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The independent-particle model explains many features of atomic nuclei and other fermion systems.
The low-energy states of nearly closed-shell systems can be interpreted as having quasiparticles in
single-particle orbitals. The difference between physical particles and quasiparticles results from the
effects of correlations in the system. In this Colloquium the authors consider the consequences of
these correlations. They discuss in particular, mainly for the case of nuclei, the quasihole strength z
(spectroscopic factor) that gives the probability of the quasiparticle’s being a physical particle. Results
from both theory and experiment indicate that z;0.65 and imply that only ;2/3 of the time a nucleon
acts as an independent particle bound in an average potential. The fraction of ;1/3 of correlated
nucleons is larger than believed in the past. [S0034-6861(97)00703-4]
CONTENTS

I. Introduction 981
II. Shell Model for the Nuclear Interior? 982

III. Theory 984
A. Nuclear matter 984
B. Finite nuclei 985
C. Calculated results 986

IV. Spectroscopic Strength from Experiment 987
A. z factors from (e ,e8p) 987
B. Occupation numbers 989
C. High-L form factors 990
D. Spectroscopic factors from transfer reactions 990

V. ‘‘Missing’’ Strength 990
VI. Conclusions 991

Acknowledgments 991
References 992

I. INTRODUCTION

Historically, the notion of independent particle mo-
tion was first introduced to describe the structure of at-
oms and explains the periodic table of the elements. In
its most naive form the shell model assumes that the
electrons in an atom occupy single-particle orbitals that
are eigenstates of an average potential created by the
Coulomb interaction of the electrons with the atomic
nucleus and with each other. The Hartree-Fock theory
(Hartree, 1928; Fock, 1930), based on this assumption, is
remarkably accurate in describing the noble-gas atoms.
For example, the binding energies of neon and argon
atoms, calculated with the Hartree-Fock approximation
and bare Coulomb force (Clementi and Roetti, 1974),
differ by only 0.2% from the exact ground-state eigen-
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values (Veillard and Clementi, 1968) of the nonrelativ-
istic many-body Schrödinger equation.

The first insights on nuclear structure were provided
by the liquid-drop model (Bethe and Bacher, 1936; von
Weizsäcker, 1935). It pictured nuclei as drops of
charged, incompressible, liquid nuclear matter and ex-
plained nuclear binding energies as sums of volume, sur-
face, and Coulomb terms. The nucleons in nuclei were
regarded as strongly interacting with each other, a view
based on Bohr’s compound nucleus model of nuclear
reactions (Bohr, 1936) in which the incident neutrons’s
energy is assumed to dissipate totally via collisions with
nucleons in the nucleus. However, many nuclear prop-
erties, such as the existence of magic nuclei with extra
stability like that of rare-gas atoms, spins and parities of
nuclear ground states, and the existence of deformed
nuclei, were unexplained. The success of the nuclear
shell model (Haxel et al., 1949; Mayer, 1949) in explain-
ing these properties surprised many physicists (Weiden-
müller, 1990). Historically, the shell model became ac-
cepted primarily on the basis of a detailed and successful
comparison with the observed ground-state properties
(spin, parity) and excitations at low energy. Today, the
shell model has become the basis upon which most
model calculations of nuclear structure rely.

The successes of the liquid-drop and compound-
nucleus models had been interpreted as evidence against
collisionless single-particle motion assumed in the shell
model. Does the success of the shell model really
‘‘prove’’ that nucleons do move independently in a fully
occupied Fermi sea as assumed in Hartree-Fock ap-
proaches? In fact, it was soon realized that single-
particle motion can persist at low energies in fermion
981(3)/981(12)/$11.80 © 1997 The American Physical Society
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systems due to the suppression of collisions by Pauli ex-
clusion. The compound-nucleus reactions occur at rela-
tively high excitation energies where many collisions are
not Pauli blocked. Fermi-liquid theory (Landau, 1957a,
1957b), based on related ideas, was developed in 1957. It
showed that strongly interacting systems can resemble in
many aspects a noninteracting Fermi gas, but with qua-
siparticles as constituents. These quasiparticles have
properties such as effective mass and effective interac-
tions which differ from those of the bare particles; these
effective properties can compensate to a fair degree for
the lack of correlations in the model wave function.

Another system recently discovered to exhibit inde-
pendent particle motion and shell structure is a cluster of
metal atoms (Brack, 1993; de Heer, 1993). Here the ionic
metal cores provide a uniformly charged background in
a finite volume, and the valence electrons, which are
strongly delocalized with a wave function that extends
over the whole cluster, represent the quantal system that
exhibits shell structure. The mean field seen by the elec-
trons corresponds to a potential that closely resembles
the Woods-Saxon shape familiar from nuclear physics,
but with rather small surface diffuseness. This system
presents many direct analogies to nuclei, the major dif-
ference being the smallness of the spin-orbit force.
Magic numbers 2, 8, 20, etc. have been observed, up to
values above 3000. These metal clusters allow a very
nice extension of the shell model and indicate a major
new feature that goes beyond those observed in other
quantal systems subject to a mean-field description: the
appearance of supershells. The usual shell structure of
the level density is modulated with a periodicity of
.1000 atoms. This supershell structure results from the
transition to the semiclassical regime appropriate for
systems with many constituents. It can be understood as
an interference between the two most important classi-
cal closed trajectories in a spherical cavity with reflecting
walls, the ones forming a triangle and a square. The shell
effects in metal clusters provide a means to study the
transition of finite fermion systems from the atomic to
the mesoscopic and perhaps even macroscopic dimen-
sion.

