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This is a review of the statistical properties of the scattering matrix of a mesoscopic system. Two
geometries are contrasted: A quantum dot and a disordered wire. The quantum dot is a confined
region with a chaotic classical dynamics, which is coupled to two electron reservoirs via point contacts.
The disordered wire also connects two reservoirs, either directly or via a point contact or tunnel
barrier. One of the two reservoirs may be in the superconducting state, in which case conduction
involves Andreev reflection at the interface with the superconductor. In the case of the quantum dot,
the distribution of the scattering matrix is given by either Dyson’s circular ensemble for ballistic point
contacts or the Poisson kernel for point contacts containing a tunnel barrier. In the case of the
disordered wire, the distribution of the scattering matrix is obtained from the
Dorokhov-Mello-Pereyra-Kumar equation, which is a one-dimensional scaling equation. The
equivalence is discussed with the nonlinear s model, which is a supersymmetric field theory of
localization. The distribution of scattering matrices is applied to a variety of physical phenomena,
including universal conductance fluctuations, weak localization, Coulomb blockade, sub-Poissonian
shot noise, reflectionless tunneling into a superconductor, and giant conductance oscillations in a
Josephson junction. [S0034-6861(97)00203-1]
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I. INTRODUCTION

A. Preface

Random-matrix theory deals with the statistical prop-
erties of large matrices with randomly distributed ele-
ments. The probability distribution of the matrices is
taken as input, from which the correlation functions of
eigenvalues and eigenvectors are derived as output.
From the correlation functions one then computes the
physical properties of the system. Random-matrix
theory was developed into a powerful tool of math-
ematical physics in the 1960’s, notably by Wigner,
Dyson, Mehta, and Gaudin. (Their work is described in
detail in a monograph by Mehta, 1991.) The original
motivation for this research was to understand the sta-
tistics (in particular the distribution of spacings) of en-
ergy levels of heavy nuclei, measured in nuclear reac-
tions (Wigner, 1957). (Many of the early papers have
been collected in a book by Porter, 1965.) Later the
same techniques were applied to the level statistics of
small metal particles, in order to describe the microwave
absorption by granular metals (Gor’kov and Eliashberg,
1965). Much of the work on level statistics in nuclear
and solid-state physics has been reviewed by Brody et al.
(1981).

In recent years there has been a revival of interest in
random-matrix theory, mainly because of two develop-
ments. The first was the discovery that the Wigner-
Dyson ensemble applies generically to chaotic systems
(Bohigas, Giannoni, and Schmit, 1984; Berry, 1985).
(For reviews of the random-matrix theory of quantum
chaos, see Bohigas, 1990; Gutzwiller, 1990; Haake,
1992.) The second was the discovery of a relation be-
tween universal properties of large random matrices and
universal conductance fluctuations in disordered con-
ductors (Altshuler and Shklovski�, 1986; Imry, 1986a).
This led to the development of a random-matrix theory
of quantum transport. An influential review of the early
work was provided by Stone et al. (1991). The field has
matured rapidly since then, and the need was felt for an
up-to-date review, in particular for physicists from out-
side the field. The present article was written with this
need in mind.

The random-matrix theory of quantum transport is
concerned with mesoscopic systems, at the borderline
between the microscopic and the macroscopic world. On
the one hand, they are sufficiently small that electrons
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maintain their quantum-mechanical phase coherence, so
that a classical description of the transport properties is
inadequate. On the other hand, they are sufficiently
large that a statistical description is meaningful. Quan-
tum interference leads to a variety of new phenomena.
(For reviews, see Altshuler, Lee, and Webb, 1991;
Beenakker and Van Houten, 1991; Datta, 1995; Imry,
1996.) Some of the phenomena are ‘‘universal,’’ in the
sense that they do not depend on the sample size or the
degree of disorder—at least within certain limits.
Random-matrix theory relates the universality of trans-
port properties to the universality of correlation func-
tions of transmission eigenvalues. A particularly attrac-
tive feature of this approach is its generality. Since it
addresses the entire probability distribution of the trans-
mission matrix, it applies to a whole class of transport
properties—not just to the conductance. By including
Andreev reflection one can treat hybrid structures con-
taining normal metals and superconductors. Further-
more, since the approach is nonperturbative, it provides
a unified description of both the metallic and the local-
ized regimes.

There exists at this moment a complete description of
the statistics of the transmission matrix for two types of
geometries. The first is a confined geometry, the second
a wire geometry. The confined geometry consists of a
metal grain through which a current is passed via two
point contacts. Such a system is sometimes called a
‘‘quantum dot,’’ to emphasize the quantum-mechanical
phase coherence of the electrons. The wire geometry
should have an aspect ratio length/width @1. These two
geometries are considered separately in Secs. II and III,
as far as normal metals are concerned. The new effects
which appear due to superconductivity are the subject of
Sec. IV. [There is some overlap between Sec. IV and an
earlier review by the author (Beenakker, 1995).] In Sec.
V we identify directions for future research and discuss
some outstanding problems, in particular the extension
of the random-matrix approach to thin-film and bulk ge-
ometries (having length & width). Section I is devoted
to an introduction, containing background material and
an overview of things to come.

B. Statistical theory of energy levels

The random-matrix theory of quantum transport is a
statistical theory of the transmission eigenvalues of an
open system. In contrast, the random-matrix theory es-
tablished by Wigner and Dyson addresses the statistics
of energy levels of a closed system. In this subsection we
briefly consider the Wigner-Dyson ensemble of random
Hamiltonians and discuss its fundamental ingredient—
the hypothesis of geometrical correlations. We also in-
troduce two topics which we will need later on, transi-
tions between ensembles of different symmetry and
Brownian motion of energy levels.
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1. Wigner-Dyson ensemble

Wigner and Dyson studied an ensemble of N3N Her-
mitian matrices H, with probability distribution of the
form

P~H!5cexp@2b Tr V~H!# (1)

(c is a normalization constant). If the potential
V(H) } H2, the ensemble is called Gaussian. Wigner
(1957, 1967) concentrated on the Gaussian ensemble be-
cause it has independently distributed matrix elements
(since Tr H25Tr HH†5( ijuHiju2), and this simplifies
some of the calculations. To make contact with the
Hamiltonian of a physical system, the limit N→` is
taken. It turns out that spectral correlations become
largely independent of V in this limit, provided one stays
away from the edge of the spectrum. This is the cel-
ebrated universality of spectral correlations, about which
we will say more in Sec. I.D.

The symmetry index b counts the number of degrees
of freedom in the matrix elements. These can be real,
complex, or real quaternion1 numbers, corresponding to
b=1, 2, or 4, respectively. Since the transformation
H→UHU21, with U an orthogonal (b51), unitary
(b52), or symplectic2 (b54) matrix leaves P(H) in-
variant, the ensemble is called orthogonal, unitary, or
symplectic. Physically, b52 applies to the case that
time-reversal symmetry is broken, by a magnetic field or
by magnetic impurities. In the presence of time-reversal
symmetry, one has b51 if the electron spin is conserved
and b54 if spin-rotation symmetry is broken (by strong
spin-orbit scattering). This classification, due to Dyson
(1962d), is summarized in Table I.

We would like to deduce from P(H) what the distri-
bution is of the eigenvalues and eigenvectors of H. Let
$En% denote the set of eigenvalues and U the matrix of
eigenvectors, so that3 H5Udiag(E1 ,E2 , . . . ,EN)U†.
Since Tr V(H)5(nV(En) depends only on the eigen-
values, the distribution of Eq. (1) is independent of the

1A quaternion q is a 232 matrix which is a linear combina-
tion of the unit matrix and the three Pauli spin matrices:
q5a11ibsx1icsy1idsz . The quaternion is called real if the
coefficients a , b , c , and d are real numbers.

2A symplectic matrix is a unitary matrix with real quaternion
elements.

3If b54, the eigenvalue-eigenvector decomposition is
H5Udiag(E11,E21, . . . ,EN1)U†, so that each of the N dis-
tinct eigenvalues is twofold degenerate (Kramers’ degen-
eracy).

TABLE I. Summary of Dyson’s threefold way. The Hermitian
matrixH (and its matrix of eigenvectors U) are classified by an
index bP$1,2,4%, depending on the presence or absence of
time-reversal (TRS) and spin-rotation (SRS) symmetry.

b TRS SRS Hnm U

1 yes yes real orthogonal
2 no irrelevant complex unitary
4 yes no real quaternion symplectic
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eigenvectors. This means that U is uniformly distributed
in the unitary group (for b52), and in the orthogonal or
symplectic subgroups (for b51 or 4). To find the distri-
bution P($En%) of the eigenvalues we need to multiply
P(H) with the Jacobian J which relates an infinitesimal
volume element dm(H) in the space of Hermitian ma-
trices to the corresponding volume elements dm(U),
dEn of eigenvectors and eigenvalues,

dm~H!5Jdm~U !)
i

dEi . (2)

The Jacobian depends only on the eigenvalues (Porter,
1965),

J~$En%!5)
i,j

uEi2Ejub. (3)

The resulting eigenvalue distribution takes the form

P~$En%!5c)
i,j

uEi2Ejub)
k

exp@2bV~Ek!# . (4)

This distribution has the form of a Gibbs distribution
in statistical mechanics,

P~$En%!5cexpF2bS (
i,j

u~Ei ,Ej!1(
i

V~Ei! D G ,

(5a)

where

u~E ,E8!52lnuE2E8u. (5b)

The symmetry index b plays the role of inverse tem-
perature. One can imagine that the eigenvalues are clas-
sical particles on a line, at the points E1 ,E2 , . . . ,EN .
They repel each other with a logarithmic pair potential
u and are prevented from escaping to infinity by a po-
tential V . (For the Gaussian ensemble, V is a parabolic
potential well.) This system is called a ‘‘Coulomb gas,’’
because the logarithmic repulsion is the Coulomb inter-
action between two identical parallel line charges (see
Fig. 1). The idea of representing the eigenvalue repul-
sion by a fictitious force is due to Wigner (1957) and
Dyson (1962b). It greatly helps our intuition.

FIG. 1. Schematic illustration of the Coulomb gas. The eigen-
values are represented by classical particles at positions
E1 ,E2 , . . . ,EN along a line. The logarithmic eigenvalue repul-
sion is represented by the Coulomb interaction between iden-
tical parallel line charges attached to the particles.
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2. Geometrical correlations

The fundamental hypothesis4 of the Wigner-Dyson
ensemble is that spectral correlations are geometrical.
Geometrical means that they are due to the Jacobian
(3), which relates volume elements in matrix and eigen-
value space. Microscopic details of the system enter only
via the potential V , which does not by itself create any
correlations between the eigenvalues. If there were
some other source of correlations, then the interaction
u between the eigenvalues would deviate from the loga-
rithmic repulsion given by Eq. (5b). The hypothesis of
geometrical correlations is appealing because of its sim-
plicity. Is it correct? In this review we will address that
question for the transmission eigenvalues of an open
system, where the answer was not known until recently.
It is instructive to contrast this with what is known about
the energy levels of a closed system.

Gor’kov and Eliashberg (1965) used the Wigner-
Dyson ensemble to study the electronic properties of
small metal grains. Theoretical justification came with
the supersymmetric field theory of Efetov (1982, 1983).
Assuming diffusive motion of the electrons inside the
grain, he obtained the same correlation function of the
energy-level density as in the Wigner-Dyson ensemble.
Subsequently, Altshuler and Shklovski� (1986) showed
that, for energy separations uE2E8u greater than the
Thouless energy Ec , the correlation function deviates
from random-matrix theory. The characteristic energy
scale Ec5\D/L2 is inversely proportional to the time it
takes for an electron to diffuse, with diffusion coefficient
D , across a particle of size L . It represents the finite
width of the energy levels of an open system. The results
of the diagrammatic perturbation theory of Altshuler
and Shklovski� were rederived by Argaman, Imry, and
Smilansky (1993), using a more intuitive semiclassical
method. It follows from these microscopic theories that
the repulsion between the energy levels has the logarith-
mic form of Eq. (5b) of the Wigner-Dyson ensemble for
uE2E8u!Ec . For uE2E8u@Ec the interaction potential
decays as a power law and actually becomes weakly at-
tractive in three dimensions (Jalabert, Pichard, and
Beenakker, 1993).

There is surprisingly little direct experimental evi-
dence for Wigner-Dyson statistics in a metal grain. Sivan
et al. (1994) measured the level spacing in a small con-
fined region in a semiconductor (a ‘‘quantum dot’’).
Their results were consistent with Wigner-Dyson statis-
tics for the low-lying excitations. Because of electron-
electron interactions, the single-particle excitation spec-
trum is broadened and merges into a continuum for

4This viewpoint of what is fundamental in the Wigner-Dyson
theory differs from the conventional viewpoint (Porter, 1965)
that the two basic assumptions are (1) statistical independence
of the matrix elements, and (2) invariance of the ensemble
with respect to orthogonal, unitary, or symplectic transforma-
tions of H. The assumptions of independence and invariance
imply an unnecessary restriction to the Gaussian ensemble.
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
energies further than Ec from the Fermi level (Sivan,
Imry, and Aronov, 1994; Altshuler et al. 1996).

The Wigner-Dyson ensemble of random Hamilto-
nians applies not just to an ensemble of disordered
metal grains, but also to any quantum-mechanical sys-
tem that is sufficiently complex. A necessary require-
ment is that there are no other constants of the motion
than the energy, so no energy level crossings occur. In
classical mechanics, such a system is called noninte-
grable or chaotic.5 Impurity scattering is one way of
making the system chaotic, but not the only one. Scat-
tering by the boundaries is often sufficient to destroy all
constants of the motion (unless the boundaries have
some spatial symmetry). The notion of statistics and av-
eraging is different if the chaos is due to impurity scat-
tering or to boundary scattering. An ensemble of disor-
dered metal grains can be formed by changing the
microscopic configuration of the impurities. Alterna-
tively, one could consider a single grain and replace the
ensemble average by a spectral average, i.e., by an aver-
age over the energy levels. Theory is easier for ensemble
averages, whereas experimentally a spectral average is
more accessible. The assumption of ergodicity is the as-
sumption that ensemble and spectral averages are
equivalent.

Wigner-Dyson statistics of the energy levels has been
demonstrated numerically for a variety of nonintegrable
systems without disorder, such as a particle moving on a
billiard table (Bohigas, Giannoni, and Schmit, 1984), hy-
drogen in a magnetic field (Freidrich and Wintgen,
1989), and models of strongly interacting electrons (Poil-
blanc et al., 1993). An early analytical calculation, using
periodic-orbit theory, was provided by Berry (1985). A
complete theoretical justification, such as Efetov’s
theory for a disordered grain, was hampered for a long
time by the lack of a natural ensemble in the absence of
disorder. This obstacle was finally overcome by Andreev
et al. (1996). Using a supersymmetric field theory for
ballistic motion (Muzykantski� and Khmel’nitski�, 1995),
they could show that spectral averages in a chaotic bil-
liard agree with Wigner-Dyson statistics.

3. Transition between ensembles

We have talked about time-reversal symmetry as be-
ing broken or not. In reality, a weak magnetic field does
not break time-reversal symmetry completely. There is a

5When speaking of ‘‘chaotic’’ systems, we intend that the
classical motion is nonintegrable in the entire phase space (no
stable periodic orbits). This is known as ‘‘hard’’ chaos or ‘‘glo-
bal’’ chaos. Each trajectory then uniformly explores the entire
phase space, on a time scale set by the ‘‘ergodic’’ time
tergodic . Neighboring trajectories diverge exponentially in time
} exp(2t/tergodic). It is easy to realize hard chaos in disordered
systems, but not in ballistic systems. Generically, the phase
space will contain both regions of chaotic and integrable mo-
tion (‘‘soft’’ chaos). Hard chaos has been demonstrated for
special geometries in two-dimensional ballistic systems known
as ‘‘billiards.’’
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smooth transition from the orthogonal or symplectic en-
sembles to the unitary ensemble. We discuss the transi-
tion from the Gaussian orthogonal ensemble (GOE) to
the Gaussian unitary ensemble (GUE), following Pan-
dey and Mehta (1983, see also Mehta and Pandey, 1983;
Mehta, 1991).

The complex Hermitian M3M matrix

H5H01iaA (6)

is decomposed into a real symmetric matrix H0 and a
real antisymmetric matrix A with imaginary weight ia .
(Here we denote the matrix dimension by M instead of
N to avoid a confusion of notation later on in this re-
view.) The two matrices H0 and A are independently
distributed with the same Gaussian distribution, so that
the distribution of H is

P~H!}expS 2(
i ,j

F ~Re Hij!
2

4v2 1
~Im Hij!

2

4v2a2 G D . (7)

The variance v2 determines the mean level spacing
d5pv/AM at the center of the spectrum for M@1 and
a!1. [To have the same mean level spacing for all a ,
one should replace v2 by v2(11a2)21.] The distribution
of H interpolates between the GOE for a50 and the
GUE for a51. The transition is effectively complete for
a!1. Indeed, the spectral correlations on the energy
scale d are those of the GUE when the effective strength
va of the term in Eq. (6), which breaks time-reversal
symmetry, exceeds d , hence when a*1/AM .

To relate the parameter a to the magnetic field B , we
consider the shift dEi of the energy levels for a!1. On
the one hand, from the Hamiltonian (6) one obtains, to
leading order in a ,

dEi5a2(
jÞi

Aij
2

Ei2Ej
. (8)

In order of magnitude, udEiu.a2v2/d.Ma2d . On the
other hand, the typical curvature of the energy levels
around B50 is given by the Thouless energy:
udEiu.Ec(eF/h)2, where F is the magnetic flux through
the system. Taken together, these two estimates imply

Ma2.S eF

h D 2 Ec

d
. (9)

The GOE-GUE transition is completed on the energy
scale E if udEiu*E , hence if F*(h/e)AE/Ec. Since
d!Ec in a metal, it requires much less than a flux quan-
tum to break time-reversal symmetry on the scale of the
level spacing.

Microscopic justification for the probability distribu-
tion of Eq. (7) has been provided by Dupuis and Mon-
tambaux (1991) (for a disordered ring) and by Bohigas
et al. (1995) (for a chaotic billiard). The precise relation
between a and B depends on the geometry of the sys-
tem and on whether it is disordered or ballistic. For a
disordered two-dimensional disk or three-dimensional
sphere (radius R much greater than mean free path l)
the relation between a and F5pR2B is (Frahm and
Pichard, 1995a)
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
Ma25S eF

h D 2 \vFl

R2d
3H p/4 disk,

2p/15 sphere.
(10)

Here vF is the Fermi velocity. For a ballistic disk or
sphere (R!l), which is chaotic because of diffuse
boundary scattering, the relation is instead

Ma25S eF

h D 2 \vF

Rd
3H 4/3 disk,

8p/45 sphere.
(11)

For a ballistic two-dimensional billiard (area A) with a
chaotic shape, Bohigas et al. (1995) find Ma2

5c(eF/h)2\vF /dAA , with c a numerical coefficient de-
pending only on the shape of the billiard. In each case,
Ma2 } Ec in accordance with Eq. (9), the Thouless en-
ergy being given by Ec.\vFR22min(l ,R).

4. Brownian motion

In the previous subsection we considered the
magnetic-field dependence of the energy levels around
B50, to investigate the transition from the orthogonal
to the unitary ensemble. Once the transition is com-
pleted, the level distribution becomes B independent.
Individual energy levels still fluctuate as a function of
B in some random way (see Fig. 2). These spectral fluc-
tuations are a realization of the Brownian-motion pro-
cess introduced by Dyson (1962c, 1972) as a dynamical
model for the Coulomb gas. A review of this topic has
been written by Altshuler and Simons (1995). Since it is
not directly related to transport, we restrict ourselves
here to the basics.

Following Lenz and Haake (1990, see also Haake,
1992), we consider the Hamiltonian

H5e2tH01~12e22t!1/2HGUE , (12)

which interpolates between the M3M complex Hermit-
ian matrices H0 and HGUE as the parameter t increases

FIG. 2. Illustration of the magnetic-field dependence of energy
levels in a chaotic system (magnetic field B and energy E in
arbitrary units). This plot is based on a calculation of the spec-
trum of the hydrogen atom in a strong magnetic field by Gold-
berg et al. (1991).
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from 0 to ` . The matrix H0 is a fixed matrix, while
HGUE varies randomly over the GUE. The resulting dis-
tribution of H is

P~H,t!5
1

~12e22t!M2/2
PGUES H2e2tH0

~12e22t!1/2D , (13a)

PGUE~H!}exp~2c Tr H2!. (13b)

The coefficients of H0 and HGUE in Eq. (12) are chosen
such that the mean level spacing d5p(2Mc)21/2 of H is
t independent.

The distribution given by Eq. (13) satisfies the
Fokker-Planck equation

c
]

]t
P5(

m

]

]Hm
S cHm1Dm

]

]Hm
DP (14)

in the M2 independent variables $Hm%5$Hii , Re Hij ,
Im Hij , 1<i,j<M%. The diffusion coefficient Dm
equals 1/2 for the diagonal elements Hii and 1/4 for the
off-diagonal elements Re Hij , Im Hij . Integrating out
the eigenvectors of H, one obtains from Eq. (14) a
Fokker-Planck equation for the distribution P($En%,t)
of the eigenvalues En ,

c
]

]t
P5(

i

]

]Ei
S cEi1(

jÞi

1
Ej2Ei

1
1
2

]

]Ei
D P . (15)

The implication of Eq. (15) is that the energy levels
Ei(t) execute a Brownian motion in fictitious time t .

To relate t to B , we first relate t to the parameter a
of the previous subsection, since we already know how
to relate a to B . For infinitesimal t the Hamiltonian (12)
can be written as

H5H01A2t~HGOE1iA!. (16)

Here HGOE and A are, respectively, real symmetric and
real antisymmetric matrices having independent Gauss-
ian distributions with the same variance. Equivalently,
one can use a purely antisymmetric perturbation of H0
and double its variance:

H5H012iAt A. (17)

Comparison with Eq. (6) leads to the relation (Frahm,
1995b)

Da52At (18)

between the fictitious time t of the Brownian motion
and an increment Da of the Pandey-Mehta Hamiltonian
in the absence of time-reversal symmetry (i.e., for
Ma2@1). Since a } F according to Eq. (9), one finds
that t is related to the flux increment DF by
Mt.(eDF/h)2Ec /d .

Microscopic justification for the Brownian-motion
model has been provided by Beenakker (1993b), and
Beenakker and Rejaei (1994b), through a comparison of
the correlation functions obtained from Eq. (15) with
those obtained for a disordered metal grain by Szafer
and Altshuler (1993) and Simons and Altshuler (1993)
and Altshuler and Simons, (1995). The model has one
fundamental limitation: Brownian motion correctly de-
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
scribes level correlations between any two values of B ,
but does not describe how levels at three or more values
of B are correlated. The reason is that Brownian motion
is a Markov process, meaning that it has no memory—
the distribution P at time t1Dt is fully determined by
the distribution at time t . Knowledge of P at earlier
times is irrelevant for the evolution at later times. The
true level dynamics, in contrast, is no Markov
process—it does have a memory. To see this, it suffices
to take a look at Fig. 2. The energy levels evolve
smoothly as a function of magnetic field, hence their lo-
cation at B1DB is not independent from that at
B2DB if DB is small enough. As a consequence, the
correlator of two densities ^n(B1)n(B2)& [with
n(B)5(nd(E2En(B))] can be obtained from the
Fokker-Planck equation (15), but the correlator of three
densities ^n(B1)n(B2)n(B3)& cannot.

C. Statistical theory of transmission eigenvalues

1. Scattering and transfer matrices

The scattering theory of electronic conduction is due
to Landauer (1957, 1987), Imry (1986b), and Büttiker
(1986b, 1988b). It provides a complete description of
transport at low frequencies, temperatures, and voltages,
under circumstances in which electron-electron interac-
tions can be neglected. (For an overview of the great
variety of experiments in which the theory has been
tested, see Beenakker and Van Houten, 1991.) A meso-
scopic conductor is modeled by a phase-coherent disor-
dered region connected by ideal leads (without disorder)
to two electron reservoirs (see Fig. 3). Scattering in the
phase-coherent region is elastic. All inelastic scattering
is assumed to take place in the reservoirs, which are in
equilibrium at zero temperature and electrochemical po-
tential (or Fermi energy) EF . The ideal leads are ‘‘elec-
tron wave guides,’’ introduced to define a basis for the
scattering matrix of the disordered region.

The wave function c of an electron in a lead at energy
EF separates into a longitudinal and a transverse part,

cn
6~rW !5Fn~y ,z !exp~6iknx !. (19)

FIG. 3. Disordered region (dotted) connected by ideal leads to
two electron reservoirs (to the left and right of the dashed
lines). The scattering matrix S relates the amplitudes a1,b2 of
incoming waves to the amplitudes a2,b1 of outgoing waves,
while the transfer matrix M relates the amplitudes a1,a2 at
the left to the amplitudes b1,b2 at the right.
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The integer n51,2, . . . ,N labels the propagating modes,
also referred to as scattering channels. Mode n has a
real wave number kn.0 and transverse wave function
Fn . (We assume, for simplicity of notation, that the two
leads are identical.) The normalization of the wave func-
tion (19) is chosen such that it carries unit current. A
wave incident on the disordered region is described in
this basis by a vector of coefficients

c in[~a1
1 ,a2

1 , . . . ,aN
1 ,b1

2 ,b2
2 , . . . ,bN

2!. (20)

The first set of N coefficients refers to the left lead and
the second set of N coefficients to the right lead in Fig.
3. Similarly, the reflected and transmitted wave has vec-
tor of coefficients

cout[~a1
2 ,a2

2 , . . . ,aN
2 ,b1

1 ,b2
1 , . . . ,bN

1!. (21)

The scattering matrix S is a 2N32N matrix which re-
lates these two vectors,

cout5Sc in. (22)

It has the block structure

S5S r t8

t r8
D , (23)

with N3N reflection matrices r and r8 (reflection from
left to left and from right to right) and transmission ma-
trices t and t8 (transmission from left to right and from
right to left).

Current conservation implies that S is a unitary ma-
trix: S215S†. It is a consequence of unitarity that the
four Hermitian matrices tt†, t8t8†, 12rr†, and 12r8r8†

have the same set of eigenvalues T1 ,T2 , . . . ,TN . Each
of these N transmission eigenvalues is a real number
between 0 and 1. The scattering matrix can be written in
terms of the Tn’s by means of the polar decomposition
(Mello, Pereyra, and Kumar, 1988; Martin and Land-
auer, 1992)

S5S U 0

0 V D S 2A12T AT
AT A12TD S U8 0

0 V8
D . (24)

Here U ,V ,U8,V8 are four N3N unitary matrices and
T5diag (T1 ,T2 , . . . ,TN) is a N3N diagonal matrix
with the transmission eigenvalues on the diagonal.6

If time-reversal symmetry is broken (b52), unitarity
is the only constraint on S . The presence of time-
reversal symmetry imposes additional constraints. If
both time-reversal and spin-rotation symmetry are
present (b51), then S is unitary and symmetric:
S5ST, hence U85UT, V85VT. (The superscript T indi-
cates the transpose of the matrix.) If time-reversal sym-
metry is present but spin-rotation symmetry is broken

6The transmission eigenvalues for b54 are twofold degener-
ate: T5diag(T11,T21, . . . ,TN1). Compare the footnote on
Kramers’ degeneracy of the energy levels in Sec. I.B.1.
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(b54), then S is unitary and self-dual: S5SR, hence
U85UR, V85VR. (The superscript R indicates the dual7

of a quaternion matrix.)
The scattering matrix relates incoming to outgoing

states. The transfer matrix relates states in the left lead
to states in the right lead. A wave in the left lead is given
by the vector of coefficients

c left[~a1
1 ,a2

1 , . . . ,aN
1 ,a1

2 ,a2
2 , . . . ,aN

2!. (25)

The first set of N coefficients refers to incoming waves,
the second set of N coefficients to outgoing waves. Simi-
larly, a wave in the right lead has a vector of coefficients

cright[~b1
1 ,b2

1 , . . . ,bN
1 ,b1

2 ,b2
2 , . . . ,bN

2!. (26)

The transfer matrix M is a 2N32N matrix that relates
these two vectors,

cright5Mc left. (27)

The scattering and transfer matrices are equivalent de-
scriptions of the disordered region. A convenient prop-
erty of the transfer matrix is the multiplicative composi-
tion rule—the transfer matrix of a number of disordered
regions in series (separated by ideal leads) is the product
of the individual transfer matrices. The scattering ma-
trix, in contrast, has a more complicated composition
rule (containing a matrix inversion). By expressing the
elements of M in terms of the elements of S one obtains
the polar decomposition of the transfer matrix (Mello,
Pereyra, and Kumar, 1988; Mello and Pichard, 1991),

M5S V 0

0 V8†D S AT21 AT2121

AT2121 AT21 D S U8 0

0 U†D ,

(28)

in terms of the same N3N matrices used in Eq. (24).
Current conservation imposes a ‘‘pseudo-unitarity’’

constraint on the transfer matrix:

S215S†⇔SM21S5M†, (29)

where S is a diagonal matrix with Snn51 for 1<n<N
and Snn521 for N11<n<2N . As a consequence, the
matrix product MM† and its inverse (MM†)21

5SMM†S have the same set of eigenvalues, or in other
words, the eigenvalues of MM† come in inverse pairs.
We denote the 2N eigenvalues of MM† by exp(62xn),
with xn>0 (n51,2, . . . ,N). By comparing Eqs. (24) and
(28) one obtains an algebraic relation between the trans-
fer and transmission matrices (Pichard, 1984),

@21MM†1~MM†!21#215
1
4S tt† 0

0 t8†t8
D , (30)

which implies that the exponent xn is related to the
transmission eigenvalue Tn by

Tn5
1

cosh2xn
. (31)

7The dual QR of a matrix Q with quaternion elements
Qnm5anm11ibnmsx1icnmsy1idnmsz has elements Qnm

R

5amn12ibmnsx2icmnsy2idmnsz .
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An altogether different representation of the scatter-
ing matrix is the eigenvalue-eigenvector decomposition

S5V diag~eif1,eif2, . . . ,eif2N!V†. (32)

The real numbers fn are the scattering phase shifts.
(There is a twofold Kramers’ degeneracy of the fn’s for
b54.) The 2N32N unitary matrix V has real elements
for b51, complex elements for b52, and real quater-
nion elements for b54. (Hence V is orthogonal for
b51 and symplectic for b54.) The symmetry proper-
ties of the scattering matrix are summarized in Table II.
The decomposition (32) mixes states at the left of the
disordered region with those at the right and therefore
does not distinguish between transmission and reflec-
tion. This is why the polar decomposition of Eq. (24) is
more suitable for a transport problem. A statistical
theory of scattering phase shifts was developed by
Dyson (1962a), in the early days of random-matrix
theory. Dyson’s ensemble of random scattering matri-
ces, known as the circular ensemble, turns out to be the
appropriate ensemble for conduction through a quan-
tum dot, as we will discuss in Sec. II.

2. Linear statistics

The transmission eigenvalues determine a variety of
transport properties. First of all is the conductance
G5limV→0Ī /V , defined as the ratio of the time-
averaged electrical current Ī through the conductor and
the voltage difference V between the two electron res-
ervoirs in the limit of vanishingly small voltage. This is
the limit of linear response, to which we restrict our-
selves in this review. At zero temperature, the conduc-
tance is given by

G5G0 (
n51

N

Tn , G0[
2e2

h
. (33)

Equation (33) is known as the Landauer formula, be-
cause of Landauer’s pioneering 1957 paper. It was first
written down in this form by Fisher and Lee (1981). For
an account of the controversy surrounding this formula,
which has now been settled, we refer to Stone and
Szafer (1988). The factor of two in the definition of the
conductance quantum G0 is due the twofold spin degen-
eracy in the absence of spin-orbit scattering. In the pres-
ence of spin-orbit scattering, there is a twofold Kramers’
degeneracy in zero magnetic field. In the presence of
both spin-orbit scattering and a magnetic field, one has a
reduced conductance quantum G05e2/h with twice the
number of transmission eigenvalues.

TABLE II. Symmetry of the scattering matrix S and its matrix
of eigenvectors V , for the three values of b .

b S V

1 unitary symmetric orthogonal
2 unitary unitary
4 unitary self-dual symplectic
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The discreteness of the electron charge causes time-
dependent fluctuations of the current I(t)5 Ī 1dI(t),
which persist down to zero temperature. These fluctua-
tions are known as shot noise. The power spectrum of
the noise has the zero-frequency limit

P54E
0

`

dt dI~ t1t0!dI~ t0!, (34)

where the overline indicates an average over the initial
time t0 in the correlator. The shot-noise power is related
to the transmission eigenvalues by (Büttiker, 1990)

P5P0 (
n51

N

Tn~12Tn!, P0[2eVG0 . (35)

Equation (35) is the multichannel generalization of for-
mulas by Khlus (1987) and Lesovik (1989).

More generally, we will study transport properties of
the form

A5 (
n51

N

a~Tn!. (36)

The quantity A is called a linear statistic on the trans-
mission eigenvalues. The word ‘‘linear’’ indicates that
A does not contain products of different eigenvalues,
but the function a(T) may well depend nonlinearly on
T—as it does in the case of the shot-noise power (35),
where a(T) depends quadratically on T . The conduc-
tance (33) is special because it is a linear statistic with a
linear dependence on T . Other linear statistics [with
a(T) a rational or algebraic function] appear if one of
the two electron reservoirs is in the superconducting
state (see Sec. IV).

3. Geometrical correlations

The analogue for random scattering matrices of the
Wigner-Dyson ensemble of random Hamiltonians is an
ensemble of unitary matrices where all correlations be-
tween the transmission eigenvalues are geometrical.
Here ‘‘geometrical’’ means due to the Jacobian J which
relates the volume elements in the polar decomposition
(24),

dm~S !5J)
a

dm~Ua!)
i

dTi . (37)

The set $Ua% is the set of independent unitary matrices
in Eq. (24): $Ua%5$U ,V% if b51 or 4; $Ua%
5$U ,U8,V ,V8% if b52. The Jacobian depends only on
the transmission eigenvalues,8

8For a calculation of the Jacobian (38) from scattering matrix
to transmission eigenvalues, see Baranger and Mello (1994),
Jalabert, Pichard, and Beenakker (1994), and Jalabert and Pi-
chard (1995). For an earlier, closely related, calculation of the
Jacobian from transfer matrix to transmission eigenvalues, see
Muttalib, Pichard, and Stone (1987), Mello, Pereyra, and Ku-
mar (1988), and Zanon and Pichard (1988).
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J~$Tn%!5)
i,j

uTi2Tjub)
k

Tk
211b/2 . (38)

The analogue of the Wigner-Dyson distribution (1),

P~S !5cexp@2b Trf~ tt†!# , (39)

yields upon multiplication by J a distribution of the
Tn’s analogous to Eq. (4),

P~$Tn%!5c)
i,j

uTi2Tjub)
k

Tk
211b/2exp@2bf~Tk!# .

(40)

Muttalib, Pichard, and Stone (1987), and Pichard,
Zanon, Imry, and Stone (1990) have based a statistical
theory of transmission eigenvalues on this distribution.
(Their theory is reviewed by Stone et al., 1991.) To make
contact with their work, we perform the change of vari-
ables

Tn5
1

11ln
. (41)

Since Tn lies between 0 and 1, the variable ln ranges
from 0 to ` . The distribution (40) transforms to

P~$ln%!5cexpF2bS (
i,j

u~l i ,l j!1(
i

V~l i! D G ,

(42a)

u~l ,l8!52lnul2l8u, (42b)

V~l!5@N2 1
2 ~122/b!#ln~11l!1f(~11l!21).

(42c)

Equation (42) has the same form as the Gibbs distribu-
tion (5) in the Wigner-Dyson ensemble, with the differ-
ence that the ln’s can only take on positive values, while
the En’s are free to range over the whole real axis. All
microscopic information about the conductor (its size
and degree of disorder) is contained in the confining
potential V(l). The hypothesis of geometrical correla-
tions does not specify this function. Muttalib, Pichard,
and Stone (1987) have shown that the probability distri-
bution (42) maximizes the entropy of the ensemble, sub-
ject to the constraint of a given mean density r(l) of the
ln’s. The function V(l) is the Lagrange multiplier for
this constraint. The Wigner-Dyson ensemble can simi-
larly be interpreted as the ensemble of maximum en-
tropy for a given mean density of states (Balian, 1968).

The correlation functions implied by the probability
distribution (42) have been studied for a variety of po-
tentials V(l) by Slevin, Pichard, and Mello (1991),
Stone et al. (1991), Chen, Ismail, and Muttalib (1992),
Muttalib et al. (1993), and Slevin, Pichard, and Muttalib
(1993). It was originally believed that precise agreement
with the microscopic theory of a disordered wire could
be obtained if only V(l) were properly chosen (Mello
and Pichard, 1989). We now know that this is not correct
(Beenakker, 1993a). The true eigenvalue repulsion is not
logarithmic. In other words, there exist correlations be-
tween the transmission eigenvalues over and above
those induced by the Jacobian. As we will discuss in Sec.
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III.B.5, the hypothesis of geometrical correlations is
valid for Tn’s close to unity. However, it overestimates
the repulsion of smaller Tn’s (Beenakker and Rejaei,
1993, 1994a). The appearance of random-matrix en-
sembles with a nonlogarithmic eigenvalue repulsion is a
distinctive feature of the random-matrix theory of quan-
tum transport.

An implication of the nonlogarithmic repulsion is that
the true ensemble is not of maximum entropy, at least
not in the sense of Muttalib, Pichard, and Stone (1987).
We make this qualification because, unlike in statistical
mechanics, there is not a single definition of the entropy
of a random-matrix ensemble. Slevin and Nagao (1993,
1994) have constructed an alternative maximum-entropy
ensemble, in which the repulsion is logarithmic in the
variables xn (recall that Tn51/cosh2xn). The true repul-
sion, however, is not logarithmic in any variable. It is not
known whether there exists some maximum-entropy
principle that would produce the correct ensemble for a
disordered wire.

D. Correlation functions

The established method to compute correlation func-
tions of eigenvalues in the Wigner-Dyson ensemble is
the method of orthogonal polynomials (Mehta, 1991).
This method works for any dimensionality N of the ran-
dom matrix but requires a logarithmic repulsion
u(l ,l8)52lnul2l8u of the eigenvalues. Moreover, al-
though in principle one can assume an arbitrary confin-
ing potential, in practice one is restricted in the choice of
V(l). (One needs to be able to construct a basis of poly-
nomials which are orthogonal with weight function
e2bV.) For applications to quantum transport one re-
quires a method that is not restricted to a particular u
and V , but the large-N limit is often sufficient. The
method of functional derivatives was developed for such
applications (Beenakker, 1993a, 1993c, 1994a). A similar
method (for the case of logarithmic repulsion) has been
developed in connection with matrix models of quantum
gravity (Makeenko, 1991).

1. Method of functional derivatives

We consider the two-point correlation function

K~l ,l8!5K (
i ,j

d~l2l i!d~l82l j!L 2r~l!r~l8!.

(43)

Here r(l)5^( id(l2l i)& is the mean eigenvalue den-
sity and ^•••& denotes the average with probability dis-
tribution (42). Explicitly,

r~l!5

E dl1•••E dlNe2bW(
i

d~l2l i!

E dl1•••E dlNe2bW
, (44)

W~$ln%!5(
i,j

u~l i ,l j!1(
i

V~l i!. (45)
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The interaction potential u(l ,l8) may or may not be
logarithmic. By differentiating Eq. (44) we obtain an ex-
act relationship between the two-point correlation func-
tion and the functional derivative of the mean density
with respect to the confining potential,

K~l ,l8!52
1
b

dr~l!

dV~l8!
. (46)

To evaluate this functional derivative we must know
how the density depends on the potential. This is a clas-
sic problem in random-matrix theory. In the large-N
limit the solution is given by the integral equation
(Wigner, 1957)

V~l!1E
l2

l1

dl8u~l ,l8!r~l8!5constant, (47)

where ‘‘constant’’ means independent of l inside the
interval (l2 ,l1), where r.0. The boundaries l6 of
the spectrum can be either fixed or free. A fixed bound-
ary is independent of V . (An example is the constraint
l.0.) A free boundary is to be determined self-
consistently from Eq. (47), by requiring that r vanishes
at the boundary. A free boundary thus depends on V .
Equation (47) has the ‘‘mechanical equilibrium’’ inter-
pretation that the density r adjusts itself to the potential
V in such a way that the total force at any point van-
ishes. The support of r is therefore an equipotential.
Finite-N corrections to Eq. (47) are smaller by an order
N21 for b51 or 4, and by an order N22 for b52
(Dyson, 1972; see Appendix A). A rigorous proof, con-
taining precise conditions on u and V , has been given by
Boutet de Monvel, Pastur, and Shcherbina (1995).

Variation of Eq. (47) gives9

dV~l!1E
l2

l1

dl8u~l ,l8!dr~l8!5constant, (48a)

with the constraint

E
l2

l1

dldr~l!50 (48b)

(since the variation of r is to be carried out at constant
N). The inverse of Eq. (48) is

dr~l!52E
l2

l1

dl8u inv~l ,l8!dV~l8!, (49a)

E
l2

l1

dl9u~l ,l9!u inv~l9,l8!5d~l2l8!2
1

l12l2
.

(49b)

Equation (49b) means that the integral kernel u inv is the
inverse of u for functions f(l) restricted by *dl f50.

