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Atmospheric turbulence profoundly limits the angular resolution of astronomical telescopes working
at visible and near-infrared wavelengths. In fact, the angular resolution for conventional imaging
through turbulence is on the order of 5–20 % of the diffraction-limited resolution at the best
observatories in the world. The origin of these performance degradations is random
turbulence-induced fluctuations in the index of refraction of the atmosphere. Random
index-of-refraction fluctuations producing the optical path length of the atmosphere to be random in
both space and time, producing random aberrations in the telescope pupil that degrade imaging
performance. Over the past several years significant advances have been made in developing both
hardware and image-processing-based techniques for improving the resolution of astronomical
telescopes. Hardware-oriented correction techniques are based on wave-front sensing and adaptive
optics. Image-processing-based methods include speckle-imaging techniques and hybrid imaging
techniques that use elements of adaptive-optics systems and image reconstruction. Analysis
techniques for predicting the performance of these imaging methods have been developed, and the
comparative performance of these imaging techniques has been examined. This paper discusses
turbulence and image-detection statistics, describes the fundamentals of methods for overcoming
turbulence effects, and provides representative performance results. [S0034-6861(97)00102-5]
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I. INTRODUCTION

Atmospheric turbulence profoundly limits the angular
resolution of conventional ground-based astronomical
imaging systems (Roddier, 1981; Goodman, 1985;
Aleksoff et al., 1993; Beckers, 1993). The physical origin
of the optical effects of atmospheric turbulence is ran-
dom index-of-refraction fluctuations in the atmosphere.
Since the index-of-refraction of air is highly sensitive to
temperature, the random distribution of air tempera-
tures gives rise to a random index-of-refraction distribu-
tion in the atmosphere. The energy source for turbulent
air motion is differential heating of the surface of the
earth by the sun. Large pockets of air warmed by the
sun and the surface of the earth are continually and ran-
domly dissipated into ever smaller pockets of air, each
having a unique temperature. These small pockets of air
are commonly referred to as turbulent eddies. Random
index-of-refraction variations cause the optical path
length of the atmosphere to be random in both space
and time. As a consequence of the random optical path
length, a plane wave entering the atmosphere from a
distant source, such as a star, is corrupted by propaga-
tion through the atmosphere. The surface of constant
phase is no longer planar when the light is intercepted
by a telescope. The nonplanar nature of the wave enter-
ing the telescope is physically manifested as an optical
aberration that degrades the performance of the tele-
scope.

A useful parameter for characterizing the effect of
turbulence on the resolution of conventional imaging
systems is the so-called Fried parameter r0 (Fried,
1966b). The Fried parameter describes the telescope di-
ameter for which nearly diffraction-limited resolution is
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
obtained using conventional imaging through the atmo-
sphere. The term conventional imaging is used here to
describe the case in which an image measurement is
made using exposure times that are long compared to
the rate of change of the turbulence, and no effort is
made to compensate for turbulence effects. The angular
resolution of a telescope with diameter D , where
D@r0, that is looking through the atmosphere, is ap-
proximately given by l/r0, while the diffraction-limited
resolution of the telescope is approximately l/D . The
latest generation of astronomical telescopes have diam-
eters ranging from 4 to 8 m, while at visible wavelengths
r0 ranges from 10 to 20 cm at the best observatories.
Thus the resolution of astronomical telescopes is greatly
reduced by atmospheric turbulence. Note that the light-
gathering capability of large telescopes is not signifi-
cantly affected by turbulence. Hence, 4- to 8-m-diameter
telescopes are able to see very dim objects in the con-
ventional imaging paradigm, but the resolution achieved
could be obtained from much smaller, r0-sized tele-
scopes. These realizations have provided the motivation
for the large body of research on techniques for over-
coming turbulence effects.

Examples of the profound effects that turbulence
have on imaging systems are shown in Fig. 1. In Fig. 1
simulated images of a star for the case D/r0510 are
shown for three different imaging conditions. Figure
1(a) illustrates a short-exposure image of the star, Fig.
1(b) illustrates a long-exposure image of the star, and
Fig. 1(c) illustrates the diffraction-limited image of the
star. The logarithm of the diffraction-limited image is
displayed in Fig. 1(c) to allow the diffraction effects (i.e.,
the so-called Airy rings) to be easily seen. The term
short exposure used to describe Fig. 1(a) means that the
image measurement time was sufficiently short to
‘‘freeze’’ the turbulence during the image measurement
time. The term long exposure, associated with Fig. 1(b),
describes the case in which the image measurement time
was long enough to integrate over many realizations of
the turbulence-induced aberration. Because the input
object for Fig. 1 was an unresolved point, the images
shown in Fig. 1 represent different manifestations of the
point-spread function. Clearly, for a short exposure the
effects of turbulence are to broaden the point-spread
function compared to the diffraction-limited case and to
cause the point-spread function to be highly and ran-
domly structured. For a long exposure the point-spread
function consists of the integrated effects of many real-
izations of the turbulence. As a result, the long-exposure
image is much broader than the diffraction-limited
point-spread function and is much smoother than a
short-exposure image. In either the long- or short-
exposure case the effect of turbulence is to degrade the
resolution of the imaging system.

Though Isaac Newton (1952) was aware that turbu-
lence affected the performance of optical telescopes,
little progress was made in the scientific understanding
of turbulence effects until the 1950s and 1960s (Roddier,
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1981). Since that time a large amount of research has
been conducted on techniques to overcome turbulence
effects on imaging systems. Three broad classes of tech-
niques for overcoming turbulence effects have been de-
veloped: (1) pure post-detection image-processing tech-
niques, which are generally referred to as speckle-
imaging techniques, (2) adaptive-optics techniques,

FIG. 1. Simulated star images: (a) short-exposure image; (b)
long-exposure image; (c) diffraction-limited image. For these
results the telescope diameter is D=1 meter, the atmospheric-
turbulence conditions represent average seeing at a good ob-
servatory site (i.e., the atmospheric coherence diameter r0
510 centimeters), and the mean wavelength is l=550 nano-
meters.
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which use real-time sensing and correction of the aber-
rated wave front to overcome turbulence effects, and (3)
hybrid techniques that combine elements of both adap-
tive optics and image post processing to overcome tur-
bulence effects.

Speckle-imaging techniques (Labeyrie, 1970; Knox,
1976; Lohmann et al., 1983) were among the first tech-
niques developed for overcoming the effects of turbu-
lence. These techniques are based on post-detection
processing of a large data set of short-exposure images
using Fourier-domain methods. Fourier-domain analysis
is used in speckle imaging because it can be shown that
certain specialized moments of the Fourier transform of
a short-exposure image contain diffraction-limited infor-
mation about the objects of interest (Korff, 1973; Knox,
1976; Lohmann et al., 1983). Hence in speckle imaging
the object is estimated by first estimating its Fourier
transform and then inverting this Fourier-domain data
into an estimate of the object. Speckle imaging is an
attractive technique because the only hardware require-
ments are a camera that has a shuttering mechanism fast
enough to freeze the effects of turbulence during the
exposure time and a digital computer suitable for pro-
cessing the measured image data. Unfortunately, the
signal-to-noise ratios of the speckle-imaging estimators
are strongly degraded by noise arising from both ran-
dom turbulence effects and the random arrival times
and locations of photo events in the detection system.

Adaptive optics, originally proposed by Babcock
(1953), are a family of techniques for sensing and cor-
recting for the turbulence-induced aberration in real
time before an image is measured (Hudgin, 1977b; Wall-
ner, 1983; Welsh and Gardner, 1989 Ellerbroek, 1994).
There are three key elements in an adaptive-optics sys-
tem: (1) the wave-front sensor, which measures quanti-
ties related to the instantaneous aberration in the tele-
scope pupil; (2) the deformable mirror, which responds
to applied voltages to change its shape to adjust in real
time to the changing turbulence-induced aberration; and
(3) a controller, which converts wave-front sensor mea-
surements into deformable-mirror commands and main-
tains the stability of the system. Adaptive optics have an
advantage over speckle-imaging techniques of providing
narrower instantaneous point-spread functions and
hence higher inherent resolution, but there are several
fundamental problems associated with adaptive optics.

For example, a beacon of sufficient brightness is re-
quired to provide a signal to the wave-front sensing sys-
tem. At visible wavelengths the shortage of natural bea-
cons is a serious limitation to the utility of adaptive
optics. This limitation has given rise to efforts to create
artificial beacons by scattering laser light from various
molecular and atomic species in the atmosphere (Foy
and Labeyrie, 1985; Gardner et al., 1990) to provide
wave-front sensor signal. At infrared wavelengths the
shortage of natural beacons is somewhat relieved, with
nearly complete sky coverage being available at wave-
lengths of 10 mm or longer (Beckers, 1993; Rigaut and



440 Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
Gendron, 1993). However, the angular resolution ob-
tained by the telescope is limited by use of such long
wavelengths.

Further, it is impossible for any real adaptive-optics
system to correct fully for the turbulence-induced aber-
ration, due to the finite spatial sampling of the wave
front by the wave-front sensor, a limited number of de-
grees of freedom in the deformable mirror, and mea-
surement noise in the wave-front sensor (Beckers, 1993;
Roggemann and Welsh, 1996). Hence there will always
be residual error on the wave front, which will degrade
imaging performance. Anisoplanatism, which arises
from the fact that light from the wave-front sensor bea-
con and the object of interest must often pass through
different columns of air, limits the correctable field of
view of the adaptive-optics system to a few tens of mi-
croradians at visible wavelengths.

Finally, so-called fully compensated adaptive-optics
systems, capable of maximally correcting for turbulence
effects, will in the near term be very expensive and
‘‘one-of-a kind’’ systems developed by individual re-
search groups. The expense and complexity of adaptive-
optics systems impose a serious barrier to telescope sites
seeking to improve resolution beyond the limits imposed
by turbulence. The noise limitations of speckle imaging
and the complexity and expense of fully compensated
adaptive-optics systems have provided the motivation
for investigating a number of techniques that combine
elements of adaptive optics and post-detection process-
ing, referred to as hybrid imaging techniques. At least
three different hybrid imaging techniques have been de-
veloped: (1) partially compensating adaptive-optics sys-
tems, which provide a lower degree of correction for
turbulence effects than the fully compensated systems
just mentioned, combined with image reconstruction
(Smithson and Peri, 1989; Roggemann, 1991): (2) par-
tially compensating adaptive-optics systems used in con-
junction with speckle-imaging techniques (Nisenson and
Barakat, 1987; Roggemann and Matson, 1992) and (3)
using wave-front information available from a wave-
front sensor, either with or without adaptive optics, in
the image reconstruction process. This last technique is
referred to as deconvolution from wave-front sensing
(Gonglewski et al., 1990; Primot et al., 1990; Roggemann
and Meinhardt, 1993). Partially compensated adaptive-
optics systems are attractive because they require sim-
pler hardware and hence can be developed and operated
at much lower cost and risk than fully compensated sys-
tems. The reduction in performance of partially com-
pensated systems compared to fully compensated sys-
tems provides a role for post-detection image
reconstruction. These post-detection image-processing
techniques are attractive because it has been shown that
the signal-to-noise ratio of the required estimators is ac-
ceptable (Roggemann, 1992).

The goals of this paper are to review turbulence ef-
fects on imaging systems, to review techniques for over-
coming these effects, and to present analysis techniques
for predicting and comparing the performance of these
techniques. The literature on the subject of imaging
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
through turbulence is vast and is increasing rapidly. It
would be impossible to review the entire body of litera-
ture in any single review paper. Hence we have re-
stricted the scope of this paper to emphasize post-
detection processing using speckle-imaging, adaptive-
optics, and hybrid imaging techniques. It is not our
intent to provide a full historical review of all aspects of
atmospheric optics, adaptive optics, and image recon-
struction. Rather, in this article we review emerging
technologies for imaging space objects. Since many ap-
plications for imaging through turbulence require imag-
ing exceedingly dim objects, understanding the effects of
noise in the image measurement and the post-detection
processing is essential in evaluating the appropriateness
of any technique for a specific problem. Hence we place
emphasis on reviewing techniques for which the effects
of the various noises present have been analyzed. Fi-
nally, given the number of techniques available to the
researcher for imaging through turbulence and the wide
range of hardware available to individual experimenters,
the problem of comparing the performance of these
techniques is also emphasized.

Some aspects of this paper have been included in pre-
vious review articles. We call the readers attention to
works by Dainty (1975), Labeyrie (1976, 1978), Bates
(1982), Roddier (1988b), and Aleksoff et al. (1993), on
the subject of speckle imaging, and Aleksoff et al.
(1993), Beckers (1993), and Tyson and Ulrich (1993) on
the subject of adaptive optics. At least two related books
have also been published (Tyson, 1991; Roggemann and
Welsh, 1996).

The remainder of this paper is organized as follows.
Statistical preliminaries are presented in Sec. II, includ-
ing statistical models for turbulence effects and statisti-
cal models for the image detection process. Techniques
for overcoming turbulence effects are presented in the
subsequent sections. Adaptive optical techniques are
discussed in Sec. III, where a real, functional adaptive-
optics system is discussed and representative experimen-
tal results are presented. The post-detection processing
methods referred to as speckle-imaging techniques are
then presented in Sec. IV. A discussion of the hybrid
imaging technique referred to as deconvolution from
wave-front sensing (DWFS) is then provided in Sec. V.
The hybrid imaging techniques of deconvolution of com-
pensated images and compensated speckle imaging are
presented in Secs. VI and VII, respectively. Conclusions
are drawn in Sec. VIII.

II. STATISTICAL PRELIMINARIES

In this section we present a review of statistical topics
relevant to understanding turbulence effects on imaging
systems. There are two sources of randomness that must
be addressed in a system that forms images through at-
mospheric turbulence: (1) randomness arising from the
stochastic nature of electromagnetic-wave propagation
through the atmosphere; and (2) measurement noise
arising from the quantum nature of the light-detection
process and additive noise in the image measurement
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and recording process. Statistical models for the index-
of-refraction fluctuations are required to obtain specific
results for calculations of wave propagation through the
atmosphere. The most widely used statistical models for
the index-of-refraction fluctuations in the atmosphere
are presented in Sec. II.A. The topic of wave propaga-
tion through a random index-of-refraction region is pre-
sented in Sec. II.B. The results of Secs. II.A and II.B are
then used in Sec. II.C to derive the standard measures of
performance for uncompensated imaging through turbu-
lence, including the average long- and short-exposure
optical transfer functions (OTF) and the Strehl ratio.
The performance of image-processing-based techniques
for overcoming turbulence effects is limited by random-
ness arising from both atmospheric turbulence and pho-
ton and additive noise in the detector. Statistical models
characterizing the image-detection process are pre-
sented in Sec. II.D. Expressions for the image-spectrum
signal-to-noise ratio (SNR) and the SNR of the power
spectral density of the detected image are presented in
Sec. II.D.

A. Statistics of index-of-refraction fluctuations

The statistics of the spatial structure of turbulence are
of critical importance to modeling the optical effects of
atmospheric turbulence. The present understanding of
the spatial structure of turbulence arises from the study
of fluid motion. When the average velocity vavg of a vis-
cous fluid of characteristic size l is gradually increased
from very slow to very fast, two distinct states of fluid
motion are observed. At very low vavg the fluid motion is
found to be laminar, that is, smooth and regular. How-
ever, as vavg is increased past some critical value the flow
becomes unstable and random. This random fluid mo-
tion is called turbulence (Tatarski, 1967; Ishimaru,
1978). The critical average velocity bounding the region
between laminar and turbulent flow is a function of the
flow geometry, vavg , l , and the kinematic viscosity of the
fluid kv . These quantities are related through the non-
dimensional Reynolds number

Re5
vavgl

kv
. (1)

When Re exceeds some critical value, which depends on
the geometry of the flow, the fluid motion becomes un-
stable. The kinematic viscosity of air is kv51.531025

m2/s, and, if we assume a scale size of l=10 m and a
velocity of vavg51 m/s, a Reynolds number of
Re56.73105 is obtained. This Reynolds number is suf-
ficiently high to ensure that atmospheric air flow is
nearly always turbulent (Ishimaru, 1978).

