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I. INTRQDUcTIoN

T HE invitation of the Editors of Reviews of
Modern Physics to write some account of the

theoretical aspects of high pressure phenomena
was one which I was glad to accept because it
seems to me that the time is now approaching
when theoretical physics may hope to investigate
the problems of this field with good prospects of
success. Until very recently the condensed
phases of matter, solid and liquid, have appeared
too complicated to make it worth while to
spend much effort in acquiring an understanding
of them, particularly as long as the much more
profitable field of the investigation of matter in
its rarefied condition, as in vacuum tube phe-
nomena of all sorts, had not yet been fully ex-
ploited. But now our understanding of the
atomic, as distinguished from nuclear, phe-
nomena presented by matter in its rarefied states

is rapidly becoming satisfactory, and in a sense
exhausted, so that an attack on the problem of
the condensed states is obviously next on the
program. Indeed already a very considerable
degree of success has rewarded theoretical at-
tack in this field, as, for example, in our rapidly
growing theory of the metallic state in general
and of the electrical properties of solid conduc-
tors in particular. The condensed state, par
excellence, is obviously presented by matter under

high pressure, so that, to say the least, our under-

standing of the condensed state cannot be re-

garded as satisfactory until we can give an ac-
count of the effect of. pressure on every variety
of physical phenomena. This we can at present
do in very few cases indeed.

There are two aspects of theoretical concern
with high pressure phenomena: a broader and a
narrower aspect. From the broad point of view
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the eventual problem is to work out theoretical
explanations of all known high pressure phe-
nomena, and to predict the result of fresh ex-
tensions of experiment to pressures and groups
of phenomena not yet reached. It must not be
assumed too easily, I think, that this is a task
of no particular interest, and that the problem
is merely the problem of overcoming the compli-
cations of an analysis, the fundamentals of which
are already completely understood. Such is
without doubt the attitude of many theoretical
physicists; in fact it seems to be a thesis of
theoretical physics in its treatment of matter
in bulk that there are no "emergent" properties,
or in other words, that all the properties of
aggregates of atoms can be found from an
exhaustive knowledge of the properties of the
isolated atoms. There is a sense in which this
thesis may be regarded as a mere tautology,
because I suppose no one would deny that it
would be possible to put enough parameters into
the equations for the individual atoms or elec-
trons to reproduce by some more or less compli-
cated kind of theory all the properties of com-
binations of atoms in bulk. But the thesis does
have real content if one understands it to mean
that it is possible by experiments on isolated
atoms, or atoms in the rarefied condition, to
determine all the parameters necessary to
describe all the properties of condensed assem-
blages of atoms. No doubt the impulse of many
would be to say that in experiments involving
nuclear bombardment and breakdown we are
dealing with individual atoms under conditions
of much greater intensity of force than are ever
encountered in condensed aggregates of atoms,
so that there is no reason to think that such ex-
periments will not give all the effective atomic
parameters. But on the other hand it must be
remembered that in highly condensed phases the
character of the force to which the atom is sub-
jected is different from that in collision experi-
ments, the attack on the atom being now a more
or less symmetrical and simultaneous attack
from all sides, so that there may be a possibility
of new kinds of effect. So far as I know no the-
oretical intimation was given, before the experi-
mental evidence of astronomy, of the possibility
of the existence of matter in conditions of density
of the order of 100,000. Our persistent difficulty

in understanding superconductivity of metals
may also be significant. At any rate, I believe
that it must be conceded as a matter of pure
logic that the thesis of non-emergent character-
istics cannot be securely established until at
least the possibility of a theoretical deduction of
all the properties of matter in the condensed
condition has been established; what one' s
feeling will be as to the interest or profitableness
of actually producing such detailed explanations
will be largely a matter of taste and temperament.

The narrower aspect of the high pressure prob-
lem concerns the extent to which we can under-
stand high pressure phenomena in terms of
recent wave mechanics pictures of atomic be-
havior and interaction. This is the aspect of the
problem which will serve as the background of
our present discussion. It would have been de-
sirable if this paper could have been written by
someone who has made actual contributions to
our understanding in terms of wave mechanics
of the behavior of condensed phases, instead of
by one whose qualification is merely an acquain-
tance with the nature of the experimental ma-
terial. I shall have to content myself, therefore,
with pointing out those aspects of the phenomena
which are simplest and therefore where theoret-
ical attack may most reasonably anticipate
success, or those aspects which seem to me most
suggestive and of intrinsic interest. I believe
that our theoretical mastery in this field is not
yet so far advanced but that a careful pondering
of the qualitative significance of various general
types of pressure phenomena will'be profitable.
I have this feeling because a number of years
ago I had arrived at various qualitative pictures,
as of the phenomena of electrical conduction or
of polymorphic transition, which were somewhat
at variance with the pictures common at the
time, but which are becoming more and more
justified by wave mechanics.

The experimental material which must form
the basis of our present theorizing is almost
entirely confined to the range from 10,000 to
20,000 kg/cm', although a few data have been
obtained at somewhat higher pressures and there
is the possibility of more in the future. These
pressures are of the order of magnitude of the
internal pressures which various theories have
agreed in assigning to ordinary condensed phases;
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such internal pressures vary from 3000 or 4000
kg/cm' for organic liquids and 10,000 or 20,000
for the more compressible metals, to a few hun-
dred thousand for the most incompressible sub-
stances like iridium and diamond. Furthermore,
the volume changes producible by pressures in
the experimental range are materially greater
than the volume changes due to temperature on
cooling from room temperature to O'K. One
would appear to be justified therefore in antici-
pating that an adequate understanding of even
the effects of pressure known at present would
react beneficially on our general understanding
of matter in the condensed state. By the applica-
tion of pressure we have the tool, as it were, for
producing artificially a great variety of new
condensed states of matter.

In the following I shall not attempt to give
more than the very briefest possible indication
of the nature of the experimental material and
refer the reader to my book The Physics of High
Pressure published by Bell in England and Mac-
millan in this country, whenever he feels the need
of more detailed acquaintance with the data.

I I. ATOMIC CHANGES UNDER PRESSURE

Perhaps the first and most important question
that confronts one on entering this field is

d T= —dE+3d(pv),
d V= 2dE —3d(pv).

(1)

(2)

Here T is the average internal kinetic energy and
V the average internal potential energy, the
averages being taken over a time interval long
enough to give constancy, Z is the total energy
of the system and v the volume.

whether it is legitimate to treat the atoms as
fixed units, or whether pressures in the experi-
mental range produce important changes in the
atoms themselves. A rough answer is suggested
to this question by means of an important
theorem, which has been much neglected, origi-
nally due to Schottky' and proved on the basis
of classical mechanics, Later Born, Heisenberg
and Jordan' showed that essentially the same
situation holds in wave mechanics, and the
theorem has recently been re-emphasized and
applied to some molecular problems by Slater. ~

Schottky's theorem states that in any system
controlled by internal electromagnetic forces,
whether there are or are not in addition con-
straints imposed by quantum conditions, as for
example, systems composed of molecules and
atoms built of nuclei and surrounding electronic
atmospheres, and on which in addition to the
electromagnetic forces an external hydrostatic
pressure, p, acts, the following relations hold:

By thermodynamics we have:

dE= C„—p — d7- r — +p — dp.

Eliminating dB gives:

dT= 4P — —Cp dr+ 3v+~ — +4p — dp,
Br p 87' p Bp

(3)

d V= 2C„—SP — d, —3v+2r — +5P — dP. (4)

Apply these equations to ordinary solid
substances in the experimental range of pres-
sure, and consider first the variation of T with
pressure at constant temperature, paying atten-
tion only to orders of magnitude. r(8v/8r)p is
evidently small compared with 3v and may be
neglected. The most compressible solid metal

is caesium; at 15,000 kg/cm' 4P(8v/BP), has the
value 0.6 and 3v is equal to 2, so that (aT/ap),
=1.4 for Cs at 15,000. For lithium, on the other
hand, the compressibility is much less, and
(BT/BP), at 15,000 has the value 2.4, the deriva-
tive referring in both cases to that quantity of
matter which occupies 1 cm' at atmospheric
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pressure. Most solids are much less compres-
sible even than this, so that we would not be
making an error on the average much more than
10 or 15 percent if we set BT/8&=3 in the ex-
perimental range of pressure. Hence at 20,000
kg/cm' we have at once T2p, ppp

—Tp 60,000
kg/cm =3.5 X 10" electron volts. Expressed
per atom, this becomes 3.5X10"X1.66X10 "
Xat, wt. /dens. =0.06 at. wt. /dens. , or

Tpp, ppp
—rp 0.06 Xat. vol.

in electron volts per atom. (5)

For elements of high atomic volume this ap-
proximation is in general less good than for ele-
ments of low atomic volume, because compres-
sibility is highest for high atomic volumes, and
the actual value is less than the approximate
value by a term proportional to the compres-
sibility. In the ordinary range of temperature
the specific heat of a solid is given approximately
by Dulong and Petit's law, which ascribes three
degrees of freedom to the kinetic energy of
translational motion of the atom as a whole, and
three degrees to the potential energy of position.
Hence to this degree of approximation the kinetic
energy of translation of the atoms is constant,
independent of pressure, at constant tempera-
ture, and the change of kinetic energy with pres-
sure which is given by Eq. (5) is change of in-
ternal kinetic energy of motion of the electrons
inside the atoms. For lithium at 20,000 this is
0,8 e.v. per atom, for bismuth 1.3, for aluminum
0,6, and for iron 0.4. These energy changes are
thus considerably smaller than the ionization
energies of the atoms, but they are nevertheless
of the same order of magnitude, being 18 percent
for bismuth, and lead to the conclusion, I be-
lieve, that one should at least entertain the idea
that appreciable internal changes may be pro-
duced by experimental pressures in the outer
electron orbits of the atoms.

It is to be noticed that an increase of the in-
ternal kinetic energy of the electrons in their
orbits such as we have just found means a shrink-
age of the orbits, that is, a compression of the
atom, assuming the same relation to hold in the
condensed phase between atomic radius and
electronic energy as holds for the isolated atom.
The orbital shrinkage is evidently the theoretical
version of the "compressible atom" first insisted

upon by Richards and which has seemed to me to
be demanded by many qualitative aspects of
my measurements of compressibility.

The order of magnitude of the changes of
internal kinetic energy just calculated shows
that in the range of pressure at present realizable
no very drastic rearrangements in the structure
of the atom are to be anticipated, unless perhaps
there may be a few cases in which the atom is
already near some critical configuration. Drastic
changes may, however, perhaps be expected at
pressures of the order of 100,000 kg/cm2. Con-
sideration of what the nature of these effects
may be will be postponed until the end of the
paper; in the meantime we shall be concerned
with the present experimental range in which
changes in the atom itself may be expected to be
small, although appreciable.

III. VQLUME CHANGEs AND THE ' LAw QF
FoRcE"

Doubtless the simplest of all the effects pro-
duced by hydrostatic pressure is the uniform
change of volume of a fluid or an isotropic solid,
and it is natural that theory should first attack
this problem. The simplest of all condensed
phases from the theoretical point of view is an
ionic lattice of the NaC1 type, and as is well
known, theoretical attack on this problem,
largely at the hands of Born, ' has been successful
up to a certain point. The ionic lattice is held
together by the electrostatic attractions of the
ions and prevented from collapsing by a repul-
sive force due to ionic interpenetration. The
attractive force can be completely dealt with in
terms of the known lattice structure and the
known magnitudes of the ionic charges. The
repulsive force is more difficult. In Born's origi-
nal discussion an attempt was made to give some
account of the repulsive forces in terms of the
structure of the atom as pictured at that time
by Bohr's theory, but this was unsatisfactory
because it gave stability only for certain relative
orientations of the atoms. The final result was
that the repulsive force had to be treated from
an almost purely empirical point of view, and a
repulsive force acting as some unknown inverse
power of the distance between atomic centers
was assumed, with an unknown coefficient of



HIGH PRESSURE PHENOMENA

proportionality. Two conditions, one on the size
of the lattice at O'K and the other on the com-
pressibility, permitted a determination of the
two parameters of the empirical law of repulsion.
For most of the alkali halides the repulsive force
turned out to be approximately as the inverse
ninth power of the distance between atoms. The
complete law of force thus having been assumed
and its parameters determined, it was possible
to carry the computation further and find how
the compressibility should vary with pressure.
It was calculated in this way that the compres-
sibility decreases with increasing pressure, and
to this extent there was agreement with experi-
ment, but numerically the agreement was so
far from satisfactory that it was obvious that a
repulsive force of the form assumed could
serve as an approximation over only a very
narrow range when this type of phenomenon was
concerned. The wave mechanics picture of the
atom gives a more satisfactory basis than did
Bohr's theory for calculating the repulsive force
in terms of the mutual action of interpenetrating
electron atmospheres, and Born, in recent revi-
sions of his theory, has given the repulsive force
an exponential form, which is the form that
results most simply from the mathematics of the
wave mechanics picture. But even this modifica-
tion does not give the correct change of compres-
sibility with pressure, so that again we have a
comparatively short range approximation.

Experimentally, the compressibilities of all
the alkali halides except RbF, which does not
crystallize properly, have been determined up to
12,000 kg/cm'. In this range the relation between
pressure and volume may be represented by a
two power expression in the pressure, the two
parameters determining the initial compres-
sibility and the variation of compressibility with
pressure. In the case of such substances theory
would at present have the task merely of repro-
ducing these two parameters. There are, however,
many substances for which the volume change
in this pressure range is very definitely not r0pre-
sentable by a two power series in the pressure,
or even by a three or four power series, as for
example, the alkali metals, and there are even
substances whose compressibility increases with
increasing pressure instead of decreasing. For
such substances theory will eventually have to

reproduce a considerable number of parameters,
or discover some type of function better adapted
to reproducing the volume than a power series.

In addition to the work of Born and others on
the compressibility of ionic lattices there have
recently been several calculations of the com-
pressibility of the simplest metals, particularly
the alkali metals. 4 Here again it has been found
possible to reproduce the initial compressibility
with some success, but the variations of com-
pressibility with pressure are very wide of the
mark.