Besides systems such as atoms, nuclei, and metallic
clusters, the phenomenon of quantum shell structure is
also predicted to occur in small drops of atomic Fermi-
liquid 3He (Lewart et al., 1988). We note that even in
strongly interacting Bose liquids, atomic liquid 4He for
example, single-particle motion manifests itself in the
form of a condensate at low temperature. Thus the role
played by the Pauli principle, though large in Fermi sys-
tems, is not essential for having a fraction of particles
moving freely in quantum liquids. In drops of the Bose
liquid 4He atoms are predicted to condense into the 1s
orbital. Recent comparative studies (Moroni et al., 1997)
have indicated interesting similarities in the single-
particle properties of Bose and Fermi quantum liquids.

In the nuclear shell model, the nucleons occupy eigen-
states of a single-particle potential generated by inter-
particle interactions. Hartree-Fock calculations based on
effective interactions (Negele, 1982), or energy-density
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
functionals (Dechargé and Gogny, 1980) succeed in re-
producing the observed shell structure and binding en-
ergies fairly accurately. However, unlike in atoms, the
Hartree-Fock approximation cannot be used with realis-
tic interactions to describe even the simplest closed-shell
nuclei or atomic 3He liquid drops.

In atomic helium liquids the two-particle distribution
function g(r), which gives the probability of finding two
particles at a distance r apart, is known (Svensson et al.,
1980) to have a hole at small r created by the repulsive
core in the interatomic potential. The g(r) in nuclei is
not that well established experimentally; it is predicted
to have a rich spin-isospin-dependent structure with to-
roidal, dumbbell, and spherical shapes (Forest et al.,
1996) reflecting the intricacies of nuclear forces. These
short-range correlations, missing in the mean-field ap-
proximation, are essential for the binding of the system.
They represent the collisions between particles which
lead to virtual excitations and fractional occupation of
single-particle orbitals. Those which have unit occupa-
tion in the naive picture have relatively large occupation
probabilities close to one, while others that are empty in
Hartree-Fock have small, but .0, occupations. In a pa-
per commenting on the work of Bertsch and Kuo (1968),
G. Brown (1969) conjectured that depletions (the differ-
ence between unity and the occupation probability) of
the Fermi sea as large as 40% might occur in nuclei. The
empirical evidence at that time seemed to indicate, how-
ever, very small depletions.

The consequences of correlations are difficult to mea-
sure and to calculate. Only during the last few years has
it become possible to observe effects of the deviation of
occupation numbers from 0 or 1 and thus obtain quan-
titative information on the limits of the naive shell
model. In this Colloquium we review in some detail the
case of the nucleus, and discuss, in particular, results of
electron-nucleus scattering experiments which probe the
shape and occupation probabilities of single-particle or-
bitals in nuclei.

II. SHELL MODEL FOR THE NUCLEAR INTERIOR?

The surprise about the success of the nuclear shell
model concerns the fact that independent particle mo-
tion could occur in a system that has a density as high as
the one occurring on average in nuclei and with interac-
tions as strong as the nucleon-nucleon interaction. This
success might come as a lesser surprise, perhaps, once
one realizes that much of the knowledge on nuclei con-
cerns surface properties. Even the most integral quanti-
ties, such as calculated energy eigenvalues, are weighed
with r2; experimental spectroscopic observables like
spectroscopic factors are completely dominated by the
low-density surface region.

The domination of low nuclear densities in experi-
mental observables is directly related to the strong ab-
sorption of nuclear projectiles in the nucleus. This ab-
sorption is particularly pronounced for composite
projectiles (ejectiles) such as d , 3He used traditionally in
single-nucleon transfer reactions to obtain spectroscopic
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information. The absorption in the nuclear interior is
strong and the maximal sensitivity to bound-state wave
functions occurs at radii where the density has fallen to
less than one tenth of the density in the interior (see Fig.
1). Much of the experimental information on spectro-
scopic properties, then, concerns the asymptotic normal-
ization of wave functions and hardly relates to the high-
density interior.

The surface domination is enhanced by a feature that
is intrinsic to a finite system of fermions. The least-
bound shells—the ones experimentally studied in typical
nuclear reactions—also have high angular momenta;
only in rare cases do the states near the Fermi edge have
low l . High-l states have a radial wave function that
peaks in the nuclear surface region, and much of any
integral over Rl(r) comes from the lower-density region
of the nucleus.

Is it then true that the shell model offers a valid ap-
proach for the description of nuclei, or does the model
appear to be successful only because many observables
are ‘‘superficial?’’

In order genuinely to gauge the validity of the
independent-particle description, one needs to consider
observables that are sensitive to the nuclear interior, i.e.,
observables measured with probes that are not absorbed
when interacting with the nucleus. At the same time,
one needs probes that allow one to achieve good spatial
resolution, in order to differentiate between the nuclear
surface and the interior. Observables accessible via elec-
tron scattering at large momentum transfer offer the
best (and perhaps only) tool.

Experiments on elastic (e ,e) scattering have provided
us with detailed measurements of the density in the
nuclear interior; densities as accurate as 1% have been
measured in selected cases (Sick et al., 1975, 1979; Frois
et al., 1977; Cavedon et al., 1982). They have been com-
pared to Hartree-Fock calculations done using finite-
range effective nucleon-nucleon interactions derived
from nucleon-nucleon scattering. This comparison

FIG. 1. Radial sensitivity of one-nucleon transfer reactions
used to study nucleon wave functions (dashed lines), compared
to density of Pb and the 3s shell. The radial sensitivity of
(e ,e) is independent of r .
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shows important differences despite the fact that the ef-
fective interactions have been tuned to reproduce the
average density in the nuclear interior. The calculated
densities exhibit oscillatory structure that results from
building up the density from the radial wave functions of
the individual shells, and this structure is much more
pronounced than in the experimental densities. This dis-
agreement already points to a partial occupation of the
shell-model states, or a different shape of the orbitals in
the nuclear interior.