9Variation of the boundary l6 of the spectrum gives an ad-
ditional contribution 6dl6r(l6)u(l ,l6). This contribution
vanishes, either because dl650 (fixed boundary) or because
r(l6)50 (free boundary). Variation of the l-independent
right-hand side of Eq. (47) gives some other l-independent
constant, not necessarily equal to zero.
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Combination of Eqs. (46) and (49) yields a relation
between the two-point correlation function and the in-
verse of the interaction potential (Beenakker, 1993a),

K~l ,l8!5
1
b

u inv~l ,l8!. (50)

This relation is universal in that it does not contain the
confining potential explicitly. There is an implicit depen-
dence on V through l6 in Eq. (49), but this can be
neglected far from a free boundary. There exists a vari-
ety of other demonstrations of such insensitivity of cor-
relation functions to the choice of confining potential
(Kamien, Politzer, and Wise, 1988; Ambjørn, Jurk-
iewicz, and Makeenko, 1990; Ambjørn and Makeenko,
1990; Pastur, 1992; Brézin and Zee, 1993, 1994; Eynard,
1994; Forrester, 1995; Hackenbroich and Weidenmüller,
1995; Kobayakawa, Hatsugai, Kohmoto, and Zee, 1995;
Morita, Hatsugai, and Kohmoto, 1995; Akamann and
Ambjo”rn, 1996; Freilikher, Kanzieper, and Yurkevich,
1996).

A universal two-point correlation function implies
universal fluctuations of linear statistics, as we discuss in
the next subsection.

2. Universal conductance fluctuations

Quantum interference leads to significant sample-to-
sample fluctuations in the conductance at low tempera-
tures. These fluctuations can also be observed in a single
sample as a function of magnetic field, since a small
change in field has a similar effect on the interference
pattern as a change in impurity configuration. Experi-
mental data by Washburn and Webb (1986) for an Au
wire at 10 mK is shown in Fig. 4. The fluctuations are not
time-dependent noise, but completely reproducible.
Such a magnetoconductance trace is called a ‘‘mag-
netofingerprint,’’ because the pattern is specific for the
particular sample being studied. Notice that the magni-
tude of the fluctuations is of order e2/h . This is not ac-
cidental.

FIG. 4. Fluctuations as a function of perpendicular magnetic
field of the conductance of a 310 nm long and 25 nm wide Au
wire at 10 mK. The trace appears random but is completely
reproducible from one measurement to the next. The root
mean square of the fluctuations is 0.3 e2/h , which is not far
from the theoretical result A1/15 e2/h [Eq. (51) with b52 due
to the magnetic field and a reduced conductance quantum of
e2/h due to the strong spin-orbit scattering in Au]. After
Washburn and Webb (1986).
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The universality of the conductance fluctuations was
discovered theoretically by Altshuler (1985) and Lee
and Stone (1985). There are two aspects to the univer-
sality: (1) the variance Var G of the conductance is of
order (e2/h)2, independent of sample size or disorder
strength; (2) Var G decreases by precisely a factor of
two if time-reversal symmetry is broken by a magnetic
field. The Altshuler-Lee-Stone theory is a diagrammatic
perturbation theory for a disordered metal. Two classes
of diagrams, cooperons and diffusons, contribute equally
to the variance in the presence of time-reversal symme-
try. A magnetic field suppresses the cooperons but
leaves the diffusons unaffected, hence the factor-of-two
reduction. (We are assuming here, for simplicity, that
there is no spin-orbit scattering.) The variance
Var G/G0 of the conductance (in units of the conduc-
tance quantum G052e2/h) is a number of order unity
which is weakly dependent on the shape of the conduc-
tor. For a wire geometry (length much greater than
width) at zero temperature, the variance is

Var G/G05
2
15

b21. (51)

There is no dependence on the mean free path l , the
wire length L , or the number of transverse modes N ,
provided l!L!Nl . That is to say, the wire should be
much longer than the mean free path but much shorter
than the localization length. The Altshuler-Lee-Stone
theory has been tested in many experiments (for re-
views, see Altshuler, Lee, and Webb, 1991; Beenakker
and Van Houten, 1991).

Shortly after the discovery of the universality of con-
ductance fluctuations, an explanation was given in terms
of the repulsion of energy levels (Altshuler and
Shklovski�, 1986) or of transmission eigenvalues (Imry,
1986a). Imry’s argument contrasts ‘‘closed’’ and ‘‘open’’
scattering channels. Most transmission eigenvalues in a
disordered conductor are exponentially small. These are
the closed channels. A fraction l/L of the total number
N of transmission eigenvalues is of order unity. These
are the open channels. Only the open channels contrib-
ute effectively to the conductance: G/G0[Neff'Nl/L .
Fluctuations in the conductance can be interpreted as
fluctuations in the number Neff of open channels. The
alternative argument of Altshuler and Shklovski� is
based on Thouless’ (1977) relationship Neff'Ec /d . (The
Thouless energy Ec was defined in Sec. I.B.2; d is the
mean level spacing.) Conductance fluctuations can be
interpreted as fluctuations in the number of energy lev-
els in an energy range Ec . If the transmission eigenval-
ues or energy levels were uncorrelated, one would esti-
mate that fluctuations in Neff would be of order ANeff.
This would imply that Var G/G0 would be of order
Neff , which is @1. The fact that the variance is of order
unity is a consequence of the strong suppression of the
fluctuations in Neff by eigenvalue repulsion.

This argument can be made quantitative. Take a lin-
ear statistic
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A5 (
n51

N

a~ln!. (52)

For the conductance, we would have a(l)5(11l)21

[see Eqs. (33) and (41)]. The average of A ,

^A&5E
l2

l1

dla~l!r~l!, (53)

diverges for N→` . We can identify ^A&[Neff . The
variance Var A5^A2&2^A&2 is obtained from a double
integration of the two-point correlation function (43),

Var A5E
l2

l1

dlE
l2

l1

dl8a~l!a~l8!K~l ,l8!. (54)

For independent ln’s, we would expect Var A to be of
order Neff , so that it too would diverge with N . Instead,
Eq. (50) implies that

Var A5
1
bEl2

l1

dlE
l2

l1

dl8a~l!a~l8!u inv~l ,l8!,

(55)

with corrections of order 1/Neff . This tells us that
Var A for large N is independent of N , provided the
interaction potential u(l ,l8) is N independent. More-
over, Var A } 1/b if u is b independent. These are the
two aspects of universality mentioned above. Let us il-
lustrate this general result by two examples (Beenakker,
1993a, 1993c).

The first example is the Wigner-Dyson ensemble (5),
with a logarithmic repulsion. The eigenvalues are free to
vary over the whole real axis, hence the end points l6 of
the spectrum are free boundaries. Let us assume that the
function a(l) is nonzero only for l in the bulk of the
spectrum, so that the integrals from l2 to l1 may be
replaced by integrals from 2` to 1` . To determine the
functional inverse of u(l ,l8)52lnul2l8u in the bulk of
the spectrum, we need to solve the integral equation

2E
2`

`

dl9 lnul2l9uu inv~l9,l8!5d~l2l8!. (56)

This is readily solved by Fourier transformation, with
the result

u inv~l ,l8!52
1

p2

]

]l

]

]l8
lnul2l8u. (57)

Substitution into Eq. (55) yields a formula for the vari-
ance of a linear statistic,

Var A52
1

bp2E
2`

`

dlE
2`

`

dl8S da~l!

dl D S da~l8!

dl8 D
3lnul2l8u, (58a)

or in an equivalent Fourier representation,

Var A5
1

bp2E
0

`

dkua~k !u2k , (58b)

a~k !5E
2`

`

dleikla~l!. (58c)
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Equation (58) was first derived for the Gaussian en-
semble, V(l) } l2, by Dyson and Mehta (1963; Mehta,
1991). Note that Var A diverges logarithmically for a
step function a(l)5u(l2lc). More generally, if a(l)
changes abruptly on the scale of the eigenvalue spacing,
its variance does not have a universal N→` limit. All
physical quantities which we will consider, however, are
smooth functions of l .

The second example is the ensemble (42) of Muttalib,
Pichard, and Stone (1987), relevant for transport prop-
erties. The repulsion is still logarithmic, but the eigen-
values are constrained by ln.0. Thus l250 is a fixed
lower bound of the spectrum. There is also a free upper
bound at some l1@1, which does not affect transport
properties and can be ignored. (Recall that large l cor-
responds to small T .) Instead of Eq. (56) we now have
the integral equation

2E
0

`

dl9 lnul2l9uu inv~l9,l8!5d~l2l8!, (59)

which can be solved by Mellin transformation. (The
Mellin transform is a Fourier transform with respect to
the variable lnl.) The result is

u inv~l ,l8!52
1

p2

]

]l

]

]l8
lnUAl2Al8

Al1Al8
U . (60)

Instead of Eq. (58) we obtain the formula (Beenakker,
1993a, 1993c; see also Basor and Tracy, 1993; Jancovici
and Forrester, 1994)

Var A52
1

bp2E
0

`

dlE
0

`

dl8S da~l!

dl D
3S da~l8!

dl8 D lnUAl2Al8

Al1Al8
U , (61a)

or equivalently,

Var A5
1

bp2E
0

`

dkuã ~k !u2ktanh~pk !, (61b)

ã ~k !5E
0

`

dll ik21a~l!. (61c)

The difference between Eqs. (58) and (61) originates
entirely from the positivity constraint on l in the trans-
port problem.

Substitution of a(l)5(11l)21 into Eq. (61) yields
the variance of the conductance

Var G/G05
1
8

b21, (62)

which differs slightly, but significantly, from Eq. (51).
This was the first demonstration that the eigenvalue re-
pulsion in a disordered wire could not be precisely loga-
rithmic (Beenakker, 1993a).

The variance Var A is the second cumulant of the
distribution function P(A). What about higher-order
cumulants? Politzer (1989) has shown that the cumu-
lants of order three and higher of a linear statistic A
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vanish in the large-N limit. This means that P(A) tends
to a Gaussian distribution in that limit. Politzer’s argu-
ment is that the linearity of the relation (47) between
r and V implies that for each p>3 the functional deriva-
tive dp21r/dVp21 vanishes, and hence that the p-point
correlation function as well as the pth cumulant vanish.
Only the two-point correlation function (proportional to
dr/dV) and the second cumulant survive the large-N
limit.

E. Overview

The two questions that the random-matrix theory of
quantum transport addresses are the following. What is
the ensemble of scattering matrices? How to obtain
from it the statistics of transport properties? In this ar-
ticle we review the answer to both questions for the two
geometries where the answer is known: a quantum dot
and a disordered wire.

The quantum dot is the easiest of the two geometries.
For the first question we rely on Efetov’s demonstration
that the Hamiltonian of a disordered metal grain is dis-
tributed according to the Wigner-Dyson ensemble (1).
The corresponding distribution of scattering matrices
follows upon coupling the bound states inside the grain
to propagating modes outside. If the coupling is via
quantum point contacts, the scattering matrix is distrib-
uted according to the circular ensemble. (A quantum
point contact is a narrow opening, much smaller than
the mean free path, with a quantized conductance of
NG0.) The circular ensemble is defined by

P~S !5constant, (63)

that is to say, the scattering matrix S is uniformly dis-
tributed in the unitary group, subject only to the con-
straints imposed by time-reversal and/or spin-rotation
symmetry. The corresponding distribution of the trans-
mission eigenvalues is of the form of Eq. (40), with
f(Tn)[0. Hence the eigenvalue repulsion in a quantum
dot is logarithmic. Correlation functions of the transmis-
sion eigenvalues can be computed either by exact inte-
gration over the unitary group (which is practical for
small N), or using the large-N method of Sec. I.D.1. In
particular, the limit N→` of the variance of a linear
statistic is given by Eq. (61). The circular ensemble does
not say how the scattering matrices at different energies
or magnetic-field values are correlated. For that infor-
mation one needs to return to the underlying Hamil-
tonian ensemble.

Historically, the latter approach came first: Verbaar-
schot, Weidenmüller, and Zirnbauer (1985), and Iida,
Weidenmüller, and Zuk (1990a, 1990b) computed corr-
elators of scattering matrix elements and moments of
the conductance directly from the Hamiltonian en-
semble. More recently, the entire distribution function
of the transmission eigenvalues was determined starting
from the ensemble of scattering matrices (Baranger and
Mello, 1994; Jalabert, Pichard, and Beenakker, 1994).
The equivalence of the two approaches has been estab-
lished by Brouwer (1995). Both random-matrix ap-



743C. W. J. Beenakker: Random-matrix theory of quantum transport
proaches agree with Efetov’s (1982, 1983) supersymmet-
ric field theory of a disordered metal grain. There is
considerable numerical and analytical evidence that they
apply generically to any chaotic cavity, regardless of
whether the chaos is due to impurity or boundary scat-
tering (Bohigas, Giannoni, and Schmit, 1984; Andreev
et al., 1996).

Once transport through a single quantum dot is un-
derstood, a logical next step is to connect many quantum
dots in series, so that they form a wire [Fig. 5(a)]. Iida,
Weidenmüller, and Zuk (1990a, 1990b), Weidenmüller
(1990) and Altland (1991) computed the mean and vari-
ance of the conductance for such a model. An altogether
different approach was taken earlier by Dorokhov
(1982) and by Mello, Pereyra, and Kumar (1988). The
wire is divided into weakly scattering segments (short
compared to the mean free path l), so that the effect of
adding a new segment can be determined by perturba-
tion theory [Fig. 5(b)]. The result is a differential equa-
tion for the evolution with increasing wire length L of
the distribution function of the variables
ln5(12Tn)/Tn :

l
]

]L
P~l1 ,l2 , . . . ,lN ,L !

5
2

bN122b (
n51

N
]

]ln
ln~11ln!J

]

]ln

P

J
. (64)

The Jacobian

J~$ln%!5)
i,j

ul i2l jub (65)

relates volume elements in the polar decomposition (28)
of the transfer matrix,

dm~M !5J)
a

dm~Ua!)
i

dl i . (66)

The evolution equation (64) is known as the Dorokhov-
Mello-Pereyra-Kumar (DMPK) equation. For some
time it was believed that the solution to Eq. (64) was of
the form of Eq. (42). The exact solution (Beenakker and
Rejaei, 1993, 1994a) of the DMPK equation for b52

FIG. 5. Two ways to construct a conductor with the geometry
of a wire: (a) Strongly scattering cavities, coupled in series via
ideal leads, (b) weakly disordered segments in series. On long
length scales, the two geometries have equivalent statistical
properties. The number of scattering channels N is determined
by the width of the ideal leads in case (a) and by the width of
the disordered segments in case (b).
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showed that this is not the case, and that the eigenvalue
repulsion implied by Eq. (64) is not logarithmic, as it is
in Eq. (42).

The model of quantum dots in series of Iida, Weiden-
müller, and Zuk (1990a, 1990b) reduces on large length
scales to a supersymmetric field theory known as the
one-dimensional nonlinear s model (Mirlin, Müller-
Groeling, and Zirnbauer, 1994). This model was origi-
nally derived by Efetov and Larkin (1983), starting from
a Hamiltonian with randomly distributed impurities. A
later derivation, due to Fyodorov and Mirlin (1991,
1994), uses a banded random matrix to model the
Hamiltonian of the disordered wire. The DMPK equa-
tion and the s model of one-dimensional localization
originated almost simultaneously in the early eighties,
and at the same institute (Dorokhov, 1982, 1983; Efetov
and Larkin, 1983). Nevertheless, work on both ap-
proaches proceeded independently over the next de-
cade. The equivalence of the DMPK equation and the
s model was finally demonstrated in 1996, by Brouwer
and Frahm. This review is based on the DMPK equa-
tion. The s model is reviewed extensively in a mono-
graph by Efetov (1996).

In order to study electronic transport through a quan-
tum dot or a disordered wire, it has to be connected to
two electron reservoirs (see Fig. 6). A current is passed
through the system by bringing the reservoirs out of
equilibrium. In Secs. II and III we assume that both res-
ervoirs are in the normal state. In Sec. IV we consider
the case that one of the two reservoirs is a supercon-
ductor. At the interface between the normal metal and
the superconductor a peculiar scattering process occurs,
discovered in 1964 by Andreev. This scattering process,
known as Andreev reflection, converts dissipative cur-
rent in the normal metal into dissipationless supercur-
rent in the superconductor. Andreev reflection modifies
the quantum-interference effects existing in the normal
state and introduces new effects as well. Random-matrix
theory is particularly suited to contrast the two cases of
normal and superconducting reservoirs, because the
same scattering-matrix ensembles can be used. [For re-
views devoted solely to normal-metal–superconductor
junctions, see Klapwijk (1994), Beenakker (1995), and
Van Wees and Takayanagi (1997).] If both reservoirs
are superconductors, then the system is a Josephson
junction, which supports a current in equilibrium. This

FIG. 6. A current I is passed through a conductor by connect-
ing it to two electron reservoirs (shaded) at a voltage differ-
ence V . The conductor and one of the two reservoirs are nor-
mal metals (N), while the other reservoir may be in the
superconducting state (S).
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current is a thermodynamic, rather than a (nonequilibri-
um) transport property, and will not be considered here.
[For a review of the scattering-matrix approach to the
theory of the Josephson effect, see Beenakker (1992b).]

This review was written in an attempt to provide a
complete coverage of the present status of the random-
matrix theory of quantum transport. Mindful of my own
limitations, I apologize to those whose works I have
overlooked or not sufficiently appreciated. No attempt
was made to include other theories of transport, nor
random-matrix theories of other than transport proper-
ties. Moreover, the adjective ‘‘quantum’’ is meant to ex-
clude classical waves. Many of the effects described here
have optical analogues that can be studied by the same
random-matrix techniques. This provides an interesting
opportunity for future research, which we will touch on
in Sec. V.

II. QUANTUM DOTS

A cavity of submicron dimensions, etched in a semi-
conductor, is called a quantum dot. Quantum-
mechanical phase coherence strongly affects its elec-
tronic properties, hence the adjective quantum. We
consider the generic case that the classical motion in the
cavity can be regarded as chaotic on time scales long
compared to the ergodic time tergodic . As discussed in
Sec. I.B, the Hamiltonian of this closed system is then
distributed according to the Wigner-Dyson ensemble,
on energy scales small compared to the Thouless
energy Ec,closed.\/tergodic . In order of magnitude,
Ec,closed.(\vF /L2) min (l ,L) in a cavity of linear di-
mension L , mean free path l , and Fermi velocity vF . It
does not matter for Wigner-Dyson statistics whether
motion inside the cavity is ballistic (L!l) or diffusive
(L@l). The material inside the quantum dot is assumed
to be a good metal, which means that Ec,closed should be
much greater than the mean level spacing d . The Fermi
wavelength lF in a good metal is much smaller than l , so
that the wave functions are extended rather than local-
ized.

The transport properties of the quantum dot can be
measured by coupling it to two electron reservoirs and
bringing them out of equilibrium. This open system can
still be regarded as chaotic, if the coupling is sufficiently
weak that the mean dwell time10 tdwell of an electron
exceeds tergodic . In terms of energies, this condition can
be written as Ec,open!Ec,closed , where Ec,open.\/tdwell is
the Thouless energy of the open system. The ratio
Ec,open /d is of the order of the conductance G of the
quantum dot in units of e2/h . While we do require
d!Ec,closed , we do not restrict the relative magnitude of
d and Ec,open . Under the condition Ec,open!Ec,closed ,

10The mean dwell time in a chaotic cavity is given by
2p\/tdwell5d(nGn , where Gn is the tunnel probability of
mode n through a point contact. For example, in the case of
two ballistic point contacts containing N1 ,N2 modes, one has
2p\/tdwell5(N11N2)d .
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transport quantities are insensitive to microscopic prop-
erties of the quantum dot, such as the shape of the cavity
and the degree of disorder. In particular, just as in the
closed system, it does not matter whether the motion is
ballistic or diffusive inside the cavity. This universality
does not extend to the contacts: it matters whether the
coupling to the reservoirs is via ballistic point contacts or
via tunnel barriers. We will see that the distribution of
the scattering matrix is given by the circular ensemble
for ballistic contacts and the Poisson kernel for tunnel-
ing contacts.

Throughout most of this section we will assume non-
interacting electrons. This is justified if capacitive charg-
ing of the quantum dot relative to the reservoirs is insig-
nificant, which it is if the coupling is via ballistic point
contacts, but usually not if the coupling is via tunnel
barriers.

A. Transport theory of a chaotic cavity

A random-matrix theory of transport through a cha-
otic cavity can be based either on an ensemble of scat-
tering matrices or on an ensemble of Hamiltonians. We
introduce these two approaches separately and then dis-
cuss their relationship and microscopic justification.

1. Circular ensemble of scattering matrices

Blümel and Smilansky (1990) found that the correla-
tions of the phase shifts fn for chaotic scattering are
well described by the distribution function

P~$fn%!} )
n,m

uexp~ ifn!2exp~ ifm!ub (67)

of the circular ensemble (for a review, see Smilansky,
1990). The circular ensemble was introduced by Dyson
(1962a) as a mathematically more tractable alternative
to the Gaussian ensemble. Baranger and Mello (1994)
and Jalabert, Pichard, and Beenakker (1994) based a
transport theory on the circular ensemble. For this pur-
pose one needs to know the statistics of the transmission
eigenvalues Tn , which are not directly related to the
scattering phase shifts fn . (The relationship involves
both the eigenvalues and the eigenfunctions of the scat-
tering matrix.)

The calculation of P($Tn%) starts from the defining
property of the circular ensemble, that is that the scat-
tering matrix S is uniformly distributed in the unitary
group, subject only to the symmetry and self-duality
constraints imposed by time-reversal and spin-rotation
symmetry (see Sec. I.C.1). Uniformity is defined with
respect to a measure dm(S) that is invariant under mul-
tiplication: dm(S)5dm(USV) for arbitrary unitary ma-
trices U ,V such that the product USV still satisfies the
constraints imposed on S . (This requires V5UT for
b51 and V5UR for b54.) This measure is known as
the ‘‘invariant measure’’ or ‘‘Haar measure’’ (Hamer-
mesh, 1962). The probability distribution in the circular
ensemble is thus given by
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P~$xn%!)
i

dxi5
1
V dm~S !, (68)

where V5*dm(S) is the volume of the matrix space and
$xn% is a set of independent variables that parametrizes
S . The general method to compute the invariant mea-
sure in a given parametrization is to consider the change
dS associated with an infinitesimal change dxn in the
xn’s. The invariant arclength Tr dSdS† defines the met-
ric tensor gij according to

Tr dSdS†5(
i ,j

gijdxidxj . (69)

The determinant Det g then yields the invariant mea-
sure

dm~S !5uDet gu1/2 )
i

dxi , (70)

and hence the distribution P($xn%) }u Det gu1/2.
In the scattering phase-shift representation the mea-

sure takes the form (Dyson, 1962a)

dm~S !5 )
n,m

uexp~ ifn!2exp~ ifm!ub dm~U !)
i

df i ,

(71)

where U is the matrix of eigenvectors that diagonalizes
the scattering matrix: (U21SU)nm5dnmexp(ifn). The
matrix U is orthogonal, unitary, or symplectic, for
b51, 2, or 4, respectively. [If b54 each eigenvalue is
twofold degenerate, and the products in Eq. (71) include
only the distinct eigenvalues.] The invariant measure
(71) implies that the eigenvectors and eigenvalues of S
are distributed independently. The matrix of eigenvec-
tors U is uniformly distributed in the orthogonal, uni-
tary, or symplectic group. The eigenvalues exp(ifn) are
distributed according to Eq. (67). This ensemble is
called ‘‘circular’’ because the eigenvalue density is con-
stant on the unit circle in the complex plane. The adjec-
tive orthogonal, unitary, or symplectic is added to distin-
guish the cases b51, 2, or 4. Note that this name
derives from the matrix of eigenvectors U , not from the
scattering matrix S (see Table II). For example, the cir-
cular orthogonal ensemble for b51 (COE) is the en-
semble of uniformly distributed, unitary symmetric ma-
trices. The circular symplectic ensemble (CSE, b54)
contains the unitary self-dual matrices, and the circular
unitary ensemble (CUE, b52) contains all unitary ma-
trices.

It is sometimes useful to be able to write averages
over the COE and CSE as averages over the CUE.11 For
the COE, consisting of unitary symmetric matrices, this
is achieved by the representation S5UUT. Averaging
S over the COE is then equivalent to averaging U over
the CUE:

11There also exists a relationship between averages over the
COE and CSE, which is described by Brouwer and Beenakker
(1996a).
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^f~S !&SPCOE5^f~UUT!&UPCUE . (72)

For the CSE one first needs to represent the N3N
quaternion matrix S by a 2N32N complex matrix U .
We denote this representation by S>U . The dual of S is
SR>CTUTC, where C is a 2N32N matrix with zero ele-
ments, except for C2i21,2i51, C2i ,2i21521
(i51,2, . . . ,N):

C51
0 1

21 0 0

0 0 1

21 0 0

• • •

• • •

0 0 1

21 0

2 . (73)

Note that CT52C and C2521. A self-dual matrix is rep-
resented by S>UCTUTC. Averaging S over the CSE is
equivalent to averaging U over the CUE:

^f~S !&SPCSE5^f~UCTUTC!&UPCUE . (74)

Averages over the CUE amount to an integration over
the unitary group. A few integration formulas which we
will need are collected in Appendix B.

The representation of S in terms of the set of trans-
mission eigenvalues $Tn% is the polar decomposition
(24). The corresponding measure is (Baranger and
Mello, 1994; Jalabert, Pichard, and Beenakker, 1994)

dm~S !5 )
n,m

uTn2Tmub)
k

Tk
211b/2)

a
dm~Ua!)

i
dTi ,

(75)

where $Ua% is the set of independent unitary matrices in
Eq. (24). The polar decomposition (24) assumes that the
two leads attached to the cavity support the same num-
ber of transverse modes, so that the transmission matri-
ces t and t8 are square matrices. More generally, one can
consider the case that the number of modes N1 and N2
in the two leads is different, so that t and t8 are rectan-
gular matrices. The two matrix products tt† and t8t8†

contain a common set of min(N1 ,N2) nonzero transmis-
sion eigenvalues. Only these appear in the invariant
measure, which in comparison with Eq. (75) contains an
extra factor )kTk

(1/2)buN22N1u in the exponent (Brouwer,
1994). The resulting probability distribution of the trans-
mission eigenvalues is

P~$Tn%!} )
n,m

uTn2Tmub)
k

Tk
~1/2 ! b~ uN22N1u1122/b! .

(76)

2. Poisson kernel

The circular ensemble is the ‘‘most random’’ en-
semble of scattering matrices. It would seem a natural
choice for a chaotic cavity, which one could call the
‘‘most random’’ conductor. As we will see in Sec. II.A.4,
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this choice has a justification from microscopic theory.
The notion of a ‘‘most random’’ ensemble can be made
quantitative by associating an information entropy
S52*dm(S)P(S)lnP(S) with the probability distribu-
tion P(S). The most random ensemble is then the en-
semble which maximizes S, subject to certain constraints
(Balian, 1968). For the circular ensemble the only con-
straints are the symmetry (b51) or self-duality (b54)
of S . Mello, Pereyra, and Seligman (1985), and more
recently Baranger and Mello (1996a), have considered
the additional set of constraints

E dm~S !SpP~S !5S̄ p, p51,2, . . . , (77)

where S̄ is a given subunitary matrix. (Subunitary means
that the eigenvalues of S̄ S̄ † are <1.) The distribution
which maximizes the entropy subject to these constraints
is

P~S !}uDet~12S̄ †S !u2b~N11N22112/b!. (78)

The circular ensemble is the special case S̄ 50, so that
P(S)5constant. Equation (78) generalizes the circular
ensemble to nonzero-average scattering matrix S̄ .

The distribution (78) is known in the mathematical
literature as the Poisson kernel (Hua, 1963). It was in-
troduced into random-matrix theory by Krieger (1965)
and first applied to a chaotic cavity by Doron and Smi-
lansky (1992). The name originates from the problem of
determining the analytic function V(S̄ ) of subunitary
matrices S̄ , from the knowledge of V(S) for unitary S .
This problem is the multidimensional generalization of
the two-dimensional electrostatic problem of computing
the potential inside a cylinder from the values it takes on
the surface. The solution f(S̄ )5*dm(S)f(S)P(S) is
called Poisson’s formula in the electrostatic context.
Equation (77) is known as the analyticity-ergodicity con-
straint (Mello, 1995). The name refers to the analyticity
requirement that S has poles only in the lower half of
the complex-energy plane and to the ergodicity assump-
tion that ensemble averages equal spectral averages. To-
gether, these two conditions imply ^Sp&5^S&p (with p a
positive integer), so that a single matrix S̄ determines all
positive moments of S .

The circular ensemble is appropriate for a chaotic cav-
ity that is coupled to the leads by means of ballistic point
contacts (‘‘ideal’’ leads), since the only property of the
coupling which enters is the number of modes N1, N2.
More generally, one can consider nonideal leads, con-
taining tunnel barriers (see Fig. 7). Assume that the seg-
ment of the lead between the tunnel barrier and the
cavity is long enough, so that the scattering matrices
S1, S2 of barriers 1 and 2, as well as the scattering matrix
S0 of the cavity, are well defined. The scattering matrix
S of the whole structure is obtained by multiplying the
three transfer matrices corresponding to S1, S0, and S2.
Brouwer (1995) has shown that if S0 is distributed ac-
cording to the circular ensemble, then S is distributed
according to the Poisson kernel. The average scattering
matrix in this case is
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
S̄ 5S r1 0

0 r2
D , (79)

with r1 and r2 the reflection matrices of barriers 1 and 2
for electrons incident from the reservoirs. The eigenval-
ues of 12S̄ S̄ † are the tunnel probabilities Gn through
the leads.

3. Gaussian ensemble of Hamiltonians

The Hamiltonian approach to transport through a
chaotic cavity goes back to work in the sixties on nuclear
reactions (Mahaux and Weidenmüller, 1969). The
Hamiltonian of the cavity connected to leads by tunnel
barriers is represented by

H5(
a

ua&EF^au1(
m ,n

um&Hmn^nu

1(
m ,a

~ um&Wma^au1ua&Wma* ^mu!. (80)

The set $ua&% (a51,2, . . . ,N , with N5N11N2 the total
number of propagating modes in the leads) forms a basis
of scattering states in the leads at the Fermi energy
EF . The set of bound states in the isolated cavity is de-
noted by $um&% (m51,2, . . . ,M). The finite number M is
artificial and will eventually be taken to infinity. The
matrix elements Hmn form a Hermitian M3M matrix
H, with real (b51), complex (b52), or real quaternion
(b54) elements. The coupling constants Wma form a
real (complex, real quaternion) M3N matrix W , which
is assumed to be independent of energy. The N3N scat

FIG. 7. Chaotic cavity (the stadium billiard) coupled to two
reservoirs via narrow leads containing tunnel barriers. The dis-
tribution of the scattering matrix is given by the Poisson kernel
(78), which reduces to the circular ensemble in the absence of
tunnel barriers in the leads.
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tering matrix S associated with the Hamiltonian H
equals12

S5122piW†~EF2H1ipWW†!21W

5
11ipW†~H2EF!21W

12ipW†~H2EF!21W
. (81)

One verifies that, for b51, 2, and 4, the matrix S is
unitary symmetric, unitary, and unitary self-dual, respec-
tively.

The Hamiltonian H of a chaotic cavity is distributed
according to the Gaussian ensemble,

P~H!}exp@2b~p/2d!2M21 Tr H2# . (82)

The coefficient d equals the mean level spacing at the
Fermi level in the limit M→` (Mehta, 1991). The aver-
age scattering matrix S̄ in this limit is given by (Verbaar-
schot, Weidenmüller, and Zirnbauer, 1985)

S̄ 5
Md2p2W†W

Md1p2W†W
. (83)

Comparison with Eq. (79) shows that the eigenvalue
wn of the coupling-matrix product W†W is related to the
tunnel probability Gn of mode n in the lead by

Gn5
4Mdp2wn

~Md1p2wn!2 , (84a)

wn5
Md

p2Gn
~22Gn62A12Gn!. (84b)

Notice that Gn does not determine wn uniquely.
The approach of coupling M eigenstates of the cavity

to N scattering channels in the leads introduces a large
number of coupling constants Wma , while a much
smaller number of parameters Gn determine the trans-
port properties at the Fermi level. This is why the
scattering-matrix approach is more convenient than the
Hamiltonian approach in cases that the energy depen-
dence of the transport properties is not required. The
equivalence of the two approaches is discussed in the
next subsection, together with the microscopic justifica-
tion.

4. Justification from microscopic theory

A microscopic justification for the Gaussian ensemble
has been provided by Efetov (1982, 1983) for a disor-
dered metal grain, and by Andreev et al. (1996) for a
chaotic billiard (see Sec. I.B.2). A microscopic justifica-
tion for the circular ensemble and the Poisson kernel has
been provided indirectly by a demonstration of the

12The Hamiltonian represented by Eq. (80) gives S51 in the
case W50 of an isolated cavity. A more general Hamiltonian
would give S5S0, with S0 a ‘‘background’’ scattering matrix
that does not couple to the cavity (Nishioka and Weiden-
müller, 1985). This more general case amounts to the transfor-
mation S→USV , where the unitary matrices U and V are in-
dependent of H.
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equivalence with the Gaussian ensemble (Brouwer,
1995; see also Lewenkopf and Weidenmüller, 1991). We
present an outline of Brouwer’s equivalence proof. It
proceeds in two steps. The first step is to show that, in
the limit M→` , the Gaussian distribution (82) can be
replaced by the Lorentzian distribution

P~H!}Det @~Md/p!21H2#2~bM122b!/2. (85)

The second step is to show that, for any M>N , the dis-
tribution P(S) of the scattering matrix obtained from
Eq. (85) is the Poisson kernel (78).

The replacement of Eq. (82) by Eq. (85) is allowed
because the eigenvector and eigenvalue distributions of
the Gaussian and the Lorentzian ensemble are equal on
a fixed energy scale, in the limit M→` . The equivalence
of the eigenvector distributions is obvious: the distribu-
tion of H depends solely on the eigenvalues for both the
Lorentzian and the Gaussian ensemble, so that the ei-
genvector distribution is uniform for both ensembles.
The equivalence of the distribution of the eigenvalues is
proven by an explicit comparison of the p-point correla-
tion functions. (These can be computed exactly in both
the Gaussian and the Lorentzian ensembles, using the
method of orthogonal polynomials.)

The technical reason for working with the Lorentzian
ensemble instead of the Gaussian ensemble is the invari-
ance property that, if H has a Lorentzian distribution,
then its inverse H21 as well as any submatrix of H have
a Lorentzian distribution. This property makes it par-
ticularly easy to compute the distribution of the scatter-
ing matrix, for any M>N . The resulting distribution has
the form of a Poisson kernel,

P~S !}uDet~12S̄ †S !u2bN221b, (86)

S̄ 5
Md2ipEF2p2W†W

Md2ipEF1p2W†W
. (87)

Equation (83) for the average scattering matrix is recov-
ered from Eq. (87) in the limit M→` .

The conclusion is that the Poisson kernel for the dis-
tribution of scattering matrices (and in particular the cir-
cular ensemble, to which the Poisson kernel reduces for
S̄ 50) is equivalent to the Lorentzian ensemble of
Hamiltonians for any M>N . The Lorentzian ensemble,
in turn, is equivalent in the limit M→` to the Gaussian
ensemble, which for a chaotic cavity has been derived
from microscopic theory. This provides the microscopic
justification for the random-matrix theory of transport
through a quantum dot.

B. Weak localization

Consider a chaotic cavity with two small holes of the
same size. An electron which is injected through one of
the holes will exit either through the same hole (reflec-
tion) or through the other hole (transmission). Classi-
cally, chaotic motion in the cavity implies that the trans-
mission and reflection probabilities are equal. Quantum
mechanically, the transmission probability is slightly
smaller than the reflection probability. This effect is
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known as ‘‘weak localization,’’ after the analogous effect
in disordered metals. In a semiclassical formulation, the
enhancement of the reflection probability is due to the
constructive interference of pairs of time-reversed tra-
jectories (Baranger, Jalabert, and Stone, 1993a, 1993b;
Argaman, 1995, 1996; Aleiner and Larkin, 1997). A
magnetic field breaks the time-reversal symmetry,
thereby destroying the constructive interference and
equalizing the transmission and reflection probabilities.
The magnitude of the weak-localization effect in a quan-
tum dot was first computed by Iida, Weidenmüller, and
Zuk (1990a, 1990b), using the Hamiltonian approach de-
scribed in Sec. II.A.3. The calculation is easier using the
scattering-matrix approach of Sec. II.A.1 (Baranger and
Mello, 1994; Jalabert, Pichard, and Beenakker, 1994).
Using the latter approach, we discuss the weak-
localization correction to the conductance and the gen-
eralization to other transport properties.

1. Conductance

In the absence of time-reversal symmetry, the scatter-
ing matrix S of a chaotic cavity is uniformly distributed
over the unitary group. This is the circular unitary en-
semble (CUE, b52). The average of the scattering
probability uSnmu2 follows from Eq. (B4),

^uSnmu2&CUE5E dm~S ! SnmSnm* 5
1

N11N2
. (88)

[The integral is over U(N11N2) with invariant measure
dm(S), normalized such that *dm(S)51, where N1 and
N2 are the number of modes in the leads connected to
contacts 1 and 2.] In the CUE, scattering between two
different modes (n Þ m) is equally probable as between
two identical modes (n5m). In the presence of time-
reversal symmetry, S is unitary and symmetric (assum-
ing no spin-orbit scattering). This is the circular orthogo-
nal ensemble (COE, b51). The average of uSnmu2

follows from Eqs. (72) and (B5),

^uSnmu2&COE5E dm~U ! (
k ,k851

N11N2

UnkUmkUnk8
* Umk8

*

5
11dnm

N11N211
. (89)

Scattering from mode n back to mode n is now twice as
probable as from mode n into another mode m . The
absence of spin-orbit scattering is essential. In the circu-
lar symplectic ensemble (CSE, b54) one obtains from
Eqs. (74) and (B5) the average13

^uSnmu2&CSE5
1
2 (

p ,q50

1 E dm~U !~UCUTC!2n2p ,2m2q

3~U* CU†C!2n2p ,2m2q

13The absolute value uQu of a quaternion number Q (repre-
sented by a 232 matrix) is defined by uQu25

1
2 Tr QQ†.
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5
22dnm

2N112N221
. (90)

[The integration is over U(2N112N2).] Scattering be-
tween the same mode is now less probable than between
different modes. Equations (88)–(90) can be summa-
rized in one b-dependent expression,

^uSnmu2&5
12~122/b!dnm

N11N22112/b
. (91)

According to the Landauer formula (33), the conduc-
tance G of the quantum dot is obtained from the scat-
tering probabilities uSnmu2 by summing n over all N1
modes in lead 1 and summing m over all N2 modes in
lead 2,

G5G0 (
n51

N1

(
m5N111

N11N2

uSnmu2, (92)

where G052e2/h . Substitution of Eq. (91) into Eq. (92)
yields the average conductance (Baranger and Mello,
1994)

^G/G0&5
N1N2

N11N22112/b
. (93)

For N1@1, N2@1 we may expand

^G/G0&5
N1N2

N11N2
1S 12

2
b D N1N2

~N11N2!2 . (94)

The first term in Eq. (94) is the classical series conduc-
tance Gseries5G0(N1

211N2
21)21 of the two contact con-

ductances N1G0 and N2G0. The second term is the
weak-localization correction dG . For the case of two
identical contacts one has simply

dG/G05
1
4S 12

2
b D , N15N2@1. (95)

2. Other transport properties

To compute the weak-localization correction for other
transport properties, one needs the density of the trans-
mission eigenvalues. We use the parametrization
Tn51/(11ln) and write the probability distribution
(76) of the Nmin[min (N1 ,N2) nonzero transmission ei-
genvalues in the form of a Gibbs distribution:

P~$ln%!}expFb(
i,j

lnul i2l ju2b(
i

V~l i!G , (96a)

V~l!5 1
2 ~N11N22112/b!ln~11l!. (96b)

The density r(l)5^(nd(l2ln)& of the l’s is deter-
mined for Nmin@1 by the integral equation (A1). We
decompose r5r01dr into a contribution r0 of order
Nmin and a correction dr of order unity. Similarly, we
decompose the potential V5V01dV into two terms:
V05 1

2(N11N2)ln(11l), dV52 1
2(122/b)ln(11l).

The leading-order contribution r0 satisfies

E
0

lc
dl8

r0~l8!

l2l8
5

d

dl
V0~l!, (97)
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where the singular integral is the principal value. [Equa-
tion (97) is the derivative with respect to l of Eq. (47).]
The density r0 vanishes for l>lc . The general solution
of this integral equation, with normalization
*r0dl5Nmin , is (Mikhlin, 1964)

r0~l!5p22@l~lc2l!#21/2S pNmin2E
0

lc
dl8

3
@l8~lc2l8!#1/2

l2l8

d

dl8
V0~l8! D . (98)

The free boundary lc is to be determined from
r0(lc)50. The resulting density is

r0~l!5
1
p

~N1N2!1/2
1

11lS 1
l

2
1
lc

D 1/2

, (99a)

lc5
4N1N2

~N12N2!2 , (99b)

in agreement with a calculation using a different method
(Nazarov, 1995a). For N15N2 one may put lc→` , and
the density simplifies to (Baranger and Mello, 1994; Ja-
labert, Pichard, and Beenakker, 1994)

r0~l!5~N1 /p!~11l!21l21/2. (100)

Linearization of Eq. (A1) around r0 yields an equa-
tion for dr ,

E
0

lc
dl8

dr~l8!

l2l8
5

d

dl
dV~l!2 1

2 ~122/b!
d

dl
lnr0~l!

5 1
4 ~122/b!@l212~l2lc!

21# .

(101)

The solution is a delta-function peak at the two ends of
the spectrum, with the same weight but opposite sign,

dr~l!5 1
4 ~122/b!@d~l201!2d~l2lc101!# .