Kolmogorov suggested that the kinetic energy of
large-spatial-scale motions of a turbulent flow is trans-
ferred to smaller-scale motions (Kolmogorov, 1961). He
also assumed that the small-scale turbulent motions are
both homogeneous and isotropic. The term homoge-
neous is analogous to stationarity and implies that the
statistical characteristics of the turbulent flow are inde-
pendent of position within the flow field. The term iso-
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
tropic is a stronger assumption that implies homogeneity
and in addition requires that the second and higher-
order statistical moments depend only on the distance
between any two points in the field. As the scale size l of
the air flow becomes smaller, the Reynolds number as-
sociated with that region of air flow is reduced. When
the Reynolds number falls below some critical value,
turbulent motion stops, and the remaining kinetic en-
ergy is dissipated as heat. Kolmogorov’s theory provides
a mathematical form for the spatial frequency domain
statistics of the index-of-refraction variations in the at-
mosphere (Roddier, 1981).

The physical source of the index-of-refraction varia-
tions in the atmosphere is temperature inhomogeneities
arising from turbulent air motion. The index of refrac-
tion of the atmosphere n(rW ,t) is modeled as the sum of a
mean index of refraction n0 and a randomly fluctuating
term n1(rW ,t):

n~rW ,t !5n01n1~rW ,t !, (2)

where rW is a three-dimensional position vector and t is
time. The mean index of refraction of air is n0'1. At
optical wavelengths, the dependence of the index of re-
fraction of air upon pressure and temperature is given
by (Ishimaru, 1978)

n1[n215
77.6P

T
31026, (3)

where T is the temperature of the air in kelvin and P is
the pressure of the air in millibars. Pockets of air that
have a uniform index of refraction are generally referred
to as turbulent eddies. The statistical distribution of the
size and number of these turbulent eddies is character-
ized by the spatial power spectral density of n1(rW), de-
noted Fn(kW ). The independent variable kW is the spatial
wave-number vector with orthogonal components
(kx ,ky ,kz). Fn(kW ) may be considered a measure of the
relative abundances of turbulent eddies with scale sizes
lx52p/kx , ly52p/ky , and lz52p/kz . Under condi-
tions where homogeneous, isotropic turbulence may be
assumed, the power spectral density of the index-of-
refraction fluctuations is a function of the scalar wave
number, k5Akx

21ky
21kz

2, which is related to the isotro-
pic scale size by l52p/k .

In the Kolmogorov theory the mathematical form of
Fn(kW ) has three regimes. For very small k , k,2p/L0,
corresponding to large scale sizes, Kolmogorov’s theory
does not predict a mathematical form for Fn(kW ). The
quantity L0 is referred to as the outer scale of the turbu-
lence and represents the characteristic dimension of the
largest turbulent eddies, which break up following the
Kolmogorov theory. In this regime Fn(kW ) depends upon
local geographical and meteorological conditions
(Goodman, 1985). Inhomogeneities with scale sizes
greater than L0 are not believed to be homogeneous.
However, the smaller-scale index-of-refraction inhomo-
geneities affecting optical systems originate with these
large-scale inhomogeneities.
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FIG. 2. Normalized Kolmogorov and von
Karman turbulence spectra, F0

K(k) and
F0

V(k). For the von Karman spectra the inner
scale is l055 mm and the outer scale is var-
ied, with L052 m, 5 m, and 10 m.
For large k , k.2p/l0, Fn(kW ) is also not predicted by
the Kolmogorov theory. The quantity l0 is referred to as
the inner scale of the turbulence and represents the char-
acteristic dimension of the smallest turbulent eddies. In
this regime of scale sizes the turbulent eddies disappear,
and the remaining energy in the fluid motion is dissi-
pated as heat. Fn(kW ) is known to be quite small in this
regime (Goodman, 1985). The inner scale l0 is on the
order of a few millimeters.

When k is in the range 2p/L0<k<2p/l0, referred to
as the inertial subrange, the form of Fn(kW ) is predicted
by the Kolmogorov theory (Ishimaru, 1978). Within the
inertial subrange the Kolmogorov theory predicts that
Fn(kW ) takes the form

Fn
K~kW !50.033Cn

2k211/3, (4)

where the superscript K indicates the Kolmogorov spec-
trum. The quantity Cn

2 is called the structure constant of
the index-of-refraction fluctuations and has units of
m22/3. Cn

2 characterizes the strength of the index-of-
refraction fluctuations. Since Eq. (4) is a function of the
scalar magnitude of kW , the turbulent eddies are isotropic
and homogeneous. However, as already noted, eddies
with scale size greater than L0 are not believed to be
homogeneous. Thus care must be exercised in interpret-
ing the behavior of Fn

K(kW ) in the k,2p/L0 regime.
Henceforth we shall discuss only homogeneous, isotro-
pic turbulence statistics, and as such, the scalar wave
number will replace the vector wave number in the ar-
gument of Fn . Experimental evidence that the
turbulence-induced wave-front error is well described by
Kolmogorov’s model was obtained in 1970 for horizon-
tal paths (Bertolotti et al., 1970; Wessely and Bolstad,
1970) and in 1973 for vertical paths (Roddier and Rod-
dier, 1973).

Mathematical problems arise when Eq. (4) is used to
model the spectrum of the index-of-refraction fluctua-
tions in the k→0 regime because of the nonintegrable
pole at k50. To overcome this difficulty an alternate
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
form for Fn(k), referred to as the von Karman spec-
trum, has been used (Ishimaru, 1978). The von Karman
spectrum is given by

Fn
V~k!5

0.033Cn
2

~k21k0
2!11/6 expH 2

k2

km
2 J , (5)

where k052p/L0, km55.92/l0, and the superscript V
indicates the von Karman spectrum. A finite value of
k0 results in a finite value of Fn

V(0), while a finite km

has the effect of rapidly rolling off the spectrum for
k.km . It should be noted that even though Eq. (5) is
finite for all k , its form for wave numbers in the range
k,2p/L0 should be considered approximate.

The shapes of the normalized Kolmogorov and von
Karman spectra are shown in Fig. 2. For the von Kar-
man spectra curves the inner scale is l055 mm and the
outer scale is varied, with L052, 5, and 10 m. The roles
of the inner and outer scales in the von Karman spec-
trum are also shown in Fig. 2. The effect of the inner
scale is to reduce the value of F0

V(k) compared to
F0

K(k) for wave numbers in the k.2p/l0 regime. This is
consistent with the physical observation that turbulent
air motion ceases once scale sizes on the order of l0 have
been attained. The effect of the outer scale is to reduce
the the value of F0

V(k) compared to F0
K(k) for wave

numbers in the k,2p/L0 regime. As L0 increases the
amount of power in the lower-wave-number compo-
nents of F0

V(k) increases, and at very low wave numbers
F0

V(k)→F0
K(k) as L0→` . However, care must be used

in choosing L0 for use in the von Karman spectrum.
Experimental evidence indicates that L0 is at least sev-
eral meters in the free atmosphere (Colavita, 1990; Day-
ton et al., 1992; Tatarskii and Zavorotny, 1993; Haniff
et al., 1994).

For many systems of practical interest the strength of
the turbulence is a function of distance from the aper-
ture z . This is particularly true for astronomical observ-
ing conditions, where it is necessary to view space ob-
jects through a vertical column of air. The notation
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FIG. 3. Some widely used models for turbu-
lence strength Cn

2(h) as a function of altitude
h .
Cn
2(z) is used to indicate the dependence of the turbu-

lence strength upon distance in Eqs. (4) and (5), and the
general notation Fn(k ,z) is used to indicate the
distance-dependent power spectral density.

The important role of the turbulence strength, as
characterized by Cn

2 , in predicting the optical effects of
turbulence has motivated the extensive study of this pa-
rameter. Cn

2 has been found to vary as functions of alti-
tude, location, and time of day. Several mathematical
models have been developed from experimental mea-
surements of Cn

2 . Some of the commonly used models
are discussed by Parenti and Sasiela (1994) and Rogge-
mann and Welsh (1996) and are shown in Fig. 3.

Thus far we have presented only the spectral statistics
of the turbulence-induced index-of-refraction fluctua-
tions. These spectral representations have associated
spatial representations in the form of spatial correlation
functions and spatial structure functions. The spectral
and spatial representations are related through the Fou-
rier transform. These relationships are presented in this
section and used in the succeeding sections to investi-
gate wave propagation and imaging through turbulence.
We shall consider the second-order statistics of the ran-
dom three-dimensional index-of-refraction fluctuations
n1(rW).

The autocorrelation, Gn(rW)5^n1(rW1)n1(rW12rW)&, and
the power spectral density Fn(kW ) of n1(rW) are related by
the Wiener-Khinchin theorem (Goodman, 1985):

Gn~rW !5E dkW Fn~kW !exp$2ikW •rW%, (6)

where the notation ^•& is used to represent the statistical
expectation operator. The power spectral density is ob-
tained from Gn(rW) by

Fn~kW !5
1

~2p!3E drW Gn~rW !exp$ikW •rW%. (7)

In words, Eqs. (6) and (7) state that the autocorrelation
of n1(rW) and the power spectral density of n1(rW) form a
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three-dimensional Fourier-transform pair. Note that in
this section we have adopted Tatarskii’s convention for
defining the forward and inverse Fourier-transform ker-
nels (Tatarski, 1967). This choice does not affect the re-
sults that follow.

It should be noted that both the autocorrelation func-
tion and the power spectral density for homogeneous
random processes are guaranteed to be even functions
(Tatarski, 1967; Papoulis, 1991). The additional assump-
tion that n1(rW) is an isotropic random process allows the
autocorrelation and power spectral density of n1(rW) to
be written in terms of the scalar variables r5urWu and
k5ukW u (Tatarski, 1967):

Gn~r !5
4p

r E
0

`

k dk Fn~k!sin~kr !, (8)

Fn~k!5
1

2p2kE0

`

r dr Gn~r !sin~kr !. (9)

We now introduce the structure function of the ran-
dom index-of-refraction distribution. The structure func-
tion has a special role in the analysis of systems that
form images through atmospheric turbulence, since, as
shown in Sec. II.C, the structure function of the
turbulence-corrupted index of refraction arises naturally
in the analysis of the optical transfer function. The struc-
ture function of the index-of-refraction fluctuation is de-
fined as

Dn~rW !5^@n1~rW1!2n1~rW11rW !#2&. (10)

Equation (6) can be used to express Dn(rW) as a function
of the power spectral density by

Dn~rW !52F E dkW Fn~kW !2E dkW Fn~kW !e2ikW •rWG
52E dkW @12cos~kW •rW !#Fn~kW !. (11)

If n1(rW) is also isotropic, the structure function depends
only on the scalar variable r5urWu, and, if we use the
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FIG. 4. Astronomical imaging geometry. A
distant source gives rise to an incident plane
wave. The problem at hand is to find the cor-
relation function describing the atmospheric-
induced field perturbations in the pupil.
Kolmogorov power spectrum Fn
K(kW ) in a region where

Cn
2 is assumed constant, we obtain the result

Dn~r !5Cn
2r2/3. (12)

Thus far we have not addressed the temporal evolu-
tion of turbulence. However, the temporal behavior of
turbulence can be quite important for accurately model-
ing certain aspects of imaging through turbulence. Ex-
amples of problems in which the temporal behavior of
turbulence is important include computing the optimal
exposure time for speckle imaging (Walker, 1978;
O’Donnell and Dainty, 1980; Cochran et al., 1988; Fried
and Hench, 1990; Lawrence et al., 1992; Tyler and Mat-
son, 1993; Welsh, 1995) and choosing the optimal closed-
loop control bandwidth for an adaptive-optics system
(Roddier et al., 1993; Ellerbroek, 1994; Harrington and
Welsh, 1994).

The temporal effects of turbulence are generally mod-
eled using Taylor’s frozen-flow hypothesis (Ishimaru,
1978; Goodman, 1985). In words, Taylor’s frozen-flow
hypothesis states that over short-time intervals the
index-of-refraction fluctuation remains fixed except for
translation with uniform transverse velocity vW . In this
case, the term transverse velocity refers to the compo-
nent of the wind velocity normal to the line of sight of
the imaging system. For a point in space rW and a single
layer of turbulence, the frozen-flow hypothesis means
that the index-of-refraction fluctuation at t2.t1,
n1(rW ,t2), is related to the index-of-refraction fluctuation
at t1, n1(rW ,t1.) by

n1~rW ,t2!5n1(rW2vW ~ t22t1!,t1). (13)

The generalized space-time covariance of the index-
of-refraction fluctuation, Gn

S(rW1 ,t1 ;rW2 ,t2), is defined by
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Gn
S~rW1 ,t1 ;rW2 ,t2!5^n1~rW1 ,t1!n1~rW2 ,t2!&, (14)

where the times t1 and t2 are included in the argument
of Gn

S to indicate the time dependence, and rW1 and rW2
indicate different points in space. Using the frozen-flow
hypothesis of Eq. (13) in Eq. (14) yields

Gn
S~rW1 ,t1 ;rW2 ,t2!5^n1~rW1 ,t1!n1(rW22vW ~ t22t1!,t1)&. (15)

Equation (15) shows that the frozen-flow hypothesis al-
lows time differences to be represented as spatial shifts.
This is an extremely important result, which allows ana-
lytic simplifications to many problems.

B. Wave propagation through random media

As introduced in Sec. II.A, atmospheric turbulence is
characterized by random variations in the index of re-
fraction. As an optical field propagates through a region
of turbulence, these variations cause phase perturba-
tions in the wave front. Propagation causes the phase
perturbations to evolve into both phase and amplitude
perturbations. In the case of astronomical imaging we
are interested in the situation in which the optical field
propagates from a distant source through the turbulence
to the pupil plane of a telescope. A number of authors
have presented analyses of the statistical characteristics
of the optical field for this geometry (Tatarski, 1967; Lee
and Harp, 1969; Roddier, 1981; Goodman, 1985; Rog-
germann and Welsh, 1996). Figure 4 illustrates the ge-
ometry of interest. In this section we show that a second-
order statistical description of the index-of-refraction
variations is all that is needed to develop a description
of the optical-field correlation properties in the pupil.
This statistical description of the pupil field is in turn
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used to derive the standard measures of performance for
uncompensated imaging in Sec. II.C.

To begin we consider the problem of a plane wave
propagating through a turbulent region as shown in Fig.
4. The goal is to derive the pupil-field correlation func-
tion arising from the turbulence-induced perturbations
of the plane wave. This derivation is based on a
geometrical-optics approach, which is equivalent to as-
suming that refraction can be neglected. This assump-
tion is also referred to as the near-field assumption.
Near-field conditions are said to exist if the total thick-
ness of the turbulence region DZ satisfies (Young, 1974)

DZ<
r0

2

lp
, (16)

where r0 is the Fried parameter (Fried, 1966b) and l is
the optical wavelength.

The section is concluded with a presentation of tem-
poral and anisoplanatic effects on the pupil-field corre-
lation properties. Understanding temporal and
anisoplanatic effects is important for characterizing the
performance of adaptive optical systems as will be dis-
cussed in Sec. III.

1. Derivation of the pupil-field spatial correlation function

In Sec. II.A we discussed the distribution of the tur-
bulence strength as a function of altitude. For the deri-
vation given below we break the atmosphere into a finite
number of slabs or layers. Each layer is characterized by
a turbulence strength that is approximately constant
within the layer. The notation Cni

2 is used to designate
the structure constant for the ith layer. The notations
zi and Dzi designate the altitude and thickness of the
ith layer.