The most convincing test of the validity of the shell
model in the nuclear interior comes from a precise mea-
surement of the density difference of 206Pb and 205Tl. In
the shell model these nuclei differ by a 3s proton. The
3s shell has a very distinct radial wave function, with a
maximum at r50, with 2 nodes and two further maxima
(see Fig. 1). This radial wave function can easily be dis-
tinguished from all other shells, and it has a unique sig-
nature in the cross-section ratios between 205Tl and
206Pb. The experiment of Cavedon et al. (1982) showed
that this 3s radial wave function is indeed a reality, even
in the very center of the lead nucleus (Figs. 2, 3). A 3s
radial wave function as calculated in a shell-model ap-
proach, but with modified occupation (see Sec. III.B),
perfectly explains the data. In the nuclear interior the
shape of the orbits as predicted by the independent-
particle model seems to be realistic!

Orbitals with properties close to the ones predicted by
the shell model are not only found for states near the
Fermi edge. Already the early (e ,e8p) work (Mougey
et al., 1976) indicated that deeply bound nucleons have
momentum distributions similar to those predicted by
the independent-particle model.

From this observation we learn that the shape of the
single-particle wave functions—be it in radial or mo-

FIG. 2. Ratio of 206Pb- to 205Tl-elastic electron scattering cross
sections, together with prediction from shell-model calculation
with adjusted occupation number. The peak at 2 fm 21 results
from the Fourier transform of the 3s proton radial wave func-
tion, which resembles a damped oscillation. The amplitude of
the peak yields the difference in occupation of the 3s shell
between 206Pb and 205Tl (see text).
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mentum space—is quite close to the one predicted by a
single-particle calculation. The most telling information
on deviations from the shell model is found in the occu-
pation numbers. These quantities therefore assume a
particular place in our discussion.

III. THEORY

We next discuss the various concepts of orbitals in
correlated systems and the calculated occupation prob-
abilities. We first address the case of an infinite Fermi
liquid of constant density, which is easier to discuss than
finite systems. This allows us to introduce the concepts
of the spectral function and the renormalization function
z(k). We then discuss the various types of orbitals that
are relevant for finite systems. For both types of systems
we shall use theoretical results for both nuclear and
atomic systems to illustrate the concepts.

A. Nuclear matter

We begin the theoretical discussion with idealized in-
finite nuclear matter representing the ground state of
matter in the absence of the Coulomb force, which puts
a limit on the size of nuclei. Gross properties of large
nuclei, such as binding energies, size, etc., can be easily
understood by regarding them as charged drops of
nuclear matter. At low temperatures nuclear matter is
expected to be a superfluid; however, the shell gaps in
single-particle energies are larger than the pairing gap in
nuclei, and hence pairing is believed to be unimportant
in the closed-shell nuclei considered here. Therefore we
shall regard nuclear matter as a normal Fermi liquid and
ignore its superfluid properties.

The single-particle orbitals in nuclear matter are
plane-wave eigenstates of the momentum, due to trans-

FIG. 3. Density difference between 206Pb and 205Tl. The ex-
perimental result of Cavendon et al. (1982) is given by the er-
ror bars; the prediction obtained using Hartree-Fock orbitals
with adjusted occupation numbers is given by the curve. The
systematic shift of 0.0008 fm 23 at r<4 fm is due to deficiencies
of the calculation in predicting the core polarization effect.
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lational invariance, which simplifies the theory consider-
ably. The one-body density matrix is diagonal in these
states, whose occupation numbers give the momentum
distribution n(k) of nucleons in nuclear matter. The
momentum distribution n(k) has been calculated for re-
alistic nuclear forces with the correlated basis-functions
(CBF) method (Fantoni and Pandharipande, 1984) as
well as with the Brueckner-Bethe-Goldstone (BBG)
method (Dickhoff and Muther, 1992). The results for
n(k) obtained with the CBF method and the Urbana
model of the nucleon-nucleon force are shown in Fig. 4
using the single-particle spectrum «(k).

Due to correlations, the occupation number
n(k,kF) for momenta below the Fermi momentum
kF is reduced to 0.7–0.8, and the states with k.kF have
small but finite occupations. Atomic liquid 3He, another
Fermi liquid, has been extensively studied. Its predicted
n(k) (Fabrocini et al., 1992) is shown in Fig. 5 for com-
parison. Because of the large repulsive core in the inter-
atomic potential, the n(k,kF) in liquid 3He is expect-

FIG. 4. Occupation of states of nuclear matter as a function of
« , with «F referring to the Fermi energy. The dashed curve
gives the quasihole strength z .

FIG. 5. Momentum distribution of atomic 3He liquid at the
experimental equilibrium density.
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ed to be only 0.4. The repulsive core in the internucleon
potential is relatively smaller; much of the depletion of
the n(k,kF) in nuclear matter is believed to be due to
the strong tensor force between nucleons (Fantoni and
Pandharipande, 1984). This should be compared to the
case of a ‘‘good shell-model system,’’ such as one of the
noble-gas atoms; for neon, the occupation numbers dif-
fer from unity by 0.001–0.009 only, while for argon the
difference is 0.002–0.018, increasing from the innermost
to the outermost shell (Jungen, 1996).

The removal spectral function Ph(k ,E), defined by

Ph~k ,E !5(
I

u^Iuaku0&u2d~EI2E02E !, (1)

where E0 is the energy of the nuclear matter in its
ground state u0&, the EI indicate the energies of the
states uI& having one nucleon less, and ak is the annihi-
lation operator, gives the probability density that the re-
sidual system will be in states with energy E1E0 upon
removing a nucleon of momentum k . It contains much
more information than the n(k) given by its integral:

n~k !5E
2EF

`

Ph~k ,E !dE . (2)

For example, if we could either neglect or subtract the
effects of the final-state interactions of the struck
nucleon, the missing energy spectrum in an (e ,e8p) re-
action on nuclear matter is given by Ph(k ,E) at missing
momentum k .