(102)

Transforming back from l to T , one obtains the den-
sity of transmission eigenvalues r(T)5r(l)dl/dT . The
average of a linear statistic A5(na(Tn) then follows
upon integration,

^A&5
N11N2

2p E
Tc

1
dTS T2Tc

12T D 1/2 a~T !

T
1 1

4 ~122/b!

3@a~1 !2a~Tc!# , (103a)

Tc5S N12N2

N11N2
D 2

. (103b)

One verifies that the result (94) for the conductance is
recovered for a(T)5T . As an example of another trans-
port property, we take the shot-noise power (35). Sub-
stitution of a(T)5T(12T) into Eq. (103) yields

^P/P0&5
~N1N2!2

~N11N2!3 2S 12
2
b DN1N2~N12N2!2

~N11N2!4 .

(104)

The weak-localization correction vanishes if N15N2
(Jalabert, Pichard, and Beenakker, 1994).
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3. Tunnel barriers

In the presence of tunnel barriers in the leads, the
distribution of the scattering matrix S is given by the
Poisson kernel (78). Equation (79) relates the ensemble-
averaged scattering matrix S̄ that appears in the Poisson
kernel to the reflection matrices of the tunnel barriers.
(The circular ensemble corresponds to S̄ 50.) The eigen-
value Gn of 12S̄ S̄ † is the tunnel probability of mode n
in the lead. The fluctuating part dS[S2S̄ of S can be
parametrized as

dS5A~12UB !21UC , (105)

where U is a unitary matrix and the matrices A , B , and
C are such that the matrix

Sbarrier5S S̄ A

C B
D (106)

is unitary. In zero magnetic field one should require fur-
thermore that U and Sbarrier are symmetric (or self-dual
in the presence of spin-orbit scattering). The usefulness
of the parametrization (105) is that U is distributed ac-
cording to the circular ensemble, for any choice of A ,
B , and C (Hua, 1963; Friedman and Mello, 1985a; Brou-
wer, 1995). Physically, U corresponds to the scattering
matrix of the cavity without the tunnel barriers in the
leads, and Sbarrier corresponds to the scattering matrix of
the tunnel barriers in the absence of the cavity.

The parametrization (105) reduces the problem of
computing the average conductance to an integration of
U over the unitary group. The result of the integration
will depend on S̄ , but not on A , B , or C . Because the
conductance (92) is a rational function of U , the integra-
tion cannot be carried out in closed form. For NG@1 a
perturbative calculation is possible (Brouwer and
Beenakker, 1996a). The result is

^G/G0&5
g1g18

g11g18
1S 12

2
b D g2g18

21g28g1
2

~g11g18!3 , (107)

gp5 (
n51

N1

Gn
p , gp85 (

n5N111

N11N2

Gn
p . (108)

The first term in Eq. (107) is the classical series conduc-
tance of the two tunnel conductances G0g1 and G0g18 .
The term proportional to 122/b is the weak-localization
correction. In the absence of tunnel barriers one has
gp5N1, gp85N2, and Eq. (94) is recovered. In the case
of two identical tunnel barriers (N15N2, Gn5Gn1N1

for
n51,2, . . . ,N1), Eq. (107) simplifies to (Iida, Weiden-
müller, and Zuk, 1990a, 1990b)

^G/G0&5
g1

2
1S 12

2
b D g2

4g1
. (109)

If all Gn’s are equal to G , Eq. (109) simplifies further to
^G/G0&5 1

2N1G1 1
4(122/b)G .

4. Magnetoconductance

A weak magnetic field suppresses the weak-
localization correction to the average conductance. In
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the absence (presence) of spin-orbit scattering, the mag-
netoconductance consists of a dip (peak) around B50
of magnitude dG.e2/h and width Bc . The flux Fc
through the particle at magnetic field Bc is of order
Fc.(h/e)(Ec,open /Ec,closed)1/2. This is the flux at which
time-reversal symmetry is broken on the energy scale
Ec,open (see Sec. I.B.3). Up to a numerical coefficient of
order unity, one has

Fc.
h

e S tergodic

tdwell
D 1/2

.
h

e S NGL2d

\vF min~ l ,L ! D
1/2

, (110)

where N is the total number of modes in the point con-
tacts, G the tunnel probability per mode, L the size of
the particle, d its level spacing, vF the Fermi velocity,
and l the mean free path.

The magnetoconductance has been calculated in the
Hamiltonian approach of Sec. II.A.3, by replacing the
distribution (82) of the M3M matrix H by the distribu-
tion (7) of the Pandey-Mehta Hamiltonian
H5H01iaA. In the absence of spin-orbit scattering and
G51, N15N2@1, the result is (Pluhar̆ et al., 1994, 1995;
Frahm, 1995b)

^G/G0&5 1
2 N12 1

4 @11~F/Fc!
2#21, (111a)

F/Fc52aAM/N1, (111b)

in agreement with Efetov’s (1995) calculation starting
from a microscopic Hamiltonian for a disordered metal
grain.14 The Lorentzian flux dependence in Eq. (111)
was first obtained by Baranger, Jalabert, and Stone
(1993a, 1993b), using a semiclassical theory (reviewed by
Baranger, 1996). [They could not derive the prefactor
1/4 of the Lorentzian, because of an inconsistency in the
semiclassical approximation resolved later by Argaman
(1995, 1996).] Unlike random-matrix theory, the semi-
classical theory can also be applied to the case that the
classical motion in the cavity is integrable rather than
chaotic. In the integrable case, Baranger, Jalabert, and
Stone find a magnetoconductance which is linear,
G(B)2G(0) }u Bu, rather than Lorentzian.

The different flux dependence in the chaotic and inte-
grable cases has been observed by Chang et al. (1994).
They measured transport through an array of 48 nomi-
nally identical quantum dots connected in series and
parallel. The quantum dots were fabricated in the two-
dimensional electron gas of a GaAs/AlGaAs hetero-
structure. By measuring on an array, the ensemble aver-
age of the conductance is obtained directly.

14Efetov finds for a disordered grain (volume V , diffusion
coefficient D) the relation

~F/Fc!
2516p3~\D/N1d!~e/h !2V21E

V
drW uAW u2.

The gauge of the vector potential AW is such that the normal
component n̂•AW on the surface of the grain vanishes. This re-
lation agrees with Eqs. (10) and (111b) for a disordered disk or
sphere.
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[Magnetoconductance experiments on a single quantum
dot were done by Marcus et al. (1992) and Keller et al.
(1994); ensemble averaging by varying the shape of the
cavity was done by Chan et al. (1995) and by varying the
Fermi energy by Keller et al. (1996).] Two types of ar-
rays were studied, those containing quantum dots in the
shape of a stadium, or a circle. (Their area was the same,
about 0.8 mm2, and N1'N2'10 in both cases.) The
classical ballistic motion is chaotic in the stadium and
integrable in the circle. The magnetic-field dependence
of the conductance in the two cases is shown in Fig. 8.
(The conductance of the array has been normalized to
that of a single cavity.) The shape of the weak-
localization peak is strikingly different, consistent with
the theoretical prediction. Good agreement could be ob-
tained with a numerical simulation that included small-
angle scattering by a smooth disorder potential. The
measured magnitude dG of the peak in the chaotic case
is 0.2 G0, somewhat smaller than the theoretical value of
1
4G0. (The discrepancy can be accounted for by inelastic
scattering, see Sec. II.E.)

FIG. 8. Magnetoconductance at 50 mK, averaged over (a) 48
stadium-shaped cavities and (b) 48 circular-shaped cavities. In-
sets show the geometry of the cavities, which are fabricated in
the two-dimensional electron gas of a GaAs/AlGaAs hetero-
structure. The weak-localization peak has a Lorentzian shape
for the stadium and a triangular shape (linearly decreasing) for
the circle, as expected theoretically for, respectively, chaotic
and integrable billiards. After Chang et al. (1994).
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C. Universal conductance fluctuations

1. Conductance

Weak localization is a quantum correction of order
e2/h to the ensemble-averaged conductance. The fluc-
tuations of the conductance from one member of the
ensemble to the other are also of order e2/h . These fluc-
tuations are known as ‘‘universal conductance fluctua-
tions’’ (see Sec. I.D.2). The magnitude of the conduc-
tance fluctuations in a chaotic cavity has been calculated
in the Hamiltonian approach by Iida, Weidenmüller,
and Zuk (1990a, 1990b), and in the scattering-matrix ap-
proach by Baranger and Mello (1994) and Jalabert, Pi-
chard, and Beenakker (1994).

The variance Var G5^G2&2^G&2 of the conductance
which results from averaging over the circular ensemble
of scattering matrices is

VarG/G052b21N1N2~N12112/b!~N22112/b!

3~N11N22212/b!21~N11N22114/b!21

3~N11N22112/b!22. (112)

For N1 ,N2@1 we may expand

Var G/G05
2~N1N2!2

b~N11N2!4 , (113)

which for two identical contacts simplifies further to

Var G/G05
1
8

b21, N15N2@1. (114)

In Fig. 9 we show experimental data by Chan et al.
(1995) for the variance of the conductance of a quantum
dot in the two-dimensional electron gas of a GaAs/
AlGaAs heterostructure. An ensemble was constructed
by slightly distorting the shape of the quantum dot by
means of a gate electrode. (The area of the dot varied by
less than 5% around 2.4 mm2.) The reduction of the
conductance fluctuations by a magnetic field is clearly
visible. The two point contacts were adjusted such that
N15N252. Equation (112) predicts for this case
a variance of the conductance equal to
72/175'0.413(e2/h)2 for b51 and 4/15'0.273(e2/
h)2 for b52. The experimental values are considerably
smaller, mainly as a result of inelastic scattering (see
Sec. II.E).

2. Other transport properties

To compute the variance of other transport properties
than the conductance, one needs the two-point correla-
tion function of the transmission eigenvalues. In the
limit N→` we can use the method of functional deriva-
tives explained in Sec. I.D.1.

The two-point correlation function K(l ,l8)
52b21dr(l)/dV(l8) is obtained by variation of the
relation between density and potential [Eq. (98)]:
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dr~l!5p22@l~lc2l!#21/2E
0

lc
dl8dV~l8!

3
d

dl8

@l8~lc2l8!#1/2

l2l8
, (115)

where we used the parametrization Tn5(11ln)21.
As mentioned in Sec. I.D.1 (footnote), there is no con-
tribution from variation of the boundary
lc54N1N2(N12N2)22 of the spectrum. The variance
of the linear statistic A5(na(ln) follows upon integra-
tion over the two-point correlation function,

Var A5
1

bp2E
0

lc
dlE

0

lc
l8

3S l8~lc2l8!

l~lc2l! D 1/2 a~l!

l2l8

da~l8!

dl8
, (116)

where the singular integral is the principal value. For
N15N2 one has lc→` , and Eq. (116) reduces to the
result for a logarithmic eigenvalue repulsion in the inter-
val (0,`) [Eq. (61)].

3. Tunnel barriers

We briefly consider the effect of tunnel barriers on the
variance of the conductance. The distribution of the
scattering matrix is now the Poisson kernel instead of
the circular ensemble. The parametrization of Eq. (105)

FIG. 9. Variance of the conductance of a quantum dot at
30 mK as a function of magnetic field. The variance is the
mean squared of the fluctuation in the conductance as the
shape of the quantum dot is distorted. The variance decreases
when time-reversal symmetry is broken by a magnetic field.
The dashed curve is a fit to a squared Lorentzian. The inset
shows an electron micrograph of the device, fabricated in the
two-dimensional electron gas of a GaAs/AlGaAs heterostruc-
ture. The black rectangle at the center of the inset is the quan-
tum dot, and the gray regions are the gate electrodes on top of
the heterostructure. Electrons can enter and exit the quantum
dot through point contacts at the top and right corner of the
rectangle. The side of the rectangle between these two corners
is distorted to generate conductance fluctuations. (The two
small openings in the gate along this side are effectively closed
in the electron gas.) After Chan et al. (1995).
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reduces the problem to an integration over the unitary
group, which can be done perturbatively for NG@1. The
result is (Efetov, 1995; Brouwer and Beenakker, 1996a)

Var G/G052b21~g11g18!26~2g1
4g18

214g1
3g18

3

24g1
2g2g18

312g1
2g18

422g1g2g18
413g2

2g18
4

22g1g3g18
412g2g18

522g3g18
512g1

5g28

22g1
4g18g2824g1

3g18
2g2816g1

2g2g18
2g28

13g1
4g28

222g1
5g3822g1

4g18g38!. (117)

One verifies that Eq. (113) is recovered in the absence of
tunnel barriers. For the special case of two identical tun-
nel barriers (gp5gp8), Eq. (117) reduces to (Iida,
Weidenmüller, and Zuk, 1990a, 1990b)

Var G/G05~8bg1
2!21~2g1

222g1g213g2
222g1g3!.

(118)

Another special case is that of high tunnel barriers,
Gn!1 for all n , when Eq. (117) simplifies to (Zirnbauer,
1993)

Var G/G054b21~g11g18!24g1
2g18

2. (119)

Finally, if all transmission eigenvalues Gn[G are equal,
one has Var G/G05(8b)21@11(12G)2# . A high tun-
nel barrier (1/N!G!1) doubles the variance.

4. Magnetoconductance

A weak magnetic field reduces the variance of the
conductance by a factor of two if N@1. The dashed line
in Fig. 9 is a fit to a squared Lorentzian, which is the
theoretical result of Frahm (1995b),

Var G/G05 1
16 1 1

16 @11~F/Fc!
2#22. (120)

This result was obtained in the same way as Eq. (111),
for a system without spin-orbit scattering and assuming
G51, N15N2@1. The characteristic flux Fc is related to
the parameter a in the Pandey-Mehta Hamiltonian by
Eq. (111b), which in turn is related to microscopic pa-
rameters by Eqs. (10) and (11). Up to a numerical coef-
ficient of order unity, Fc is given by Eq. (110).

Once F is much greater than Fc , time-reversal sym-
metry is effectively broken and the variance of the con-
ductance becomes independent of the magnetic field.
The conductance of a specific sample fluctuates in a ran-
dom but reproducible way as a function of magnetic
field (see Fig. 4). These magnetoconductance fluctua-
tions (or ‘‘magnetofingerprints’’) are characterized by
the correlator

C~DF!5^G~F!G~F1DF!&2^G~F!&^G~F1DF!&,
(121)

where ^•••& represents either an ensemble average or an
average over F (@Fc). This correlator is given by (Efe-
tov, 1995; Frahm, 1995b)

C~DF!5 1
16 G0

2@11~DF/2Fc!
2#22. (122)

The Lorentzian-squared decay of C(DF) was first de-
rived from semiclassical theory by Jalabert, Baranger,
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and Stone (1990) (reviewed by Baranger, 1996). Experi-
ments by Marcus et al. (1992) (reviewed by Westervelt,
1996) on the magnetoconductance fluctuations of a (cha-
otic) stadium-shaped quantum dot are in agreement
with Eq. (122) and also show the more rapid decay of
the correlator for a (nonchaotic) circular geometry pre-
dicted by the semiclassical theory.

Efetov (1995) has generalized the zero-temperature
result (122) for the correlator to nonzero temperatures.
Thermal smearing of the Fermi-Dirac distribution func-
tion reduces the magnitude of the magnetoconductance
fluctuations, once the thermal energy kBT becomes
greater than the Thouless energy Ec,open.NGd of the
open system. (This is in contrast to the weak-localization
effect, which is not influenced by thermal smearing.) In
the high-temperature limit kBT@Ec,open (and for the
case G51, N15N2@1), the correlator becomes a
Lorentzian,

C~DF!5
G0

2

96
N1d

kBT
@11~DF/2Fc!

2#21, (123)

instead of a squared Lorentzian.
The results in this subsection all follow from the cor-

relator

C~F1 ,F2 ,E1 ,E2!5^G~F1 ,E1!G~F2 ,E2!&

2^G~F1 ,E1!&^G~F2 ,E2!&

(124)

of the (zero-temperature) conductance at two different
magnetic fluxes F1 ,F2 and two different values E1 ,E2
of the Fermi energy. This correlator has been derived
from the Pandey-Mehta Hamiltonian (Frahm, 1995b)
and from a microscopic Hamiltonian (Efetov, 1995). It
also follows from semiclassical periodic-orbit theory
(Blümel and Smilansky, 1988; Jalabert, Baranger, and
Stone, 1990). The result (for G51, N15N2@1)

C5 1
16 G0

2@f~F tot ,DE !1f~DF ,DE !# , (125a)

f~F ,E !5
1

@11~F/2Fc!
2#21~pE/N1d!2 , (125b)

is a Lorentzian in energy differences DE5E12E2 and a
squared Lorentzian in magnetic-flux differences
DF5F12F2. The flux dependence also contains a term
that depends on the total flux F tot5F11F2, to ensure
that C is an even function of the individual fluxes
F1 ,F2.

The correlator (122) in the absence of time-reversal
symmetry can also be obtained from the Brownian-
motion model for the Hamiltonian of Sec. I.B.4. An al-
together different issue is the question of whether a
Brownian-motion model for the scattering matrix can de-
scribe the magnetoconductance of a chaotic cavity. This
issue has been addressed by several authors (Macêdo,
1994b, 1996; Frahm and Pichard, 1995a, 1995b; Rau,
1995). The answer appears to be negative. Rau and
Frahm and Pichard find that the effect of a magnetic
field on the scattering matrix is a Brownian-motion pro-
cess only for small flux increments DF!Fc . Macêdo
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obtains a Lorentzian-squared decay of the magnetocor-
relator from a Brownian-motion model that is not in-
variant under unitary transformations of the scattering
matrix (S→US) and therefore seems unjustifiable.

D. Conductance distribution

The conductance of the quantum dot has a Gaussian
distribution if the number of modes in the point contacts
is large. Deviations from a Gaussian become significant
when the fluctuations .e2/h of the conductance become
greater than the mean .NGe2/h , i.e., when N&1/G .

Consider, as an extreme example, the case G51,
N15N251 of two ballistic single-mode point contacts
(Baranger and Mello, 1994; Jalabert, Pichard, and
Beenakker, 1994). According to Eq. (76), the single
transmission eigenvalue T of the quantum dot has prob-
ability distribution

P~T !5 1
2 bT211b/2, 0,T,1. (126)

In the presence of a magnetic field (b52), any value of
the conductance G5G0T between 0 and G0(52e2/h)
is equally probable. In a nonzero field it is more prob-
able to find a small than a large conductance, provided
that the scattering preserves spin-rotation symmetry
(b51). In the presence of spin-orbit scattering (b54),
a large conductance is more probable than a small one.
In Fig. 10 we show numerical calculations of transmis-
sion through a chaotic billiard by Baranger and Mello
(1994, see also Ishio, 1995; Yang, Ishio, and Burgdörfer,
1995), which confirm this remarkable sensitivity of the
conductance distribution to a magnetic field.

If the point contacts contain a tunnel barrier, the dis-
tribution remains strongly non-Gaussian but becomes
less sensitive to a magnetic field. In Fig. 11 we show
P(T) for the case of two identical single-mode point

FIG. 10. Distribution of the transmission probability T
through a chaotic billiard with two ballistic single-mode point
contacts. Data points are numerical results for the billiard
shown in the inset, averaged over a range of Fermi energies
and small variations in shape. Filled data points are for
B50, open points for B Þ 0 (a few flux quanta through the
billiard). The solid and dotted curves are the prediction of the
circular ensemble for b51,2, as given by Eq. (126). After
Baranger and Mello (1994).
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contacts with G15G2[G52/3. The inset shows the limit
G!1. For T*G2 the tunnel barriers dominate the trans-
mission through the entire system, thereby suppressing
the b dependence of the distribution. For T!G2 the
presence of tunnel barriers is of less importance, and the
b dependence remains significant. The curves in Fig. 11
were computed using the Poisson kernel for the distri-
bution of scattering matrices (Brouwer and Beenakker,
1994; Baranger and Mello, 1996a) and agree with results
obtained from a tunnel Hamiltonian with disorder (Pri-
godin, Efetov, and Iida, 1993, 1995). Qualitatively simi-
lar results have been obtained by Kamenev and Gefen
(1995) for the real part of the frequency-dependent con-
ductance of an isolated metal ring.

Tunnel barriers give a nonzero ensemble-averaged
scattering matrix S̄ in the Poisson kernel because of di-
rect reflection at a point contact (‘‘direct’’ meaning with-
out scattering in the cavity). Baranger and Mello (1996a)
consider also the case that S̄ Þ 0 because of direct trans-
mission between the two point contacts. Direct transmis-
sion can be achieved by bringing the point contacts close
together or by increasing the magnetic field so that elec-
trons can skip along a boundary from one point contact
to the other. Good agreement between the Poisson ker-
nel and numerical simulations is found in both cases, if
the energy-averaged scattering matrix computed nu-
merically is used as input in the Poisson kernel (see Fig.
12).

Another generalization, considered by Gopar et al.
(1996) and Baranger and Mello (1996b), is to quantum
dots with a reflection symmetry. (Disordered conductors
with a reflection symmetry had been studied earlier by
Hastings, Stone, and Baranger, 1994.) The scattering

FIG. 11. Distribution of the transmission probability T
through a chaotic billiard with two single-mode point contacts
containing a tunnel barrier (G15G2[G). The curves are com-
puted by integrating over the Poisson kernel, for the three
symmetry classes, b51,2,4. The main plot is for G52/3, and
the inset shows the asymptotic behavior of P(T) for G!1 on a
log-log scale. Notice that the result P } T211b/2 for ballistic
point contacts is recovered if T!G2. After Brouwer and
Beenakker (1994).
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FIG. 12. Distribution of the transmission probability T for the geometry of Fig. 10 (top row) and for the same geometry with leads
extended into the cavity (bottom row). The magnitude of the magnetic field (‘‘low’’ and ‘‘high’’ corresponding to 2 and 80 flux
quanta through the billiard, respectively) and the presence or absence of a tunnel barrier at the entrance to the leads (marked by
dotted lines in the sketches of the structures) are noted in each panel. Cyclotron orbits for both fields, drawn to scale, are shown
on left. The data points with statistical error bars are numerical results; the curves are the predictions of the Poisson kernel for
b52, with S̄ extracted from the numerical data. After Baranger and Mello (1996a).
matrix for a symmetric geometry decomposes into
blocks in a basis of definite parity with respect to the
symmetry operator. The blocks have independent distri-
butions in the circular ensemble. Because the conduc-
tance couples different blocks, its distribution differs
from the result for the circular ensemble [Eq. (126)].

Experiments by Chan et al. (1995) on quantum dots
with ballistic point contacts (N15N252) find a prob-
ability distribution for the conductance which is well de-
scribed by a Gaussian, presumably as a result of inelastic
scattering (see Sec. II.E). More recent data by the same
group (Marcus, 1996) shows significant deviations from
a Gaussian, in particular a distribution which is skewed
towards small conductance in zero magnetic field.

E. Phase breaking

Quantum-interference effects in the conductance re-
quire phase coherence of the electron wave function to
persist on the time scale \/Ec,open . If phase coherence is
broken after a time tf , then transport becomes classical
if \/tf*Ec,open . We discuss two phase-breaking
mechanisms—coupling of the quantum dot to the out-
side through a voltage probe, and inelastic scattering in-
side the quantum dot. In the latter case, phase breaking
occurs uniformly throughout the quantum dot, while in
the former case it occurs locally at the voltage probe.

1. Invasive voltage probe

The measurement of a voltage at some point in the
sample is an invasive act that may destroy the phase
coherence throughout the whole sample. The reason is
that electrons which enter the voltage lead are rein-
jected into the system without any phase relationship
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
(Büttiker, 1986a, 1988a). The phase-breaking effects of a
voltage probe on the conductance of a chaotic cavity
have been investigated by Baranger and Mello (1995)
and Brouwer and Beenakker (1995a, 1997a).

The model consists of a quantum dot that is coupled
by two leads to source and drain reservoirs at voltages
V1 and V2. A current I5I152I2 is passed from source
to drain via leads 1 and 2. A third lead is attached to the
quantum dot and connected to a third reservoir at volt-
age V3. This third lead is a voltage probe, which means
that V3 is adjusted in such a way that no current is
drawn (I350). We denote by Ni the number of modes
in lead i , and we assume for simplicity that there are no
tunnel barriers in any of the leads.

The scattering matrix S of the system can be written
as

S5S r11 t12 t13

t21 r22 t23

t31 t32 r33

D , (127)

in terms of reflection and transmission matrices rii and
t ij between leads i and j . The currents and voltages sat-
isfy (Büttiker, 1986b, 1988b)

h

2e2 Ik5~Nk2Rkk!Vk2(
lÞk

TklVl , k51,2,3,

(128a)

Rkk5Tr rkkrkk
† , Tkl5Tr tkltkl

† . (128b)

The two-terminal conductance G5I/(V12V2) follows
from Eq. (128) with I152I25I , I350:

G5
2e2

h S T121
T13T32

T311T32
D . (129)
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Analytical results for P(G) can be obtained for
N15N251 and N3 arbitrary (Brouwer and Beenakker,
1995a, 1997a). Because of current conservation

T13512R112T12512uS11u22uS12u2, (130a)

T31512R112T21512uS11u22uS21u2, (130b)

T32512R222T12512uS22u22uS12u2, (130c)

so that it suffices to know the marginal distribution of
the matrix elements Skl with k ,l<2. This distribution
has been computed by Pereyra and Mello (1983) and
Friedman and Mello (1985b). The resulting P(G) is
plotted in Fig. 13 for b51,2 and N3 ranging from 1 to
10. Notice the particularly simple result
P(G/G0)5222G/G0 in the case b51, N351. As N3
increases, P(G) becomes more and more sharply
peaked around e2/h . The limiting distribution as
N3→` is

P~G/G0!5 1
2 bN3@11uyu1~122/b!y#e2uyu, (131)

where we have abbreviated y52bN3(G/G02 1
2). Sur-

prisingly enough, the distribution remains non-Gaussian
for arbitrarily strong dephasing.

The mean and variance for N3@1 can be computed
analytically for any N15N2 (Baranger and Mello, 1995),

^G/G0&5 1
2 N11 1

2 ~122/b!N1 /N3 , (132)

FIG. 13. Effect of an invasive voltage probe on the distribution
of the conductance (in units of 2e2/h). The current-carrying
leads 1 and 2 contain a single mode each, while the number of
modes N in the voltage lead (labeled 3 in the inset) varies from
1 to 10 with increments of 1 (solid curves). The dotted curve is
the distribution (126) in the absence of a voltage lead. The top
panel is for b51, the bottom panel for b52. After Brouwer
and Beenakker (1995a).
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Var G/G05
2N1122b

4bN1
~N1 /N3!2. (133)

The variance of G is reduced by a factor of 211/N1
when time-reversal symmetry is broken in the limit
N3→` . The offset of ^G/G0& from 1

2N1 when b51 is a
remnant of the weak-localization effect.

2. Inelastic scattering

The phase-breaking effects of inelastic scattering
(scattering rate 1/tf) can be modeled by an imaginary
voltage lead with N352p\/tfd (Marcus et al., 1993). In
this way, Baranger and Mello (1995) have been able to
account for the discrepancies between the predicted and
measured magnitude of quantum corrections mentioned
in Secs. II.B.4, II.C.1, and II.D. An alternative model,
which includes a (spatially uniform) imaginary potential
in the Hamiltonian, equal to 2 1

2i\/tf , was used by Efe-
tov (1995) and McCann and Lerner (1996). The two
models give very different results for the distribution of
the conductance, in particular in the case that the cur-
rent through the quantum dot flows through single-
mode point contacts. While the distribution P(G) be-
comes a delta peak at the classical conductance for very
strong dephasing (tf→0) in the voltage-probe model,
P(G) peaks at zero conductance in the imaginary-
potential model.

The origin of the difference lies with certain short-
comings of each model. On the one hand, the imaginary-
potential model does not conserve the number of elec-
trons. On the other hand, the voltage-probe model
describes spatially localized instead of spatially uniform
dephasing. There exists a limit of the voltage-probe
model that applies to dephasing processes occurring uni-
formly in space (Brouwer and Beenakker, 1997a). This
limit is equivalent to a particle-conserving version of the
imaginary-potential model. What one needs to do is in-
troduce a tunnel barrier (transparency G3) in the voltage
probe and take the limit N3→` , G3→0 at fixed
N3G352p\/tfd . The resulting conductance distribution
narrows around the classical series conductance of the
two point contacts when tf→0, in a way which is simi-
lar, but not precisely identical, to the voltage-probe
model with G351.

Neither the voltage-probe model nor the imaginary-
potential model provides a microscopic description of
electron-electron scattering, which is the main source of
inelastic scattering at low temperatures. At present
there exists a microscopic theory for dephasing by
electron-electron interactions in closed systems (Sivan,
Imry, and Aronov, 1994; Altshuler, Gefen, Kamenev,
and Levitov, 1997), but not yet in open systems.

F. Coulomb blockade

So far we have ignored the Coulomb repulsion of
electrons in the quantum dot. A measure of the impor-
tance of Coulomb repulsion is the charging energy
e2/2C of a single electron in the quantum dot (capaci-



756 C. W. J. Beenakker: Random-matrix theory of quantum transport
tance C). The charging energy plays no role if the quan-
tum dot is strongly coupled to the reservoirs, but it does
if the coupling is weak. The strength of the coupling is
determined by whether the broadening g of the energy
levels in the quantum dot is large or small compared to
their spacing d . The ratio g/d is of the order of the con-
ductance G of the quantum dot in units of e2/h , so that
Coulomb repulsion is important if G&e2/h . In addition,
the charging energy should be large compared to the
thermal energy kBT . If both of these conditions are met,
the conductance oscillates as a function of the Fermi en-
ergy, with periodicity e2/C (Shekhter, 1972; Kulik and
Shekhter, 1975). The periodic suppression of the con-
ductance is known as the Coulomb blockade. There ex-
ist several reviews devoted entirely to this phenomenon
(Averin and Likharev, 1991; Van Houten, Beenakker,
and Staring, 1992; Meirav and Foxman, 1995). Here we
discuss one aspect of it, for which random-matrix theory
is relevant (Jalabert, Stone, and Alhassid, 1992).

If kBT!e2/C the oscillations of the conductance de-
velop into a sequence of well-resolved peaks. If, more-
over, kBT!d , a single energy level Ei in the quantum
dot contributes to each peak. The amplitude of the
peaks fluctuates because of fluctuations in the wave
functions of subsequent levels.15 If kBT@g the peak am-
plitude can be calculated using rate equations (Averin,
Korotkov, and Likharev, 1991; Beenakker, 1991). [At
lower temperatures complications arise because of the
Kondo effect (Ng and Lee, 1988; Meir, Wingreen, and
Lee, 1991).] The result for the height Gmax of the ith
conductance peak is

Gmax5
e2

h

p

2kBT

(
n51

N1

(
n85N111

N11N2

gn
~ i !gn8

~ i !

(
n51

N11N2

gn
~ i !

, (134)

where gn
(i)/\ is the tunnel rate from level i in the quan-

tum dot to mode n in one of the two leads. In terms of
the Hamiltonian (80), the tunnel rate gn

(i) is determined
by the eigenvalue wn of the coupling-matrix product
WW† and by the matrix U that diagonalizes the Hamil-
tonian H5U diag (E1 ,E2 , . . . ,EM)U† of the isolated
quantum dot. In a basis in which WW† is diagonal, the
relation reads

gn
~ i !52pwnuUniu25

GnMd

2p
uUniu2. (135)

Equation (135) follows from the scattering matrix (81),
under the assumption that wn!Md , which in view of
Eq. (84) implies Gn!1. Since uUniu2.1/M , this also im-
plies gn

(i)!d . Substitution of Eq. (135) into Eq. (134)
gives

15The amplitude of the minima of the conductance oscilla-
tions also fluctuates. These fluctuations involve virtual transi-
tions to excited states in the quantum dot (Averin and Naz-
arov, 1990) and hence depend on the statistics of the
superposition of a large number of wave functions (Aleiner
and Glazman, 1996).
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Gmax5
e2

h

Md

4kBT

(
n51

N1

(
n85N111

N11N2

GnGn8uUniu2uUn8iu2

(
n51

N11N2

GnuUniu2

.
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Peak-to-peak fluctuations in Gmax are due to level-to-
level fluctuations in the eigenfunctions of the quantum
dot at the two tunnel barriers, represented by the vector
UW [(U1i ,U2i , . . . ,UNi) of length N5N11N2. The
probability distribution P(Gmax) of the peak heights fol-
lows from the distribution P(UW ) in the limit M→` at
fixed N . The distribution P(UW ), in turn, follows from the
distribution of the matrix U . In zero magnetic field
(without spin-orbit scattering, b51), the real matrix U
is uniformly distributed in the orthogonal group. In a
magnetic field (b52), the complex matrix U is uni-
formly distributed in the unitary group. The resulting
distribution of UW factorizes for M@N into independent
Gaussian distributions with zero mean and variance
1/bM (see Appendix B):

P~UW !5~bM/2p!bN/2expS 2 1
2 bM (

n51

N

uUniu2D . (137)

The distribution P(Gmax), which follows from Eqs.
(136) and (137), takes on a simple form if N15N251,
G15G2[G (Jalabert, Stone, and Alhassid, 1992; Prigo-
din, Efetov, and Iida, 1993),

P~g !5H ~pg !21/2e2g, b51,

g@K0~g !1K1~g !#e2g, b52,
(138a)

g[Gmax

h

e2

8kBT

Gd
. (138b)

Here K0 and K1 are Bessel functions. [The case
N1 ,N2.1 has been considered by Mucciolo, Prigodin,
and Altshuler (1995) and by Alhassid and Lewenkopf
(1995).] The distribution (138) has been confirmed ex-
perimentally by Chang et al. (1996) and by Folk et al.
(1996). Measurements by Chang et al. are shown in Fig.
14. Good agreement is found with Eq. (138), using a
single adjustable parameter.

Folk et al. also measured the correlator

Cmax~DB !5^Gmax~B !Gmax~B1DB !&2^Gmax~B !&2

(139)

of the height of a given peak at different magnetic fields.
To obtain this correlator theoretically, one can use the
Brownian-motion model described in Sec. I.B.4. If the
field B is large enough to break time-reversal symmetry,
the matrix elements Hnm of the Hamiltonian of the
closed system execute a Brownian motion in the Gauss-
ian unitary ensemble, in the fictitious time t } (DB)2.
The problem is to extract the evolution of the matrix of
eigenfunctions U from the Brownian motion of H. This
problem has been studied by Alhassid and Attias (1996)
and by Bruus, Lewenkopf, and Mucciolo (1996). An
analytical solution exists only for DB small compared to
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the correlation field Bc . Numerical calculations suggest
Cmax(DB) } @11(DB/Bc)

2#22, which is roughly in
agreement with experiment.

G. Frequency dependence

Throughout this review we focus on zero-frequency
(DC) transport properties. The generalization to non-
zero frequencies v in the case of a quantum dot is
briefly discussed in this subsection, following Gopar,
Mello, and Büttiker (1996), and Brouwer and Büttiker
(1997). Variations in the currents Ii(v) and voltages
Vj(v) in the two leads (i ,j51,2) are related by the con-
ductance coefficients Gij(v)5]Ii /]Vj . At zero fre-
quency, current conservation implies that
G115G2252G1252G21 equals the DC conductance
G . At nonzero frequency all four conductance coeffi-
cients are different in general (Büttiker, 1993; Büttiker,
Prêtre, and Thomas, 1993; Büttiker and Christen, 1996).
If we ignore the screening of charges accumulated tem-
porarily in the system, the conductance coefficients are
related to the scattering matrix by

Gij
`5

2e2

h E
2`

` d«

\v
@f~«2 1

2 \v!2f~«1 1
2 \v!#

3Tr@d ij2Sij
† ~«2 1

2 \v!Sij~«1 1
2 \v!# , (140)

FIG. 14. Histograms measure the probability distributions of
the peak heights Gmax at 75 mK, with and without a time-
reversal-symmetry-breaking magnetic field. The curves are a
one-parameter fit to Eq. (138) for b51,2 (same parameter
value Gd50.27 kBT in both curves). Inset: Conductance at
660 mK of a quantum dot in the two-dimensional electron gas
of a GaAs/AlGaAs heterostructure as a function of the voltage
on a gate electrode controlling the number of electrons in the
dot in equilibrium (about 100, in an area of
0.25 mm30.25 mm; the system is chaotic because of weak dis-
order). A conductance peak occurs each time this number in-
creases by one because then it costs no charging energy to
tunnel into the dot. After Chang et al. (1996).
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where f(«)5@11exp(«/kBT)#21 is the Fermi function.
The Ni3Nj matrix Sij(«) contains the scattering ampli-
tudes from lead j into lead i at energy « , measured rela-
tive to the Fermi energy. Neglecting screening amounts
to putting the capacitance C of the system equal to in-
finity, hence the superscript ` on Gij .

Prigodin et al. (1994, 1995) have computed the aver-
age ^G12

` & for the single-mode case N15N251. The case
N1 ,N2@1 was considered by Brouwer and Büttiker
(1997), who found

h

2e2 ^Gij
`&5d ijNi2

NiNj

N~12ivtdwell!
2

~122/b!Ni

N~12ivtdwell!

3S Nj~122ivtdwell!

N~12ivtdwell!
2 2d ijD , (141)

where N5N11N2 and tdwell[2p\/Nd is the mean
dwell time of an electron in the quantum dot. One can
check that Eq. (94) is recovered in the limit v→0.

Screening is irrelevant for the DC conductance but
has an essential effect on the frequency dependence. If
the potential inside the quantum dot can be assumed to
be spatially uniform, the conductance coefficients take
the form (Büttiker, Prêtre, and Thomas, 1993)

Gij5Gij
`1

(
k ,l51

2

Gik
` Glj

`

ivC2 (
k ,l51

2

Gkl
`

, (142)

so that Eq. (140) is recovered in the limit C→` . Since
fluctuations in Gij

` are of relative order N22, we may
directly substitute Eq. (141) into Eq. (142), to obtain the
average

h

2e2 ^Gij&5d ijNi2
NiNj

N~12ivtC!
2

~122/b!Ni

N~12ivtdwell!

3S Nj~122ivtC!

N~12ivtC!2 2d ijD , (143)

with 1/tC51/tdwell12e2N/hC . The O(N) term in Eq.
(143) is the classical Drude conductance, with tC playing
the role of the RC time of the circuit. The
b-dependent O(1) term is the frequency-dependent
weak-localization correction. For C→0, the RC time
tC vanishes. In this limit all four conductance coeffi-
cients are the same, G115G2252G1252G21[G , with
average

h

2e2 ^G&5
N1N2

N
1

~122/b!N1N2

N2~12ivtdwell!
. (144)

The frequency dependence of the conductance is now
due entirely to the weak-localization effect.

III. DISORDERED WIRES

A. Dorokhov-Mello-Pereyra-Kumar equation

1. Scaling approach to localization

The scaling approach to localization (Abrahams et al.,
1979) studies the limiting behavior of the conductance as
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one or more of the dimensions of the system tends to-
ward infinity. Classically, Ohm’s law tells us that the
conductance G } Ld22 in an L3L3L cube (d53), an
L3L square (d52), or a chain of length L (d51). The
fundamental result of Abrahams et al. (1979) is that this
classical scaling is only valid in three dimensions and for
sufficiently weak disorder. For d53 and strong disorder,
or for d51 and any disorder strength, the conductance
G } exp(2L/j) decays exponentially for large L . Two di-
mensions is the marginal case (G→0 as L→` for
d52 in the absence of spin-orbit scattering, but the de-
cay is not necessarily exponential). The localization
length j depends on the mean free path l . For a chain,
j&l . For a cube, j diverges with some power of
1/(lc2l) as l increases towards a critical value lc , which
is of the order of the Fermi wavelength lF . At l5lc a
transition occurs from a metal (l.lc) to an insulator
(l,lc). This disorder-induced metal-insulator transition
is known as the Anderson transition (for reviews, see
Lee and Ramakrishnan, 1985; Brezini and Zekri, 1992;
Vollhardt and Wölfle, 1992; Kramer and MacKinnon,
1993). No metal-insulator transition occurs for d51 (or
for d52 in the absence of spin-orbit scattering). In one
dimension the system scales towards an insulator even in
the case l@lF of weak disorder.

The 1979 paper of Abrahams et al. was based on a
qualitative relationship between the conductance of an
open system and the response to a change in boundary
conditions of eigenstates of the corresponding closed
system (Edwards and Thouless, 1972; Thouless, 1977).
In 1980, Anderson et al. proposed a ‘‘New method for a
scaling theory of localization,’’ based on the more pre-
cise relationship between the conductance and the scat-
tering states of the open system (Landauer, 1957, 1970).
They considered a one-dimensional (1D) chain with
weak scattering (l@lF) and computed how the trans-
mission probability T (and hence the conductance
G5T32e2/h) scales with the chain length L . For
L.l an exponential decay was obtained, demonstrating
localization. In the following decade the scaling theory
of 1D localization was developed in great detail (Abri-
kosov, 1981; Mel’nikov, 1981; Kirkman and Pendry,
1984; Kumar, 1985; Mello, 1986) and the complete dis-
tribution P(T ,L) of the transmission probability was
found. This solved the problem of 1D localization due to
weak disorder (for the opposite regime of strong disor-
der, see the reviews by Erdös and Herndon, 1982 and
Pendry, 1994).