The problem of calculating the spatial correlation
properties of the turbulence-induced field perturbations
can be reduced to calculating the correlation properties
for propagation through a single turbulence layer and
then extending the results to account for all layers. The
basic assumption required to use this approach concerns
the statistical independence of the index-of-refraction
fluctuations between individual layers (Tatarski (1967)
and others (Goodman, 1985; Troxel et al., 1994) have
investigated this assumption and have argued that indi-
vidual layers can be treated as being approximately in-
dependent if the separation of layer centers is greater
than the largest distance between field points in the pu-
pil. The independence condition allows us to character-
ize the spatial correlation properties of the field pertur-
bations for each layer separately and multiply the results
to account for propagation through the entire turbu-
lence region. Mathematically we can write

Gp~DxW ![^u~xW !u* ~xW 1DxW !&5)
i51

N

Gpi
~DxW !, (17)

where u(xW ) is the complex representation of the optical
field in the telescope pupil, Gp(DxW ) is the spatial corre-
lation function of the optical field in the pupil, Gpi

(DxW )
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is the spatial correlation function for the field perturba-
tions associated with the ith layer, DxW is the vector sepa-
ration of two points in a plane perpendicular to the di-
rection of propagation, and N is the number of layers
comprising the turbulence region. The problem now re-
duces to computing the spatial correlation function for
the turbulence-induced perturbations of a single turbu-
lence layer (Troxel et al., 1994).

a. Plane-wave propagation

Consider the geometry of the single turbulent layer
shown in Fig. 5. A plane wave is incident from the left.
Using geometrical optics, the phase variations caused by
propagation along a ray path extending from the left
edge to the right edge of the layer is given by

c i~xW !5kE
zi

zi1Dzi
dz n1~xW ,z !, (18)

where c i(xW ) is the phase perturbation at the transverse-
vector location xW , k is the optical wave number
(2p/l), and n1(xW ,z) is the index-of-refraction variation
as a function of position (xW ,z). In writing the three-
dimensional argument of n1 we have chosen to show the
transverse-vector component xW and the z component
separately. For a unit-amplitude plane wave incident on
the left, the transmitted optical field on the right of the
ith layer can be expressed as

ui~xW !5exp@ ic i~xW !# . (19)

The spatial correlation function for ui(xW ) is given by
Gpi

(DxW )5^ui(xW )ui* (xW 2DxW )&. In expressing the spatial

FIG. 5. Plane-wave propagation through a single turbulence
layer.
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correlation function in this way we have implicitly as-
sumed that the turbulence-induced perturbations are
homogeneous. Substituting the expression for the field
found in Eq. (19) into Gpi

(DxW ) gives

Gpi
~DxW !5K expF ikS E

zi

zi1Dzi
dz@n1~xW ,z !

2n1~xW 2DxW ,z !# D G L . (20)

Without an assumption regarding the statistics of the
index-of-refraction fluctuation n1(xW ,z), further progress
is impossible. Using the central-limit theorem it can be
argued that n1(xW ,z) is a Gaussian random process
(Fried, 1966b; Tatarski, 1967; Goodman, 1985). This as-
sumption allows us to use well-known properties of
characteristic functions for Gaussian random processes
(Papoulis, 1991). Using these properties it is easy to
show (Roggemann and Welsh, 1996)

Gpi
~DxW !5expF2

1
2

Dc i
~DxW !G , (21)

where Dc i
(DxW ) is the phase structure function and is

defined as

Dc i
~DxW !5K k2S E

zi

zi1Dzi
dz@n1~xW ,z !2n1~xW 2DxW ,z !# D 2L .

(22)
The problem of characterizing Gpi

(DxW ) now becomes
one of calculating the phase structure function
Dc i

(DxW ). If we assume Kolmogorov statistics and that
the thickness of the turbulent layer is significantly larger
than the separation of the two field points, uDxW u, we ob-
tain the result first reported in the literature by Fried
(1966b):

Dc i
~DxW !52.91k2DziCni

2 uDxW u5/3. (23)

With the phase structure function for the ith layer
established, we now compute the field correlation func-
tion Gpi

(DxW ) by substituting Eq. (23) into Eq. (21)

Gpi
~DxW !5expF2

1
2

2.91k2DziCni

2 uDxW u5/3G , (24)

which can be substituted into Eq. (17) to obtain the cor-
relation expression for propagation through the entire
turbulent region.

Fried expresses the phase structure function as a func-
tion of a quantity called the Fried parameter r0. The
Fried parameter is defined as (Fried, 1966b; Goodman,
1985)

r050.185F 4p2

k2(
i51

N

Cni

2 Dzi
G 3/5

. (25)
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With this value of r0 the final expression for Gp(DxW )
becomes

Gp~DxW !5expF2
1
2

6.88S uDxW u
r0

D 5/3G
5expF2

1
2

Dc~DxW !G , (26)

where Dc is the structure function for propagation
through the entire atmosphere

Dc~DxW !56.88S uDxW u
r0

D 5/3

. (27)

Equations (26) and (27) represent the two main re-
sults for plane-wave propagation. These two results
show that the structure function Dc(DxW ) is all that is
required to characterize the pupil-field correlation func-
tion Gp(DxW ).

b. Spherical-wave propagation

In many instances the incident optical field will arise
from a source that is close enough that a spherical wave
more accurately models the incident field. In this case
the phase structure function for spherical-wave propaga-
tion is identical to Eq. (27) (Goodman, 1985) but with a
Fried parameter for spherical-wave propagation given
by

r050.185F 4p2

k2(
i51

N

DziS L2zi

L D 5/3

Cni

2 G 3/5

~spherical wave!, (28)

where L is the propagation distance from the source to
the aperture.

2. Temporal and anisoplanatic effects

In Sec. II.A we discussed the temporal correlation
properties of the index-of-refraction fluctuations. Un-
derstanding how these temporal properties impact the
temporal properties of the optical field is important for
investigating a number of problems in speckle imaging
and adaptive optics.

The correlation properties of the optical fields arising
from separate propagation directions are also of inter-
est. In the operation of an adaptive optical imaging
(AOI) system the applied wave-front compensation is
based on sensing the wave-front phase perturbations
arising from a beacon or guide star. The sensed pertur-
bations are used to compensate for the wave-front per-
turbations associated with a separate observation direc-
tion. The observation and beacon directions are
generally distinct from each other, and, as a result, the
phase perturbations associated with the two directions
are different. This difference results in a performance
degradation that is referred to as an anisoplanatic effect.
To fully understand the extent of anisoplanatic effects
one needs to know the correlation between the pupil
fields arising from the two directions. In the following
subsection we present expressions that characterize how
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FIG. 6. Geometry for understanding the temporal evolution of the wave-front phase in the pupil of the imaging system. Each
turbulence layer has an associated transverse wind velocity vW i .
the temporal index-of-refraction fluctuations affect the
temporal correlation properties of the pupil field and
how anisoplanatism affects the angular correlation prop-
erties of the pupil field.

a. Temporal effects on the pupil-field correlation function

To develop the field correlation function describing
the effects of temporal changes in the index of refrac-
tion, we use Taylor’s frozen-flow hypothesis (Ishimaru,
1978; Goodman, 1985) in combination with a
geometrical-optics analysis. Figure 6 shows the geometry
used to model the temporal wave-front phase evolution.
The ith turbulence layer shown in the figure has an as-
sociated transverse wind velocity vW i . The straight-ray
path shown in Fig. 6 represents the path over which the
optical field propagates at time t1. To calculate the phase
perturbation at time t2 (t2.t1), the translation of the
layers must be factored into the computation. Taylor’s
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
frozen-flow hypothesis calls for translating the ith layer
by vW i(t22t1). By accounting for the translations of each
of the layers, one obtains the piecewise ray path shown
in Fig. 6 (dashed lines) as the resulting ray path at time
t2. The goal is to compute the space-time correlation
function

Gp~DxW ,t22t1!5^u~xW ,t1!u* ~xW 2DxW ,t2!&, (29)

where DxW is the spatial separation of two points in the
pupil. From a development identical to that used to ob-
tain the plane-wave correlation function given in Eq.
(24), it is straightforward to show that the space-time
correlation function Gp(DxW ,t22t1) has the following fa-
miliar form:

Gp~DxW ,t22t1!5expF2
1
2

Dc~DxW ,t22t1!G , (30)

where Dc(DxW ,t22t1) is now interpreted as the space-
time phase structure function given by
Dc~DxW ,t22t1!56.88(
i51

N

DziS uDxW 1vW ~zi!~ t22t1!u
r0

D 5/3

C̃ ni

2 ~plane-wave result! (31)

and C̃ ni

2 is a normalized version of Cni

2 : C̃ ni

2 5Cni

2 /( i51
N DziCni

2 . The spherical-wave phase structure function is a
generalization of Eq. (31):

Dc~DxW ,t22t1!56.88(
i51

N

Dzi
S UDxW

L2zi

L
1vW ~zi!~ t22t1!U

r0

D 5/3

C̃ ni

2 ~spherical-wave result!, (32)

where r0 is given by Eq. (25).
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b. Anisoplanatic effects on the pupil-field correlation function

The method of calculating the pupil-field correlation
function for the temporal effects can be extended di-
rectly to the anisoplanatic case. Just as in the computa-
tion of the temporal correlation function, the quantity
that must be obtained is the phase structure function.
Here the phase structure function characterizes the sta-
tistical correlation properties of the wave-front phase for
two optical fields propagating from two distinct direc-
tions. In other words we are interested in
Dc(xW o ,xW b)5^(co(xW o)2cb(xW b))2&, where co(xW ) and
cb(xW ) are the wave-front phases of the two distinct op-
tical fields. Figure 7 shows the geometry under consider-
ation. This figure shows the imaging-system pupil and
two optical source points. Ray paths are shown from the
source points to two points in the pupil. In the case of
adaptive optical imaging, one of the source points mod-
els the beacon. The other source point represents the
object being imaged. The generalized geometry shown
in Fig. 7 can be used to model any beacon-object-pupil
geometry that might be encountered in an adaptive op-
tical imaging scenario.

As seen from Fig. 7, the two optical sources are lo-
cated at the vector positions rWo and rWb . The z compo-
nents of these two vectors are designated zo and zb ,
respectively. The vector positions xW o and xW b designate
two field points in the pupil plane. The subscripts o and
b are arbitrary but can be related to the object and the

FIG. 7. Geometry for deriving the anisoplanatic effects on the
wave-front phase in the pupil of the imaging system.
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beacon wave-front sources. To calculate the phase struc-
ture function, we characterize the transverse distance
between the two ray paths as a function of z . The trans-
verse separation of the two ray paths has been shown to
be (Welsh and Gardner, 1991)

DpW ob~z !5xW o2xW b1
z

zo
~rWo2xW o!2

z

zb
~rWb2xW b!. (33)

Using a geometrical-optics derivation identical to that
used to obtain the plane- and spherical-wave phase
structure functions of the previous section, Lutomirski
and Buser (1973) have shown that the phase structure
function for the geometry shown in Fig. 7 is given by

Dc~xW o ,xW b!56.88(
i51

N

DziS uDpW ob~zi!u
r0

D 5/3

C̃ ni

2 , (34)

where DpW ob(z) is the transverse separation of the object
and beacon ray paths. The limitations of Eq. (34) are
related to the approximations invoked by Lutomirski
and Buser. In particular, the pupil points, xW o and xW b ,
and the source points must be close to the z axis relative
to the distance to the two sources, zo and zb .

C. Imaging performance

Optical-wave propagation through the atmosphere
has the effect of altering the spatial coherence of the
field in the pupil. The statistical nature of this alteration
has been presented in Sec. II.B via the development of
the pupil-field correlation function Gp(DxW ) and the
wave-front phase structure function Dc(DxW ). In this sec-
tion we present an analysis of the turbulence-induced
degradations suffered by an incoherent imaging system.
A random-screen model for the turbulence is first pre-
sented. The random screen is placed in the pupil plane
of the imaging system and effectively models the
atmospheric-induced field perturbations. The statistical
characteristics of the screen are used to characterize im-
aging performance via the optical transfer function
(OTF). The result of incorporating these statistics is a
‘‘transfer function’’ applicable for propagation through
the Earth’s atmosphere. The imaging performance re-
sults are for long-exposure imaging and short-exposure
imaging.

1. Thin-screen turbulence model

In order to use the plane- and spherical-wave results
of the previous sections it is convenient to cast the
turbulence-propagation problem in terms of propaga-
tion through an equivalent thin, random screen. The
screen takes on the statistical correlation properties
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FIG. 8. Geometry for characterizing the relationship between the input and output spatial coherence properties of an optical field
for propagation through a homogeneous, isotropic turbulence region. G i represents the correlation function of the field incident on
the turbulent region, and Gp represents the correlation function after passing through the turbulent region.
found in Sec. II.B and is used to characterize the phase
perturbations caused by propagation through the turbu-
lence.

Figure 8 shows the propagation geometry of interest.
The figure shows that the screen model is used to effec-
tively replace the turbulence region. The screen perturbs
the phase of the incident optical field in the same statis-
tical way that propagation through turbulence does. In
mathematical terms the screen relates the incident field
ui(xW ) and the pupil field up(xW ) by

up~xW !5ui~xW !ts~xW !, (35)

where ts(xW ) is the screen transparency function, which
describes the random-field perturbation. It is important
to note that ts(xW ) in its most general form is complex
and, as such, can describe both amplitude and phase per-
turbations. However, we restrict our attention here to
pure phase effects: ts(xW )5exp$ic(xW)%.

2. Long-exposure imaging

We analyze the performance degradations caused by
atmospheric turbulence by starting with the expression
for the optical transfer function (OTF) of an incoherent
imaging system. The OTF can be related to the imaging-
system generalized pupil function W(xW ) by

H~ fW !5
W~ fWldi!!W~ fWldi!

W~0 !!W~0 !
, (36)

where fW is the spatial frequency variable, l is the mean
optical wavelength, and di is the distance from the pupil
plane to the image plane. The notation ! is the convo-
lution operator and is defined in the following way for
two arbitrary complex functions f(xW ) and g(xW ),

f~xW !!g~xW !5E dxW 8 f~xW 82xW !g* ~xW 8!. (37)

To account for the wave-front phase aberrations caused
by atmospheric turbulence, W(xW ) is generalized to in-
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corporate both the pupil aperture and the pupil-plane
aberration. Using the screen model introduced in Sec.
II.C.1, we can write the generalized pupil function as

W~xW !5Wp~xW !ts~xW !, (38)

where Wp(xW ) is a real-valued function describing the
pupil aperture. Substituting Eq. (38) into the expression
for the OTF given in Eq. (36) gives the OTF for a real-
ization of the turbulence-induced aberration:

H~ fW !5
(Wp~ fWldi!ts~ fWldi!)!(Wp~ fWldi!ts~ fWldi!)

(W~0 !ts~0 !)!(W~0 !ts~0 !)
.

(39)

Given the long-exposure assumption, ts(xW ) will evolve
through many independent realizations over an expo-
sure time. As a result it is appropriate to consider the
average of Eq. (39). Taking the average of both sides of
Eq. (39) while at the same time expanding the convolu-
tion operator gives

^H~ fW !&5Gs~ldifW !
E dxW Wp~xW !Wp~xW 2 fWldi!

E dxW Wp
2~xW !

, (40)

where the correlation function Gs(DxW )
5^ts(xW )ts* (xW 2 fWldi)&. The first factor in Eq. (40) is the
atmospheric transfer function, and the second is the
definition of the OTF for an unaberrated imaging sys-
tem. Using the notation HLE( fW) for the long-exposure
atmospheric transfer function and Ho( fW) for the
diffraction-limited OTF gives

^H~ fW !&5HLE~ fW !Ho~ fW !, (41)

where HLE( fW)5Gs(ldifW).

3. Long-exposure atmospheric transfer function

To complete this investigation of long-exposure imag-
ing we now make use of the phase structure function



450 Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
FIG. 9. Family of long-exposure optical trans-
fer functions Ho( fW)HLE( fW), plotted vs the
normalized spatial frequency fxldi /lx for a
rectangular aperture of dimension lx3ly . The
ratio lx /r0 ranges from 0.1 to 10.
developed for wave propagation through atmospheric
turbulence. Equation (27) gives the plane- and
spherical-wave structure functions for wave propagation
through a locally homogeneous, isotropic medium de-
scribed with a Kolmogorov index-of-refraction power
spectrum. Applying these results yields the well-known
OTF expression developed by Fried (1966b):

HLE~ fW !5expH 2
1
2

6.88S l̄ diufWu
r0

D 5/3J , (42)

where r0 is given either by the plane- or spherical-wave
definitions of Eq. (25) or (28), respectively. Figure 9
shows a family of long-exposure OTF’s for a rectangular
aperture of dimension lx3ly . In this figure the product
Ho( fW)HLE( fW) is plotted along the fx axis. The normal-
ized aperture dimension lx /r0 ranges from 0.1 to 10. No-
tice the significant attenuation of spatial frequencies for
cases in which lx /r0.2.