The Ph(k ,E) has also been calculated for realistic
nuclear forces using the CBF (Benhar et al., 1989) and
BBG (Dickhoff and Muther, 1992) methods, and typical
results are shown in Fig. 6. At k,kF it has a ‘‘quasi-
hole’’ peak at E.2«F superimposed on a broad back-
ground, while at k.kF it has a broad background cen-
tered at .k2/2m . In contrast Ph(k.kF)=0 and
Ph(k,kF)5d(E1k2/2m) in an ideal Fermi gas. The
quasihole peak becomes very sharp as k approaches kF
from below, and the integrated strength in it is denoted
by the ‘‘renormalization function’’ z(k). This peak rep-
resents Landau’s quasihole in a quantum liquid, and it
has been shown (Migdal, 1957) that

z~k5kF!5(n~kF2e!2n~kF1e!)e→10 . (3)

The values of z(k) obtained (Benhar et al., 1989) with
the CBF method are shown in Fig. 4.

Quasiparticles having k.kF can be similarly defined
using the spectral function with an ak

† in place of ak in
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Eq. (1). Quasiparticles or holes with k close to kF have
long lifetimes; therefore at low temperatures Fermi liq-
uids exhibit independent quasiparticle motion. The pres-
ence of correlations generated by the strong interpar-
ticle interactions is reflected by the deviation of z(k)
from unity as well as by the increase in the widths of the
quasihole and particle peaks as k deviates from kF . The
z gives the probability of the quasiparticle’s being a
physical particle. The correlated particles account for all
of the n(k.kF), and they also contribute to the
n(k,kF). Therefore z(k),n(k). In the strongly corre-
lated atomic liquid 3He the z(k5kF) is predicted to be
only about 0.3, while that for nuclear matter is about 0.7.

B. Finite nuclei

A similar analysis for finite systems (nuclei, Fermi-
liquid drops) is more complex because their single-
particle orbitals, unlike plane waves, are not uniquely
determined by symmetry. The occupation numbers are
eigenvalues of the one-body density matrix, whose
eigenfunctions are called natural orbitals (Löwdin, 1955)
and denoted here by fn ,ljm . We do not discuss these
natural orbitals further as they are not directly related to
observable quantities. The removal spectral function has
a more natural representation in overlap orbitals de-
noted by c i ,ljm . These are defined from the overlap of
the A-nucleon ground state CA and the states CA21,i of
(A21) nucleons having J ,M5j ,2m ,

FIG. 6. Nuclear matter spectral function at a fixed nucleon
momentum k/kF50.75: dashed curves, uncorrelated parts;
dot-dashed curves, correlated parts.
c i ,ljm~xA!5E CA21,i
† ~x1 , . . . ,xA21!CA~x1 , . . . ,xA!dx1•••dxA21 , (4)
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where xA denotes the position, spin, and isospin of the
nucleon A . Theories of finite fermion systems are more
complex because the various c i ,ljm are generally not or-
thogonal to each other. Only in the absence of correla-
tions, i.e., in the Hartree-Fock approximation, do both
the natural orbitals and the overlap orbitals equal the
Hartree-Fock orbitals jn ,ljm , and considerable simplifi-
cation occurs. Even in the presence of correlations there
are a few low-energy states, one for each l ,j , for which
the norm of the overlap orbital c i ,ljm is close to unity.
We refer to these states as quasihole states, and their
norm, generally called the spectroscopic factor, as the
quasihole normalization z .

As for infinite systems, correlations also lead to an
increase of the width of the more deeply bound quasi-
hole states as observed in (e ,e8p) (Quint, 1987a;
Leuschner, 1994). Given the fact that much of this in-
crease is due to coupling to surface excitations (Rijsdijk
et al., 1992), the spreading is more difficult to exploit
quantitatively, in terms of short-range correlations, than
are the z values.

C. Calculated results

It is difficult to calculate the eigenstates of finite fer-
mion systems with strong interparticle interactions.
However, for liquid 3He drops the interatomic force is a
simple spin-independent function of the distance be-
tween the atoms, and therefore variational Monte Carlo
(VMC) calculations with correlated wave functions are
easily possible (Lewart et al., 1988). Their accuracy is
limited by that of the variational wave function, which
includes two- and three-body spatial correlations. Wave
functions including such correlations successfully de-
scribe many properties of the bulk liquid. The orbitals of
a 70-atom drop have been studied in detail (Lewart
et al., 1988). The 70 atoms occupy the same shells as the
protons in 208Pb, the additional 12 protons in lead are in

FIG. 7. 3s orbitals: dotted curve, natural orbital; dot-dashed
curve, mean-field orbital; solid curve, local-density approxima-
tion for quasihole orbital. The points represent the calculated
quasihole orbital.
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the 1h11/2 state, lowered because of the spin-orbit split-
ting (which is absent in the atomic 3He liquid drop).

The overlap orbital, calculated from the overlaps of
the 69- and 70-atom ground states, is called the 3s1/2
quasihole orbital and is shown in Fig. 7 along with other
approximations. Finally a potential well V(r) can be de-
fined such that the density of 70 noninteracting atoms in
this well equals that of the 70-atom drop. The single-
particle orbitals in this well are considered as the mean-
field orbitals jn ,ljm , and the 3s mean-field orbital is
shown in Fig. 7. Simple, approximate relations between
the mean-field orbitals and the natural orbitals and
quasihole orbitals can be derived (Lewart et al., 1988).
In particular the local-density approximation,

c~r !.Az(r~r !)j~r !, (5)

where z(kF ,r) is the renormalization constant for uni-
form liquid at density r , seems to reproduce the quasi-
hole orbital calculated from variational wave functions
containing interparticle correlations. However, these
wave functions do not contain effects of the coupling of
the quasiparticles to the surface of the drop.