A real metal wire is not one dimensional. Typically,
the width W is much greater than lF , so that the num-
ber N of transverse modes at the Fermi level is much
greater than one. Instead of a single transmission prob-
ability T , one now has the N eigenvalues Tn of the
transmission matrix product tt†. To obtain the distribu-
tion of the conductance G5(2e2/h)(nTn one now
needs the joint probability distribution
P(T1 ,T2 , . . . ,TN ,L). This distribution differs essen-
tially from the distribution in the 1D chain, because of
correlations induced by the repulsion of nearby eigen-
values. As a consequence of the eigenvalue repulsion,
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the localization length j.Nl is increased by a factor of
N in comparison to the 1D case (Thouless, 1977). One
can therefore distinguish a metallic and an insulating re-
gime. On length scales l!L!Nl the conductance de-
creases linearly rather than exponentially with L . This is
the (diffusive) metallic regime, where mesoscopic effects
such as weak localization and universal conductance
fluctuations occur. The insulating regime of exponen-
tially small conductance is entered for wire lengths
L*Nl .

A scaling theory of localization in multimode wires
was pioneered by Dorokhov (1982) and independently
by Mello, Pereyra, and Kumar (1988). The DMPK equa-
tion,

l
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bN122b (
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ln~11ln!J
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N

ul j2l iub, (145b)

describes the evolution with increasing wire length of
the distribution function P(l1 ,l2 , . . . ,lN ,L). [We re-
call the definition of the variables ln5(12Tn)/Tn .]
Equation (145) is known as a Fokker-Planck equation
(or generalized diffusion equation) in the theory of
Brownian motion (Van Kampen, 1981). One can say
that the DMPK equation is a description of scaling in a
multimode wire as the Brownian motion of transmission
eigenvalues.

For a 1D chain (N51) the Jacobian J[1, and Eq.
(145) simplifies to

l
]

]L
P~l ,L !5

]

]l
l~11l!

]

]l
P~l ,L !, (146)

independent of the symmetry index b . The diffusion
equation (146) was derived and solved as early as 1959
by Gertsenshtein and Vasil’ev in an article entitled
‘‘Waveguides with random inhomogeneities and Brown-
ian motion in the Lobachevsky plane.’’ This remarkable
paper on the exponential decay of radio waves due to
weak disorder contains many of the results that were
rediscovered in the eighties for the problem of 1D local-
ization of electrons (see the references listed above).
The paper was noticed in the literature on classical wave
propagation (Gazaryan, 1969; Papanicolaou, 1971) but
apparently not among solid-state physicists.

2. Brownian motion of transmission eigenvalues

Equation (145) was derived by Dorokhov (1982, for
b52), and by Mello, Pereyra, and Kumar (1988, for
b51, with generalizations to b52,4 by Mello and Stone,
1991, and Macêdo and Chalker, 1992), by computing the
incremental change of the transmission eigenvalues
upon attachment of a thin slice to the wire. It is assumed
that the conductor is weakly disordered (l@lF), so that
the scattering in the thin slice can be treated perturba-
tively. A key simplification is the isotropy assumption
that the flux incident in one scattering channel is, on
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average, equally distributed among all outgoing chan-
nels. This assumption restricts the applicability of the
DMPK equation to a wire geometry (L@W), since it
ignores the finite time scale for transverse diffusion. The
derivation of the DMPK equation given in this subsec-
tion emphasizes the fact that it holds on length scales
@l regardless of the microscopic scattering properties of
the conductor. It is similar in spirit to the derivation
given by Mello and Shapiro (1988). An altogether differ-
ent derivation has been given by Tartakovski (1995).

We consider a wire of length L1, to which we attach a
segment of length L0 (see Fig. 15). The combined sys-
tem, of length L25L11L0, has transmission matrix

t25t1~12r0r1!21t0 , (147)

where t i and ri are N3N transmission and reflection
matrices of the segment of length Li . Equation (147)
ignores the propagation of evanescent modes, which is
justified if L0@lF . We denote by Tn (n51,2, . . . ,N)
the eigenvalues of the transmission-matrix product
t1t1

† , and by Tn1dTn the eigenvalues of t2t2
† . If L0!l ,

the change dTn of the transmission eigenvalues can be
computed by perturbation theory. In view of the earlier
requirement L0@lF , this implies a restriction to weak
scattering, l@lF .

To second order in perturbation theory one has

dTn5wnn1 (
m ~Þn !

uwnmu2

Tn2Tm
1O~L0 /l !3/2. (148)

The matrix element wnm [of order (L0 /l)1/2] is an ele-
ment of the Hermitian matrix w5t2t2

†2t1t1
† in the basis

where t1t1
† is diagonal. To determine w in this basis we

use a polar decomposition of the transmission and re-
flection matrices [see Eq. (24)],

t05U0AT0V08 , r05U0A12T0U08 , (149a)

t15U1AT1V18 , r15V1A12T1V18 . (149b)

The U’s and V’s are N3N unitary matrices, and the
diagonal matrices Ti contain the N transmission eigen-
values of segment i . Combining Eqs. (147) and (149),
and noting that 12T05O(L0 /l), one obtains the expan-
sion

w5AT1VA12T0UA12T1AT11H.c.

1AT1~VA12T0UA12T1!2AT11H.c.

1AT1VA12T0U~12T1!U†A12T0V†AT1

2AT1V~12T0!V†AT11O~L0 /l !3/2, (150)

FIG. 15. Disordered wire of length L1 to which a segment of
length L0 is attached. This scaling operation leads to a Brown-
ian motion of the transmission eigenvalues.
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
with the definitions U5U08V1, V5V18U0. The abbrevia-
tion H.c. stands for Hermitian conjugate.

We now assume that the segment of length L0 is
taken from an ensemble with an isotropically distributed
scattering matrix. This means that the unitary matrices
in the polar decomposition (149a) are uniformly distrib-
uted in the unitary group. The matrix of transmission
eigenvalues T0 may have an arbitrary distribution. The
mean free path l is defined in terms of its first moment,

^Tr T0&5N~12L0 /l !. (151)

We will see in Sec. III.B.1 that this definition differs by a
numerical coefficient (dependent on the dimensionality
of the Fermi surface) from that of the transport mean
free path l tr of kinetic theory:

l

l tr
5H 2 ~1D chain!,

p/2 ~Fermi circle!,

4/3 ~Fermi sphere!.

(152)

The ensemble average ^•••& can be performed in two
steps, first averaging over the unitary matrices
and then over the transmission eigenvalues. In the
absence of time-reversal symmetry (b52), the
matrices U and V are independent, hence ^f(U ,V)&
5*dm(U)*dm(V)f(U ,V). In the presence of time-
reversal symmetry (b51; the case b54 requires sepa-
rate treatment16), the matrices U and V are each others
transpose, hence ^f(U ,V)&5*dm(U) f(U ,UT). The in-
tegrals over the unitary group [with invariant measure
dm(U)] can be performed with the help of the formulas
in Appendix B.

From Eqs. (148) and (150) we compute the moments
of dTn to first order in ds5L0 /l ,

1
ds

^dTn&52Tn1
2Tn

bN122b

3S 12Tn1
b

2 (
m~Þn !

Tn1Tm22TnTm

Tn2Tm
D ,

(153a)

1
ds

^dTndTm&5dnm

4Tn
2~12Tn!

bN122b
. (153b)

The third and higher moments vanish to first order in
ds . It follows from the theory of Brownian motion (Van
Kampen, 1981) that the probability distribution
P(T1 ,T2 , . . . ,TN ,s) of the transmission eigenvalues
evolves with increasing s5L/l according to the Fokker-
Planck equation17

16If b54 the quaternion matrices U and V are each others
dual, V5UR. To apply the formulas of Appendix B, we repre-
sent the N3N quaternion matrix U by a 2N32N complex
matrix U. Then ^f(U ,V)&5*dm(U)f(U,CTUTC), where the ma-
trix C is defined in Eq. (73).

17The Itô-Stratonovich ambiguity (Van Kampen, 1981) of
Brownian motion with a position-dependent diffusion coeffi-
cient does not arise, because Eq. (153) explicitly relates the
change in the variables Tn to their value prior to the change.
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]P

]s
5

1
ds (n51

N
]

]Tn
S 2^dTn&P1

1
2 (

m51

N
]

]Tm
^dTndTm&P D .

(154)

Equation (154) becomes the DMPK equation (145)
upon a change of variables from Tn to ln5(1
2Tn)/Tn .

The derivation of the DMPK equation given here
rests on the assumption of isotropy of the distribution of
scattering matrices. It is possible to replace the isotropy
assumption by the weaker assumption of equivalent scat-
tering channels (Mello and Tomsovic, 1991, 1992). This
is the assumption that the first two moments of the re-
flection matrix r0 of the thin slice are the same as one
would obtain for an isotropic distribution. For example,
for b52 the requirement of equivalent channels is

^~r0! ij&50, ^~r0! ij~r0!kl&50, (155a)

^~r0! ij~r0* !kl&5N22^Tr~12T0!&d ikd jl . (155b)

One can see that Eq. (155) is a weaker assumption than
the isotropy assumption by considering the case of a thin
slice without scattering. Then r050 and T051, so that
Eq. (155) is trivially satisfied, but the scattering matrix of
the thin slice has a delta-function rather than an isotro-
pic distribution. Dorokhov (1988) has constructed a
model of N weakly coupled chains for which the
equivalent-channel assumption is exact. This is a special
model. More generally, neither the isotropy nor the
equivalent-channel assumption hold exactly. For ex-
ample, the transmission probability which follows from
the Boltzmann equation with isotropic impurity scatter-
ing is about twice as large for normal incidence than it is
for grazing incidence (Nieuwenhuizen and Luck, 1993),
simply because about half of the electrons at grazing
incidence are scattered back before penetrating a mean-
free-path deep into the disordered region. [More subtle,
quantum-mechanical deviations have been noticed in
simulations of the Anderson model by Jalabert and Pi-
chard (1995).] Still, as we will see, the DMPK equation
provides a remarkably accurate description of the distri-
bution of the transmission eigenvalues of a disordered
wire, on length scales ranging from below the mean free
path to above the localization length. Moreover, in the
metallic regime the restriction L@W to a wire geometry
can be relaxed considerably. It is only when the trans-
verse dimension W becomes comparable to the localiza-
tion length that the DMPK equation breaks down com-
pletely.

3. Mapping to a free-fermion model

In the absence of time-reversal symmetry, the DMPK
equation is equivalent to a Schrödinger equation for N
noninteracting fermions in one dimension. This formal
correspondence permits an exact solution of the DMPK
equation for b52 (Beenakker and Rejaei, 1993, 1994a).

To carry out the mapping it is convenient to first write
the DMPK equation in terms of a new set of variables
xn , related to ln and Tn by
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
ln5sinh2xn , Tn51/cosh2xn , xn>0. (156)

As discussed in Sec. I.C.1, exp(62xn) is an eigenvalue of
the transfer-matrix product MM†. By applying this
change of variables to Eq. (145), one finds that the dis-
tribution P(x1 ,x2 , . . . ,xN ,s) of the xn’s evolves with
increasing s5L/l according to a Fokker-Planck equa-
tion with a constant diffusion coefficient,

]P

]s
5

1
2g (

n51

N
]

]xn
S ]P

]xn
1bP

]V

]xn
D , (157a)

V52(
i51

N

(
j5i11

N

lnusinh2xj2sinh2xiu2
1
b (

i51

N

lnusinh2xiu.

(157b)

We have abbreviated

g5bN122b . (158)

The probability distribution P($xn%,s) is related to a
wave function C($xn%,s) by the transformation

P5Ce2bV/2, (159)

originally introduced by Sutherland (1972) to solve the
Fokker-Planck equation of Dyson’s Brownian-motion
model [given by Eq. (15) for b52]. Substitution into Eq.
(157) yields for C a Schrödinger equation in imaginary
time,

2
]C

]s
5HC , (160a)

H52
1

2g(
i

S ]2

]xi
2 1

1
sinh22xi

D
1

b~b22 !

2g (
i,j

sinh22xj1sinh22xi

~cosh2xj2cosh2xi!
2 . (160b)

The Fokker-Planck equation considered by Sutherland
maps onto a Hamiltonian with a translationally invariant
interaction potential (x2x8)22 (the Calogero-
Sutherland Hamiltonian, Calogero, 1969; Sutherland,
1971). The interaction potential in Eq. (160) is not trans-
lationally invariant. Using a trigonometric identity it can
be rewritten as sinh22(x2x8)1sinh22(x1x8), to show
that the breaking of translational invariance is due to the
interaction between x and an ‘‘image charge’’ at 2x8.
Caselle (1995) has pointed out that the Hamiltonian
(160) belongs to the same family as the Calogero-
Sutherland Hamiltonian, in the sense that both repre-
sent the Laplacian on a certain curved space (first iden-
tified by Hüffmann, 1990).

For b52 the interaction vanishes identically, reducing
H to a sum of single-particle Hamiltonians H0,

H052
1

4N

]2

]x2 2
1

4Nsinh22x
. (161)

The spectrum of H0 is continuous, with eigenvalues
«5 1

4k
2/N and eigenfunctions (scattering states)

ck~x !5@pktanh~ 1
2 pk !sinh~2x !#1/2 P~1/2 !~ ik21 !~cosh2x !

(162)
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labeled by a wave number k.0. (The Legendre func-
tions P(1/2)(ik21) are known as ‘‘toroidal functions,’’ be-
cause they appear as solutions to the Laplace equation
in toroidal coordinates.) An antisymmetric N-fermion
wave function C can be constructed from a Slater deter-
minant of single-particle scattering states. The transfor-
mation

P5C3)
i,j

~sinh2xj2sinh2xi!)
i

~sinh2xi!
1/2 (163)

then yields a symmetric probability distribution P .
We conclude that the Brownian motion of N trans-

mission eigenvalues in the absence of time-reversal sym-
metry is equivalent to a scattering problem of N nonin-
teracting fermions in one dimension. The correlations
due to eigenvalue repulsion are fully accounted for by
the requirement of an antisymmetric N-fermion wave
function. An exact solution for P can be written down
for arbitrary initial conditions. For the application to an
ensemble of disordered wires we need the ballistic initial
condition18

lim
s→0

P~$xn%,s !5)
i51

N

d~xi201!, (164)

which says that all Tn’s are equal to 1 if L!l . The exact
solution of the DMPK equation (145) with b52 for the
initial condition (164) is (Beenakker and Rejaei, 1993,
1994a)

P5C~s !)
i,j

~sinh2xj2sinh2xi!)
i

sinh2xi

3DetF E
0

`

dk e2k2s/4Ntanh~ 1
2 pk !k2m21

3P~1/2 !~ ik21 !~cosh2xn!G . (165)

Here C(s) is an x-independent normalization factor and
Det anm denotes the determinant of the matrix with el-
ements anm (1<n ,m<N). For N51, Eq. (165) reduces
to the b-independent solution of the scaling equation
(146) for a 1D chain (first obtained by Gertsenshtein
and Vasil’ev, 1959). Equation (165) generalizes the 1D-
chain solution to arbitrary N , for the case b52.

In the presence of time-reversal symmetry, for b51
or 4, there exists no exact solution of the DMPK equa-
tion in terms of functions of a single variable [such as the
Legendre functions in Eq. (165)]. The interaction poten-
tial in the Hamiltonian (160) leads to correlations be-
tween the xn’s which cannot be represented by a Slater
determinant. Caselle (1995) has shown that these corre-
lations are described by functions of N variables known
in the mathematical literature as ‘‘zonal spherical func-

18Other initial conditions have been considered by Beenak-
ker and Melsen (1994), see Sec. III.D.1, and by Frahm and
Müller-Groeling (1996), to compute the correlator
^G(s)G(s1Ds)&.
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tions.’’ It is only for b52 that these functions factorize
into functions of a single variable. For b51 or 4, an
expression for P in terms of functions of a single vari-
able can be obtained in the metallic regime s!N (Sec.
III.B.5) and also in the insulating regime s@N (Sec.
III.C.1) — but not in the crossover regime.

4. Equivalence to a supersymmetric field theory

A field theory for localization in disordered wires has
been developed by Efetov and Larkin (1983), building
on work by Wegner (1979). (For reviews, see Efetov,
1983, 1996.) The diffusion modes are represented by ma-
trix fields Q containing an equal number of commuting
and anticommuting elements. By analogy with the su-
persymmetry between bosons and fermions in particle
physics, such matrices are called supersymmetric matri-
ces, or supermatrices. The interaction between the dif-
fusion modes is described by a model known in quantum
field theory as the nonlinear s model (Itzykson and
Zuber, 1980). The adjective nonlinear refers to the con-
straint Q251, and the letter s originates from an early
notation for the fields. The restriction to a wire geom-
etry makes the fields one-dimensional (1D) in the spatial
coordinate. It has been demonstrated by Brouwer and
Frahm (1996) (following up on a paper by Rejaei, 1996)
that the 1D s model is equivalent to the thick-wire limit
of the DMPK equation. The thick-wire limit is defined
by N→` , L/l→` at constant ratio Nl/L . The equiva-
lence holds for an arbitrary p-point correlation function
of the transmission eigenvalues. Here we give an outline
of the equivalence proof for the simplest case p51. It is
then sufficient to consider 838 supermatrices in the s
model.

The quantity which relates the 1D s model to the
DMPK equation is the generating function
F(u1 ,u2 ,u3 ,u4 ;T1 ,T2 , . . . ,TN), defined by

F~$u i%;$Tn%!5 )
n51

N S 12Tnsin2@ 1
2 ~u31u4!#

11Tnsinh2@ 1
2 ~u11u2!#

3
12Tnsin2@ 1

2 ~u32u4!#

11Tnsinh2@ 1
2 ~u12u2!#

D ~1/2 !~11db ,4!

,

(166a)

u2[0 if bP$2,4%; u4[0 if bP$1,2%. (166b)

The doubling of the exponent in Eq. (166a) for b54
originates from Kramers’ degeneracy of the transmis-
sion eigenvalues Tn . (The product over n runs only over
the N distinct eigenvalues.) The function F is called a
generating function because its ensemble average yields
the density r(T) of the transmission eigenvalues,

r~T !52~pTA12T !21 Re
]

]u3
^F&, (167)

evaluated at u25u450, sin2 1
2u352sinh2 1

2u15(T
1i01)21. The angles u i parametrize the supermatrices
of the nonlinear s model. There are three independent
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u i’s if b51,4, and two if b52. For example, if b52 the
parametrization is (Efetov, 1983, 1996)

Q5S u 0

0 v D S cosû isinû

2isinû 2cosû
D S u21 0

0 v21D . (168)

Here u and v are 434 unitary supermatrices and û is a
434 diagonal matrix with elements u3 ,u3 ,iu1 ,iu1 on
the diagonal. The variable u1 P (0,`) is called a noncom-
pact angle, and u3 P (0,p) is called a compact angle. A
similar parametrization of Q exists for b51 (with two
noncompact angles u1 ,u2 and one compact angle u3),
and for b54 (with two compact angles u3 ,u4 and one
noncompact angle u1).

A remarkable property of the function F is that the
DMPK equation yields a closed evolution equation for
its ensemble average (Brouwer and Frahm, 1996):

l
]^F&
]L

5
b~11db ,4!

21

bN122b (
i

1
Ju

]

]u i
Ju

]

]u i
^F&. (169)

The sum over i runs over the two (b52) or three
(b51,4) independent angles. The factor Ju is the Jaco-
bian from the space of supermatrices Q to the space of
angles u i , given by

Ju55
sinhu1sinhu2sin3u3

)s1 ,s2561sinh2@ 1
2 ~u11s1u21is2u3!#

if b51,

sinhu1sinu3

)s1561sinh2@ 1
2 ~u11is1u3!#

if b52,

sinh3u1sinu3sinu4

)s1 ,s2561sinh2@ 1
2 ~u11is1u31is2u4!#

if b54.

(170)

The practical importance of Eq. (169) is that it allows
one to compute the ensemble average of F (and hence
the eigenvalue density) by solving a partial differential
equation involving only two or three variables—in con-
trast to the N variables in the DMPK equation (145). [A
similar method exists for Dyson’s Brownian-motion
model (Guhr, 1996).] The conceptual importance of Eq.
(169) is that (for N@1) the same evolution equation is
obtained if one computes ^F& from the 1D s model.
This was shown by Rejaei (1996; for b52) and by Brou-
wer and Frahm (1996; for b51,4). The conclusion is that
r(T) is the same whether computed from the 1D s
model or from the DMPK equation. This equivalence
can be generalized to all p-point correlation functions. It
holds for arbitrary Nl/L if the same initial conditions
are chosen in both descriptions but requires the thick-
wire limit N@1 (since the s model can only be formu-
lated in this limit).

The 1D s model has been derived from three micro-
scopic descriptions of the conductor. Efetov and Larkin
(1983) started from a homogeneous wire with a white-
noise potential. Iida, Weidenmüller, and Zuk (1990a,
1990b) studied a chain of disordered grains, each grain
having a random Hamiltonian drawn from the Gaussian
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
ensemble. Fyodorov and Mirlin (1991, 1994) considered
a tight-binding Hamiltonian, whose nonzero elements lie
in a band around the diagonal (a so-called banded ran-
dom matrix). Because of the equivalence discussed
above, each of these three models can also be consid-
ered as being a microscopic model for the DMPK equa-
tion.

B. Metallic regime

1. Conductance

In the metallic regime, for wire lengths L much less
than the localization length Nl , the conductance is
known to decrease linearly with L (Ohm’s law). Let us
verify that the DMPK equation correctly describes this
classical scaling for Nl/L@1.

We use the method of moments of Mello and Stone
(Mello, 1988; Mello and Stone, 1991). This is a method
for computing the moments of

Mq5 (
n51

N

Tn
q , q51,2, . . . , (171)

as an expansion in inverse powers of N . From the
DMPK equation (145) one derives a hierarchy of
coupled evolution equations for moments of Mq . For
example, the evolution of M1, M2, and M3 is coupled by
the equation

]

]s
^M1

p&5
2pb

bN122b
^M1

p112~122/b!M1
p21M2

22~p21 !b21M1
p22~M22M3!&. (172)

The hierarchy closes order by order in the large-N ex-
pansion. Indeed, since Mq

p5O(Np), Eq. (172) reduces to

]

]s
^M1

p&52pN21^M1
p11&1O~Np21!, (173)

to leading order in N . Notice that the symmetry index
b has dropped out in this order. The ballistic initial con-
dition (Tn51 for all n if s50) implies

lim
s→0

^M1
p&5Np. (174)

Equation (173), with p51,2, . . . , forms a recursive set
of differential equations. The solution with initial condi-
tion (174) is

^M1
p&5Np~11s !2p1O~Np21!. (175)

In view of the Landauer formula (33), the average
conductance is ^G&5G0^M1& (with G052e2/h), hence

^G/G0&5N~11s !211O~N0!. (176)

In the diffusive limit (s5L/l@1) the conductance de-
creases linearly with L , ^G/G0&→Nl/L , as expected.
Furthermore, comparison with the Drude formula (Ash-
croft and Mermin, 1976) shows that the mean free path
l of the scaling theory [defined in Eq. (151)] is related to
the transport mean free path l tr of kinetic theory by the
numerical coefficient given in Eq. (152). In the ballistic
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limit (s!1) the conductance ^G/G0&→N reaches the
contact conductance of an N-mode wire between wide
reservoirs. The crossover from the ballistic to the diffu-
sive limit, for s.1, is not described exactly by Eq. (176),
but the error is small [about 3% for isotropic impurity
scattering (De Jong, 1994)].

By carrying out the expansion of the moments to or-
der N0, one can compute the weak-localization correc-
tion dG5^G&2G0(11s)21 to the average conductance
given by Eq. (176), as well as the variance
Var G5^G2&2^G&2. The results are (Mello, 1988)

dG/G05
1
3

~122/b!
s3

~11s !3 1O~N21!, (177)

Var G/G05
2
15

b21S 12
116s

~11s !6D1O~N21!. (178)

The diffusive limits s→` of Eqs. (177) and (178),

dG/G0→ 1
3 ~122/b!, Var G/G0→ 2

15 b21, (179)

agree precisely with diagrammatic perturbation theory
(Lee and Stone, 1985; Mello and Stone, 1991).

The method of moments can in principle be applied to
all polynomial linear statistics, i.e., transport properties
of the form A5(na(Tn) with a(T) a polynomial in T .
It is an efficient way to compute the mean and variance
of the conductance [for which a(T)5T], since only a
few levels of the hierarchy of evolution equations have
to be considered. With a great deal of effort it is possible
to apply the method of moments to the shot-noise power
(De Jong and Beenakker, 1992), for which
a(T)5T2T2. Other transport properties, for which
a(T) is not a polynomial, require the more general
method discussed in the next subsection.

In experiments on disordered wires, phase coherence
is in general not maintained throughout the whole wire
length. The numerical coefficients in Eq. (179) are there-
fore much larger than measured (for a review, see
Beenakker and Van Houten, 1991). The b dependence
is insensitive, however, to phase-breaking processes.
Moreover, while the numerical coefficients are specific
for a wire geometry, the b dependence is the same in
wires, thin films, and bulk samples. In the absence of
spin-orbit scattering, application of a magnetic field in-
duces a b51→b52 transition, leading to an increase of
the average conductance and a reduction of the variance
by a factor of two. Measurements by Mailly and Sanquer
(1992) of this symmetry-class transition are shown in
Fig. 16. The typical field scale for the transition is one
flux quantum through a phase coherent region.19 In the
presence of strong spin-orbit scattering, a magnetic field
induces a b54→b52 transition, leading to a decrease
of the average conductance. The change in b is accom-
panied by a removal of Kramers’ degeneracy of the

19At much higher fields (when the Zeeman energy becomes
larger than the Thouless energy), a further reduction of the
variance by a factor of two takes place, associated with the
removal of spin degeneracy (measured by Debray et al., 1989).
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transmission eigenvalues. The net result is that Var G is
reduced by a factor of two, just as in the absence of
spin-orbit scattering (Altshuler and Shklovski�, 1986;
measured by Birge, Golding, and Haemmerle, 1989;
Millo et al., 1990).

2. Other transport properties

To compute the mean and variance of arbitrary linear
statistics A5(na(xn), one needs the density of trans-
mission eigenvalues

r~x !5K (
i

d~x2xi!L (180)

and the two-point correlation function

K~x ,x8!5K (
i ,j

d~x2xi!d~x82xj!L 2r~x !r~x8!.

(181)

(We recall the parametrization Tn51/cosh2xn , xn>0.)
In the metallic regime it is sufficient to know r and K to
order N0. Dorokhov (1984) and Mello and Pichard
(1989) computed the leading-order term in r (which is
of order N), while Beenakker (1994b) and Macêdo and
Chalker (1994) computed the next term (of order N0).
The leading-order term in K (which is of order N0) was
computed by Chalker and Macêdo (1993) and by
Beenakker and Rejaei (1993). The derivations are given
in the following subsections. The results are (in the dif-
fusive limit L@l)

r~x !5
Nl

L
1S 12

2
b D F1

4
d~x201!1

1
4x21p2G , (182)

FIG. 16. Mean and variance of the conductance as a function
of magnetic field, measured by averaging over 50 impurity con-
figurations in a single Si-doped GaAs wire (T545 mK,
W50.09 mm, L510 mm). Uncorrelated impurity configura-
tions were generated by thermal cycling to room temperature.
A short phase-coherence length lf!L reduces the zero-field
weak-localization correction and variance to dG/G052lf /L ,
Var G/G053(lf /L)3. Comparing with the data we estimate
lf'0.65 mm. The b51→b52 transition leads to an increase
of the average conductance and to a halving of the variance, as
observed in the experiment. After Mailly and Sanquer (1992).
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K~x ,x8!5K~x2x8!1K~x1x8!, (183a)

K~x !52
1

2bp2

d 2

dx2 ln@11~p/x !2# . (183b)

The density r(x) has a cutoff at x.L/l , such that
*0

`dxr(x)5N . Since only the range x&1 contributes to
transport properties, this large-x cutoff need not be
specified more accurately. The integrable singularities at
x50 in both r and K are in reality smeared out over a
few eigenvalue spacings. Equations (182) and (183) are
sufficiently accurate if a(x) is smooth on the scale dx of
the eigenvalue spacing. Since dx.L/Nl!1 in the metal-
lic regime, this is not a strong requirement.

The mean and variance of A5(na(xn) follow upon
integration,

^A&5
Nl

L E
0

`

dx a~x !1S 12
2
b D

3F1
4

a~0 !1E
0

`

dx
a~x !

4x21p2G , (184)

Var A5
1

2bp2E
0

`

dxE
0

`

dx8S da~x !

dx D
3S da~x8!

dx8 D lnS 11p2~x2x8!22

11p2~x1x8!22D . (185a)

The double integral in Eq. (185a) reduces to a single
integral if the Fourier transform a(k)
52*0

`dxa(x)coskx is known,

Var A5
1

2bp2E
0

`

dk~12e2pk!kua~k !u2. (185b)

The first term in Eq. (184) is the semiclassical value of
A , which is of order N and b independent. The second
term is the weak-localization correction, which is of or-
der N0 and has a 122/b dependence on the symmetry
index. The variance (185) has no order-N contribution
(universality). The leading-order term is of order N0 and
is inversely proportional to b .

Equations (184) and (185) reduce the computation of
^A& and Var A to a quadrature, regardless of the com-
plexity of the function a(x). Let us check these formulas
for the case that A is the conductance,
G/G05(n1/cosh2xn . Substitution of a(x)51/cosh2x into
Eq. (184) yields ^G/G0&5Nl/L1 1

3(122/b), in agree-
ment with Eqs. (176) and (177) in the diffusive limit
(s@1). Similarly, substitution of the Fourier transform
a(k)5pk/sinh( 1

2pk) into Eq. (185b) yields
Var G/G05 2

15b
21, in agreement with Eq. (178).

3. Transmission eigenvalue density

The derivation that we present of the eigenvalue den-
sity in the metallic regime is based on Mello and Pichard
(1989) for the O(N) term and Beenakker (1994b) for
the O(N0) correction. The starting point is the DMPK
equation (145) for the probability distribution
P($ln%,s) of the l variables. We seek to reduce it to an
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equation for the density r(l ,s)5^(nd(l2ln)&. Multi-
plying both sides of Eq. (145) by (nd(l2ln) and inte-
grating over l1 ,l2 , . . . ,lN , one obtains

]r

]s
5

2
g

]

]l
l~11l!S ]r

]l
2bI D , (186a)

I~l ,s !5E
0

` dl8

l2l8K (iÞj
d~l2l i!d~l82l j!L . (186b)

(Recall the definition g5bN122b .) The integral over
the pair distribution function has the large-N expansion
(Dyson, 1972; see Appendix A for a derivation)

I~l ,s !

r~l ,s !
5E

0

`

dl8
r~l8,s !

l2l8
1

1
2

]

]l
lnr~l ,s !1O~N21!.

(187)

Substitution into Eq. (186) gives a nonlinear evolution
equation for the eigenvalue density,

]r

]s
5

1
g

]

]l
l~11l!r

]

]lS ~22b!lnr

22bE
0

`

dl8r~l8,s !lnul2l8u D . (188)

At this point it is convenient to switch from the l to
the x variables (defined by ln5sinh2xn). The densities
are related by r(x ,s)5r(l ,s) dl/dx . In terms of the x
variables, Eq. (188) takes the form

]r

]s
5

1
4g

]

]x
r

]

]xF ~22b!~ lnr2lnusinh2xu!

22bE
0

`

dx8r~x8,s !lnusinh2x2sinh2x8uG . (189)

We need to solve Eq. (189) to the same order in N as
the expansion (187), i.e., neglecting terms of order
N21. To this end we decompose r5r01dr , with r0 of
order N and dr of order N0. Substitution into Eq. (189)
yields to order N an equation for r0,

]r0

]s
52

1
2N

]

]x
r0

]

]xE0

`

dx8r0~x8,s !lnusinh2x2sinh2x8u.

(190)

It is possible to solve this evolution equation for all s , as
we will discuss in the next subsection. Here we only
need the solution in the diffusive limit s@1. Then the
x variables have the uniform density

r0~x ,s !5H N/s if x&s ,

0 if x*s ,
(191)

as one can verify by substitution into Eq. (190).
Linearization of Eq. (189) around r0 yields an equa-

tion for dr ,
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1
2

d2

dx2E
0

`

dx8dr~x8!lnusinh2x2sinh2x8u1
d

dx
~xdr!

5
1
4S 12

2
b D d 2

dx2 lnusinh2xu. (192)

The s dependence has dropped out in the limit s@1.
The integro-differential equation (192) can be solved by
means of the identity

E
0

`

dx8 f~x8!lnusinh2x2sinh2x8u

5E
2`

`

dx8 f~ ux8u!lnusinh~x2x8!u, (193)

which simplifies the integration to a convolution. The
Fourier transform of dr(x) then satisfies an ordinary
differential equation, which is easily solved. The result is

dr~x !5~122/b!@ 1
4 d~x201!1~4x21p2!21# . (194)

The correction (194) to the uniform density (191) takes
the form of a deficit (for b51) or an excess (for
b54), concentrated in the region x&1. Equations (191)
and (194) together form Eq. (182), which was used in
the previous subsection.

4. Scaling as a hydrodynamic flow

The uniform eigenvalue density (191) is the large-s
limit of the solution r0(x ,s) of the evolution equation
(190). Let us investigate how this limit is reached start-
ing from an initially nonuniform density. It turns out
that the nonlinear integro-differential equation (190)
can be solved exactly for arbitrary initial condition
(Beenakker, Rejaei, and Melsen, 1994). The solution is
based on a mapping of Eq. (190) onto Euler’s equation
of hydrodynamics. A similar mapping exists for Dyson’s
Brownian-motion model (Pandey and Shukla, 1991).
For notational simplicity we will write r instead of r0 in
this subsection, being only concerned here with the
leading-order contribution in powers of N .

We begin by rewriting Eq. (190) in terms of the l
variables,

]r

]s
52

2
N

]

]l
l~11l!r

]

]lE0

`

dl8r~l8,s !lnul2l8u.

(195)

The density r(l ,s) has the Stieltjes transform

F~z ,s !5E
0

`

dl8
r~l8,s !

z2l8
. (196)

The function F(z ,s) is an analytic function of z in the
complex plane cut by the positive real axis, which van-
ishes for large uzu as

lim
uzu→`

F~z ,s !5N/z . (197)

It has a discontinuity for z5l6i01 (l.0). The limiting
values F6(l ,s)[F(l6i01,s) are
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F656
p

i
r~l ,s !1

]

]lE0

`

dl8r~l8,s !lnul2l8u. (198)

Combination of Eqs. (195) and (198) gives

N
]

]s
~F12F2!52

]

]l
l~11l!~F1

2 2F2
2 !, (199)

which implies that the function

F~z ,s !5N
]

]s
F~z ,s !1

]

]z
z~11z !F2~z ,s ! (200)

is analytic in the whole complex plane, including the real
axis. Moreover, F→0 for uzu→` , in view of Eq. (197).
We conclude that F[0, since the only analytic function
that vanishes at infinity is identically zero.

We now return from the l to the x variables. The
mapping z5sinh2z maps the z plane onto the strip in the
z plane between the lines y50 and y52p/2, where
z5x1iy . The mapping is conformal if we cut the z
plane by the two half lines l.0 and l,21 on the real
axis. On this strip we define the auxiliary function
U5Ux1iUy by

U~z ,s ![
F

2N

dz

dz
5

sinh2z

2N E
0

`

dx8
r~x8,s !

sinh2z2sinh2x8
.

(201)

The equation F[0 then takes the form

]

]s
U~z ,s !1U~z ,s !

]

]z
U~z ,s !50, (202)

which we recognize as Euler’s equation of hydrodynam-
ics: (Ux ,Uy) is the velocity field in the (x ,y) plane of a
two-dimensional ideal fluid at constant pressure. Euler’s
equation is easily solved. For initial condition
U(z ,0)5U0(z) the solution to Eq. (202) is

U~z ,s !5U0(z2sU~z ,s !). (203)

From U we obtain the eigenvalue density

r~x ,s !5~2N/p! Im U~x2i01,s !. (204)

The ballistic initial condition r(x ,0)5Nd(x201) cor-
responds to U0(z)5coth z . The solution of the implicit
equation (203) is plotted in Fig. 17 for several values of
s5L/l . With increasing disorder the eigenvalue density
spreads along the x axis, such that 0,r<N/s for
x,xmax and r[0 for x>xmax . The edge xmax of the den-
sity profile is located at

xmax5
1
2 arcosh ~112s !1 1

2 A~112s !221

5s1 1
2 ln4s1 1

2 1O~1/s !, (205)

with r } Axmax2x for x close to xmax . For s@1 the den-
sity tends to the diffusive limit (191) of a step-function
profile: r(x ,s)→N/s for s→` at fixed x/s,1. In fact,
this limit is reached regardless of the particular initial
condition because of the fixed point z52 1

2ip , at which
U50 [see Eq. (201)]. To see this, define
z05z2sU(z ,s) and write Eq. (203) in the form
z2z05sU0(z0). For s→` , z0→2 1

2ip so that the prod-
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uct sU0(z0) remains finite. It follows that
U(z ,s)→(z1 1

2ip)/s , hence r(x ,s)→N/s .

5. Nonlogarithmic eigenvalue repulsion

The tiny difference between the variance of the con-
ductance in a quantum dot and in a disordered wire has
a fundamental implication for the repulsion of the trans-
mission eigenvalues (see Sec. I.D.2). Since a logarithmic
repulsion of the l variables implies that b Var G/G0
= 1

8, while in a wire one has b Var G/G05 2
15, it follows

that the repulsion of the l’s cannot be precisely logarith-
mic (Beenakker, 1993a, 1993c). Recall that a logarithmic
repulsion follows from the Jacobian from matrix to ei-
genvalue space. A nonlogarithmic repulsion means that
there exists correlations between the eigenvalues that do
not have a geometric origin. To determine the eigen-
value repulsion in a disordered wire in the metallic re-
gime, we consider the exact solution (165) of the DMPK
equation for b52.

If 1!s!N the dominant contribution to the integral
over k in Eq. (165) comes from the range
k*(N/s)1/2@1. In this range tanh( 1

2pk)→1 and the
Legendre function simplifies to a Bessel function,

P~1/2 ! ~ ik21 !~cosh2x !→J0~kx !~2x/sinh2x !1/2. (206)

The k integration can now be carried out analytically,

E
0

`

dke2k2s/4N k2m21 J0~kxn!

5 1
2 ~m21 !!~4N/s !me2xn

2 N/s Lm21~xn
2N/s !, (207)

with Lm21 a Laguerre polynomial. We then apply the
determinantal identity

Det Lm21~xn
2N/s !5c Det~xn

2 !m215c)
i,j

~xj
22xi

2!,

(208)

FIG. 17. Eigenvalue density in the metallic regime. The vari-
able x is related to the transmission eigenvalue by
T51/cosh2x. Curves are computed from Eq. (203) for four val-
ues of s5L/l , with the ballistic initial condition for the eigen-
value density r(x ,0)5Nd(x201). For s@1 the density tends
to the limit (191) of a step-function profile.
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with c an x-independent number [which can be ab-
sorbed in C(s)]. The first equality in Eq. (208) holds
because the determinant of a matrix is unchanged if any
one column of the matrix is added to any other column,
so that we can reduce the Laguerre polynomial in x2 of
degree m21 to just its highest-order term x2(m21) times
a numerical coefficient. The second equality expands the
Vandermonde determinant.

Collecting results, we find that the solution (165) of
the DMPK equation for b52 simplifies in the metallic
regime to (Beenakker and Rejaei, 1993, 1994a)

P5C~s !)
i,j

@~sinh2xj2sinh2xi!~xj
22xi

2!#

3)
i

@exp~2xi
2N/s !~xisinh2xi!

1/2# . (209)

Caselle (1995) has generalized Eq. (209) to b51 and 4.
The result for the three values of b can be written in the
form of a Gibbs distribution,

P5C~s !expF2bS (
i,j

u~xi ,xj!1(
i

V~xi! D G , (210a)

u~xi ,xj!52 1
2 lnusinh2xj2sinh2xiu2

1
2 lnuxj

22xi
2u,
(210b)

V~x !5 1
2 ~g/s !b21x22 1

2 b21lnuxsinh2xu. (210c)

In terms of the l variables (l5sinh2x), the interaction
takes the form

u~l i ,l j!52 1
2 lnuarsinh2l j

1/22arsinh2l i
1/2u2 1

2 lnul j2l iu.
(211)

For l!1 [i.e., for T5(11l)21 close to unity]
u(l i ,l j)→2lnulj2liu, so we obtain a logarithmic repul-
sion for the strongly transmitting scattering channels.
However, for l'1 the interaction (211) is nonlogarith-
mic. For fixed l i!1, u(l i ,l j) as a function of l j crosses
over from 2lnulj2liu to 2 1

2lnulj2liu as l j→` (see Fig.
18). We conclude that, for weakly transmitting channels,
the interaction is twice as small as predicted by consid-
erations based solely on the Jacobian.

The reduced level repulsion for weakly transmitting
channels enhances the variance of the conductance
above the result b Var G/G05 1

8 for a purely logarith-
mic repulsion. To see this, we compute the two-point
correlation function K(x ,x8) from the interaction po-
tential u(x ,x8), using the property that K and u are
each others functional inverse in the large-N limit
(Beenakker, 1993a, 1993c; see Sec. I.D.1):

bE
0

`

dx9 u~x ,x9!K~x9,x8!5d~x2x8!, x ,x8.0.

(212)

To solve this integral equation, we note that the decom-
position of the interaction potential (210b) into

u~x ,x8!5U~x2x8!1U~x1x8!1constant, (213a)

U~x !52 1
2 lnu2xsinhxu, (213b)
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implies for the two-point correlation function the de-
composition

K~x ,x8!5K~x2x8!1K~x1x8!. (214)

[The additive constant in Eq. (213a) is irrelevant be-
cause of the sum rule *0

`dx9 K(x9,x8)50 implied by the
definition (181) of K .] The functions U(x) and K(x),
defined for both positive and negative x , are related by
the convolution

bE
2`

`

dx9U~x2x9!K~x92x8!5d~x2x8!1constant,

(215)

which is readily inverted by Fourier transformation:

K~k !5
uku
bp

~12e2puku!. (216)

Transforming back from k to x one finds the two-point
correlation function (183) used in Sec. III.B.2 to com-
pute the variance of the conductance. The result
b Var G/G05 2

15 is only slightly larger than the value 1
8

for a logarithmic repulsion, because only the weakly
transmitting channels (which contribute little to the con-
ductance) are affected by the nonlogarithmic interac-
tion.