4. Short-exposure imaging

The term ‘‘short-exposure imaging’’ refers to the situ-
ation in which the exposure time is short enough to
freeze the effects of the atmosphere. In the long-
exposure discussion of the previous section the approach
for analyzing imaging performance was based on the as-
sumption that the imaging system experienced a large
number of independent realizations of atmospheric-
induced perturbations. In the case of short-exposure im-
aging the imaging system experiences one realization of
atmospheric-induced perturbations. Very early it was
recognized that one of the dominant effects of the atmo-
sphere is random wave-front tilt in the pupil. The tilt is
described mathematically as the vector slope of the best-
fit plane to the wave-front phase c(xW ). This component
of the phase perturbation has the effect of shifting the
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
location of the image in the image plane. This random
shifting of the image accounts for most of the degrada-
tions incurred for long-exposure imaging. However, the
shift does not distort the short-exposure image. The
short-exposure image is distorted because the wave-
front tilt component is accompanied by higher-spatial-
frequency perturbations. Fried (1965) has shown that tilt
accounts for 87% of the power in the phase perturba-
tions, due to the tremendous importance of the low
wave numbers in the Kolmogorov spectrum. With this
fact in mind, it is natural to consider what performance
can be achieved for an imaging system that compensates
for the random shift of the image.

The shift compensation can take two forms. In the
first, the imaging system measures the wave-front tilt
and adjusts, in real time, a tilt-correction mirror. In the
second approach the imaging system takes short-
exposure images. The short exposures freeze the effects
of the turbulence-induced perturbations for each image.
Each short-exposure image is subsequently recentroided
electronically or processed using techniques that are in-
sensitive to the image shifts, thereby effectively remov-
ing the image shift caused by the random tilt. The en-
semble of images is then summed. The imaging
performance of either one of these systems can be de-
scribed with a transfer function just as in the long-
exposure case. The transfer function for this type of im-
aging is referred to in the literature with the misnomer
‘‘short-exposure OTF.’’

In order to analyze a tilt-compensating system we first
need a screen model that accounts for tilt removal. We
can express the tilt-removed phase screen in the follow-
ing way:

ts~xW !5exp$i(c~xW !2aW •xW )%, (43)

where the vector aW describes the tilt of the wave-front
phase over the pupil. With the screen model of Eq. (43)
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FIG. 10. Family of short-exposure optical
transfer functions Ho( fW)HSE( fW), plotted vs
the normalized spatial frequency fxldi /lx .
The ratio lx /r0 ranges from 0.1 to 10.
we are now able to perform an analysis similar to the
long-exposure OTF analysis of the previous subsection.
Just as in the long-exposure case the problem reduces to
the calculation of Gs(DxW ). Fried (1966b) has performed
this calculation and obtained the result

Gs~DxW !5expH 2
1
2 S Dc~DxW !2

1
2

uaW u2 uDxW u2D J , (44)

where uaW u2/2 is the mean-square wave-front tilt

uaW u2

2
56.88r0

25/3D21/3 (45)

and D is the telescope aperture diameter. In order to
obtain the result in Eq. (44) Fried assumed the residual
phase after tilt removal to be uncorrelated with the tilt
aW . This assumption considerably simplifies the evalua-
tion of Gs(DxW ) but, from a mathematical viewpoint, is
not valid. Fried argued on a qualitative level that the
excursions of c(xW ) about the tilted plane are uncorre-
lated with the tilt, and in reality this correlation is small
for pupil sizes large with respect to ro . Heidbreder
(1967) and others (Young, 1974; Roddier, 1981; Good-
man, 1985) have discussed this assumption. We use
Fried’s result, while recognizing that it is an approxima-
tion that improves as the aperture size increases. Substi-
tuting the expression for Dc(DxW ) found in Eq. (27) and
Eq. (45) into Eq. (44) gives the short-exposure OTF
(Fried, 1966b)

HSE~ fW !5Gs~ l̄ difW !

5expH 2
1
2

6.88S ul̄ difWu
r0

D 5/3F12S ul̄ difWu
D D 1/3G J .

(46)

Figure 10 shows a family of short-exposure OTF’s for
a rectangular aperture of dimension lx3ly . In this figure
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the product Ho( fW)HSE( fW) is plotted along the fx axis.
The normalized aperture dimension lx /r0 ranges from
0.1 to 10.

D. Image-detection models

In this section we present statistical models for study-
ing the effects of measurement noise and turbulence-
induced randomness in an imaging system. We adopt the
linear-shift-invariant model for image formation ob-
tained through scalar diffraction theory, as given by
Goodman (1968) and Gaskill (1978),

i~xW !5E dxW 8 h~xW 2xW 8!o~xW 8!, (47)

where xW is an image-plane coordinate, i(xW ) is the classi-
cal intensity of the noise-free image, h(xW ) is the re-
sponse of the telescope-atmosphere system to a point
source, also referred to as the point-spread function, and
o(xW ) is the image intensity predicted by geometrical op-
tics. It should be noted that o(xW ) differs from the inten-
sity of the actual object only by a scaling due to magni-
fication in a diffraction-limited imaging system. Since
Eq. (47) is a convolution, we may Fourier-transform
both sides to obtain (Goodman, 1968; Gaskill, 1978)

I~ fW !5H~ fW !O~ fW !, (48)

where fW is a coordinate in the spatial-frequency domain
of the image, I( fW) is the noise-free image spectrum,
H( fW) is the Fourier-transform of the point-spread func-
tion, also referred to as the OTF, and O( fW) is the object
spectrum.

Note that the models given in Eqs. (47) and (48) do
not account for the effects of measurement noise. How-
ever, the applications of greatest interest for many of the
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imaging techniques discussed later in this paper are for
exceedingly dim objects. Measurement-noise effects on
the image measurement and the image reconstruction
estimators are quite important under low-light-level
conditions. Hence it is necessary to extend the models
given in Eqs. (47) and (48) using statistical techniques to
properly account for noise effects.

Photon-matter interactions that occur in light detec-
tors are fundamentally random. Specifically, the exact
location and time of a photon-absorption event in a de-
tector cannot be predicted beforehand. This fundamen-
tal source of randomness gives rise to noise in imaging
systems that is often called photon noise or shot noise.
Photon noise imposes limitations on the performance of
imaging systems and image reconstruction algorithms
that are generally more severe than the limitations im-
posed by diffraction effects alone, particularly at low-
light levels. Photon noise is fundamental to all photo-
electric detectors and is a form of signal-dependent
noise. Special methods have been developed to treat the
signal-dependent nature of photon noise. We adopt the
semiclassical model for photoelectric light detection in
an imaging detector. The semiclassical model has the
key characteristic that all propagation-related phenom-
ena are treated with classical electromagnetic field tech-
niques until the quantized light-matter interaction oc-
curs at the detector surface (Goodman, 1985).

Photoelectric detectors convert an incident flux of
photons into a discrete number K of photoelectrons dur-
ing the measurement time t . The mean number of pho-
toevents K̄ arising during an integration time t in some
area dA of the detector is related to the classical irradi-
ance i(t) by

K̄ 5
h dA

hn E
t

t1t

dt i~ t !, (49)

where t represents the independent time variable, h is
Planck’s constant h56.626310234 J sec, c is the speed of
light, and n is the temporal frequency of the light. The
best possible detector of light allows for the direct mea-
surement of K and the location xW k of each photoevent.
Such detectors are referred to as photon-counting or
photon-limited detectors.

The random variable K strictly obeys Poisson statis-
tics only for the case in which the image irradiance is
deterministic (Kingston, 1978). Photoevents arising from
an image irradiance having random variations in space
or time are not strictly Poisson random processes, but
rather are doubly stochastic Poisson random processes
(Goodman, 1985). The random variable K is not strictly
Poisson distributed in the doubly stochastic case, but is
conditionally Poisson distributed, where the condition-
ing depends upon the instantaneous irradiance distribu-
tion during the integration time t . Photoevents arising
from an image formed with light that has passed through
the atmosphere is one example of a doubly stochastic
Poisson random process, since the atmosphere causes
the point-spread function to be random, thereby causing
the image irradiance to be random. It is possible to ob-
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tain the moments of K under doubly stochastic condi-
tions (Mandel, 1958), and this is sufficient to compute
the signal-to-noise ratios of interest.

1. Poisson random processes and image estimation

In this section we introduce the mathematical proper-
ties of Poisson random processes, present a model for
the detected image, obtain the Fourier transform of the
detected image, and compute the mean and variance of
the spectral components of the detected image for the
case of a deterministic OTF. Poisson random processes
have sample functions that consist of collections of
Dirac delta functions. In the study of photodetection
processes we associate the location of a Dirac delta func-
tion with the location of a photon absorption event.
Poisson random processes are governed by a rate func-
tion, l(xW ), which has the physical interpretation that the
mean number of delta functions occurring in an area
dxW is given by l(xW )dxW . The rate function is proportional
to the classical image irradiance in an imaging system.
The probability density function of the location of the
nth event p(xW n), is given by

p~xW n!5
l~xW n!

E
A

dxW l~xW !

. (50)

The mean K̄ , the second moment K2, and the variance
sK

2 of the number of delta functions occurring in the
area A are given by (Goodman, 1985)

K̄ 5E
A

dxW l~xW !, (51)

K25K̄ 1~K̄ !2, (52)

sK
2 5K22~K̄ !25K̄ , (53)

where the overline is also used to indicate the statistical
expectation operator.

Mathematically, the detected image d(xW ) is defined by

d~xW !5 (
n51

K

d~xW 2xW n!, (54)

where xW n is the location of the nth photoevent in the
image plane and K is the total number of photoevents
composing the image. The Fourier transform of d(xW ),
D( fW), is defined as

D~ fW !5E dxW d~xW !exp$2i2p fW•xW %

5 (
n51

K

exp$2i2p fW•xW n%. (55)

We now evaluate the first and second moments of
D( fW) and the variance of D( fW) for the case of a fixed
image irradiance i(xW ). The random quantities in Eq.
(55) are K , the total number of photoevents, and xW n , the
locations of the photoevents. Thus, to compute the first
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two moments of D( fW), expectations over the joint distri-
bution of xW n and K must be computed. The required
expectation for the first moment of D( fW) may thus be
written

^D~ fW !&5K (
n51

K

exp$2i2p fW•xW n%L
5 (

K50

` H E dxW nS (
n51

K

exp$2i2p fW•xW n% D p~xW nuK !J
3P~K !, (56)

where the joint density function of xW n and K has been
written using p(xW n ,K)5p(xW nuK)P(K). Equation (56)
can be evaluated with the result (Roggemann, 1991;
Roggemann and Welsh, 1996)

^D~ fW !&5K̄ H~ fW !On~ fW !, (57)

where K̄ is the average image photocount, H( fW) is the
OTF of the optics, and On( fW) is the normalized object
spectrum O( fW)/O(0). The second moment ^uD( fW)u2& is
evaluated using the same method established in Eq. (56)
and is given by (Roggemann, 1991; Roggemann and
Welsh, 1996)

^uD~ fW !u2&5K̄ 1~K̄ !2uH~ fW !On~ fW !u2. (58)

The variance of D( fW), var$D( fW)%, is obtained from its
first and second moments by

var$D~ fW !%5^uD~ fW !u2&2u^D~ fW !&u25K̄ . (59)

Note that while the first and second moments of D( fW)
depend upon H( fW) and On( fW), the variance of D( fW) de-
pends only upon K̄ for the case of a deterministic OTF
and a fixed object.

2. Spatial-frequency-domain signal-to-noise ratio

In this subsection we define and derive the signal-to-
noise ratio (SNR) of D( fW). A model for additive noise is
also introduced, and the effects of additive noise on the
SNR of D( fW) are analyzed. The SNR of D( fW) is defined
(Idell and Webster, 1992) as

SNRD~ fW !5
u^D~ fW !&u

@var$D~ fW !%#1/2
(60)

and is referred to as the image-spectrum SNR. The im-
age reconstruction techniques presented later in this pa-
per use spatial-frequency-domain methods to obtain es-
timates of object irradiance distributions from blurred
and noisy images. SNRD( fW) is now derived for the case
of a fixed OTF and photon-limited detection.

Using the results obtained in Eqs. (57) and (59), one
finds the SNR of an image obtained with a deterministic
OTF and a photon-limited image detection system,

SNRD~ fW !5K̄ 1/2uH~ fW !On~ fW !u. (61)
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The following observations can be made regarding Eq.
(61): (1) increasing the mean number of photoevents al-
ways improves SNRD( fW); (2) SNRD( fW) goes to zero at a
spatial frequency no higher than the diffraction-limited
cutoff of the optics, since H( fW) goes to zero there; (3)
aberrations, which generally broaden the point-spread
function of the optics and narrow H( fW), have the effect
of lowering SNRD( fW); (4) for irradiance images
SNRD( fW) takes its maximum value at fW50 and tends to
decrease with increasing spatial frequency because the
modulus of the OTF, uH( fW)u, and the modulus of the
normalized object spectrum, uOn( fW)u, tend to decrease
with increasing ufWu.

Additive noise is present in many imaging detectors
used in practice and has the effect of reducing the
image-spectrum SNR. Additive noise is distinct from
photon noise in that additive noise is statistically inde-
pendent of the signal, while photon noise is signal de-
pendent. Further, the physical origin of additive noise is
generally associated with the detector material and the
readout electronics, while the source of photon noise is
the quantized nature of light-matter interactions. We
now introduce the model for the detected image con-
taining additive noise and analyze the effects of this
noise on SNRD( fW). The model for a detected image with
additive noise is given by

d~xW !5 (
n51

K

d~xW 2xW n!1 (
p51

P

npd~xW 2xW p!, (62)

where xW p is the location of the pth pixel in the image,
np is a random variable representing the amount of ad-
ditive noise at the pth pixel in units of photoevents, and
P is the total number of pixels in the image. The first
term in Eq. (62) describes the photon-limited image, and
the second term describes the additive noise. The ran-
dom variable np is assumed to have the following prop-
erties: (1) ^np&50; (2) ^npnp8&50 if pÞp8; (3)
^npnp8&5sn

2 if p5p8; and (4) np is statistically indepen-
dent of K and xW n . For example, the output of widely
used charge-coupled-device (CCD) detectors is cor-
rupted with additive noise commonly referred to as read
noise. Read noise in CCD’s is specified in root-mean-
square (rms) electrons per pixel per readout, which is
exactly the standard deviation of np ,sn . It is easy to
show that additive noise does not affect the mean value
of the image spectrum. Hence the expression for
^D( fW)& given in Eq. (57) is valid for this case. The
additive-noise terms in D( fW) are zero mean, uncorre-
lated, and statistically independent of the photon-limited
detection term. Hence additive noise increases the sec-
ond moment of D( fW) by the amount

K U(
p51

P

npexp$2i2p fW•xW p%U2L 5Psn
2 . (63)

The variance of D( fW) is obtained with reference to Eq.
(59) and is given by
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var$D~ fW !%5K̄ 1Psn
2 , (64)

so that the image-spectrum SNR corrupted with additive
noise is given by

SNRD~ fW !5
K̄ uH~ fW !On~ fW !u

~K̄ 1Psn
2 !1/2

. (65)

3. Doubly stochastic Poisson random processes

Up to now we have discussed only the effects on the
detected-image spectrum of randomness arising from
the random locations of photoevents, the random num-
ber of photoevents, and additive noise in the image mea-
surement. An additional source of randomness arises
from atmospheric turbulence—specifically, the point-
spread function, and hence the OTF, is random due to
atmospheric-turbulence effects. Poisson random pro-
cesses that have random rate functions are referred to as
doubly stochastic Poisson random processes. In this sec-
tion we analyze the effects of a random OTF on the
mean, second moment, and variance of D( fW).