One aspect of the method of treatment fol-
lowed by Born is conventional in practically all
derivations of an equation of state, whether or
not intended to be applicable to high pressures
and condensed phases, namely the assumption
of a "law of force" between atoms, a function
only of the distance of separation of atomic
centers. In view of the failure of all attempts to
reproduce more than the first derivative of
volume with respect to pressure the question
presents itself as to how far the action between
atoms in condensed phases under variations of
temperature and pressure can be represented by
"a law of force." In assuming a law of force of
the form, for example, —a/r'+b/r", we are
evidently maintaining that the behavior of the
entire assemblage of atoms can be found by
postulating that each atom of every pair of
atoms acts on the other with the force given,
irrespective of the presence of other atoms, ,in
all orientations (orientation is not a factor for
the type of ions just considered, which by wave
mechanics have spherical symmetry), and at all
distances. The assumption of a law of force of the
form given certainly corresponds to the facts
from the point of view of one very important
first approximation. For two atoms acting on
each other with a force of this character may be
brought indefinitely close together by the action
of sufficiently large forces, that is, such atoms
are not rigid but are electively deformable, as is
demanded by many lines of experimental evi-
dence. But the question is, how much further is
the approximation represented by such a law
valid. One may imagine oneself carrying through
the detailed solution of the wave-mechanical
problem of the NaC1 crystal, for example, find-

ing the complete f function, splitting this up
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into parts corresponding to p, s, d, etc. , electrons
associated with the different atoms, and then
coalescing the results into a final law' of force.
Into this law of force will certainly enter the
distribution of the electrons within the atoms.
The law of force may remain good as long as the
distribution of electrons remains fixed or as long
as the electron distribution depends uniquely on
the distance r, as when pressure is changed at
constant temperature. But if the electron dis-
tribution is not fixed uniquely by r, a possibility
which we must recognize if both pressure and
temperature are allowed to vary, then we must
be prepared to find that the interaction cannot
be described in terms of constants and r only,
that is, we must be prepared to find that there
is no "law of force." Doubtless in a sufficiently
narrow range the assumption of a law of force is
a valid approximation. We have to consider
whether it is a valid approximation in the range
of pressure and temperature now open to experi-
ment. We can obtain a qualitative answer to
this question by means of Schottky's theorem.

In Eqs. (3) and (4) write as an approximation
that the total kinetic energy T is the sum of two
parts: one, mass motion of the atom as a whole

(T,&) and the other kinetic energy of the electrons
inside the atom (T,i), so that T= T,~+T,i. We
could in the same way put V= U, &+ V, &, where
V, & is the part of the potential energy. given by
the "law of force" as in the discussion above, and
U, i is the internal potential energy of the elec-
trons inside the atom. This resolution into two
parts should be a fairly good approximation for
a simple ionic lattice; for complicated molecular
lattices the resolution would be more question-
able. We assume further that the substance under
consideration approximately satisfies Dulong and
Petit's law, which means that (8T,~/Bp), =0,
(8T„/Br)~=C„/2, neglecting the difference be-
tween C„and C„which is legitimate for con-
densed phases. At high pressure it is highly
probable that the specific heat becomes some-
what'less because of the stiffening of the atomic
constraints, so that more exactly, (aT.,/aP), (0.
This will have as a result that the conclusions
to follow are in the nature of an understatement
rather than an overstatement of the effect of
pressure on T,i. Combining these results with

(3) and (4) now gives at once

=4p ——C

=4P+ 3v+r — —, . (7)

Let us compare these two derivatives at low
pressures, that is, compare —(3/2) C,/(Bv/Br)„
with. [3v+ r(8v/87) „j/(Bv/8P), . For NaCI we
have the numerical values: C, =0.219 g cal. /g,
(Bv/Br)„=0.00012, and (Bv/BP), =42X10, in
kg/cm~ units. Reducing everything to kg/cm'
units, the two derivatives become, respectively,
2.5X10' and 7X10'. That is, the change of
electronic energy internal to the atom is nearly
three times as great when a definite change of
volume is brought about by a change of pressure
as when brought about by a change of tempera-
ture. The internal electronic energy may be taken
as a rough measure of the internal condition of
the atom, and the force with which one atom
acts on another depends on its internal condition.
It follows therefore that the force between atoms
changes differently when the mean distance of
separation is changed by a definite amount by
the application of pressure and when the distance
is changed the same amount by a change of
temperature, and that therefore the assumption
of a "law of force" to be used in writing out an
equation of state, or in writing out an expression
for the virial, can be only an approximation.
To find just how good an approximation it is to
assume a law of force might well be one of the
first tasks of a serious attempt to derive an equa-
tion of state valid for high pressures. The numer-
ical values for Nacl show that the approximation
is less good for changes of pressure than for
changes of temperature. Furthermore, the for-
mulas show that the approximation becomes
poorer as pressure increases in virtue of the 4p
term, which has an opposite sign from the other.
However, even at 20,000 kg/cm' the 4P term has
become only 33 percent of (3/2) C„/(8v/Br)„, as-
suming constancy of C„/(Bv/Br)„. Both (av/ar)„
and (Ov/Bp), vary importantly with pressure,
however, so that actually the variation in the
other terms is the important effect at high pres-
sures. As a matter of experiment (Bv/ap), gener-
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ally drops off with increasing pressure much more
rapidly than (Bv/B7)~, so that for this reason also
the assumption of a "law of force" is a less valid
approximation at high pressures than at low
pressures.

The important role played by the shrinkage of
the atoms under some conditions is well brought
out by another line of argument. Consider the
change of total energy brought about by a change
of pressure at constant temperature

dE, = — v —+p — dp.

The two terms in this expression are of opposite
signs. The term P(Bv/BP), starts with the value
zero, so that at low pressures the sign of dB is
determined by (Bv/Br)„. That is, the internal
energy of all normal substances at first decreases
as pressure is applied isothermally, more energy
flowing out in the form of heat to counteract for
the rise of temperature produced by the compres-
sion than is put in in the form of mechanical work
by the external pressure. But at high pressures
it is a matter of experiment that the term
P(Bv/BP), preponderates, so that at high enough
pressures the energy increases as pressure in-
creases, the increase obviously being accounted
for mainly by the work done against the repul-
sive forces of the atoms. The volume at which
dE vanishes is the volume at which the attrac-
tive and repulsive forces balance. At O'K the
lattice is in equilibrium with all the lattice points
at rest (neglecting zero point energy), so that the
volume of O'K at atmospheric pressure should
be the volume at which the two sets of forces
balance. This is indeed the case, because of O'K
(Bv/B~)~=0 and dB= —P(Bv/BP), dP for the iso-
thermal at O'. That is E is a minimum at O'K at
0 pressure, and with increasing pressure con-
tinually increases due to the action of the repul-
sive forces. If now we assume that the mutual
potential energy is a function of volume only,
independent of temperature, or amplitude of
atomic vibration, which is obviously an approxi-
mation, and if we also assume that the transla-
tional kinetic energy is a function of temperature
only, we would expect that at higher tempera-
ture (dZ), would become zero when the pressure
had increased sufficiently to reduce the volume

to the volume at O'K at atmospheric pressure.
The pressure at which this occurs is obviously
—r(Bv/B7)„/(Bv/BP), . This pressure I have com-
puted for a number of solids at room temperature,
and it is of the order of 10,000 or 20,000 kg/cm'
for ordinary metals such as silver and iron. The
volume corresponding to this pressure is approxi-
mately the same as that at O'K and atmospheric
pressure, although somewhat less. For helium,
on the other hand, the relative changes of
(Bv/Br) and (Bv/BP), under pressure are differ-
ent, Bv/BP approaching 0 much faster relatively
to Bv/B~ than it does for solids, with the result
that at room temperature the pressure at which
BZ/BP=O is higher than yet reached experi-
mentally, that is, greater than 15,000 kg/cm'.
But at room temperature at 15,000 the volume of
helium is only one-half the volume at O'K at
atmospheric pressure. In other words, the volume
at which the attractive and repulsive forces are
in balance at 15,000 at room temperature is less
than half the volume at which they are in bal-
ance at O'K. So large a discrepancy surely can-
not all be attributed to departures of the forces
from linearity, but there must be a change in
the structure of the atom itself, resulting from
some sort of rearrangement of the electron dis-
tribution. Under such conditions a "law of
force, " using as the only parameter the distance
of separation of the atomic centers, must be
inadequate. It is interesting to notice that the.
direction of the discrepancy with ordinary
metals is the same as with helium, only it is
less extreme. That is, at room temperature the
volume at which BB/BP vanishes is less, in either
case, than the volume at O'K at atmospheric
pressure. In either case the internal kinetic energy
of the atom increases with increasing pressure,
accompanied by a shrinkage in the effective size
of the atom, so that the sign of the effect is
what would be expected.

A crude calculation of the effective change of
size of the atom under pressure may be of in-
terest. We have approximately at low pressure
1/v(BT, &/Bv), =3/(Bv/BP), . For NaC1 this gives
the numerical value 1.4X10 "erg per atom per
kg/cm~ external pressure. Making now the crud-
est kind of an approximation, taking an atom of
14 electrons as the average of Na and Cl, sup-
posing the 14 electrons to rotate in a single orbit
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about the nucleus with a radius of 1.35)C10 ' cm
with such a kinetic energy that the radial acceler-
ation is held in equilibrium by the electrostatic
force of attraction of the nucleus, one may cal-
culate the change in radial distance when the
kinetic energy in the orbit increases by 1.4)& 10—".
The change of radius for this change of energy
turns out to be of the order of only 1/100th of
the change of distance between atomic centers
brought about by the external pressure of 1

kg/cm'. That is, the change in size of the atom
when external pressure is applied probably ac-
counts for only a small fraction of the total
change of volume.

It is interesting to apply Schottky's theorem
to a monatomic gas instead of to a solid as
hitherto. Dulong and Petit's law. does not apply
to a gas, and we now have (aT„t/ap), =0 and
(aT,~/ar)„=C„—R to replace the former rela-
tions. Substitution in 3 will now give

(aT„/aP), =3v+ ~(av/a. )„+4P(av/8P) „
as before, and

(aT,(/ar) „=4P(av/ar) p
—2C„+R.

For a perfect monatomic gas r(av/a7. )„=v,

p(av/ap), = —v, and C„=SR/2, so that (aT,~/

ap), =0, and (a T,~/ar) „=0, and there is no

change in the internal structure of the atom for
changes of either pressure or temperature. No

gas remains approximately perfect, however, be-

yond a few hundreds of kg/cm', and under a
few thousand kg/cm' all distinction between a
gas and an ordinary liquid is lost. In this pres-
sure range a little consideration shows that the
change of T,~ is of the same order of magnitude
as it is for substances originally in the condensed
condition (for example, for nitrogen pv rises from

unity at atmospheric pressure to 16.5 at 15,000
kg/cm'), and that therefore the internal distor-
tion of the atoms of a gas is not diRerent from
that of other substances.

One might anticipate that it would be a simpler
task for theory to calculate the variation with
pressure of the volume of a substance like gas-
eous hydrogen or helium than of a solid like
NaC1. This has not proved to be the case, how-

ever, and we have as yet no theoretical deriva-
tion of an equation of state for any gas at high
pressures.

IV. THERMAL EXPANSION AND ENTROPY AT

INFINITE PRESSURE

The most successful of the theoretical attacks
on problems presented by the equation of state
of solid bodies has been on the problem of
compressibility at constant temperature; suc-
cess has not been so great in dealing with
thermal expansion. In nearly all cases thermal
expansion decreases with an increase of pres-
sure; this of course is the same thing as an
increase of compressibility with rising temper-
ature. As a general rule, the decrease of ther-
mal expansion for a given increase of pressure
is by a factor considerably smaller than the
decrease of compressibility. It has been known
for some time that thermal expansion involves
a departure from linearity of the restoring forces
on the atoms. At first glance, therefore, the de-
crease of thermal expansion with increasing
pressure (decreasing volume) is paradoxical,
because the repulsive forces between atoms are
ordinarily represented as increasing very rapidly
at small distances of separation, so that the
smaller the volume, the greater would one ex-
pect the deviation from linearity to be, and
therefore the greater the expansion. But the
paradox is to a certain extent resolved if one
considers the state of afFairs at large volumes in
the perfect gas. Here the restoring force on a
molecule is zero during free flight, and it abruptly
rises to a very large value during the collision
that terminates free flight. This sort of thing
is the extreme in the way of departure from
linearity, so that a large thermal expansion may
be expected, as is indeed the case. This collisional
aspect of the interaction between atoms must be
responsible for a large part of the thermal ex-
pansion of actual solids and liquids, and the
fact that this aspect is becoming less and less
important at high pressures is doubtless the
main factor responsible for the decrease of
thermal expansion with increasing pressure. It
is not perfectly clear what to expect at exceed-
ingly high pressures, beyond reach of present
experiment. To the extent to which the "law of
force" point of view is justified, one might per-
haps expect that eventually the rapid increase
of repulsive forces would bring about a reversal,
so that at very high pressures thermal expansion
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might begin to rise again. The subject is an im-
portant one, but very difficult experimentally;
I have made repeated attempts to get good values
of the thermal expansion of some of the more
interesting substances, but without much success.
Quite recently, however, results have been ob-
tained for the alkali metals, and the results are
in process of publication in The Proceedings of
the National Academy of Sciences.

