed from each other.
Indeed the potential hills interfering with free
rotation are known experimentally to be small,
amounting to about 0.015 volt.5% 80

20. The valence state of the carbon atom

The carbon atom is known from spectroscopic
data to be normally in the state 2s22p%3P. As
we have already seen, it is then only able to
form two bonds. To form four bonds it is
necessary to excite the atom to the configuration
sp®. Since there are three types of p wave
functions (viz. po, pmry, pr_) there are no con-
straints on the electrons in an sp?® configuration
because of electron-pairing of type (a). Until
recently it was thought that such an excitation
required only about 1.7 volts,®! and clearly the
carbon atom is willing to sacrifice this much
internal energy in order to form two additional
bonds, each of which involve an energy increment
of 4 or 5 volts or so. However, the actual energy

58 H. Eyring, J. Am. Chem. Soc. 54, 3201 (1932).

% A. Eucken and K. Weigert, Zeits. f. physik. Chemie
B23, 265 (1933).

60 In CyHy, on the other hand, there is no “free rotation,””
and both theoretically and experimentally there is a quite
appreciable ‘‘twisting frequency”; cf. W. G. Penney,
Proc. Phys. Soc. London 46, 333 (1934).

6 W, Heitler and G. Herzberg, Zeits. f. Physik 53, 52
(1929); cf. also Pauling, reference 4.
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increment is now known from spectroscopic data
to amount to 7 volts®? instead of 1.7 volts. In
this connection we must mention that the con-
figuration of the carbon atom appropriate to
forming four electron-pair bonds is not the same
as the 55 state, as has commonly been supposed.
This point has caused considerable confusion in
the literature. If the S state of C were that
concerned the energy of excitation necessary to
form tetravalent compounds would be somewhat
lower,% about 4.3 instead of 7 volts, but would
still be higher than usually believed hitherto.
The fact that the excitation energy is 7 volts
does not mean that the activation energy
necessary to form a quadrivalent carbon com-
pound is 7 volts, as when one brings up the
hydrogen atom and so begins gradually to lift
the carbon atom out of the s?? configuration
and place it partially in sp® (an intermediate
zone in which electron pairing is not a valid
approximation) the increase in internal energy
of the carbon atom would be at least partially
offset by the energy of the incipient C—H bonds
formed.

If the promotional energy required for a
carbon atom to form four tetrahedral bonds is
7 volts, and R is the repulsive energy between
the hydrogen atoms, the gross strength of a
C—H bond is $(7+R) volts greater than the
net strength obtained by taking one-fourth the
heat of formation of CH4 from normal atoms,
since the gross binding energy is partly counter-
balanced by the increased internal energy of
the carbon atom and repulsion of the hydrogen
atoms. The distance between hydrogen atoms
can readily be calculated in CHy, since the C—H
distance is known. If we use a Morse potential
energy curve for Hy, R can be roughly evaluated
and is about 3 volts.%® Therefore, Ecyu=17.3/4
+(7+43)/4=4.3+2.5, i.e., the real strength of
a C—H bond is 2.5 volts greater than the net
strength and is 6.8 volts instead of 4.3 volts.

If there are any chemical data incompatible
with a difference between the gross and net

2 J. H. Van Vleck, J. Chem. Phys. 2, 20 and especially
297 (1934).

% In this calculation one uses about 35 percent of a
Morse function, assuming the Morse curve to be 90 percent
exchange, 10 percent Coulomb. This is because the ‘‘ex-
change coefficient” between already paired electrons is
— % rather than 2. See section 19 or references 70 and 62 .
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C—H bond energies amounting to as much as
2.5 volts the cause for the discrepancy may be
that in tetravalent carbon compounds electron-
pairing is not a perfect approximation, and
especially that part of the time the carbon atom
may be in the s?p? configuration. In other words,
the wave function of the carbon atom may be a
linear combination of s?p? and sp* wave functions
so that, in Pauling’s language, the carbon atom
resonates between the two configurations. For
this reason the increase in the internal energy
of the carbon atom may not be as high as 7 volts.

Further calculations are really necessary before
it can be said that it is at all obvious from
quantum mechanics why carbon should usually
be in a quadrivalent rather than divalent condi-
tion. Calculations being made by H. Voge on
the relative percentages of s?4* and sp* should
throw some light on this point.

21. Some simple valence rules®

Since there are four possible two-quantum
orbital types (viz. 2s, 2pc, 2pmy, 2pm_), itis clear
that if there are more than four electrons outside
the K shell of an atom, they will not all be able
to form electron-pair bonds. Instead, some of
the electrons will have to ‘‘double up” by
occupying the same orbit. When this is the case,
electrons occupying identical orbits will have
their spins paired to each other (pairing of type
(a) in section 19), and so will be unable to form
electron-pair bonds with outside atoms. Since
four kinds of orbits are available it is clear that
if there are 5, 6, 7, 8 electrons available, the
number which can have a private orbit is re-
spectively 3, 2, 1, 0. Hence the maximum possible
number of electron-pair bonds for N, O, F, Ne
should be respectively 3, 2, 1, 0. This agrees with
experiment. Pentavalent nitrogen is of course
well known (e.g., NH,Cl) but only four of the
five bonds are presumably of the electron-pair
type (arising from N+ which is isoelectronic with
the carbon atom), the fifth bond being ionic,—
i.e., NH,Cl should be written (NH,)*Cl~. The
difficulty of housing congestion does not arise
when there are four electrons or less, and so the
number of electron-pair bonds for Li, Be, B, C

64 The valence rules given in thé present section were, for
the most part, first derived by London by a somewhat
different method Zeits. f. Physik 46, 455 (1927).
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equals 1, 2, 3, 4, respectively, or, in other words,
the number of electrons outside the K shell.
When we come to consider the chemistry of
the elements beyond the first two periods of the
Mendeléef table, the housing problem is less
acute. There are, in fact, no less than nine
different kinds of 3-quantum orbits, viz., one s,
three p, and five & orbits. (There were only four
kinds of 2-quantum orbits since a 2d orbit is
impossible inasmuch as one must have n>l.)
Hence, as long as there are no more than nine
electrons outside the preceding inert shell, the
number of maximum possible valences should
be equal to the number of such electrons.
However, when there are eight electrons, filling
twice each the s and p orbits, they apparently
do not like to form valences presumably because
the energy of excitation to a d orbit is so large.
This point does appear to be passed over a little
glibly in most of the accounts of the quantum
theory of valence, as the necessary energetic
calculations have not been carried out. It is
assumed throughout that it is too big a sacrifice
to excite states of higher principal quantum
number (otherwise we would have such things
as pentavalent nitrogen in which all the bonds
were of the electron-pair type, due to excitation
of N to say the configuration 2s2p33d). We now
see that there are cases where even an increase
in / is too big a sacrifice in order to form bonds.
For example, argon does not exhibit valences de-
spite the fact only a promotion in [ is required to
convert its outer shell from 3s23p° to 3523p%23d7,
giving a valence 2x. Apparently this stage is
reached by the time we reach a group of eight
electrons of the form s?p% but not at seven as
septivalent chlorine is known. Assuming this
dividing, we see that

Cl, Br, I, should exhibit valences of 1, 3, 5, 7
but F only 1;

S, Se, Te should exhibit valences of 2, 4, 6 but
O only 2;

P, As, Sb, Bi should exhibit valences of 3, 5, 7
but N only 3.

We have listed several possible valences for one
atom because it may not be willing to advance
the value of / for more than one or two electrons
in order to form valences. For example, to form
septivalent chlorine three electrons have to be
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excited to 3d states. The possible valences
increase two units at a time because for every
electron excited to a d state, one frees both
members of a pair of type (a), section 19.

Not all the valences predicted in the above
table are found experimentally. For instance,
septivalent Br, P, As, Sb, or Bi are not known.
It is customary to dismiss this difficulty by
saying that the valences given in the table are
“‘possible valences,” and some of them may not
be realized for energetic reasons. For example,
the atom may be willing to forego its normal
configuration only if it forms quite a few valences.
It is not clear, however, why both Cl and I
exhibit a valence of seven while Br does not.

Also, valences are found which are not given in
the above table,—e.g., ClO,;, ClO; NH.CI,
(CHa) 4NOH, (CzHﬁ)z‘O'HBl’, (C2H5)20CH3MgI.
The first two molecules are all ‘““odd molecules,”
—i.e., contain an odd number of electrons, and
hence should all be paramagnetic. They really
do not constitute exceptions to the above scheme
if we consider the odd electron to be a free bond.
The two nitrogen molecules apparently contain
pentavalent nitrogen. The last two molecules
are examples of the ‘“oxonium’ compounds of
organic chemistry in which oxygen is supposed

C,H; H
N/
to be tetravalent | e.g., (@)
VAR

C,H; Br
customary and rather naive explanation of these
discrepancies is that the Heitler-London theory
is one of homopolar valences, and that any
valence which it does not explain is of the
heteropolar type (cf. pentavalent nitrogen, dis-
cussed above). However, things are probably not
quite so simple as this, and so many approxima-
tions are made in the Heitler-London theory
besides the omission of ionic terms that it does
not appear necessary to blame all exceptions on
polar effects, although they are doubtless very
often the major contributing factor. The ap-
proximation of assuming electron-pairing is one
that might well be questioned, and in some of
the compounds not explained by the simple
rules, quite possibly no description in terms of
electron-pairs may be allowable, and the role of

197

Coulomb forces may be more important than
they are usually given credit for being.

Although there are exceptions to the rules,
one must admit that the simple model based on
Eq. (40), or its equivalent, enables one to
understand the main experimental valences much
better than any preceding theory. It accounts
especially nicely for the fact that atoms of the
second period (Li to F) cannot exhibit as many
valences as those of later periods.

22. Theories of directed valence based on
electron-pairing—s and p valences

It is a matter of common knowledge that
certain directional arrangements are character-
istic of valences. For instance, in methane the
four C—H directions are tetrahedrally arranged
and so make angles of 109.5° with each other.
There are clearly two possible ways of accounting
for these arrangements. One way is to assume
that one direction is as good as another as far as
the central atom is concerned, and suppose that
the forces between the attached atoms are
responsible for the way the atoms are grouped.
If the electron-pair bonds connect the attached
atoms only with the central atom, and not with
each other, then clearly the forces between the
attached atoms will be repulsive in virtue of
what we have previously said in section 19.
Attempts to explain directional effects in this
general way have been made by Heitler and
Rumer® (see section 27), but soon encounter
difficulties. For instance, if repulsions between
attached atoms are the all important factor one
would predict tetrahedral methane, to be sure,
but one would also expect ammonia to be plane,
and water to be linear, as then the hydrogen
atoms are as far apart as possible. Instead, the
nature of the central atom has the dominating
part in determining how the attached atoms are
situated. Theories which take this into account
we may call theories of directional valence. In
such theories the exchange integrals connecting
an attached atom with a central atom will not
be a function solely of the distance between the
two atoms, but in addition will depend upon the
direction of the line joining the two atoms. Thus
Jii=J:i(r, 6, ¢) whereas in what may be termed

6% W, Heitler and G. Rumer, Zeits. f. Physik 68, 12
(1931); W. Heitler, Phys. Rev. 38, 243 (1931).
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the non-directional theory of valence one assumes
J ij=J ,','(7).

s valences. If an electron of a central atom is in
an s state, clearly this particular electron can
give rise to no directional effects since its charge
cloud is centro-symmetric, and we actually have
here the case Ji;=J:(r). In the Heitler-Rumer
theory of valence all valences of the central
atom are treated as effectively in s states, even
though really they are in p or d states. A gross
error is thereby made as far as directional
effects are concerned.

p valences. For a p electron there are three
kinds of wave functions,—po, pmy, pr_ corre-
sponding to different spatial orientations. All
three depend markedly on angle so that strong
directional effects are to be expected with p
valences. Since the solution of the Schrodinger
equation in a central field is of the form f(r),
P m(cos B)eim¢, the three p functions are

Y= f(r) cos 0, (42)
Ypry=f(7) sinbei¢/V2, (43)
Vpr=f(7) sinfei¢/V2 (44)

as one sees by substituting the values of the
associated Legendre functions P appropriate to
1=1, m=1, 0, —1, respectively. The factor 1/v2
has been inserted in (43-44) for purposes of
normalization.

In valence, in distinction from magnetic
calculations, it is desirable to use sum and
difference combinations of ¥, and ¥,._, thus
making the wave functions real and the azimuth
factors cosines or sines rather than exponentials.
This is allowable since the solutions of the
Schrodinger equation without loss of generality
can be taken to be real in the absence of external
fields, in fact are necessarily real if the de-
generacies are removed. We thus obtain the
three real orthogonal functions

Vo= f(7) sin 6 cos o= F(r)x, (45)
Ypoy=f(7) sin 0 sin o= F(r)y, (46)
Vo= f(r) cos 0= F(7)z, (47)

where F=f/r and the Greek letters now refer to
the axis of quantization indicated by the sub-
scripts x, ¥, 2.

The charge cloud associated with ¥,,.. is a
dumb-bell shaped affair, with the axis of the
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dumb-bell in the x direction, ¥ ,., and ¥, are
similar to Y. except that the axes are directed
along the y and z directions respectively. On
the other hand ¥,,_ and ¥,., have doughnut or
ring shaped charged clouds, and correspond
respectively to left and right-handed de Broglie
waves describing a circular path. When we take
the linear combinations

Yooz and i pey= I:‘I’pr-p:h\brf—]/\/f

the interference between the right and left-
handed waves produces a node along the x axis
in the case of ¥,,y and along the y axis in the
case of ¥poe, thus producing a dumb-bell shaped
structure. This is illustrated in Fig. 6. The wave
functions Y¥pr,, ¥pr_ carry a magnetic moment,
while ¥ oz, ¥ poy do not, as the latter are associated
with standing rather than progressive waves
traveling around a circle.

Slater®® was the first to suggest that in the
H-L method the dumb-bell shaped charge clouds
in Yz Vpey may be responsible for many
phenomena of directional valence, especially
those involving right angles. The same idea was
also enunciated independently by Pauling.®
These two authors were also the first to propose
the tetrahedral wave functions to be discussed
in section 24. Hence we usually speak of the
“Heitler-London-Pauling-Slater’” rather than
Heitler-London theory when homopolar calcu-
lations are made in which the directional proper-
ties of the p or sp® wave functions play a major
role.

It is to be understood that the whole procedure
assumes that it is a good approximation to build
the complete wave function out of atomic
orbitals appropriate to a central field, as the
expressions (42-47) inclusive are all solutions of

c08 ()

pos poy pr- b7y

FiG. 6.

& J. C. Slater, Phys. Rev. 37, 481; 38, 1109 (1931).

67 L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931); also
reference 8 and Pauling and Huggins, Zeits. f. Krist. 87,
205 (1934).
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a one electrcn wave equation only if the potential
has spherical symmetry. Actually this is some-
what of an idealization for three reasons. In the
first place, an atomic wave function cannot really
be factored into one electron functions. Secondly,
the Hartree self-consistent field, which represents
the best attempt at such factorization, is not
centro-symmetric if the atom has other ingredi-
ents besides closed shells and s electrons. Thirdly,
in any chemical combination there is always the
distortion of the central symmetry due to the
fields from adjacent atoms. The qualitative
import of Eqs. (42-47) is, however, probably
not voided. If the third difficulty is too serious,
the method of molecular orbitals (Chap. IV)
should be used instead, since its forte is use of a
self-consistent field with the proper molecular
rather than atomic symmetry.

Let us suppose there is an electron-pair bond
between an s electron of some attached atom and
the po, electron of the central atom. Then the
exchange energy associated with this particular
pair is greatest if the attached atom lies on the x
axis, since the exchange integrals will clearly be
largest in absolute value if the wave functions
of the two atoms overlap as much as possible.
This requirement clearly demands that the
attached atom be located on the axis of the
dumb-bell associated with the particular electron
of the central atom with which it is paired.

If a second atom is brought up, and if the
pairing between ¥,,, and the first attached atom
is not broken, then clearly the only possibility is
for the second atom to pair with one of the other
wave functions, ¥,.y Or ¥,.., so that it will
become located on the y or z axis. Hence in a
molecule such as H;O the angle between the two
OH axes should be 90°. The experimental value
is 106°. The departures from 90° are to be
blamed upon repulsions between the attached
atoms (cf. section 19) and upon sp? hybridization,
to be discussed later.® Similarly, if the first two
atoms have preempted the x and y directions a
third atom tends to become located on the z axis,
so that in a molecule like NH; the three NH
axes should make angles of 90° with each other.
The NH; molecule is then pyramidal in structure,

88 See J. H. Van Vleck, J. Chem. Phys. 1, 236 (1933) and
reference 70.
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each axis making an angle of 54.7° with the axis
of the NH; pyrrmid. The experimental value is
67°, and the discrepancy is to be attributed to
the same causes as in HyO.