Because of the strong spin-isospin dependence of the
nuclear force, quantum Monte Carlo calculations for nu-
clei are much more difficult. Thus far, exact calculations
have been possible only for nuclei with up to 7 nucleons
(Pudliner, 1996), including the doubly magic nucleus
4He. The 1s 1/2 quasihole orbital obtained from the over-
lap of 4He and 3H is shown in Fig. 8 along with the total
momentum distribution n(k) of protons in 4He. These
results have been obtained (Wiringa, 1996) using mod-
ern models of the nuclear force. The normalization z of
the quasihole orbital is 0.81, while that of n(k) is unity.
At small k almost the entire momentum distribution is
explained by the quasihole orbital, while at large k the
quasihole orbital contributes little to n(k). In heavier
nuclei we also expect that nucleons with small momenta
would come mostly from the quasihole orbitals, while
those with large k come from correlations. The spectral
function of nucleons with large k will be peaked at

FIG. 8. Variational Monte Carlo result for momentum distri-
butions in 4He: (L), total momentum distribution; (h),
quasihole; (+), difference.



987Pandharipande et al.: Independent particle motion and correlations . . .
E.k2/2mN , with mn the nucleon mass, like that in
nuclear matter.

In studies of Fermi systems, liquid 3He and nuclei
offer complementary opportunities. Measurement of
pair distribution functions are simpler for the extended
liquid, while for nuclei (e ,e8p) and (e ,e) experiments
allow a direct measurement of z and the density distri-
butions of quasiparticle states.

Quantum Monte Carlo calculations (Lewart et al.,
1988) indicate that particles in Bose liquid drops con-
dense in an orbital given by c0(r)5Anc(r(r))j0(r),
where j0(r) is the lowest mean-field orbital and nc(r) is
the fraction of particles condensed in the liquid at den-
sity r . Here nc(r) plays the role of z(r) in Eq. (5), and
c0 approximates the quasihole orbital obtained from
overlaps of Bose ground states.

It is important to realize that the momentum distribu-
tion of these quasihole orbitals at large k falls very
quickly, as do those of mean-field orbitals and the data
for low removal energies (Bobeldijk et al., 1995). The
tail to large k shown in Fig. 8 is connected nearly exclu-
sively to states of large removal energy.

Recent diffusion Monte Carlo calculations (Moroni
et al., 1997) of liquid 3He and 4He have provided addi-
tional insight into the role played by the Pauli principle.
To a good approximation, the density matrix of liquid
3He factorizes into the one calculated for bosonic 3He
and the Fermi-gas Slater function, and the z factor of
fermionic 3He almost coincides with the condensate
fraction of the mass-3 bosonic liquid. This shows that the
quenching of occupation is essentially bosonic in nature
and is largely decoupled from the additional effects of
Pauli exclusion.

IV. SPECTROSCOPIC STRENGTH FROM EXPERIMENT

We next demonstrate that there exists a convincing
body of empirical evidence, derived primarily from elec-
tron scattering experiments, in support of z values of
0.6–0.7 for quantum states that are near the Fermi sur-
face of closed-shell nuclei. We consider the following
cases: (i) Quasielastic knockout of protons by high-
energy electrons, from which the spectral function can
be derived; (ii) charge-density differences between pairs
of isotones, from which, when combined with relative
spectroscopic factors, absolute occupation numbers can
be derived; (iii) elastic and inelastic form factors of high
multipolarity. In the concluding section we reconsider
single-nucleon transfer reactions that employ the radial
wave functions derived from electron scattering and
take stock of the internal consistency of the results from
the various approaches.

A. z factors from (e,e8p)

In the quasifree (e ,e8p) reaction, where the scattered
electron is detected in coincidence with the knocked-out
proton, the initial momentum k and energy E of the
proton can be reconstructed and the spectral function
S(k ,E) determined.
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In plane-wave impulse approximation (PWIA) the
cross section for a given E reads

s5Ksepch
2~k !z , (6)

where K is a kinematic factor, sep is the off-shell
electron-proton scattering cross section, Ch(k) is the
quasihole orbital normalized to one, and z is the quasi-
particle normalization factor. With a spectrometer pair
with 1:10 000 energy resolution and the use of
dispersion-matching techniques (de Vries et al., 1984)
the (e ,e8p) reaction has been systematically studied
with a missing-mass resolution of 100 keV. With elec-
tron energies of the order of 500 MeV, three-momentum
transfers of the order of 400 MeV/c and energy transfers
of 100–150 MeV could be achieved (van der Steenhoven
and de Witt Huberts, 1991).

The experimental conditions employed were such that
the reaction dynamics could be treated with confidence
using the distorted-wave impulse approximation
(DWIA), which accounts for both the Coulomb distor-
tion of the electron and the strong interaction effects
experienced by the proton (Boffi et al., 1993; McDer-
mott, 1990). The latter process is treated using an optical
potential with parameters fixed by fits to elastic proton-
nucleus scattering data. The adequacy of the optical-
potential approximation seems convincingly demon-
strated by the correct description of the complicated
shape of the experimental momentum distribution for
many valence-hole orbitals studied throughout the peri-
odic table (Lapikás, 1993). Coupled-channel effects have
been studied both theoretically and experimentally and
appear to be small for strong knockout channels. Exten-
sive tests for data obtained in a variety of kinematic
conditions (different kinematics, range of proton ener-
gies) indicate that the variance of the z factor deduced
from A(e ,e8p)A21 amounts to typically 5–10%.

We shall discuss below three representative examples,
z factors obtained for the doubly magic nuclei 4He,
16O, and 208Pb.

For helium the 1s1/2 quasihole orbital can be accu-
rately calculated with Monte Carlo methods and realistic
4He and 3H wave functions. The calculation (Schiavilla
et al., 1986) used the Urbana V 14 N-N potential supple-
mented with a phenomenological three-body force and
yielded a z50.8. Differential cross sections for the 4He
(e ,e8p)3H reaction have been calculated (Laget, 1994)
in a microscopic model including the effects of the final-
state interaction and the coupling of the virtual photon
to proton, neutron, and meson currents. As shown in
Fig. 9 the results calculated from the quasihole orbital
match the data, with better than 10% accuracy, in the
momentum range up to 230 MeV/c , above which final-
state interactions and meson current effects dominate.
This result indicates that N-N correlations are indispens-
able for a realistic description of the electrodisintegra-
tion of 4He.