Consideration of the thermal expansion sug-
gests another interesting line of speculation on
the probable limiting behavior of substances at
very high pressures connected with the third
law of thermodynamics. In some respects an
increase of pressure is equivalent to a decrease of
temperature, the volume effects are the same and
there is also a stiRening of the constraints to
which the atoms are subjected, resulting in an
increase of the characteristic temperature with
a displacement of specific heat, thermal expan-
sion and similar properties to lower values,
corresponding effectively to lower temperatures.
This is very probably an important factor in
the decrease of thermal expansion of solids
with increasing pressure. Now at O'K entropy
vanishes in most cases according to the third
law, and this led Lewis4' to suggest that it is
plausible to expect that along an isothermal at
higher temperatures the entropy will approach
zero at infinite pressure. Since (BS/BP), = —(trav/

Bv-)~, integration gives
p

S„,,—Sp, ,= — (Bv/8 r),dP.
p

If we assume that Sp, p=O by the third law, it is
obvious that the thermal expansion must go
to zero at infinite pressure, for if (cia/Br)~ re-
mained finite S„, , would decrease without limit
as pressure increases indefinitely. It can be seen
at once that if 1'(elm/Br)QP is to remain finite,
Bo/Br must decrease with increasing pressure at
least as rapidly as 1/p. In the experimental range
of pressure this condition is very definitely not
met, either by ordinary solids, metals* or ionic
crystals, or by the gases nitrogen and argon, the
expansion in no case decreasing as rapidly as
1/p. If then the condition lim S=O holds' there

*The recently completed experiments on the alkali
metals indicate that they are exceptional in that they have
a very large decrease of thermal expansion at high pressure.

must be a reversal in the trend of Bv/Br at pres-
sures beyond those yet reached. It is to be
seriously considered, however, whether the
expectation that the entropy at infinite pressure
must vanish is a necessary one. In the argument
which represents the third law as resulting from
the complete vanishing of all randomness at 0'
abs. , the atom is treated as the inviolable unit
with respect to which randomness is calculated.
But at infinite pressure the atom certainly is
not inviolate, for there are all sorts of penetration
effects and interactions between electrons. If
the electron or some other subgroup in the atom
begins to acquire individuality at high pressures,
there would seem to be no reason why entropy
should not have negative values with respect to
a system in which the atom is the unit. This is
perhaps merely another way of saying that a
system under very high pressures is one of those
exceptional cases to which Fowler and Sterne
have shown that the third law does not apply.

V. P—U—T RELATIoNs IN LIQUIDs

1. Compressibility

Thus far we have considered mainly the effect
of pressure on the volume of solids, and have
also brieAy considered gases. Theory has had
some partial success in these fields, but has up
to the present been almost powerless when con-
fronted by the complications of an ordinary
liquid. All that I can do here is to make some
'qualitative observations suggested by the be-
havior of liquids at high pressures. The experi-
mental material is fairly extensive, including
measurements up to 12,000 kg/cm' in the tem-
perature range between 0 and 100'C on some
60 liquids, all of them organic except water and
mercury. Mercury is in a class by itself, its com-
pressibility being about one-tenth that of water,
and of the same order magnitude as that of the
solid metals, SO percent more compressible than
lead, for example, and much less compressible
than the alkali metals. It would be interesting
to know the compressibility of other liquid
metals, but there is no reason to anticipate
anything very striking. The other liquids fall
roughly into three groups with regard to the
total compression under 12,000 kg/cm'. Glycerine
is in a group by itself with a total volume decre-
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ment of 1.4.5 percent; in the second group is
water, C6H5Br, C6H~Cl and a number of the
glycols with a volume decrement varying from
18 to 20 percent, and in the third group are all
the others with a volume decrement of the order
of 30 percent. The division into groups is rough
and probably to a certain extent fortuitous.
Doubtless it would be possible to find liquids
fitting into all the gaps.

The order of magnitude of the compression
is not particularly characteristic of the liquid as
distinguished from the solid phase, but is rathe~
a characteristic of the chemical nature of the
material, for a number of organic solids have
compressions of 15 percent at 12,000. The notable
characteristic of the compressibility of liquids
as distinguished from that of solids seems to be
the relatively large decrease of compressibility
at high pressure; the compressibility at 12,000
kg/cm' is in many cases only 1/15th of that at
atmospheric pressure. Organic solids do not
show the stage of very rapid decrease of com-
pressibility at low pressures shown by the liquids.
The decrease of compressibility of liquids is not
uniform with pressure, but is by far the most
rapid at low pressures; for many substances the
relative decrease in the first 1000 kg of the range
is as much as the relative decrease in the last
6000. Qualitatively an adequate picture is that
at low pressures there is a large amount of "slack"
between the molecules; increasing pressure re-
moves this slack rapidly, and during this process
the compressibility is high. When the slack has
been removed there remains the compression of
the molecules themselves, part of which may
arise from a closer atomic grouping within the
molecule, and part from a shrinkage of the
atoms, as demanded by Schottky's theorem. A
large part of the high initial compressibility of
ordinary liquids is connected with the nearness
of the critical point liquid-gas, for compres-
sibility in the gas phase is high and at the critical
point itself compressibility is infinite.

The persistence of the compressibility of the
molecules at high pressures is a factor which
has seldom been adequately taken into account
in the various theories of liquids which have
been proposed. Most of these theories have been
more or less empirical in character and many of
them have agreed in assigning a finite limiting

volume to the liquid at infinite pressure. This
limiting volume, extrapolated from measure-
ments made in a range of 3000 or 4000 kg/cm',
is sometimes higher than the volume actually
reached at 12,000, and in any event the equa-
tions almost always give too small a compres-
sibility at high pressures. Another aspect of this
same phenomenon is that compressibility varies
very much less from liquid to liquid at high
pressures than it does at low pressures; among the
liquids measured there is a tenfold variation of
compressibility at atmospheric pressure, whereas
at 12,000 the factor of variation is only 1.8.

2. Compressibility and. chemical composition

There are various rough connections of the
kind that might be expected between the com-
pressibility and chemical composition. Thus at
high pressures the volume of isomers tends more
nearly to equality than at lower pressures, pro-
vided the volumes at low pressures are markedly
different. That is, at high pressures the tendency
is for structural differences to become obliter-
ated and for the volume to approach more
nearly to the sum of the volumes of the compo-
nent atoms. An example is ether and n-butyl
alcohol, both of which have the same composi-
tion, C4HioO, but which structurally are so
different in character that the chemist often
does not think of them as isomers. The ratio of
the volumes of equal weights of these two sub-
stances at atmospheric pressure is 1.096 and is
1.037 at 12,000. On the other hand, if the isomers
are not greatly different in structure, as n- and
i-butyl alcohols, then the tendency to greater
equality of volume at high pressures is not so
marked, and there may even be slight changes in
the opposite direction, 12,000 kg/cm~ not being
a sufficiently great force to assume complete con-
trol in these cases of slight difference.

If the molecule is bound together by intense
forces, the compressibility is small. The —OH
group appears to exert such a consolidating effect
on the molecule; the abnormally low compres-
sibility of glycerine is to be attributed to the
fact that the molecule contains three —OH
groups. The comparatively low compressibility
of the glycols and of water is evidently due to an
effect of the same sort. In general the addition
of links of the hydrocarbon chain, CH~, seems to
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favor high compressibility, and the presence of
an oxygen atom anywhere in the molecule low
compressibility.

3. Thermal expansion

The thermal expansion of liquids is much
easier to measure than that of solids, and it is
possible to obtain both the variation of expansion
with pressure at constant temperature and the
variation with temperature at constant pres-
sure. The effect of increasing pressure at constant
temperature is to decrease the thermal expansion,
as is also the case for solids, but by a much larger
factor. The variation with temperature is interest-
ing. Normally, at atmospheric pressure, thermal
expansion increases with increase of temperature,
or (8'v/8~'), &0. At a pressure between 3000 and
4000 kg/cm', however, this effect reverses for
nearly all organic liquids, so that at pressures
higher than this 8'v/8r'&0. An apparent ex-
planation suggests itself in terms of the failure
of linearity of the restoring forces. At lower
temperature at constant pressure the volume is
less, and therefore the non-linearity in the re-
storing forces arising from the intense repulsive
forces is greater and so the thermal expansion
is greater. This suggestion I have published in
several papers, but it evidently cannot be right,
for the same argument would demand that the
expansion increase with increasing pressure at
constant temperature, which is not the case. It
appears to me now that a possible factor in the
situation is the Schottky change of dimensions
of the molecules already discussed. We have
seen that the molecules increase in size as tem-
perature increases at constant pressure. At small
volumes (high pressures) this may mean an
important curtailment of the free Hight aspect
of molecular motion, an increasing degree of
linearity, and therefore a decreasing thermal
expansion. An exact working out of what is to
be expected here obviously demands a careful
balancing against each other of several factors;
it is an interesting and important problem for
theoretical attack.

Since (8C~/Bp), = —r(8'v/8r')„, the fact that
8'v/Bv' becomes negative between 3000 and 4000
kg/cm~ means that C„ increases with pressure
beyond this point. As a rough average, C„de-
creases to about 0.9 its initial value at 3000 or

4000, increasing from here on at such a rate that
at 12,000 it has not quite recovered its initial
value. The increase in C~ is not what one might
at first expect, since part of the effect of pressure
is to increase the stiffness of the constraints,
increasing the characteristic temperature, and
displacing the effective temperature to lower
values and so decreasing the specific heat. But
it must be remembered that the reversal of
8'v/Br' has been established experimentally only
for organic substances with rather complicated
molecules. Under ordinary conditions the specific
heat of such substances is known to be consider-
ably less than that corresponding to the full
number of internal degrees of freedom of the
molecule. If the effect of pressure is to make the
atom rather than the molecule the individual
unit of structure, an increase of specific heat
would be expected. Such a tendency is consistent
with the increasing approach to equality of iso-
mers at high pressures. If these considerations
are correct, one would expect that metals and
simple ionic lattices would not show the reversal
in sign of 8'v/Bv', it is unfortunate that av/a~
cannot at present be measured accurately
enough for these substances to permit an evalua-
tion of yv/gr'.

4. The pressure coefBcient and. the mechanism
of pressure

The ratio (Bv/Br)~/(Bv/Bp)„which is mathe-
matically identical to —(8p/Br) „, has played an
important part in various theories of liquids.
It has received the name "pressure coefficient"
and obviously gives the rise of pressure for one
degree rise of temperature at constant volume.
Various arguments have been advanced for
supposing that the pressure coefficient is a func-
tion of volume only, and equations of state have
been deduced on this basis. The physical meaning
of this assumption is easy to see. If we put
(8p/87)„=f(v), integration gives at once for the
equation of state

where q is an arbitrary function of integration.
The perfect gas equation and van der Waals
equation are bot'h special cases of this general
form. The physical meaning of such an equation
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is obviously that the pressure exerted by the
substance can be regarded as arising from two
different effects, each acting independently of
the other. The part given by p(v) is the same at
all temperatures as at O'K and obviously arises
from the forces between molecules, as for ex-
ample the force in Born's analysis for ionic
crystals. The part ~f(v) is proportional to the
temperature, and is evidently the part arising
from kinetic bombardment against the walls.
An elementary argument of kinetic theory shows
that the kinetic pressure is of this form if we
assume that the size of the molecules is inde-
pendent of temperature and that the kinetic
energy of temperature agitation is proportional
to temperature, as in classical statistics.

When we make comparison with experiment,
we find that in many cases (Bp/Br) „ fails to be a
function of volume only by an amount far
beyond experimental error. In general the
tendency is for 8p/87 to decrease with increasing
temperature at constant volume. The general
reason for the discrepancy is clear; if the mole-
cules are deformed by changes of pressure and
temperature, as we have seen they must be,
then the two mechanisms by which pressure is
exerted do not act independently, but there must
be interactions between them. Furthermore,
there is always a contribution to the q(v) term
arising from terms of higher order when the
amplitude of vibration increases; just how im-

portant this is compared with the other effect
is a question for detailed theory.

The change of internal energy of liquids under
pressure presents the same general features as
that for solids, that is, at low pressures it de-
creases with increasing pressure and then at
higher pressures there is a reversal. The physical
interpretation is also doubtless the same; at low

pressures and large volumes the attractive forces
preponderate, whereas at higher pressures and
smaller volumes the repulsive forces preponderate.
The pressure at which reversal occurs is markedly
lower in the case of organic liquids than for
solids, being in the neighborhood of 7000 kg/cm'.
This is what would be expected on the most
general grounds, pressure being in general more
effective in changing the properties of a liquid
than of a solid.

5. Small scale irregularities

So far we have been concerned with com-
paratively large scale effects in which all organic
liquids are more or less alike. Superposed on
these large scale phenomena there is a be-
wildering amount of small scale behavior or fine
structure, which varies with the individual liquid.
Examples can be found of nearly every con-
ceivable type of abnormal behavior. Thus the
compressibility may increase with rising pressure
or decrease with rising temperature, and thermal
expansion may increase with increasing pressure
and increase or decrease with rising temperature.
Such a variety of behavior must mean that the
individual differences of the different kinds of
molecule are coming into play and becoming
accentuated at high pressure, as is indeed most
natural when one considers how the molecules
are pushed into more intimate contact by
pressure and forced to conform to each others'
irregularities. The picture of the molecule that
wave mechanics is developing seems to provide
the possibility of just the sorts of complication
that are required, valencies directed in space
giving the possibility of shapes much more
complicated than spherical, and regions in the
outer parts of the atoms pulled together by the
pairing of electrons of opposite spins giving the
possibility of local centers of attractive force—in
fact just the sort of complication that seemed
demanded by qualitative considerations before
the development of wave mechanics. The
complications involved in the detailed working
out of the possibilities will doubtless be pro-
hibitive for a while, so that probably at first
theory will confine itself to the broad features
common to all liquids, where the possibilities
are interesting enough.

From the existence of the great amount of
individual detail one may draw the conclusion
that there is no such thing as "an" equation of
state, as has been tacitly assumed so often. It
would obviously be hopeless to attempt to
reproduce in a single type of equation with
variable parameters all the possibilities of all

types of molecule. The most that can be meant
by "an" equation of state is a description of a
general method, not a general result.
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VI. PERIQDIc RELATIoNs

One of the tasks of theory in dealing with the
compressibility of the elements is to reproduce
the strikingly periodic character of the com-
pressibility, a feature first emphasized by
Richards. ' In Fig. 1 is plotted the logarithm to
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FIG. 1. The logarithm to the base 10, plus 7, of the com-
pressibility of the elements plotted as ordinate against the
atomic number as abscissa.

the base 10 plus 7 of the cubic compressibility of
all known elements against the atomic number.
There is good reason to think that the maximum
positions in the figure would be occupied by the
condensed phases of the rare gases, which have
not yet been measured. This might be expected
on general grounds, because of the nature of the
forces holding the rare gases together, namely van
der Waals forces, which are the weakest of the
various recognized types of atomic force. Passing
to the alkali metals, their high compressibility is
evidently to be correlated with the single electron
in the outer shell, making for a very deformable
atom.