In connection with the above we may note
that the tendency to acquire a 90° angle arises
not alone because of the desire of the attached
atom to be on as intimate terms as possible with
the particular wave function of the central atom
with which it is paired but also because it shuns
being involved with the wave functions of the
central atom with which it is not paired. This
idea is expressed mathematically in the fact
that the “‘exchange coefficient’’ between a paired
electron and any electron not a member of a
pair is —3 rather than +1. When the coefficient
is —% the corresponding term in the energy is
minimized by taking the exchange integral to
be as large as possible, i.e., of smallest possible
absolute magnitude since, as we have already
said, exchange integrals are usually negative.

Analytically the situation is formulated as
follows. Since the three p wave functions (45—
46-47) are of the form F(r)x, F(r)y, F(r)s,
respectively, they transform like the components
of a vector. Thus a wave function of the form
¥pe: When referred to the x axis transforms
according to the scheme

(48)

Y p02—>C0S A oSN e

when referred to an axis of quantization making
an angle o with the x axis. Here the ¢,, wave
function is real and so of the dumb-bell rather
than doughnut type, but with the axis of the
dumb-bell perpendicular rather than parallel to
the new axis of quantization, so that it must be
classified as of the = (i.e., |A| =1) rather than ¢
type as far as this particular quantization is
concerned.

It is convenient at this point to introduce the
notation

Ni=— S S Yu()Yr(2)Hyu(2)¢(1)dvidvs, (49)

where i denotes a wave function of the attached
atom (usually hydrogen) and yx, ¢, are wave
functions of the central atom O. The subscripts
k and I can assume the values s, po, pr (which
we often abbreviate to s, o, ) with the under-
standing that the axis of quantization is relative
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to the O—H axis. The sign behavior can be
shown to be as follows :6¢

Ny>0, Ni>0, N,>0,

N2zz<0, Na=N,=0. (50)

The vanishing of N, or N, is readily established
from the diagonality of H in A which makes it
impossible for £ and II states to perturb each
other, provided H has axial symmetry. The
expressions N, Nzx, N, are negatives of ex-
chénge integrals while Ng5, Ny, Ny, are closely
related “‘hybridization’ integrals. The fact that
N is negative (i.e., the corresponding integral
positive) shows that it is too sweeping a general-
ization to say that exchange integrals are always
negative. It we use the transformation property
(48), and (49), (50), we see that if the O—H
axis makes an angle a with the x axis, the
exchange integral connecting ¥,, and ¢y is

Jen=JS"" f\bpu(l)lh;(Z)H‘ba(1)\#,,,,(2)111'@112

= —[Nss c0s? &+ Ny sin? o] (51)

This equation expresses the essence of directed
valence for ordinary cases. It shows that the
value of the exchange integral is a function of «,
and for some value of a (viz. =0 or =) will be
as large as possible in absolute value.

23. The water molecule

We shall now consider the HO molecule in a
little detalil, as it serves as a concrete illustration
of the preceding assertions on directed valence,
and as it has perhaps been the subject of more
quantitative calculation than any other poly-
atomic molecule. The oxygen molecule has six
two quantum electrons, but, as explained in
section 21, four of them must ‘‘double up” in
the orbitals which they inhabit. These four
may be taken to be represented by 2s22ps.? as
the 2s orbital is the deepest and so first to be
completely filled, while the doubly filled 2p
orbital may without loss of generality be taken to
be 2pcs.. Then the two electrons of the oxygen
atom with free spins are 2pg,, 2po, and the wave
functions available for valence purposes are

Vi1=Yposy Yo=V¥pouy ¥3=¥n, Va=Vm,

W
% J. H. Van Vleck, J. Chem. Phys. 2, 27 (1934).
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where Y, ¥n, are the wave functions of the two
H atoms (cf. Fig. 7).

If one assumes electron pairing and uses Eq.
(40), the exchange energy for HyO becomes

Wex=J1s+Joa—3[JuutTos+ T2+ Tsad, (52)

where Jy; is the exchange integral connecting
orbitals y; and ¢, etc. We shall now set J3;=0,
i.e., neglect the ‘“‘exchange repulsion” between
the hydrogen atoms. This neglect is clearly
desirable for present purposes as we are interested
in exhibiting the directional effects of central
valences irrespective of forces between corner
atoms. We shall also take J=0, as study of
atomic spectra shows that this integral, which
is a purely internal property of the oxygen atom,
is small. The most favorable locations for the
H atoms are in the xy plane, as the ‘“free”
dumb-bells of the O atom have their axes in the
plane. If the H atoms are in the xy plane and
arranged as in Fig. 7 (where the prime on o' is
rather indistinct), then in view of (51), Eq. (52)
becomes

Wex= —[Noo cos? a+ N, sin? o]
—[Nys cos? o’ +N,,sin? o'
+34[ Ny sin? a+ N, cos? o]
+3[Noosin? &/ +Nqrcos? '], (53)

Owing to (50), this expression obviously has a
minimum at e=a’=0, giving us a right-angled
model. It is significant that such a very simple
skeleton calculation leads us to a geometrical

Y

Fi1G. 7. The H,O molecule.
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arrangement in approximate agreement with ex-
periment. The experimental value is, to be sure,
106° rather than 90°, but the computed value is
immediately increased to about 100° when a
simple correction™ is made for the effect of the
repulsions between the hydrogen atoms.

Eq. (53) does not include the Coulomb energy
connecting O and H, nor the exchange energy
involving the electrons 2s, 2po, in filled orbits,
but these portions of the energy give no direc-
tional effect. To prove this for the Coulomb
portion, one first notes that the Coulomb inte-
grals K have a transformation property similar
to (51), so that

K.u= — M, cos? a— M., sin? a, (54)

where M}, denotes a Coulomb expression analo-
gous to Ny, obtained by replacing ¥ u(2)¥.:(1) by
Yu(1)¢:(2) in the integrand of (49). The inter-
atomic part of Coulomb energy involving 2ps.,
2pa, is given by an expression similar to (53)
except that M is substituted for N, and that the
coefficients are all —1 rather than some of them
+3. It is the latter circumstance that makes the
Coulomb contributions impotent for directional
effects as it converts (53) into an expression
—2M,s—2M ., independent of a. The part of
the exchange energy involving 2s?2p¢.? is readily
shown to be (—%)[ —4N,—4N..] while the cor-
responding Coulomb portion is —4M—4M .
Thus with our approximations, the total bonding
energy in the equilibrium position a=a'=0 is

W= —2N;;+3Nxzr+2Nss

— My — 6 My —4M,,. (55)

At this point we may digress to remark that
quite generally, in other valence calculations, the
Coulomb in distinction from exchange terms
linking the central*and attached atoms usually
prove to be independent of direction. Conse-
quently, if in all our discussion of directional
valence we seem to be talking always of exchange
energy and saying little about the usual Coulomb
type, this is not only because Coulomb integrals
are often small compared to the exchange ones,
but also because they are of less stereochemical
interest and significance.

70 J. H. Van Vleck and P. C. Cross, J. Chem. Phys. 1,
357 (1934).
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One easily finds that, with the various approx-
imations which we have made, the energy of the
OH radical should be half of (55).” This agrees
with experiment, as the actual heat of dissocia-
tion of OH is approximately 4.9 volts, while that
of H,0 into O+2H is about 10 volts. However,
the theory is less successful when one compares
with experiment the energies themselves rather
than the ratio of the values for OH and H.0.
What is particularly discouraging is that even
the ratio comes out wrong when one abandons
making rough approximations.

The corrections arising from the fact that
electron pairing is not a perfect approximation
even when (34) is granted are unimportant.
Namely, one can use in place of (52) the more
accurate formula (65) to be given later. The
alteration as compared with (52) then amounts
to only about 0.1 volt™ if, say, we take N,,=2,
Nyr=—0.6 volts.

Much more serious is the neglect of non-
orthogonality and higher order permutations
inherent in (40) or (52). Coolidge,” taking them
into account, finds as the result of a long calcu-
lation, a heat of formation of 3.5 volts for the
H:O molecule. He is able to raise this value to
5.7 volts by including polar terms, but even this
result is about 4 volts too low. This remaining
discrepancy is presumably to be attributed to
omission of ionic (in distinction from polar)
terms and perhaps to polarization effects. Also
there may be some error because the assumed
atomic orbitals are not accurate solutions of the
wave equation of the oxygen atom.

Another thing which one can do is to try to
compute the transverse vibration frequency of
the H;O molecule by means of (53), supple-
mented by a few easily made corrections for
H—H repulsions. By the transverse vibration
we mean the mode of oscillation wherein the
angle HOH varies while the OH separations
remain approximately stationary. This frequency
is an easier quantity to calculate than a heat of
dissociation since the former is not a differential

7 See footnote 12 of the preceding reference.

72 Cf. J. C. Slater, Phys. Rev. 38, 1135 (1931). Slater was
the first to note that electron-pairing makes little difference
in H;0. He assumed a somewhat different set of values for
the N'’s than we give in section 24, but with either choice
electron pairing is a good approximation.

7 A, S. Coolidge, Phys. Rev. 42, 189 (1932).
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effect and is insensitive to errors in factors such
as e.g. Coulomb energy which are largely inde-
pendent of direction. Van Vleck and Cross™
calculate a value 1660 cm™, differing from the
experimental value by only 4 percent, but such
close agreement is probably fortuitous in view
of the approximations which must be made.

24. sp? hybridization and directed quadrivalence

As we have seen in the preceding section,
carbon must be in the sp® state in order to
exhibit its ordinary tetravalent behavior. Since
it is a matter of indifference to an s state at
what angle its partner is located, and since p
valences tend to form at right angles to each
other, it may at first sight seem strange that
methane should be characterized by tetrahedral
angles, unless perchance this state of affairs be
blamed on repulsions between corner atoms
which we have said are not a dominant factor.
In the Heitler-London-Slater-Pauling theory the
answer is found in the introduction of ‘sp?
hybridization' as first suggested by Pauling.”#
If we disregard the difference in energy between
the 2s and 2p states of carbon, any linear
combination of the 2s and 2p wave functions
may be regarded as a legitimate solution of the
wave equation for the central atom. Of course
in a truly central field it would be regarded as a
very bad error to mix s and p wave functions,
but if the separation between the 2s and 2p
states is small compared with the bonding
energy, then the ability to form the best possible
bonds is the all-important consideration, and
what would be the best solution for the central
atom, considered alone, becomes comparatively
unimportant.” In order to form four independent
bonds from the central atom the four linear
combinations which are selected must be mutu-
ally orthogonal. Now because the three wave
functions resemble the components of a vector
any linear combination of functions may be
regarded as a 2ps function referred to some
direction. Hence any one of our four linear
combinations may be regarded as of the form

Vi=awbas+b02p0, (56)

74 L. Pauling, Proc. Nat. Acad. Sci. 14, 359 (1928).
7 Actually the separation between 2s and 2p is not small
in C, amounting to between 5 and 10 volts; cf. reference 62.
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where 2ps; means a 2ps wave function referred to
some direction C—i4. We must form four or-
thogonal linear combinations of the form (56).
The requirement” of orthogonality gives us
immediately relations of the form

aa;+b:d; cos (4, j)=0, (57)

as one sees from (48) and the fact that y¥.,, and
Y2, are mutually orthogonal when the space
quantization is relative to the same axis. In
addition, there is the requirement

a’+b:=1 (58)

if the wave functions are to be normalized to
unity. It is not possible to select the four valence
directions at random, for there are eight quanti-
ties a1+« @4, by -+ -bs whereas there are six rela-
tions of the form (57) and four of the form (58).
Eight unknowns cannot, of course, be made to
satisfy ten independent equations for arbitrary
values of cos (4,7). It is, however, possible to
satisfy the ten equations if we make the simple
assumption that the hybridization ratio is the
same for all four linear combinations. This
assumption is warranted for molecules such as
CH,, where all four attached atoms are identical.
Then a2=1, as the single wave function s, is to
be apportioned equally between the four wave
functions ¢;---y¥s. From (58) we have b2=4%.
The condition (57) will now be satisfied if
cos (¢, j)=—4%, ie., if each valence direction
makes a tetrahedral angle with the other valence
directions. Hence we are led to the tetrahedral
model of CHy, quite irrespective of the repulsions
between the corner atoms, if we assume that the
hybridization ratio is the same for all four bonds.
It seems reasonable that in a molecule such as
CH, the energy should then be lowest on sym-
metry grounds. Actual calculation of the energy

" The precise reason that they must be orthogonal is a
little involved. If two electrons are in identical orbits they
are not free to form other bonds, or in terms of the vector
model, their spins cannot be aligned independently but
must be anti-parallel to each other. If two wave functions
are not orthogonal to each other in cases where they are
built. out of linear combinations of orthogonal functions
one can say that one function contains part of another, or
in other words that one has progressed a step towards the
two electrons being in the same state, so that their spins are
not free. If one makes a proper perturbation calculation
one is, of course, finally led to the proper linear combina-
tions, which are orthogonal.

77 J. H. Van Vleck, J. Chem. Phys. 1, 230 (1933).
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with the aid of (40) and (48) shows that in
molecules of the type CH, the energy is indeed
lowest when the hybridization ratios are equal
and the configuration is tetrahedral. With this
configuration the exchange energy connecting C
with the H atoms is found by (41), (48) and (49)
to be™

Wex=Nss—2.5Noo+4Nrx—34/3N,se.  (59)

It is interesting to note that in this calculation
the directional effect favoring the tetrahedron
results only in virtue of the ‘“hybridization
integral” N,, defined in (49). It can be shown
that were N,=0, the matter of geometrical
arrangement would be a matter of indifference
as long as (57) is satisfied. From the difference
between the bonding energies of CH and 4CH,
and other empirical data, one concludes that
Ny, N . are each about 2 volts, N,, about 1 volt
and N,, about —0.6 volt. This agrees in part
with Coolidge’s direct computation of the inte-
grals for Hz2.0" Of course the values for OH and
CH need not be exactly the same. He obtained
N,;=2.3, N.,=—0.6. However, all such compu-
tations are somewhat dependent on the precise
form assumed for the atomic orbital -of the O
atoms, and in the present state of affairs,
especially in view of the difficulties mentioned
in section 18, it seems better not to attempt a
program as ambitious as the direct computation
of the heat of dissociation but rather to proceed
in the converse direction and deduce approximate
values of the N's from observed bonding ener-
gies.®® Even this reverse procedure is open to
question, but the observed data on simple C,
N, O compounds involving hydrogen seem com-
patible with N’s of the sizes estimated above,
although it is still not clear why the potential
hill to be surmounted in turning an NH; molecule
inside out should be as low as it actually is
(% volt).

We have seen that CHj is characterized by
equal hybridization ratios for all four bonds.

78 See the preceding reference for detailed proof of (59).

7® Coolidge (private communication) obtained, however,
a larger value of N,, about 3 volts. This value is probably
reduced somewhat when allowance is made for the fact
that the 25 wave functions are more tightly bound than 2p.
Dr. W. G. Penney informs the writers that N,, may be
somewhat larger than 1 volt.

8 Cf., however, H. J. Woods, Trans. Faraday Soc. 28,
877 (1932) and reference 62.
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On the other hand, with molecules such as
CHCIl; only three hybridization ratios need
presumably be the same, while in CHyCl;, one
would expect these ratios to be equal only in
pairs. Actual calculation” shows that in these
cases one should use hybridization ratios equal
only to this extent, and that the energy would be
higher in CHCl; or CH;Cl; were all four ratios
equal. When all four ratios are not equal,
Eq. (57) can no longer be satisfied with tetra-
hedral angles. Instead one can show that the
Cl—-C—Cl angles in CHCI; and CH,Cl, should
be greater than 109.5°, the tetrahedral value.
Incidentally the method of molecular orbitals
leads to the same type of deviation, thereby
showing that two entirely "different methods
often lead to the same result. Early x-ray data
revealed the following C—Cl angles: CHCl;,
116.4°, CH:Cl, 123.8°, CCl,, 109.5°. One of the
present writers’” construed the departures from
109.5° found in CHCl; and CH,Cl; as nice
confirmations of the valence theory, but unfortu-
nately, more recent electron diffraction measure-
ments® show that in all three compounds the
angles are substantially 109.5° (within 2 or 3
degrees the experimental error). However, Dr.
Penney has recently shown®!® that only very small
deviations from 109.5° are to be expected when
one examines the size rather than simply the
sign of the deviation predicted by theory.

The original papers of Slater and Pauling
perhaps give inadvertently the impression that
with sp® hybridization the angles are necessarily
tetrahedral. This is not at all true, as many
different types of hybridization are possible, and
exactly the tetrahedral angles are characteristic
only of compounds such as CHy where all four
attached atoms are identical. Fortunately, the
deviations from the tetrahedral values are usually
not large.