The derivation of the two-point correlation function
presented here emphasizes the relationship with the ei-
genvalue interaction (Beenakker and Rejaei, 1993,
1994a; Caselle, 1995). There exists an alternative deriva-
tion (Chalker and Macêdo, 1993; Macêdo and Chalker,
1994), which starts directly from the DMPK equation
and reduces it to an evolution equation for K in the
metallic regime. The diffusive limit s→` then leads to
Eq. (183). We discussed a similar approach in Sec.
III.B.3, in connection with the eigenvalue density. It is
worthwhile to check that the result of Eq. (194) for dr

FIG. 18. Eigenvalue interaction potential u(l i ,l j) for l i50 as
a function of l j[l . The solid curve is the result (211) from the
DMPK equation in the metallic regime. The dashed curve is
the logarithmic repulsion 2lnulu dictated by the Jacobian from
matrix to eigenvalue space. For l!1 the two curves coincide.
For l→` their ratio approaches a factor of two. After
Beenakker and Rejaei (1994a).
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obtained there agrees with the density implied by the
distribution (210). This alternative route to the eigen-
value density is described in Appendix C.

C. Localized regime

1. Log-normal distribution of the conductance

In the metallic regime, the root-mean-square fluctua-
tions of the conductance are a factor L/Nl smaller than
the average conductance. The sample-to-sample fluctua-
tions are therefore relatively unimportant, since
L!Nl . As the length L of the wire increases beyond the
localization length j.Nl , the localized regime is en-
tered. Then fluctuations become as large as the average,
which is no longer representative for the conductance of
a single sample. The conductance distribution P(G),
which was well approximated by a Gaussian in the me-
tallic regime,20 becomes very broad and asymmetric,
with a peak at small G and a long tail towards large
G .

It follows from general properties of products of ran-
dom matrices that P(G) is log-normal in the limit
L/Nl→` , that is to say, lnG has a Gaussian distribution
(Imry, 1986a). To see this, note that the scaling opera-
tion of Fig. 15 corresponds to the multiplication of trans-
fer matrices: M5) iMi , where Mi is the transfer matrix
of segment i and M is the transfer matrix of the entire
wire. The limit L→` , at fixed N and l , corresponds to
the multiplication of an infinite number of random ma-
trices, drawn independently from the same ensemble. In
this limit, the 2N random eigenvalues exp(62xn) of
MM† tend to the nonrandom values exp(62L/jn), with
jn independent of L (Pichard and Sarma, 1981; Pichard
and André, 1986). This is known as the ‘‘multiplicative
ergodic theorem’’ (Oseledec, 1968; Crisanti, Paladin,
and Vulpiani, 1993). The inverse localization lengths
1/jn are referred to as the Lyapunov exponents of the
random-matrix product. For large but finite L , the xn’s
have small Gaussian fluctuations around their
asymptotic limit L/jn . The conductance
G5G0(ncosh22xn '4G0exp(22x1) is dominated by the
smallest xn , say x1. The conclusion is that
2 1

2ln(G/4G0) has the same Gaussian distribution as x1.
The mean and variance of the log-normal distribution

of the conductance follow directly from the DMPK
equation (157) for the probability distribution
P(x1 ,x2 , . . . ,xN ,s) (Dorokhov, 1982, 1983; Pichard,
1991). In the limit L/Nl[s/N→` the variables
x1!x2!•••!xN become widely separated and @1, so
that the term V in Eq. (157) may be approximated by

V'22b21 (
n51

N

~11bn2b!xn1constant. (217)

The solution of Eq. (157) then factorizes into a product
of Gaussians,

20The third cumulant of G is of order (L/Nl)2(e2/h)3

(Macêdo, 1994a; Gopar, Martı́nez, and Mello, 1995).
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P'S gl

2pL D N/2

)
n51

N

expF2
gl

2L
~xn2L/jn!2G , (218a)

jn5gl~11bn2b!21. (218b)

The root-mean-square fluctuation of the xn’s equals
AL/gl , which is indeed much smaller than their spacing
bL/gl . The conductance is dominated by x1, which has
a mean L/gl equal to its variance. The Gaussian distri-
bution of 2ln(G/G0)'2x11O(1) therefore has a mean
that is half its variance,

2^ln~G/G0!&5 1
2 Var @ ln~G/G0!#52L/gl . (219)

The localization length j is obtained from the exponen-
tial decay of the typical conductance, by identifying
exp^ln(G/G0)&[exp(22L/j). Hence

j5gl5~bN122b!l . (220)

The average conductance ^G& decays more slowly than
the typical conductance exp^lnG&:

^G/G0&}E
0

`

dx e22xexpF2
gl

2L
~x2L/gl !2G

}exp~2L/2j!. (221)

For N@1 the localization length j'bNl becomes
proportional to the symmetry index b . This b depen-
dence can be measured by studying the effect of a mag-
netic field on the conductance (Pichard, Sanquer, et al.
1990). In the absence of spin-orbit scattering, a time-
reversal symmetry-breaking magnetic field induces a
transition from b51 to b52, and hence a doubling of
j . The spin degeneracy of the N scattering channels is
not broken. In the case of strong spin-orbit scattering,
breaking of time-reversal symmetry induces a transition
from b54 to b52 and also breaks Kramers’ degeneracy
of the scattering channels. The combined result of
b54→b52 and N→2N is that j remains unchanged
(Efetov and Larkin, 1983; the role of Kramers’ degen-
eracy has been emphasized by Mirlin, 1994). To observe
the doubling of j induced by a magnetic field in the
absence of spin-orbit scattering requires field strengths
B*h/ej2. In weaker fields the magnetoconductance is
dominated by thermally activated processes (Mott hop-
ping), which leads to an increase of G with B both in the
absence and presence of spin-orbit scattering (Nguyen,
Spivak, and Shklovski�, 1985; Meir et al. 1991; Meir and
Entin-Wohlman, 1993; for reviews, see Shklovski� and
Spivak, 1990; Imry, 1995). It is this positive magnetocon-
ductance that is usually measured in insulators.21 The
simple and universal b dependence of the localization
length [Eq. (220)] is special for a wire geometry (quasi-
one-dimensional sample) and has not yet been observed

21An exception is formed by the experiments reported by Pi-
chard, Sanquer, et al. (1990) on an insulating amorphous Y/Si
alloy with strong spin-orbit scattering, which show a negative
magnetoconductance (G decreases with B). It is not clear how
to reconcile this with a theory that properly accounts for
Kramers’ degeneracy.
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experimentally. In two- and three-dimensional samples
the B dependence of j is more complicated and not uni-
versal (Lerner and Imry, 1995).

The log-normal distribution of the conductance in the
localized regime has been verified in numerical simula-
tions of the Anderson model (Pichard, 1991). The disor-
dered region is modeled by a tight-binding Hamiltonian
on a two-dimensional square lattice (lattice constant a ,
width W , length L), with a constant hopping term
U05\2/2ma2 between neighboring sites and with a ran-
dom impurity potential at each site (uniformly distrib-
uted between 6 1

2Ud). The Fermi level is chosen at the
center of the tight-binding band (4U0 from the band
bottom), at which the number N of propagating modes
equals the number W/a of sites in a row (for hard-wall
boundary conditions at the two ends of the row). Results
for a 103250 strip are shown in Fig. 19 (filled dots). The
disorder is sufficiently strong (Ud53U0) that the wire is
deep in the localized regime (L'8j). The distribution
of 2ln(G/G0) is well fitted by a Gaussian (solid curve),
with a variance equal to twice the mean. The inset shows
that a magnetic field significantly increases the localiza-
tion length (there is no spin-orbit scattering in the simu-
lation). At B50.03 h/ea2 the increase by a factor of 1.7
is close to the factor 20/11'1.8 predicted by Eq. (220)
for N510. Note also that the factor of two between
mean and variance is observed to be B independent, as

FIG. 19. Distribution of 2ln(G/G0) from a numerical simula-
tion of the Anderson model on a 103250 strip (filled dots) and
a 10310 square (open dots), in zero magnetic field. The
dashed and solid curves are Gaussians with variance equal to
the mean and to twice the mean, respectively. The results for a
strip are as expected from the Dorokhov-Mello-Pereyra-
Kumar equation, those for a square have no known explana-
tion. The inset shows the mean and variance for the strip for
three values of the magnetic field: circle, diamond, and square
correspond, respectively, to B50, 331024, and
3310223h/ea2. The localization length j522L/^ln(G/G0)&
increases by a factor close to the value 20/11 predicted by Eq.
(220) for the b51→b52 transition with N510. The dashed
line indicates the predicted factor of two between mean and
variance. After Pichard (1991).
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expected. The open dots and dashed curve in Fig. 19
show a still unexplained feature of two-dimensional in-
sulators. The simulation of a 10310 square with
Ud512 U0 yields a log-normal distribution of the con-
ductance with a variance equal to the mean — not twice
the mean as in a quasi-one-dimensional insulator.

2. Crystallization of transmission eigenvalues

The exponential decay with increasing wire length of
the conductance in the localized regime is associated
with a ‘‘crystallization’’ of the transmission eigenvalues
(Muttalib, 1990; Pichard, Zanon, et al. 1990; Stone, et al.
1991). In the limit L/Nl→` , the xn’s form a one-
dimensional lattice with spacing dx5L/Nl (for N@1).
The fluctuations of the xn’s around their lattice positions
grow as L decreases and become comparable to the lat-
tice spacing when L.Nl . If L!Nl the density is nearly
constant, with small ripples of periodicity dx , reminis-
cent of a liquid. This is the metallic regime, in which the
conductance scales linearly with L .

The transition from a liquidlike to a crystallike eigen-
value density can be obtained from the exact solution
(165) of the DMPK equation for b52, by integrating
out N21 of the xn’s:

r~x ,s !5NE
0

`

dx2•••E
0

`

dxNP~x ,x2 , . . . ,xN ,s !.

(222)

The calculation was carried out by Frahm (1995a), using
a generalization of the method of orthogonal polynomi-
als suggested by Muttalib (1995). (The same result was
obtained from the 1D s model by Rejaei, 1996.) The
idea is to write the probability distribution as the prod-
uct of two determinants,

P5(Det am~xn ,s !)(Det bm~xn ,s !), (223)

in such a way that the functions a and b are bi-
orthogonal:

E
0

`

dx an~x ,s !bm~x ,s !5dnm , 1<n ,m<N . (224)

Then the integrals in Eq. (222) reduce to a finite series,

r~x ,s !5 (
n51

N

an~x ,s !bn~x ,s !, (225)

and similar series exist for the correlation functions of
the xn’s.

The exact solution (165) is of the form of Eq. (223)
[since the term ) i,j in Eq. (165) is a Vandermonde de-
terminant], but the functions in the determinants are not
bi-orthogonal. Frahm (1995a) constructed a linear com-
bination of these functions such that Eq. (224) is real-
ized:

an~x ,s !5exp@2~2n21 !2s/4N#Pn21~cosh2x !,
(226a)
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bn~x ,s !5 1
2 sinh2xE

0

`

dk e2k2s/4Nktanh~ 1
2 pk !

3Qn~k2!P~1/2 !~ ik21 !~cosh2x !, (226b)

where Pn is a Legendre polynomial and Qn is the inter-
polation polynomial of Lagrange,

Qn~k2!5 )
p51 ~pÞn !

N
k21~2p21 !2

~2p21 !22~2n21 !2 . (227)

The resulting eigenvalue density is plotted in Fig. 20, for
N55 and values of s in the metallic, crossover, and in-
sulating regimes. One recognizes the appearance of
deep minima in the density due to eigenvalue repulsion,
upon entering the localized regime.

This nonperturbative result for the density of trans-
mission eigenvalues is for the case b52 of broken time-
reversal symmetry (Frahm, 1995a; Rejaei, 1996). The re-
sult for b51,4 is not known. What is known
nonperturbatively for any b is the first and second mo-
ment of the conductance. See Zirnbauer (1992) and Mir-
lin, Müller-Groeling, and Zirnbauer (1994) for the cases
b51,2, and Brouwer and Frahm (1996) for the case
b54. Nonperturbative results for entire distributions
(rather than moments) exist for the distributions of
utnmu2 and (nutnmu2, in the case b52 (Van Langen,
Brouwer, and Beenakker, 1996). The distribution of the
conductance G/G05(n ,mutnmu2 is not known exactly for
any b .

D. Disordered wire with obstacles

1. Obstacle as initial condition for scaling

So far we have concentrated on the DMPK equation
with the ballistic initial condition (164). This means that
all scattering in the wire is due to disorder, so that for

FIG. 20. Exact eigenvalue density for b52, computed from
Eqs. (225) and (226) for N55 and three values of s5L/l
(s5100, 10, and 2, respectively, for curves a, b, and c). The
density of the xn’s is not quite uniform in the metallic regime
(curve c), because of the relatively small value of N (compare
with Fig. 17 for the large-N limit). In the insulating regime the
eigenvalues ‘‘crystallize’’ at equally spaced average positions,
with small Gaussian fluctuations around the average (curve a).
r(x ,s) is the eigenvalue density, and x is related to the trans-
mission eigenvalue T by T51/cosh2x . After Frahm (1995a).
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L/l→0 all transmission eigenvalues Tn are equal to 1. In
this subsection we consider the case that the disordered
wire contains obstacles, such as point contacts or tunnel
barriers, which provide additional scattering. As we will
discuss below, if the scattering matrix of each obstacle
has an isotropic distribution, then the presence of the
obstacles can be accounted for by a nonballistic initial
condition on the DMPK equation (Beenakker and
Melsen, 1994).

The wire geometry we have in mind is sketched in Fig.
21(a). Disordered segments (dotted) alternate with ob-
stacles (shaded). The disordered segments have N
propagating modes, mean free path l , and a total length
L . We model the scattering from the impurities and ob-
stacles by independent and isotropic transfer matrices.
That is to say, we write the transfer matrix M of the
whole system as the product M5) iMi of the transfer
matrices Mi of its segments, and then we assume that
the Mi’s are distributed according to independent and
isotropic distributions pi(Mi). A distribution p(M) is
called isotropic if it is only a function of the eigenvalues
of MM†. Under these assumptions, the geometry of Fig.
21(a) is equivalent to that of Fig. 21(b), where the ob-
stacles are in series with a disordered segment of length
L . To see this, note that the transfer matrices M and
M8 of Figs. 21(a) and 21(b) differ by a permutation of
the Mi’s. The probability distribution p(M) is given by

p5p1* p2* p3* ••• , (228)

where the symbol * denotes a convolution,

pi* pj~M !5E dm~Mj!pi~MMj
21!pj~Mj!, (229)

and dm(M) is the invariant measure on the group of
transfer matrices (Mello, Pereyra, and Kumar, 1988).
The probability distribution p8(M8) is also given by a
convolution of the pi’s, but in a different order. It is a
property of isotropic distributions that their convolution
does not depend on the order: pi* pj5pj* pi if both pi
and pj are isotropic. It follows that p5p8, and hence
that the geometries of Figs. 21(a) and 21(b) are equiva-
lent.

The obstacles in Fig. 21(b) form an initial condition
on the DMPK equation,

lim
L→0

P~l1 ,l2 , . . . ,lN ,L !5P0~l1 ,l2 , . . . ,lN!.

(230)

FIG. 21. Two wires containing obstacles (shaded) in series
with disordered segments (dotted). For isotropic probability
distributions the geometries of (a) and (b) are equivalent. This
permits one to treat the effect of the obstacles as an initial
condition on the DMPK equation.
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Here P0 is the probability distribution of the obstacles in
the absence of disordered segments. By solving the
DMPK equation with initial condition (230), one deter-
mines how disordered segments between the obstacles
affect the distribution of the transmission eigenvalues.
In the following subsections we will apply this general
method to point contacts and tunnel barriers.

2. Point contact

As a first application, we consider a disordered wire
containing a constriction much narrower than the mean
free path (Beenakker and Melsen, 1994). This is known
as a ballistic point contact, or a ‘‘Sharvin’’ point contact
(Sharvin, 1965). [The opposite limit is known as a diffu-
sive or ‘‘Maxwell’’ point contact (Maxwell, 1891).] The
assumption of independent transfer matrices for the
constriction and the disordered regions requires a spatial
separation of scattering by the impurities and the point
contact. This is justified if the mean separation d imp of
the impurities is much greater than the width W0 of the
constriction. Since d imp is much smaller than the mean
free path l , the condition d imp@W0 is stronger than the
condition l@W0 for a ballistic point contact. The isot-
ropy assumption for the transfer matrix of the constric-
tion is a simple but realistic model of the coupling be-
tween wide and narrow regions, which implies that all
N transverse modes in the wide regions (of width W) to
the left and right of the constriction (of width W0) are
equally coupled to each other (Szafer and Stone, 1989).
The isotropy assumption for the transfer matrices of the
disordered regions (of length L1 and L2) requires as-
pect ratios L1 /W ,L2 /W@1, corresponding to a wire ge-
ometry. As argued in the previous subsection, the geom-
etry of Fig. 22(a), with lengths L1 and L2 of disordered
wire to the left and right of the point contact, is equiva-
lent to the geometry of Fig. 22(b), with a length
L5L11L2 of disordered wire to one side only. We will
now argue that the constricted geometry of Fig. 22(b) is,

FIG. 22. Equivalence of constricted and unconstricted geom-
etries. (a) Sketch of a ballistic constriction (with conductance
N0G0) in a disordered wire (with mean free path l and N
transverse modes). (b) Constricted geometry with all disorder
at one side of the point contact, equivalent to (a) for isotropic
transfer matrices. (c) Unconstricted geometry, with mean free
path l/n and N0 transverse modes, equivalent to (a) and (b) for
n given by Eq. (231). After Beenakker and Melsen (1994).
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in turn, equivalent to the unconstricted geometry of Fig.
22(c), consisting of a disordered wire with N0 transverse
modes and mean free path l/n . The number N0 is deter-
mined by the conductance N0(2e2/h) of the point con-
tact. The fraction n is defined by

n5
bN0122b

bN122b
. (231)

The argument goes as follows. A ballistic point con-
tact has, to a good approximation, Tn51 (ln50) for
1<n<N0, and Tn50 (ln→`) for N011<n<N . (This
is a statement about transmission eigenvalues, not about
the transmission probabilities of individual modes,
which are all of order N0 /N .) The initial condition (230)
becomes

lim
L→0

P5 lim
L→`

)
n51

N0

d~ln! )
n5N011

N

d~ln2L!. (232)

The closed channels N011<n<N are irrelevant for
conduction and can be integrated out. The reduced dis-
tribution function P̃ (l1 ,l2 , . . . ,lN0

,L) is defined by

P̃ 5E
0

`

dlN011E
0

`

dlN012•••E
0

`

dlNP (233)

and satisfies the following evolution equation plus initial
condition [see Eqs. (145) and (232)]:

l

2
~bN122b!

]P̃

]L
5 (

n51

N0 ]

]ln
ln~11ln!J̃

]

]ln

P̃

J̃
,

(234a

J̃ 5)
i51

N0

)
j5i11

N0

ul j2l iub, (234b)

P̃ ~l1 ,l2 , . . . lN0
,0!5 )

n51

N0

d~ln!. (234c)

We now compare with the unconstricted geometry of
Fig. 22(c), with N0 modes and mean free path l/n . The
probability distribution Pn(l1 ,l2 , . . . ,lN0

,L) for this
geometry is determined by

l

2n
~bN0122b!

]Pn

]L
5 (

n51

N0 ]

]ln
ln~11ln!J̃

]

]ln

Pn

J̃
,

(235a)

Pn~l1 ,l2 , . . . ,lN0
,0!5 )

n51

N0

d~ln!. (235b)

Comparison of Eqs. (234) and (235) shows that P̃ 5Pn if
n is given by Eq. (231).

The mapping between constricted and unconstricted
geometries allows us to obtain the effect of the point
contact on the conductance directly from the results for
disordered wires in Sec. III.B.1. Let us first assume that
the individual conductances of the point contact and of
the disordered region are both @G0, or in other words,
that N0 and N/s are both @1. (Recall the definitions
G052e2/h , s5L/l .) Substitution of N→N0 and s→ns
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in Eqs. (176) and (177) yields the average conductance
^G/G0&5Gseries1dG , with Gseries5G0(N0

211s/N)21

and

dG/G05~122/b!F1
3S N0s/N

11N0s/N D 3

1S 12
N0

N D N0s/N

~11N0s/N !2G . (236)

Similarly, from Eq. (178) one finds the variance

Var G/G05
2
15

b21S 12
116N0s/N

~11N0s/N !6D . (237)

The term Gseries is the series addition of the Sharvin
conductance G0N0 of the ballistic point contact and the
Drude conductance G0N/s of the disordered region.
The term dG is the weak-localization correction to the
classical series conductance. This term depends on the
ratio N0s/N of the Sharvin and Drude conductances as
well as on the ratio N0 /N of the width of the point
contact and the wide regions. The variance Var G of the
conductance depends only on N0s/N . In Fig. 23 we have
plotted dG and (Var G)1/2 as a function of N0s/N . (The
limit N0 /N→0 is assumed for dG .) For large N0s/N the
curves tend to dG`5 1

3(122/b)G0 and Var G`

= 2
15b

21G0
2, which are the results (179) for weak localiza-

tion and universal conductance fluctuations in a wire ge-
ometry without a point contact. These values are univer-
sal to the extent that they are independent of wire
length and mean free path. The presence of a point con-
tact breaks this universality, but only if the Sharvin con-
ductance is smaller than the Drude conductance. For
N0.N/s the universality is quickly restored. For
N0,N/s both dG and Var G are suppressed by the
presence of the point contact,

dG/G05~122/b!N0s/N1O~N0s/N !2, (238)

FIG. 23. Suppression by the point contact of the weak-
localization correction dG and the root-mean-square conduc-
tance fluctuations rms G5(Var G)1/2. The dashed and solid
curves are from Eqs. (236) and (237), respectively. [The limit
N0 /N→0 is taken in Eq. (236).] For N0L/Nl@1 the curves
approach the values dG` and rms G` of an unconstricted dis-
ordered wire (normalized to unity in the plot). After Beenak-
ker and Melsen (1994).
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Var G/G052b21~N0s/N !21O~N0s/N !3, (239)

as first noticed by Maslov, Barnes, and Kirczenow
(1993a, 1993b) in a study of the quasiballistic regime
l@L . For a d-dimensional point contact,
N0 } W0

d21, so that Eq. (239) implies that the root-mean-
square fluctuations scale as rms G } W0

d21 with the point
contact width. A classical argument of series addition of
a nonfluctuating contact resistance with a fluctuating
background would instead imply the much stronger sup-
pression rmsG}W0

2d22.
Holweg et al. (1991) have measured magnetoconduc-

tance fluctuations of a three-dimensional point contact
between two Ag films. The mean free path
l.2002240 nm is comparable to the thickness of the
metal films and much larger than the diameter
W0.10230 nm of the point contact. The mean separa-
tion of the impurities d imp.(llF)1/3.3 nm is, however,
considerably smaller than W0. The root-mean-square
conductance fluctuations in the experiment are much
larger than predicted by Eq. (239) and moreover scale
linearly rather than quadratically with W0. Kozub, Caro,
and Holweg (1996) have argued that the presence of
impurities near the opening of the constriction leads to a
substantial enhancement of the conductance fluctuations
and to a linear W0 dependence, in agreement with their
experiment. Possibly, experiments on point contacts in a
two-dimensional electron gas (with much larger lF and
l) can reach the regime d imp@W0, where Eq. (239) is
expected to apply. In a numerical simulation of such a
system, Maslov, Barnes, and Kirczenow (1993a, 1993b)
have indeed obtained results consistent with Eq. (239).22

3. Single-channel limit

Equations (236) and (237) require N0@1, which
means that the width W0 of the point contact should be
much greater than the Fermi wavelength lF . Such a
point contact is called ‘‘classical.’’ A ‘‘quantum’’ point
contact has W0 comparable to lF , so that N0 is a small
integer. Let us consider the single-channel limit N051.
We assume N@1, hence n52/bN . The evolution equa-
tion for the distribution P̃ (l1 ,L) of the single transmit-
ted channel is given by Eq. (146) with a rescaled mean
free path (l→ 1

2bNl) and a ballistic initial condition,

1
2 bNl

]P̃

]L
5

]

]l1
l1~11l1!

]

]l1
P̃ , (240a)

P̃ ~l1,0!5d~l1!. (240b)

The solution is (Gertsenshtein and Vasil’ev, 1959; Abri-
kosov, 1981)

22 Maslov, Barnes, and Kirczenow (1993a, 1993b) consider a
geometry as in Fig. 22(a), with L15L25

1
2L , and relate the

variance Var G of the whole system to the variance Var G1 of
one of the two disordered segments of length 1

2L . Their result
is Var G5(N0s/N)2(l/L1)2Var G1, in agreement with Eq.
(239) [since Var G152b21(L1 /l)2 for L1!l].
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P̃ ~l1 ,L !5~2p!21/2~bNl/2L !3/2exp~2L/2bNl !

3E
arcosh~112l1!

`

du
uexp~2u2bNl/8L !

~coshu2122l1!1/2 .

(241)

[This solution is the single-channel limit of Eq. (165),
with an integral representation for the Legendre func-
tion.] From Eq. (241) we obtain immediately the distri-
bution P(dR) of the excess resistance
dR51/G21/G05l1 /G0. In the metallic regime
Nl/L@1 the integral over u can be carried out analyti-
cally, with the result (Beenakker and Melsen, 1994)

P~dR !5
G0bNl

2L
expS 2

G0bNl

2L
dR D , dR>0. (242)

The width 2L/bNl of this exponential distribution de-
creases by a factor of two upon breaking time-reversal
symmetry in the absence of spin-orbit scattering
(b51→b52).

A comparison with numerical simulations is shown in
Fig. 24 for the Anderson model on a two-dimensional
square lattice, as described in Sec. III.C.1. The single-
channel point contact is introduced by assigning a large
potential energy to sites at one end of the lattice, so as to
create a nearly impenetrable barrier with a narrow
opening in the center. The Fermi energy is chosen at
EF51.5 U0 from the band bottom. Two geometries are
considered for the wide disordered region: a square ge-
ometry (L5W547a , corresponding to N520), and a
rectangular geometry (L52W547a , corresponding to
N510). The mean free path l which appears in the

FIG. 24. Probability distribution P of the excess resistance
dR5R2h/2e2 of a single-channel point contact in series with a
disordered region (square: N520, L5W58.3 l ; rectangle:
N510, L52W58.3 l). The histograms are the numerical data
(averaged over 104 impurity configurations), and the smooth
curves are computed from Eq. (241) (with dR5l1h/2e2). Solid
curves are for zero magnetic field (b51), dotted curves for a
flux of 50 h/e through the disordered region (b52). For clar-
ity, the curves for the square geometry are offset vertically by
0.25. After Beenakker and Melsen (1994).
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DMPK equation is computed numerically from
Tr tdtd

†5N(11L/l)21, with td the transmission matrix of
the wide disordered region without the constriction. [We
recall that this mean free path differs by a numerical
coefficient from the transport mean free path of kinetic
theory, cf. Eqs. (152) and (176).] The results for
P(dR) plotted in Fig. 24 are for L/l58.3 (disorder
strength Ud53U0). To compare the cases b51 and
b52, the simulations are repeated in the presence of a
magnetic flux of 50 h/e through the disordered region.
The numerical results (histograms) are seen to be in
good agreement with the theoretical predictions
(smooth curves), without any adjustable parameters.
The theory agrees comparably well with the simulations
for the square and rectangular geometries, which shows
that the condition L@W for the validity of the DMPK
equation can be relaxed to a considerable extent.

An experimental observation of the exponential dis-
tribution of the excess resistance in a quantum point
contact is still lacking.

4. Double-barrier junction

As a second application, we consider the case that the
obstacles in the disordered wire are formed by two tun-
nel barriers (Melsen and Beenakker, 1995). The geom-
etry is shown in the inset of Fig. 25. A disordered region
(length L , mean free path l , width W) is separated from
ideal N-mode leads by two tunnel barriers, with conduc-
tances NG iG0 (i51,2). We assume NG i@1, so that the
transmission in the absence of disorder occurs via a large
number of overlapping resonances. (For the opposite re-
gime of isolated transmission resonances, see Fertig and
Das Sarma, 1989; Leo and MacDonald, 1990; Berkovits
and Feng, 1992; Lerner and Raikh, 1992.) Two types of
disorder can play a role in a double-barrier junction,
interface roughness at the barriers and impurities be-

FIG. 25. Weak-localization correction dG to the average con-
ductance and root-mean-square fluctuations rms G (in units of
G052e2/h), computed from Eqs. (249) and (250) for b51.
The arrows give the limit GL/l@1. The inset shows the geom-
etry of the double-barrier junction (the disordered region is
dotted). The curves plotted in the figure are for a symmetric
junction, G15G2[G!1. After Melsen and Beenakker (1995).
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tween the barriers. Interface roughness leads to mesos-
copic (sample-to-sample) fluctuations in the conduc-
tance even in the absence of any phase coherence,
because the tunnel probability G of a single barrier de-
pends strongly on its thickness. Conductance fluctua-
tions for a single rough tunnel barrier have been studied
by Raikh and Ruzin (1991). Here we discuss the case of
impurity scattering in the absence of interface rough-
ness. Phase coherence is then essential.

We first assume that the disorder is weak enough that
its effect on the average conductance is negligibly small
(l@GL), but strong enough to fully mix the transverse
modes in the interbarrier region (l ,W!L/G). We may
then describe the disorder-induced mode mixing by a
random N3N unitary matrix V , distributed according
to the circular ensemble. The transmission eigenvalues
Tn are related to the eigenvalues exp(ifn) of V by

Tn5~a1bcosfn!21, (243a)

a5@11~12G1!~12G2!#/G1G2 , (243b)

b52A~12G1!~12G2!/G1G2 . (243c)

The statistics of the conductance G5G0(nTn follows
from the probability distribution (67) of the fn’s in the
circular ensemble.

We seek the average ^A& and variance Var A of lin-
ear statistics A5(n51

N a(fn) on the eigenphases fn .
Since in the circular ensemble the fn’s are uniformly
distributed in (0,2p), the average is exactly equal to

^A&5
N

2pE0

2p

dfa~f!. (244)

An exact expression for the variance can also be given
(Mehta, 1991) but is cumbersome to evaluate. For
N@1 we can use a formula analogous to Eq. (58) (For-
rester, 1995; Melsen and Beenakker, 1995):

Var A5
1

bp2 (
n51

`

nuanu21O~N21!, (245a)

an5E
0

2p

dfeinfa~f!. (245b)

For the conductance we substitute a(f)5(a
1bcosf)21, with Fourier coefficients an52p(a2

2b2)21/2b2n@(a22b2)1/22a#n. The results are (assum-
ing G i!1)

^G/G0&5N~1/G111/G2!21, (246)

Var G/G05
4
b

G1
2G2

2

~G11G2!4 . (247)

Equation (246) for the average conductance is what
one would expect from classical addition of the resis-
tances (NG iG0)21 of the individual barriers. Each mem-
ber of the ensemble contains a different set of overlap-
ping transmission resonances, and the ensemble average
removes any trace of resonant tunneling in ^G&. Equa-
tion (247) for the conductance fluctuations tells us that
Var G becomes completely independent of N in the
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limit N→` . [More precisely, corrections to Eq. (247)
are of order ^G/G0&

21, which is !1 if NG i@1.] The
variance reaches a G-independent maximum for two
equal barriers: Var G/G05 1

4b
21, if G15G2. A smaller

numerical coefficient ( 3
16 instead of 1

4) has been obtained
by Fal’ko (1995), using a different method. The origin of
the difference is not yet understood.

We now relax the assumption l@GL to include the
case that the impurity scattering is sufficiently strong to
affect the average conductance. The L dependence of
the distribution of the transmission eigenvalues is gov-
erned by the DMPK equation, with the circular en-
semble as initial condition. The mean and variance of
the conductance can be computed using the method of
moments described in Sec. III.B.1. The results for
G15G2[G!1 are

^G&5NG0~s11/G111/G2!211dG , (248)

dG/G05
1
3

~122/b!2
122/b

~21Gs !3S 8
3

12Gs D , (249)

Var G/G05
2

15b
1

4
b~21Gs !6S G2s21

8
5

Gs1
28
15D .

(250)

Equations (249) and (250) are plotted in Fig. 25, for the
case b51. We see that impurity scattering leads to the
appearance of a weak-localization effect on the average
conductance. The conductance fluctuations become uni-
versal (i.e., independent of G) if L exceeds a length
l/G , which is parametrically greater than the mean free
path. A similar conclusion has been reached by Iida,
Weidenmüller, and Zuk (1990a, 1990b), who used the
supersymmetry technique to study the conductance fluc-
tuations of a chain of disordered grains as a function of
the coupling strength to two electron reservoirs. Their
model [which has also been studied by Argaman (1995,
1996) using a semiclassical method] is qualitatively simi-
lar but different in detail from the homogeneously dis-
ordered conductor considered here (cf. Sec. I.E).

Experimentally, the effects of disorder on tunneling
through double-barrier junctions have been studied
mainly in semiconductor quantum wells, where the reso-
nances are widely separated because of the small barrier
separation L relative to the Fermi wavelength lF . Con-
ductance fluctuations of order e2/h in such a structure
have been observed by Ghenim et al. (1996). The results
presented above apply to the opposite regime of
strongly overlapping resonances, relevant to metal struc-
tures (where lF is very short, comparable to the inter-
atomic separation), or to tunneling in the plane of a two-
dimensional electron gas (where L can be quite long,
because of the large phase-coherence length).

E. Shot noise

The shot-noise power P , defined in Eq. (34), contains
information on temporal correlations in the current that
are not contained in the conductance. A familiar ex-
ample is a tunnel diode, where P52eĪ [PPoisson , with
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Ī the time-averaged current. This tells us that the elec-
trons traverse the conductor in completely uncorrelated
fashion, as in a Poisson process. In a degenerate electron
gas the shot noise can be smaller than PPoisson , due to
correlations in the electron transmission imposed by the
Pauli principle (Kulik and Omel’yanchuk, 1984; Khlus,
1987; Lesovik, 1989; Büttiker, 1990, 1992; Yurke and
Kochanski, 1990; Martin and Landauer, 1992). Here we
consider the sub-Poissonian shot noise in a metallic dif-
fusive conductor, relevant for random-matrix theory.
For reviews specifically devoted to shot noise, see Mar-
tin (1994) and De Jong and Beenakker (1997).

Recall is the relationship (35) between the zero-
temperature, zero-frequency shot-noise power P and
the transmission eigenvalues Tn . One sees that
P52eVG5PPoisson for a conductor, where all Tn!1
(such as a high tunnel barrier). However, if some Tn are
near 1 (open channels), then the shot noise is reduced
below PPoisson . In the metallic diffusive regime
(l!L!Nl) the variables xn have the uniform density
(191). This means that the transmission eigenvalues
Tn51/cosh2xn have a bimodal distribution,

r0~T !5
Nl

2L

1

TA12T
, e22L/l&T<1, (251)

with a peak at unit transmission and a peak at exponen-
tially small transmission (Dorokhov, 1984; Imry, 1986a;
Pendry, MacKinnon, and Roberts, 1992). Averaging Eq.
(35) with the density (251) yields

^P&5P0E
0

1
dT T~12T !r0~T !5P0

Nl

3L
5

1
3

PPoisson ,

(252)

where we have used P0Nl/L52eV^G&5PPoisson . The
bimodal distribution of the transmission eigenvalues
causes a one-third suppression of the shot noise
(Beenakker and Büttiker, 1992).

Although the derivation of the eigenvalue density in
Sec. III.B.3 is based on the DMPK equation, and hence
requires a wire geometry, its validity is independent of
the dimensionality of the conductor (Altshuler, Levitov,
and Yakovets, 1994; Nazarov, 1994a).23 Furthermore, al-
though the concept of a transmission eigenvalue re-
quires phase coherence, this is not required for the one-
third suppression. An alternative derivation exists that
starts from a semiclassical kinetic equation in which the
Pauli principle is accounted for but the electron motion
is treated classically (Nagaev, 1992; De Jong and
Beenakker, 1995, 1996). The one-third suppression thus
applies regardless of whether L is long or short com-
pared to the phase-coherence length lf .

Loss of phase coherence is one consequence of
electron-electron interactions. Another consequence is

23Corrections to Eq. (252) from the weak-localization effect
do depend on the dimensionality. In a wire geometry the
weak-localization correction is dP52

4
45P0 in zero magnetic

field (De Jong and Beenakker, 1992).
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thermalization of the distribution of the electrons among
the available energy levels. The thermalization length
l th is generally much greater than lf . [Thermalization
requires interactions with large transfer of energy, while
a small transfer of energy is sufficient to destroy phase
coherence (Altshuler and Aronov, 1985; Imry, 1996).] If
L becomes greater than l th the shot-noise power in-
creases slightly, from P5 1

3PPoisson50.67 eĪ to P5 1
4

A3 PPoisson50.87 eĪ (Kozub and Rudin, 1995; Nagaev,
1995; Steinbach, Martinis, and Devoret, 1995; De Jong
and Beenakker, 1996). On longer length scales L.l in ,
inelastic electron-phonon scattering equilibrates the
electron gas with the lattice, thereby averaging the shot
noise out to zero.

The length-scale dependence of the shot-noise power
has been studied experimentally by Steinbach, Martinis,
and Devoret (1996) on Ag thin-film wires of different
lengths. (Sub-Poissonian shot noise had earlier been
measured by Liefrink et al. (1994), on a narrow two-
dimensional electron gas in a GaAs/AlGaAs hetero-
structure.) The data for L51 mm and 30 mm at tem-
perature T550 mK is shown in Fig. 26. The noise power
is linear in the average current for Ī *50 mA. (The satu-
ration at smaller currents is due to the residual thermal
noise P thermal54kBTG .) The ratio P/2eĪ is close to
1
4A3 (dashed line) for the 30 mm wire, indicating that this
length is in the range l th!L!l in . For the 1 mm wire the
slope is clearly smaller than in the longer wire but still
above the 1

3 prediction for L!l th — presumably because
L is not quite small enough in the experiment.

FIG. 26. Current dependence of the noise power at 50 mK in
two thin-film Ag wires of different length L . The noise power
is linear in the current, indicating shot noise, except at the
lowest currents, where thermal noise P thermal54kBTG takes
over. (The conductance G50.76 V21 for L51 mm and
1.47 V21 for L530 mm.) A current- and temperature-
independent background noise has been subtracted from the
data. The lines indicate the two theoretical predictions
P/PPoisson5

1
3 for short wires (solid) and P/PPoisson5

1
4A3 for

long wires (dashed). After Steinbach, Martinis, and Devoret
(1996).
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IV. NORMAL-METAL–SUPERCONDUCTOR JUNCTIONS

A. Scattering theory

1. Andreev reflection

At the interface between a normal metal and a super-
conductor, dissipative electrical current is converted into
dissipationless supercurrent. The mechanism for this
conversion was discovered in 1964 by Andreev—an elec-
tron excitation slightly above the Fermi level in the nor-
mal metal is reflected at the interface as a hole excita-
tion slightly below the Fermi level (see Fig. 27). The
missing charge of 2e is removed as a Cooper pair. The
reflected hole has (approximately) the same momentum
as the incident electron, but with a velocity in the oppo-
site direction. (The two momenta are precisely equal at
the Fermi level.) This curious scattering process is
known as retroreflection or Andreev reflection.

The early theoretical work on the conductance of a
normal-metal–superconductor (NS) junction treats the
dynamics of the quasiparticle excitations semiclassically,
as is appropriate for macroscopic junctions. Phase co-
herence of the electrons and the Andreev-reflected
holes is ignored. Interest in ‘‘mesoscopic’’ NS junctions,
where phase coherence plays an important role, is a re-
cent development. Significant advances have been made
in our understanding of quantum-interference effects
due to phase-coherent Andreev reflection. Much of the
motivation has come from the technological advances in
the fabrication of a highly transparent contact between a
superconducting film and the two-dimensional electron
gas in a semiconductor heterostructure. The advantages
of a two-dimensional electron gas over a metal are the
large Fermi wavelength, large mean free path, and the
possibility to confine the electrons electrostatically by
means of gate electrodes. Andreev reflection requires
relatively transparent NS interfaces. Semiconductor-
superconductor junctions are convenient, since the

FIG. 27. Normal reflection by an insulator (I) versus Andreev
reflection by a superconductor (S) of an electron excitation in
a normal metal (N) near the Fermi level. Normal reflection
(left) conserves charge but does not conserve momentum. An-
dreev reflection (right) conserves momentum but does not
conserve charge: The electron (e) is reflected as a hole (h) with
the same momentum and opposite velocity. The missing
charge of 2e is absorbed as a Cooper pair by the superconduct-
ing condensate.
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Schottky barrier at the interface is much more transpar-
ent than a typical dielectric tunnel barrier. The techno-
logical effort is directed towards making the interface as
transparent as possible.

The random-matrix theory of phase-coherent An-
dreev reflection is based on a scattering formulation in
which the conductance GNS of the NS junction is related
to the transmission matrix t in the normal state. In the
limit of zero temperature, zero voltage, and zero mag-
netic field, the relationship is (Beenakker, 1992a)

GNS5
4e2

h (
n51

N Tn
2

~22Tn!2 , (253)

where the transmission eigenvalue Tn is an eigenvalue
of the matrix product tt†. The same numbers Tn
(n51,2, . . . ,N) determine the conductance GN in the
normal state, according to the Landauer formula (33).
(In this section we append the subscript N to the
normal-state conductance, to help distinguish it from
GNS .) The fact that the same eigenvalues determine
both GN and GNS means that one can use the same
random-matrix ensembles as in the normal state. This is
a substantial technical and conceptual simplification.