To evaluate the mean of D( fW) the method of Eq. (56)
is extended to account for the randomness of H( fW) with
the addition of an outer expectation over all possible
realizations of H( fW). These expectations can be per-
formed to obtain (Roggemann, 1991)

^D~ fW !&5K̄ ^H~ fW !&On~ fW !. (66)

The second moment of D( fW) can also be evaluated with
the result

^uD~ fW !u2&5K̄ 1~K̄ !2^uH~ fW !u2&uOn~ fW !u2. (67)

The variance of D( fW) is determined from the first and
second moments of D( fW) to be

var$D~ fW !%5^uD~ fW !u2&2u^D~ fW !&u2

5K̄ 1~K̄ !2uOn~ fW !u2var$H~ fW !%. (68)

The first term in Eq. (68) is due to Poisson noise, and
the second term is due to randomness in the OTF. These
effects combine to increase the total variance of D( fW)
compared to the fixed-OTF case.

The image-spectrum SNR for an image measured un-
der conditions of a doubly stochastic Poisson random
process is thus given by

SNRD~ fW !5
K̄ u^H~ fW !&uuOn~ fW !u

AK̄ 1~K̄ !2uOn~ fW !u2var$H~ fW !%
. (69

If additive noise is present in the image measurement as
defined in Eq. (62), then the variance of D( fW) is in-
creased by the amount Psn

2 , where P is the number of
pixels in the image and sn

2 is the additive-noise variance
in photoelectrons per pixel per readout. Two observa-
tions are in order regarding Eq. (69): (1) the effect of
random fluctuations in the OTF lowers the SNR of the
image spectrum; and (2) increasing the average number
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of photoevents in the image cannot overcome the effects
of randomness in the OTF. In fact, the K̄ →` limit of
Eq. (69) is

lim
K̄ →`

$SNRD~ fW !%5
u^H~ fW !&u

Avar$H~ fW !%
5SNRH~ fW !, (70)

where SNRH( fW) is referred to as the SNR of the random
OTF.

III. ADAPTIVE OPTICAL IMAGING SYSTEMS

It is clear from the discussion presented in Secs. I and
II that wave-front field aberrations induced by atmo-
spheric turbulence can severely degrade the perfor-
mance of an optical imaging system. Atmospheric turbu-
lence so limits ground-based imaging that the best
observatories in the world only achieve resolutions asso-
ciated with diffraction-limited apertures of 10 to 30 cm.
Babcock (1953) was the first to propose that imaging-
system performance could be improved by flattening the
perturbed wave front in the pupil of the imaging system.
Babcock’s idea is the foundation for all active and adap-
tive optics used to compensate for atmospheric turbu-
lence. Systems using adaptive optics are commonly
called adaptive optical imaging (AOI) systems. AOI sys-
tems must perform two main functions: (1) sense the
wave-front perturbations and (2) compensate for them
in real time.

The components required to perform the two func-
tions are shown in Fig. 11. These components include
the deformable mirror (DM), the wave-front sensor
(WFS), and an actuator command computer. Aberrated
light entering the telescope is first reflected from the
deformable mirror. Some of this light is focused to form
an image, and some is diverted to the wave-front sensor.
The wave-front sensor measures the residual error in the
wave front and provides this information to the actuator
control computer, which computes the deformable-
mirror actuator voltages. The entire process, from the
acquisition of a wave-front sensor measurement to the
positioning of the surface of the deformable mirror,
must be performed at speeds commensurate with the
rate of change of the turbulence-induced wave-front
phase errors. The goal in the positioning of the
deformable-mirror surface is to present an approxima-
tion of the conjugate of the turbulence-induced field so
that the field reflected from the deformable mirror will
more closely approximate the field that would exist in
the absence of atmospheric turbulence.

The deformable mirror is a flexible mirror whose sur-
face shape can be modified at high speed in response to
applied electrical signals. Its surface is controlled in such
a way as to cancel the atmospheric-induced wave-front
phase aberration in the pupil. The mirror surface or fig-
ure is controlled by a number of actuators that push and
pull on the mirror surface to cause it to deform. The
wave-front sensor measures the wave-front phase per-
turbations; however, it does not do so directly. Rather,
wave-front sensors are generally sensitive to the wave-



455Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
FIG. 11. Simplified optical configuration of an
adaptive optical imaging system.
front phase gradient. The wave-front phase is obtained
by using the measured wave-front gradient in a phase-
reconstruction algorithm. The deformable mirror and
wave-front sensor are connected through the actuator
command computer. The purpose of the control com-
puter is to take measurements from the wave-front sen-
sor and map them into real-time control signals for the
deformable mirror. The command computer basically
strives to achieve wave-front reconstruction by control-
ling the surface of the deformable mirror.

If the adaptive optical concepts discussed above
worked perfectly, the adaptive optical imaging system
would achieve the ideal performance limit: diffraction-
limited imaging. In this case the imaging system would
operate as if in an aberration-free environment, and
only diffraction effects would limit performance. Theo-
retical and experimental (Fugate et al., 1994) evidence
has shown that true diffraction-limited performance is
impossible to achieve. The actual performance of an
adaptive optical imaging system may encompass the en-
tire range from nearly no improvement to performance
having characteristics of nearly diffraction-limited imag-
ery. Evaluating the expected performance of adaptive
optical imaging systems has been the subject of a large
amount of research over the past 20 years (Fried, 1966a,
1977, 1982, 1990a, 1994a, 1994b; Noll, 1976; Greenwood,
1977, 1979; Hudgin, 1977a, 1977b; Hardy, 1978; Wang
and Markey, 1978; Southwell, 1980; Wallner, 1983; Pe-
tersen and Cho, 1986; Gaffard and Boyer, 1987; Nisen-
son and Barakat, 1987: Smithson et al., 1988: Downie
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and Goodman, 1989; Smithson and Peri, 1989; Welsh
and Gardner, 1989, 1991; Gardner et al., 1990; Rogge-
mann, 1991, 1992; Welsh, 1991, 1992; Herrmann, 1992;
Johnston and Welsh, 1982, 1994; Roggemann and Mat-
son, 1992; Roggemann et al., 1992; Beckers, 1993; Rigaut
and Gendron, 1993; Roggemann and Meinhardt, 1993;
Tyler, 1993, 1994a, 1994b; Demerlé et al., 1994; Eller-
brock, 1994; Ellerbroek et al., 1994; Gavel et al., 1994;
Parenti and Sasiela, 1994; Welsh and Roggemann,
1994a).

Before discussing the components and performance
analysis of adaptive optical imaging systems we first
present, in Sec. III.A, a qualitative discussion of the fac-
tors that fundamentally limit adaptive optical imaging
system performance. In Sec. III.B we present a brief in-
troduction to the components that make up the typical
adaptive optical imaging system. Section III.C. ends with
a discussion of a number of fundamental and system-
performance results.

A. Factors that degrade adaptive optical imaging
system performance

An ideal adaptive optical imaging system is one that
perfectly senses and compensates for the atmospheri-
cally induced wave-front perturbations. Due to the large
number of factors that contribute to the degradation of
adaptive optical imaging system, our discussion will be
confined to those that represent the most fundamental
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and limiting factors in any system. These fundamental
factors include finite light levels in the wave-front sen-
sors, differences between the sensed and object wave
fronts associated with anisoplanatism, finite spatial sam-
pling of the wave-front sensor, finite number of degrees
of freedom available from the deformable mirror, and
the finite temporal response of the adaptive optical im-
aging system.

1. Wave-front sensor light levels and anisoplanatism

The finite amount of light in the wave-front sensor
and anisoplanatism may well represent the most severe
of all factors that degrade adaptive optical imaging sys-
tem performance. These two factors are discussed to-
gether because they are inextricably tied to each other in
the case of telescopes used for astronomical purposes. In
most of the adaptive-optics systems built to date, light
from either the object being imaged or a nearby ‘‘bea-
con’’ source is used to provide light for the wave-front
sensor. In either case the finite light level available to
the wave-front sensor can severely limit the accuracy of
the wave-front sensing. Inaccurate wave-front sensing
leads to inaccurate wave-front reconstruction, which de-
grades adaptive optical imaging system performance sig-
nificantly below the theoretical limit. The problem of
obtaining enough light for accurate wave-front sensing
has been the most significant factor limiting the applica-
tion of adaptive-optics technology to ground-based as-
tronomy. Until recently, adaptive optics have generally
not been applied to ground-based astronomical tele-
scopes because of the inability to obtain bright beacon
sources over any significant portion of the night sky.
Only recently have we seen applications of adaptive op-
tics to near-infrared imaging, where bright beacon stars
are available. This recent development for near-infrared
imaging can be attributed to improved near-infrared
cameras and more sensitive wave-front detectors. The
problem lies in the fact that in most instances the object
being imaged is itself not bright enough to be used by
the wave-front sensor. As a result, a nearby beacon
source must be found to provide the light for the wave-
front sensor. In the case of astronomy, this nearby bea-
con is generally a nearby bright star, sometimes referred
to as a guide star. If finding the closest bright beacon
were the only problem to overcome, then adaptive op-
tics would have been successfully used in astronomy
years ago. Unfortunately simply finding the nearest
bright beacon star is not adequate unless it lies within
the isoplanatic angle of the object being imaged.

The isoplanatic angle is qualitatively the maximum
angular separation between the object and the beacon
such that the turbulence-induced wave-front perturba-
tions for the object and beacon wave fronts are still rea-
sonably similar. In order to understand the implication
of the isoplanatic angle, recall that the light from the
beacon is used to sense the perturbed wave front and
this information is in turn used to compensate for distor-
tions in the object wave front. If the beacon is separated
from the object, the two wave fronts propagate through
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
slightly different regions in the atmosphere, as shown in
Fig. 12. This difference in propagation path results in
slightly different wave-front perturbations induced on
the two wave fronts. This effect is referred to as an
anisoplanatic effect. Besides finite light levels in the
wave-front sensor, anisoplanatism represents the other
major factor that causes an adaptive optical imaging sys-
tem to perform in a less than ideal way. In fact, as seen
in the discussion above, light levels in the wave-front
sensor and anisoplanatism are inextricably tied together,
since it is anisoplanatism that prevents the adaptive op-
tical imaging system from using nearby bright guide
stars.

The isoplanatic angle has been defined quantitatively
as the largest angle separation between the object and
beacon such that some measure of imaging performance
is kept within a specified level. The isoplanatic angle is
very small for astronomical observations in the visible
wavelength range. At visible wavelengths the object be-
ing imaged has to be within 5 to 10 mrad of the beacon.
This restriction on the angular separation of the object
and beacon implies that the percentage of the night sky
accessible using the naturally occurring bright stars is
essentially zero (Gardner et al., 1990). The outlook is
more optimistic at infrared wavelengths, where the
isoplanatic angle is considerably larger (100’s of mrad).
This trend with respect to wavelength is understood
when considering the isoplanatic angle defined by Fried
(1982):

FIG. 12. Angular anisoplanatism.
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2~z !z5/3G 3/5

. (71)

In this definition the isoplanatic angle has a wavelength
dependence that is identical to the dependence found
for the Fried parameter r0. The isoplanatic angle and
r0 are proportional to l6/5 [see Eq. (25)]. In applications
involving long wavelengths (such as infrared as-
tronomy), r0 and u0 increase from the small values they
take at visible wavelengths. This increase allows the sub-
apertures of the wave-front sensor to be larger than
those required for visible wavelengths. Dimmer beacons
can thus be used as the subapertures of the wave-front
sensor become larger. This decreasing brightness re-
quirement in combination with an increased isoplanatic
angle size gives rise to a situation in which infrared as-
tronomy using natural stars is possible. Studies of the
applications of adaptive optics to infrared astronomy
have shown that there are enough bright guide stars to
access nearly 100% of the night sky. In fact, the first
applications of adaptive optics to astronomy have been
for infrared systems (Thompson, 1994). The isoplanatic
angle defined above is derived for near-field atmo-
spheric conditions. The effects of anisoplanatism have
also been investigated for far-field turbulence effects us-
ing a more rigorous diffraction analysis (Troxel et al.,
1994, 1995).

A possible solution to the problems associated with
anisoplanatism is the creation of an artificial beacon us-
ing a laser to project a spot in the atmosphere above the
telescope (Gardner et al., 1990). Foy and Labeyrie
(1985) were the first to suggest in the open literature
that it may be possible to create a suitable artificial
guide star in the upper atmosphere with a laser. Within
the United States’ Defense Advanced Research Projects
Agency the idea was being considered as early as 1982
(Happer et al., 1994). Artificial guide stars allow access
to nearly the entire sky even at visible wavelengths,
since the laser can be pointed in any direction. The
transmitted laser beam is focused to a spot in the center
of the field of view of the telescope at a finite altitude
above the telescope. Within the region where the beam
is focused, some of the light is scattered from the atmo-
spheric constituents, and some of this scattered light is
returned in the direction of the telescope. The backscat-
tered light is used by the wave-front sensor to measure
turbulence-induced aberrations. The laser spot is re-
ferred to as a laser beacon or artificial guide star. Ideally
the use of laser beacons removes the fundamental prob-
lem of low light levels in the wave-front sensor since the
brightness of the beacon is controlled by the laser
power.

The problem associated with the angular
anisoplanatic effects discussed above is seemingly solved
with the use of laser beacons. The laser beacon can be
placed in exactly the same angular direction as the ob-
ject, thereby forcing the beacon and object wave fronts
to arise from the same angular point in the sky. Another
anisoplanatic effect arises with the use of laser beacons
that is slightly different in nature from the angular
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
anisoplanatism discussed above. With the use of laser
beacons the adaptive optical imaging system suffers
from a fundamental anisoplanatic effect known as the
cone effect (also referred to as focus anisoplanatism).
The cone effect arises from the fact that the light emit-
ted from the laser beacon is a spherical wave emitted
from a finite-altitude source. Figure 13 shows the geom-
etry of interest. Since the object wave front generally
arises from a source a very large distance away (as is the
case for celestial bodies), it is well modeled as a plane
wave. The difference between plane- and spherical-wave
propagation results in an anisoplanatic effect that is
again due to the two wave fronts’ propagating through
different regions of the turbulence as shown in Fig. 13.
The difference in the propagation paths increases as the
diameter of the telescope increases. So, even with the
use of a bright laser beacon, the adaptive optical imag-
ing system will still be fundamentally limited by the cone
effect. The cone effect can be lessened by placing the
laser beacon at the highest possible altitude. The two
main approaches for the generation of laser beacons in-
volve the use of Rayleigh scattering in the stratosphere
and the use of resonance fluorescence of sodium (Na)
atoms in the mesosphere (Gardner et al., 1990). Beacons
employing Rayleigh scattering are called Rayleigh bea-
cons, while guide stars employing Na resonance fluores-
cence are called Na beacons. The advantage of using a

FIG. 13. Cone effect.
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Rayleigh beacon is that lasers with many of the required
characteristics can already be purchased commerically.
In particular, the power required to create sufficiently
bright Rayleigh guide stars is available with ‘‘off-the-
shelf’’ lasers (Gardner et al., 1990; Thompson, 1994).
Rayleigh guide stars are most efficiently created at rela-
tively low altitudes, ranging from 10 to 20 km. Na bea-
cons, on the other hand, are formed in a naturally occur-
ring layer of Na in the mesosphere. The Na layer is
located at an altitude of approximately 90 km (Gardner,
1989). Since Na beacons are created at a much higher
altitude than Rayleigh beacons, the cone effect is much
less severe for Na beacons. The cone effect is significant
enough that Na laser beacons are the preferred ap-
proach, assuming availability of a laser to produce them.
However, to date, only expensive special-purpose lasers
have succeeded in creating sufficiently bright Na bea-
cons (Collins, 1992; Fugate, 1993).

In addition to the cone effect, an adaptive optical im-
aging system employing an artificial beacon also suffers
from a form of angular anisoplanatism. This fact may
seem counterintuitive, since the whole point of creating
a laser beacon is that it can be placed at the same angu-
lar position as the object, thereby avoiding the angular
anisoplanatism discussed earlier. Unfortunately, though,
in the upward projection of the laser beacon the exact
position of the focused spot cannot be determined. The
laser-beacon optical field propagates up through turbu-
lence before being focused into a spot. The upward
propagation through the turbulence causes the angular
position of the beacon to shift randomly, and the ran-
dom motion denies the adaptive optical imaging system
exact knowledge of the position of the beacon. Without
this knowledge the adaptive optical imaging system can-
not reliably use the laser beacon to predict the wave-
front tilt. Wave-front tilt refers to the portion of the
wave-front perturbation that corresponds to the best-fit
plane over the aperture of the system. The wave-front
tilt induced on the beacon field is caused by both the
turbulence for the downward propagation and the mo-
tion of the beacon (i.e., the turbulence in the upward
propagation). Since the beacon motion is random and
unknown, it is impossible to measure the portion of the
wave-front tilt induced by downward propagation
through the atmosphere. The insensitivity to wave-front
tilt for an artificial beacon implies the adaptive optical
imaging system must employ another beacon with a
fixed location in the sky (i.e., a natural star) for sensing
and compensation of overall wave-front tilt.