Many chemists still believe that tetrahedral
angles are characteristic of the carbon atom's
bonds, regardless of the nature of the attached
atoms. Thus, to quote from a popular organic
textbook, ‘‘According to the fundamental hy-
pothesis of stereochemistry the four valency

bonds of the carbon atom are imagined to be

81L. E. Sutton and L. O. Brockway, J. Am. Chem. Soc.
57, 473 (1935).
8ta W, G. Penney, Trans. Faraday Soc. 31, 734 (1935).
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directed towards the summits of a regular tetra-
hedron, at the center of which lies the atom
itself.” )

So far we have assumed that the atoms
attached by the central atom are all univalent,
and in an s state. The restriction to an s state is,
however, not really necessary. If one of the
univalent attached atoms is in a p state, the
foregoing considerations all apply, with the
understanding that the axis of the paired p orbit
of the attached atom is directed toward the
central atom, as shown in Fig. 8. Thus CCl,
should have the same tetrahedral structure as
CH,.

Penney and Sutherland® have applied the
method of electron pairs based essentially on
Eqgs. (34), (48), (51) to a theoretical calculation
of the energy of HyO; and NH,—NH,, and find
the rather surprising result that free rotation
cannot occur in either of these molecules at
ordinary temperatures, and that the stable forms
of these molecules are those in which the azimuth
of one half of the molecule with respect to the
other is about 100°. The H;O, molecule would be
as shown in Fig. 9, in which ¢ is the angle
between the planes HOO and OOH. Here 6 and
¢ are approximately 100°. This result is sur-
prising because H;O, and N,H; have long been
supposed to possess symmetrical structures. Both
molecules are known to possess high dipole
moments (HyO., 2.064+10718 e.s.u., NoH4 1.84
10-18 e.s.u.,, each at 18°C), as one would
expect from an unsymmetrical model such as
Penney and Sutherland’s.

82 W, G. Penney and G. B. B. M. Sutherland, J. Chem.
Phys. 2, 492 (1934); Trans. Faraday Soc. 30, 898 (1934).
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25. Double or 7 bonds—sp?* and sp hybridiza-
tion

The type of bond shown in Fig. 8 may be
described as a oo bond. There can only be one
bond of this character connecting any two atoms.
To account for double and triple bonds one
introduces the concept of == bonds®® (Fig. 10)
wherein the axes of the dumb-bells of the two
atoms are perpendicular to the line joining the
two atoms. The amount of overlapping is altered
when one of the dumb-bells is rotated about the
horizontal axis in Fig. 10, and is a maximum
when they are parallel, as in the =7 bond. This
is the reason why free rotation is usually associ-
ated with single bonds but not with double
bonds. Clearly, there is no change in bond energy
for rotation about a horizontal axis in Fig. 8.
Hence there is free rotation about a single bond
insofar as the effects of directional valence are
concerned, provided the attached atom is in an
s or po state. When the bond is of the == type,
or is a hybrid affair involving a pr ingredient,
there may not be free rotation even though there
is only a single bond. The molecules H,O; and
N.H,, also probably NH:OH, are examples of the
latter state of affairs. Besides the oo and 7w
bonds illustrated in Figs. 8 and 10, it is possible
to have still a third bond by pairing two dumb-
bells whose axes are perpendicular to the plane
of the paper, and which thus form another =m
bond. This is the source of the triple bond.

sp? hybridization. 1f we consider a compound
such as C.Hj illustrated in Fig. 11, the second
carbon bond is probably a pure == bond in-
volving the two dumb-bells whose axes are
perpendicular to the plane of the paper. The
first carbon bond and the four C—H bonds are
then in the plane of the paper. They are probably
not of the pure p or pure s type, but instead

e !
h H %
0 0
H,0: xx bond C.Hy
F16. 9. Fic. 10. Fic. 11.

8 This terminology is due to Hiickel and Hund.
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involve hybridization, which, following Pauling,®”
we may characterize as sp? rather than sp?
hybridization, inasmuch as the third p function
of each C atom has already been consumed in
the 77 bond and so is not involved. The precise
value of the angle « in Fig. 11 depends on the
hybridization ratios. If they are the same for
all three bonds H—C, H—C, C—C involving a
given carbon atom, then the angle « is 120°,
while it is 90° if two of the bonds are sp mixtures,
and one, the C—C, bond is pure co. Actually
the angle « probably lies between these limits.
Pauling®” discussed C.H, on the basis of sp?
(tetrahedral) rather than sp? hybridization, thus
making a=109.5° and both carbon bonds share
part of the s wave function but actual calcu-
lation® shows that the energy is lower with the
sp? type.

sp hybridization. Besides sp® and sp? there
can also’ be sp hybridization, as first shown by
Pauling. The two sp functions which are mutu-
ally orthogonal and normalized to unity are

('phﬂ: ‘hm) /‘/Z (60)

These two functions correspond to dumb-bells
which are heavy on one end and light on the
other, due to the fact that 2p¢ has the opposite
sign or phase on the two ends of the dumb-bell
and so reinforces 2s on end, but opposes it on
the other. (This sign behavior can be seen by
replacing ¥ by —x in Eq. (45).) The sp hybrid-
ization would enter in a model of CO, by the
H-L-S-P method, shown in Fig. 12. The two
shaded dumb-bells emanating from the O atom,
the one hatched vertically, the other horizontally,
are the two sp functions (60), and are paired
with po wave functions of O, and O,, respec-
tively. The second C—O, bond is a =7 bond
formed by pairing the two unshaded dumb-bells.
The second C—O0O, bond is similar except that
the two dumb-bells are perpendicular to the
plane of the paper and so not shown in Fig. 12.%

26. Transition elements— sp’d® and sp’d bonds

So far we have dealt with the chemistry of
light atoms (or equally well with that of heavy

84 W, G. Penney, Proc. Roy. Soc. A144, 166 (1934).

8 Actually, there is probably a ‘‘resonance’ wherein the
7w bonds continually interchange between O, and Os.
Then Fig. 12 applies only half the time. The other half, O
has the vertical == bond, and O, the one perpendicular to
the plane of the paper.
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F16. 12. The CO, molectle.

atoms not in transition stages where inner
groups are being augmented by the addition of
d electrons). On the other hand in elements of
the transition groups (Fe, Pd, Pt, etc.) there is
additional latitude arising because there are d
as well as s and p wave functions available for
valence purposes. The principal quantum num-
ber of the d functions is one unit lower than that
of the s or p ones (e.g., 3d vs. 4s, 4p in Fe) in
order to counterbalance the larger I-value for the
d states and so give approximately the same
firmness of binding, which is necessary if s, p, d
all participate together in valence.®® The in-
creased complexity due to admission of d states
enlarges the number of possible bonds and
spatial arrangements. The five d wave functions
are conveniently separated into the following
two groups, which, following Bethe, we shall
call dy and d.

dy: Y(dyi)=(1/12)}f(r) (322 —7r?),

V(dva)=2f(n)(x*—»"), (61)
de: Y(der)= f(r)xy, Y(de)=f(r)zx,
¥(des) = f(r)yz. (62)

Pauling®” shows that tetrahedral bonds can
be formed by sd as well as sp* hybridization.
The strongest tetrahedral bonds are. as he shows,
probably a mixture of the two types, sc that
s, p, de all contribute. What is more interesting
is that he shows that by taking linear combina-
tions of s, p, and d, wave functions he can form
new ‘‘sp’d¥’ wave functions which are ideally
suited for attaching six corner atoms octa-
hedrically arranged (i.e., at the six face centers
of a cube). With the ever present assumption of
electron pairing, it was not possible to do this
with only p and s wave functions, in nice

8 In Nickel, for instance, the separations between 3d, 4s,
and 4p are only a matter of a volt or so; cf. Bacher and

Goudsmit, Atomic Energy States, p. 323.
87 H. Bethe, Ann. d. Physik 3, 133 (1929).
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agreement with the experimental fact that co-
ordination numbers of six, associated with octa-
hedral arrangements, are particularly character-
istic of transition groups. Pauling also shows
that four bonds, all in a plane, and corresponding
to the four corners of a square, can be formed
by sp*d, hybridization. The four wave functions
involved are s, po., po,, and dv..3® For the
precise values of the hybridization ratios, also
for information as to how one can form cylindri-
cal prismatic arrangements, the reader is referred
to the interesting papers of Pauling®” and of
Hultgren.®® The latter shows that it is not
possible to obtain more than six equivalent bonds
with any arrangement.

Pauling % assumes that in an ion such as e.g.
Ni(CN);~— or Fe(CN)¢~——, the superfluity of
negative electrons is to a large extent absorbed
by the central atom, so that its structure is
mainly Ni——(CN), or Fe~~—(CN); rather than
the conventional ionic form Ni*+(CN-), or
Fett+(CN~). In our opinion, this assumption is
the greatest element of weakness in his theory,
as each successive electron affinity is lower than
the preceding, and the Ni or Fe atom presumably
is not anxious to have two, three or in some
cases proposed by Pauling, even four extra
electrons. (The conventional form, on the other
hand, probably transfers charge too far in the
opposite direction.) However, we do not mean
to imply that there are not elements of truth in
his ideas, as a true wave function is a linear
combination of wave functions representing
different possible phases through which the
system resonates. Surely the state of affairs
assumed by Pauling is one possible phase, but
the question is whether it is preponderant or
even representative.

The case of Ni(CN),~~ is particularly inter-
esting. The Ni~—~ ion has 12 electrons to house
(not counting inner closed shells), whereas there
are only nine orbitals (sp%d®) available in all.
Hence some of the electrons must ‘“double up”
and occupy the same orbital. As the 3d orbitals

88 In place of s, a dv1 bond could be used, or a linear com-
bination of s and dy1. The reason is that s and dyi have the
same tetragonal directional properties (i.e., belong to the
same tetragonal representation in Table V, section 33).
The s bond is probably stronger than the dvi, and it is so
better not to utilize the latter for bonding purposes,
especially since otherwise it can be filled twice.

8 R. Hultgren, Phys. Rev. 40, 891 (1932).
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are known from spectroscopic data® to be lower
than the 4p and 4s, the d orbitals will be those
filled twice. Thus in Ni—~, the singly occupied
orbitals available for valence purposes are s, 3, d.
Now with spd at one’s disposal one can form
four sp?d bonds in a plane, or form tetrahedral
sp® bonds. With the latter, none of the d orbitals
would be used for bonding purposes. Hence the
eight electrons of the central ion which are not
involved in bonds would have their choice of
five different, about equally good d orbitals.
They would not all have to ‘‘double up,” and
those having orbitals to themselves can have
their spins parallel, which they prefer to do
since by the Hund rule® the energy is then lowest.
Then the Ni~— ion would be paramagnetic.
Actually it is diamagnetic, as is shown, for
instance, by susceptibility measurements on
KeNi(CN)4. This fact indicates that the bonds
are of the square sp?d type. Indeed, if the sp*d
bonds are used, the eight unbonded electrons
have at their disposal four d orbitals and one p
orbital. The latter has higher energy, so that
they all double up in d orbitals, with their
spins hence necessarily anti-parallel, giving dia-
magnetism. Thus Pauling boldly predicted that
Ni(CN); should be plane. No x-ray data on this
ion were available when Pauling made this
prediction. X-ray measurements did show?®
that K;PtCl; had a square configuration, and
one would perhaps expect the PtCli—— and
Ni(CN),~~ ions to exhibit a similar structure.
This similarity has been substantiated by subse-
quent x-ray measurements® on BaNi(CN).4H:0.
We must mention that a square contguration
for the Ni(CN),~— ion, if diamagnetic, could
also have been predicted by the method of
molecular orbitals without the necessity of
assuming a N~ ion, as we shall see in section 33.
This alternative procedure was, however, not
advanced until much later.

Pauling shows that magnetic data are in good
agreement with his structure, and he was the
first to interpret such phenomena as that the
Fe(CN)g——~ ion is considerably less paramag-
netic than the FeFs——— ion. To suppress most
of the magnetism, it is only necessary that the

9 R, G. Dickinson, J. Am. Chem. Soc. 44, 2404 (1922).

9 H, Brasseur, A. de Rassenfosse and J. Piérard, Zeits.
f. Krist. 88, 210 (1934).
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inter-atomic forces be able to disrupt the Russell-
Saunders coupling of the central atom. As one
of us will show elsewhere, mechanisms for doing
this are provided not only in Pauling’s model
but also in the method of molecular orbitals
or even in the conventional polar structure
Fett+t(CN~)q. Hence, in our opinion, it cannot
be inferred from the magnetic data whether a
bond is of the Pauling covalent or the con-
ventional polar structure unless these data are
supplemented by a certain amount of empirical
information. It is, however, found experimentally
that covalent bonds are more effective than
conventional polar ones in destroying magnetism,
as it is known from other data® that the bonds
in the fluoride are much more polar than in the
cyanide. Once this fact is substantiated by
measurements on a few compounds, one can
presumably extrapolate to others and say that
abnormally low magnetism in transition com-
pounds of high magnetic dilution probably means
that there are strong covalent bonds. Thus
magnetism furnishes a useful criterion for deter-
mining the bond type. The covalency is doubtless
not as extreme as Fe~~—(CN)s, but probably
intermediate between this and Fett+(CN~)g, so
that the Fe ion may well be nearly neutral. The
intermediate stages are most easily interpreted
by the method of molecular orbitals (section 33).

27. Abandonment of the restriction to electron-
pairing—nondirectional theories of valence

In the remainder of the present chapter, we
shall consider systems for which there are no
naturally designated electron-pairs, and for
which in consequence we can no longer use
Eq. (34). One category of hypothetical systems
of this type is provided by what may be termed
the “nondirectional’ theory of valence, in which
all valence electrons of a given atom are treated
as alike, and as effectively in S states, so that
the directional properties of the wave functions
are completely ignored. Obviously one must then
abandon the approximation of electron pairing,
as the partnership affiliations were due largely to
directional properties. There exists a rather
formidable literature largely on this nondirec-
tional theory of valence.% In our opinion, much

92 W. Heitler, Zeits. f. Physik 79, 143 (1932); Handbuch
der Radiologie, 2nd ed., vol. 6, part 2; W. Heitler and A. A.
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of the mathematics used in it is needlessly
imposing, since most of the results can be
obtained, as one of us showed elsewhere,’® by
means of the vector model rather than by group
theory or even the Slater determinants.

In the nondirectional theory of valence the
spin of each atom has its maximum possible
value, as a simple calculation, given in the
appendix by means of the vector model, shows
that then the energy is lowest. Thus in NHj,
the spin of the N atom, which has three valence
electrons, would be 3/2. The collective spin of
the H atoms is likewise 3/2, since it must be
equal and opposite to that of the N atom to
give zero resultant spin for the complete mole-
cule. This state of affairs is to be contrasted
with that in the directional theory based on
electron pairing, wherein it is meaningless to
talk about the resultant spin of the N atom
inasmuch as all collective quantization for the
N atom has been disrupted by the pairing to the
H atoms. Were the nondirectional theory appli-
cable, tetravalent carbon compounds would be
really built upon the 5S state (spins of C electrons
all mutually parallel) rather than the somewhat
different valence state mentioned in section 20.

As far as explaining the spatial arrangements
of molecules, we believe that the nondirectional
theory commits a very gross error in attributing
all directional effects to repulsions between
corner atoms. For instance, it predicts plane
NH;. Consequently we shall not discuss this
theory further (except in connection with acti-
vation). Of course it is not without its elements
of truth because, as we have already said, nearly
every type of theory is represented in the
complicated linear combinations involved in true
wave functions.

28. Activation energies

There is, however, one realm in which the non-
directional theory of valence has been very
fruitful, and that is in the computation of acti-
vation energies. The form of theory here used
differs slightly from that above in that one does

Schuchowitzki, Physik. Zeits. d. Sowjetunion 3, 241 (1933);
M. Born, Ergebnisse der exakten Natur. 10, 387 (1931);
H. Weyl, Nach. Ges. Wiss. Gétt, N. P. Klasse 1930, 285;
1931, 33; G. Rumer, Nach. Ges. Wiss. Gott, M. P. Klasse
1932, 337. Much of the theory of invariants developed in
these articles could be used in connection with the direc-
tional theory as well.



208 J.

not treat all the valence electrons as alike.
Instead one assumes that only certain electrons
have their bonds changed during their activation
process. The other electrons are regarded as so
firmly paired that they need not be considered
in the calculation. It is only the electrons whose
pairing is being converted that are regarded as
effectively in .S states. Thus in the reaction
H;+C,Hs—C,;H; one would not regard all the
C electrons as alike, but would regard the
system as effectively a four electron one (the
two electrons contributed by H, and the two
C electrons which formed the second C—-C
bond). It is clear that activation energies could
never be computed with the approximation of
electron pairing, because the chemical transfor-
mation is, by its very nature, a transformation
from one bond type to another (e.g., in the
preceding example from H—H, C—C, to C—H
pairing) and the activation hill is just the zone
where affinities are being changed and there is no
natural system of partnership. To simplify calcu-
lations, the directional properties of the orbitals
whose bonds are being changed are usually
ignored, but this approximation is not really
necessary, and is clearly a less violent assumption
now that our interest is in relative energies, than
it was when our attention was focused on
geometrical arrangement.