VII. CoMPREssIBILITY QF SINGLE CRYsTALs

Theory must ultimately account for the differ-
ence of compressibility in different directions of
single crystals of the non-cubic substances. The
differences in different directions are often very
marked; thus zinc is eight times more com-
pressible along the axis than at right angles to it,
and tellurium actually has a negative com-
pressibility in one direction. Qualitatively the
behavior is roughly as one would expect, the
compressibility being greatest in the direction of
greatest atomic separation, and in the case of

tellurium there has been some success in con-
necting the behavior qualitatively with the
filamentary structure of spirally arranged atoms
in the direction of the axis. But quantitatively,
practically. nothing has been done, and one can
hardly expect much before the more fundamental
problem is solved of reproducing the lattice
structure itself with its difference of spacing in
different directions.

VIII. Two PHAsE EQUILIBRIUM

We now' pass from consideration of the effect of
pressure on a single condensed phase, solid or
liquid, and consider the change in the equilibrium
between two condensed phases, either solid and
liquid or two solids, produced by pressure. The
fundamental equation governing the phase
equilibrium is of course the equation of Clapeyron

dr/dp = re/L,
where dv is the change of volume during the
transition and L is the latent heat.

1. The melting curve

Clapeyron's equation applies to any kind of
two phase equilibrium. With regard to the
melting equilibrium between solid and liquid the
problem which has attracted the most attention
is that of the shape of the melting curve.
Clapeyron's equation obviously allows dr/dp to
be any function of pressure, if only bv and L have
appropriate values, and in fact thermodynamics
in general has no restriction to place on the shape
of the melting curve. The question reduces to one
of experiment, therefore. Expectation has been to
a large extent controlled by the corresponding
situation with regard to equilibrium between a
liquid and its vapor. Here it has been established
that all sorts of substances show the same sort of
behavior; there is a critical point at which the
distinction between liquid and vapor ceases,
which means that it is possible by proper
manipulation of pressure and temperature to
pass around the critical point, and thus pass
without discontinuity from the vapor to the
liquid state. This general result seems to have
been often taken over for the solid-liquid
equilibrium without any very self-conscious
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realization that a special assumption was being
made, for it has been generally assumed that
there is such a thing as "a" melting curve, the
same in general character for all substances,
whether the substance is held together by van
der Waals forces as in an inert gas, or by ionic
forces as in a salt, or by exchange forces as in a
metal or by valence forces as in some molecular
compounds. This assumption did not appear to
be so serious before the existence of these different
sorts of force was clearly recognized, but now it
would appear that to assume that there is such a
thing as "a" melting curve is of itself con-
siderable of an assumption.

Assuming that there is such a thing, there have
been various expectations as to the character of
the melting curve. The earliest was that there
would be a critical point just as in the case of
liquid-vapor, at which liquid and solid would
become identical. Other expectations have been
that the melting curve would rise to a maximum
and then fall again (Tammann), that it would
rise to an asymptotic temperature at infinite
pressure (Schames), or merely that it would
continue to rise indefinitely with pressure and
temperature. In the experimental range of
pressure neither of the first two expectations
have been realized, while obviously the last two
demand an infinite pressure range. The question
has to be settled then on the basis of some sort of
an extrapolation. Such an extrapolation can be
made in terms of the behavior of dv and L in
Clapeyron's equation. Thus if there is a critical
point, Av and J must both tend to vanish at the
same pressure (and temperature); if there is a
maximum, b,v must tend to vanish at some finite
pressure (and temperature) and L must tend to a
finite value at the same pressure, etc. It is not
necessary to go into greater detail here because
the question has been freshly discussed in a
recent paper in the Physical Review. ' It seems to
me personally that all the present experimental
evidence is unequivocally in favor of the ex-
pectation that the melting curve rises indefi-'

nitely; this holds for substances as diverse as
argon, nitrogen, liquid metals, and many organic
compounds. This conclusion is, of course, re-
stricted to a pressure range in which nothing
occurs drastically new, like an atomic break-
down, and definitely does not apply to the

extreme pressures considered in the Section XVI
of this article.

The tacit assumption of "a" melting c'urve

therefore seems to be justified. The explanation
of it must rest on some broad general property of
solid and liquid and not depend on the particular
type of force binding the molecules together.
Such a broad feature is obviously the regular
arrangement of the crystal as opposed to the
haphazard arrangement of the liquid. A melting
curve which rises indefinitely merely means that
no matter how high the temperature, it is possible
to apply to any substance enough pressure to
make it assume the regular arrangement of the
crystal which it has at some lower temperature
(except for polymorphic changes). Such a be-
havior appears most natural and quite in line
with the experimental fact of the universality of
the existence of the crystalline state of aggrega-
tion. But theoretically the explanation has not
yet been given for the necessity of the existence
of a crystalline phase. It is doubtless our inability
as yet to understand theoretically this funda-
mental fact that is responsible for the persistence
with which a number of physicists still maintain,
as it seems to me against the experimental
evidence, the idea that the melting curve will end
in a critical point if only pressure can be carried
high enough. It would be surprising if the
universal tendency to crystallize could be sup-
pressed by pressure, particularly in view of the
fact that many substances are already in their
natural state under a very high internal pressure.

Some theoretical discussions have been given
of melting, mostly from a roughly empirical point
of view, as, for example, that of Lindemann, ~ who
postulates that melting occurs when the ampli-
tude of atomic vibration has become about 10
percent of the distance of separation of atomic
centers at O'K. One characteristic of this
argument of Lindemann has been common to
most of the other arguments also, namely that
the solid will melt when some critical condition is
reached in the solid phase, irrespective of the
nature of the liquid, as if melting were like the
falling over of a row of dominoes. This of course,
is not the case, but the melting point, which is
the point at which solid and liquid are in
equilibrium, is that point at which there is a
certain relation between the properties of solid
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and liquid, as is shown by the thermodynamic
formulation in terms of the equality of the
thermodynamic potentials of liquid and solid.
Any valid theory of melting must properly
consider this aspect of the situation. The com-
plete theory of melting must also take into
account the still more detailed consideration of
the precise crystal system of the solid.

There is room for the collection of considerably
more experimental material which would be of
value in formulating a theory of melting. It so
happens that in spite of the large number of
liquids whose properties have been studied under
pressure, very few are liquids whose melting
curves have also been investigated, The reason
for this is connected almost entirely with
questions of technique; thus the sylphon with
which the compressibility of a large number of
liquids has been measured is likely to be ruined if
the liquid is allowed to freeze in it, so that liquids
have mostly been picked out for measurement
that do not freeze in the experimental range.
The result is that we have entirely inadequate
experimental knowledge of how the properties of
liquid and solid vary together along the melting
line. For example, the following simple questions
cannot at present be answered: does the volume
of the liquid in general increase or decrease along
the melting line; or, does the energy content of
the liquid in general increase or decrease along
the melting line?

The normal melting curve rises to higher
temperature with rising pressure, a consequence,
according to Clapeyron's equation, of the facts
that in nearly all cases the volume of the solid
phase is less than that of the liquid, and the
latent heat of transition from the low to the high
temperature phase is of necessity positive. The
only known exceptions have been water, bismuth
and gallium. The abnormal falling melting curve
of water is, however, only a temporary episode,
for beyond 2200 kg/cm' a new modification of
ice, denser than the liquid, replaces ordinary ice,
and from here on the melting curve of water
rises, as is normal. The expectation would be
that this must also be the eventual state of affairs
for bismuth and gallium, and a number of
attempts have been made to find a new modifi-
cation of bismuth. I have recently been successful
at last in finding the second modification of

bismuth, ' the transition taking place at 25,000 kg
at room temperature. It has not been actually
shown experimentally that the melting curve of
this new modification rises, but the magnitude of
the change of volume leaves no doubt of it. One
suspects that the new bismuth will prove not to
have many of the abnormal properties of
ordinary bismuth and that the general e8ect
of the action of pressure on bismuth is to force it
into normality, as is known to be the case with
water. No serious attempt has been made to find
a new modification of gallium beyond 12,000 kg;
the slight departure of the melting curve of
gallium from linearity leads one to be prepared to
find that the high pressure modification of
gallium occurs at higher pressure than that of
bismuth. But with the example of bismuth
freshly before us, I think that theory need have
no hesitation in proceeding on the assumption
that the rising melting curve is entirely normal.

There is another universal feature which all
melting curves have in common that theory must
ultimately explain, namely they are all concave
downward, or d'v/dp'(0, whether they rise or
fall.

Two remarks of a negative character can be
made with regard to a theory of melting. In the
first place, if melting temperature is plotted as a
function of the atomic number of the elements,
very much greater irregularities will be found
than for such atomic properties as atomic volume
or compressibility or electrical conduction; there
are even places of unexpected reversal, as for
example mercury between gold and thallium, and
gallium between zinc and germanium. These
abnormalities cannot be explained by the natural
assumption that there may be missing modifi-
cations of the solid, which might be forced to
appear by high enough pressure, like the new
modification of bismuth. For these abnormal
melting points are already too low, and the
melting point of any as yet undiscovered high
pressure modification would be even lower. The
situation could be saved only by a new high
pressure phase of the liquid, and two liquid
phases are not known for any pure substance,
unless one wants to count liquid crystals.

The second remark is that the melting of
different sorts of substance is not governed by a
law of corresponding states like the vaporization



P. W. B R I DGM AN

of the liquid phase, If there were such a law of
corresponding states, then the temperature at
which the difference of volume between liquid
and solid phase has fallen to a definite fraction of
its value at the normal melting point would bear
a definite ratio to the normal melting tempera-
ture, the same for all substances. This is very
definitely not the case. There may, however, be
something corresponding to the law of corre-
sponding states for restricted groups of sub-
stances. Thus the alkali metals, sodium, po-
tassium, rubidium, and caesium, satisfy very
approximately the condition just described on
the volume differences.

The alkali metals show another interesting
phenomenon with regard to melting; the melting
curves of sodium and potassium cross in the
neighborhood of 9000 kg/cm', and the slope of
the other mel'ting curves in the experimental
range is such that it seems probable that below
perhaps 30,000 kg/cm' there will be a complete
reversal of the normal order of melting of all the
alkali metals, lithium becoming the lowest and
caesium the highest melting. A phenomenon like
this I believe is very plausibly associated with the
modification in the internal structure of the atom
which we have already discussed with the help of
Schottky's theorem. Caesium obviously has
much greater latent possibility of internal re-
adjustment than lithium, because the electronic
structure of its atom is so much more complicated.

Schottky's theorem demands a special internal
change in the atom on melting apart from the
pressure and temperature effects in the homo-
geneous phase. Written for melting, Eq. (1)
becomes:

AT = —b,E+3pb,v.

But dE L —pd, v. Hence

AT = —L+4phv.

To the degree of approximation that the kinetic
energy of mass motion of the molecules is the
same in the liquid and solid phase, this equation
means that at low pressures (neglecting the tv
term) the internal kinetic energy of the molecule
is less by the latent heat in the liquid phase than
in the solid, which would indicate a swelling of
the molecule in the liquid phase. But at high
pressures this is counteracted by the 4phv term,

so that at high pressures the internal structure of
the molecules of liquid and solid tends to become
more nearly equal. In fact, it will be found that
for most of the liquids whose melting curve has
been. studied 4pbv becomes greater than L at
pressures below 12,000, so that there is a
reversal. Of course in order to get a precise
characterization of what occurs, some precise

way of dealing with the kinetic energy of mass
motion in the two phases must be devised, but at
any rate it is indicated that at high pressures
there may be important differences as compared
with low pressures,

2. Polymorphic transitions between solids

Thermodynamically, as far as the application
of Clapeyron's equation and of Schottky's
theorem goes, there is no difference between a
liquid and a solid (crystalline) transition and a
transition between two solid phases. As a matter
of experiment, however, the transition phe-
nomena between two solid phases are very much
richer and more varied than between a liquid and
a solid. Melting phenomena all conform to one
simple pattern; the melting curve rises with
downward concavity, the difference of volume
between liquid and solid decreases with rising
temperature along the melting curve, and the
compressibility of the liquid phase is always
greater than that of the solid even in the ab-
normal case of ordinary ice. Transition curves
between solids, however, may either rise or fall
with either upward or downward curvature, the
volume difference may either increase or de-
crease along the curve, and the compressibility of
the phase of larger volume may be either greater
or less than the compressibility of the phase of
smaller volume. Not only may solid-solid trans-
itions show very great variability with regard to
the behavior of the thermodynamic parameters
of the transition, but there may be the greatest
variation with regard to the dynamic charac-
teristics. The transition may run rapidly or
slowly; the speed of the transition may be
unsymmetrically affected by small displacements
of pressure and temperature, positively or
negatively, away from the equilibrium values;
the transition may support subcooling only or
superheating only or both or neither; the new
modification may have a definite orientation with
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regard to the original orientation, or it may be at
random; and finally the transition may run only
when the parent form is a single crystal in a state
of high purity and under other circumstances be
entirely suppressed.

Thus far there appears to be only one general-
ization applicable to a solid-solid transition
curve, namely that it never ends in a critical
point. This of course means that one type of
crystal lattice never changes continuously into
another type. Such a continuous change is not
impossible as a matter of pure geometry; thus a
cubic lattice might change continuously into a
tetragonal lattice by a gradual preferential
expansion along one of the cubic axes. But such a
change would involve a distinction between the
cubic axes, and if the structure was originally
truly cubic there can be no such distinction.
Certainly from a physical point of view con-
tinuous transition from one type of lattice to
another must seem highly improbable, and the
fact that it is never found is a gratifying check on
the validity of our picture of the constitution of a
crystal, at least in this respect.

But beyond the impossibility of a critical point,
apparently any type of behavior which might at
first strike one as abnormal is possible. The mere
existence of certain types of transition is signifi-
cant. Thus there are transition lines which run
vertically, which means that there is no latent
heat. .There is however in such cases a change of
internal energy of amount pAv at the transition.
If the transition takes place at comparatively low
pressures, where the forces in both phases are on
the average attractive, this means that although
the atomic or molecular centers are pushed closer
together the attractive forces receive work. This
is not understandable if the centers of attractive
force coincide with the geometrical centers of the
molecules, but it does become understandable if
the attractive centers are situated on what are
effectively projections on the molecules. If the
low pressure phase is one in which the projections
on the different molecules are in register, held
together by the attractive forces, it is easy to
see that these projecting centers may be pulled
out of register by high pressure, thus doing work
against the attractions, but at the same time the
volume may become less, the projections slipping
past each other and interlocking in the high

pressure modification. Such a picture is quite in
accord with the possibilities now allowed by wave
mechanics.