This last statement may make it appear that we are
right back where we started when we introduced the use
of laser beacons to solve the angular anisoplanatism
problem. Fortunately, the natural star is only needed for
sensing the portion of the perturbed wave front associ-
ated with wave-front tilt. The isoplanatic angle for sens-
ing and correcting the tilt aberration is much larger than
the isoplanatic angle associated with sensing and cor-
recting higher-order perturbations (Gardner et al.,
1990). The isoplanatic angle associated with tilt correc-
tion is defined in relation to the wave-front error in-
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duced by the tilt. In other words, the angular separation
between the natural beacon for tilt sensing and the ob-
ject can be much larger. This angular limit is called the
tilt isoplanatic angle. Additionally, the temporal band-
width requirement for compensating for the tilt is less
stringent than compensation of the higher-order wave-
front aberrations (Roddier et al., 1993). This fact, along
with the larger tilt isoplanatic angle, makes obtaining
natural stars for tilt sensing not nearly so severe a limi-
tation as obtaining natural stars for use in compensating
the higher-order wave-front perturbations. The effects
of tilt anisoplanatism can be decreased by decreasing the
angular separation of the natural guide star and the di-
rection to the object. Rigaut and Gendron (1993) have
analyzed the sky coverage for adaptive optical imaging
systems using natural guide stars for tilt correction and
found a 1.0% coverage at visible wavelengths, which in-
creases to nearly 100% coverage at infrared wavelengths
(3 mm).

Finally, it is also worth noting that the performance of
the overall tilt correction has a profound effect on the
performance of the system (Rigaut and Gendron, 1993).
Eighty-seven percent of the power in the aperture aver-
aged mean-square wave-front fluctuations is due to the
full-aperture wave-front tilt. Since such a large portion
of the wave-front aberrations is associated with wave-
front tilt, tilt correction is critical for effective adaptive
optical imaging system performance. Any correction of
these higher-order aberrations will be swamped by un-
corrected tilt if the system suffers from poor tilt correc-
tion. The brightness and angular separation of the tilt
guide star contributes significantly to the limiting perfor-
mance of an adaptive optical imaging system.

2. Finite pupil sampling of the wave-front sensor, limited
number of degrees of freedom of the deformable mirror,
and finite system temporal response

The last three performance limitations presented in
the list at the beginning of Sec. III.A are grouped to-
gether, since they arise from fundamental limitations of
the components of the adaptive optical imaging system
itself. Both the finite spatial sampling of the wave-front
sensor and the finite degrees of freedom of the deform-
able mirror result in the same general type of system
performance degradation. The finite sampling and the
finite degrees of freedom can both be viewed as degrad-
ing the system’s ability to sense and compensate for the
high spatial frequencies or higher-order modes of the
wave-front perturbations. The inherent finite sampling
of wave-front sensors makes them unsuitable for sensing
perturbations having spatial frequencies beyond some
upper frequency cutoff. The cutoff frequency of the
wave-front sensor is inversely proportional to its sample
spacing. Aliasing of high-spatial-frequency perturbations
into lower frequencies is a fundamental problem en-
countered with finite sampling. The finite number of de-
grees of freedom of the deformable mirror acts like a
spatial filter that limits the spatial frequency content of
the reconstructed wave-front phase. Just as for the
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wave-front sensor, the cutoff frequency of the deform-
able mirror is inversely proportional to the spacing of
the actuators that deform the surface of the mirror.

The performance degradation imposed by the de-
formable mirror and wave-front sensor can be lessened
by using wave-front sensors with smaller sample spacing
and deformable mirrors with more actuators (i.e., more
closely spaced actuators). The general rule of thumb for
‘‘good’’ wave-front compensation is to design the adap-
tive optical imaging system with subaperture and actua-
tor spacings ;r0, where r0 is the previously defined
Fried parameter. An adaptive optical imaging system
satisfying this condition is generally referred to as a fully
compensated system.

Improving upon the performance limitations imposed
by the subaperture size of the wave-front sensor and the
interactuator spacing of the deformable mirror involves
using smaller subapertures and smaller interactuator
spacings. This approach is generally expensive in both
hardware complexity and cost. The controller in an
adaptive optical imaging system must map many wave-
front sensor measurements to many deformable-mirror
actuator control signals. Decreasing the subaperture size
and actuator spacing increases the complexity and speed
requirement of the system controller. The adaptive op-
tical imaging system must sense and compensate for
wave-front perturbations at speeds commensurate with
the coherence time of the atmosphere. At good obser-
vatory sites the coherence time will be on the order of 10
milliseconds (Gardner et al., 1990). The large number of
subapertures and deformable-mirror DM actuators for
densely sampled pupils may well push the temporal
bandwidth limits of a multiple-input/output controller
beyond the capability of widely available and affordable
technology. In general, large adaptive telescopes, such
as 2-m-diameter and larger telescopes, have been de-
signed with subaperture sizes and interactuator spacings
larger than r0.

Adaptive optical systems having subaperture sizes and
interactuator spacings larger than r0 are generally re-
ferred to as partially compensated systems. These sys-
tems have the advantage that they are less expensive
and less complex than fully compensated systems, but
they suffer in performance due to the sampling issues
discussed above. However, it has been shown recently
(Roggemann, 1992) that partially compensated adaptive
optical imaging systems do not suffer as much in a
signal-to-noise ratio (SNR) sense as might be expected.
Even though average performance measures, such as the
mean-square residual phase fluctuation, degrade for sys-
tems employing partial compensation, it has been shown
that the image-spectrum SNR does not degrade as rap-
idly (Roggemann, 1992). This observation has opened
up possibilities of using the post-processing image-
reconstruction techniques discussed in Secs. VI and VII
to achieve close to the same image qualities as a fully
compensated adaptive optical imaging system.

Another possible reason for employing a partially
compensated adaptive optical imaging system is the ef-
fect of finite light levels on the wave-front sensor. For a
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fixed photon-flux level there will be an optimal wave-
front sensor subaperture size that minimizes the residual
wave-front phase fluctuations (Welsh, 1991). Depending
on the light level expected for the wave-front sensor,
this optimum subaperture size may result in a partially
compensated system. The optimum subaperture size ex-
ists because of the competing trends in the two main
contributions to the wave-front compensation errors. As
the subaperture size of the wave-front sensor decreases,
the errors associated with finite sampling decrease. On
the other hand, the decreasing size causes each subaper-
ture to intercept less light, and as a result the slope mea-
surements become noisier. An alternate approach to ad-
justing for the optimal subaperture size is the
development of an optimal deformable-mirror control
algorithm. Deformable-mirror control algorithms can be
derived to minimize wave-front error, given statistical
knowledge of the wave-front sensor noise and atmo-
spheric wave-front perturbations (Wang and Markey,
1978; Herrmann, 1981; Wallner, 1983; Welsh and Gard-
ner, 1989; Ellerbroek, 1994; Gendron and Lena, 1994;
Cannon, 1995; Dai, 1995; Roggemann and Welsh, 1996).

The temporal evolution of the turbulence-induced
wave-front perturbations, in combination with the adap-
tive optical imaging system’s finite temporal response,
fundamentally limits performance. In simple terms, the
adaptive optical imaging system takes a finite amount of
time from wave-front sensing to wave-front correction.
This time delay causes a degradation in performance.
The atmospheric correlation time tc is generally used to
characterize the rate at which the wave-front perturba-
tions are changing. The inverse of tc is commonly used
to specify the required temporal bandwidth of the AOI
system. The temporal bandwidth requirement and light
levels in the wave-front sensor are inextricably linked
from an overall performance perspective. The temporal
bandwidth required to keep up with the temporally
evolving wave-front perturbations control the rate at
which wave-front measurements must be taken. A wave-
front sensor measurement rate implies a maximum inte-
gration time for each measurement. For a fixed photon
flux the integration time controls the average number of
photoevents detected per measurement cycle. Just as we
saw for the subaperture size, we see that competing
trends will result in an optimum control bandwidth. In-
creasing the system bandwidth will decrease the errors
associated with temporally evolving wave fronts. At the
same time, increasing bandwidth decreases the number
of photoevents detected per wave-front sensor measure-
ment, which results in noisier wave-front slope measure-
ments. Optimal wave-front control algorithms can also
be derived to perform temporal wave-front control
(Welsh and Gardner, 1989; Eellerbroek et al., 1994; Co-
nan et al., 1995; Wild et al., 1995).

B. Adaptive optical system components

In the following subsections we present an introduc-
tory discussion of the three main components of an
adaptive optical imaging system: the deformable mirror,
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the wave-front sensor, and the controller. The purpose
of this introduction is to provide an overall view of the
performance issues associated with the components.

1. Deformable mirrors

The deformable mirror is the system component that
performs the wave-front correction. The shape of its sur-
face (or figure) is controlled such that perturbations of
the incident wave front are cancelled as the optical field
reflects from the surface. In an ideal adaptive optical
imaging system the figure of the deformable mirror and
the perturbed wave front cancel exactly, and the residual
wave-front phase is zero. Previously we discussed the
factors that prevent adaptive optical imaging systems
from achieving ideal performance. The performance of
the deformable mirror is limited by the finite degrees of
freedom associated with controlling the figure of the
mirror and the finite temporal response. The finite de-
grees of freedom restrict the range of surface shapes that
can be placed on the deformable mirror.

The temporal response of the deformable mirror char-
acterizes how its surface responds temporally to an in-
stantaneous command. Both the speed of the response
(i.e., how fast the surface moves to the desired shape)
and resonances are of interest. The state of current
deformable-mirror design is such that these temporal
concerns are not major considerations for ground-based
imaging up through the atmosphere. Deformable mir-
rors are being designed to have bandwidths on the order
of a kilohertz or greater and resonances well outside the
operation range of interest (Hardy, 1978; Ealey and
Washeba, 1990). This bandwidth easily meets the re-
quirements associated with the temporal rates required
for atmospheric compensation: several hundred Hertz
(Hardy, 1978). For more comprehensive discussions of
the characteristics and limitations of the various types of
deformable mirrors, see Hardy (1978), Tyson (1991),
and Ribak (1994).

a. Segmented and continuous deformable mirrors

There are two broad classes of deformable mirrors,
categorized by the nature of the mirror surface: seg-
mented or continuous. The surface of a segmented de-
formable mirror is controlled by positioning a number of
independently controlled, closely packed, flat mirror
segments, which can be moved individually either by pis-
ton only or by piston plus tilt. The advantages associated
with segmented deformable mirrors are the modularity
and simplicity of the design. Modularity makes it pos-
sible to combine rectangular arrays of mirror segments
to form larger deformable mirrors. The simplicity allows
individual segments to be easily replaced. Another ad-
vantage associated with segmented mirrors is the con-
ceptually simple control requirements (Ribak, 1994).
Disadvantages include diffraction effects from the indi-
vidual segment edges and the difficulty of achieving in-
tersegment alignment. An example of an adaptive opti-
cal imaging system using a segmented mirror is
described by Acton and Smithson (1992).
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The disadvantages associated with segmented deform-
able mirrors are largely addressed by continuous de-
formable mirrors. The continuous deformable mirror
has a single continuous mirror surface, usually called the
face plate or face sheet. The shape of the mirror surface
is controlled by an array of actuators that push, pull, and
bend the face sheet to obtain the desired figure. There
are two main types of continuous mirror actuation: pis-
ton actuation and bending actuation (Ribak, 1994). For
piston actuation the force applied to the mirror surface
is applied perpendicular to the nominal (or resting) mir-
ror surface. The actuator pushes or pulls on the mirror
surface to deform it into the desired shape. For bending
actuation the mirror is placed under a bending force that
changes the curvature of the surface. Bimorph mirrors
(Kokorowski, 1979; Steinhaus and Lipson, 1979; Halevi,
1983) are an important example of this type of deform-
able mirror and have the unique feature that they solve
the Poisson equation (Roddier, 1988a; Ribak, 1994;
Schwartz et al., 1994).

Continuous deformable mirrors provide the advan-
tage of avoiding the diffraction effects associated with
segmented deformable mirrors. A disadvantage is the
complexity of the algorithm required to control them.
The face-sheet deformation associated with a particular
actuator is not generally independent of the other actua-
tor’s responses. Even if the actuator responses are inde-
pendent, the face-sheet deformation associated with a
particular actuator generally overlaps the response of
neighboring actuators. Another disadvantage of the con-
tinuous deformable mirror is the practical problem of
repairing bad actuators (Ribak, 1994). Examples of con-
tinuous deformable-mirror designs are discussed by
Hardy (1978), Ealey and Washeba (1990), Hulburd and
Sandler (1990), Ealey and Wellman (1991), Ribak
(1994), and Schwartz et al. (1994).

b. Influence functions and modeling

In order to model the deformable mirror in perfor-
mance analyses it is necessary to quantify how the signal
applied to a particular actuator changes the surface of
the mirror. The change in the surface shape due to the
application of a signal to an actuator is called the influ-
ence function. The influence function for a segmented
mirror is localized to the region of the surface defined by
a particular mirror segment. The influence function for a
continuous deformable mirror is not restricted to a re-
gion around the actuator location as in the segmented
mirror. In the continuous-mirror case, influence func-
tions have been modeled with polynomials, trigonomet-
ric functions, and Gaussian functions (Hudgin, 1977a;
Hardy, 1978; Wallner, 1983; Welsh and Gardner, 1989;
Moore and Lawrence, 1990). Let the ith influence func-
tion be designated ri(xW ), where xW is a position on the
deformable-mirror surface. By assuming linearity of the
responses of all the actuators, we can model the surface
of the mirror f̃ (xW ) with the following relationship:

f̂~xW ,t !5(
i

c i~ t !ri~xW !, (72)
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where ci(t) is the control signal applied to the ith actua-
tor at time t . The key assumption affecting the validity
of the model presented by Eq. (72) is the linearity of the
actuator influence functions.

c. Tilt-compensation mirrors

Before moving on to discuss wave-front sensors, we
should note that the first types of deformable mirrors
used to compensate for the effects of atmospheric tur-
bulence were tilt mirrors. These mirrors are sometimes
called tip-tilt mirrors and represent the simplest type of
wave-front control. For tilt compensation the surface is
simply a flat mirror that can be adjusted to tilt in two
orthogonal directions. Modern adaptive optical imaging
systems typically have a tilt-correction mirror as the first
stage of wave-front compensation. Performing tilt cor-
rection separately from the higher-order corrections
lowers the dynamic-range requirements of the deform-
able mirror.

2. Wave-front sensors

The wave-front sensor provides the means of measur-
ing the perturbed wave-front phase. Wave-front sensors
used in adaptive optical imaging systems do not directly
measure the wave-front phase f(xW ,t), but rather the
spatial gradient or Laplacian of f(xW ,t). The spatial gra-
dient is commonly referred to as the wave-front slope,
while the Laplacian is referred to as the wave-front cur-
vature. An estimate of f(xW ,t) is computed from the
wave-front derivative, using a phase reconstruction algo-
rithm.

One of the fundamental performance issues associ-
ated with the fidelity of phase reconstruction is the ac-
curacy of the measured derivatives, given finite light lev-
els in the wave-front sensor and detector noise. The
other fundamental issue affecting phase reconstruction
is the wave-front sample spacing. We introduce the basic
types of wave-front sensors used in adaptive optical im-
aging systems.