The general subject of valence is really con-
cerned with the stability of molecules in a kinetic
sense,—i.e., a molecule is stable at a given
temperatuie if its rate of decomposition or
reaction with other molecules is slow at that
temperature. It follows, therefore, that there are
all degrees of stability, and that stability is a
function of the temperature,—all molecules be-
coming unstable at sufficiently high tempera-
tures. Any review of valence, consequently,
should preferably include a section devoted to
the discussion of the rates of chemical reactions,
or to quantities determining these rates.

The activation energy 4 of a chemical reaction
is defined in practice by the empirical Arrhenius
equation

dlog k/dT=A/RT?, (63)

where £ is the specific reaction rate constant,—
i.e., the rate of the reaction when the concentra-
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tion of the reacting substances is unity. It should
be pointed out here that it is not a simple task
to calculate A from experimental data, with
Eq. (63), because most reactions studied in the
laboratory do not fall into the simple scheme of
first, second, or third order reactions. Hence one
cannot calculate a & which is really a constant
over any great variation in the concentration of
the reacting substances. This is true because
most reactions are not simple as carried out in
the laboratory,—i.e., a chain reaction may be
present, or a back reaction, or two or more
reactions may be occurring simultaneously, or
the reaction may be partly homogeneous and
partly heterogeneous, etc.

Eq. (63) may be written in the form

k=Ze4/RT, (64)
Now Z is approximately the same order of
magnitude for similar reactions, and hence the
magnitude of % is determined by the value of 4.
In particular, a knowledge of the difference
between the activation energies (4;—4;) of two
chemical reactions whose specific reaction rate
constants are k; and k; will enable one to calcu-
late the ratio k1/k, and hence one can say which
reaction will, at a given temperature, proceed
more rapidly.

According to simple kinetic theory, Z in (64)
is the number of collisions occurring between
reaction molecules. Only a fraction of these
collisions, are successful in causing reaction,
however, these being characterized by being
“energy rich,” thus possessing sufficient kinetic
energy so as to bring the molecules into a proper
close configuration to react. The quantity e~4/E7
is, according to kinetic theory, the fraction of
collisions occurring in a two dimensional gas in
which the total kinetic energy of the colliding
molecules is 4 or greater.

The so-called semi-empirical calculations on
activation which we now discuss have been made
by Eyring and his collaborators.®® Before one

% For example, Eyring and Polyanyi, Zeits. f. physik.
Chemie B12, 279 (1931); H. Eyring, J. Am. Chem. Soc.
53, 2537 (1931); Rollefson and Eyring, J. Am. Chem. Soc.
54, 170 (1932); A. Sherman and Eyring, J. Am. Chem. Soc.
54,2661 (1932); Kimball and Eyring, J. Am. Chem. Soc. 54,
3876 (1932); Taylor, Eyring and Sherman, J. Chem. Phys.
1, 68 (1933); Sherman, Sun and Eyring, J. Chem. Phys. 3,
49 (1935); also references 95, 98 and 99.
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can compute the energy of the activated state for a reaction like XY+WZ—->XWHYZ (with
each atom monovalent), it is necessary to have the formula

Wex= {3[ (V2 Tsa— J13— J20) 2+ (T 12+ Tsa— J1a— J23) 2+ (J1s+ Toa— J1a— J23) 2] }} (65)

for the exchange energy for a system of four electrons in the state S=0, without the assumption
of electron pairing. Eq. (65) is derived in the appendix by means of the vector model, although it
was first obtained by London® by a different procedure. Eq. (66) gives the corresponding expression,

also derived in the appendix, for a system of three electrons in the state S=3%

Wex= {3[(J12—J13) 2+ (J12— Ja5) 2+ (13— J23) 2]} 1.

This formula is needed in the connection with
the reaction

WAXY—WX+7. 67)

To (65) and (66) one must of course, add the
ordinary Coulomb energy which does not involve
the exchange degeneracy or apparent spin
coupling problem. Eyring and Kimball®s have
set up the secular equation for systems contain-
ing up to eight electrons. The formulas for the
exchange energy are then much more complicated
(roots of a 14th degree Eq. when n=8, unless
there is special symmetry; cf. section 17). The
energy of the activated state is that of the
intermediate state of highest energy through
which the system must pass from the initial to
the final configuration, and the activation energy
is the energy of this state minus the initial
energy.

Let us now consider the reaction (67). It is
readily shown that W will approach XY with
the least expenditure of energy on an extension
of the straight line connecting the nuclei X and
Y. Let the distance between atoms W and X be
rwx, and that between X and Y be 7xy. Then
rwy="rwx~+7xy. At the beginning of the reaction
rwx will be very large and rxy will be the normal
distance between nuclei in the xy molecule.
There will be some intermediate configuration,—
i.e., the activated state, where rwx and rxy are
comparable. After reaction, the final state of
the system will have rwx equal to the normal
inter-nuclear distance in the 7wx molecule, and
rxy will be very large. If we plot rxy as the
ordinate and rwx as the abscissa in the xy plane,

% F, London, Zeits. f. Electrochemie 35, 552 (1929).
% Eyring and Kimball, J. Chem. Phys. 1, 239 (1933);
cf. also Serber, reference 54.

(66)

and let the z coordinate specify the corresponding
values of the energy, we may think of the
reaction as corresponding to the motion of a
ball over this potential energy surface, from an
initial region of low potential energy, through
an intermediate region of relatively high energy,
to a final state of low energy. Of all the various
paths the ball may take in going from the initial
to the final state it will prefer that path which
requires the least expenditure of energy. The
minimum energy required in getting over the
potential energy hill is the activation energy.
This situation is illustrated by Fig. 13 for the
reaction H4-H,=H,+H in which the energy is
indicated by means of contour lines, and in
which the course of the reaction is shown by
broken arrows.
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If, from what has just been said, we can
calculate the energy of the system for any
arbitrary value of rwx and rxy we can calculate
the activation energy of the reaction (67). Eq.
(66), augmented by the Coulomb energy, enables
us to do this providing we are able to evaluate
the various integrals. Now it was Eyring’s happy
thought that this could be done empirically, if
we neglect all directional valence effects, by
constructing a Morse potential energy curve for
each pair of atoms. This curve gives the energy
of an electron-pair bond as a function of the
distance between nuclei,—i.e., it gives the sum
of the Coulomb and exchange energies. In order
to evaluate each energy separately, however, it
is also necessary to know their ratio. Eyring
makes the further quite arbitrary assumption
that this ratio is 14/86, since this is the value
which makes his theory yield the observed
activation energy, determined from para-ortho
conversion, for the simplest chemical reaction
H+H,—H.+H. (Incidentally, agreement with
experiment i$ obtained with this ratio only if we
neglect the zero point energy of the activated
state.) He also supposes that the ratio is the
same for all nonmetallic electron-pair bonds.
The reason why the method is called ‘‘semi-
empirical”’ is now clear. With these assumptions
Eyring and his collaborators have been able to
calculate activation energies for a wide variety

of reactions, the agreement with experiment in.

all cases being surprisingly good. A few examples
of its value in chemical kinetics will now be given.

As is often the case in calculating quantities
approximately, we may expect that the difference
in two values is more reliable than the absolute
value of either one of them. Fortunately, it is a
knowledge of just such differences which is
necessary for deciding between various mechan-
isms for a chemical reaction, and hence renders
the calculations quite useful to the chemical
kineticist. For example, the thermal conversion
of para to ortho-hydrogen may occur by one of
two mechanisms:

(a) Hem+Hem—Hzo+Hzo,
(b) H:;=2H, H+H:—Haw+H.

Whether mechanism (a) or (b) is operative will
of course depend upon which mechanism involves

AND A. SHERMAN

the lowest over-all activation energy. This energy
for the first mechanism will simply be that for
the reaction between two hydrogen molecules.
The activation energy for the second mechanism
will equal approximately the activation energy
for the reaction H+H,—H:+H plus one-half®
the heat of dissociation of H,. The calculated
results are

Reaction A

(a) He+H.—H,+H, 68.7 cal.
H+H:; —»H.+H. 7.9
)y 2P =512
59.1

Thus, one would predict the thermal conversion
of para to ortho-hydrogen to go via the atom
mechanism, in agreement with experiment.®’

The calculations lead one to expect that the
hydrogen, chlorine combination will go via an
atom mechanism, whereas the hydrogen, iodine
combination will be a direct bimolecular reaction,
—in agreement with experiment.

For the 1,4 addition of Bry to bitadiene one
calculates® an activation energy of 31.3 kg. cal.,
whereas the 1,2 addition involves an energy of
41.7 kg. cal.,—leading to a prediction in agree-
ment with experiment, but superior to the old
organic explanation of the 1,4 addition (Thiele’s
theory of partial valence) because it allows some
1,2 compound to be formed. Recent experimental
evidence®® confirms the theoretical conclusions.

One calculates a lower activation energy for
the addition of hydrogen to- cyclohexene than
to 1,2 dihydrobenzene. The activation energy
for the addition of a molecule of hydrogen to
1,2-dihydrobenzene is in turn lower than that to

9 To prove this fact, we note that the speed of the second
part of the reaction (b) is given by

—d(Hyp)/dt=a(H)Hap)e4/RT,

where (H) denotes the concentration of monatomic H pres-
ent, etc. Now from the usual equilibrium constant relation,
we have (H)2/(Hy ) = 2F/ET Next we notice that for our
purposes it will be an adequate approximation to replace
the change in free energy AF by the Heat AH of the reac-
tion, Hy—2H. Then —d(Ha(y))/dt = a(Hay )32~ (A FARIDIRT
and the exponent, or effective activation energy, thus con-
tains AH/2 as an additive term.

97 L, Farkas, Zeits. f. physik. Chemie B10, 419 (1930).
( 98 E)yring, Sherman and Kimball, J. Chem. Phys. 1, 586

1933).

% G, B, Heissig and J. L. Wilson, J. Am. Chem. Soc. 57,

859 (1935).
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benzene. Thus one calculates that in the re-
. +Hz . +H;
actions benzene —1,2-dihydrobenzene — cyclo-

+Hz

hexene — cyclohexane, the third reaction is
faster than the second, and the second faster
than the first. Therefore one would predict the
hydrogenation of benzene would lead to cyclo-
hexane and not 1,2-dihydrobenzene. If one is
willing to admit that this same relative order of
reaction rates will hold on a surface, one would
predict the same thing for the heterogeneous
reaction,—in agreement with experiment.

One might expect by chance that a reaction
may proceed by two mechanisms, the activation
energies of which are practically the same. In
this case both mechanisms would be simultane-
ously operative. An example of such a reaction
is the decomposition of CyHl,, which may
proceed as a straightforward unimolecular de-
composition, or as an iodine atom catalyzed
reaction. The former mechanism involves an
activation energy, according to Sherman and
Sun,® of 30.0 kg cal., whereas they calculate for
the latter mechanism an energy of 28.1 kg cal.
Thus, they predict the two mechanisms would
be concerned in the decomposition of C,Hl,,
and this is just what Arnold and Kistiakowsky!%°
find experimentally.

The examples given above serve to illustrate
the usefulness of the calculation of activation
energies in chemistry, particularly to the chemi-
cal kineticist. They also serve to emphasize
what has already been previously mentioned,—
namely, the arbitrary nature of ordinary valence
theory, which simply predicts whether a molecule
is stable or not. Thus, CyHl, is stable from
almost any valence theory point of view, but is
certainly unstable under the conditions of tem-
perature and pressure which Arnold and Kistia-
kowsky!? used in their experiments for measur-
ing its rate of decomposition.

In the foregoing discussion, we have concen-
trated primarily on the qualitative determination
of relative activation energies for different
processes. The quantitative agreement which
Eyring obtains with experiment is exceedingly

(1;34A). Sherman and C. E. Sun, J. Am. Chem. Soc. 56, 1096
0], B.*Arnold, Jr. and G. B. Kistiakowsky, J. Chem.
Phys. 1, 166, 287 (1933).
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good, but we do not lay too much stress upon it,
because it seems to be. destroyed when the
corrections for nonorthogonality and higher order
permutations are taken into account, as Coolidge
and James® have shown. Perhaps, as Professor
Slater has suggested to us, one reason why
Eqgs. (65) and (66) work so well in activation
processes is that they may in a certain sense be
regarded as convenient simple interpolation
formulas between known energies for the initial
and final configurations, which might conceivably
be approximately correct even though the
Heitler-London theory were completely wrong.
Even if (65) and (66) are regarded as interpola-
tion formulas, there is still the unsettled question
why it works so well always to take the exchange
and Coulomb integrals in the ratio 86 to 14
whereas direct computation seems to show that
the ratio can vary considerably from atom to
atom.!%. 192 Tt is to be stressed that in any case
Eyring’s method is as useful as it is non-rigorous,
for it really enables one to predict processes
correctly in advance of measurement.

29. Resonance energies—aliphatic and aromatic
compounds

In the present section we consider a variety
of molecules in which one must use the directed
theory of valence, but cannot make the approxi-
mation of electron pairing. The standard example
is benzene, which was first studied by Hiickel.}%?
For the bonds whose dumb-bell axes are in the
plane of the benzene ring it is at least a first
approximation to assume electron pairing. One
can use for each carbon atom the three sp?
functions described in section 25. They will give
three coplanar bonds projecting from the C atom
and making mutual angles of 120°. Clearly one
of these bonds is to be used to attach the H
atoms, and the other two to form electron pairs
with the appropriate adjacent C atoms. In
addition there are the three =7 bonds connecting

10t Cf, Eyring, Chem. Rev. 10, 119 (1932); the Coulomb
percentage is for instance 22 rather than 14, in Li;,* and
is 28 in Na,*, In H; it is about 10.

102 Dr, Kimball points out to the writer that the 86 per-
cent ratio cannot possibly hold clear down to =0 and so
cannot really be independent of 7. Actually the potential
energy to curves go + « at =0 for both the singlet and
triplet state. With an 86 percent ratio, however, one would
go to + «, and the other to — » or vice versa, an absurdity.

108 E, Hiickel, Zeits. f. Physik 70, 204 (1931).
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the six 2p dumb-bells whose axes are perpen-
dicular to the plane of the paper. These bonds
are represented by the second or inside lines in
Fig. 14. It is obvious that there is no unique
scheme of pairing for these =« bonds, as either
scheme A or B is equally good. There are also
three other schemes of pairing C, D, E which
are not as good, and which are hence called
“‘excited structures’” by Pauling. In addition one
might seek to construct figures in which the
lines crossed, but it can be shown that they are
not linearly independent of the five structures
shown in Fig. 14, in agreement with the de-
duction in section 17 that the corresponding
secular problem #=6 is of degree five. The
linearly independent electron pair structures are
called by Pauling®! a “‘canonical” set. The wave
function for benzene is represented by a linear
combination of the five canonical functions, each
corresponding to a particular scheme of electron
pairing: i.e.,

5
V=3 ar¥y.
k=1
If one of the five coefficients were large compared
with the other, electron pairing would be a good
approximation, but clearly two are equally
dominant in benzene. The exchange energy
which one would calculate with one of the
structures A, B in Fig. 14 is 1.5J,,, where J,.
is the mr exchange integral between adjacent
atoms. We have not included exchange integrals
between non-adjacent atoms, nor the large
amount of energy involving bonds in the plane
of the benzene ring, for which the deficiencies of
electron pairing do not arise acutely. This result
1.5J.» is seen by using (40), as three of the
exchange coefficients (viz. those pairing say 1-2,
3-4, 5-6) have the value +1 and the other three
(those involving 2-3, 4-5, 6-1) have the value
—3. Accurate solution of the secular problem!4
shows that the exchange energy should be

1% E. Hiickel, Zeits. f. Physik 70, 279 (1931); also Pauling
and Wheland, reference 105; Seitz and Sherman, reference
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2.6055J .. The value 2.4J,, is obtained!® if one
includes only the two structures A, B in Fig. 14
but not C, D, E.

In sharp contrast to the situation in benzene
is that in methane. Instead of using the approxi-
mate formula (41) or (59) based on a natural
system of electron pairing discussed in section
17 one can use a more accurate expression not
assuming electron pairing. However, it is found®®
that the difference is negligible, and that (59)
differs by only 3 percent or so, from the correct
exchange formula.