Let us discuss how Eq. (253) is obtained.

2. Bogoliubov–De Gennes equation

The model considered is illustrated in Fig. 28. It con-
sists of a disordered normal region (shaded) adjacent to
a superconductor (S). The disordered region may also
contain a geometrical constriction or a tunnel barrier.
To obtain a well-defined scattering problem we insert
ideal (impurity-free) normal leads N1 and N2 to the left
and right of the disordered region. The NS interface is
located at x50. We assume that the only scattering in
the superconductor consists of Andreev reflection at the
NS interface, i.e., we consider the case that the disorder
is contained entirely within the normal region. The spa-
tial separation of Andreev and normal scattering is the
key simplification that allows us to relate the conduc-
tance directly to the normal-state scattering matrix. The
model is directly applicable to a superconductor in the
clean limit (mean free path in S large compared to the
superconducting coherence length j), or to a point-
contact junction (formed by a constriction that is narrow

FIG. 28. Normal-metal–superconductor (NS) junction contain-
ing a disordered normal region (shaded). Scattering states c in
the two normal leads N1 and N2 are indicated schematically.
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compared to j). In both cases the contribution of scat-
tering within the superconductor to the junction resis-
tance can be neglected.

The scattering states at energy « are eigenfunctions of
an equation called the Bogoliubov–De Gennes equation
(De Gennes, 1966)—although historically it made its
first appearance in a paper by Andreev (1964). This
equation has the form of two Schrödinger equations for
electron and hole wave functions u(rW) and v(rW),
coupled by the pair potential D(rW):

SH0 D

D* 2H0*
D S u

v D 5«S u

v D . (254)

Here H0 is the single-electron Hamiltonian, which we
assume to be independent of the electron spin. (We will
include spin-orbit scattering later.) The excitation en-
ergy « is measured relative to the Fermi energy EF . To
simplify construction of the scattering basis we assume
that the magnetic field BW (in the z direction) vanishes
outside the disordered region.

The pair potential in the bulk of the superconductor
(x@j) has amplitude D0 and phase f . The spatial de-
pendence of D(rW) near the NS interface is determined
by the self consistency relation

D~rW !5g~rW ! (
«.0

v* ~rW !u~rW !@122f~«!# , (255)

where the sum is over all states with positive
eigenvalue,24 and f(«)5@11exp(«/kBT)#21 is the Fermi
function. The coefficient g is the interaction constant of
the BCS theory of superconductivity. At an NS inter-
face, g drops abruptly (over atomic distances) to zero, in
the assumed absence of any pairing interaction in the
normal region. Therefore, D(rW)[0 for x,0. At the su-
perconducting side of the NS interface, D(rW) recovers its
bulk value D0eif only at some distance from the inter-
face. We will neglect the suppression of D(rW) on ap-
proaching the NS interface and use the step-function
model

D~rW !5D0eifu~x !. (256)

This model is also referred to in the literature as a ‘‘rigid
boundary condition.’’ Likharev (1979) discusses in detail
the conditions for its validity. If the width W of the NS
junction is small compared to j , the nonuniformities in
D(rW) extend only over a distance of order W from the
junction (because of ‘‘geometrical dilution’’ of the influ-
ence of the narrow junction in the wide superconduct-
or). Since nonuniformities on length scales !j do not
affect the dynamics of the quasiparticles, these can be
neglected, and the step-function model holds. A point
contact or microbridge belongs in general to this class of
junctions. Alternatively, the step-function model also
holds for a wide junction if the resistivity of the junction

24A cutoff at \vD , with vD the Debye frequency, has to be
introduced as usual in the BCS theory.



777C. W. J. Beenakker: Random-matrix theory of quantum transport
region is much bigger than the resistivity of the bulk
superconductor. A semiconductor-superconductor junc-
tion is typically in this second category. Note that both
cases are consistent with our assumption that the disor-
der is contained entirely within the normal region.

It is worth emphasizing that the absence of a pairing
interaction in the normal region @g(rW)[0 for x,0] im-
plies a vanishing pair potential D(rW), according to Eq.
(255), but does not imply a vanishing order parameter
C(rW), which is given by

C~rW !5 (
«.0

v* ~rW !u~rW !@122f~«!# . (257)

Phase coherence between the electron and hole wave
functions u and v leads to C(rW) Þ 0 for x,0. The term
‘‘proximity effect’’ can therefore mean two different
things. One is the suppression of the pair potential D at
the superconducting side of the NS interface. This is a
small effect that we neglect. The other is the induction
of a nonzero order parameter C at the normal side of
the NS interface. This effect is fully included, even
though C does not appear explicitly in the expressions
which follow. The reason is that the order parameter
quantifies the degree of phase coherence between elec-
trons and holes but does not itself affect the dynamics of
the quasiparticles. [The Bogoliubov–De Gennes equa-
tion (254) contains D not C .]

3. Scattering formula for the conductance

We now construct a basis for the scattering matrix. In
the normal lead N2 the eigenfunctions of the
Bogoliubov–De Gennes equation (254) can be written in
the form

cn ,e
6 ~N2!5S 1

0 DFn~y ,z !exp~6ikn
ex !, (258a)

cn ,h
6 ~N2!5S 0

1 DFn~y ,z !exp~6ikn
hx !, (258b)

where the wave numbers kn
e and kn

h are given by

kn
e,h[~2m/\2!1/2~EF2En1se,h«!1/2, (259)

and we have defined se[1, sh[21. The labels e and h
indicate the electron or hole character of the wave func-
tion. The index n labels the modes, Fn(y ,z) is the trans-
verse wave function of the nth mode and En its thresh-
old energy. The Fn’s are normalized such that each
wave function in the basis (258) carries the same amount
of quasiparticle current. The eigenfunctions in lead N1
are chosen similarly.

A wave incident on the disordered normal region is
described in the basis (258) by a vector of coefficients

cN
in[(ce

1~N1!,ce
2~N2!,ch

2~N1!,ch
1~N2!). (260)

(The mode index n has been suppressed for simplicity of
notation.) The reflected and transmitted wave has vector
of coefficients
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cN
out[(ce

2~N1!,ce
1~N2!,ch

1~N1!,ch
2~N2!). (261)

The scattering matrix sN of the normal region relates
these two vectors,

cN
out5sNcN

in . (262)

Because the normal region does not couple electrons
and holes, this matrix has the block-diagonal form

sN~«!5S s0~«! 0

0 s0~2«!* D ,

s0[S r11 t12

t21 r22
D . (263)

Here s0 is the unitary scattering matrix associated with
the single-electron Hamiltonian H0. The reflection and
transmission matrices r(«) and t(«) are N3N matrices,
N(«) being the number of propagating modes at energy
« . (We assume for simplicity that the number of modes
in leads N1 and N2 is the same.) The matrix s0 is unitary
(s0s0

†51) and satisfies the symmetry relation
s0(« ,B) ij5s0(« ,2B) ji .

For energies 0,«,D0 there are no propagating
modes in the superconductor. We can then define a scat-
tering matrix for Andreev reflection at the NS interface
that relates the vector of coefficients (ce

2(N2),ch
1(N2))

to (ce
1(N2),ch

2(N2)). The elements of this scattering ma-
trix can be obtained by matching the wave functions
(258) at x50 to the decaying solutions in S of the
Bogoliubov–De Gennes equation. If terms of order
D0 /EF are neglected (the so-called Andreev approxima-
tion), the result is simply

ce
2~N2!5a eifch

2~N2!, (264a)

ch
1~N2!5a e2ifce

1~N2!, (264b)

where a[exp@2iarccos(«/D0)# . Andreev reflection
transforms an electron mode into a hole mode, without
change of mode index. The transformation is accompa-
nied by a phase shift, which consists of two parts: (1) a
phase shift 2arccos(«/D0) due to the penetration of the
wave function into the superconductor; (2) a phase shift
equal to plus or minus the phase f of the pair potential
in the superconductor (plus for reflection from hole to
electron, minus for the reverse process).

We can combine the 2N linear relations of Eq. (264)
with the 4N relations of Eq. (262) to obtain a set of
2N linear relations between the incident wave in lead
N1 and the reflected wave in the same lead:

ce
2~N1!5seece

1~N1!1sehch
2~N1!, (265a)

ch
1~N1!5shece

1~N1!1shhch
2~N1!. (265b)

The four N3N matrices see , shh , seh , and she together
form the scattering matrix s of the whole system for
energies 0,«,D0. An electron incident in lead N1 is
reflected either as an electron (with scattering ampli-
tudes see) or as a hole (with scattering amplitudes she).
Similarly, the matrices shh and seh contain the scattering
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amplitudes for reflection of a hole as a hole or as an
electron. After some algebra we find for these matrices
the expressions

see~«!5r11~«!1a2t12~«!r22* ~2«!Met21~«!, (266a)

shh~«!5r11* ~2«!1a2t12* ~2«!r22~«!Mht21* ~2«!,
(266b)

seh~«!5a eift12~«!Mht21* ~2«!, (266c)

she~«!5a e2ift12* ~2«!Met21~«!, (266d)

where we have defined the matrices

Me[@12a2r22~«!r22* ~2«!#21, (267a)

Mh[@12a2r22* ~2«!r22~«!#21. (267b)

One can verify that the scattering matrix constructed
from these four submatrices satisfies unitarity (ss†

=1) and the symmetry relation s(« ,B ,f) ij
5s(« ,2B ,2f) ji , as required by quasiparticle-current
conservation and by time-reversal invariance, respec-
tively.

The differential conductance GNS of the NS junction
at zero temperature and subgap voltage V<D0 /e is
given by (Blonder, Tinkham, and Klapwijk, 1982; Lam-
bert, 1991; Takane and Ebisawa, 1992a)

GNS5G0Tr~12seesee
† 1sheshe

† !

52G0Tr sheshe
† 52G0Tr sehseh

† . (268)

(The second and third equalities follow from unitarity of
s .) The conductance quantum G052e2/h , the factor of
two being due to spin degeneracy. The scattering matrix
elements are to be evaluated at energy «5eV . We now
substitute Eq. (266c) into Eq. (268) and obtain the ex-
pression (Beenakker, 1992a)

GNS52G0Tr m~eV !m†~eV !, (269a)

m~«!5t12~«!@12a2r22* ~2«!r22~«!#21t21* ~2«!.
(269b)

The advantage of Eq. (269) over Eq. (268) is that it can
be evaluated with the same techniques developed for
quantum transport in the normal-state, since the only
input is the normal-state scattering matrix. The effects of
multiple Andreev reflections are fully incorporated by
the matrix inversion in Eq. (269b).

In the limit V→0 of linear response we only need the
scattering matrix elements at the Fermi level, i.e., at
«50. We will restrict ourselves to this limit in most of
what follows and omit the argument « . Note that
a52i for «50. In the absence of a magnetic field, the
Eq. (269) simplifies considerably. Since the scattering
matrix s0 of the normal region is symmetric for B50,
one has r22* 5r22

† and t21* 5t12
† . Equation (269) then takes

the form

GNS52G0Tr t12~11r22
† r22!

21t12
† t12~11r22

† r22!
21t12

†

52G0Tr(t12
† t12~22t12

† t12!
21)2. (270)
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In the second equality we have used the unitarity rela-
tion r22

† r221t12
† t1251. The trace (270) depends only on

the eigenvalues Tn (n51,2, . . . ,N) of the transmission
matrix product t12

† t12 . We thus obtain the relation be-
tween the conductance and the transmission eigenvalues
given in Eq. (253). This relation holds for an arbitrary
transmission matrix t , i.e., for arbitrary disorder poten-
tial. It is the multichannel generalization of a formula
first obtained by Blonder, Tinkham, and Klapwijk
(1982) (and subsequently by Shelankov, 1984, and
Za�tsev, 1984) for the single-channel case (appropriate
for a geometry such as a planar tunnel barrier, where the
different scattering channels are uncoupled).

Slevin, Pichard, and Mello (1996; Altland and Zirn-
bauer, 1996b; Brouwer and Beenakker, 1996a) have
considered the modifications required by the inclusion
of spin-orbit scattering. The scattering matrix elements
are then quaternion numbers. The complex conjugate
Q* and the Hermitian conjugate Q† of a matrix Q with
quaternion elements Qnm5anm11ibnmsx1icnmsy
1idnmsz have matrix elements

Qnm* 5anm* 11ibnm* sx1icnm* sy1idnm* sz , (271)

Qnm
† 5amn* 12ibmn* sx2icmn* sy2idmn* sz . (272)

Notice that the definition of the Hermitian conjugate of
the N3N quaternion matrix Q is the same as for the
corresponding 2N32N complex matrix, while the defi-
nition of the complex conjugate is different. The dual
QR of a quaternion matrix is defined by QR5(Q* )†,
which differs from the transpose of a complex matrix.
The trace of Q is defined by Tr Q5(nann , which is half
the trace of the corresponding 2N32N matrix. With
these definitions Eq. (269) remains valid in the presence
of spin-orbit scattering. What about Eq. (253)? In zero
magnetic field, s0 is a self-dual matrix: s05s0

R . Hence
r22* 5r22

† and t21* 5t12
† , which, combined with unitarity, im-

plies Eq. (270). The linear-response conductance in zero
magnetic field is therefore still given by Eq. (253).

In summary, the linear-response conductance of an
NS junction is a linear statistic on the transmission ei-
genvalues for b51 or 4, given by Eq. (253). For b52, or
for finite voltage, the more general Eq. (269) is required,
which is not a linear statistic.

B. Ideal normal-metal–superconductor interface

In this subsection we investigate the case of an ideal
(i.e., perfectly transparent) interface between the nor-
mal metal and the superconductor. The effect of a tun-
nel barrier at the NS interface will be considered in the
next subsection. The disordered normal region is sup-
posed to have a length L much greater than its width
W (see Fig. 6). We concentrate on the metallic diffusive
regime, in which L is greater than the mean free path
l for elastic impurity scattering but smaller than the lo-
calization length Nl .
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1. Average conductance

Let us begin by calculating the average conductance
of the junction, averaged over an ensemble of impurity
configurations (Beenakker, 1992a). According to Eq.
(253), this average is given in zero magnetic field by

^GNS&5
4e2

h E
0

1
dTr~T !

T2

~22T !2

5
4e2

h E
0

`

dxr~x !
1

cosh22x
, (273)

where in the second equality we have substituted the
parametrization T51/cosh2x introduced in Sec. I.C.1.
Equation (273) is to be compared with the equation for
the average conductance in the normal state,

^GN&5
2e2

h E
0

`

dxr~x !
1

cosh2x
, (274)

which follows from the Landauer formula (33). As we
discussed in Sec. III.B.3, the density r(x)5Nl/L
1O(N0) is uniform in the metallic diffusive regime, up
to weak-localization corrections. Ignoring these correc-
tions for the moment, we find that

^GNS&5
2e2

h

Nl

L
1O~N0!5^GN&. (275)

We conclude that, although GNS according to Eq. (253)
is of second order in the transmission eigenvalues Tn ,
the ensemble average ^GNS& is of first order in l/L . The
resolution of this paradox is that the Tn’s are not distrib-
uted uniformly but are either exponentially small or of
order unity (see Sec. III.E). Hence the average of Tn

2 is
of the same order as the average of Tn .

Differences between ^GNS& and ^GN& may appear be-
cause of several effects. One effect is that of a finite
temperature. Equation (273) holds if the thermal energy
kBT is much smaller than the Thouless energy
Ec5\D/L2 (with D the diffusion coefficient). Nazarov
and Stoof (1996; see also Golubov, Wilhelm, and Zaikin,
1997; Stoof and Nazarov, 1996a) have calculated that
^GNS& increases by 10% as kBT is raised to Ec and then
drops back to ^GN& at higher temperatures. Such a non-
monotonic temperature dependence was first predicted
for a point-contact geometry by Artemenko, Volkov,
and Za�tsev (1979). Experimental confirmation has been
provided by Charlat et al. (1996). Nazarov and Stoof
have also shown that at zero temperature, attractive (re-
pulsive) interactions between the quasiparticles in the
normal metal lead to an increase (decrease) of ^GNS&
relative to ^GN& .

Contact resistances are yet another effect. As dis-
cussed in Sec. III.B.1, the contact resistance in the nor-
mal state is h/(2Ne2), so that

2Ne2

h
^GN&215

L

l
11. (276)

In an NS junction, the contact resistance is voltage and
magnetic-field dependent (Brouwer and Beenakker,
1995b):
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2Ne2

h
^GNS&

215H L

l
11 if B50 and V50,

L

l
1

1
2

if B@Bc or V@Ec /e ,

(277)

where Bc5h/(eLW). At zero voltage and zero mag-
netic field the contact resistance of the NS junction is the
same as in the normal state. Application of either a volt-
age or a magnetic field reduces the contact resistance in
the NS junction by a factor of two. This leads to an
increase of ^GNS& by approximately (l/L)2Ne2/h . A nu-
merical simulation of this contact-resistance effect is
shown in Fig. 29, where the differential conductance at
zero magnetic field is plotted as a function of voltage.
For V@Ec /e , ^GNS& is larger than ^GN& because of the
difference in contact resistance. The nonmonotonic V
dependence at intermediate voltages, observed in the
simulation, has been studied theoretically by Yip (1995),
Volkov, Allsopp, and Lambert (1996), and Lesovik,
Fauchère, and Blatter (1997), and experimentally by
Charlat et al. (1996) and Poirier, Mailly, and Sanquer
(1996). (It is closely related to the nonmonotonic tem-
perature dependence mentioned above.) The difference
between ^GNS& and ^GN& at V50 is due to the term of
order N0 in Eq. (275). This represents the weak-
localization effect, which we discuss in the following sub-
section.

2. Weak localization

In the presence of time-reversal symmetry, i.e., for
b51 or 4, the weak-localization correction to the aver-
age conductance of the NS junction can be computed

FIG. 29. Numerical simulation of the voltage dependence of
the average differential conductance of a two-dimensional wire
(L/W54.8, N515, l/L50.31), in zero magnetic field. The
filled circles represent ^GNS&, for the case that the wire is con-
nected to a superconducting reservoir; the open circles repre-
sent the V-independent conductance ^GN& in the normal state.
At zero voltage, ^GNS& is smaller than ^GN& because of the
weak-localization effect. At high voltage, ^GNS& is larger than
^GN& because of the contact-resistance effect. After Brouwer
and Beenakker (1995b).
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from the O(N0) correction to the transmission-
eigenvalue density. We write ^GNS&5Nl/L1dGNS and
r(x)5Nl/L1dr(x). For b51 or 4, the O(N0) correc-
tions dGNS and dr(x) are related by

dGNS5
4e2

h E
0

`

dxdr~x !
1

cosh22x
, (278)

in view of Eq. (253) and the definition T51/cosh2x. The
function dr(x) is given by Eq. (194). Substitution into
Eq. (278) yields the result (Beenakker, 1994b; see also
Macêdo and Chalker, 1994; Takane and Otani, 1994;
Nazarov, 1995b)

dGNS5~122/b!S 22
8

p2D e2

h
, if b51,4. (279)

Equation (279) does not apply to b52, because then
Eq. (253) for GNS on which it is based does not hold.
Instead, one should start from the more general expres-
sion, Eq. (269). It turns out (Brouwer and Beenakker,
1995b) that breaking time-reversal symmetry is not suf-
ficient to suppress the weak-localization correction in an
NS junction but only reduces dGNS by about a factor of
two (see Table III). To achieve dGNS50 requires, in
addition to a magnetic field, a sufficiently large voltage
to break the degeneracy in energy between the electrons
(occupied states at energy eV above the Fermi level)
and the holes (empty states at energy eV below the
Fermi level). The electron-hole degeneracy is effectively
broken when eV exceeds the Thouless energy Ec . Weak
localization in an NS junction coexists with a magnetic
field, as long as eV!Ec .

All this is in marked contrast with weak localization in
the normal state, where dG vanishes in a magnetic field
regardless of the voltage. (In fact, dG is independent of
V on the scale of Ec .) In normal metals, weak localiza-
tion is understood (Bergmann, 1984; Khmel’nitski�,
1984) as constructive interference of pairs of time-
reversed Feynman paths [Fig. 30(a)]. This interference is
destroyed by a magnetic field. What kind of interfering
paths are responsible for weak localization in an NS
junction without time-reversal symmetry? The two sim-
plest interfering paths are shown in Fig. 30(b). Regard-
less of whether time-reversal symmetry is broken or not,
there is an exact cancellation of the phase shifts accumu-
lated by the electron and the hole that traverse the loop

TABLE III. Dependence of the weak-localization correction
dGNS of a normal-metal wire attached to a superconductor on
the presence or absence of time-reversal symmetry (TRS) and
electron-hole degeneracy (ehD). The results are for a metal
without spin-orbit scattering (Brouwer and Beenakker, 1995b).
In the presence of strong spin-orbit scattering each entry is to
be multiplied by 21/2 (Slevin, Pichard, and Mello, 1996). For
comparison, the corresponding result in the normal state is
listed in braces.

dGNS@e2/h# TRS no TRS

ehD 2218/p2 $22/3% 22/3 $0%
no ehD 24/3 $22/3% 0 $0%
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in the same direction. What remains is a phase shift of
p due to the double Andreev reflection. As a conse-
quence, the path with the double loop interferes destruc-
tively with the path without a loop, giving rise to a nega-
tive dGNS . In the diagrammatic perturbation theory of
weak localization (Anderson, Abrahams, and Ra-
makrishnan, 1979; Gor’kov, Larkin, and Khmel’nitski�,
1979), the two interfering time-reversed paths of Fig.
30(a) correspond to a diagram known as the cooperon.
The two paths involving Andreev reflection of Fig. 30(b)
correspond to a new type of diagram, first identified by
Altland and Zirnbauer (1996).

The interested reader is referred to Appendix D for
the calculation of dGNS . The results, summarized in
Table III, imply a universal B and V dependence of the
conductance of a NS microbridge. Raising first B and
then V leads to two subsequent increases of the conduc-
tance, while raising first V and then B leads first to a
decrease and then to an increase. The V dependence of
the differential conductance in a time-reversal
symmetry-breaking magnetic field is shown in Fig. 31.
The dots are numerical simulations of the Anderson
model, while the arrows indicate the increase of ^GNS&
by 2

3e
2/h predicted by Table III. The agreement is quite

satisfactory. The V dependence of the weak-localization
correction at zero B (or the B dependence at zero V) is
obscured by the B- and V-dependent contact resistance
of the previous subsection, which can only be neglected
if N(l/L)2!1. This condition is difficult to meet in nu-
merical simulations and possibly also in experiments.
This complication was not understood in earlier simula-
tions by Marmorkos, Beenakker, and Jalabert (1993)
and experiments by Lenssen et al. (1994).

3. Universal conductance fluctuations

So far we have considered the ensemble average
^GNS& of the conductance of the NS junction. In Fig. 32
we show results of numerical simulations by Marmor-

FIG. 30. Interfering Feynman paths of electrons e and holes
h . (a) Two paths interfering constructively in the presence of
time-reversal symmetry. (b) Two paths involving Andreev re-
flection (solid dot), which interfere destructively both in the
presence and absence of time-reversal symmetry. In the nor-
mal state, weak localization (meaning a negative correction to
the conductance of order e2/h) arises from the paths in (a). In
a normal-metal–superconducting junction, weak localization
coexists in the presence of a magnetic field because of the
paths in (b). After Brouwer and Beenakker (1995b).
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kos, Beenakker, and Jalabert (1993) for the sample-to-
sample fluctuations. A range of parameters L , W , l , and
N was used to collect this data, in the quasi-one-
dimensional, metallic, diffusive regime l,W,L,Nl .
The normal-state results are in accord with the predic-
tion (51) of the Altshuler-Lee-Stone theory of ‘‘univer-
sal conductance fluctuations.’’ As implied by the 1/b de-
pendence of Var GN , the variance is reduced by a factor

FIG. 31. Numerical simulation of the voltage dependence of
the average differential conductance of a two-dimensional wire
(L/W54.8, N515), for a magnetic flux of 6 h/e through the
disordered region. The filled circles represent ^GNS&, the open
circles ^GN&. The three sets of data points are for three differ-
ent values of the ratio l/L . The arrows indicate the theoreti-
cally predicted increase of GNS by 2

3e2/h , due to the weak-
localization effect. The contact-resistance effect is suppressed
by the magnetic field. After Brouwer and Beenakker (1995b).

FIG. 32. Numerical simulation of the variance of the conduc-
tance of a two-dimensional wire, for different values of the
average conductance (1 for B50; 3 for a flux of 10 h/e
through the disordered region). The labels N and NS indicate
the case that the wire connects two normal reservoirs or one
normal and one superconducting reservoir, respectively. Dot-
ted lines are the analytical results from Eqs. (51) and (280).
Note the absence of a factor-of-two reduction in Var GNS on
applying a magnetic field. After Marmorkos, Beenakker, and
Jalabert (1993).
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of two upon application of a time-reversal symmetry-
breaking magnetic field (see the two dotted lines in the
lower part of Fig. 32). The data for Var GNS at B50
shows approximately a fourfold increase over the nor-
mal state. For B Þ 0, the simulation shows that
Var GNS is insensitive to a magnetic field. In contrast to
the situation in the normal state, the theory for universal
conductance fluctuations in an NS junction is quite dif-
ferent for zero and for nonzero magnetic field, as we
now discuss.

In zero magnetic field, the conductance of the NS
junction is a linear statistic on the transmission eigenval-
ues, according to Eq. (253). The variance then follows
immediately from Eq. (185) for the variance of an arbi-
trary linear statistic in a wire geometry (Beenakker and
Rejaei, 1993; Chalker and Macêdo, 1993). Substitution
of a(x)5(4e2/h)cosh222x into Eq. (185) yields

Var GNS5
64
15S 12

45
p4Db21S e2

h D 2

54.30b21Var GN , if b51,4. (280)

A factor of four between Var GNS and Var GN was es-
timated by Takane and Ebisawa (1992b). [A diagram-
matic calculation by the same authors—(Takane and
Ebisawa, 1991)—gave a factor of six, presumably be-
cause only the dominant diagram was included.] The nu-
merical data in Fig. 32 is within 10% of the theoretical
prediction (280) for b51 (upper dotted line). Similar
numerical results for Var GNS in zero magnetic field
were obtained by Takane and Ebisawa (1992b) and Br-
uun, Hui, and Lambert (1994).

We conclude that the phenomenon of universal con-
ductance fluctuations in zero magnetic field is basically
the same for GN and GNS , because both quantities are
linear statistics for b51,4. If time-reversal symmetry is
broken by a magnetic field, the situation is qualitatively
different. For GN , breaking time-reversal symmetry
does not affect the universality of the fluctuations but
merely reduces the variance by a factor of two. No such
simple behavior is to be expected for GNS , since it is no
longer a linear statistic for b52. Indeed, the numerical
data of Fig. 32 demonstrate that Var GNS is unaffected
by a magnetic field, within the 10% statistical uncer-
tainty of the simulations. Is there some symmetry prin-
ciple hidden behind these findings?

Motivated by this question, a calculation of conduc-
tance fluctuations in an NS junction for b52 was carried
out by Brouwer and Beenakker (1995c). The result is
that Var GNS for a disordered wire attached to a super-
conductor is reduced by (2290/p4)2150.929 upon
breaking time-reversal symmetry (see Table IV). This
number is sufficiently close to 1 to be consistent with the
numerical simulations but not precisely equal to 1, so
that we can be sure that no rigorous symmetry principle
exists. Still, an approximate symmetry argument could
be found, as we now discuss. For simplicity, we first as-
sume zero voltage and no spin-orbit scattering.

The argument is based on Eq. (269) for the conduc-
tance GNS of an NS junction, in terms of the scattering
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matrix s0 of the normal region. We compare GNS with
the conductance GNN of an entirely normal metal con-
sisting of two segments in series (see Fig. 33). The first
segment has scattering matrix s0, the second segment is
the mirror image of the first. That is to say, the disorder
potential is specularly reflected, and the sign of the mag-
netic field is reversed. The system NN thus has a reflec-
tion symmetry (RS), both in the presence and absence
of time-reversal symmetry (TRS). The scattering matrix
of the second segment is Xs0X , where X is a 2N32N
matrix with all elements equal to zero, except for
Xi ,N1i5XN1i ,i51 (i51,2, . . . ,N). (The matrix X ex-
changes scattering states incident from left and right.)
The conductance GNN follows from the transmission
matrix through the two segments in series by means of
the Landauer formula,

GNN~RS!5G0 Tr m8m8†, m85t12@12~r22!
2#21t21 .

(281)

The difference between r* r in Eq. (269) and r2 in Eq.
(281) is crucial in the presence of time-reversal symme-
try, but not in its absence. Indeed, an explicit calculation
shows that, for broken time-reversal symmetry, the vari-
ance of Tr mm† equals that of Tr m8m8†, hence

TABLE IV. Dependence of the variance of the conductance
Var GNS of a normal-metal wire attached to a superconductor
on the presence or absence of time-reversal symmetry (TRS)
and electron-hole degeneracy (ehD). The results are for a
metal without spin-orbit scattering (Brouwer and Beenakker,
1995b). In the presence of strong spin-orbit scattering each
entry is to be multiplied by 1/4 (Brouwer and Beenakker,
1996a). For comparison, the corresponding result in the nor-
mal state is listed in braces.

Var GNS @e4/h2# TRS no TRS

ehD 64/152192/p4 $8/15% 32/15 $4/15%
no ehD 32/15 $8/15% 16/15 $4/15%

FIG. 33. Exchange of symmetries. (a) Schematic drawing of a
disordered normal metal (N) connected to a superconductor
(S), in a time-reversal symmetry-breaking magnetic field B . In
(b) the normal region is connected in series with its mirror
image. As indicated, the magnetic field B changes sign upon
reflection. The variance of the conductance fluctuations in (a)
is exactly four times the variance in (b). The variance in (b) is
exactly two times the variance in the absence of the reflection
symmetry. The exchange of time-reversal symmetry for reflec-
tion symmetry explains the insensitivity to a magnetic field of
the conductance fluctuations in a NS junction. After Brouwer
and Beenakker (1995c).
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Var GNS ~no TRS!54 Var GNN ~RS, no TRS!.
(282)

The system NN is special because it possesses a reflec-
tion symmetry. Breaking reflection symmetry amounts
to the replacement of the mirror-imaged segment by a
different segment, with scattering matrix s08 that is inde-
pendent of s0 but drawn from the same ensemble. This
reduces the variance of the conductance fluctuations by
a factor of two, regardless of whether time-reversal sym-
metry is present or not,

Var GNN~RS!52 Var GNN~no RS!. (283)

One may check this relation by an explicit calculation,
but it is intuitively obvious if one considers that the
eigenstates separate into even and odd states that fluc-
tuate independently. Since breaking time-reversal sym-
metry by itself reduces the variance of GNN by a factor
of two, we may write

Var GNN~RS, no TRS!5Var GNN~TRS, no RS!.
(284)

Equations (282)–(284) are exact, for any distribution of
the scattering matrix that depends only on the transmis-
sion eigenvalues. We need one more relationship, which
is approximate and holds only for the case of a disor-
dered wire,

Var GNS~TRS!'4 Var GNN~TRS, no RS!. (285)

Equation (285) is approximate because the correct coef-
ficient according to Eq. (280) is 4.3 and not 4. Taken
together, Eqs. (282)–(285) imply the approximate rela-
tionship Var GNS(TRS)'Var GNS(no TRS).

One can thus understand the insensitivity of the con-
ductance fluctuations to a magnetic field as an exchange
of symmetries: breaking time-reversal symmetry intro-
duces an approximate reflection symmetry into the
structure of the scattering matrix. This reflection sym-
metry compensates the reduction of the conductance
fluctuations due to breaking of time-reversal symmetry
and explains the anomalous insensitivity of the fluctua-
tions to a magnetic field.

We conclude this subsection by mentioning the effects
of a voltage and of spin-orbit scattering (Brouwer and
Beenakker, 1996a). If electron-hole degeneracy (ehD) is
broken by a voltage V@Ec /e , then the NS junction is
equivalent to the system NN without reflection symme-
try:

Var GNS~no ehD!54 Var GNN~no RS!. (286)

This relationship holds regardless of whether time-
reversal symmetry is broken or not (see Table IV). Con-
cerning spin-orbit scattering, we know that Var GN is
four times smaller with spin-orbit scattering than with-
out, either because 1/b51/4 instead of 1, or because
G0

25(e2/h)2 instead of (2e2/h)2 (see Sec. III.B.1). The
same factor of four applies to Var GNS because the re-
lationships between the systems NS and NN, Eqs. (282)–
(286), hold both with and without spin-orbit scattering.
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C. Normal-metal–superconductor junction containing a
tunnel barrier

Although the case of an ideal NS interface, considered
in the previous subsection, is of considerable conceptual
importance, it is more common in experiments to have a
high potential barrier at the interface between the nor-
mal metal and the superconductor. The resulting inter-
play between normal and Andreev reflections causes a
new quantum-interference effect on the conductance, as
was first appreciated by Van Wees et al. (1992). The ef-
fect, now known as reflectionless tunneling, was discov-
ered in 1991 by Kastalsky et al., as a large and narrow
peak in the differential conductance of a Nb-InGaAs
junction. We reproduce their data in Fig. 34. There ex-
ists similar data from many other groups (Agraı̈t, Rod-
rigo, and Vieira, 1992; Mani, Ghenim, and Theis, 1992;
Nguyen, Kroemer, and Hu, 1992 ; Xiong, Xiao, and Lai-
bowitz, 1993; Bakker et al., 1994; Lenssen et al., 1994;
Magnée et al., 1994). The effect can be explained in
terms of the disorder-induced opening of tunneling
channels (Beenakker, Rejaei, and Melsen, 1994; Naz-
arov, 1994a) or equivalently as a nonequilibrium prox-
imity effect (Volkov, Za�tsev, and Klapwijk, 1993; Naz-
arov, 1994b). To set the stage we begin by discussing the
phenomenology of the effect, which gave it its name
(Marmorkos, Beenakker, and Jalabert, 1993).

1. Reflectionless tunneling

It is instructive to first discuss the classical resistance
RNS

class of the NS junction. The basic approximation in
RNS

class is that currents rather than amplitudes are
matched at the NS interface (Andreev, 1966). The result
is

RNS
class5

h

2Ne2 ~L/l12G22!, (287)

FIG. 34. Experimental data of the differential conductance
dI/dV (normalized by the normal-state resistance
RN50.27 V) of a Nb-InGaAs junction, as a function of ap-
plied voltage at seven different temperatures. After Kastalsky
et al. (1991).
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where L is the length of the disordered region, l the
mean free path, N the number of transverse modes, and
G!1 the tunnel probability per mode through the bar-
rier. The contribution from the barrier to the resistance
is } G22 because tunneling into a superconductor is a
two-particle process (Shelankov, 1980), as both the inci-
dent electron and the Andreev-reflected hole have to
tunnel through the barrier (the net result being the ad-
dition of a Cooper pair to the superconducting conden-
sate). Equation (287) is to be contrasted with the classi-
cal resistance RN

class in the normal state,

RN
class5

h

2Ne2 ~L/l1G21!, (288)

where the contribution of a resistive barrier is } G21. Let
us now see how these classical results compare with the
results of numerical simulations (Marmorkos, Beenak-
ker, and Jalabert, 1993; Takane and Ebisawa, 1993).

In Fig. 35 we show the resistance (at V50) as a func-
tion of G in the absence and presence of a magnetic
field. There is good agreement with the classical equa-
tions (287) and (288) for a magnetic field corresponding
to 10 flux quanta through the disordered segment [Fig.
35(b)]. For B50, however, the situation is different [Fig.
35(a)]. The normal-state resistance (open circles) still
follows approximately the classical formula (solid
curve). (Deviations due to weak localization are notice-
able, but small on the scale of the figure.) In contrast,
the resistance of the NS junction (filled circles) lies much
below the classical prediction (dotted curve). The nu-
merical data shows that for G@l/L one has approxi-
mately

RNS~B50,V50 !'RN
class , (289)

which for G!1 is much smaller than RNS
class . This is the

phenomenon of reflectionless tunneling. In Fig. 35(a) the
barrier contributes to RNS in order G21, just as for

FIG. 35. Reflectionless tunneling. Filled circles: Numerically
calculated resistance RNS of a disordered NS junction, versus
the transmission probability per mode G of the tunnel barrier
at the NS interface; open circles: resistance RN of the same
junction in the normal state; (a) is for zero magnetic field, (b)
is for a flux of 10 h/e through the disordered region. The dot-
ted and solid curves are the classical Eqs. (287) and (288). The
dashed curve is the theory of Volkov, Za�tsev, and Klapwijk
(1993), which for G@l/L'0.12 coincides with Eq. (289). After
Marmorkos, Beenakker, and Jalabert (1993).
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single-particle tunneling, and not in order G22, as ex-
pected for two-particle tunneling. It is as if the Andreev-
reflected hole is not reflected by the barrier.

The numerical data of Fig. 35(a) is in good agreement
with the Green’s-function calculation of Volkov,
Za�tsev, and Klapwijk (1993) (dashed curve). In the next
subsection we discuss a scaling theory of reflectionless
tunneling, based on the DMPK equation (Beenakker,
Rejaei, and Melsen, 1994). This theory is equivalent to
the Green’s-function calculation but has the advantage
of explicitly demonstrating how the opening of tunneling
channels induces a transition from a G22 dependence to
a G21 dependence as the length L of the disordered
region is increased beyond l/G .

2. Scaling theory

We use the parametrization Tn51/cosh2xn of the
transmission eigenvalues and consider the density
r(x ,s) of the xn’s for a (dimensionless) length s5L/l of
the disordered region. For s50, i.e., in the absence of
disorder, we have the initial condition imposed by the
barrier,

r~x ,0!5Nd~x2x0!, (290)

with G51/cosh2x0. The DMPK equation (157) describes
how the entire distribution of the xn’s evolves with in-
creasing s . In the large-N limit, this equation reduces to
the nonlinear diffusion equation (190) for the eigenvalue
density (Mello and Pichard, 1989). In Sec. III.B.4 we
showed how Eq. (190) can be solved exactly by a map-
ping onto Euler’s equation of hydrodynamics. The solu-
tion is

r~x ,s !5~2N/p! Im U~x2i01,s !, (291)

where the complex function U(z ,s) is determined by

U~z ,s !5U0(z2sU~z ,s !). (292)

The function U0(z) is fixed by the initial condition (290)
on r ,

U0~z!5
sinh2z

2N E
0

`

dx8
r~x8,0!

sinh2z2sinh2x8

5 1
2 sinh2z ~cosh2z2G21!21. (293)

The implicit equation (292) has multiple solutions in the
entire complex plane; we need the solution for which
both z and z2sU(z ,s) lie in the strip between the lines
y50 and y52p/2, where z5x1iy .

The resulting density (291) is plotted in Fig. 36 (solid
curves), for G50.1 and several values of s . For s@1 and
x!s it simplifies to

x5 1
2 arccosht2 1

2 Gs~t221 !1/2coss , (294a)

s[psN21r~x ,s !, t[s~Gssins!21, (294b)

shown by dashed curves in Fig. 36. Equation (294)
agrees with the result of a Green’s-function calculation
by Nazarov (1994a). For s50 (no disorder), r is a delta
function at x0. On adding disorder the eigenvalue den-
sity rapidly spreads along the x axis (curve a), such that
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
r<N/s for s.0. The sharp edges of the density profile,
so uncharacteristic for a diffusion profile, reveal the hy-
drodynamic nature of the scaling equation (190). The
upper edge is at

xmax5s1 1
2 ln~s/G!1O~1 !. (295)

Since L/x has the physical significance of a localization
length (see Sec. III.C.1), this upper edge corresponds to
a minimum localization length jmin5L/xmax of order l .
The lower edge at xmin propagates from x0 to 0 in a
‘‘time’’ sc5(12G)/G . For 1!s<sc one has

xmin5 1
2 arcosh ~sc /s !2 1

2 @12~s/sc!
2#1/2. (296)

It follows that the maximum localization length
jmax5L/xmin increases if disorder is added to a tunnel
junction. This paradoxical result, that disorder enhances
transmission, becomes intuitively obvious from the hy-
drodynamic correspondence, which implies that r(x ,s)
spreads both to larger and smaller x as the fictitious time
s progresses. When s5sc the diffusion profile hits the
boundary at x50 (curve c), so that xmin50. This implies
that for s.sc scattering states (eigenfunctions of tt†) ex-
ist which tunnel through the barrier with near unit trans-
mission probability, even if G!1. The number Nopen of
transmission eigenvalues close to one (open channels) is
of the order of the number of xn’s in the range 0 to 1
(since Tn[1/cosh2xn vanishes exponentially if xn.1).
For s@sc (curve e) we estimate

Nopen.r~0,s !5N~s1G21!21, (297)

where we have used Eq. (294). The disorder-induced
opening of tunneling channels was discovered by Naz-
arov (1994a). It is the fundamental mechanism for the
G22 to G21 transition in the conductance of an NS junc-
tion, as we now discuss.