The first two types of wave-front sensors used in adap-
tive optical imaging systems are derived from wave-front
sensors used in optical testing (Rousset, 1994). Both of
these wave-front sensors are sensitive to the slope of the
wave-front phase. They both have the advantage of be-
ing broadband, or white-light sensors, which is an impor-
tant consideration for astronomical imaging.

a. The Hartmann wave-front sensor

The Hartmann wave-front sensor (H-WFS) is based
on the Hartmann test. A diagram of this sensor is de-
picted in the left side of Fig. 14. The Hartmann wave-
front sensor spatially segments the incident wave front
with a lenslet array. Each array element is referred to as
a subaperture, and it focuses a spot onto an array of
detectors in the lenslet focal plane. The right portion of
Fig. 14 shows that the centroid location of the spot fo-
cused on the detector, xW s , is related to the wave-front
slope sW over the subaperture by
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, (73)

where k52p/l and f l is the focal length of the subap-
erture lens. One of the most common detector-array
configurations is four detectors forming the quadrants of
a square detector area, often referred to as a quad cell.
A number of authors have investigated the performance
of different detector-array configurations and have com-
puted optimal detector-element sizes (Tyler and Fried,
1982; Winnick, 1986; Kane et al., 1989; Witthoft, 1990;
Cao and Yu, 1994).

The spot centroid computation associated with the
Hartmann wave-front sensor and its relationship to the
wave-front slope can be shown to be equivalent to com-
puting the average wave-front phase gradient over the
subaperture of the wave-front sensor (Yura and Tavis,
1985). Thus the mathematical model for the Hartmann
wave-front measurement is

sW~ j !5E dxW Wj~xW !¹f~xW ,t !1sWn~ j !, (74)

where sW(j) is the vector wave-front slope associated with
the jth subaperture, ¹f(xW ,t) is the spatial gradient of
f(xW ,t), sWn(j) is a random vector that accounts for
measurement-noise effects, and Wj(xW ) is the jth subap-
erture weighting function. The subaperture function
Wj(xW ) is normalized to have unit area.

The root-mean-square value of the slope-
measurement noise, sn , is related to the standard devia-
tion of the spot-location measurement, sc . Both shot
noise and read noise contribute to the spot-
measurement error. In the case of a Hartmann wave-
front sensor using a quad cell, the contribution to sn due
to photon noise has been found to be (Tyler and Fried,
1982; Welsh et al., 1995)

sns5
A2p

d~K̄ !1/2E
21

1
dfxIb~fx,0!Htr~fx,0!

~rad/m!, (75)

where d is the subaperture dimension and K̄ is the total
average detected-photon count per subaperture mea-
surement. The subscript ns designates the noise contri-
bution due to shot noise. The function Ib(fx ,fy) is the
Fourier transform of the beacon-intensity distribution
projected into the subaperture lens focal plane, and
Htr(fx ,fy) is the tilt-removed optical transfer function

FIG. 14. Diagram of the Hartmann wave-front sensor
(H-WFS).
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(OTF) of the subaperture. The spectrum Ib(fx ,fy) is
normalized such that Ib(0,0)51. In Eq. (75) the spatial
frequency variables fx and fy are normalized to the dif-
fraction limit of the subaperture, d/lf l .

The dependency of Eq. (75) on a number of key fac-
tors is evident. The finite light level is characterized by
the average photon count per measurement K̄ . The ef-
fect of the beacon size on the accuracy of the measure-
ment is characterized by the beacon spatial spectrum
Ib . Finally, the broadening of the beacon spot in the
lenslet focal plane due to atmospheric turbulence is
characterized by the tilt-removed optical transfer func-
tion Htr . Using a Gaussian beacon-intensity profile and
the short-exposure optical transfer function given in Eq.
(46), we can numerically evaluate Eq. (75). Figure 15 is a
plot of the sns versus d/r0. The parameter b is the ratio
of the rms angular beacon size to the angular seeing
limit [i.e., b5(sb /zb)/(l/r0), where sb is the rms width
of the beacon and zb is the height of the beacon]. It is
apparent from Fig. 15 that increasing the beacon size
causes a significant worsening of the shot-noise error. A
decreasing value of r0 (or equivalently an increasing
value of the ratio d/r0) is also seen to increase the mea-
surement error.

The other main source of error is the noise added in
the process of reading the detector. This noise is re-
ferred to as sensor noise or, in the special case of a
charge-coupled-device (CCD) detector, as read noise. In
the case that r0>d and b!1, Parenti and Sasiela (1994)
have shown that the contribution to sn due to read noise
for a quad cell is

snr5
A2p

dAK̄ 2/4se
2

, (76)

where se
2 is the variance of the read or electronic noise

FIG. 15. Plot of sns versus d/r0 for the Hartmann wave-front
sensor for b ranging from 0 to 2. The parameter d is the sub-
aperture dimension, K̄ is the average detected photon count
per measurement, and b is the ratio of the angular beacon size
to the angular seeing limit, b5(sb /zb)/(l/r0).
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for each pixel in the detector array, expressed in units of
photoelectrons squared. More general expressions for
the read-noise contribution to sn have been developed
by Parenti and Sasiela (1994) for larger detector arrays
and for spot broadening due to atmospheric turbulence.

To obtain the total slope-measurement error, the
shot-noise and read-noise errors must be combined to
give the total measurement error sn

2 :

sn
25sns

2 1snr
2 . (77)

b. The shearing interferometer

The other common wave-front sensor used in adap-
tive optical imaging is the lateral shearing interferom-
eter (SI-WFS) (Wyant, 1975), shown in Fig. 16. The
shearing interferometer splits the incident field into two
optical beams: an x-leg and y-leg beam. Before optical
detection the beams are split again and laterally shifted
(sheared) with respect to each other. The most common
approach used to achieve the shear involves the use of
gratings (Wyant, 1974: Horwitz, 1990). Another ap-
proach makes use of beam separation by polarization
(Hardy and MacGovern, 1987). Regardless of the beam-
separation approach, the x- and y-directed wave-front
slopes are sensed separately in each leg. Depending on
the specific type of shearing interferometer, the optical
field in each leg is split a number of times (Sandler et al.,
1994). The amount of shear is an adjustable parameter.
The sheared beams are superimposed on an optical de-
tector to form an interference pattern. The subapertures
are established by the pixels on the detector. The detec-
tor plane is conjugated to the pupil plane of the optical
system, and each detector element defines a single sub-
aperture.

The particular algorithm used to transform the pixel-
irradiance measurements into wave-front slope esti-
mates depends on the type of shearing interferometer.
For the ac type, a time-varying phase modulation is ap-
plied to one of the sheared beams (Wyant, 1975; Hor-
witz, 1990). The detected signal in this case is a sinu-
soidal time-varying signal, whose phase is related to the
slope of the incident wave front. In the case of the static
three- and four-bin (sometimes referred to as the three-
and four-point) shearing-interferometer wave-front sen-
sors, the detected irradiances are constant signals that
can be combined together to estimate the phase slope
(Sandler et al., 1994).

FIG. 16. Simple optical diagram of the shearing-
interferometer wave-front sensor (Hardy, 1978 ).
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FIG. 17. Plot of sns vs d/r0 for the shearing-
interferometer wave-front sensor for b rang-
ing from 0 to 2. The parameter d is the sub-
aperture dimension, K̄ is the average detected
photon count per measurement, and b is the
ratio of the angular beacon size to the angular
seeing limit, b5(sb /zb)/(l/r0). For each
value of b the optimum value of shear was
found, and it is this optimum value that is
used to compute the shot-noise error pre-
sented in the graph.
Regardless of the specific type of shearing interferom-
eter discussed above, for modeling purposes the mea-
sured slope signal for the jth subaperture is mathemati-
cally modeled by

sWm~ j !5E dxW Wj~xW !FDf~xW ,DxW x!

uDxW xu
x̂1

Df~xW ,DxW y!

uDxW yu
ŷG

1sWn~ j ! ~shearing interferometer model!,

(78)

where Df(xW ,Dx)5f(xW )2f(xW 1Dx), x̂ and ŷ are unit
vectors in orthogonal directions in the sensing plane,
DxW x and DxW y are shears in the x̂ and ŷ directions, and
sWn(j) again represents the measurement noise. The vari-
ance of the measurement-error term sWn depends on light
level, beacon size, atmospheric effects, and shear dis-
tances DxW x and DxW y .

The measurement error due to shot noise for the
shearing interferometer has been found to be (Welsh
et al., 1995)

sns5
2A2

r0~K̄ !1/2sma~s !mb~s !
~rad/m!, (79)

where K̄ is the total average photon count detected per
subaperture measurement, ma(s) is the visibility reduc-
tion due to atmospheric seeing effects, mb(s) is the vis-
ibility reduction due to the size of the beacon, and s is
the normalized shear, s5uDxW xu/ro or uDxW yu/ro . For the
specific case in which the beacon is modeled by a Gauss-
ian irradiance distribution having an rms width of sb
and an altitude of zb , we find, through application of the
Van Cittert-Zernike theorem (Born and Wolf, 1964),
that

mb~s !5exp@2p2b2s2# , (80)
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where b is the angular size of the beacon relative to the
seeing-limited angle @b5(sb /zb)/(l/r0)]. Substituting
Eq. (80) into Eq. (79) gives

sns5
2A2

r0~K̄ !1/2sma~s !
exp@p2b2s2# ~rad/m!. (81)

The atmospheric-visibility term ma(s) has been inves-
tigated for the case of atmospheric turbulence having
the Kolmogorov index-of-refraction power spectral den-
sity given in Eq. (5) (Welsh et al., 1995). The error given
in Eq. (81) has been evaluated and presented in the
graph shown in Fig. 17. Figure 17 is a plot of sns versus
d/r0 for b ranging from 0 to 2.

Read noise also contributes to the slope error for the
shearing-interferometer wave-front sensor. Sandler et al.
(1994) have investigated the read-noise contribution to
the slope error and found that

snr5
A8se

r0K̄ sma~s !mb~s !
~rad/m! (82)

for a four-bin interferometer and

snr5
A6se

r0K̄ sma~s !mb~s !
~rad/m! (83)

for a three-bin interferometer. To obtain the total slope-
measurement error sn , the shot-noise and read-noise
errors are combined as in Eq. (77).

c. Curvature sensing

The other type of wave-front sensor that has found
use in adaptive optical imaging systems is the curvature
sensor (Roddier, 1988a; Rousset, 1994). The curvature
sensor measures a signal proportional to the Laplacian
or second derivative of the wave-front phase. The La-
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FIG. 18. Schematic of a curvature wave-front
sensor. The difference in the irradiance be-
tween the planes P1 and P2 is proportional to
the local wave-front curvature in the pupil.
The irradiance difference is also proportional
to the radial tilt of the wave front at the edge
of the pupil.
placian measurements are combined with wave-front tilt
measurements around the edge of the system pupil to
reconstruct the wave front by solving the Poisson equa-
tion. One of the advantages of using a curvature sensor
is that solving the Poisson equation can be accomplished
directly by applying the Laplacian measurements to a
membrane or bimorph mirror (Roddier, 1988a; Rousset,
1994; Schwartz et al., 1994). Another advantage is that
the wave-front curvature is a scalar-field quantity and, as
a result, requires only one measurement per pupil
sample point. Additionally, if the power spectrum of the
wave front follows a f211/3 power law, the power spec-
trum of the wave-front curvature will follow a f1/3 power
law (Roddier, 1988a). The f1/3 power law is nearly flat
and will result in curvature measurements that are
nearly uncorrelated, implying that the curvature sensor
requires fewer measurements than a gradient wave-front
sensor to characterize the wave front.

The curvature-sensing method as first presented by
Roddier (1988a) is shown with the conceptual drawing
in Fig. 18. The pupil field is incident from the left, and
the irradiance of the field is measured in the two planes
P1 and P2. These two planes are placed a distance l in
front and in back of the telescope focal plane. Note that
in practice a beam splitter would be used to divide the
light and form two images. A geometrical-optics analysis
shows that the irradiance difference is related to the
wave-front curvature and the radial tilt of the wave front
at the edge of the pupil as follows:

i1~xW !2i2~2xW !

i1~xW !1i2~2xW !
5

f~f2l !

l F¹2fS fxW

l D2
]

]n
fS fxW

l D dcG ,

(84)

where i1(xW ) and i2(xW ) are the irradiances measured in
the planes P1 and P2 as a function of transverse-vector
location xW , f(xW ) is the pupil wave-front phase, and dc is
an impulse distribution around the pupil edge, weighted
by the derivative of the wave-front phase in the direc-
tion normal to the pupil edge, ]f(xW )/]n .

Roddier et al. (1988), Roddier (1991), and Roddier
et al. (1991) have argued convincingly that curvature
sensing has a performance advantage over gradient
wave-front sensors when low-order or partial wave-front
correction is the goal. This advantage is particularly evi-
dent when the deformable mirror inherently corrects the
wave-front Laplacian as membrane and bimorph mir-
rors do. Recently, Roddier (1994) presented the first as-
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tronomical images obtained from a low-order adaptive
optical imaging system using a curvature sensor.

3. Controllers

In Eq. (72) we introduced a model to characterize
how the control signals ci(t) are mapped into the mirror
surface f̂(xW ,t). It is intuitively appealing to think of the
ith influence function as representing the actual shape of
the mirror that results for a unit signal applied to the
ith actuator. In this case ci(t) is associated with the ac-
tual control signal sent to the ith actuator as a function
of time. The control algorithm derived using this inter-
pretation of ri(xW ) is commonly referred to as zonal con-
troller. This physically motivated interpretation of
ri(xW ) is not the only interpretation possible. The func-
tion ri(xW ) can also be associated with a member of any
set of basis functions or modes. When this modal asso-
ciation is used the resulting wave-front control algorithm
is called a modal controller. Normally the modes are
chosen to be an orthogonal basis set such as Zernike
polynomials (Noll, 1976) or Karhunen-Loève modes
(Roddier, 1990; Dai, 1995; Roggemann and Welsh,
1996). In this case ci(t) is associated with the weighting
coefficient of the ith mode as a function of time. To use
modal control the individual modes must be related to
the physical influence functions of the mirror. This rela-
tionship will be an approximation of a particular mode
with a linear combination of the deformable-mirror in-
fluence functions. The key point to remember is that the
functions ri(xW ) can be associated with any set of func-
tions, whether they are deformable-mirror influence
functions or wave-front modes.

The problem at hand is finding a mapping from wave-
front sensor measurements to control signals that results
in the desired system performance. The phrase ‘‘desired
performance’’ has different meanings depending on the
performance metric being minimized or maximized.
Qualitatively the goal is to achieve a mapping that re-

sults in f(xW ,t)'f̂(xW ,t). We present two basic results
that achieve the mapping of the wave-front sensor mea-
surement to deformable-mirror control signals. In both
cases the transformation is a linear mapping. In other
words the control matrix M has the following form:

c5Msm , (85)

where c is a column vector of the control signals and
sm is a column vector of the measured subaperture
slopes.



465Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
The two basic approaches for deriving the control ma-
trix M are distinguished from each other by the quantity
that is minimized in the solution process. In the first
approach M is derived by minimizing the difference be-
tween the measured wave-front slopes and the slopes
associated with the the surface of the deformable mirror.
This minimization falls within the formalism of ‘‘maxi-
mum a posteriori estimation’’ and ‘‘least-squares’’ esti-
mation (Melsa and Cohn, 1978). In the second approach,
knowledge of both the wave-front statistics and the
noise characteristics of the wave-front sensor are used to
derive a control matrix that minimizes the aperture av-
erage mean-square residual phase error.

a. Maximum a posteriori controller

For the maximum a posteriori (MAP) estimation de-
velopment to follow, the slope-measurement model is
assumed to take the following form:

sm5sdm1sn , (86)

where sdm is a column vector of the slopes associated
with the surface of the deformable mirror and sn is the
column vector of associated noise realizations due to
shot and read noise. In the MAP-estimation approach
we attempt to minimize usm2sdmu2, where the notation
uau25aTa . This approach is well suited for closed-loop
adaptive optical systems in which the difference,
sm2sdm , is the closed-loop measurement used to update
the mirror-control signals. The result of the minimiza-
tion is found in the work of Melsa and Cohn (1978), who
give the optimum control vector as

c5~HTCn
21H1Cc

21!21HTCn
21s , (87)

where the matrix H is called the Jacobian matrix, with
the jith vector element defined as

Hji5E dxW Wj~xW !(¹ri~xW !•dW j), (88)

and the matrices Cc and Cn are the covariance matrices
for c and sn :

Cc5^ccT&,

Cn5^snsn
T&. (89)

The function Wj(xW ) is the jth subaperture weighting
function, and dW j is a unit vector pointing in the direction
of the sensitivity of the j slope measurement. The super-
script T designates vector transpose.