The variational theory discussed in section 12
shows that a lower energy (firmer binding) is
obtained, the more complete the wave functions
used in (27). Hence the energy computed with
the assumption of electron pairing is always
higher than that computed without the special-
ization to this energy. The difference between the
two energies is called by Pauling the resonance
energy. Thus in the benzene case mentioned
above, the resonance energy was 1.1055|J..].
The term owes its name to the fact that there is
no unique scheme of electron pairing, so that the
molecule may be said to spend part of its time
in, or ‘“resonate between’’ each of the various
structures.

It would be an obvious triumph of quantum
mechanics if it could account for the stability of
the benzene ring, i.e., why benzene is the most
stable cyclo hydrocarbon. This goal cannot be
achieved simply by the consideration of reso-
nance energies, as with the H-L-S-P approxima-
tion benzene has a resonance energy per atom
inferior to that of the unknown compound
cyclobutadiene (C4H,), which has a ring of 4
rather than 6, and which can be shown to be
the best ring from the standpoint of resonance
energy in the H-L-S-P method. Namely, it can
be shown'®® that the C4H4 exchange energy is
2J x, of which J. is the value obtained with the
assumption of electron pairing, and the absolute
value of the remainder J,, is ‘‘resonance energy.”’
Thus the w7 exchange energy per particle is
2J.»/4, superior in magnitude to the value
2.6J:-/6 in benzene. However, it is not surprising
that a superior stability is not indicated for

54; Serber, reference 54 (arranged approximateby in order

of increasing simplicity).
1% Pauling and Wheland, J. Chem. Phys. 1, 362 (1932).
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benzene, as the most important bonds are those
in the plane of the benzene ring, and it is not to
be expected that the w7 bonds are the deter-
mining factor in stability. A correct calculation
should therefore investigate the directional va-
lence in the plane of the benzene ring. Such an
investigation has been made by W. G. Penney.1
He finds superior stability for the group of six
as compared to other rings. The nice thing is
that the result is independent of the values
assumed for the various exchange integrals, over
a reasonably wide interval. The theoretical
stability relative to 3C;H. is still uncertain. If
one does not use the directional properties of the
wave functions, then one finds that energy is
liberated on dissociation of benzene into three
acetelyene molecules. This Markov!®” showed
with a calculation based on the nondirectional
theory of valence wherein each C atom is given
aspin of 3/2, the remaining spin being considered
bound by the H atom. Since actually directional
effects are important, little weight can be
attached to Markov's conclusion, which is in
contradiction to experiment.

Pauling, Wheland, and J. Sherman!?®. 108, 109
have ingeniously calculated theoretical resonance
energies for a large number of aromatic and
aliphatic compounds, most of which involve
benzene, or conjugated benzene rings as, for
example, naphthalene, anthracene, hexaphenyl-
ethane, etc. The secular equations are usually
too large to solve accurately but are tractable
with certain reasonable simplifying assumptions.
Their general idea of resonance energy as an
important factor in hydrocarbon compounds
seems to us a very fundamental and interesting
one, but we believe that only an empirical
significance can be given to the purported
comparison of theoretical and observed resonance
energies, much of the trouble being with the
latter. The so-called observed values are obtained
by assuming bond additivity, i.e., by taking
values for the first and second C—H bonds, as
deduced from C,Hg and C;H; and multiplying
them respectively by the number of first and
second bonds in the compound. The excess of

18 W, G. Penney, Proc. Roy. Soc. A146, 223 (1934).

107 M, Markov, J. Chem. Phys. 1, 784 (1933).

108 Pauling and J. Sherman, J. Chem. Phys. 1, 606, 679

(1933).
109 [, Sherman, J. Chem. Phys. 2, 488 (1934).
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the observed energy over the bonding energy
thus computed is termed the “‘observed” reso-
nance energy. In other words, in compounds
permitting resonance, Pauling and collaborators
attribute all the departures from bond additivity
to resonance. There are, however, many other
factors which can cause deviations from addi-
tivity.

In the first place the CH bonds are themselves dependent
upon the type of surroundings of the various C atoms.
Thus a CH bond in C;Hj is not the same as one in C;H«
since in the former the central C atom presumably has sp
instead of sp? hybridization. Furthermore the C—C dis-
tances are known not to be the same in all compounds
compared. They are different, for instance, in C;H, than
in C¢Hg. Also there is the difficulty that even in non-
resonating systems the wm part, for instance, of the
exchange energy is not equal to the number of bonds
times the energy of one bond. Thus in benzene, this part
was not 3J.r, i.e., three times the strength of the second
C bond, but rather 3/2J,, the difference being due to
the exchange terms with coefficients —1/2. Similar com-
plications arise in connection with the part of the energy
involving the bonds in the plane of the benzene ring,
although the difficulty may not be as acute, as here the
wave functions overlap less for the terms with exchange
coefficients —1/2 than those with exchange coefficients
+1. Furthermore, the number # of C atoms to be pro-
moted to the valence state is not in general the same as
the number m of C—C bonds, so that the promotional
energy per bond is #/m times the excitation energy for the
valence state, and thus is not independent of #.

Of course it can well be argued that the
observed deviations from additivity are found
experimentally to be small in compounds not
permitting resonance, and so one can attach
qualitative significance to the so-called observed
resonance energies, but they do seem of rather
limited meaning from a fundamental theoretical
standpoint. It appears to be a pure accident due
to the cancellation of various sizable terms
mentioned in the preceding paragraph that bond
additivity holds as well as it does. Calculations
relevant to this subject have been made by R.
Serber.® He allows for most of the various
complications mentioned in the preceding para-
graph and computes the binding energies listed
in Table IV. The experimental values have been
taken from papers by Rossini and Pauling. The
exchange integra)s necessary to Serber’s calcu-
lations have been deduced in a somewhat arbi-
trary fashion partly from empirical spectroscopic

10 R, Serber, J. Chem. Phys. 3, 81 (1935).
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TABLE*IV. Energies of hydrocarbons.

Calc. Obs.
Methane CH, (16.3)v 16.3v
Ethane C;H, (27.6) 27.6
Propane C;Hs 38.9 38.9
Butane CsHyo 50.2 50.2
Ethylene C:H, (21.8) 21.8
Propylene sHg 33.1 33.1
1,2,3,4 tetrahydrobenzol CeHio 61.9 61.8
Cyclohexane H 2 67.4 67.1
Acetylene C:H: 14.9 15.2
Benzene CeHs 52.2 52.2
1,2 dihydrobenzol CeHs 56.3 56.7
Naphthalene CioHs 81.4 82.5

data and partly from the binding energies
inclosed in parenthesis in the table, which have
been purposely fitted. The computed values for
the other molecules in the table, agree better
with experiment than do the values computed
on the basis of additivity. The agreement would
presumably be spoiled if the nonorthogonality
and higher order permutations mentioned in
section 18 were included. Here again we have an
illustration of the strange fact that the Heitler-
London method seems to work best in its
crudest form.

Chemists are coming to realize increasingly
the importance of “free radicals,” which have
one free spin, such as e.g., the phenylmethyl
radical (C¢Hs) CH,. Their reality has been demon-
strated most conclusively by magnetic measure-
ments, which often reveal paramagnetic suscepti-
bilities?* conforming to the theoretical value
for S=3%. Saturated compounds are, of course,
diamagnetic. Pauling and Hiickel have inde-
pently given a very nice interpretation of the
possibility of the existence of free radicals in
terms of resonance energies.!®®:11 In a free
radical, there is one uncompensated spin which
has various possible locations. The various
possible locations in the case of phenylmethyl
are shown in Fig. 15. The free spin is indicated
by x. The free radical can resonate through
these many different positions for the free spin,
thus lowering the energy. On the other hand
when two free radicals team together to form a
saturated compound, the extra, spin can only be
located in one place (e.g., form A of Fig. 15)

m E, Hickel, Zeits. f. Physik 76, 628 (1933); Trans.
Faraday Soc. 30, 40 (1934).
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Fi16. 15. The five unexcited canonical structures contribut-
ing to the normal state of the phenylmethyl radical.

if it is to lose its freedom and pair with the spin
of another radical, the mirror image of A.
Hence resonance effects put a premium on
dissociation into radicals. Against this idea it
may be said that even in the saturated compound
the bond between the two radicals may be broken
a fraction of the time, so that here still the
molecule can resonate through the extra phases.
However, the breaking of this bond is a large
sacrifice, and these other phases are less im-
portant than in the free radical. Hence Pauling
and Wheland’s calculation of the heat of dis-
sociation into free radicals can be regarded as
probably qualitatively sound even though it
considers resonance possible only after dissocia-
tion.

CHAPTER IV. PoLvyATOMIC MOLECULES BY THE
METHOD OF MOLECULAR ORBITALS

30. The electron pair bond

We now turn to the method of molecular
orbitals. In this procedure, the concept of the
electron pair bond finds expression in the fact
that a given molecular orbital can, by the Pauli
principle, house two electrons, whose spins are
then necessarily anti-parallel. Consequently most
molecules are diamagnetic. One can immediately
understand, at least in a vague qualitative way,
the valence rules derived in section 21 by the
Heitler-London method. An important feature
of these rules was the occurrence of higher
valences for periods beyond the second in the
Mendeléef table (e.g., valence of 1 for fluorine,
up to 7 for chlorine). This behavior is now
interpreted as follows. The molecular orbital
can, to a first approximation, be regarded as a
linear combination of atomic orbitals of the
various constituent atoms. In a fluorine com-
pound there are four different moleculat orbitals
whose fluorine constituents are, respectively,
2s, 2po, 2pmy, 2pm_ or, better, four linear
orthogonal combinations thereof. These four
molecular orbitals can house eight electrons, so
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that one extra electron besides fluorine’s contri-
bution 25225 is desired. A valence of 1 is thus
implied. Of course one could have molecular
orbitals involving d orbitals of F in fluorine
compounds, but they would be excited states
not useful for valence purposes, as the increase
in the principal quantum number for 3d as
compared with 2s, 2p raises the energy so much
that such molecular orbitals could not be classed
as ground states normally occupied. On the
other hand, in chlorine, there are nine different
molecular orbitals whose chlorine ingredients are
3s, 3p%, 3d5, all of the same principal quantum
number. There are extra housing accommodations
thus available for up to 18—7=11 electrons.
One would thus expect valencesof 1, 3,5, 7, 9, 11.
That the number of valences is odd is in agree-
ment with experiment, and is a consequence of
the ability of each molecular orbital to house
two electrons. Namely, the molecular orbitals
do not in general all have the same energy, so
that only a certain number of them will be
populated, but then accommodations are avail-
able for an even number of electrons in all. Since
chlorine has seven valence electrons, an odd
number of electrons can be accommodated from
neighboring atoms. It is not immediately clear
why there could not be valences of 9 or 11, but
they are probably to be excluded on energetic
grounds.

The nice feature of the method of molecular
orbitals is that it is noncommittal on the amount
of polarity for the compound and so has general
applicability. As in section 2, consider, as a
simple illustration, a diatomic compound in-
volving two atoms A, B and assume that a
molecular orbital can be regarded as a linear
combination

v=ayr+(1—a?)¥ys (68)

of the appropriate atomic orbitals of A and B.
We shall neglect the nonorthogonality, or “over-
lap” integral (4), and with this approximation
(68) is normalized to unity if ¥, and ¢p are.
By varying ¢ from 0 to 1 we have all grades
of polarity from A+*B~ to A~B+ (cf. section 3).
The ideally covalent case is given by a=+/3.
Whether ¢, or y¢p is preponderant in (68)
depends on whether atomic orbital A or atomic
orbital B has the deepest energy. The covalent
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case arises when the energy separation of A and
B is small compared to the “‘resonance integral’’
defined below which is the dominant factor in
binding. Thus the ionization potentials of two
atoms united by a covalent bond must not
differ too widely.

To give these ideas mathematical shape and basijs, one
sets up the secular problem connected with the determina-
tion of the coefficients in (68). This can be easily formulated
by means of the variational method, although other
procedures could be used, leading to the same result. If
we substitute (68), the energy integral (27) becomes

@W ,+2a(1 —a?)}R+(1 —a?) W, (69)
Here R denotes the so-called resonance integrall!?
R=JSSY By pdv=JS S sHY xdv, (70)

while
Wa=JSSSV By xdv, We=JSSSY By pdv

are, respectively, the internal energies of the two atoms
augmented by the Coulomb energy due to the other atom.
The Coulomb energies are presumably small, so that
W\, Wy are approximately the energies of free A and B
atoms. Do not confuse the resonance integral (70), which
is a one-electron affair, and the exchange integral (19)
which involves a six-dimensional integration over the
coordinates of two electrons. The resonance integral is
characteristic of the method of molecular orbitals while
the exchange intergal is the major source of binding in
the Heitler-London theory.'® The expression (70) ought
really to have a denominator 14+27a(1—a?)? where T is
the over-lap integral (4), but we have agreed to neglect
T in comparison with unity. This approximation is allow-
able for the present qualitative study. In accordance with
the variational method, we now minimize (70) with respect
to @, thus obtaining the following values of ¢

a?=}£[(Wy—Wy)/2X ], with X?=4R2+ (W)~ Ws)%. (71)
The corresponding minima of (69) are
W=3(W ,+Wy)£iX, (72)

and are the energy levels corresponding to (71). Clearly if
(W ,o—Wg)®>>R? then a* will be nearly 0 or 1 (polar
behavior), while a?=} (covalence) if the inequality is
reversed.

When we have a compound involving more
than two atoms, the atomic orbital of the central
atom will be mingled with the atomic orbitals of
all the attached atoms, as we shall see in section
33 that we cannot apportion different molecular
orbitals to different attached atoms. Instead in
general the various attached atoms all participate

12 The two integrals in (70) are equal because H is a
self-adjoint operator.

13 [t may be noted that the Heitler-London theory in-
directly involves the resonance integral, as the second term

in the exchange integral (19) is the Hund resonance inte-
gral for Hy* multiplied by twice the overlap-integral (13).
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together in the construction of a given molecular
orbital. Hence with more than two atoms, we
must replace the second term of (68) by a sum
(1 —az)Ekck\pk, (2k5k2= 1)

over all the attached atoms k. The covalent
case 15 still a=+/%, as then the bonding electrons
spend as much time on the totality of attached
atoms as on the central atom.

31. Difficulty with affinity for extra atoms!!

There is one weakness in all the above argu-
ment. Namely, it has been assumed that the
number of attached atoms equals the number of
bonds, or deep molecular orbitals. However,
according to crude calculations by the method
by molecular orbitals, it is usually desirable to
have extra atoms even though they cannot
contribute any bonding electrons. The reason is
that even though the number of bonding elec-
trons stays the same, these electrons have
increased freedom because there are more atoms
that they can migrate between, and hence
greater play is given to the resonance integrals.
Thus H; is found to have less energy than H,,
an absurd result. We shall show near the end of
the appendix that a similar difficulty does not
arise in the Heitler-London method.

This statement regarding the molecular or-
bitals of H; is established by a simple calculation.
If there are three equally spaced attracting
centers forming a linear configuration, one finds
that the secular equation analogous to (72) is

Wu—W R 0
R Wu—W R |=0. (13)
0 R Wu—W

Here we have neglected, besides the nonorthogo-
nality, the resonance integrals not connecting
adjacent atoms, and also the inter-atomic
Coulomb energy. Without disregard of the latter
the entries along the principal diagonal would
not all be the same.

14 The difficulty stressed in this section was first called
to the writer's attention in a conversation with Dr. London.
Another discussion of H; (and Hj;*) has recently been
published by C. A. Coulsen, Proc. Camb. Phil. Soc. 31,
244 (1935).
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The simplest way of establishing (73) is to substitute
an assumed solution
Y=cw1tcopatcaps

in the wave equation (H—W)y=0. On integrating the
resulting expression over i, Y2, or y¥; we obtain three
linear expressions in ¢i1, ¢, ¢3 which must vanish if the
wave equation is satisfied. For a non-trivial solution to
exist for ¢1, ¢5, ¢s the determinant of the coefficients must
vanish, yielding (73). The same result is obtained by the
variational method by a little more labor, but more
rigorously, as one then sees that (73) represents the
deepest possible energy levels which it is possible to obtain
by the assumed construction of molecular orbitals out of
atomic ones.

The roots of (73) are

W=Wx—V2R, Wu, Wu+V2R, (74)

whereas (72), specialized to the case A=B gives
W=Wyu=xR. (75)

Comparison of (74) and (75) shows that the
addition of the third attracting center has con-
siderably lowered the energy of the deepest
molecular orbital W —+2R. Here and elsewhere
we assume that the resonance integral R is
positive; this supposition involves no loss of
generality since the sign of R is really arbitrary
on account of ambiguous phase factors in the
wave function. Of course this deep orbital can
house only two electrons, and the third must be
placed in the nonbonding orbital W= Wy, but
even so the energy of Hj is

W=2(Wu—VIR)+ Wy (76)
and thus is lower than that 2(Wyg—R)+ Wy of
H,+H.