We compare the integral equations (273) and (274)

FIG. 36. Eigenvalue density r(x ,s) as a function of x (in units
of s5L/l) for a tunnel probability per mode G50.1. Curves
a , b , c , d , and e are for s52, 4, 9, 30, and 100, respectively.
The solid curves are from Eq. (291), the dashed curves from
Eq. (294). The collision of the density profile with the bound-
ary at x50, for s5sc5(12G)/G , signals the disorder-induced
opening of tunneling channels responsible for the
reflectionless-tunneling effect. x is related to the transmission
probability T by T51/cosh2x . After Beenakker, Rejaei, and
Melsen (1994).
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for the average conductances ^GNS& and ^GN&. For
G@l/L one is in the regime s@sc of curve e in Fig. 36.
Then the dominant contribution to the integrals over x
comes from the range x/s!1, where r(x ,s)
'r(0,s)5N(s1G21)21 is approximately independent
of x . Substitution of r(x ,s) by r(0,s) in Eqs. (273) and
(274) yields directly

^GNS&'^GN&'1/RN
class , (298)

in agreement with the result (289) of the numerical
simulations.

Equation (298) has the linear G dependence charac-
teristic for reflectionless tunneling. The crossover to the
quadratic G dependence when G&l/L is obtained by
evaluating the integrals (273) and (274) with the density
r(x ,s) given by Eq. (291). The result is

^GNS&5~2Ne2/h !~s1Q21!21, (299)

^GN&5~2Ne2/h !~s1G21!21. (300)

The ‘‘effective’’ tunnel probability Q is defined by

Q5
u

scosuS u

Gscosu
~11sinu!21 D , (301)

where u P (0,p/2) is the solution of the transcendental
equation

u@12 1
2 G~12sinu!#5Gscosu . (302)

For G!1 (or s@1) Eqs. (301) and (302) simplify to
Q5Gsinu, u5Gscosu, in precise agreement with the
Green’s-function calculation of Volkov, Za�tsev, and
Klapwijk (1993). According to Eq. (300), the normal-
state resistance increases linearly with the length L of
the disordered region, as expected from Ohm’s law. This
classical reasoning fails if one of the contacts is in the
superconducting state. The scaling of the resistance
RNS[1/^GNS& with length, computed from Eq. (299), is
plotted in Fig. 37. For G51 the resistance increases
monotonically with L . In the ballistic limit L→0, it
equals h/4Ne2, half the contact resistance of a normal

FIG. 37. Dependence of the resistance RNS on the length L of
the disordered normal region (shaded in the inset), for differ-
ent values of the transmittance G of the normal-metal–
superconductor interface. Solid curves are computed from Eq.
(299), for G51, 0.8, 0.6, 0.4, and 0.1 from bottom to top. For
G!1 the dashed curve is approached. After Beenakker, Re-
jaei, and Melsen (1994).
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junction, because of Andreev reflection. For G&0.5 a
resistance minimum develops, somewhat below L5l/G .
The resistance minimum is associated with the crossover
from a quadratic to a linear dependence of RNS on
1/G .

If Gs@1 one has u→p/2, hence Q→G . In the oppo-
site regime Gs!1 one has u→Gs , hence Q→G2s . The
corresponding asymptotic expressions for ^GNS& are, as-
suming G!1 and s@1,

^GNS&5~2Ne2/h !~s1G21!21, if Gs@1, (303a)

^GNS&5~2Ne2/h !G2s , if Gs!1. (303b)

In either limit the conductance is greater than the clas-
sical result

GNS
class5~2Ne2/h !~s12G22!21, (304)

which holds if phase coherence between electrons and
holes is destroyed by a voltage or magnetic field. The
peak in the conductance around V ,B50 is of order
DGNS5^GNS&2GNS

class , which has the relative magnitude

DGNS

^GNS&
'

2
21G2s

. (305)

The scaling theory assumes zero temperature. Hek-
king and Nazarov (1993, 1994), and Zhou, Spivak, and
Zyuzin (1995) have studied the conductance of a resis-
tive NS interface at finite temperatures, when L is
greater than the correlation length Lc5(\D/kBT)1/2,
where D is the diffusion coefficient. (This is the length
scale at which the Thouless energy Ec equals the ther-
mal energy kBT .) Their result is consistent with the lim-
iting equation (303b), if s5L/l is replaced by Lc /l . The
implication is that, if L.Lc , the nonlinear scaling of the
resistance shown in Fig. 37 only applies to a disordered
segment of length Lc adjacent to the superconductor.
For the total resistance one should add the Ohmic con-
tribution of order (h/e2)(L2Lc)/l from the rest of the
wire.

3. Double-barrier junction

In the previous subsection we have discussed how the
opening of tunneling channels (i.e., the appearance of
transmission eigenvalues close to one) by disorder leads
to a minimum in the resistance when L.l/G . The mini-
mum separates a G21 from a G22 dependence of the
resistance on the transparency of the interface. We re-
ferred to the G21 dependence as ‘‘reflectionless tunnel-
ing,’’ since it is as if one of the two quasiparticles which
form the Cooper pair can tunnel through the barrier
with probability one. In the present subsection we will
show, following Melsen and Beenakker (1994), that a
qualitatively similar effect occurs if the disorder in the
normal region is replaced by a second tunnel barrier
(tunnel probability G8). The resistance at fixed G shows
a minimum as a function of G8 when G8.G . For G8&G
the resistance has a G21 dependence, so we can speak
again of reflectionless tunneling.
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We consider an NI1NI2S junction, where N = normal
metal, S = superconductor, and Ii = insulator or tunnel
barrier (transmission probability per mode
G i[1/cosh2ai). We assume ballistic motion between the
barriers. (The effect of disorder is discussed later.) A
straightforward calculation yields the transmission prob-
abilities Tn of the two barriers in series [see Eq. (243)],

Tn5~a1bcosfn!21, (306a)

a5 1
2 1 1

2 cosh2a1cosh2a2 , (306b)

b5 1
2 sinh2a1sinh2a2 , (306c)

where fn is the phase accumulated between the barriers
by mode n . We assume that L@lF and NG i@1, so that
the conductance is not dominated by a single resonance.
In this case, the phases fn are distributed uniformly in
the interval (0,2p), and we may replace the sum over
the transmission eigenvalues in Eqs. (33) and (253) by
integrals over f : (n51

N f(fn)→(N/2p)*0
2pdf f(f). The

result is

GNS5
4Ne2

h

cosh2a1cosh2a2

~cosh22a11cosh22a221 !3/2 , (307)

GN5
4Ne2

h
~cosh2a11cosh2a2!21. (308)

These expressions are symmetric in the indices 1 and 2,
i.e., it does not matter which of the two barriers is clos-
est to the superconductor. In the same way we can com-
pute the entire distribution of the transmission eigenval-
ues, r(T)[(nd(T2Tn)→(N/2p)*0

2pdf d(T2T(f)).
Substituting T(f)5(a1bcosf)21 from Eq. (306), one
finds

r~T !5
N

pT
@b2T22~aT21 !2#21/2. (309)

FIG. 38. Dependence of the resistances RN and RNS of ballistic
NININ and NINIS structures, respectively, on barrier trans-
parency G1, while transparency G250.1 is kept fixed [com-
puted from Eqs. (307) and (308)]. The inset shows the NINIS
structure considered. Here, N refers to a normal metal, I an
insulating, and S a superconducting layer. After Melsen and
Beenakker (1994).
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In Fig. 38 we plot the resistances following from Eqs.
(307) and (308). Notice that RN follows Ohm’s law,

RN5
h

2Ne2 ~1/G111/G221 !, (310)

as expected from classical considerations. In contrast,
the resistance RNS has a minimum if one of the G’s is
varied while keeping the other fixed. This resistance
minimum cannot be explained by classical series addi-
tion of barrier resistances. If G2!1 is fixed and G1 is
varied, as in Fig. 38, the minimum occurs when
G15A2 G2. The minimal resistance RNS

min is of the same
order of magnitude as the resistance RN in the normal
state at the same value of G1 and G2. In particular, we
find that RNS

min depends linearly on 1/G i , whereas for a
single barrier RNS } 1/G2.

The linear dependence on the barrier transparency
shows the qualitative similarity of a ballistic NINIS junc-
tion to the disordered NIS junction considered in the
previous subsection. To illustrate the similarity, we com-
pare in Fig. 39 the densities of normal-state transmission
eigenvalues. The left panel is for an NIS junction [com-
puted using Eq. (291)], the right panel is for an NINIS
junction [computed from Eq. (309)]. In the NIS junction,
disorder leads to a bimodal distribution r(T), with a
peak near zero transmission and another peak near unit
transmisssion (dashed curve). A similar bimodal distri-
bution appears in the ballistic NINIS junction, for ap-
proximately equal transmission probabilities of the two
barriers. There are also differences between the two
cases. The NIS junction has a unimodal r(T) if
L/l,1/G , while the NINIS junction has a bimodal
r(T) for any ratio of G1 and G2. In both cases, the open-
ing of tunneling channels, i.e., the appearance of a peak
in r(T) near T51, is the origin for the 1/G dependence
of the resistance.

The DMPK scaling equation can be used to investi-
gate what happens to the resistance minimum if the re-
gion of length L between the tunnel barriers contains

FIG. 39. Density r of transmission eigenvalues T through a
normal region containing a potential barrier (transmission
probability G50.4). The left panel (a) shows the disorder-
induced opening of tunneling channels (solid curve: s50.04;
dotted: s50.4; dashed: s55, where s[L/l). The right panel
(b) shows the opening of channels by a second tunnel barrier
(transparency G8; solid curve: G850.95; dotted: G850.8;
dashed: G850.4). The curves in (a) are computed from Eq.
(291), the curves in (b) from Eq. (309). After Melsen and
Beenakker (1994).
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impurities, with elastic mean free path l (Melsen and
Beenakker, 1994). In the diffusive regime (l!L) the
scaling theory is found to agree with the Green’s- func-
tion calculation by Volkov, Za�tsev, and Klapwijk (1993)
for a disordered NINIS junction. For strong barriers
(G1 ,G2!1) and strong disorder (L@l), one has the two
asymptotic formulas

^GNS&5
2Ne2

h

G1
2G2

2

~G1
21G2

2!3/2 , if G1 ,G2!l/L , (311a)

^GNS&5
2Ne2

h
~L/l11/G111/G2!21, if G1 ,G2@l/L .

(311b)

Equation (311a) coincides with Eq. (307) in the limit
a1 ,a2@1 (recall that G i[1/cosh2ai). This shows that the
effect of disorder on the resistance minimum can be ne-
glected as long as the resistance of the junction is domi-
nated by the barriers. In this case ^GNS& depends lin-
early on G1 and G2 only if G1'G2. Equation (311b)
shows that if the disorder dominates, ^GNS& has a linear
G dependence regardless of the relative magnitude of
G1 and G2.

The resistance minimum predicted by Eq. (307) has
been observed by Takayanagi, Toyoda, and Akazaki
(1996) in a junction between Nb and the two-
dimensional electron gas in an InAlAs/InGaAs hetero-
structure. [Similar experiments using doped GaAs in-
stead of a heterostructure have been performed by
Poirier, Mailly, and Sanquer (1996).] One of the two
barriers is present naturally at the interface between Nb
and the heterostructure. The other barrier is created
electrostatically by means of a gate on top of the hetero-
structure, at a separation L50.5 mm from the Nb inter-
face. This separation is much less than the mean free
path l52.8 mm in the electron gas. By making the volt-
age Vgate on the gate more negative, the transparency
G1 of the tunnel barrier below the gate is reduced. The
transparency of the tunnel barrier at the Nb interface is
fixed and estimated at G250.7 from the high-
temperature resistance. The low-temperature resistance
is plotted as a function of the gate voltage in Fig. 40
(filled circles). Also shown is the normal-state resistance
(open circles), obtained by applying a voltage greater
than 2D/e53 mV over the junction, where D is the en-
ergy gap of Nb. The former has a minimum, while the
latter decreases monotonically with gate voltage. A
quantitative comparison with the theory needs to take
into account the series resistance from a second Nb con-
tact, at a distance of 3.5 mm from the gate. Takayanagi
et al. have found that quite a good agreement with the
theoretical result (307) can be obtained.

4. Circuit theory

The scaling theory of reflectionless tunneling, which
was the subject of Sec. IV.C.2, describes the transition
from the ballistic to the diffusive regime. In the diffusive
regime it is equivalent to the Green’s-function theory of
Volkov, Za�tsev, and Klapwijk (1993). A convenient for-
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
mulation of the Green’s-function theory has been pre-
sented by Nazarov (1994b). Starting from a continuity
equation for the nonequilibrium Green’s function
(Keldysh, 1964; Larkin and Ovchinnikov, 1975, 1977),
and applying the appropriate boundary conditions, Naz-
arov was able to formulate a set of rules that reduce the
problem of computing the resistance of an NS junction
to a simple exercise in circuit theory. (An alternative
derivation of these rules, using scattering matrices, has
been given recently by Argaman, 1997.) The approach
can be applied without further complications to multi-
terminal networks involving several normal and super-
conducting reservoirs. In this subsection we describe
Nazarov’s circuit theory and compare it with the results
obtained from the DMPK equation.

Zero temperature is assumed, as well as infinitesimal
voltage differences between the normal reservoirs (lin-
ear response). The superconducting reservoirs Si are all
at the same voltage, because they are effectively short-
circuited by the supercurrent. The pair potential in Si
has phase f i . The reservoirs are connected by a set of
diffusive normal-state conductors (length Li , mean free
path l i ; si[Li /l i@1). Between the conductors there
may be tunnel barriers (tunnel probability G i). The pres-
ence of superconducting reservoirs has no effect on the
resistance (h/2Ne2)si of the diffusive conductors, but
affects only the resistance h/2Ne2G i

eff of the tunnel bar-
riers. The tunnel probability G i of barrier i is renormal-
ized to an effective tunnel probability G i

eff , which de-
pends on the entire circuit.

FIG. 40. Differential resistance dV/dI of a gated Nb-InAlAs/
InGaAs junction as a function of the gate voltage Vgate . The
more negative Vgate , the higher the tunnel barrier in the two-
dimensional electron gas below the gate. The gate is at a sepa-
ration L50.5 mm from the Nb contact (see the inset). A sec-
ond Nb contact (not shown) is at 4 mm from the first. The filled
circles are for V50, and the open circles are for V.3 mV,
where V is the voltage between the two Nb contacts. (The
curve through the data points is a guide to the eye.) The data
for V50 shows the resistance minimum expected for a ballistic
double-barrier NS junction (see Fig. 38). After Takayanagi,
Toyoda, and Akazaki (1996).
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Nazarov’s rules to compute the effective tunnel prob-
abilities are as follows. To each node and to each termi-
nal of the circuit one assigns a vector nW i of unit length.
For a normal reservoir, nW i5(0,0,1) is at the north pole,
for a superconducting reservoir, nW i5(cosfi ,sinfi,0) is at
the equator. For a node, nW i is somewhere on the north-
ern hemisphere. The vector nW i is called a ‘‘spectral vec-
tor’’ because it determines the density of states. (The z
component of the spectral vector is the local density of
states at the Fermi energy divided by the density of
states in the normal reservoirs.) If the tunnel barrier is
located between spectral vectors nW 1 and nW 2, its effective
tunnel probability is

Geff5~nW 1•nW 2!G5Gcosu12 , (312)

where u12 is the angle between nW 1 and nW 2. The rule to
compute the spectral vector of node i follows from the
continuity equation for the Green’s function. Let the in-
dex k label the nodes or terminals connected to node i
by a single tunnel barrier (with tunnel probability Gk).
Let the index q label the nodes or terminals connected
to i by a diffusive conductor (with L/l[sq). The spec-
tral vectors then satisfy the sum rule

(
k

~nW i3nW k!Gk1(
q

~nW i3nW q!
arccos~nW i•nW q!

sqA12~nW i•nW q!2
50.

(313)

This is a sum rule for a set of vectors perpendicular to
nW i of magnitude Gksinuik or u iq /sq , depending on
whether the element connected to node i is a tunnel
barrier or a diffusive conductor. There is a sum rule for
each node, and together the sum rules determine the
spectral vectors of the nodes.

These rules can be readily generalized (Nazarov,
1995a) to include the case that a tunnel barrier is re-
placed by a ballistic point contact (conductance
2Ne2/h). Instead of the effective tunnel probability
(312) one then has the effective number of modes

Neff5
2N

11~nW 1•nW 2!
5Ncos22 1

2 u12 . (314)

The corresponding replacement in the sum rule (313) is

~nW i3nW k!Gk→
2~nW i3nW k!Nk

11~nW i•nW k!
. (315)

A further generalization, to include the effect of an
Aharonov-Bohm ring, has been given by Stoof and Naz-
arov (1996b).

As a simple example, let us consider the system of
Sec. IV.C.2, consisting of one normal terminal (N), one
superconducting terminal (S), one node (labeled A), and
two elements: a diffusive conductor (with L/l[s) be-
tween N and A, and a tunnel barrier (tunnel probability
G) between A and S (see Fig. 41). There are three spec-
tral vectors, nW N , nW S , and nW A . All spectral vectors lie in
one plane. (This holds for any network with a single
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
superconducting terminal.) The resistance of the circuit
is given by R5(h/2Ne2)(s11/Geff), with the effective
tunnel probability

Geff5GcosuAS5Gsinu . (316)

Here u P @0,p/2# is the polar angle of nW A . This angle is
determined by the sum rule (313), which in this case
takes the form

Gcosu2u/s50. (317)

Comparison with Sec. IV.C.2 shows that Geff coincides
with the effective tunnel probability Q of Eq. (301) in
the limit s@1, i.e., if one restricts oneself to the diffusive
regime. That is the basic requirement for the application
of the circuit theory.

Let us now consider the ‘‘fork junction’’ of Fig. 42,
with one normal terminal (N) and two superconducting
terminals S1 and S2 (phases f1[2f/2 and f2[f/2).
There is one node (A), which is connected to N by a
diffusive conductor (L/l[s), and to S1 and S2 by tunnel
barriers (G1 and G2). This structure was studied theo-
retically by Hekking and Nazarov (1993) and experi-
mentally by Pothier et al. (1994) and Dimoulas et al.

FIG. 41. Representation of a circuit by spectral vectors. At
left: circuit containing two terminals (open circles), one node
(filled circle), and two elements—a diffusive conductor (dot-
ted) and a tunnel barrier (black). At right: Spectral vectors
associated with the terminals N,S and with the node A.

FIG. 42. Circuit diagram and spectral vectors for a structure
containing one normal and two superconducting terminals
(phase difference f).
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(1995). For simplicity, let us assume two identical tunnel
barriers G15G2[G . Then the spectral vector
nW A5(sinu,0,cosu) of node A lies symmetrically between
the spectral vectors of terminals S1 and S2. The sum rule
(313) now takes the form

2Gucos1
2 fucosu2u/s50. (318)

Its solution determines the effective tunnel rate
Geff5Gucos1

2fusinu of each of the two barriers in parallel,
and hence the conductance of the fork junction,

G5
2Ne2

h
@s1 1

2 ~Gucos1
2 fusinu!21#21. (319)

Two limiting cases of Eqs. (318) and (319) are

G5
2Ne2

h
~s1 1

2 G21ucos1
2 fu21!21, if sGucos1

2 fu@1,

(320a)

G5
4Ne2

h
sG2~11cosf!, if sGucos1

2 fu!1. (320b)

For f50 (and 2G→G) these expressions reduce to Eq.
(303) for an NS junction with a single superconducting
reservoir. The limit (320b) agrees with the finite-
temperature result of Hekking and Nazarov (1993), if s
is replaced by Lc /l and a series resistance is added due
to the normal segment, which is further than a correla-
tion length from the NS interfaces.

Experimental data by Pothier et al. (1994) for the f
dependence of the conductance of a fork junction is
shown in Fig. 43. The conductance of a Cu wire attached
to an oxidized Al fork oscillates as a function of the
applied magnetic field. The period corresponds to a flux

FIG. 43. Conductance of a fork junction as a function of mag-
netic field, which shows the dependence on the phase differ-
ence f of the superconductor at two tunnel barriers. The
circles are measurements by Pothier et al. (1994) of the current
I through a Cu wire connected to an oxidized Al fork (normal-
state resistance RN51.56 kV). The applied voltage V is suffi-
ciently low that I/V is close to the linear-response conduc-
tance. (The amplitude of the oscillations at V50 is
3.9431026 V21, somewhat larger than in the figure.) The solid
curve is a cosine fit to the data. The offset of maximum con-
ductance from B50 is attributed to a small residual field in the
cryostat. After Pothier et al. (1994).
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increment of h/2e through the area enclosed by the fork
and the wire and thus to Df52p . The experiment is in
the regime where the junction resistance is dominated
by the tunnel barriers, as in Eq. (320b). [The metal-
oxide tunnel barriers in these structures have typically
very small transmission probabilities G.1025, so that
the regime of Eq. (320a) is not easily accessible.] Equa-
tion (320b) provides only a qualitative description of the
experiment, mainly because the motion in the arms of
the fork is diffusive rather than ballistic. This is why the
conductance minima in Fig. 43 do not go to zero. A
solution of the diffusion equation in the actual experi-
mental geometry is required for a quantitative compari-
son with the theory.

D. Normal-metal–superconductor junction containing a
point contact

Andreev reflection doubles the conductance of a point
contact (Za�tsev, 1980; Blonder, Tinkham, and Klap-
wijk, 1982; Shelankov, 1984). As illustrated in Fig. 44(a),
an electron injected through the point contact is re-
flected back as a hole. Because electron and hole carry
the same current (both in magnitude and in direction),
the current through the point contact, and hence its con-
ductance, is doubled. If N0 is the number of transverse
modes in the cross-sectional area of the point contact,
then its conductance is given by

GNS5N0

4e2

h
, (321)

which is twice the conductance

GN5N0

2e2

h
(322)

in the normal state (Sharvin, 1965). Equations (321) and
(322) apply to ballistic transport, without scattering of
the electrons by impurities. What is the effect of impu-
rities in the region between the point contact and the
superconductor? Classically, one would expect these to
destroy the conductance doubling from Andreev reflec-
tion, because the hole no longer retraces the path of the
electron [Fig. 44(b)]. It is therefore unlikely to find its

FIG. 44. Classical trajectories of an electron injected through a
point contact towards superconductors, where it is Andreev
reflected as a hole. In (a) the trajectory is ballistic, in (b) the
electron and hole are scattered in random directions by an
impurity (asterisk).
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way back through the point contact, so that no current
doubling is to be expected. This classical picture is cor-
rect if the separation L between the point contact and
the NS interface is greater than the correlation length
Lc5(\D/kBT)1/2. At sufficiently low temperatures that
L!Lc , however, the conductance doubling may persist
in the presence of impurity scattering (Beenakker,
Melsen, and Brouwer, 1995; Golubov and Kupriyanov,
1995). To explain this effect, we first consider the angu-
lar distribution of the holes that are reflected by a disor-
dered NS junction.

1. Giant backscattering peak

The angular distribution of electrons reflected by a
disordered normal metal has a narrow peak at the angle
of incidence. This peak has the same origin as the weak-
localization correction to the average conductance,
namely the constructive interference of time-reversed
sequences of multiple-scattering events (Berkovits and
Feng, 1994). The peak is at most twice as high as the
background. In this subsection we discuss the giant en-
hancement of the backscattering peak, which occurs if
the normal metal is in contact with a superconductor
(Beenakker, Melsen, and Brouwer, 1995). At the inter-
face with the superconductor an electron incident from
the normal metal is reflected either as an electron (nor-
mal reflection) or as a hole (Andreev reflection). Both
scattering processes contribute to the backscattering
peak. Normal reflection contributes a factor of two. In
contrast, we will see that Andreev reflection contributes
a factor G/G0, which is @1.

We consider a disordered normal-metal conductor
which is connected at one end to a superconductor (see
inset of Fig. 45). An electron at the Fermi level incident
from the opposite end in mode m is reflected into some
other mode n , either as an electron or as a hole, with
probability amplitudes (see)nm and (she)nm , respec-
tively. The N3N matrices see and she are given by Eqs.
(266) and (267) (with «50, a52i). In terms of the po-
lar decomposition (24) of the transmission and reflection
matrices, we can write

see522U
A12T
22T U8, she52iU*

T
22TU8. (323)

We first consider zero magnetic field (B50). Time-
reversal symmetry then requires that U85UT. We make
the isotropy assumption that U is uniformly distributed
over the unitary group. The average over U (using the
formulas of Appendix B) yields

^u~see!nmu2&5
dnm11
N21N S N2K (

k
sk

2 L D , (324a)

^u~she!nmu2&5
dnm11
N21N K (

k
sk

2 L 1
Ndnm21
N32N

3K (
kÞk8

sksk8L , (324b)

where we have defined sk[Tk(22Tk)21. In the metal-
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lic regime N@L/l@1. In this large-N limit we may fac-
torize ^(kÞk8sksk8& into ^(ksk&2, which can be evalu-
ated using Eq. (184):

K (
k

f~Tk!L 5
Nl

L E
0

`

dx f~1/cosh2x !. (325)

The result for normal reflection is

^u~see!nmu2&5~11dnm!
1
NS 12

l

2L D . (326)

Off-diagonal (n Þ m) and diagonal (n5m) reflections
differ by precisely a factor of two, just as in the normal
state (Mello, Akkermans, and Shapiro, 1988). In con-
trast, for Andreev reflection we find

^u~she!nmu2&5
l

2NL
~nÞm !,

^u~she!nnu2&5S pl

4L D 2

. (327)

Off-diagonal and diagonal reflections now differ by an
order of magnitude Nl/L.G/G0@1.

Equations (326) and (327) hold for B50. If time-
reversal symmetry is broken (by a magnetic field
B*Bc[h/eLW), then the matrices U and U8 are inde-
pendent. Carrying out the average over the unitary
group in the large-N limit, we find

^u~see!nmu2&5
1
NS 12

l

2L D , ^u~she!nmu2&5
l

2NL
.

(328)

Diagonal and off-diagonal reflections now occur with
the same probability.

FIG. 45. Numerical simulation of a 3003300 tight-binding
model for a disordered normal metal (L59.5 l), in series with
a superconductor (inset). The histograms give the modal dis-
tribution for reflection of an electron at normal incidence
(mode number 1). The top two panels give the distribution of
reflected holes (for B50 and B510 h/eL2), the bottom panel
of reflected electrons (for B50). The arrow indicates the
ensemble-averaged height of the backscattering peak for An-
dreev reflection, predicted from Eq. (327). After Beenakker,
Melsen, and Brouwer (1995). (The original figure has a misla-
beled vertical axis.)
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In Fig. 45 we compare this theoretical prediction of a
giant backscattering peak with a numerical simulation of
the Anderson model. The results shown are raw data
from a single sample. For normal reflection (bottom
panel) the backscattering peak is not visible due to sta-
tistical fluctuations in the reflection probabilities
(speckle noise). The backscattering peak for Andreev
reflection is much larger than the fluctuations and is
clearly visible (top panel). A magnetic flux of 10 h/e
through the disordered region completely destroys the
peak (middle panel). The arrow in the top panel indi-
cates the ensemble-averaged peak height from Eq.
(327), consistent with the simulation within statistical
fluctuations. The peak is just one mode wide, as pre-
dicted by Eq. (327).25

Coherent backscattering in the normal state is inti-
mately related to the weak-localization correction to the
average conductance. We have seen that the back-
scattering peak for Andreev-reflection is increased by a
factor G/G0. However, as was discussed in Sec. IV.B.2,
the weak-localization correction in an NS junction re-
mains of order G0. The reason is that, according to Eq.
(268), the conductance

GNS52G0(
n ,m

u~she!nmu2 (329)

contains the sum over all Andreev-reflection probabili-
ties, so that the backscattering peak is averaged out. In-
deed, Eqs. (327) and (328) give the same ^GNS&, up to
corrections smaller by factors 1/N and l/L . In order to
observe the enhanced backscattering in a transport ex-
periment one has to increase the sensitivity to Andreev
reflection at the angle of incidence. This can be done by
injecting the electrons through a point contact, as we
discuss next.

2. Conductance doubling

The point-contact geometry is shown in the inset of
Fig. 46. The point contact contains N0 transverse modes,
and the disordered region between point contact and
superconductor contains N transverse modes. The disor-
dered region has length L and mean free path l . We
assume ballistic motion through the point contact, which
requires that its width is much smaller than l . (For the
opposite regime of diffusive motion through the point
contact, see Volkov, 1994.) Furthermore, we assume

25The angular reflection distribution follows from the modal
distribution in the large-N limit. For example, in a two-
dimensional conductor each transverse mode n is associated
with angles 6u to the normal, such that kFsinuuu5np/W. One
can distinguish between reflection at u and at 2u by choosing
as a new basis the sum and difference of two adjacent
modes. The enhanced backscattering occurs within
Du.2p/(kFWcosu) around the angle of incidence u . The de-
crease of Du with increasing W stops when W.L , due to the
breakdown of the isotropy assumption.
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that both N0 and Nl/L are @1, so that the conductance
GNS of the system is much greater than the conductance
quantum G0[2e2/h .

In zero magnetic field we can compute the average
conductance from Eq. (253),

^GNS&52G0E
0

`

dxr~x ,L !
1

cosh22x
, (330)

in the parametrization T51/cosh2x. The L dependence
of the density r(x ,L) follows from Eqs. (203) and (204),
with the initial condition U0(z)5(N0 /N) coth z corre-
sponding to a point contact. The resulting conductance
is

^GNS&5G0@ 1
2 ~11sinu!/N01L/Nl#21, (331a)

1
2 u~11sinu!5~N0L/Nl !cosu , uP~0,p/2!. (331b)

The implicit equation (331) has the two limiting solu-
tions

^GNS&5H G0@1/~2N0!1L/Nl#21 if N0L/Nl!1,

G0~1/N01L/Nl !21 if N0L/Nl@1.
(332)

The contribution from disorder remains the same in the
two limits, but the contribution from the point contact
differs by a factor of two.

These results hold in zero magnetic field. A magnetic
field B greater than Bc5h/(eLW) effectively breaks
time-reversal symmetry. Instead of Eqs. (331) and (332)
one then has

^GNS&5G0~1/N01L/Nl !21, (333)

for 1!N0!N and l!L!Nl , but regardless of the ratio
N0L/Nl . Equation (333) is just the classical addition in
series of the Sharvin conductance N0G0 of the point
contact and the Drude conductance (Nl/L)G0 of the
disordered region. Equation (333) applies if a voltage
V greater than the Thouless energy Ec5\D/L2 breaks
the electron-hole degeneracy. If both B!Bc and
eV!Ec , in contrast, the contribution from the point
contact depends on the ratio N0L/Nl , according to Eq.
(332).

FIG. 46. Excess conductance DG5^G(B50)&2^G(B*Bc)&
of a point contact in series with a disordered normal-metal–
superconductor junction (inset), computed from Eqs. (331)
and (333). At B50 the contact conductance is twice the Shar-
vin conductance N0G0, provided N0L/Nl!1. After Beenak-
ker, Melsen, and Brouwer (1995).
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In Fig. 46 we show the difference DG
5^GNS(B50)&2^GNS(B*Bc)& of Eqs. (331) and
(333). If N0 /N!l/L!1 the conductance drops from
2N0G0 to N0G0 upon breaking time-reversal symmetry.
As discussed at the beginning of this subsection, a dou-
bling of the contact conductance at B50 is a classical
effect in ballistic NS junctions (l@L): an electron in-
jected towards the superconductor is reflected back as a
hole, doubling the current through the point contact. We
now understand that the conductance doubling can sur-
vive multiple scattering in a diffusive junction (l!L),
because of the enhanced backscattering at the angle of
incidence. The difference between ballistic and diffusive
junctions appears in the width of the conductance peak
around B ,V50. For a ballistic junction the width in
magnetic field is mvF /eL (determined by the curvature
of the electron trajectories), and the width in voltage is
the superconducting energy gap D . These values are
much greater than the values Bc and Ec for a diffusive
junction. Experiments on the conductance doubling
have been done by Van Son, Van Kempen, and Wyder
(1987, 1988). The anomalously narrow conductance
peak reported in their 1988 paper may well be due to the
effects of disorder discussed here.

E. Chaotic Josephson junction

A Josephson junction is a weak link between two su-
perconductors. The weak link could be a tunnel barrier,
a point contact, or a piece of normal metal. (For a re-
view of Josephson junctions, see Likharev, 1979.) In this
subsection we will consider the special case that the
weak link consists of a small (phase-coherent) metal
grain (a ‘‘quantum dot’’). A random-matrix theory of
induced superconductivity (‘‘proximity effect’’) in such a
system can be constructed, based on the assumption that
the classical motion in the quantum dot is chaotic (Alt-
land and Zirnbauer, 1996; Frahm et al., 1996; Melsen
et al., 1996; Zirnbauer, 1997). A phase difference f be-
tween the superconductors induces a current through
the junction. This current flows in equilibrium. Since it is
a thermodynamic property of the system, it falls outside
the scope of this review (we refer to Brouwer and
Beenakker, 1997b).

The problem considered here is the injection of non-
equilibrium quasiparticles into the Josephson junction.
The system is shown schematically in Fig. 47(a). A quan-

FIG. 47. Chaotic Josephson junction in a (a) four-terminal and
(b) three-terminal configuration. The three-terminal configura-
tion is equivalent as a circuit to the fork junction of Fig. 42.
N refers to a normal metal, S a superconductor, and I the
current. After Brouwer and Beenakker (1996b).
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tum dot is contacted by four ballistic point contacts
(with Ni modes transmitted through contact i51,2,3,4).
The classical motion in the quantum dot should be cha-
otic on time scales greater than tergodic, and the point
contacts should be sufficiently small that the dwell time
tdwell@tergodic (see Sec. II). The quantum dot forms a
Josephson junction in a superconducting ring. Coupling
to the two superconducting banks is via point contacts 3
and 4 (phase difference f , same voltage). Contacts 1
and 2 are connected to normal metals (voltage differ-
ence V). A current I is passed between contacts 1 and 2,
and one measures the conductance G5I/V as a function
of f .

Spivak and Khmel’nitski� (1982) and Altshuler,
Khmel’nitski�, and Spivak (1983) computed the en-
semble average ^G(f)& in the high-temperature regime
kBT@\/tdwell . (For more recent work in this regime,
see Zhou and Spivak, 1996.) They obtained p-periodic
oscillations with an amplitude of order G0. In experi-
ments (e.g., by De Vegvar et al., 1994) these are ob-
scured by 2p-periodic sample-specific fluctuations of the
same order of magnitude (Altshuler and Spivak, 1987).
At low temperatures the fundamental periodicity of the
oscillations in ^G(f)& doubles, and their amplitude in-
creases to become much greater than G0 (Za�tsev, 1994;
Beenakker, Melsen, and Brouwer, 1995; Kadigrobov
et al., 1995; Allsopp et al., 1996; Claughton, Raimondi,
and Lambert, 1996; Volkov and Za�tsev, 1996). Experi-
ments by Petrashov et al. (1995) (and similar measure-
ments by Courtois et al., 1996) showed such giant con-
ductance oscillations, but these are now believed to have
been caused by the thermal effect of Sec. IV.B.1 (Naz-
arov and Stoof, 1996). The sample-specific fluctuations
remain of order G0 at low temperatures and have been
studied experimentally (Den Hartog et al., 1996) and
theoretically (Brouwer and Beenakker, 1996b).

In the first part of this subsection we review the
theory of the low-temperature oscillations in the
ensemble-averaged conductance. Sample-specific fluc-
tuations at low temperatures are discussed in the second
part.

1. Average conductance

We have discussed conductance oscillations before, in
the three-terminal fork junction of Sec. IV.C.4. The
four-terminal Josephson junction considered here differs
from the three-terminal configuration [shown in Fig.
47(b)] in the following respect: in the three-terminal
configuration the current flows from a normal-metal res-
ervoir into a superconducting reservoir, whereas in the
four-terminal configuration the current flows between
two normal-metal reservoirs. The four-terminal configu-
ration shows the phase-coherent effects in a ‘‘cleaner’’
way, because without phase coherence in the normal
metal the superconductor would have no effect at all on
the conductance. In the three-terminal configuration, in
contrast, there is an effect on the conductance because
of the excitation gap in the bulk superconductor, even in
the absence of any phase coherence between electrons
and holes in the normal metal.



793C. W. J. Beenakker: Random-matrix theory of quantum transport
The matrices see and she [with elements (see) ij ,nm and
(she) ij ,nm] contain the combined effect of scattering in
the quantum dot (described by the matrix S) and An-
dreev reflection at the two contacts with the supercon-
ductor. The scattering matrix S of the quantum dot has
submatrices sij , the matrix element sij ,nm being the scat-
tering amplitude from mode m in contact j to mode n in
contact i . By summing a series of multiple Andreev re-
flections we obtain for see and she expressions analogous
to Eq. (266),

see5a2bVc* V* ~11cVc* V* !21d , (334a)

she52ib* V* ~11cVc* V* !21d , (334b)

where we have abbreviated

a5S s11 s12

s21 s22
D , b5S s13 s14

s23 s24
D , c5S s33 s34

s43 s44
D ,

d5S s31 s32

s41 s42
D , V5S eif/2 0

0 e2if/2D .

The four-terminal generalization of Eq. (268) is (Lam-
bert, 1991, 1993; Lambert, Hui, and Robinson, 1993)

G/G05R21
ee1R21

he1
2~R11

heR22
he2R12

heR21
he!

R11
he1R22

he1R12
he1R21

he , (335a)

Rij
ee5(

n ,m
u~see! ij ,nmu2, Rij

he5(
n ,m

u~she! ij ,nmu2.

(335b)

We evaluate the average conductance ^G& by averag-
ing S over the circular ensemble (see Sec. II.A.1). At
B50 this means that S5UUT with U uniformly distrib-
uted in the group U(N) of N3N unitary matrices
(N5( i51

4 Ni). This is the circular orthogonal ensemble
(COE). If time-reversal symmetry is broken, then S it-
self is uniformly distributed in U(N). This is the circular
unitary ensemble (CUE). In the CUE the average can
be done analytically for any Ni and f . The result is

^G&CUE5G0

N1N2

N11N2
, (336)

independent of f . In the COE one can do the average
numerically, by generating a large number of random
matrices in U(N). An analytical result can be obtained
for N@1. The easiest way to do this is to use Nazarov’s
circuit theory, described in Sec. IV.C.4. The result for
the symmetric case N15N2@1, N35N4[rN1 is given
by

^G&COE5
N1G0

11cosu
, (337a)

sinu1sin2u cos1
2 f

cosu1cos2u
5rcos1

2 f , uP~0,p/2!. (337b)

In Fig. 48 we show the excess conductance
DG5^G&COE2^G&CUE as a function of f . For Ni*10
the numerical finite-N curves (solid) are close to the
analytical large-N limit (337) (dotted). The excess con-
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ductance DG is of order N1G0 and positive, except for
f close to p , where a small negative weak-localization
correction of order G0 appears.

The excess conductance is a manifestation of the giant
backscattering peak of Sec. IV.D.1. To see this, note
that ^R12

he&5^R21
he&, ^R11

he&5^R22
he&. (For simplicity, we as-

sume again the symmetric case N15N2.) Current con-
servation requires R11

he1R21
he1R11

ee1R21
ee5N1. For N@1

we may replace ^f(Rij)& by f(^Rij&). The average of Eq.
(335) then becomes

^G/G0&5 1
2 N12 1

2 ^R11
ee2R21

ee&1 1
2 ^R11

he2R21
he&. (338)

The first term 1
2N1 is the classical series conductance.

The second term is the weak-localization correction due
to enhanced backscattering for normal reflection. Since
^R11

ee2R21
ee&5O(1), this negative correction to 1

2N1 can
be neglected if N@1. The third term gives the excess
conductance due to enhanced backscattering for An-
dreev reflection. Since ^R11

he2R21
he&5O(N), this positive

contribution is a factor G/G05O(N) greater than the
negative weak-localization correction.

2. Conductance fluctuations

The conductance of the Josephson junction contains
two types of sample-specific fluctuations: aperiodic fluc-
tuations as a function of the magnetic field B , and
2p-periodic fluctuations as a function of the supercon-
ducting phase difference f . To observe the fluctuations
in G(B ,f), the magnetic field should be sufficiently
large to break time-reversal symmetry. Otherwise the
fluctuations will be obscured by the much stronger B
and f dependence of the ensemble average. Den Har-
tog et al. (1996) have reported the experimental obser-
vation of phase-dependent magnetoconductance fluc-
tuations in a T-shaped two-dimensional electron gas (see

FIG. 48. Excess conductance DG5^G&COE 2^G&CUE of a cha-
otic four-terminal Josephson junction (inset). The solid curves
are computed from Eqs. (334) and (335) for N15N2[N ,
N35N4[rN , with N510. The dotted curves are the large-N
limit given by Eq. (337). The excess conductance at f50 is a
factor G/G05O(N) larger than the negative weak-localization
correction at f5p . After Beenakker, Melsen, and Brouwer
(1995).



794 C. W. J. Beenakker: Random-matrix theory of quantum transport
Fig. 49). The horizontal arm of the T is connected to two
superconductors, the vertical arm to a normal metal res-
ervoir. The observed magnitude of the fluctuations was
much smaller than e2/h , presumably because the motion
in the T junction was nearly ballistic. Larger fluctuations
are expected if the arms of the T are closed, leaving only
a small opening (a point contact) for electrons to enter
or leave the junction. Motion in the junction can be bal-
listic or diffusive. As long as it is chaotic, the statistics of
the conductance fluctuations will only depend on the
number of modes in the point contacts and not on the
microscopic details of the junction. We review the
theory of universal conductance fluctuations in a chaotic
Josephson junction, following Brouwer and Beenakker
(1996b).