The change in the internal structure of the
atom at such a transition demanded by Schottky's
theorem may be considerable. Since L =0 for such
a transition, we have d, T=4phv. Consider the
high pressure transition of bismuth, which takes
place at 25,000 kg/cm' with a volume change of 8
percent. ET=4X25,000X0.08=8000 kg cm per
cm'. There are 2.8X10" atoms of bismuth per
cm' and 1 electron volt=1.62X10 " kg cm.
Hence AT = 8000 X 10' /2. 8 X 10~X1.62 =0.18
electron volt per atom. The sign of dT is such
that the high pressure atom has the smaller
internal kinetic energy. This under normal con-
ditions would mean an expansion of the atom.
This result is so highly paradoxical that obviously
one of the first tasks of an exact theory is to
examine to what extent our fundamental as-
sumptions are valid, namely that the kinetic
energy of atomic motion as a whole is the same in
the two phases (that is, kinetic energy constant
at constant temperature), and that the same
simple connection apprdximately holds between
internal kinetic energy and mean atomic radius
for highly compressed atoms that holds for the
free atoms of elementary theory.

At a vertical tangent the transition line in
general is not perfectly straight, but has per-
ceptible curvature. It can be shown by a simple
thermodynamic consideration that this means
that under the point of vertical tangency the
phase which is stable at the lower temperature
has the higher specific heat, an abnormal state of
affairs.

An example has been found of a transition with
maximum temperature, and it is probable that
there is at least one example of a transition with a
minimum temperature, which however could be
realized in practise only with extreme difficulty
because of the viscous resistance to the transition
at low temperatures. At a maximum point the
transition runs with no change of volume, but
with a nonvanishing latent heat. On the trans-
ition curve, to the high pressure side of such a
maximum point, the phase with the smaller
volume has the higher compressibility, again a
paradoxical result. It turns out, however, that
more than half the solid transitions for which the



measurements have been made are paradoxical in
this respect, namely that the phase of smaller
volume has the higher compressibility. Such a
state of affairs is not inconsistent with the picture
presented above, namely that in many crystals
the attractive centers are effectively located on
projections and are not situated at the geo-
metrical centers of the molecules. A phase in
which the attractive centers are so lined up as to
be in register, that is, the phase of higher volume,
would be expected to have a higher rigidity or a
smaller compressibility, than a phase in which
they are out of register, that is, a phase of smaller
volume.

Chemical similarity of different substances is
very much less likely to result in similarity of
transition phenomena than in, similarity of
nearly every other physical property, and there
are very few examples of chemically related
groups which are polymorphically similar. One
of the best examples of such a group is NH4CI,
NH4Br and NH4I, all of which have a body
centered and a face centered modification, the
transition line running very nearly vertically, at
pressures below 1000 kg/cm', and with very little
latent heat. Furthermore, the pressure of the
transition varies systematically in the series.
RbC1, RbBr and RbI are another similar family,
which is very similar to the family of the am-
monium halides, there being also body centered
and face centered modifications with nearly
vertical transition lines, and a systematic varia-
tion of pressure through the series, which, how-
ever, is in the opposite direction from that in the
ammonium family. The mean pressure of the
transition for the rubidium family is in the
neighborhood of 5000 kg/cm'. Very recently I
have found that the potassium family shows the
transition in the neighborhood of 20,000, whereas
in the sodium family the transition cannot occur
much below 50,000.

The nitrates of the alkali metals are a family
in which polymorphism is very common, and
there are a certain number of resemblances in the
behavior of members of the family, but there are
also marked divergences. But there are also
other examples in which there is no resemblance
in the polymorphic behavior in spite of the
closest chemical resemblance, as CC14 and CBr4.

Theory has not advanced very far as yet in

understanding the reasons for polymorphic
transition, much less is it able to predict when a
transition may be expected and to calculate the
thermodynamic parameters of the transition. In
fact, one cannot expect very much in this
direction as long as the fundamental problem of
understanding why a substance crystallizes into
a lattice is not solved. One cannot discuss the
problem of polymorphic transition until the
problem not only of understanding why the
lattice exists is solved, but one should also be able
to calculate the lattice type. However, certain
aspects of the problem of polymorphic transition
have been subjected to theoretical attack. The
difference between the body centered and the face
centered lattices has been put on the basis of
differences of minimum energy, and Hund' has
attempted to show that when the exponent of the
repulsive forces passes a certain critical value the
type of lattice changes, and to explain in this way
the difference of crystal system between the
caesium halides and the other alkali halides.
However, the attempt was not particularly
successful, because the critical value for the
exponent occurred at values very much higher
than allowed by the compressibility, Hund's

method of attack has been modified by Born and
Mayer, "who have considered in addition to the
attractive and repulsive forces the van der Waals
forces arising from the polarization of the ions.
The NaCl type of lattice proves to be the more
stable, but if the van der Waals forces are
doubled, a procedure which at first was purely
empirical but which was later given theoretical
support by Mayer, the CsCI type of structure
turns out to be the more stable for the caesium
halides (except the fluoride), and furthermore the
difference of energy between the two types. of
lattice in the case of the rubidium salts proves to
be of the same order of magnitude as the values
actually found for the transition under pressure.
Additional considerations, however, would seem
to be necessary to show why the heat of trans-
ition is approximately zero, although the energy
change is appreciable. For the potassium salts the
energy values of Born and Mayer would lead to
the expectation that it should be possible to
force the transition of these salts also from the
NaC1 to the CsCl type of structure by pressures
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within the experimental range and indeed I have
just found the transition near 20,000.

Even this simplest of all possible cases, the
transition of the alkali halides from the NaCI to
the CsC1 type of structure, is affected by
complications. RbC1 undergoes a transition with
very small volume change" at a pressure of about
2000 kg, half the pressure necessary to force the
principal transition from what is supposedly the
NaCl to the CsC1 type. There seems no place for
such a transition, and the nature of the new
lattice is entirely in doubt. It seems to me
probable that the lattice type does not change in
this transition, but that there may be within the
atom some comparatively minor readjustment in
the energy levels of the electrons.

A knowledge of the lattice structure of the high
pressure modifications would be most helpful in
formulating a theory. Unfortunately no experi-
mental determinations have as yet been made by
x-rays while the material is actually under
pressure, .so that our knowledge of the structure
of the high pressure forms is restricted to those
cases in which the high pressure form can be
realized at atmospheric pressure under proper
conditions of temperature. Fortunately a number
of such structures are known. The result is some-
what paradoxical in that in more than half the
cases the form stable at higher pressure, that is,
the form which has the smaller volume, is the
form with lower symmetry. The crystal forms
with .highest symmetry are the close packed
arrangements of spheres; one would expect the
form of smaller volume, that is, the form stable
at the higher pressure, to be a close packed
arrangement, and therefore a form of higher
symmetry. The conclusion must be that at high
pressures the atoms or molecules do not on the
average have spherical symmetry; spherical
symmetry is a property of the atom at low
pressures, where it has more free space at its
disposal, but when the available space is less it is
forced into less symmetrical form. In the case of
such phenomena as directed valence in the water
molecule, for example, the detailed proof has been
given that wave mechanics demands a spherically
unsymmetrical solution.

Any theory of polymorphic transition must
take proper account of one very important
respect in which a transition between solids may

differ from the transition liquid-solid. If a solid
and a liquid phase a.re in contact with each other
at equilibrium, and the equilibrium is disturbed
by a displacement of pressure or temperature,
equilibrium is always exactly restored by an
automatic change in the system, produced either
by melting or freezing. That is, the system comes
of itself to a sharply defined equilibrium point,
the same from whichever direction it is ap-
proached, provided the two phases are in contact.
The ordinary explanation is that equilibrium is a
dynamic affair, that there are always molecules
leaving the liquid phase and crystallizing into the
solid, and also always molecules leaving the solid
and melting to the liquid. At equilibrium the
velocity of the two streams in opposite directions
is the same; when equilibrium is disturbed the
velocity of one or the other stream preponderates,
and this excess acts in such a direction that
equilibrium is presently restored automatically.
In the case of two solids, on the other hand, the
state of affairs may be quite different, in that it is
often possible to displace the temperature or
pressure on two solid phases which are in contact
and in equilibrium with no resulting reaction at
all. If, however, pressure or temperature is
sufficiently displaced, the transition will run in
such a direction as to tend to restore the initial
condition. That is, solids may show the phe-
nomenon of a "region of indifference. " The
extent of this region of indifference may be
measured with some precision, and will be found
to vary with pressure and temperature. There
are no obvious regularities of behavior, but the
fact of the existence of a region of indifference,
and the'manner of its variation with pressure and
temperature are entirely independent matters,
depending on the particular substance. In those
cases where a region of indifference exists, it is
evident that equilibrium between two phases
cannot be a dynamic affair of the equality of two
velocities in opposite directions, but the mecha-
nism must be more static in character; probably
there is something of the nature of a hill of
potential between the two phases which can be
surmounted only when the condition of equilib-
rium is violated by a sufficient amount. It is
evident, I think, that in these cases, whatever it
is that pa,sses from one potential valley to the
other over the intervening hill, cannot be
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endowed with a Maxwellian distribution of
velocities, for if this were so there would always
be some molecules with velocity sufficiently
greater than the average to leap the potential
barrier.

The very great variety in polymorphic trans-
itions found. experimentally is understandable
now that the very great variety of theoretical
possibilities is becoming appreciated. Thus it is
recognized that there are lattices held together
by various types of forces: ionic lattices, lattices
held together by valence forces, or by van der
Waals forces, layer lattices, and molecular lat-
tices. Furthermore, the distinction between the
types just enumerated is not always clean cut.
Polymorphic transitions may be expected corre-
sponding to the change from one to another of
these types of lattice, or to partial changes in
type. In addition we may be prepared for
transitions involving internal electron rearrange-
ments in the atoms; such changes might be
expected particularly in those atoms with incom-
pleted inner shells of electrons. Perhaps the
transitions under pressure of cadmium and
cerium are of this type.

The ultimate theory of polymorphic transition
and of crystallization in general will doubtless
incorporate one consideration which has received
little attention up to date. It seems to me that
broad considerations, such as for example the
condition of minimum energy, are not enough
here, but one must be sure in every special case
that it is possible to actually realize the detailed
steps necessary to build up the crystal. This sort
of consideration has proved not to be necessary in
treating certain classes of phenomena, since our
experience has been that nature will often some-
how find a way to adjust itself to the require-
ments of broad principles, as for example, in
systems in which there is a Maxwellian distribu-
tion of velocities there are always some molecules
which are able to settle down into a position of
minimum energy even though an intermediate
stage may be necessary in which the molecule is
moving toward higher energy. That this sort of
thing plays a definite role in polymorphic
transitions is shown by the phenomenon of the
"band of indifference" already considered. There
is an analogous consideration with regard to the
building up of the crystal from the liquid or

vapor phase or from solution. Only recently have
physicists been considering the details of the way
in which the crystal grows. It appears that on the
surfaces of deposition there are conditions of
reversibility and growth to be satisfied quite
different from the conditions at interior points.
These growth conditions, as well as conditions on
the completed structure, must obviously be met
if the crystal is to exist. The thermodynamic
conditions, expressed perhaps in terms of the
equality of two thermodynamic potentials, are
only a small part of the story.

IX. IRREvERsIBLE TRANsITIQNs

The transitions thus far considered have all
been reversible thermodynamically and me-
chanically. There is one irreversible transition
produced by high pressure, that from white to
black phosphorus, which I think contains possi-
bilities of great theoretical interest. This trans-
ition is remarkable for the very large increase of
density, 46 percent, and for the very great change
of properties, from a good insulator to a fairly
good conductor of electricity, and for the details
of the way in which the transition takes place.
The transition cannot be hastened in the usual

way by inoculating with a nucleus of the other
modification, but some preliminary process of
preparation is necessary which apparently takes
place homogeneously throughout the volume
with slight increase of density, and which pro-
ceeds at an accelerated pace for perhaps ten or
fifteen minutes until some critical condition is
reached which causes the entire system to
collapse suddenly into the black modification.
Just what this process of preparation may consist
in seems at present quite obscure. It would be
surprising if phosphorus, were the only element,
ordinarily non-metallic, which was capable of
assuming irreversibly a metallic form. I have
searched for a similar transition of sulfur, which
stands next to phosphorus in the periodic table,
but without success. A pressure of 50,000 kg/cm'
was applied at room temperature; it would be
desirable to much increase the pressure range for
investigations of this character.

Ag~O affords an example of a transition inter-
mediate between the completely irreversible
transition of white to black phosphorus, and the
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clean cut perfectly reversible transition of many
substances. If the volume of AgsO is determined
as a function of pressure, increasing pressure
uniformly to a maximum and then decreasing it
to its initial value, a very broad hysteresis loop
will be found, similar in shape to the magnetiza-
tion loop of many ferromagnetic substances.
Small amounts of hysteresis in solid-solid trans-
itions are not uncommon, and would be expected
if there are impurities forming solid solutions, so
that phenomena of diffusion in the solid state are
involved, but this seems to be something differ-
ent, and the explanation does not yet appear.

X. DISCONTINUITIES —TRANSITIONS OF THE

SECOND KIND, ETC.

direction, abrupt within experimental error, of the
pressure-volume isotherm, which of course means
a discontinuity in compressibility and thermal
expansion. The pressure of this discontinuity was
displaced toward higher values at higher temper-
atures, just like the displacement of an ordinary
transition, and in fact at 9500 kg/cm' the
temperature of the discontinuity is +30'C. I
showed that there is a purely geometrical relation
connecting the discontinuity in compressibility
and thermal expansion with the slope of the line
on which the discontinuity occurs, namely

d7/dp= —A(av/aP), /a{av/ar) „
as indicated in Fig. 2. By utilizing the thermo-
dynamic relation

The phase changes thus far considered, to
which the conventional Clapeyron's equation
applies, have involved discontinuities in the
volume and the energy content. Recently another
type of change has begun to attract attention, in
which there are discontinuities in the derivatives
of volume and energy .content, that is, dis-
continuities in thermal expansion and com-
pressibility and specific heat. This sort of
phenomenon was first recognized at low tempera-
tures, and perhaps the best known example is
the case of NH4C1 investigated by Simon, "who
found that there is a region only a few degrees
wide centering around —30'C in which there are
enormous variations in the specific heat and the
thermal expansion. Somewhat later at Leyden,
Keesom" found that anomalous effects which he
had previously discovered in liquid helium at low
temperatures and which he had been at first
inclined to explain as showing two modifications
of the liquid, actually involved discontinuities in
only the derivatives of volume and energy, the
locus of these discontinuities being a curve in the
p —t plane. Ehrenfest" published a paper on the
thermodynamic aspects, and proposed that such
discontinuities should be called "transitions of
the second kind, " a name which has apparently
been accepted.