One can show that with similar approxima-
tions the energy of CHj; is lower than that of
CH,+2H, and that of HCIH lower than that of
HCI. In fact one can find any number of cases
where increased stability is obtained by adding
atoms to form compounds which are a barbarism
from a chemical standpoint.

A partial answer to the difficulty is that
though the total energy is usually increased by
the addition of extra atoms not allowed by the
usual valence rules, the energy per atom is
diminished. Thus in Hj, the bonding energy per
atom is 2V2R/3=0.94R, against R in H,. How-
ever, examples can be found where even the
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energy per atom is increased. Thus in section 35
we shall see that with the same type of calcula-
tion as in (73), the energy per atom would be
lower in Hg than in Hs. Of course the real answer
is that the method of calculation used in Egs.
(73), (74), (75) is too naive. The insertion of the
Tesonance integrals between non-adjacent atoms
might improve matters somewhat. Also it would
be much better if we did not seek to approximate
the molecular orbitals as linear combinations of
atomic orbitals. This approximation is not an
inherent feature of molecular orbitals, and im-
proved wave functions obtained by a variational
procedure or otherwise would doubtless yield
less shocking conclusions. Perhaps the improve-
ment needed most of all is the inclusion of 7y,
repulsions. With these repulsions the nonbonding
orbital would presumably become anti-bonding.
After such refinements the difficulties would
ultimately disappear, but it is probably fair to
say that the crudest forms of the method of
molecular orbitals do not give the elementary
valence rules as sharply and succintly as the
Heitler-London method.

It is clear that simple calculations such as (73)
by means of the method of molecular orbitals
expressed as linear combinations of atomic or-
bitals, are grossly inadequate for determining
energies of activation, since the approach of
another atom will lower the energy rather than
introduce a potential hill. The critical inter-
mediate, or activation stage, for instance,
through which the system must pass in the
reaction H4+-H,—H:+H is a temporarily sym-
metrical H; form. A method of calculation which
makes Hj below Hs+H manifestly cannot yield
reasonable results on activation without a great
deal of refinement. Hence the reader will find no
section on activation energies in the present
chapter.

32. Geometrical arrangement—the H,O mole-
cule

The method of molecular orbitals leads to the
same conclusions on the spatial arrangement of
the atoms in simple compounds like methane,
water, etc., as does the H-L-S-P method, and if,
anything, still more simply. Thus the molecular
orbital procedure embodies properly the essential
ideas of directed valence. We shall prove in the
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next paragraph, for instance, that it leads to a
right-angled model of H;O if we neglect H—H
repulsions. One of us has made calculations on
methane and related molecules by the method
of molecular orbitals. The secular equation
proves to be of the eighth degree, and too
complicated to solve in general. However, various
different simplifying approximations can be
made, each of which enables the secular equation
to be solved and it is shown that in every case
the tetrahedral model is the one of lowest
energy.!'® It is particularly satisfactory that this
result is obtained without the rather artificial
assumption of hybridization, especially as the
sp separation is really not small.” Instead the
s state can be much more deeply bound than
the p, so that the major valence effects are from
the p orbits, and still the tetrahedral model is
best. Furthermore one predicts!'® in CHCl; and
CH:Cl, deviations from tetrahedral symmetry
of the same sign as in the H-L-S-P procedure.
Penney* has considered C;H; on the Hund-
Mulliken scheme, and the problem, where
tractable leads to the same conclusions as in the
H-L-S-P method of electron pairs.

In section 23, H,O was treated by the H-L-
S-P theory. It is therefore of some interest to
examine this same molecule here in a little
detail. The present method of calculation!'® not
only forms an interesting contrast to the H-L-
S-P but also throws instructive light on the
molecular orbital procedure. The problem is
considered to involve four electrons, namely one
from each hydrogen atom, and two 2p electrons
from the oxygen atom as shown in Fig. 7,
section 23. Of course there are four other two
quantum orbits in oxygen, two 2s and two 2p
functions, but the 2s give no directional effects
on account of their centro-symmetric charge
clouds, while the other 2p functions can be
taken to have their dumb-bell axes perpendicular
to the plane of the paper in Fig. 7. They then
have nodal surfaces in the plane of the paper,
and so exert no bonding effect. For the four
important electrons, the molecular orbitals can
be taken to be a linear combination of the
following four atomic orbitals:

115 J. H. Van Vleck, J. Chem. Phys. 1, 219 (1933).
116 Calculations of the present general sort on H;O were
first made by Hund, Zeits. f. Physik 73, 24; 74, 429 (1931-2).
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Vapoas Yepoys VHgr Vay (77)

The first two functions of (77) belong to the
oxygen atom, and are of the type explained in
section 22. We can immediately write down the
proper secular equation, which will be of degree
4. It is, however, convenient to introduce in
place of (77) new wave functions

o' = (1/V2) (Y2pozt2pes),
Y’ = (1/V2) (Y1 +ym),
Yo' = (1/V2) (Y2000 —V¥2p04),

o= (1/V2) (Y. —ym),

as then the secular equation factors into two
quadratics in the symmetrical case a=a’ shown
in Fig. 7. Assumption of this symmetry involves
no loss of generality, as the x and y axes can
always be oriented so that it is achieved. The
factorization is a consequence of the fact that
Vo', ¥u’ and the Hamiltonian operator H are all
even, while y¥o'’, ¢u'’ are odd with respect to
reflection in a line inclined at 45° to the x axis in
Fig. 7. Hence H can yield no matrix elements
connecting o', ¥u' to Yo'/, ¥u'’. (The vanishing
of the matrix element is equivalent to saying
that the resonance integral ///"y''Hy'dv equals
zero, and this will be the case if the integrand
is odd, i.e., contains one or three odd factors.)
The secular equations are thus

Wa—W R(O'; H))
RO;H) Wo—W |

(78)

(79

0, (80)

and a similar equation involving O”, H”. For
simplicity, we have, as in (73), disregarded non-
orthogonality, and the Coulomb terms, so that
Wo, Wy can be identified with the energies of
the free O, H atoms. Also we have not included
resonance integrals connecting two H atoms, as
we are focusing attention on the directional
effects emanating from the central atom. In
virtue of the transformation properties expressed

in (48), the resonance integrals are
R(O’; H)=Q, cos a+Q, sin «, -
R(O"”; H")=Q, cos a—Q, sin a,

with a=a' as in Fig. 7. Here we have introduced
the notation

H. VAN VLECK AND A.
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Qo= S S S V200 Hynidy,

where ¥s,,: means a 2po wave function of O when
the quantization is relative to the axis O —H;.
The value of Q, is zero.

We are interested in twice the sum Z of the
lower root of (80) and the lower root of the
corresponding equation with double primes, as
these two roots together can house four electrons
in all.!'” The formula for 2% is, by (80-81)

22=2Wyu+2W,
—[(Wa—Wo)2+4R(O'; H')2 ]}
~[(Wa—Wo)*+4R(0"; H")?].

Since (81) shows that (82) is unaltered when «
is replaced by 37 —a, it follows that (82) has
extrema at =0, /4 (mod. 7/2). Also one finds,
by second differentiation, or otherwise, that
a=m/4 yields a maximum and =0 a minimum.
Hence the right-angled model is the most stable.

(82)

33. Absence of localized bonds—tetrahedral and
octahedral compounds

The Slater-Pauling theory of directed valence
is characterized by wave functions of the central
atom which project out in one particular direc-
tion, and so are particularly fit to attach one
particular atom. The situation is quite different
in the method of molecular orbitals, as here a
given molecular orbital or bonding wave function
will in general involve the atomic orbitals of
several attached atoms. For instance in (78-79)
Yu' (also yu'’) contains both yu, and ¢y, This
means that one cannot assign ‘localized bonds"
each of which embrace one particular attached
atom. The physical picture is that in the method
of molecular orbitals one has itinerant electrons
which vagabond from one attached atom to
another. Of course, more than one itinerant
electron may happen to visit the same attached
atom at the same time. As we saw in section 3,
a weakness of the method of molecular orbitals
is that there is an excessive number of such
coincidences.

17 As Dr. Coolidge points out to the writer, the expres-
sion (82) is not really the binding energy, as it counts the
mutual potential energy of the electrons twice rather than
once. (Such a difficulty is inherent in any Hartree procedure
when one adds up energies of individual electrons.) The
resulting error is, however, probably not serious as long as

we are interested in qualitative directional behavior rather
than quantitative binding energies.
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TABLE V. Molecular orbitals of various symmetry types.
IRREDUCIBLE REPRESENTATION
MULLIKEN (BETHE) CENTRAL PORTION ATTACHED PORTION
Tetrahedral configurations (CHy, etc.; group Ta)
A, (T ¥(s) (Yr+vot+vs+va)
¥(poz), ¥(de) (Y12 —ys — )
T» (T's) ¥(pay), ¥(der) (Yr+¥s —y2 —u)
igdl’h;, ¥(der) (1 41\?#4 —y2 —s)
1 one
E (Ts) C\vldy) None
Pyramidal Configurations (NH; etc.; group Csy)
Ay (Ty) ¥(s), y(pa2), ¥(dy1) Vi +yat-ys)
E (1) { Y(poz), ¥(de), Y(dys) Vi1 =32 — 3ys)
Y(poy), ¥(de), ¥ (des) V(Y2 —ys)
Octahedral Configurations (FeF¢~ ~~ etc.; group O)
Ay () ¥(s) Vit tda v +vs+ve)
¥(pos) V30 —ya)
T (Ty) Y(poy) V(e s
Ve VB bty et
g4l zleys 6 —Y1—W4—Y2—Vs,
E (rs) ¥(dv) Wt —ga—di) }
V(der) None
Ty (Ty) V(dez) None
Y(des) None
Tetragonal or Square Configurations; Ni(CN),~ ~ etc.; group Dy
Ay (Tg) ¥(s), y(dv1) ety ya)
E (Tsa) Y(poz) V(1 —ys)
“ " Y(poy) V(Y —v4)
By, (Tag) ¥(dy2) $( s —y2 —y)
Asy (T ¥(poy) None
: (T4 %"; gone
&, one
E (Fs) {¥ios None |

If the molecule possesses elements of sym-
metry, the molecular orbitals will have symmetry
properties, associated usually with whether or
not the wave function changes sign under certain
reflections or inversions. If one is fortunate
enough to recognize these symmetry properties
at the outset, there is resulting simplification
because the secular determinant will factor
owing to the absence of matrix components
between states of different symmetry. For in-
stance, in the case of the HyO molecule, the
functions o’ and ¢y’ were even, while ¥’ and
Yu'' were odd as regards a plane orthogonal to
the plane of the paper and intersecting Fig. 7
in a line inclined at 45° to the x axis. In conse-
quence Yo', ¥u' did not combine with ¢o"/, ¥&"'.
In molecules where the bonds all emanate from
a central atom, one may distinguish between
what we call the central and attached orbitals,
which correspond respectively to the portions of
the complete molecular orbital contributed by
the central and attached atoms. The central
orbital is thus simply an atomic orbital of the
central atom, or where there is hybridization,

linear combinations of such orbitals. The at-
tached orbital is a combination of the atomic
orbitals of the several attached atoms. Thus in
our H;O molecule, yy', yu’’ are attached orbitals,
while Yo, Yo'’ are central ones. Incidentally,
Yo' and ¢o” are, by (48), the same as pure
2pa.’, 2pes, orbitals when referred to axes in-
clined at 45° to the xy axes in Fig. 7, so that
really no hybridization is involved in ¥’ or ¥o'’.
In the construction of molecular orbitals, only
attached and central atoms of the same sym-
metry can combine. The resulting restrictions
are summarized in Table V for the cases of
tetrahedral, pyramidal, octahedral and tetra-
gonal symmetry, which correspond respectively
to the crystallographic symmetry groups T,
Csv, O and Dgi. A molecular orbital is a linear
combination of the central and attached orbitals
listed on the same line. The percentages of
attached and central portions determine the
degree of polarity of the compound. All the
different molecular orbitals corresponding to
different lines included in the same parenthesis



220 J. H. VAN VLECK
will involve the same percentages and yield the
same energy.!!8

The various d functions occurring in the table
have been defined in (61-62). The wave functions
of attached atoms, 1, 2, are denoted by
Y1, Yo, -, respectively. In the tetrahedral case
the x, vy, z axes are chosen perpendicular to the
faces of a cube whose alternate corners are the
vertices of the tetrahedron. In the pyramidal
structure, the z axis has been taken as that of
symmetry. By a tetragonal compound we mean
one such as Ni(CN),~~ in which the attached
atoms are at the corners of a square, which we
consider to be located in the x, y plane.

The information documented in Table V is
obtained and codified most completely by means
of group theory, into which we shall not enter.
The orbitals inside the same parenthesis all
belong to the same “irreducible representation,”
in the language of group theory, and possess the
property that they transform only among them-
-selves under the covering operations of the
symmetry group. We give in each case Mulli-
ken's"8 notation for the irreducible representa-
tion, and also, in parenthesis, that of Bethe.?”
There are other irreducible representations of
the various groups besides those given in the
table, but these are not listed since they do not
enter into the construction of either “‘attached”
or ‘‘central” orbitals. (They would enter in
central orbitals built out of f, g, A, --- wave
functions, but never in the attached orbitals,
and so are clearly of no use for bonding pur-
poses.) A characteristic property of many irre-
ducible representations is a degeneracy in virtue
of which two or more levels coincide in energy.
The degree of degeneracy is called the ‘“number
of dimensions’ or ‘‘degree’” of the representation
and is equal to the number of lines occupied by
the irreducible representation in the table. Thus
in the octahedral case, there is a threefold
degeneracy for Ti., so that Ty, can house six
electrons in its deepest state. From a given line
of the table one can form as many linearly
independent molecular orbitals as the total
number of central and attached orbitals con-
tained therein. The number of such linear com-

18 Much, but not all, of the information in Table V was
contained in Mulliken, Phys. Rev. 43, 279 (1933); J. Chem.
Phys. 1, 492 (1933) and Van Vleck, references 7, 115.
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binations is equal to the degree of the secular
equation. Thus from the first line of E in the
pyramidal case one can form four molecular
orbitals, found by solving a biquadratic secular
equation. Only the lowest root will ordinarily
be of interest, and this will be the same as the
lowest root for the second line of E.

Instead of using group theory one may deduce, or at
least make plausible many of the results in the table by
examination of the nodal planes of the wave functions.
Let us consider, for example, the octahedral group. Here
the y(s) wave function has no nodal plane coincident
with one of the three coordinate planes. The y(de) func-
tions have two nodal planes, coincident with two of these
coordinate planes, as we see from (62). The nodal planes
of the functions y(dvz) and [(2)}¢(dv1) — 3¢ (dva) ] are® of
a different type, inclined at 45° to the coordinate planes.
One can verify that the nodal behavior of the correspond-
ing attached functions is similar. Functions whose nodal
planes are equal in number and equivalent in virtue of
the assumed symmetry clearly should have the same
energy. One can deduce much information concerning the
“noncombining”’ properties from the fact that the matrix
element of the Hamiltonian function connecting two states
vanishes if their wave functions are respectively even and
odd with respect to reflection in a symmetry center or
in some plane, which is clearly then a nodal plane for
the odd function. For this argument to apply it is necessary
that the Hamiltonian function have the assumed sym-
metry, so that it is itself even with respect to this reflection.
Thus Ty, and T, states, respectively odd and even for
inversion in the center, cannot combine. Also a wave
function of 4., does not combine with one of T3, as any
nodal plane for T3, is a symmetry plane for 4. By
examining the nodal and symmetry planes of ¥(dvys) or
[(2)}¢(dv:)— 3¢(dvs)] one sees that E, cannot combine
with 4, or T3, provided, of course that H has octahedral
symmetry.

In the case of the tetrahedral group some of
the symmetry elements are rotation-reflections
(i.e., reflections in a plane followed by rotation
by 90° about an axis perpendicular to this plane)
rather than simple reflections and so only a
limited amount of information can be gathered
by the examination of nodal planes. Instead the
covering operations of the tetrahedron are most
easily visualized as permutations of its vertices.
For instance, regardless of how we permute the

19 For derivation of symmetry properties wyithout the
use of group theory see especially Placek’s article on the
ga(;nég effect in Vol. VI of the Handbuch der Radioclogie,

n .