An additional piece of evidence is derived from the
spectral function at large k and E values that has been
recently measured (Leeuwe, 1995). The high-
momentum components resulting from the short-range
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N-N interaction are correlated in the spectral function
with large values of E . Absorption of a virtual photon
on such a correlated pair leads to a broad structure in
the cross section with a maximum at E5k2/2m . The
measurements of the spectral function for values up to
k5600 MeV/c and E5100 MeV demonstrate the exis-
tence of such a structure with the predicted kinematic
behavior and constitute a direct proof of correlations in
4He. See Fig. 10.

The shell structure of oxygen is of particular interest
because the spin-orbit partners 1p1/2 and 1p3/2 are well
separated in energy (6 MeV) and the knockout spec-
trum shows the spectroscopic strength concentrated in
the 15N ground state and the excited state J53/2 at 6
MeV. Angular momentum analysis of the spectral func-
tion up to 20 MeV shows less than 10% additional
l51 strength (Leuschner, 1994). For the p1/2 state, which
is not fragmented, z=0.63.

For the doubly magic nucleus 208Pb the (e ,e8p) data
(Quint, 1987a, 1987b; Lapikás, 1993) have been analyzed

FIG. 9. Cross sections for 4He (Leeuwe, 1995), compared to
calculation (Laget, 1994) using variational Monte Carlo wave
function with z=0.8.

FIG. 10. Cross section for 4He(e ,e8p) [roughly proportional
to S(k ,E)] as function of E , for several values of k . Both data
and calculation ( Leeuwe, 1995) show the peak expected to
occur at E.k2/2mN .
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with a full phase-shift treatment of the distortion in-
duced both by the Coulomb interaction acting on the
electron and the strong interaction experienced by the
knocked-out proton (McDermott, 1990; Jin et al., 1994).
The result for the transition to the ground state of
207Tl is shown in Fig. 11.

The shape appears to be well reproduced in the k
range up to 100 MeV/c . The slight deviations at large
values of k from the theoretical shape are quite interest-
ing, since they signal a deviation of the overlap wave
function from the mean-field shape in the interior of
208Pb. This region of the momentum was therefore not
included in the procedure to extract z .

The spectral function for l50 quantum states is large
at low values of the momentum where the spectral func-
tion of l Þ 0 states is small. This provides a powerful tool
to detect l50 strength at larger excitation energies. All
of the low-energy l50 spectroscopic strength in 208Pb is
found to be located in the ground state; up to 20 MeV,
no additional strength is found.

The ground-state spectroscopic strength gives
z50.6860.06 for the 3s orbital. This is the key result for
this prototype quasihole orbital in the heavy doubly
magic nucleus 208Pb. The value is remarkably low con-
sidering that for several decades values near one were
assumed.

A relativistic mean-field approximation has also been
developed for closed-shell nuclei like 16O and 208Pb,
which contain many nucleons (Serot, 1992). Both bound

FIG. 11. Distorted momentum distribution of the 3s state in
208Pb, experiment (Quint, 1987a) and calculation (McDermott,
1990) using a shell-model momentum distribution with ad-
justed z .
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and continuum orbitals are described with Dirac wave
functions. Analysis of the (e ,e8p) data within this ap-
proach yields values for z that are not significantly dif-
ferent from those obtained using nonrelativistic wave
functions.

We now summarize the experimental findings in Fig.
12. The z factors are systematically quenched and ex-
hibit a large reduction relative to the Hartree Fock
(shell-model) value of one. Figure 12 also shows results
of theoretical calculations using variational wave func-
tions (Schiavilla et al., 1986; Benhar et al., 1990; Radichi
et al., 1994) for 4He, 16O, and nuclear matter. These
wave functions are known to be very accurate for 3H
and 4He, while they neglect the possible coupling of
single-particle motion to the nuclear surface for the
heavier nuclei. The observed value of z in 208Pb has
been explained by adding surface effects to the nuclear
matter result (Benhar et al., 1990).

Figure 12 also shows the value of z (Mahaux and Sar-
tor, 1989) derived by exploiting the analytic properties
of the optical potential (and integral quantities thereof)
to extrapolate from the positive energies accessible in
proton-nucleus scattering to the negative energies
(bound states). From the potential they derive spectro-
scopic factors and occupation numbers of single-particle
states. Also shown is the value for oxygen (Geurts et al.,
1996) calculated using the Green’s-function formalism.

The (e ,e8p) experiments have had a pronounced im-
pact in our appreciation of the occupation of single-
particle states. We note in this context that a similar
tool, the (e ,2e) reaction, has also become a useful tool
for the study of atoms and molecules (McCarthy and
Weigold, 1991; Vos and McCarthy, 1995). These (e ,2e)
experiments have a somewhat different focus, however,
as the attention is mainly directed towards momentum
distributions. Spectroscopic factors come in only when
discussing the (long-range) correlations occurring in
molecules.

B. Occupation numbers

As pointed out above, (e ,e8p) has set new standards
in the measurement of the momentum distributions and

FIG. 12. z factors (L) from (e ,e8p) and (e ,e8) reactions;
(h), from optical potential analysis; and from (—) theory.
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spectroscopic factors of nucleons in nuclei. These mo-
mentum distributions can be understood largely in terms
of the shell model. The data show that these spectro-
scopic factors differ from unity by substantial amounts.