Some time before the paper of Ehrenfest I had
made an experimental study of the effect of
pressure" on the anomalies of NH4C1 and
NH4Br found by Simon. For NH4Cl it appeared
that the anomaly manifests itself by a change of

this can be thrown into a form exactly analogous
to Clapeyron's equation, namely

dr/dP= rdv/dQ,

where dv/dQ is the ratio of volume change to heat
absorbed in making the change corresponding to
AB of the figure. Ehrenfest used also the equiva-
lent relation

d r/dp = —r68v/Br/hC, .

The behavior of NH4Br was unlike that of
NH4C1 in several respects. The volume anomaly
is of the opposite sign, so that at high pressures it
is displaced to lower temperatures instead of to
higher. Because of the inconvenience of pressure
manipulations at low temperatures, the anomaly
was studied only at —72', at which it occurs at
1600 kg/cm'. Furthermore, the anomaly is much

Pressure

Fio. 2. Indicates the geometrical relations satisfied by a
discontinuity of the derivatives of volume which experi-
ences a temperature displacement when pressure is dis-
placed.
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more abrupt than for NH4CI, so that within
experimental error it appeared like a discon-
tinuity of the volume itself rather than of the
derivative, and therefore had the characteristics
of an ordinary transition.

Later I found a large number of anomalies" in
the behavior of solid substances in the tempera-
ture interval between 0' and 100'C and up to
12,000 kg/cm'. A number of these are, within
experimental error, sharp and reversible discon-
tinuities in the first derivatives, and would
therefore be described as "transitions of the
second kind. " Phenomena of this sort are com-
mon among certain classes of alloys. There are
also examples in which the discontinuities are not
perfectly reversible, but there are hysteresis
effects. There are also cases in whioh the anomaly
has no sharply defined edges, but there is a
region of anomalous curvature, which is displaced
to other pressures when the temperature is
changed. An example of this sort of anomaly is
also afforded by NH4Cl, this anomaly having
apparently no connection with the one already
discussed; another very striking example is
afforded by metallic chromium in a state of high

purity.
The great variety of phenomena offered by

these small scale anomalies shows that a classi-
fication of transitions into "first, second, third"
etc. kinds (for obviously Ehrenfest's scheme of
classification and nomenclature can be continued
indefinitely) is to a certain extent at present a
matter of convenience, reflecting more or less
closely the experimental accuracy. NH4Br is a
case in point; in Simon's measurements there
appeared only very rapid variations in the
thermal expansion, but under pressure, at a
temperature 40' lower, the anomaly had been so
sharpened that it appeared as a discontinuity in
the volume itself. What may appear to rough
measurements as a discontinuity in the first
derivative may appear as a discontinuity in the
second derivative to more refined measurements.
It is to be remembered furthermore that an
ordinary phase change would not appear to be
perfectly discontinuous if measurements could
be made accurately enough to detect the effect of
the varying ratio of surface energy to volume
energy as the transition progresses. It would

appear to me that the physical value of the

concept of the transition of the "second kind"
will depend on the discovery of some character-
istic physical process corresponding to such a
transition, analogous to the change from one
lattice to another which may characterize an
ordinary transition. As far as I know this has not
yet been done, but I can see no reason why it
should not be done, or why the transition of the
second kind should not be found to correspond to
some significant type of physical process. In fact
there may be several such kinds of significant
process, just as we know that a transition of the
first kind may mean a change from one amor-
phous phase to another or a change from an
amorphous to a crystalline phase, or a change
from one crystalline phase to another. It is, I
believe, very probable that we already under-
stand the mechanism of at least one type of
process corresponding to a transition of the
second kind; when certain of the gold-copper
system of alloys are warmed there occurs a
change from a type of lattice in which gold and
copper atoms are arranged regularly to a lattice
in which they are scattered about in haphazard
positions, and the change from one to the other
type of lattice seems to be initiated with a
definite break in the derivative, according to the
work of Bragg and Williams. "

Some progress has been made toward the
explanation of these anomalies; probably the
best known is that of Pauling" for the anomalies
of NH4C1. Pauling's explanation is that there is a
temperature range in which the molecules rapidly
acquire rotational motion. This is a process which
to a certain extent catalyzes itself, since the
attaining of a small amount of rotational motion
opens up the structure and makes the attaining
of additional rotational energy increasingly easy.
A similar element of autocatalysis is contained in
the explanation of Bragg for the change in the
gold-copper system, and it may be that this is an
important characteristic of the transition of the
second kind. But the details of Pauling's expla-
nation have not been worked out; it does not
appear whether there is a sharp break in a
derivative or whether the transition is initiated
more or less gradually, and the explanation of the
difference in sign of the volume effects in NH4C1
and NH4Br has not been given in detail, although
there would appear to be no unsurmountable
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difficulty here. In general, one may anticipate a
number of different types of thing that might
give rise to these anomalies, just as we have
already seen that there must be different types of
polymorphic change. Particularly does the
number of possibilities appear very large when
one reflects that the solid is not merely built up
of a, number of independent atoms, but that the
whole solid is one structure, with an enormous
number of energy levels and different types of
wave function, much more complicated than the
interior of a single atom.

XI. ELECTRICAL RESISTANCE

We next consider the effect of pressure on
electrical resistance, and in particular the re-
sistance of metals. Theory has not yet been
particularly successful in dealing with this
phenomenon, and in fact the only attempt which
endeavors to base the explanation on the most
recent pictures of the conduction process and
which can be regarded as promising is that of
Kroll. "The reason for this comparative failure of
theory can be appreciated when it is realized that
wave mechanics treatments of electrical con-
ductivity in metals give an expression for the
conductivity itself only as a third approximation
in the method of calculation, * and we are here
concerned with the effect of pressure on the
factors in this third approximation. The diffi-
culties are suggested by a consideration of the
simple formula for electrical conductivity given
by the elementary Sommerfeld theory, in which
the electrons are approximately treated as a gas
obeying the Fermi statistics:

0. = e'ln/mv

where l is the mean free path, ti the limiting
velocity of the Fermi distribution, and the other
letters have conventional meanings. The ele-
mentary theory sets 1/8 proportional to the mean
distance of separation of atomic centers, so that
from this point of view the effect of pressure on
1/t~ should be proportional to the compressibility

* The first approximation treats the atomic nuclei as
stationary, the second approximation is that the atoms
execute elastic vibrations independent of the electrons,
and the third approximation is that the coupling between
atomic vibrations and the motion of the electrons results
in electrical resistance. See Bethe, Handbgck d. Physik,
Vol. XXIV, 2, 2nd Ed. , p. 369.

But we know from Schottky's theorem that the
average kinetic energy of the electrons increases
with pressure by a factor which is not simply
related to the compressibility, so that from this
point of view it is not probable that the con-
nection between pressure end 1/8 can be as
simple as the elementary theory would suggest.
The calculation of the variation of / with pressure
would obviously be very complicated, since it has
to be left unknown in the elementary Sommerfeld
theory, and can be computed only inversely by
assuming the formula and substituting numerical
values for all the other factors. l will obviously
depend in a complicated way on the amplitude of
atomic vibration, and the distance of separation
of the atoms and on the frequency, that is, the
stiffness of the restoring forces. The situation
with regard to the pressure coefficient is even
more complicated if one considers the expression
for the conductivity given by the more exact
theory, as in Bethe's article in the IIandbuch on
page 523. This contains four or five factors
which may vary with pressure and which are not
simple.

In spite of the lack of perspicuousness of the
present theoretical picture with regard to the
pressure effects, I believe that the experimental
phenomena themselves are important enough so
that we must demand that theory eventually give
a satisfactory account of them. For the effects are
not small; they are almost always greater by a
factor of several fold than the changes of volume.
Thus the volume of potassium under 15,000
kg/cm' is about 70 percent of its initial value,
while its resistance is only 25 percent of its initial
value; the resistance of strontium under 12,000
kg is 84 percent greater than initially whereas its
volume is only 9 percent less. Among the non-
metallic elements there are even more extreme
examples; the conductivity of black phosphorus
at 18,000 is 100 times its initial value, that of
tellurium at 20,000 is 100 times initial, and AgsS
at 3000 is about 20 times as good a conductor as
initially.

Confining ourselves now to the metals it would
appear at first glance that there are great
varieties of behavior. Most of the common
metals decrease in resistance under pressure, and
the rate of decrease becomes less at high pres-
sures. However, the resistance of something like
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one-fifth of all the metals investigated increases
under pressure; included here are bismuth and
antimony, which would be expected to be
abnormal, but there are other metals which one is
less likely to think of as abnormal such as lithium
and strontium. There seems to be no significant
correlation between position in the periodic table
of the elements and a positive coefficient. The
pressure coefficient of resistance of all metals with
positive coefficient increases with increasing
pressure, that is, the plot of resistance against
pressure is convex toward the pressure axis.
Finally there are a few metals whose resistance
at first decreases, but then passes through a
minimum, and increases at higher pressures;
these are caesium with a minimum at 4000
kg/cm', rubidiUm with minimum at 1'7,800, and
barium with minimum at 9000. According to the
present pictures of metallic conduction, a de-
crease of resistance with increasing pressure
would seem to be the effect naturally to be
expected. For electrical resistance is thought to
arise essentially from interference with the
electron waves by departures of the atomic
lattice from perfect periodicity, and these de-
partures are simply connected with the amplitude
of atomic vibration. At high pressures the
amplitude of atomic vibration becomes less
because of increased stiffness of the forces of
constraint and increase of the characteristic
temperature, and hence the scattering of the
electron waves becomes less and the resistance
less. This wave mechanics picture is in some
respects much like the "gap" theory of electrical
resistance to which I was led by my pressure
experiments, in which resistance to electron
motion was pictured to arise from the gaps
between atoms produced by temperature agita-
tion. The existence of positive coefficients for
some metals, however, would seem to demand a
second type of mechanism; in the theory of Kroll
such a second mechanism is provided by the
effect of the distance of separation of atomic
centers. By a sort of scattering effect the
resistance becomes greater if the distance of
separation becomes less, any inequalities in the
structure becoming relatively accentuated at
small distances. This gives Kroll a term pro-
portional to the compressibility, tending to

increase resistance with pressure. * In my gap
theory I was similarly drawn to provide a second
mechanism to account for some of the abnormal
cases, particularly the phenomena of tension
coefficient of resistance when combined with
pressure coefficient. The second mechanism which
I imagined was that some of the electrons pass
through open channels between the atoms, and
that these channels become contracted when the
atoms are pushed together by hydrostatic pres-
sure. This sort of thing was therefore very much
like the second mechanism of Kroll. By thus
providing two different mechanisms, opposite
signs for the pressure effect can be provided for in
different metals, and also the reversal of sign and
the minimum of resistance, if we suppose that
at first one of the effects preponderates and at
higher pressures the other becomes larger. In
this way Kroll provides qualitatively for the
minimum of resistance of caesium; quantitatively,
however, his results are rather wide of the mark
in many cases.

Consideration of the complete body of ex-
perimental evidence, many features of which
have been discovered since I last worked on my
own theory ten years ago, makes me much less
satisfied with this picture of two different
mechanisms, one or the other of which may
preponderate. The reason is that the effect of
pressure on the resistance of nearly all metals
(elements) yet measured can be described quali-
tatively in terms of a single family of curves,
shown in Fig. 3. Here the resistance of any metal
at constant temperature as a function of pressure
has a minimum with respect to pressure, the
minimum occurring at higher pressures as the
temperature rises. The location of the origin of
pressure in the diagram depends on the metal; for
metals normally having a positive pressure
coefficient of resistance the pressure origin must
be taken beyond the minimum, so that for such
metals a negative coefficient would be anticipated
if high enough negative pressures could be

* Kroll also has a term involving the variation with
pressure of Poisson's ratio, which he ignored because he
had no experimental values for it. I may remark paren-
thetically that I have determined the effect of pressure
on rigidity/' and the change of Poisson's ratio under
pressure may be calculated from this and the effect of
pressure on compressibility. In general Poisson's ratio
increases by about the same percentage amount as the
incompressibility.
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FxG. 3. The resistance of all metals as a function of
pressure and temperature is consistent with a family of
curves of this character. The curves are arranged in order
of increasing temperature, that is, r2)r&, etc.

realized. For normal metals, on the other hand,
the pressure origin is as shown, and the pressure
of the minimum is beyond the present experi-
mental range. For only a few metals is the
minimum within the range of experimentally
realizable pressures. This diagram suggests that
metals with positive and with negative coeffi-
cients both display aspects of essentially one
phenomenon. Furthermore, the ultimate state of
affairs with all metals woufd thus appear to be
one in which resistance increases with pressure.
What is still more significant, the curvature of
resistance against pressure is always upward.
Many phenomena vary with pressure in the
opposite way, becoming less affected by equal
increments of pressure at higher pressures; this is
what might naturally be expected by a sort of
law of diminishing returns. The fact that the
curvature is like that shown suggests that there
is no limit to the possible resistance of a metal,
and that the tendency is to become a perfect
insulator at infinite pressure. This would suggest
that possibly as the atomic centers are pushed
indefinitely close together a new type of solution
of the wave equation will appear, by which the
outer electrons, which are normally free and
provide for the conduction, will become bound in
the same way that the inner electrons are nor-
mally bound, the entire metal becoming as it
were a single complicated nucleus.

It would be most important if the minimum of
resistance could be established by actual experi-
ment for elements of all situations in the periodic
table. It has actually been established only for
caesium, rubidium and barium, and indicated
with high probability by a short extrapolation for

potassium and sodium. Extrapolation for other
metals does not give much hope of actually
realizing the minimum for them, the probable
pressure of the minimum being in all cases higher
than 40,000 kg/cm'. However, the existence of a
minimum is made more probable in these cases if
one plots log R against pressure instead of R.
The reason is that the curve of resistance against
pressure of those metals with a negative coe%-
cient must almost inevitably be convex toward
the pressure axis since the resistance can not
become less than zero, and convexity has little
significance, but log R on the other hand may go
to minus infinity, there is no such restriction on .

the curvature, and convexity is significant. As a
matter of fact, log R of all metals with a negative
coefficient is convex toward the pressure axis,
which is the direction of curvature demanded by
the existence of a minimum.