120 The difference (3)/(dv:) — 3¢ (dy,) is here used rather
than y(dvi) in order to have a wave function whose nodal
surface is a plane rather than surface of revolution (cf.
Eq. (61)).
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subscripts 1, 2, 3, 4, an attached orbital listed
under T still remains a linear combination of
the attached orbitals comprised in 3. To illus-
trate, the permutation (1234) applied to y1+y.
—y¥3—¥s yields 4+ Ya+¥s—y1—y), included in
the third line of T3, in agreement with our
assertion that the covering operations inter-
relate only functions of the same irreducible
representation. The transformation scheme for
the corresponding central orbitals can be shown
to be precisely the same. We have not labelled
where the attached atoms corresponding to the
various subscripts are located, but this informa-
tion can be determined by comparison with the
symmetry of the central wave function. Thus in
the group O;, atoms 1, 4 must be located on the
x axis since y¥(po,) is odd with respect to re-
flection in the yz plane. In the pyramidal case,
atom 1 has been chosen to be on the x axis.
Central orbitals which can be mated to
attached orbitals of similar symmetry may be
termed ‘“bonding,” while those without mates
are non-bonding. It will be noted that for a
given symmetry, precisely the same central
orbitals are bonding as were involved in Pauling’s
linear combinations discussed in section 26.
Thus Pauling utilized sp®d,? hybridization for
octahedral bonds, and did not employ d..
Reference to Table V shows that the s, p and d,,
functions form representations of the octahedral
group to which attached orbitals also belong,
whereas d. is isolated. The underlying reason
for this coincidence is supplied by group theory
and will be given elsewhere by one of us. There
is thus agreement between the method of
molecular orbitals and H-L-S-P on the types of
central functions which can bond. So one cah
say that, qualitatively at least, either method is
able to explain the stereochemistry of transition
elements. Regarding the latter, the strength of
the method of molecular orbitals is that it does
not require structures such as Ni~—(CN), in-
volving excessive negative charge on the central
atom. Its weakness is that it does not make it
so clear why C does not attach six atoms, since
in CH, the H atoms could be held by the s and
p functions by means of the 4y, T3, bonds. The d
states are too high to be inhabited in carbon
compounds and so the E, bonds are not operative
there. Apparently it is the existence of these
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extra E, bonds which stabilizes a coordination
number of six in the transition elements, but it
is not clear from the present standpoint why A4,,
and T3, alone are not enough. Perhaps SFsis an
example of a compound held together largely
by A4,, and T}, bonds, but it is also possible that
the old fashioned polar forces involved in the
structure S8+(F—6) are the major factor. This
structure can, however, be regarded as a limiting
case of molecular orbitals.

Some specific remarks on particular spatial
arrangements are the following:

Tetrahedral Compounds. Here the interesting
point is that the s and p functions belong to
different irreducible representations and do not -
hybridize. On the other hand one can show that
with unsymmetrical arrangements there is hy-
bridization. Table V shows that even in the
pyramidal structure the s and one of the p
functions belong to the same irreducible repre-
sentation. There is thus an interesting contrast
to the H-L-S-P method. In the latter it was the
hybridization (N,, term in Eq. (59)) which made
the-tetrahedron more stable than other arrange-
ments in CHy. On the other hand, in the method
of molecular orbitals, the distinguishing feature
of the tetrahedral arrangement is its absence of
hybridization in the central portion. Instead the
hybridization is in the attached orbitals.

Square Compounds. In Ni(CN),~— we have 16
electrons in all to house, regarding each CN
group as contributing one electron. With a
tetrahedral arrangement it would not be enough
to utilize only E, the deepest state of A4,, and
the three deep levels of type T3, obtained as
roots of three identical cubics corresponding to
the three lines of T3. Only twelve electrons are
thus accommodated. Consequently one would
have to employ two of the higher roots of the
cubics or of A4,. If they are antibonding, it is
thus better to have the square configuration,
since one then fills twice each of the lowest roots
of each representation, and it is not necessary to
resort to any of the higher roots since there are
eight lines in the fetragonal part of Table V.12
As with the H-L-S-P theory (section 26), mag-

121 It js, however, possible that the second lowest root of
Ayyisdeeper than the lone root of Az.. The ion will neverthe-
less still be diamagnetic even if this intermediate root of
A1, is inhabited in preference to Aau.
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netic data show unambiguously which of the
alternatives is correct. With the tetrahedral
structure the last four electrons have at their
disposal three equally good (or bad) orbitals
furnished by the intermediate roots of T%,
besides the single intermediate root of A4,. Since
all three corresponding roots of T3 all have the
same energy, there is no incentive for the
electrons to all “double up.” Instead two of
them can have private orbitals, and parallel
spins. The parallel arrangement is preferable to
anti-parallel for energetic reasons (cf. discussion
of O; in sections 8 and 10). Paramagnetism then
ensues, contrary to experiment. On the other
hand, with the square or tetrahedral structure,
sixteen electrons are snugly accommodated in
the eight lowest states'® and so there is dia-
magnetism, as is observed.

Pyramidal Structures. In NHj, one has eight
electrons to accommodate. One therefore must
fill twice each deep level of A;, E and also the
second deepest level of 4;. (One prefers 4, to E
because 4, contains both s and p portions.) The
higher root will evidently correspond to electrons
more easily ionized than the others, and it is
indeed found experimentally that the ionization
potential of NHj is 11.1 volts, smaller than that
14.5 volts of CH,.

Vi, u=a:[¥(25; 0a) +¥(25; 05) 1+0:[¥(2p02; 0a) +¥(2p02; O) J+-cd(2s; C),
Y, v=2a:[¥(2s; 0a) —¢(25; 05) J+e:[¥(2p02; Oa) =¥ (2p0.; 0s) ]+ f(2p0; C),
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34. w7 bonds

In section 33 we tacitly assumed that the
attached atom was either in an s state, or else
was in a po state with its dumb-bell axis directed
towards the central atom, as in Fig. 8. An
orbital which was a linear combination of the
two horizontal orbitals in Fig. 8 we call, as
before, a oo bond. In addition there can be
formed =r orbitals, obtained by combining the
two atomic orbitals shown in Fig. 10, or two
other atomic orbitals which are similar except
that their axes are perpendicular to the plane of
the paper. As first noted by Hiickel,*? these nr
orbitals are the source of the second and third
carbon bonds, the situation being quite similar
to that in the H-L-S-P method (section 25).
The first type of == orbital has a horizontal
nodal plane; the second type one in the plane of
the paper. Hence they do not combine with each
other or with the po and s orbitals if the molecu-
lar structure is invariant under reflection in
these planes.

The molecular orbital structure of CO, is as
follows. Let the x axis be the molecular axis.
There are eight molecular orbitals, each occupied
twice, and built up from two quantum atomic
orbitals as follows:

(=1,11)

(i=111, 1V) @)

Vv, vi=g[¥(2p0y, +; 0a) +¥(2p0y, 53 0s) ]+ (2pay, +; C),

Here the subscript y applies to V, VII and 2 to
VI, VIII. That there are two completely filled
(i.e., two twice-occupied) molecular orbitals of
each of the first two structures, involving differ-
ent coefficients, evidently originates in the fact
that they contain both the 2s and 2po. states of
oxygen. The orbitals yy: - Yy are =r ones,
with V, VI involving 3 rather than 2 parallel
dumb-bells as in Fig. 12. The result (83) has
been obtained by combining only those functions
which possess the same symmetries as regards
reflection in each of the three coordinate planes
which intersect at the C atom. It is illuminating
to compare this model with the treatment by

Yy, vin=k[¥ (200, +; Oa) —¥(2p0y, +; Os].

the H-L-S-P method given in section 25. There
is the difference that now the bonds involve
both oxygen atoms at once, instead of certain
bonds being directed towards O, and the others
towards O,. This is evidently in accord with
our statements regarding the inability to localize
bonds in the method of molecular orbitals.

35. Resonance energies

The method of molecular orbitals is about as
successful as the H-L-S-P procedure when it
comes to the subject of resonance energies.

122 B, Hiickel, Zeits. f. Physik 60, 423 (1930). This was
the first quantum-mechanical treatment of the double bond.
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The former was first applied to resonance by
Hiickel,!?® and it is indeed remarkable that such
a simple procedure should make as much head-
way as it does with such a complex phenomenon.
A rather interesting and amusing example of
probably fortuitous agreement between the m.o.
and H-L-S-P methods is provided by the ratio »
of the resonance energy of naphthalene (C;oHs)
to benzene. Both!?3.19 giye r=1.84. The so-
called observed value (see section 29) is r=1.90.
Almost as close agreement between the two
methods is also found for a variety of other
organic compounds. For a detailed comparison
of the calculation of resonance energies by the
two methods, the reader is referred to a valuable
article by Wheland.!?4

The calculation of resonance energies by means
of molecular orbitals is particularly simple in
the case of ring compounds. For benzene, for
instance, the secular determinant for the mr
bonds is

-W R 0o 0 0o R
R -W R ] o 0]
0 R -W R 0 o
=0, (84)
o 0] R -W R o
o o o R -W R
R o 0 o R -W

where R is the 7 resonance integral, and the
origin of energy has been shifted so that the
diagonal term of H is zero. Eq. (84) should be
reasonably apparent by comparison with (73).
There would, of course, be # rows and columns
were there n rather than 6 atoms in the ring,
and the element in the extreme upper right and
lower left corners would be wanting were the
compound a chain rather than ring. The roots
of (84), generalized to arbitrary » but still with
the ring arrangement can be shown'?® to be

W= —2R cos (27k/n), k=0,---,n—1 (85)
provided #>2. When n=2, the roots are =+R.
If » is even, the total energy is twice the sum of

123 E_Hiickel, Zeits. f. Physik 70, 240 (1931).
124 G, W. Wheland, J. Chem. Phys. 2, 474 (1934).
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the n/2 lowest roots of (88). If # is odd, one
fills 4(n—1) roots twice, and one root once. The
energy War per atom is, of course, the total
energy divided by ». By means of (85), the
following values are found

n 34 5 6 7 8 9 10
~War/R 1 1 117 1.33 1.22 1.21 1.13 1.29

The resonance energy per atom is |Waz|—R.
It is seen that benzene has the greatest resonance
energy of any of the ring compounds. At first
thought, this fact might be heralded as a triumph
of the theory. It would be simple indeed if the
stability of the benzene ring could be attributed
to ww resonance effects. The flaw in the argument
is that exactly the same calculation would
predict that Hg is more stable than 3Hz, and so
the approximations are questionable, to say the
least, although they are perhaps better in
benzene than in H,, since the pr orbitals no
doubt overlap less than the s ones do. As we
have already emphasized in section 29, the cause
for the stability of the benzene ring is no doubt
to be found in the directional valence in the
plane of the ring rather than in the = effects.
However, calculations on the former by the
method of molecular orbitals are wanting.

It will be noted that according to (85) there is
no resonance in a ring of 4. This result is in
sharp contrast with the H-L-S-P procedure,
which as we saw in section 29, gave maximum
resonance for this value of #. On the other hand,
the situation is different for a chain of 4. Here
it can be shown that molecular orbitals give an
energy per atom of 1.12R, i.e., a resonance
energy of 0.12R,'® whereas without excited
structures there can be no resonance according
to H-L-S-P, as the only possibility is two pairs,
(1,2) (3,4), end to end. A slight resonance
energy 0.23J,,/4 is obtained?s when one includes
the excited structure (2,3) (1,4). These results
on a chain of four are of interest in connection
with dihydrobenzene (CgHs). According to mo-
lecular orbitals the deepest energy is obtained
by substitution of the H atoms in the 1,2 posi-
tions, as then one has a chain of four associated
with the four == bonds connecting 3, 4, 5, 6.

128 1,, Pauling and J. Sherman, J. Chem. Phys. 1, 682
(1933).
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Substitution in the 1,4 positions is regarded as
leaving two isolated == bonds (2,3) (5,6) making
the energy 4R rather than 4 X1.12R. Substitution
in the 1,3 positions would give a chain of 3, and
hence an energy 2.84R by (74). The H-L-S-P
method is indifferent to whether one has the 1, 2
or 1,4 substitution, except when one considers
the effect of excited structures, which give a
resonance energy 0.23J ., favoring 1, 2. Either is
much better than the 1,3 form which allows
only one electron pair bond. Actually the 1,3
form is unknown. The 1,2 variety is somewhat
more stable than the 1,4, but not enough so to
be capable of isolation from the latter. The
experimental results thus are about what one
would expect with either of the two theories.
Hiickel'™ has shown that with, molecular
orbitals also, the existence of free radicals is
understandable on the ground of increased reso-
nance. As in the H-L-S-P case, it seems to us
that from a quantitative standpoint the calcu-
lations are not beyond question since they again
allow for resonance only after dissociation.

36. Conclusion

Since molecular orbitals and the H-L-S-P
procedures represent two different types of
approximation, neither any too good, it is clear
that much more confidence can be placed in the
results of the two methods when they agree
than can otherwise. If certain properties are
found to be true under these two different kinds
of approximation, warranted under different
idealized limiting conditions, it is natural to
suppose that the same properties are also valid
in the actual, more complicated intermediate
case. It is therefore a comfort that both theories
predict a nearly right-angled model for water, a
tetrahedron for methane, and other geometrical
configurations for carbon and nitrogen com-
pounds which we have described earlier in the
paper. Also both schemes furnish an under-
standing of the stereochemistry and magnetic
behavior of the transition groups, and of the
resonance energies in aliphatic and aromatic
compounds. The molecular orbitals are the
simpler conceptually, and enable one to visualize
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various gradations of polarity more easily, but
at the expense of excessive ionic terms, i.e.,
excessive instantaneous though not average
polarity. They have the great merit that their
one-electron functions have the symmetry ap-
propriate to the entire molecule rather than just
one atom. To date the H-L-S-P method has
been more fruitful and has yielded more numeri-
cal results on binding energies, but many of the
computations are open to question because of
the neglect of higher order permutations, non-
orthogonality, or inner shells.

The H-L-S-P procedure is more succinct on
the subject of the electron pair bond and the
valence rules appropriate to light atoms. Also it
furnishes a simple and empirically quite success-
ful model for activation processes. On the other
hand, molecular orbitals, at least when limited
to linear combinations of atomic orbitals, yield
too much affinity for extra atoms, and furnish
potential depressions where potential hills are
needed to understand activation. The idea of
constructing molecular orbitals out of atomic
orbitals is often convenient for qualitative or
conceptual purposes, but quantitatively it is bad.
The calculations of Hylleraas and of James
indicate that when this idea is abandoned, the
method of molecular orbitals has great compu-
tational possibilities. A similar indication is
given by the recent work of Wigner, Seitz and
Slater!?® on crystals, which closely resembles the
method of molecular orbitals except that the
structural unit is the entire crystal rather than
molecule.

The writers wish to express their gratitude to
Professors Kemble, Pauling and Slater, and Dr.
E. B. Wilson, Jr. for the critical reading of early
drafts of the manuscript. Also we are particularly
indebted to Dr. Hubert James, who wrote
sections 15 and 16. One of us (A.S.) wishes to
thank the Wisconsin Alumni Research Founda-
tion for a Research Assistantship, under which
part of this paper was written.

126 E, Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);
46, 509 (1934); Slater, Phys. Rev. 45, 794 (1934); Rev. Mod.
Phys. 6, 209 (1934); E. Wigner, Phys. Rev. 46, 1002 (1934);
F. Seitz, Phys. Rev. 47, 400 (1935).
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ArpeENDIX. THE DirAC VECTOR MODEL

T'he two vector problem. Before we discuss the applications
of the vector model to valence problems, it is perhaps well
to say something regarding angular momentum vectors.
The square of the magnitude of an angular momentum
vector S; is in quantum mechanics a matrix whose char-
acteristic values (i.e., diagonal elements after the matrix
has been transformed to diagonal form) are!'?”

S2=851(S1+1), (86)

where S: is an integer or half-integer. We throughout
suppose angular momentum measured in multiples of 4/2.
The dot over the equality sign means that the right hand
side gives the characteristic values of the matrix on the
left. It is included to show that we do not have a true
equality, as a whole matrix cannot be equated to one of its
characteristic values. Expressions printed in bold-face
type are vector matrices, except for the energy matrix
H.;, which is a scalar.

Let us now consider the square of a vector which is the
sum S:+S; of two other vectors. Then

(S1482)2 = S 42(S142+1), (87)

with S)+1=|Sz-‘51(, |Sg—51+1|, cve, Si+S:. But
(S1+8S:)2=8:2+48S,2+28S,:-S; so that, using (86, 87), we
have

2S1-Sy =51 42(S142+1) = S1(S14+1) —=S2(S2+1).  (88)

This is the fundamental formula for the quantization of
the scalar product of two vectors. In other words, we may
say that (88) describes the coupling in the two vector
problem.