While (e ,e8p) has removed many of the limitations
affecting the one-nucleon transfer reactions used in the
past, the method still runs into difficulties when aiming
at occupation numbers. One could have hoped that oc-
cupation numbers of shell-model orbitals could be ob-
tained by summing the spectroscopic strength associated
with the removal of a nucleon from a specific n ,l ,j or-
bital. In practice this is very difficult; the strength of
interest is spread very thinly over a large range of E and
is difficult to identify due to the continuum nature of the
residual nuclear states involved. Moreover, at large ex-
citation energies the strength of many n ,l ,j orbitals with
different radial quantum numbers n can be mixed. In
principle the overlap orbital for each state of the re-
sidual nucleus is a different superposition of the natural
orbitals.

An approach (Clement et al., 1987) that combines re-
sults from elastic electron scattering and (e ,e8p) pro-
vides a way to estimate the occupation number of the
quasihole orbital. It is applicable in particular to the nu-
clei near lead, where the needed (e ,e) data are avail-
able. 208Pb is also the most interesting case, as this heavy
‘‘doubly magic’’ nucleus represents the prototype case
for which one would like to know the degree to which
the shell model is valid.

We have discussed above the (e ,e) data that provided
the precise information on the 3s quasihole orbital in
the interior of 206Pb (see Sec. II). The charge-density
difference between 205Tl and 206Pb is given by

Dr~r !5(
a

Dna•ra~r !1Drcp~r !, (7)

where na and ra are the occupation numbers and single-
particle radial densities of states a . Drcp5(anaDra is a
small correction that reflects the fact that all ra(r) are
slightly changing when going from nucleus (A21) to
nucleus A . The quantity Dn2065n3s

2062n3s
205 can be ob-

tained from the unique signature of the 3s radial wave
function in elastic electron scattering and is found to be
0.6460.06 (Sick and de Witt Huberts, 1991).

Denoting the spectroscopic factor of various states for
removal of the 3s protons in 208Pb by s3s

208 , and using
n3s

2085(s3s
208 , one obtains the trivial identity

n3s
2085Dn3s

206Y S (s3s
206

(s3s
208 2

(s3s
205

(s3s
208D . (8)

In this equation, only ratios of sums of spectroscopic
factors occur. The spectroscopic factors are known only
for low energy discrete states which appear to have
overlap functions proportional to the QHO. We denote
their sum (8. The spread of the strength over a large
range in excitation energy, due to the short-range repul-
sion in the nucleon-nucleon interaction, can be expected
to be very similar for neighboring nuclei. When taking
ratios of terms involving sums over s values, one may
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expect that the fraction of the strength which has moved
to high excitation energy drops out. In the above equa-
tion one thus may replace the sum ( which extends to
infinite excitation energy by the sum (8 that covers only
the discrete states. These (8 terms can be extracted
from spectroscopic factors measured by (e ,e8p).

The combination of data from elastic electron scatter-
ing and (e ,e8p) data then leads (Sick and de Witt Hu-
berts, 1991) to an absolute occupation probability of the
3s state—the prototype example for a state near the
Fermi edge in a magic nucleus—of 0.7660.07. A direct
comparison between the absolute occupation probability
and the (e ,e8p) results for spectroscopic factors is only
possible after adding some theoretical input (Pandhari-
pande et al., 1984). This gives a difference of occupation
number and spectroscopic factor of 0.14. Augmenting
the (e ,e8p) strength by this yields 0.8260.08, in good
agreement with the occupation of 0.7660.07.

C. High-L form factors

A number of other types of observables have been
considered in the past to get information on spectro-
scopic factors of single-particle states. We mention elas-
tic magnetic form factors of multipolarity L52j for the
case of an even-odd nucleus with the unpaired nucleon
in the orbit having j5l11/2, particularly for cases in
which the valence nucleon has the largest j value of all
normally occupied states (Platchkov et al., 1982). As
long as one ignores admixtures to the ground-state wave
function with j8.j , the overall amplitude of the ML
form factor is related by a sum rule (Dieperink and Sick,
1982) to sums over spectroscopic factors involving the
shell j . Shells with j8,j cannot contribute to multipolar-
ity L .

Today, we realize that the strength outside the shell-
model space is spread over a large range in energy and,
as a consequence, is spread over many values of j ,
mostly with j8.j . The contribution of transitions be-
tween states with j181j28>2j leads to a background con-
tribution that invalidates the simple sum rule cited
above. The sum rule could be exploited if the back-
ground contribution could be subtracted based on the
different q dependence of the corresponding form fac-
tor. This for the time being is not practical, however,
given the limited set of data available for these ML
form factors.

Similar considerations hold for the inelastic EL or
ML form factors (Pandharipande et al., 1984). Back-
ground contributions have to be subtracted to extract
the value of z from these data. The z values from
(e ,e8p) are more accurate because no such subtractions
are needed.

D. Spectroscopic factors from transfer reactions

Historically, one-nucleon transfer reactions provided
the most solid empirical foundation for the validity of
the shell model. The spectroscopic factors deduced from
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
transfer reactions were persistently in the range 0.9–1.0,
i.e., close to the independent-particle limit for a closed
shell. The much lower z factors obtained today from the
proton knockout data call for an explanation.

In the early literature (MacFarlane, 1969) it was
clearly understood that the extraction of absolute spec-
troscopic factors from single-nucleon transfer reactions
is highly model dependent, the principal reason being
that the cross section is extremely sensitive to the An-
satz for the wave function of the transferred nucleon.
The reaction amplitude samples the asymptotic part of
the wave function at large distance r from the nuclear
center, where ch

2 is down by a factor of 100 from its
maximum value. The cross section changes by typically
10% for a change of 1% of the radius R of the potential
well used to calculate the bound-state wave function.
The failure to find significant hole strength in the exci-
tation energy range then accessible (5–10 MeV) led the
practitioners of single-nucleon transfer reactions to
choose implicitly a value for R that would exhaust the
(2j11) particle+hole sum rule.