It is an experimental fact that the pressure
coefficient of resistance is little affected by
temperature, or what is the same thing, the
temperature coefficient of resistance is little
affected by pressure. What slight change there is
is consistent with Fig. 3. One would expect the
temperature coefficient to be little affected by
pressure because the temperature coefficient of
all metals is roughly the same, 1/r, and the same
metal under pressure would not be expected to
differ more from the same metal not under
pressure than two different metals. The tempera-
ture coefficient 1/r is accounted for by the present
theory, so that this aspect of pressure phenomena
will be taken care of automatically in a theory of
pressure effects based on present pictures.

There are a few abnormal metals which do not
fit into the scheme of Fig. 3. But bismuth, which
might be expected to be abnormal, does fit into
the scheme. This may to a certain extent be
accidental. It is highly probable that the
abnormalities of bismuth are connected with its
crystal structure, because the pressure effects of
liquid bismuth are quite normal. This view with
regard to bismuth becomes more plausible in the
light of the recent discovery of the high pressure
modification of bismuth, with normal volume
relations to the liquid. It would be of great
interest to determine the sign of the pressure
coefficient of resistance of this high pressure
modification of bismuth.
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There have been comparatively few measure-
ments of the effect of pressure on the resistance of
liquid metals, and the theory of the resistance of
liquid metals has been little considered. It seems
to me that an attack on the problem of the
resistance of liquid metals should not be too long
deferred. Qualitatively, liquid metals show many
of the same phenomena as solids, particularly
with regard to the order of magnitude of the
resistance itself. The present theory of electrical
resistance, on the other hand, starts from the
assumption of the lattice, and this assumption
enters essentially into all the discussion. But
resistance phenomena in liquids make it appear
that these assumptions are not necessary to some
of the conclusions, which could probably be
deduced on more general grounds. In this con-
nection, one pressure phenomenon is probably of
significance. The resistance of the liquid phase
seems to bear an approximately constant ratio to
the resistance of the solid phase at the reversible
freezing point, irrespective of whether freezing
takes place at low temperature and low pressure
or is displaced to higher temperature by high
pressure. Thus the ratio of the resistance of liquid
to solid potassium is 1.56 at the normal freezing
point at 62.5' at atmospheric pressure, and is 1.55
at the reversible freezing point at 165' at 9700 kg.

It is probable that an ultimate increase of
resistance with pressure is as characteristic of
liquids as of solids. In the case of caesium
extrapolation makes it highly probable, although
the actual measurements could not be carried out,
that the resistance of the liquid will pass through
a minimum at about the same pressure as the
resistance of the solid. Lithium in the liquid
state has a positive pressure coefficient of
resistance, and the plot of resistance against
pressure is convex toward the pressure axis, as it
is for solids. Liquid bismuth„on the other hand,
has a negative coefficient, although the coefficient
of the solid is positive. It may be, therefore, that
there are special mechanisms capable of giving a
positive pressure coefficient at low pressure as
well as the universal mechanism giving the
ultimate positive coefficient of all metals at
extremely high pressures.

The effect of pressure on the resistance of non-
metallic substances is of interest. A non-metallic
conductor or a semiconductor is supposed to

differ from a metallic conductor in that the al-
lowed energy bands in some semiconductors are
separated by wider intervals than in metallic
conductors. One would expect that the effect of
pressure might be to crowd the energy bands
more closely together, giving the semiconductor
more the characteristics of a metal. The few
semiconductors that have been measured do have
enormously large negative coefficients of re-
sistance, so that at high pressures their resistance
does as a fact approach that of a metal. Tellurium
is a substance which is ordinarily classed as only
partially metallic in character. Under 20,000
kg/cm' its resistance drops to one percent of its
initial value; the plot of log R against pressure is
convex toward the pressure axis, so that a mini-
mum of resistance at considerably higher pres-
sure would be consistent with the effect in the
experimental range. Black phosphorus is, of
course, more like the metals than ordinary yellow
or red phosphorus, because it does conduct
electricity appreciably whereas yellow and red
phosphorus are complete insulators, but black
phosphorus would be said to be much less
metallic than tellurium. A non-metallic character-
istic of black phosphorus is that its temperature
coefficient of resistance is negative. The effect of
pressure on the resistance of black phosphorus is
also very large. Initially Iog R is concave toward
the pressure axis, which means an increasingly
rapid approach to the metallic condition as pres-
sure increases; this is not unnatural because black
phosphorus at atmbspheric pressure is further
from the metallic condition than tellurium. In
the neighborhood of 12,000 kg/cm', however,
the curvature of log R of black phosphorus re-
verses, becoming convex toward the pressure axis
above 12,000, which means that at high pressure
black phosphorus has become metallic in charac-
ter at least to this extent. Furthermore, between
15,000 and 20,000 the sign of the temperature
coefficient reverses, so that in this respect also
black phosphorus becomes like the metals at
high pressure.

One of the successful features of the new
theories of conduction, which has been made
much of, is the account which it gives of the
resistance of alloys. When the effective free path
is long, as it is in the wave mechanics picture, a
single misfit atom may obviously have a great
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effect in introducing resistance. This picture is
consistent with a generalization which may be
made from all measurements to date, without
exception, on the resistance of alloys: this is that
the initial effect of adding a foreign substance to
a pure metal is to make the pressure coefficient of
resistance more positive (algebraically). The
reason for this is purely geometrical; the relative
misfit of a foreign atom which is a little too large,
let us say, becomes greater the closer together
the atomic centers of the other atoms of the
lattice. But increasing misfit means increasing
resistance, and increasing pressure pushes the
atoms closer together. Hence pressure in such
substances tends to increase the resistance more
rapidly than in the pure substance, or the pres-
sure coefficient of resistance is displaced in the
positive direction.

Phenomena in single crystals of non-cubic
metals have not as yet received much theoretical
attention. There are, however, important phe-
nomena to be considered here, and one may ex-
pect that this may be one of the next problems
attacked. Such uniformities as, for example, that
the resistance in a crystal is almost always great-
est in the direction of greatest atomic separation,
which is also the direction of greatest compressi-
bility, must be significant. There are also uni-
formities in the behavior under pressure which
must be significant. Thus the effect of pressure on
the three "normal" non-cubic metals, zinc, cad-
mium and tin, is to make the crystal more nearly
isotropic with respect to resistance, which is
also the effect on the lattice spacing. The effect
on the two abnormal metals bismuth and anti-
mony is the opposite, however, pressure here
makes the lattice spacing more nearly equal in
different directions, but accentuates the non-
isotropy of resistance.

Theory can usually derive some profit from
considering the abnormal cases, which play
somewhat the same role as pathological cases in
medicine. Bismuth and antimony have already
been mentioned, in which the pressure effect on
resistance is probably accounted for by a different
mechanism from that responsible in more normal
metals such as lithium and calcium. There is
another highly abnormal metal which I have
recently found in a place in the periodic table
where one would little expect it, namely,

chromium. The resistance of chromium at at-
mospheric pressure is an abnormal function of
temperature; there is a minimum of resistance at
10' and a maximum at O'C, the shape of the
curve being much like that of the curve for the
volume of water as a function of temperature. As
a function of pressure the resistance is highly
abnormal; the coefficient is throughout negative,
but the curvature of an isothermal of resistance
against pressure may be of either sign, or there
may be a reversal of sign on the same isothermal
with a point of inflection. The resistance iso-
therms cross and recross in a complicated way,
which means both positive and negative tem-
perature coefficients at constant pressure. Not
only is the resistance abnormal, but the relation
between pressure and volume is also abnormal;
there is, however, no obvious correlation be-
tween the abnormalities of resistance and volume.

Another abnormal metal is arsenic; this shows
abnormalities only when very pure and only
when in the single crystal condition, and the
abnormalities are almost entirely connected with
those directions in the crystal perpendicular to
the principal axis. The abnormality seems to con-
sist in deFinite pressure ranges within which the
relation between pressure and resistance is linear,
but with different coefficients in the different
ranges, and no discontinuity of resistance itself
from one range to the next. That is, there is a sort
of transition of "the second kind" in the re-
sistance. There are also some very unusual sea-
soning effects in single crystal arsenic. *

XII. THERMQELEcTRIc PHENQMENA

Another group of electrical phenomena is that
of thermoelectricity. The rigorous theory of these
effects is complicated; the simple Sommerfeld
theory, in which the electrons are treated as free,
gives acceptable results only for the alkali
metals, for other metals there being discrepancies
even of sign. The more rigorous theory takes
specific account of the way in which the electrons
are distributed among the allowed energy bands,
and finds different signs for the Thomson effect

* Since this paper was written, a very promising theory
of the effects of pressure on resistance of the metals has
been made by N. H. Frank, and submitted for publication
in the Physiicat Renew. This theory accounts for the
minimum resistance of the alkali metals,
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according as the bands are almost empty or al-
most full. As far as I know, no attempt has been
made to deduce the effect of pressure on thermo-
electromotive force according to the more
rigorous theory, although Houston" has given
an expression on the basis of the simple Sommer-
feld theory which fails in the case of copper by a
factor of ten. One would expect that the results of
the more rigorous theory would be complicated.
This expectation agrees with the experimental
findings, for the effects of pressure on thermal
e.m. f. are perhaps the most complicated of any
pressure eff'ect; there are great departures from
linearity, curvature in both directions, points of
infection, maxima and minima, crossing of the
curves and reversals of sign. As a rough average
for the some twenty metals examined, the sign of
the effect is such that in more cases than not the
electrons absorb heat in flowing from compressed
to uncompressed metal. In this respect the elec-
tron gas is like an ordinary gas which also ab-
sorbs heat on expanding. There are so many
exceptions to this rule, however, that the general
result must not be given much significance. It is,
however, significant that the magnitude of the
effect is large; the Peltier heat when an electron
Rows from a metal compressed to 12,000 kg/cm'
to the same metal under no pressure is on the
average of the same order of magnitude as when
an electron flows from one to another different
metal. In view of the theoretical suggestion that
the thermal e.m.f. depends importantly on the
way in which the electrons are distributed in an
energy band it would therefore appear that pres-
sures in the experimental range are capable of
aff'ecting important redistributions within the
energy bands. Hence in spite of, or rather because
of, the complications, it may well be that a care-
ful theoretical study of the effects of pressure on
thermoelectric effects will give a deeper insight
into the details of the electron distribution than
other simple phenomena.

XIII. THERMAL CONDUCTION

Thermal conduction of metals also receives a
treatment in the new theories, and in fact one of
the most important results of Sommerfeld's
simplified theory was that it still provided an
explanation for the Wiedemann-Franz ratio,

which had been the most important result of the
classical theory of Drude and Lorentz, while
meeting the specific heat difficulty which the
classical theory could not avoid. But the new
theory applies only to the part of the conduction
performed by the electrons; so far as I know the
relatively small part played by the atoms in
conducting heat has not yet been fitted into the
picture. Experimentally, of course, the contribu-
tions of the two agencies are not separated, so
that a measurement of the pressure coefficient of
thermal conductivity is a measurement of the
pressure coefficient of both mechanisms. It turns
out that there is no uniformity from metal to
metal; for example, the thermal conductivity of
lead and tin increases under pressure, while that
of copper, silver and nickel decreases. Further-
more, in all cases except lead and tin the change
of thermal conductivity under pressure is less
than the change of electrical conductivity, so that
except for lead and tin the pressure coefficient of
the Wiedemann-Franz ratio is negative. The
experiments are difficult; it was not possible to
measure the more compressible metals for which
large effects would be expected, and in practically
every case it was not possible to find in which way
the effect departs from linearity. Theoretically
one would be prepared to find a zero coefficient
for the Wiedemann-Franz ratio by the argument
used before for the variation of temperature coef-
ficient of resistance with pressure, namely that
the Wiedemann-Franz ratio of all metals is nearly
the same, and since in general a metal under
high pressure would be expected to be more like
itself under zero pressure than another metal, one
would expect the effect of pressure on the
Wiedemann-Franz ratio to be small. It is to be
remembered, however, that for a single metal
the variation with temperature of the Wiede-
mann-Franz ratio is in many cases not exactly
that demanded by theory, and pressure doubtless
affects the characteristic temperature of a metal.
In view of the smallness of the eff'ect in the metals
which could be subjected to measurement it is
obvious that a comparatively small shift in the
parts played by electronic and atomic conduction
could account for the experimental results.
Furthermore, this shift may be a small range
effect and be reversed at high pressures as far as
any evidence goes which we have at present. An
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explanation of the pressure effects must therefore
wait for the completion of the theory of the
atomic part of thermal conduction; such a
theory must be prepared to explain why in many
cases atomic conduction becomes poorer at high
pressures. It is perhaps not hopeless to anticipate
that such an effect will be found in view of the
fact that thermal conduction involves the scat-
tering of elastic waves, and that any lack of per-
fect fit, which is conducive to scattering, may be
accentuated by high pressure. But it must be a
somewhat difficult point to show why it is that
in the majority of cases pressure diminishes the
scattering of electron waves but increases the
scattering of elastic waves.

The effect of pressure on the thermal con-
ductivity of non-metallic solids or of liquids is
much easier to measure, and there is considerable
experimental material of much greater accuracy
than for the metals. The thermal conductivity
of organic liquids increases under pressure by
an amount which to a first approximation is the
same for all liquids, the increase under 12,000
kg/cm' being roughly by a factor of two. The
curve of conductivity against. pressure is concave
toward the pressure axis, so that the effect of
equal increments of pressure dimin'ishes at high
pressures, as is usual. It turned out from the
measurements that there is a rather close corre-
lation between the effect of pressure on the
velocity of sound, which can be calculated in
terms of the compressibility, and the effect on
thermal conductivity. This correlation suggested
a very simple expression for the thermal con-
ductivity of a liquid, namely

X=2av8 ~,

where X is thermal conductivity, n the gas
constant, 2.02 X10 ", v is the velocity of sound,
and 8 is the average distance between centers of
molecules, calculated approximately by assuming
the liquid piled up with the molecules in simple
cubical array as in a simple cubic crystal. One
can derive this expression in an elementary way
by supposing that the mean difference of thermal
energy in the direction of the thermal gradient
between adjacent molecules, which is 2abdr/dx
(~ is temperature) gets handed along in the
direction of the gradient with the velocity of
sound. Jeffreys~ has shown that a better way

of arriving at the same result is to suppose that
in a liquid the molecular irregularity is so great
that the energy of an elastic wave is completely
scattered in the minimum possible distance, the
distance between centers of molecules. The
derivation suggests that the formula should also
be applicable to amorphous solids, and in fact it
is known to be applicable to hard rubber and to
some glasses.