For the conductance fluctuations there is no essential
difference between the three- and four-terminal configu-
rations of Fig. 47. We focus on the three-terminal con-
figuration because it corresponds to the experiment of
Den Hartog et al. We assume that the two point contacts
to the superconductor contain N35N4 modes each and
denote by N1 the number of modes in the contact to the
normal metal. (There is only one such contact, so
N2[0.) The total number of modes in the three point
contacts is N5N112N3. There are two regimes, de-

FIG. 49. Three-terminal Josephson junction. The upper-left
panel shows a schematic picture of a T-shaped 2D electron gas
beneath a Nb loop. The upper-right panel shows a scanning
electron micrograph of the actual device. The dimensions are
L50.7 mm, W50.3 mm. The current I flows from contacts 1
and 2 (connected to the 2D electron gas) to contacts 3 and 4
(connected to the superconducting Nb). The voltage V is mea-
sured from contacts 1 and 2 to 3 and 4. The flux
F'B310.3 mm2 through the loop determines the phase dif-
ference f5(4pe/h)F of contacts 3 and 4. The magnetoresis-
tance oscillations at 50 mK are plotted in the lower panel, after
subtraction of a f-independent background. The amplitude
near B50 corresponds to a conductance of 0.1 e2/h . The am-
plitude for B*h/eLW[Bc is strongly suppressed, but small
oscillations remain (amplitude '0.005 e2/h). The envelope of
these small oscillations fluctuates randomly on the scale of
Bc . After Den Hartog et al. (1996).
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pending on the relative magnitude of N1 and N3. For
N1!N3 the f dependence of the conductance is
strongly anharmonic. (This is the regime studied by Alt-
shuler and Spivak, 1987.) For N1*N3 the oscillations
are nearly sinusoidal, as observed by Den Hartog et al.
The difference between the two regimes can be under-
stood qualitatively in terms of interfering Feynman
paths. In the second regime, only paths with a single
Andreev reflection contribute to the conductance. Each
such path depends on f with a phase factor e6if/2. In-
terference of these paths yields a sinusoidal f depen-
dence of the conductance. In the first regime, quasipar-
ticles undergo many Andreev reflections before leaving
the junction. Hence higher harmonics appear, and the
conductance becomes a random 2p-periodic function of
f .

The conductance G(B ,f)5G0(B)1Gf(B ,f) con-
sists of a f-independent background

G0~B !5E
0

2pdf

2p
G~B ,f!, (339)

plus 2p-periodic fluctuations Gf . In the absence of
time-reversal symmetry, the ensemble average
^G(B ,f)&[^G& is independent of B and f . Hence
^G0(B)&5^G& and ^Gf(B ,f)&50. The correlator of
G is

C~dB ,df!5^G~B ,f!G~B1dB ,f1df!&2^G&2.
(340)

Fluctuations of the background conductance are de-
scribed by the correlator of G0,

C0~dB !5^G0~B !G0~B1dB !&2^G&2

5E
0

2pddf

2p
C~dB ,df!. (341)

(In the second equality we have used ^GfG0&50.) The
difference Cf5C2C0 is the correlator of Gf ,

Cf~dB ,df!5^Gf~B ,f!Gf~B1dB ,f1df!&.
(342)

For chaotic scattering without time-reversal symme-
try, the scattering matrix S is distributed according to
the circular unitary ensemble (CUE). The CUE does
not specify how S at different values of B is correlated.
There exists a method to extend the CUE, such that it
includes the parametric dependence of the scattering
matrix on the magnetic field (Brouwer, 1997). The
method consists of replacing the magnetic field by a
time-reversal symmetry-breaking stub (see Fig. 50). This
idea is similar in spirit to Büttiker’s method (1986a,
1988a) of modeling inelastic scattering by a phase-
breaking lead. The stub contains Nstub modes. The end
of the stub is closed, so that it conserves the number of
particles without breaking phase coherence. (Büttiker’s
lead, in contrast, is attached to a reservoir that conserves
the number of particles by matching currents, not ampli-
tudes, and therefore breaks phase coherence.) We
choose the scattering basis such that the Nstub3Nstub re-
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flection matrix rstub(B) of the stub equals the unit ma-
trix at B50. For nonzero magnetic fields we take

rstub~B !5eBA, a2[ (
n,m

Anm
2 , (343)

where the matrix A is real and antisymmetric:
Anm5Anm* 52Amn . Particle number is conserved by
the stub because rstub is unitary, but time-reversal sym-
metry is broken because rstub is not symmetric if B Þ 0.
In order to model a spatially homogeneous magnetic
field, it is essential that Nstub@N . The value of Nstub and
the precise choice of A are irrelevant, all results depend-
ing only on the single parameter a .

The magnetic-field-dependent scattering matrix S(B)
in this model takes the form

S~B !5U111U12@12rstub~B !U22#
21rstub~B !U21 .

(344)

The matrices Uij are the four blocks of a matrix U rep-
resenting the scattering matrix of the quantum dot at
B50, with the stub replaced by a regular lead. The dis-
tribution of U is the circular orthogonal ensemble
(COE). The distribution of S(B) resulting from Eqs.
(343) and (344) crosses over from the COE for B50 to
the CUE for B@Bc . It is equivalent to the distribution
of scattering matrices following from the Pandey-Mehta
Hamiltonian (6). The parameter a is related to the pa-
rameters a and M in Eq. (6) by Ba5aA2M . (The rela-
tionship between a ,M , and microscopic properties of
the quantum dot was discussed in Sec. I.B.3.) The char-
acteristic magnetic field Bc for breaking of time-reversal
symmetry is Bc5a21AN .

The correlator of the conductance can now be calcu-
lated by averaging U over the COE. This can be done
perturbatively if N1 and N3 are both @1, for any ratio of
N1 and N3. The result for N1@N3 is

C0~dB !5
96~N3 /N1!2

@11~dB/Bc!
2#2 , (345a)

Cf~dB ,df!5 1
3 C0~dB !cosdf , (345b)

whereas for N1!N3 one has

C05
1
4
AN1

N3
F11

2N3

N1
S dB

Bc
D 2G23/2

, (346a)

FIG. 50. Schematic picture, showing how a magnetic field can
be included in the scattering-matrix ensemble. A chaotic cavity
with a spatially homogeneous magnetic field (left diagram) is
statistically equivalent to a chaotic cavity in zero magnetic field
(right diagram), which is coupled to a closed lead (a stub)
having a nonsymmetric reflection matrix. After Brouwer and
Beenakker (1996b).
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Cf5
1
2F11

2N3

N1
S dB

Bc
D 2

1
N3

4N1
~df!2G22

. (346b)

The difference between the two limiting regimes is illus-
trated in Fig. 51. The ‘‘sample-specific’’ curves in the
upper panels were computed by randomly drawing a
matrix S from the CUE. The correlators in the lower
panels were computed using large-N perturbation
theory. The qualitative difference between N1*N3 [Fig.
51(a)] and N1!N3 [Fig. 51(b)] is clearly visible.

F. Shot noise

If the transmission of an elementary charge e can be
regarded as a sequence of uncorrelated events, then the
shot-noise power P equals the value 2eI[PPoisson of a
Poisson process (see Sec. III.E). In this subsection we
discuss the enhancement of shot noise in an NS junction,
following De Jong and Beenakker (1994). The enhance-
ment originates from the fact that the current in the
superconductor is carried by Cooper pairs in units of
2e . However, as we will see, a simple factor-of-two en-
hancement applies only in certain limiting cases.

In the normal state, the shot-noise power (at zero
temperature and infinitesimal applied voltage) is given
by (Büttiker, 1990)

PN5P0Tr tt†~12tt†!5P0 (
n51

N

Tn~12Tn!, (347)

with P0[2eV(2e2/h). Closed (Tn50) as well as open
(Tn51) scattering channels do not fluctuate and there-

FIG. 51. Conductance fluctuations in a Josephson junction as a
function of the phase difference between the superconductors,
computed for a three-terminal configuration without time-
reversal symmetry. Top panels: Conductance minus the en-
semble average (in units of 2e2/h); bottom panels: normalized
correlator c(df)5C(0,df)/C(0,0), with C(dB ,df) defined
in Eq. (340). The parameters for column (a) are N15120,
N35N4530; the parameters for column (b) are N1510,
N35N4580. (N1 denotes the number of modes coupling to
the normal metal, and N31N4 is the total number of modes
coupling to the superconductors.) After Brouwer and Beenak-
ker (1996b).
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fore give no contribution to the shot noise. The ana-
logue of Eq. (347) for the shot-noise power of an NS
junction is

PNS54P0Tr sheshe
† ~12sheshe

† !

5P0 (
n51

N 16Tn
2~12Tn!

~22Tn!4 , (348)

where we have used Eq. (266) (with «50) to relate the
scattering matrix she for Andreev reflection to the trans-
mission eigenvalues Tn of the normal region. This re-
quires zero magnetic field. As in the normal state, scat-
tering channels which have Tn50 or Tn51 do not
contribute to the shot noise. However, the way in which
partially transmitting channels contribute is entirely dif-
ferent from the normal-state result (347).

Consider first an NS junction without disorder but
with an arbitrary transmission probability G per mode of
the interface. In the normal state, Eq. (347) yields
PN5(12G)PPoisson , implying full Poisson noise for a
high tunnel barrier (G!1). For the NS junction we find
from Eq. (348)

PNS5P0N
16G2~12G!

~22G!4 5
8~12G!

~22G!2 PPoisson , (349)

where in the second equality we have used Eq. (253).
This agrees with results obtained by Khlus (1987),
Muzykantski� and Khmel’nitski� (1994), Anantram and
Datta (1996), and Martin (1996), using different meth-
ods. If G,2(A221)'0.83, one observes a shot noise
above the Poisson noise. For G!1 one has

PNS54eI52PPoisson , (350)

which is a doubling of the shot-noise power divided by
the current with respect to the normal-state result. This
can be interpreted as uncorrelated current pulses of
2e-charged particles.

Consider next an NS junction with a disordered nor-
mal region but with an ideal interface (G51). We may
then apply the formula (325) for the average of a linear
statistic on the transmission eigenvalues to Eqs. (253)
and (348). The result is

^PNS&

^GNS&
5

2
3

P0

2e2/h
⇒^PNS&5 4

3 eI5 2
3 PPoisson . (351)

Equation (351) is twice the result in the normal state but
still smaller than the Poisson noise. Corrections to Eq.
(351) are of lower order in N and due to quantum-
interference effects.

Finally, consider an NS junction that contains a disor-
dered normal region (length L , mean free path l) as well
as a nonideal interface. The scaling theory of Subsection
III.A.1 can be applied to this case. Results are shown in
Fig. 52, where ^PNS&/PPoisson is plotted against GL/l for
various G . Note the crossover from the ballistic result
(349) to the diffusive result (351). For a high barrier
(G!1), the shot noise decreases from twice the Poisson
noise to two-thirds the Poisson noise as the amount of
disorder increases.
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V. CONCLUSION

We conclude by identifying some open problems and
directions for future research.

A. Higher-dimensional geometries

We have reviewed the random-matrix theory of quan-
tum transport for two geometries: a quantum dot and a
disordered wire. These are, essentially, zero- and one-
dimensional. What about higher dimensionalities? What
is the statistics of the transmission eigenvalues for a two-
dimensional thin film or a three-dimensional cube? Here
we summarize what is known.

We recall Eq. (251) for the density of transmission
eigenvalues in the metallic regime,

r0~T !5
Nl

2L

1

TA12T
, (352)

corresponding to the uniform density (191) in the pa-
rametrization T51/cosh2x. [The density has a cutoff at
exponentially small transmission T'exp(22L/l), which
is irrelevant for transport properties.] The derivation of
Sec. III.B.3 was based on the DMPK equation and
hence restricted to a wire geometry (length L much
greater than width W). An alternative derivation by
Nazarov (1994a) shows that the density (352) applies
also to higher-dimensional geometries in the metallic re-
gime. Whether or not the conductor is metallic does de-
pend on the dimensionality. For a wire of length L the
condition is L!Nl , while for a L3L square it is
L!lexp(2pl/lF) (Vollhardt and Wölfle, 1992). In both
cases weak disorder is assumed, meaning that the mean
free path l is much greater than the Fermi wavelength
lF . A L3L3L cube remains in the metallic regime for

FIG. 52. The shot-noise power of a normal-metal–
superconductor junction (in units of PPoisson[2eI) as a func-
tion of the length L (in units of l/G), for barrier transparencies
G51, 0.9, 0.8, 0.6, 0.4, and 0.2 from bottom to top. The dashed
curve gives the limiting result for G!1. For L50 the noise
power varies as a function of G according to Eq. (349), be-
tween doubled shot noise (^PNS&54eI) for a high barrier
(G!1) and zero in the absence of a barrier (G51). For
L→` the noise power approaches the limiting value ^PNS&5
4
3eI for each G . After De Jong and Beenakker (1994).
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weak disorder, regardless of how large L becomes. The
dimensionality independence of Eq. (352) implies, for
example, that the one-third suppression of the shot noise
discussed in Sec. III.E is not restricted to a wire geom-
etry (Altshuler, Levitov, and Yakovets, 1994; Nazarov,
1994a).

A more general statement is that the nonlinear scaling
equation (195) for the eigenvalue density, derived for a
wire geometry, does not in fact require L@W for its
validity. It is sufficient that the conductor is in the me-
tallic regime. We do not know of an analytical proof of
this statement, but the numerical evidence for it is quite
strong (Beenakker, Rejaei, and Melsen, 1994). An im-
plication is that the scaling theory of reflectionless tun-
neling of Sec. IV.C.2, which is based on Eq. (195), is not
restricted to a wire geometry.

Corrections dr(T) to the density (352) due to weak
localization are different for different dimensionalities.
We recall the result (194) for a wire geometry,

dr~T !5 1
4 ~122/b!@d~T21101!12T21

3~12T !21/2~4ln2@A1/T1A1/T21#1p2!21# ,

(353)

which contains a short-range (delta-function) term at
unit transmission plus a long-range contribution extend-
ing down to exponentially small transmission. Nazarov
(1995b) has computed dr(T) for higher dimensionali-
ties. The short-range delta-function term is always the
same, but the long-range contribution depends on the
geometry. This long-range contribution ensures that the
weak-localization correction to the average conductance
exhibits the geometry dependence known from diagram-
matic perturbation theory (Lee and Ramakrishnan,
1985).

Nazarov (1996) has also shown how the geometry de-
pendence of the variance of the conductance arises from
the geometry dependence of the two-point correlation
function K(T ,T8). For T ,T8 both close to 1 the corre-
lation function has the dimensionality-independent form

lim
T ,T8→1

K~T ,T8!52
1

bp2

]

]T

]

]T8

3lnUA1/T212A1/T821

A1/T211A1/T821
U , (354)

corresponding to a logarithmic eigenvalue repulsion,

lim
T ,T8→1

u~T ,T8!52lnuT2T8u (355)

[see Eqs. (50) and (60)]. If T and T8 are not both close
to 1 then the two-point correlation function and the in-
teraction potential acquire contributions that depend on
the dimensionality.

Nazarov’s theory is a perturbation theory in the me-
tallic regime. It requires that the conductance G is much
greater than e2/h . No theory exists for the statistics of
transmission eigenvalues in a square or cube geometry
which extends to the insulating regime. This is the out-
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standing open problem of the field. So far, limited
progress has been made on the extension of the DMPK
equation towards higher dimensionalities (Mello and
Tomsovic, 1991, 1992; Chalker and Bernhardt, 1993;
Endesfelder and Kramer, 1993; Tartakovski, 1995;
Endesfelder, 1996).

B. Localization of interacting particles

The interplay of interactions and localization is a for-
midable problem in solid-state physics. (For a review,
see Belitz and Kirkpatrick, 1994.) Random-matrix tech-
niques have given insight into the simplest case of two
interacting particles (an ‘‘exciton’’) in a one-dimensional
random potential.

Dorokhov (1990) considered a pair of harmonically
bound particles moving along a disordered chain of
length L . In the absence of disorder the total energy
2E of the pair consists of kinetic energy of the center of
mass plus the binding energy26 «n5(n2 1

2)\v ,
n51,2, . . . ,N , of the harmonic interaction (frequency
v). The integer N is the largest n such that «n,2E . The
disorder potential (mean free path l) is assumed to be
weak enough that it can be treated perturbatively. This
requires kl@N , with \k the momentum of a free par-
ticle at energy E . Another way of stating this require-
ment is that the average separation d̄ of the two par-
ticles should be much less than the mean free path.

The scattering problem of the pair, involving one
propagating mode for the center-of-mass motion and
N bound states for the relative motion, can be mapped
onto the scattering problem of a free particle with N
propagating modes. The probability distribution of the
scattering amplitudes of the pair evolves with increasing
L according to a Fokker-Planck equation, analogous to
the DMPK equation for a free particle. For N51 the
localization length jpair of the pair is of the order of the
mean free path l , which is the single-particle localization
length j in one dimension. (The length jpair is smaller
than l near the ground state of the harmonic interaction
and becomes larger than l on approaching the first ex-
cited state.) For N@1 the pair-localization length is
greater than the mean free path by a factor N , analo-
gously to Eq. (220),

jpair.Nl.kd̄ j . (356)

The maximal enhancement jpair /j.kl is reached when
d̄ becomes comparable to l .

Shepelyansky (1994) studied the same problem for a
weak interaction of arbitrary sign, treating the two-
particle Hamiltonian as a banded random matrix. Disor-
der prevents the pair to diffuse apart by more than the

26Here it is assumed that the two particles are distinguishable,
so that the parity of the wave function under exchange is irrel-
evant. If the two particles are identical, then «n5(2n2

3
2)\v

for two bosons or for a singlet pair of electrons, while
«n5(2n2

1
2)\v for a triplet pair of electrons.
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single-particle localization length, regardless of whether
the interaction is attractive or repulsive. The pair local-
ization length is greater than the single-particle localiza-
tion length by a factor jpair /j&kl , independent of the
sign of the interaction. This surprising result has gener-
ated a great deal of interest in the coherent propagation
of correlated electron pairs. We refer to the proceedings
of a recent conference for an overview (Martin, Mon-
tambaux, and Trân Thanh Vân, 1996). Much of the work
is directed towards an extension of the phenomenon of
interaction-assisted diffusion to spatial dimensions
greater than one and to more than two particles.
Whether the phenomenon is relevant for the metal-
insulator transition in a disordered metal remains an
open question.

C. Localization of light

The propagation of electromagnetic waves through a
waveguide is the optical analogue of conduction through
a wire. The analogy can be made more precise if the
vector character of the light does not play a role, which
is the case in a two-dimensional geometry with perpen-
dicular polarization. Consider a monochromatic electric
field EW(rW ,t)5 ẑ Re E(x ,y)exp(ivt) (frequency v , wave
number k5v/c), which varies only in the x-y plane and
is polarized in the z direction. The complex scalar field
E(x ,y) satisfies the Helmholtz equation

@¹21~v/c !2«~x ,y !#E~x ,y !50, (357)

with boundary condition E50 at a metal surface. The
(relative) dielectric constant «(x ,y)511d«(x ,y) fluctu-
ates due to disorder in the waveguide. Equation (357) is
analogous to the Schrödinger equation for the wave
function c at the Fermi level of a two-dimensional elec-
tron gas. The boundary condition c50 applies to an
infinitely high potential barrier. The wavelength
l52pc/v corresponds to the Fermi wavelength lF , and
(v/c)2d«(x ,y) corresponds to the electrostatic potential
V(x ,y) multiplied by 22m/\2. There is also a precise
correspondence between the expressions for the current
density, which is } ReE* ¹E in the optical case and
} Re c* ¹c in the electronic case.

The problem of localization by strong disorder is dif-
ferent in the two cases (John, 1984), because of the re-
striction d«.21 in the optical problem. Potentials V
greater than the Fermi energy have no optical analogue.
As a consequence, the mean free path l for light cannot
be much smaller than its wavelength l . In the case of
weak disorder l@l , however, optical and electronic lo-
calization are analogous. This is the relevant case for a
waveguide geometry.

One new aspect of the optical problem is the absence
of a conservation law if the dielectric constant has a non-
zero imaginary part. The intensity of the radiation which
has propagated without reflection over a distance L is
then multiplied by a factor esL, with s negative (posi-
tive) for absorption (amplification). The growth or de-
cay rate s is related to the dielectric constant by
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s522k Im A« . Absorption is present to some degree
in any optical system. Amplification arises as a result of
stimulated emission in a laser.

The effect of absorption or amplification on localiza-
tion of light in a waveguide can be studied by a gener-
alization of the DMPK equation. The generalization is
simplest for the distribution of the reflection eigenvalues
Rn[ln /(11ln) (eigenvalues of the reflection-matrix
product rr†). With increasing length L of the wave-
guide, the distribution P(l1 ,l2 , . . . ,lN ,L) evolves ac-
cording to

l
]P

]L
5

2
bN122b (

n51

N
]

]ln
ln~11ln!

3FJ
]

]ln

P

J
2sl~bN122b!PG , (358a)

J5)
i,j

N

ul j2l iub. (358b)

The symmetry index b equals 1, unless time-reversal
symmetry is broken by some magneto-optical effect. For
s50, Eq. (358) reduces to the DMPK equation (145).
The Fokker-Planck equation (358) was derived for
N51 (when J[1) by Gertsenshtein and Vasil’ev
(1959), Kohler and Papanicolaou (1976), and Pradhan
and Kumar (1994), and for N>1 by Beenakker, Paass-
chens, and Brouwer (1996), and Bruce and Chalker
(1996). The solution in the limit L→` is

P`})
i

exp@sl~bN122b!l i#)
i,j

ul j2l iub. (359)

Equation (359) holds for both positive and negative s ,
but the support of P` depends on the sign of s—all
l’s have to be ,21 for s.0 (amplification) and .0 for
s,0 (absorption). The distribution (359) is known in
random-matrix theory as the Laguerre ensemble.

When s Þ 0, the transmission and reflection eigenval-
ues are no longer related. The evolution with increasing
L of the Rn’s decouples from that of the Tn’s — but not
vice versa. In fact, the evolution of the transmission ei-
genvalues depends not just on the reflection eigenvalues,
but on all matrix elements of rr†. This is a substantial
complication, and analytical progress has so far been
limited to the single-mode case (Rammal and Doucot,
1987; Freilikher, Pustilnik, and Yurkevich, 1994). One
exact result is the equality of the Lyapunov exponents
for absorption and amplification, jn(s)5jn(2s)
(Paasschens, Misirpashaev, and Beenakker, 1996). [We
recall that the Lyapunov exponents determine the decay
of the transmission eigenvalues Tn } exp(22L/jn) in the
limit L→` .] In the single-mode case, one has
j152l(11usul)21 (Zhang, 1995). The multimode case
has not yet been solved.

Another new aspect of the optical problem is the fre-
quency dependence of the term (v/c)2« in the Helm-
holtz equation, which for electrons would correspond to
an energy-dependent potential. The frequency depen-
dence is irrelevant for the transmission of a monochro-
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matic wave, but does affect the propagation of non-
monochromatic radiation. In particular, the velocity of
propagation of a light pulse is greatly reduced near a
resonance (Van Albada et al., 1991). The theory has
been reviewed by Lagendijk and Van Tiggelen (1996).
For a random-matrix approach to resonant multiple
scattering, see Elattari, Kagalovsky, and Weidenmüller
(1996).

D. Quantum Hall effect

The quantum Hall effect occurs in a two-dimensional
electron gas in a strong perpendicular magnetic field
(Prange and Girvin, 1990). (The field B should be suffi-
ciently strong that the cyclotron frequency vc5eB/m is
much greater than the elastic-scattering rate 1/t , so that
the width \/t of the Landau levels is much smaller than
their spacing \vc .) With increasing B , the Hall conduc-
tance decreases stepwise by e2/h , each time a Landau
level crosses the Fermi level. Each step is associated
with an insulator-metal-insulator transition—the wave
functions are localized on the plateaus of constant Hall
conductance and extended in between the plateaus. The
magnetic-field dependence of the localization length in
the transition is known from numerical simulations but
not yet analytically (Huckestein, 1995). An intriguing
link with the random-matrix theory of a chaotic cavity
has been suggested by Cobden and Kogan (1996; see
also Wang, Jovanović, and Lee, 1996; Cho and Fisher,
1997).

A three-dimensional system can exhibit the quantum
Hall effect if it consists of a stack of weakly coupled
layers perpendicular to the magnetic field. The Bech-
gaard salts are a naturally occurring example. One can
also grow semiconductor heterostructures containing
multiple layers. This highly anisotropic system has been
called a ‘‘chiral metal’’ (Chalker and Dohmen, 1995;
Balents and Fisher, 1996; Balents, Fisher, and Zirn-
bauer, 1997). Conduction perpendicular to the layers oc-
curs via overlapping states at the edges of the layers.
Unlike the problem of conduction parallel to the layers,
the problem of perpendicular conduction is tractable
analytically. A transition from extended to localized
states occurs as the number of layers is increased.
Gruzberg, Read, and Sachdev (1997) have shown that
this transition is governed by the DMPK equation.
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APPENDIX A: INTEGRAL EQUATION FOR THE
EIGENVALUE DENSITY

Dyson (1972) derived the integral equation

E dl8r~l8!lnul2l8u1 1
2 ~122/b!lnr~l!

5V~l!1constant (A1)

for the eigenvalue density r(l)5^( id(l2l i)& in the
Wigner-Dyson ensemble (5). The term proportional to
lnr is an order N21lnN smaller than the other terms, and
terms of still higher order in N21 are neglected. If the
lnr term is neglected as well, then Eq. (A1) reduces to
Wigner’s integral equation (47). Equation (A1) holds
for a logarithmic eigenvalue repulsion u(l ,l8)
52lnul2l8u. In this Appendix we will generalize it to a
nonlogarithmic interaction.

We consider a probability distribution of the form

P}e2bW, W5(
i,j

u~l i ,l j!1(
i

V~l i!, (A2a)

u~l ,l8!52lnul2l8u1du~l ,l8!, (A2b)

and assume that the limit l→l8 of du(l ,l8) exists.
Note that P satisfies (for each i51,2, . . . ,N) the differ-
ential equation

]

]l i
P1bP

]

]l i
W50. (A3)

Multiply both sides by d(l2l i), sum over i , and inte-
grate over l1 ,l2 , . . . ,lN . The result is

d

dl
r~l!1br~l!

d

dl
V~l!5bI~l!, (A4)

I~l!52E dl8r2~l ,l8!
]

]l
u~l ,l8!. (A5)

We have defined the pair density

r2~l ,l8![K (
iÞj

d~l2l i!d~l82l j!L
5r~l!r~l8!2r~l!d~l2l8!1K~l ,l8!.

(A6)

The two-point correlation function K(l ,l8) was defined
in Eq. (43).

We proceed with a bit of formal manipulation:
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E dl8r~l!d~l2l8!
]

]l
u~l ,l8!

5E dl8r~l!d~l2l8!
]

]l
@2lnul2l8u1du~l ,l8!#

5 1
2 r~l!

d

dl
du~l ,l!2E dl8 1

2 @r~l!1r~l8!#

3
d~l2l8!

l2l8

5 1
2 r~l!

d

dl
du~l ,l!1 1

2

d

dl
r~l!. (A7)

Substitution into Eq. (A5) yields

I~l!

r~l!
5

1
2

d

dl
@ lnr~l!1du~l ,l!#

2E dl8r~l8!
]

]l
u~l ,l8!

2E dl8
K~l ,l8!

r~l!

]

]l
u~l ,l8!. (A8)

Since K(l ,l8) is of order N0, the last term in Eq. (A8)
is a factor N smaller than the other terms. We neglect
this last term, substitute Eq. (A8) into Eq. (A4), divide
by br(l), and integrate once over l . The result is the
required generalization of Eq. (A1) to a nonlogarithmic
interaction:

2E dl8r~l8!u~l ,l8!1 1
2 ~122/b!lnr~l!

1 1
2 du~l ,l!5V~l!1constant. (A9)

APPENDIX B: INTEGRATION OVER THE UNITARY GROUP

Averages over the unitary group appear throughout
this review. Here we collect a few results we will need
repeatedly. For more extensive treatments we refer to
Creutz (1978), Samuel (1980), Mello (1990), Argaman
and Zee (1996), and Brouwer and Beenakker (1996a).

Let U be an N3N matrix which is uniformly distrib-
uted over the group U(N) of N3N unitary matrices.
(This is the circular unitary ensemble of Sec. II.A.1.)
Averages over U(N) are defined as an integration with
the invariant measure dm(U),

^f~U !&5E dm~U ! f~U !, (B1)

normalized such that *dm(U)51. The invariance prop-
erty means that

^f~UU0!&5^f~U0U !&5^f~U !&, (B2)

for any fixed matrix U0 P U(N).
The average of a polynomial function

f~U !5Ua1a1
Ua2a2

•••Uapap
Ub1b1

* Ub2b2
* •••Ubqbq

*

(B3)
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is zero unless p5q and the sets $an%5$bn% of left indi-
ces coincide and the sets $an%5$bn% of right indices co-
incide. The expressions for p51 and 2 are

^UaaUbb* &5
1
N

dabdab , (B4)

^UaaUa8a8Ubb* Ub8b8
* &

5
1

N221
~dabdabda8b8da8b81dab8dab8da8bda8b!

2
1

N~N221 !
~dabdab8da8b8da8b

1dab8dabda8bda8b8!. (B5)

The leading-order term in powers of 1/N in Eq. (B5) is
the Gaussian approximation, which consists of replacing
the real and imaginary parts of the elements of U by
independent Gaussian variables with zero mean and
variance 1/2N . More generally, the Gaussian approxima-
tion is the leading-order term in the average

^f~U !&5N2pdpq(
P

)
j51

p

da jbP~ j !
dajbP~ j !

1O~N2p21!,

(B6)

where the sum is over all permutations P of the numbers
1,2, . . . ,p .

APPENDIX C: HOW TO DERIVE EQ. (194) FROM EQ. (210)

The probability distribution (210) is of the form (A2),
with

u~x ,x8!52lnux2x8u1du~x ,x8!, (C1a)

du~x ,x8!52 1
2 lnu~x2x8!21sinh~x2x8!u

2 1
2 lnu~x1x8!sinh~x1x8!u, (C1b)

V~x !5 1
2 ~N2112/b!s21x21b21du~x ,x !. (C1c)

(Instead of l , we use here the variable x>0.) The den-
sity r(x) is determined to order N0 by the integral equa-
tion (A9), which in view of Eq. (C1c) takes the form

2E
0

`

dx8r~x8!u~x ,x8!1 1
2 ~122/b!

3@ lnr~x !1du~x ,x !1s21x2#

5 1
2 Ns21x21constant. (C2)

We write r(x)5r0(x)1dr(x), with r0(x)
5Ns21u(s2x) and dr(x) a correction of order N0.
One can verify by substitution that r0 satisfies Eq. (C2)
to order N ,

2E
0

`

dx8r0~x8!u~x ,x8!5 1
2 Ns21x21constant, (C3)

for s@1, s@x . Linearization of Eq. (C2) around r0
yields an equation for dr ,
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E
0

`

dx8dr~x8!u~x ,x8!5 1
2 ~122/b!@ lnr0~x !1du~x ,x !

1s21x2#1constant. (C4)

We substitute Eq. (C1) and extend r(x) symmetrically
to negative x , r(2x)[r(x). Equation (C4) becomes

2E
2`

`

dx8dr~x8!lnu~x2x8!sinh~x2x8!u

5~122/b!@ lnr0~x !2 1
2 lnuxsinh~2x !u1s21x2#

1constant. (C5)

For s@x the term s21x2 may be neglected, and the term
lnr0 may be absorbed into the additive constant. The
remaining convolution is readily inverted by Fourier
transformation,

dr~k !
2p

uku ~12e2puku!21

5~122/b!
p

uku~
12e2 ~1/2 ! puku!21

⇒dr~k !5 1
2 ~122/b!~11e2~1/2 !puku!. (C6)

The inverse Fourier transform of dr(k) is Eq. (194).

APPENDIX D: CALCULATION OF THE
WEAK-LOCALIZATION CORRECTIONS IN TABLE III

In this Appendix we show how the weak-localization
corrections dGNS in a normal-metal–superconductor
junction, listed in Table III, are obtained. We first con-
sider a system without spin-orbit scattering (Brouwer
and Beenakker, 1995b) and then discuss the effect of
strong spin-orbit scattering (Slevin, Pichard, and Mello,
1996). The starting point of this calculation is Eq. (269).
We assume that the length L of the disordered normal
region is much greater than the superconducting coher-
ence length j.(\vFl/D0)1/2 (with vF the Fermi velocity
and l the mean free path in the normal metal). This
implies that the Thouless energy Ec.\vFl/L2 is much
smaller than the superconducting energy gap D0. In the
voltage range V&Ec /e we may therefore assume that
eV!D0, hence a[exp@2iarccos(«/D0)#→2i . Using the
polar decomposition (24) of the transmission and reflec-
tion matrices, Eq. (269b) can be replaced by

m~«!5AT~«!@11u~«!AR~2«!u* ~2«!

3AR~«!#21u~«!AT~2«!,

u~«![V8~«!V* ~2«!, (D1)

where T is the matrix of transmission eigenvalues and
R512T. In the presence of time-reversal symmetry,
V85VT. If time-reversal symmetry is broken, V and
V8 are independent. In the case of electron-hole degen-
eracy, the difference between 1« and 2« may be ne-
glected. If electron-hole degeneracy is broken, the scat-
tering matrices at 6« are independent. Of the four
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entries in Table III, the case that both time-reversal
symmetry and electron-hole degeneracy are present is
the easiest, because then u51 and Eq. (269) simplifies
to the linear statistic (253). The result for dGNS is Eq.
(279). The three other entries are more difficult because
we need to average over the unitary matrices as well as
over the transmission eigenvalues. We will discuss the
three cases separately.

1. Broken time-reversal symmetry

We first consider the case that electron-hole degen-
eracy is present but time-reversal symmetry is broken.
According to the isotropy assumption in a wire geom-
etry (see Sec. III.A.2), V and V8, and hence u , are uni-
formly distributed in the unitary group U(N). We may
perform the average ^•••& over the ensemble of scatter-
ing matrices in two steps, ^•••&5^^•••&u&T , where
^•••&u and ^•••&T are, respectively, the average over the
unitary matrix u and over the transmission eigenvalues
Ti . We compute ^•••&u by an expansion in powers of
N21. To integrate the rational function (D1) of u over
U(N), we first expand it into a geometric series and then
use the general rules for the integration of polynomials
of u (see Appendix B). The polynomials we need are

^GNS&u5
4e2

h (
p ,q50

`

~21 !p1qMpq , (D2a)

Mpq5^Tr T~uARu* AR!puTu†~ARuTARu†!q&u .
(D2b)

Neglecting terms of order N21, we find

Mpq55
Nt1

2~12t1!2p if p5q ,

t1~t1
21t122t2!~12t1!p1q21

22 min~p ,q !t1
2~t1

22t2!~12t1!p1q22

if up2qu odd,

0 if up2qu even, and pÞq ,

(D3)

where we have defined the moment tk5N21( iTi
k . The

summation over p and q leads to

h

4e2 ^GNS&u5
Nt1

22t1
2

4t122t1
212t1

324t2

t1~22t1!3 . (D4)

It remains to average over the transmission eigenval-
ues. Since tk is a linear statistic, we know that its
sample-to-sample fluctuations are order 1/N smaller
than the average. Hence

^f~tk!&T5f(^tk&)@11O~N22!# , (D5)

which implies that we may replace the average of the
rational function (D4) of the tk’s by the rational func-
tion of the average ^tk&. This average has the 1/N ex-
pansion

^tk&5^tk&01O~N22!, (D6)

where ^tk&0 is O(N0). There is no term of order N21 in
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the absence of time-reversal symmetry. From Eqs.
(D4)–(D6) we obtain the 1/N expansion of the average
conductance,

h

4e2 ^GNS&5
N^t1&0

22^t1&0
2

4^t1&022^t1&0
212^t1&0

324^t2&0

^t1&0~22^t1&0!3

1O~N21!. (D7)

Equation (D7) is generally valid for any distribution
of the transmission eigenvalues. We apply it to the case
of a disordered wire in the limit N→` , l/L→0 at con-
stant Nl/L . The moments ^tk&0 are given by

^tk&05
l

LE
0

` dx

cosh2kx
⇒^t1&05

l

L
, ^t2&05

2l

3L
.

(D8)

Substitution into Eq. (D7) yields the weak-localization
correction dGNS52 2

3e
2/h , see Table III.

2. Broken electron-hole degeneracy

If time-reversal symmetry is present but electron-hole
degeneracy is broken, then one has u†(2eV)5u(eV),
with u(eV) uniformly distributed in U(N). A calculation
similar to that in the previous subsection yields for the
average over u :

h

4e2 ^GNS&u5Nt11t12~t111t122t11t12!21

1~t111t122t11t12!23@2t11
2 t12

2

2t11
3 t12

2 2t11
2 t12

3 2t21t12
2 2t11

2 t22

1t21t12
3 1t11

3 t22# , (D9)

where we have abbreviated tk65tk(6eV). The next
step is the average over the transmission eigenvalues.
We may still use Eq. (D5), and we note that
^tk(«)&[^tk& is independent of « . (The energy scale for
variations in ^tk(«)& is EF , which is much greater than
the energy scale of interest Ec .) Instead of Eq. (D6) we
now have the 1/N expansion

^tk&5^tk&01N21dtk1O~N22!, (D10)

which contains also a term of order N21 because of the
presence of time-reversal symmetry. The 1/N expansion
of ^GNS& becomes

h

4e2 ^GNS&5
N^t1&0

22^t1&0
1

2dt1

~22^t1&0!2

1
2^t1&0

222^t1&0
322^t2&012^t1&0^t2&0

^t1&0~22^t1&0!3

1O~N21!. (D11)

For the application to a disordered wire we use again
Eq. (D8) for the moments ^tk&0, which do not depend
on whether time-reversal symmetry is broken or not. We
also need dt1, which in the presence of time-reversal
symmetry is given by
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
dtk5E
0

`dr~x !dx

cosh2kx
⇒dt152 1

3 . (D12)

Substitution into Eq. (D11) yields dGNS52 4
3e

2/h , see
Table III.

3. Both symmetries broken

In the absence of both time-reversal symmetry and
electron-hole degeneracy, the two matrices u(eV) and
u(2eV) are independent, each with a uniform distribu-
tion in U(N). Carrying out the two averages over
U(N) we find

h

4e2 ^GNS&u5
Nt11t12

t111t122t11t12
. (D13)

The average over the transmission eigenvalues becomes

h

4e2 ^GNS&5
N^t1&0

22^t1&0
1O~N21!, (D14)

where we have used that dt150 in the absence of time-
reversal symmetry. We conclude that dGNS50 in this
case, as indicated in Table III.

4.Effect of spin-orbit scattering

In the presence of spin-orbit scattering, the scattering
matrix elements are quaternion numbers. Since a
quaternion can be represented by a 232 matrix, we can
represent the N3N matrix V with quaternion elements
by a 2N32N matrix v with complex elements. We de-
note this representation by V>v . In view of the defini-
tions (271) and (272) of complex conjugation and Her-
mitian conjugation, one has

V* >2Cv* C, V†>v†, (D15)

where C was defined in Eq. (73). In this notation, the
conductance is given by

GNS52G0Tr m~eV !m†~eV !, G05e2/h , (D16a)

m~«!5AT~«!@12u~«!AR~2«!u* ~2«!AR~«!#21

3u~«!AT~2«!,

u~«![v8~«!Cv* ~2«!. (D16b)

The conductance quantum G0 is half as small as in the
absence of spin-orbit scattering, while the dimensional-
ity of the matrices T and R512T of transmission and
reflection eigenvalues has doubled. Furthermore, the
term 11u in Eq. (D1) is replaced by 12u in Eq.
(D16b), as a result of the minus sign in the definition
(D15) of complex conjugation. The calculations of the
previous subsections can now be repeated starting from
Eq. (D16) instead of from Eq. (D1). The result is that
each entry in Table III is to be multiplied by a factor of
21/2 (Slevin, Pichard, and Mello, 1996).
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Wang, Z., B. Jovanović, and D.-H. Lee, 1996, Phys. Rev. Lett.
77, 4426.

Washburn, S., and R. A. Webb, 1986, Adv. Phys. 35, 375.
Wegner, F., 1979, Z. Phys. B 35, 207.
Weidenmüller, H. A., 1990, Physica A 167, 28.
Westervelt, R. M., 1996, in Nano-Science and Technology, ed-

ited by G. Timp (American Institute of Physics, New York),
in press.

Wigner, E. P., 1957, in Proceedings of the Canadian Math-
ematical Congress (University of Toronto, Toronto), p. 174;
reprinted in Porter (1965), p. 188.

Wigner, E. P., 1967, SIAM (Soc. Ind. Appl. Math.) Rev. 9, 1.
Xiong, P., G. Xiao, and R. B. Laibowitz, 1993, Phys. Rev. Lett.

71, 1907.
Yang, X., H. Ishio, and J. Burgdörfer, 1995, Phys. Rev. B 52,

8219.
Yip, S., 1995, Phys. Rev. B 52, 15504.
Yurke, B., and G. P. Kochanski, 1990, Phys. Rev. B 41, 8184.
Za�tsev, A. V., 1980, Zh. Eksp. Teor. Fiz. 78, 221; 79, 2016(E)

[Sov. Phys. JETP 51, 111; 52, 1018(E)].
Za�tsev, A. V., 1984, Zh. Eksp. Teor. Fiz. 86, 1742 [Sov. Phys.

JETP 59, 1015].
Za�tsev, A. V., 1994, Phys. Lett. A 194, 315.
Zanon, N., and J.-L. Pichard, 1988, J. Phys. (France) 49, 907.
Zhang, Z. Q., 1995, Phys. Rev. B 52, 7960.
Zhou, F., and B. Spivak, 1996, Los Alamos preprint archive,

cond-mat/9604185.
Zhou, F., B. Spivak, and A. Zyuzin, 1995, Phys. Rev. B 52,

4467.
Zirnbauer, M. R., 1992, Phys. Rev. Lett. 69, 1584.
Zirnbauer, M. R., 1993, Nucl. Phys. A 560, 95.