Today one can use the information on the rms radius
of the quasihole wave function deduced from (e ,e8p) in
order to reduce the model dependence of the transfer
reaction analysis. A sample of pickup reactions (d ,
3He) has been reanalyzed (Kramer, 1990; Kramer et al.,
1997). The average z factor for the doubly magic nuclei
oxygen, calcium, and lead amounts to 0.6260.15, a value
that agrees with the z factors from (e ,e8p). We are thus
arriving at a rather consistent picture presented by two
totally different types of reactions.

V. ‘‘MISSING’’ STRENGTH

A significant measurement of the absolute occupation
probabilities of normally occupied states below the
Fermi level is difficult, precisely because of the relative
success of the shell model. The occupation probabilities
n are not all that far from 1, and the significance of a
measurement lies in the uncertainty of the difference
from unity. Given the systematic errors of n , the relative
error on (12n) may become very large.

Alternatively, one can try to measure the hole
strength below the Fermi level or the particle strength
above it. The integral over either would yield the infor-
mation on the deviation of n from 1 directly.

Historically, a great deal of effort has been spent in
nuclear physics on measurements of spectroscopic fac-
tors via one-nucleon transfer reactions (see previous sec-
tion). These experiments found very little strength in the
region of excitation energy up to .10 MeV. From this
the conclusion was drawn that the integrated strength—
the quantity that yields the occupation numbers above
E F and their deviation from unity below E F—is small.
The nuclear shell model, with occupation probabilities
very close to 1, seemed to be valid.

The ultimate failure of these attempts lies in the limi-
tation to excitation energies of the order of 10 MeV, i.e.,
energies at which the strength of well-defined l ,j can be
identified because of the discrete nature of the residual
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nuclear states. In doubly closed-shell nuclei only a frac-
tion z;0.65 of the hole strength is located in this energy
region. The rest, which includes the fraction n2z;0.1
of the hole strength and all of the particle strength,
populates two-hole/one-particle and more complex exci-
tations. In nuclei of interest, these excitations are mostly
in the continuum region.

Access to the elusive particle strength at high k ,E , is
possible when using inclusive scattering of a weakly in-
teracting probe, in the kinematical region of large mo-
mentum transfer q . This type of approach has been em-
ployed both in the study of liquid helium, using neutron
scattering, and in the investigation of nuclei, using elec-
tron scattering. In the tail of the quasielastic peak ob-
served in (n ,n8) or (e ,e8) the cross section is sensitive
to the strength at large k ,E .

This sensitivity of the tail of the quasielastic peak was
known for some time, but could not be exploited for
lack of a quantitative treatment of the final-state inter-
action of the knocked-out nucleon. The recent develop-
ment of Correlated Glauber Theory for the quantitative
treatment of the final-state interaction (Benhar et al.,
1991) allows us to estimate the total particle strength for
k.kF . The study of the ratios of the cross section for
infinite nuclear matter [obtained by extrapolating data
for nuclei (Day et al., 1989)] to deuterium has recently
provided us with a good number on the integral over
this strength (Benhar et al., 1995). In the region
1.5,x,2, where the ratio is nearly proportional to the
momentum density at large k , it has been shown that,
within the uncertainty of .20%, the strength agrees
with the value of .0.25 predicted by CBF theory for
nuclear matter (see Fig. 13).

When discussing these measurements, it may be in-
structive to look again at other cases in which correla-

FIG. 13. Ratios of inclusive cross sections of nuclear matter
and deuterium at 3.6 GeV and 25° as a function of the Bjorken
scaling variable x5q2/2mNv . The solid curve corresponds to
the prediction using the correlated basis-functions spectral
function (Benhar et al., 1995). For the dashed curve the
strength in the spectral function at large momentum has been
reduced by a factor of 2 to show the sensitivity of the data to
components of high momentum.
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tions lead to strength at large k ,E . For the case of Bose
liquid helium, much of the interest in the past had been
focused on small k , in connection with the Bose conden-
sate. Only recently have neutron scattering experiments
on Fermi liquid 3He (Azuah et al., 1995) been carried
out in the region of q ,v appropriate for a study of the
tail of the quasielastic peak. The statistical errors on the
data are still fairly large in the tail, but the data seem to
indicate that almost 50% of the 3He atoms occupy states
with momenta k.kF .

VI. CONCLUSIONS

The independent-particle model has provided a very
economical description and has allowed us to under-
stand many features of nuclei. Yet this model must fail
in certain areas, given the internucleon correlations re-
sulting from the repulsive core and the tensor part of the
nucleon-nucleon interaction. The experimental and the-
oretical work of the past decade has provided us with a
much clearer picture on the consequences of these cor-
relations. In particular, it has become clear that the main
consequences are a depletion of the occupation of orbits
that are fully occupied in the shell model and a spread-
ing of this strength over an extremely wide range of ex-
citation energies. The quantitative information we have
today from both theory and experiment tells us that oc-
cupation probabilities in finite nuclei are only in the
75% range. Single-particle contributions to transitions
are suppressed by the factor z , which amounts to 0.65.
Thus at any time only 2/3 of the nucleons in the nucleus
act as independent particles moving in the nuclear mean
field. The remaining third of the nucleons are correlated.

The depopulation of states below the Fermi energy is
much more pronounced than was believed in the past. In
the future, one clearly would like to use a model that
accounts for this fact, preferably without giving up the
shell model entirely. Modern Monte Carlo approaches
retain both the quasiparticle and correlated aspects, but
the economy and simplicity of the shell model is lost.
One of the challenges for the future will be to find sim-
pler methods that allow one to treat simultaneously the
uncorrelated and the correlated nucleons in the nucleus.

For experiment, one of the challenges will be the in-
vestigation of the deeply bound shell-model states in the
heavier nuclei and the identification of the correlated
strength of the spectral function at large momentum and
energy.
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Ludeau, A. Nakada, P. X. Hô, and I. Sick, 1977, Phys. Rev.
Lett. 38, 152.

Geurts, W., K. Allaart, W. Dickhoff, and H. Müther, 1996,
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