The very simple expression 2nvb
—' is applicable

with an error of 10 or 15 percent to normal
organic liquids, and is also applicable to water,
the thermal conductivity of which is four times
greater than that of the normal organic liquid.
It is therefore somewhat surprising that the
formula does not give very accurately the
pressure coefficient of thermal conductivity; it
would predict an increase of thermal conductivity
at 12,000 between three and fourfold on the
average, whereas the actual increase is only by
twofold. Any lining up of the molecules of the
liquid under high pressure by which the distance
of complete scattering becomes greater would
increase the thermal conductivity by a new
factor and would therefore increase the discrep-
ancy. On the other hand, if there is a tendency
for the atom to become the unit of structure at
high pressure instead of the molecule, which is
consistent with the known tendency of the
specific heats, centers of scattering would develop
inside the molecule, and the too small pressure
coefficient would be accounted for. The exact
analysis of any such effect is obviously compli-
cated; this much is at least evident, that an
adequate theory of the effect of pressure on ther-
mal conductivity in liquids will have to wait until
a theory is developed competent to account at
least for the simple volume relations.

In working out a more exact theory of thermal
conduction in liquids a significant point to be
kept in mind is that the temperature coefFicient
of thermal conductivity of nearly all liquids re-
verses at high pressures; at atmospheric pressure
the liquid is a poorer conductor at high tempera-
tures (greater elastic scattering) but at high pres-
sures the liquid conducts better at higher tem-
peratures. The pressure of reversal is roughly the
same as the pressure of reversal of the sign of
(pp/g7. &.

The effect of pressure on the thermal conduc-
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tivity of simple crystals has been measured only
for NaC1; there is room here for much more
experimental work.

XIV. VISCOSITY OF LIQUIDS

There is extensive experimental material for
the effect of pressure on the viscosity of liquids,
mostly organic. The general characteristic of this
phenomenon is the great magnitude of the effect,
which is much larger than that of any other
pressure effect. Thus eugenol increases in viscos-
ity at 12,000 by a factor of 10'-fold. At high
pressures the increase of viscosity is roughly ex-
ponential, the plot of log (viscosity) against pres-
sure being approximately linear; at the low pres-
sure end this plot usually shows curvature which
may be in either direction. There is a very marked
correlation between the pressure effect and the
size of the molecule; for monatomic mercury the
increase of viscosity at 12,000 is only 33 percent
against the 10' already mentioned for eugenol.
There is no theory of the viscosity of liquids
which adequately reproduces the effects of pres-
sure. There have been elementary theories which
demand that viscosity be a function of volume
only; this was a fairly good approximation for the
range of pressure experiments at that time avail-
able, which reached to only 3000 kg/cm', but
over the extended range up to 12,000 the relation
fails by a very large factor. An improved theory
of Brillouin recognizes that viscosity need not be
a function of volume only, but gives for the tem-
perature coefficient of viscosity at constant vol-
ume a numerical result which is in error by a
factor of 5000. By far the most successful theory
of the viscosity of liquids is the recent one of
Andrade. "This gives the temperature coefficient
of viscosity at atmospheric pressure with con-
siderable success, and also in most cases gives a
fair account of the variations with pressure up
to a few thousand kilograms, but at higher pres-
sures it, goes badly wrong. Andrade remarks that
the pressure at which the theory begins to go
wrong is also the pressure at which 8'v/8~' re-
verses sign; apparently at this pressure some
important reconstruction begins to take place in
the structure of the liquid. From a qualitative
point of view it has seemed to me that these high
pressure effects are to be understood only in

terms. of an effective interlocking of the mole-
cules; from this point of view the very large
effects, particularly with the complicated mole-
cules, and the failure of viscosity to be a pure
function of volume, are understandable. Such
interlocking effects demand that in any mass mo-
tion of the liquid such as is encountered in meas-
uring viscosity the molecules retain their indi-
viduality, for one can hardly conceive that the
forces required to tear the molecules apart would
not be very much greater than are involved in
even the high viscosity at high pressure. The
hypothetical loss of individuality by the mole-
cule at high pressure which we have discussed in
connection with other phenomena is a less drastic
thing, for these other phenomena have involved
only pure volume compressions. The less drastic
sort of loss of individuality may perhaps corre-
spond to an internal quivering of the atoms in
the molecule, with more relative freedom than
they possess at lower pressures —the sort of thing
that would result in a higher specific heat.

XV. CQNDITIQNs oF RUPTURE

We now consider a topic connected with high
pressure effects a little more remotely than those
which we have discussed hitherto. In the very
extensive discussions of the last few years with
regard to the so-called "structure sensitive" and
"structure insensitive" properties of crystals,
considerable attention has been paid to the ten-
sile strength. It is well known that the actual
strength is always very much less than the calcu-
lated strength, and discrepancies by a factor of
100 are not unusual. The "calculated" strength
is found in terms of the assumed law of force
between the molecules. The method always
adopted is to find the distance of separation at
which the total cohesive force is a maximum, and
then to postulate that rupture occurs when the
extension under external force becomes great
enough to result in this amount of separation.
There are complications because the lateral con-
traction and longitudinal extension are different,
but this does not alter the main argument. The
fact. that rupture occurs in practise long before
the extension reaches the calculated value is put
down to internal imperfections.

Entirely apart from the question of whether
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there are or are not internal imperfections which
might result in premature rupture, I do not be-
lieve that a correct criterion of rupture has been
adopted in the theoretical calculation, and I be-
lieve that a simple eRect observed at high pres-
sure makes this absolutely certain. If a ring of
hard rubber is provided with a closely fitting steel
core, and if the whole assembly is then immersed
in a liquid and subjected to hydrostatic pressure,
the hard rubber ring will be found to split at a
pressure of a few thousand kilograms, just as if
a conical wedge has been driven into it. In fact,
this is actually the nature of the eRect. For if
there had been no steel core the rubber ring
would have shrunk by a very appreciable amount
because of the high compressibility of hard rub-
ber, but the steel core, the compressibility of
which is very small, prevents the natural con-
traction of the rubber under pressure, so that we
have eRectively a steel wedge forced into the
contracted ring. A simple calculation shows that
although the rubber ring at the rupture point is
larger than it would have been without the steel
core, it is nevertheless smaller than it was initially
under no pressure. In fact every strain in the hard
rubber ring is a strain of compression, but nev-
ertheless a clean tensile rupture takes place. It
is therefore obvious that the critical distance of
separation criterion of rupture cannot possibly
be correct under these conditions. A little con-
sideration shows, I believe, that the requirement
that the molecular cohesive forces be a maximum
at the critical extension is simply not pertinent,
this being a criterion taken over rather uncrit-
ically from the method of function of a special
type of testing machine. One may grant that the
maximum force gives a sufficient condition for
rupture, but not a necessary one. It seems to me
that a stability criterion is much more pertinent;
rupture certainly takes place when such an ex-
tension has been reached that the structure is
unstable. The stability condition must also be a
su%cient condition, and it would seem to be close
to a necessary condition. A suggestion of this
character has been made by Born on pages 768—
769 of his Handbuck article, but this is the only
suggestion I have seen in print that the conven-
tional criterion of rupture may not be correct.
Conditions of stability are notoriously difficult to
formulate, and in fact the ordinary theory of

ionic crystals does not yet deal satisfactorily with
this fundamental point, but can show only that
the lattice is stable for certain restricted types of
displacement. It would probably therefore not
be easy to work out exactly the criterion of rup-
ture demanded by the stability condition, but it
is easy to see qualitatively, I think, that the
critical deformation would be less than that de-
manded by the maximum force criterion, for this
latter is also a stability condition for a distortion
uniform in every direction, which is itself a very
unstable kind of distortion. The stability condi-
tion for uniform distortion doubtless sets only an
upper limit. In view of the complexity of a gen-
eral condition of stability, I do not believe that
a rigorous application of the condition would
result in any such simple condition of rupture as
is often assumed in practise, such as a maximum
extension, or maximum tensile stress, or maxi-
mum shearing strain criterion. This expectation
also agrees with experiment, for there are types
of rupture characteristic of high pressure which
show that none of these criteria can in general be
valid; further details will be found in The Physics
of High Pressure.

XVI. SPECULATIONS

Finally we may indulge in a few perfectly frank
speculations as to what sorts of effects may be
expected at pressures very much higher than
those yet reached in the l.aboratory. There is no
natural upper limit to pressure, nor is there any
limit to the amount of energy which can be im-
parted to a substance by compressing it; in the
stars there are perfectly stupendous pressures of
the order of billions of atmospheres, and we know
that sometimes under such conditions matter is
consolidated to densities of the order of 100,000—the field thus offered for speculation is a fasci-
nating one.

A remark must first be made by way of correc-
tion. A number of years ago I published specu-
lations on this topic in two papers. '4 Some aspects
of the argument of the first paper were based to
a certain extent on the experimental values of the
compressibilities of the alkali metals, and in par-
ticular on the abnormal persistence of the com-
pressibility of potassium at high pressures. I have
recently found that there was a serious error in
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the reduction of linear to cubic compressibility;
the abnormalities now disappear, and part of the
argument of the first paper is thereby vitiated.
The corrected details will be given in a forth-
coming paper, in which the pressure range is
extended from 12,000 to 20,000. Furthermore,
the principal point of those two papers was that
at high pressures the solid may be expected to
break down into a gas of electrons and nuclei; the
argument was made both from thermodynamics
and from Schottky's theorem. However, no ac-
count could be taken at that time of the exclusion
principle of Pauli, and it now appears that such
a breakdown is probably inconsistent with the
exclusion principle, for it is difficult to see how
an increase of pressure would increase the num-
ber of energy levels in the neighborhood of -', «7.

sufficiently to allow all the electrons to find places
with this mean energy. It is therefore probable
that the idea of a decomposition into a perfect
electron gas at high pressures must be aban-
doned, although it is perhaps still legitimate to
ask whether the quantum relations must neces-
sarily hold under such extreme conditions.

Intimations as to possible behavior at very
high pressure have appeared incidentally from
time to time in the course of this paper. Thus
there has been the suggestion that the smaller
units in the structure may come to play more
important parts at high pressure; the compressi-
bility of isomers and the variation of the specific
heat with pressure suggests that in liquids at high
pressures the atom may come to play part of the
role of the molecule at lower pressures, and in
metals the behavior of thermal expansion at high
pressures and the consequent dilemma with re-
spect to entropy at infinite pressure suggests that
the electron may be assuming some of the role
of the atom. In semiconductors the very large
increase of electrical conductivity under pressure
means essentially a freeing of the electrons, which
is the same sort of thing. On the other hand, the
probable ultimate increase of resistance of all
metals means a closer binding of the electrons.

The irreversible change from yellow to black
phosphorus raises the question of whether there
may not be many other such changes possible if
the pressure is only raised high enough. Could
heavy matter of density 100,000 continue to exist
at atmospheric pressure if it had once been forced

into existence by stupendously high pressure?
One property of such heavy matter is indicated
by the uncertainty principle, which suggests that
such matter cannot exist in the condition of a
regular space lattice. The reason is very much
the same as the reason why hydrogen cannot
exist as a lattice of the NaC1 type composed of
electrons and protons. The mass of the electron
is so small that the uncertainty principle does not
allow to it the definiteness of location that would
be demanded by a lattice of the density of solid
hydrogen. As mass increases the possible definite-
ness of location increases, so that ordinary atoms
can assume positions in space lattices of the ordi-
nary density, but if the density is very high, the
mass of the ordinary atom may impose restric-
tions. For example, consider the case of sodium,
and suppose it exists in a simple cubic lattice of
density 100,000. The distance between atomic
centers would be 7.3X10 " cm. Assumingifor
the energy of temperature agitation the classical
value, mv'/2=(3/2)ar the uncertainty in posi-
tion demanded by the uncertainty principle is
dl=h/(3amr)'*=3. 0X10 ', at ordinary tempera-
tures, and is thus four times greater than the
lattice spacing. If instead of assuming classical
energy one assumes that, because of the enor-
mous restoring forces and high characteristic
temperature at these high densities, the atoms
are completely in the condition of a Fermi de-
generate gas with an upper kinetic energy limit
given by the Sommerfeld expression,

it will be found that the uncertainty in position
demanded by an uncoordinated motion of this
amount is 2.1 times the lattice spacing. It is
therefore meaningless to attempt to describe the
atoms as situated on a lattice, and the state of
aggregation must be a more or less amorphous
jelly. Matter at such extreme densities must be
electively in a new state, as different from
ordinary matter, as for example, an ordinary gas
is different from the "fourth state of matter" of
Crookes. One may suspect "emergent" proper-
ties.

The value for hl given by the uncertainty prin-
ciple is seen to become smaller at higher tem-
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peratures. The pressure state of matter is, then,
characteristic of low temperatures. There is there-
fore still some plausibility in one feature of the
suggestion in my previous paper, namely that the
extended pressure-temperature plane is crossed
by a diagonal band, rising from low tempera-
tures and low pressures to high temperatures and
high pressures. Within this band matter exists in
the state ordinarily known; on the high tempera-
ture side of the band it dissociates to a gas of
electrons and nuclei according to ideas first em-
phasized by Saha, and on the high pressure side

we now see that it collapses to a "pressure-
squash. " Whether quantum principles in their
present form apply to this "pressure-squash"
can be told better when it is found to what extent
they apply to the interior of the nucleus. Fur-
thermore, the possibility must be recognized that
the pressure-squash is composed of neutrons,
electrons and protons being forced to form closely
coupled pairs by the extreme pressure. Such a
system would be an electrical insulator, and in
this respect would fulfil the tendency found in
metals in the experimental range.
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