The four vector problem. The problem of the coupling of
more than two vectors is more complicated. Here not all
the angles or scalar products can be diagonalized simul-
taneously—only those which involve different .vectors.
Thus in the four vector problem one can quantize simul-
taneously (S1+8S:)?, (S;+S4)? and the complete resultant
(S14S2+4S3+4854)?, or what is the same, one can diagonalize
simultaneously (81-S2), (Ss-S4) and (Si148:)-(Ss+84),
but then we preclude the ability to diagonalize (S:1+S;)?,
S1:8;s, etc. The algebraic basis is that S,-S; commutes in
multiplication with Sg-S; (&, I #1, j) but not with S;-S;.1%
The kinematical interpretation is that when the “joint
angles” (Si, S;) and (S;, Si) are constant in Fig. 16, the
angles between S; and S; (or S;) or between S; and S;
(or S,) are not constant as S; and S; precess around S, +S,,
and S; and Sy precess around S;+S,. Periodic terms in
classical mechanics correspond to non-diagonal matrix
elements in quantum mechanics, and indeed in a system
of representation which diagonalizes S:-S;, S;-S; the
matrices for S1+8;, etc. are rather complicated in structure,
comprising both diagonal and non-diagonal elements. For

127 For an account of the behavior of angular momentum
vectors in quantum mechanics, and the related non-com-
mutative algebra, see Dirac, The Principles of Quantum
Mechanics, sections 43, 44, 49, or Condon and Shortley’s
new book.

5%
Fic. 16.

these the reader is referred to a paper by Johnson.#
Fortunately we shall not need them. Instead of diagonal-
izing .S1-S,, S;:S4 one could, of course, equally well
diagonalize, for example, 8183, S, S, but at the expense of
S:'S; and the other scalar products. In the six vector
problem, one could diagonalize, as a typical choice S:-S;,
Sg'S4, SB'SSy Sl+2'sa+dy Sl+9+s+4'ss+e-

Formal equivalence of exchange interaction lo spin-spin
coupling. Let us now consider the particular case that the
two angular momentum vectors which are being coupled
in the two vector problem are the spin vectors of single
electrons, indicated by small letters. Then s1 and s; can
only have the value }, while Si;2 can be 0, or 1. Thus
by (88)

—3(1+4s1°82)= 1 when S;;32=0; (89)
—3(1+4s81+8;)=~1 when Sjja=1.

Now we saw in section 9 that when we disregard non-
orthogonality the characteristic values of the exchange
energy Hj, in a two electron system are Hy, = +J33, —J)s
where Jy, is the exchange integral and the plus and minus
signs go respectively with S;42=0 and S;;2=1. Hence we
see by (89) that the characteristic values of

Hp+3(1+4s +812) 12

are zero. The crux of the whole matter has been that
because of the constraints imposed by the Pauli principle,
the exchange energy and the resultant spin are diagonal
at the same time. Now if a matrix has only zero character-
istic values, it is zero in any system of representation, i.e.,
after any transformation. Hence we can conclude that in
a system with any number of electrons, the total exchange
energy Z,>:H,; associated with simple permutations obeys
the identity

Zi>Hij+Zjs 4 (1+4si-5;) =0, (90)

128 M, H. Johnson, Phys. Rev. 38, 1628 (1931).
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and,the fundamental Eq. (34) of section 17 is thus estab-
lished. 122

Derivation of formula for exchange energy in the four elec-
tron problem. As an illustration of the vector model we
shall now derive the expression so frequently used by
Eyring and collaborators® for the exchange energy of a
system of four electrons in a state of zero resultant spin.
By Fig. 5 of section 17 there are two states of zero spin
and so the secular equation will be a quadratic. Let us
choose a system of representation in which s:-s2 and s3-8¢
are diagonal. Then there are two possibilities (a) Si42
=5344=0 or (b) Si42=S3.4=1. (Since the resultant spin
is zero, it is impossible to have simultaneously Sy42=0
and Si;a=1 or vice versa, inasmuch as the resultant of a
vanishing and a non-vanishing spin cannot possibly be
zero.) In case (a) spins 1 and 2 are anti-parallel, also
spins 3 and 4, and so the exchange energies Hy; and Hiy
have respectively the characteristic values Jy2 and Ja.
In case (b) the alignment is parallel instead of anti-parallel,
and so then the corresponding characteristic values are
—Ji2, J—ss. The secular determinant for finding the total
exchange energy is thus

Jet+Juta—-W ¢

c ~Ju—Ju+b—W =0,

91)
where a, b, ¢ are independent of Jyz, J34 and are as yet un-
determined linear functions of Jy3, Ji4, J2s, Ja4, since (34)
or (90) is linear in the exchange integrals. The ¢ term is
necessitated by our statement that sis; etc. are not
diagonal when s1-sg, s3-54 are. The term a must have the
value —4§(Jis+J14+J2s+J24) in virtue of the theorem
given in section 19 that the exchange coefficient connecting
a paired electron and any electron not in the pair is — 4.
Namely, in the state represented by the upper left corner
of the determinant, the spins 1,2 are anti-parallel, corre-
sponding to an electron pair, and similarly for spins 3,4.
To evaluate the remaining elements, one could use John-
son’s formulas, but we shall show that instead they can
immediately be determined by considerations of symmetry.
It is well known that the diagonal sum of a matrix is
invariant of the system of representation. Furthermore, it
is clear that this sum must be symmetrical in all the ex-
change integrals, since the coupling problem which we
are studying is a perfectly general one. This sum is ob-
viously zero as far as its Jys, or Ji parts are concerned,
and by symmetry, similar remarks must apply to its other
parts. (We could, for instance, use a system of representa-

120 For a more detailed derivation of (90), see Dirac,
reference 52. It is to be emphasized that there is no question
of the permutation of electrons between states in (90),
as (90) has already included the effect of electron permuta-
tion. It is to be stressed that (90) is an identity valid only
as long as we artificially exclude higher order permutations
and related troubles connected with non-orthogonality,
and as long as we neglect perturbations by other configura-
tions. (The latter give polarization corrections expressing
the fact that the wave function is not rigorously a
linear combination of permutations of (33)—i.e., the
“‘product’’ assumption is inadequate). For extension of the
Dirac vector model to include these complications, see two
papers by Serber, references 52, 54.
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tion which diagonalized Hjs, Hq instead of Hjz, Hi(. The
part of the diagonal sum proportional to Jy3 or J24 would
then be zero.and this value must be conserved because of
the invariance of the diagonal sum.) Hence in (91) we
must have ¢= —b and so in virtue of the value previously
derived for a the roots of (91) are

W=[(J+Jsu—4Jua— $ua— 3Ju— 322+ (92)
Now the radicand must be symmetric in all the J's. It isa
homogeneous quadratic function of the J's, and will
involve three types of terms respectively of the form
JiiTw, JiiJir, Ji? except for a multiplicative coefficient.
The coefficients must be the same for any given type, and
are seen from the first part of (92) to be respectively 2,
—1, +1 inasmuch as knowledge of ¢ is not necessary to
determine a typical coefficient of each class since ¢ does
not involve Jy, J3. Hence (92) becomes

W=[2(i*=TiTu+2T5 ) I, (93)

which is the desired result, in agreement with (65) of
section 28 when written out explicitly. (In Eq. (93), mere
permutations of indices are not to be considered as giving
rise to new terms.) Another substantially equivalent way
of obtaining (93) from (92) is to note that the right side
of (92) must always reduce to

[T+ Tu—3Ta+ T+ T+ )]

if any two Jij, Ju are large compared with the other J's.

Eq. (65) or (93) may be regarded as expressing a sort of
compromise between diagonalizing the various possible
scalar products, none of which are in general diagonal
when we diagonalize the complete exchange energy. Those
products are nearest to diagonalization for which the
exchange integrals are largest in absolute magnitude. If
the pairs selected are 1-2, 3—4 the assumption of electron
pairing is equivalent to neglecting ¢ in (91) and then
taking the upper left root.

The expression for the exchange energy of three electrons
in a state of resultant spin  can immediately be deduced
from (65) or (93). If the resultant spin of four electrons is
zero, then the resultant of any three spins is quantized to
4 (i.e., Si4243= 1) since the fourth spin, being an individual
spin, has a quantum number of }, and the resultant of two
vectors (here Siy243 and s4) can vanish only if the two
vectors are equal. Therefore the formula (66) given in
section 28 for the three-electron case is derived simply by
striking out Jy4, Ja4, Jsa-in (65) or (93).

Derivation of (66) by the method of bond eigenfunctions.
By way of contrast and variety, we also include herewith
a derivation of (66) by the Slater method instead of the
vector model. Let fi, f2, f3 be the orbital wave functions
for the three electron states, and let «, 8 denote the spin
wave functions 8(3; m,) and §(—%; m,). The complete
wave function must be antisymmetric when spin and
orbit are both permuted, and so can be written as a deter-
minant. For a given value } of Zm, there are three possible
Slater determinants, as follows, corresponding to different
correlations of «, 8 with fi, f2, fs. One of these is
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(f1B)1(fae)r(faoh
(f18)2(fac)a(fa)s
(f1B)a(fac)a(facr)s

The other two, II and III, are similar to I except that g
occurs, respectively, in the second and third rather than
first column. Here (fa); means that the state fa is occupied
by electron ¢. It is convenient to define three new functions

ni=1-D/V2, ¢o=111-1)/V2,
va=(I+I1+111)/+/3.

The function 3 is symmetric when any two spins are
interchanged, and therefore corresponds to a spin 3/2.
Consequently only 1, ¥s are of interest for our problem
and are commonly known as bond eigenfunctions. ¥, cor-
responds to a bond between fi, f2 and 2 to one between
S fa

We now assume that the actual wave function that lifts

I=(@)} . (94)

(95)
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the degeneracy is a linear combination aw/i+asfs. A ¥s
portion need not be included since states of different total
spin do not combine. In this way we are led to the secular
equation
Hy-W Hyy—TuW
Hyp—TuW Hu—W

where Hij= SY:Hy;dvidv,dy; and Tij= S Yiypidvidvedus.

=0, (96)

If one neglects higher order permutations and assumes
that fi, f2, fi are mutually orthogonal (except as non-

.orthogonality is implicitly involved in Jij; cf. section 10),

one finds

Hu=Ju—4{Ju—4Js,
Hy=Jis—4J1z—4J s,

Hue=4} u+4 13— Ja,

Tu=4} ©n

On substitution of the values (97), one finds that (96)
agrees with (66).

Case of certain exchange integrals equal. An important special case of the vector coupling problem is that of a system of
n electrons in which many of the exchange integrals coincide as follows?'

Jij=A for 4, j=k; Ji=Bfori=k,j>k; Jiy=Cfori, j>k.

Then the exchange energy (34) reduces to

=343, ja<iso(1+4si08)) —3BZ:, juskcn (1 +48i08:) — §CZs, jhaici (14-48is)). (98)
Let S; denote the resultant of the first k spins, and Ss; that of the remaining spins. Then
S=(s1+ - +8)2=+22i, j<iSwsi-8  Sk-S>a=3i, jaSk<nSi'si, S>i*={n—k)+22i, j<i<iSicsi,  (99)

since the square s;? of the spin angular momentum of a single electron can only have the value § (by Eq. (86) with Si=1}).
The important thing is that when we use the relations (99) the individual spins drop out from (98), so that we really
have only a coupling problem in two rather than 7 vectors. The two components are the collective angular momentum
of the first k electrons, and that of the remaining electrons, which can be quantized in accordance with the relations

S@=Sk(Sk+1), Ss=S5i(S>i+1), (Sk+S5u)2=S(S+1).

The permissible values of Sk, S> are obtained by constructing “branching diagrams” such as those of Fig. 5, for system

of k and n—Fk electrons respectively. Do not confuse this two vector problem, where the quantum numbers S, S>&

may be large, with the much simpler two vector problem in (89) where the two units were spins of single electrons.
The characteristic values of (89) are thus

—3A[k(k—1)+2(S?+Sk— k) 1 — 4 BLk(n — k) 4+ 2(S*+ S — S — Sk — S>12—S>4) ]
—3C[A(n—R)(n—k—1)+2(Ss>*+S>x— in+3k)].

Eq. (100) has extensive applications to the non-directional theory of valence. For instance, it can be applied to CH, if
all the electrons of the C atom are treated as alike. Then # —k =% =4 and it is convenient to use notation Jcc, Jou, Jun,
Scy Ssp in place of A, B, C, Sk, S respectively in order to emphasize the physical significance of the various exchange
integrals and spins. Eq. (100) shows that if Jog <0, the CH part of the energy is made a minimum by making Sc and
Sug as large, and S as small as possible, i.e., So=Sw=2, S=0. Then (100) becomes —6Juu —6Jco+4Jcw, to be con-
trasted with the expression (41) or (59) based on directional valence and electron pairing. The fact that Sc=2 is the
ground for our statement that in the non-directional theory of valence, the C atom is in the 55 state. Since Jun <0 and
since Jyg has a negative coefficient —6, the H—H effects are repulsive.

(100)

Absence of affinity for extra atoms. Note particularly that,
in general, if B <0, n—k=Fk the lowest value of the B
part of the energy (100) is obtained by taking Si= 1k,
Ssi=3(n—*k), S=4n—Fkand is kB. The important thing
is that this value is independent of #, as long as the premise
n—k=Fk is satisfied. By identifying  and »—% with the

number of valence electrons on the central and equivalent
attached atoms, respectively, we see that from the stand-
point of the nondirectional theory, there is no advantage
to be gained if a central atom annexes more attached
atoms (for simplicity supposed similar and monovalent)
than the central atom has valence electrons. For the par-
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ticular case of molecules built exclusively of hydrogen,
there is no question of directional effects, and so if we
neglect the exchange forces between distant atoms, and
of course nonorthogonality, the exchange energy of Hj
is exactly the same as that of H,, for given H-H distance
of separation. When the forces between the distant atoms
are included, H; actually has more energy than Hj, in
agreement with the existence of an activation energy for
H+H,—H,+H.

The preceding paragraph supplies the basis for our state-
ment in section 31 that the difficulty of affinity for extra
atoms, found in crude forms of the method of molecular
orbitals, does not appear in the Heitler-London theory.

General Remarks. For other examples of the vector
model than those given in this appendix, the reader is
referred to a paper by one of the authors.5? We have tried
particularly to use different examples in the two places.

The vector model is not that used in most of the chemical
literature to solve the problem of the exchange degeneracy.
Instead the commonest procedure is to use “‘bond eigen-
functions' constructed by Slater’s method*!

Each bond eigenfunction corresponds to a definite
scheme of electron pairing. There are as many different
bond eigenfunctions as there are ways of pairing, but
there are usually far fewer states than there are possible
ways of drawing the bonds. For instance, there are 3 ways
of pairing, but only two different states for the four electron
problem with S=0. Only as many of the bond eigenfunc-
tions are needed, i.e. are linearly independent, as there
are such states. A conveniently chosen linearly independent
set of bond eigenfunctions is termed a canonical set by
Pauling and collaborators. The other linearly dependent
‘bond eigenfunctions are expressed in terms of a canonical
set by the so-called process of ““bond uncrossing.” The
reason for the name is that if the various states are arranged
in a ring, as in Fig. 14 for a system of six states, the
canonical structures usually selected'® correspond to bonds
which do not cross (cf. Fig. 14). In general the ring arrange-
ment will be a fictitious one, used for formal purposes,

130 The proof that this non-crossing arrangement furn-
ishes a canonical set is due to Rumer, reference 92.
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rather than of literal physical significance as in the
benzene problem.

With the method of bond eigenfunctions, the first wave
function for the 4 electron problem can be chosen as that
in which spins 1,2 are anti-parallel to 3,4, respectively,
but then the second wave function is not as in the vector
model that in which spins 1 and 2 are, respectively,
parallel to 3,4 but rather one in which spins 1,4 are,
respectively, anti-parallel to 2,3.

As compared with the vector model, the bond eigen-
function procedure has the drawback that the wave
functions are not mutually orthogonal, so that one obtains
secular determinants such as (96) with the energy constant
appearing off the principal diagonal. Also the introduction
of wave functions probably makes the calculation rather
more explicit but without quite the elegance of the more
algebraic matrix method. The method of bond eigenfunc-
tions is probably more convenient in the calculation of
resonance energies, where two or more configurations are
on a par with each other. In Fig. 14, configurations 4
and B can both be taken as canonical eigenfunctions, but
in the vector method only one of the structures 4 or B
can be taken as one of the original states of reference.
Then B or 4 is expressible only as a linear combination of
other states involving spins sometimes paired to unity
rather than to zero. Even so, the calculation by the vector
method™® is no more complicated than the other pro-
cedures if we wish to include all five configurations in
Fig. 14, but for the reasons just given it is not readily
adapted to the simplified problem of considering only
structures 4, B in Fig. 14. On the other hand, the vector
model seems better than the bond eigenfunction method
for molecular states not of minimum spin, as such states
are treated in the latter only by rather clumsy artifice of
phantom orbits, i.e., nonexistent partners used to complete
the pairing. A variant of the bond eigenfunction procedure
has been given by Wheland®® which seems to simplify the
calculations and yields an orthogonal system, though not
a Hermitian secular determinant.

131 R, Serber, J. Chem. Phys. 2, 697 (1934).
132 G, W, Wheland, J. Chem. Phys. 3, 230 (1935).