Matching the terms in Eqs. (85) and (87), we see that
the maximum a posteriori control matrix is given by

MMAP5~HTCn
21H1Cc

21!21HTCn
21 . (90)

The slope-measurement-noise covariance matrix Cn will
in many cases be diagonal, since the photon noise and
the read noise are independent for each subaperture
measurement. In the case that the noise variance of each
subaperture measurement is the same and equal to sn

2 ,
Eq. (90) reduces to

MMAP5~HTH1sn
2Cc

21!21HT. (91)
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This control matrix has also been derived by others
(Sasiela and Mooney, 1985; Fried, 1994b).

b. Least-squares controller

The maximum a posteriori reconstructor given above
in Eq. (91) reduces to the well-known least-squares so-
lution as the measurement-noise variance decreases to
zero. The least-squares control matrix is the simplest
controller to compute because neither the noise nor at-
mospheric statistics are required. Only the Jacobian ma-
trix H is required, and the elements of this matrix can be
obtained by measuring the response of the wave-front
sensor to changes of individual actuator control signals.
Letting the noise variance go to zero in Eq. (91) gives
the least-squares control matrix MLS . We note that
MLS corresponds to the Moore-Penrose generalized in-
verse or pseudo-inverse of H . A great many authors
have presented the least-squares development for the
control of the deformable mirror in an adaptive optical
imaging system (Wallner, 1983; Tyson, 1991; Rogge-
mann, 1992; Fried, 1994b; Rousset, 1994).

c. Minimum-variance controller

An alternative controller is the minimum-variance
controller, for which the aperture-averaged residual
mean-square phase is minimized. To define the
aperture-averaged mean-square residual phase, note
that the residual phase is designated e(xW ) and is defined
as

e~xW !5f~xW !2f̂~xW !, (92)

where f(xW ) is the piston-removed wave-front phase per-
turbation and f̂(xW ) is the piston-removed wave-front
phase correction applied by the deformable mirror. The
aperture-averaged mean-square residual phase is de-
fined by

^e2&5E dxW W~xW !^e2~xW !&, (93)

where W(xW ) is the pupil weighting function of the adap-
tive optical imaging (AOI) system. The minimum-
variance controller will result in optimal performance,
since its derivation incorporates statistical information
concerning the incident wave-front phase f(xW ) and the
noise on the wave-front sensor measurements. Addition-
ally, it has been shown that minimizing ^e2& is equivalent
to maximizing the adaptive optical imaging system’s
Strehl ratio (Herrmann, 1992). The Strehl ratio is de-
fined as the ratio of the peak of the system’s point-
spread function to the peak of the point-spread function
of an unaberrated system.

Minimizing ^e2& results in the following minimum-
variance control matrix (Roggemann and Welsh, 1996):

MMV5R21AS21, (94)

where the matrices S , R , and A are defined as

S5^smsm
T & , (95)

R5@r~xW !,rT~xW !# , (96)
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A5@r~xW !,^f~xW !sm
T &# . (97)

The quantity sm is a column vector composed of the
wave-front sensor’s subaperture slope measurements,
r(xW ) is a column vector composed of the influence func-
tions of the deformable-mirror actuator, and the nota-
tion @f(xW ),g(xW )# is an inner product defined as

@f~xW !,g~xW !#5E dxW W~xW !f~xW !g~xW !. (98)

The minimum-variance control matrix results in a mini-
mum residual mean-square phase error ^e2& of

^e2&5@f~xW !,f~xW !#2tr~R21AS21AT!, (99)

where tr(C) is the trace of the square matrix C .
The practical drawback associated with implementing

the minimum-variance controller is accurately character-
izing the wave-front phase and sensor noise statistics so
that S and A can be computed. In most situations this
prior knowledge is not available. If accurate prior
knowledge of the required statistics is available, it has
been shown that the minimum-variance controller out-
performs the least-squares solution (Wallner, 1983;
Roggemann, 1992).

4. Bandwidth requirements

a. Tilt compensation

The bandwidth requirement for tilt correction for a
circular aperture has been derived by Tyler (1994a). As-
suming a first-order controller for tilt compensation,
Tyler finds that the residual angular tilt variance after
tilt compensation can be expressed as

su
25S fT

f3 dB
D 2S l

D D 2

, (100)

where f3 dB is the temporal frequency at which the tilt-
compensator response is down 3 dB from the maximum
value, l is the optical wavelength, D is the diameter of
the system pupil, and

fT50.368D21/6l21F E dz Cn
2~z !v2~z !G1/2

. (101)

The parameter f3 dB is also referred to as the bandwidth
of the tilt compensator. In Eq. (101) v(z) is the path-
dependent turbulence velocity profile. In the special
case that the velocity profile is constant with respect to
z , Eq. (101) can be written in terms of the Fried param-
eter given in Eq. (25):

fT50.0902S r0

D D 1/6S v
r0

D . (102)

Good tilt correction should result in an angular rms tilt
variation that is one-fourth the angular resolution of the
diffraction-limited pupil, l/D (Tyler, 1994a). To obtain
this level of tilt correction, the bandwidth of the control-
ler f3 dB must be greater than 4fT . An aperture diameter
of D520r0 and a wind velocity of v5100r0/s implies
that the controller bandwidth must be 22 Hz.
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We finally note that a more recent study (Conan et al.,
1995) of the bandwidth requirements for wave-front cor-
rection has indicated that the tilt-correction portion of
an adaptive optical imaging system must have a band-
width higher than that given above. This conclusion is
based on an investigation of bandwidth requirements for
tilt and higher-order modal correction. Conan et al.
(1995) show that, to achieve the same residual wave-
front errors as achieved by the higher-order modal cor-
rection, the tilt-compensation bandwidth must be higher
than the bandwidths for the higher-order modes.

b. Higher-order compensation

The bandwidth requirements for full wave-front com-
pensation have been studied by a number of researchers
(Greenwood and Fried, 1976; Greenwood, 1977; Tyler,
1984; Fried, 1990b; Karr, 1991; Welsh, 1992; Harrington
and Welsh, 1994). Greenwood (1977) derives the mean-
square residual wave-front error (including the tilt-error
contribution) as a function of servoloop bandwidth for a
first-order controller. This error is given by

se
25S fG

f3 dB
D 5/3

, (103)

where f3 dB is the 3-dB bandwidth of the wave-front
compensator and fG is the Greenwood frequency:

fG5F0.102k2E
0

`

dz Cn
2~z !v5/3~z !G 3/5

. (104)

In the special case that the velocity profile is constant
with respect to z , Eq. (104) can be written in terms of
the Fried parameter given in Eq. (25)

fG5
0.426v

r0
, (105)

where v is the transverse velocity of the turbulence.

C. Adaptive optical imaging system performance

In the following subsection we present a series of rep-
resentative performance calculations for adaptive opti-
cal imaging systems. The analytical results are largely
drawn from Welsh (1991). The adaptive optical imaging
system considered in the following subsections has the
following general characteristics.

Telescope Pupil. The pupil, shown in Fig. 19, is annu-
lar with an obscuration ratio of Do /D50.4, where D is
the pupil diameter and Do is the diameter of the obscu-
ration. The pupil diameter is assumed to be 3 m.

Wave-Front Sensor. The wave-front sensor is a Hart-
mann sensor with square subapertures of side length d .
The number of subapertures spanning the pupil diam-
eter ranges from 15 to 16. Figure 19 shows the subaper-
ture geometry for the case in which 15 subapertures
span the diameter.

Deformable Mirror. The mirror is assumed to be of
monolithic design with an actuator spacing equal to the
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subaperture dimensions d . The influence function for
the ith actuator, ri(xW ), is modeled by a Gaussian func-
tion:

ri~xW !5expS 2~xW 2xW i!
2

da
2 D , (106)

where xW i specifies the location of the ith actuator and
da is the influence radius. The Gaussian response is of-
ten used to model piezoelectric or membrane-
deformable mirrors (Welsh and Gardner, 1989). For the
results presented here we assume da5d . Actuator loca-
tions are indicated by the large dots in Fig. 19.

Beacon. We consider cases in which the adaptive op-
tical imaging system uses both a finite-altitude laser bea-
con and a natural guide star. In order to incorporate the
effects of anisoplanatism we account for the altitude of
the guide star as well as the altitude distribution of the
turbulence. When we refer to the effects of
anisoplanatism we restrict our attention to the degrada-
tion of the on-axis wave-front compensation caused by
the difference between the path of the optical ray from

FIG. 19. Telescope pupil, deformable mirror, and wave-front
sensor geometry.
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the guide star and that from the celestial object of inter-
est. We also assume that a sufficiently bright, on-axis,
natural guide star is used for overall tilt control (i.e.,
perfect overall tilt compensation is assumed).

Cn
2 Altitude Profile. The turbulence-altitude profile is

characterized by the structure constant of the refractive-
index fluctuations, Cn

2 . Welsh and Gardner (1991) have
presented an analysis of the effects of anisoplanatism on
laser-guided telescopes. In this earlier analysis, the au-
thors consider a single-layer model of the turbulence-
altitude profile, as well as the more realistic Hufnagel-
Valley continuous Cn

2 model (Hufnagel, 1974). For the
results presented here we use the simpler, single-layer
model. The single layer is assumed to be located at the
altitude zt'10 km.

1. Mean-square residual phase error ^e2&

We start by considering the simplest and easiest-to-
compute performance metric: the aperture-averaged, re-
sidual wave-front phase error ^e2&. Figure 20 is a plot of
^e2&1/2 versus photon flux incident on the wave-front sen-
sor for the case of zt /zb50.109. This particular ratio
approximately matches the geometry in which the guide
star is located at an altitude of 92 km (nominal height of
the mesospheric Na layer) and the turbulence is at a
height of 10 km. As expected, ^e2&1/2 decreases with in-
creasing flux. This trend simply indicates that the slope
measurements become less noisy as the brightness of the
guide star is increased. The asymptotic behavior of each
curve as the flux increases is indicative of the limitations
imposed on performance by the wave-front sensor and
mirror-actuator sampling intervals. Notice that at the
higher flux levels ^e2&1/2 decreases with decreasing sub-
aperture and actuator spacing (i.e., decreasing d/r0).
This trend is expected, since decreasing d/r0 results in
smaller sampling intervals in both the wave-front sensor
and the deformable mirror, which in turn results in im-
proved sampling and reconstruction of the higher-
spatial-frequency phase deformations. Recall that
d/r0<1 falls within the category of an adaptive optical
FIG. 20. rms wave-front error ^e2&1/2 plotted vs photon flux for the adaptive optical imaging system described in this section. The
ratio of the turbulence altitude to the guide-star altitude is zt /zb50.109. The family of curves are for d/r0 ranging from 0.5 to 2.
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FIG. 21. Ensemble-average op-
tical transfer function
^H(fx,0)& vs spatial frequency
fx for the adaptive optical imag-
ing system described in this sec-
tion. Also shown are optical
transfer functions for the case
of diffraction-limited perfor-
mance and the case of no wave-
front compensation. For each
curve the flux is 76 photons/r0

2,
and the ratio zt /zb50.109.
imaging system that we characterize as a fully compen-
sated system. Figure 20 indicates that even systems la-
beled as being fully compensated are fundamentally lim-
ited by either the light level or the finite sampling of the
incident wave-front phase.

In contrast to the trends observed for high light levels,
at the lower flux levels we observe that performance can
actually be better for larger values of d/r0. Systems with
d/r0.1 are characterized as partially compensated sys-
tems. This reversal in performance is explained by real-
izing that, at the low flux levels, noise is the predominant
cause of wave-front error. For a given flux level the
measurement-noise effects will increase for decreasing
values of d/r0. The measurement noise increases be-
cause the light collected by each wave-front sensor sub-
aperture is proportional to d2. At low flux levels, de-
creasing values of d/r0 increase the effect of
measurement noise at a faster rate than the beneficial
effects expected from smaller subapertures. These two
opposing trends indicate that for a given flux level there
will exist an optimum value of d/r0 that minimizes wave-
front error.

2. Average optical transfer function
and point-spread function

The graph in Fig. 21 shows the average optical trans-
fer function ^H( fW)& plotted versus normalized spatial
frequency. The OTF is plotted along the x-directed
component of fW , and the frequency axis is normalized to
the diffraction-limited cutoff of the pupil. The wave-
front sensor flux is held constant at 76 photons/r0

2. This is
the level specified by Gardner et al. (1990) in their study
of adaptive optical imaging systems employing laser bea-
cons. The OTF curves for the case of no correction and
for the case of diffraction-limited seeing are also shown.
Between these two limiting cases are the OTF curves for
d/r0 ranging from 0.5 to 2. Notice the significant im-
provement in the response of the optical transfer func-
tion for decreasing values of d/r0. This improvement is
most noticeable in going from the partially compensated
system with d/r052 to the fully compensated system
with d/r051. It is also interesting to notice that for each
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of the values of d/r0 shown, the adaptive optical imaging
system preserves spatial frequencies out to the diffrac-
tion limit. This is in contrast to the case of no wave-front
correction, where the spatial frequencies are cut off at
;10% of the maximum spatial frequency for diffraction-
limited imaging.

The graph shown in Fig. 22 illustrates the average
point-spread curves ^s(xW )&, which are derived from the
OTF curves shown in Fig. 21. Recall that the point-
spread function and the optical transfer function are re-
lated by a Fourier transform. The figure shows a cross
section of the average point-spread function plotted ver-
sus an image-plane coordinate x that is normalized by
ldi /D . Note how the peaks of the point-spread function
decrease with decreasing levels of wave-front compensa-
tion (i.e., increasing d/r0). We finally note that both the
Strehl ratio and the angular resolution of the adaptive
optical imaging system can be obtained from point-
spread data. The Strehl ratio is the value of the point-
spread function at the origin (xD/ldi50), normalized
by the function’s diffraction-limited value at the origin.
For the normalization of Fig. 22 the Strehl ratio is ob-
tained directly from the graph by identifying the inter-
section point of the point-spread function with the ver-
tical axis. The angular resolution is derived from some

FIG. 22. Ensemble-average point-spread function (PSF),
@s(x ,0)# vs image-plane coordinate x for the adaptive optical
imaging system described in this section. Also shown is the
ensemble point-spread function for the case of diffraction-
limited performance. For each curve the flux is 76 photons/
r0

2, and the ratio zt /zb50.109.
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TABLE I. Key characteristics of the 1.5-m adaptive optical imaging system.

Parameter Value

Telescope 1.5-m aperture, elevation over azimuth gimbals with
coudé path

Adaptive optics Configured off-gimbal in a coudé room optically coupled
to the telescope by relay imaging optics

Wave-front sensing Two Shack-Hartmann sensors, one for stars and one
with range gating for a Rayleigh laser beacon

Wave-front sensor geometry Square 9.2-cm subapertures, 16 across the diameter, 208
total inside the pupil

Wave-front sensor camera Unintensified 64364 pixel CCD focal-plane array, 434
pixels per subaperture

Laser wavelengths 0.5106 and 0.5782 mm, yellow power=twice green power
Pulse format 5000 pulses/sec, 50 ns pulse width
Backscatter range 10 km with 2.4 km range gate
Wave-front sensors Unintensified CCD array in a Shack-Hartmann

configuration
Transmit optical efficiency 0.40
Wave-front receive optical efficiency 0.25
Deformable mirror Low-voltage lead-magnesium-niobate actuators,

continuous facesheet of ULE glass
Number of actuators 241 independent; 201 with slaves
Closed-loop control bandwidth Typically 100 Hz
Imaging wavelengths 0.7 to 2.2 mm
Camera resolution Adjusted to l/2D for the wavelength of interest
predefined measure of the width of the point-spread
function. The full width at half maximum (FWHM) is a
common measure of angular resolution. The interesting
point to note from the point-spread data shown in Fig.
22 is that angular resolution as determined by the
FWHM metric does not significantly degrade as d/r0 in-
creases. This observation is typical for adaptive optical
imaging systems. It is well known that the performance
of adaptive optical imaging systems degrades in such a
way that the width of the core remains constant as the
point-spread peak decreases. The decrease of the peak
(or equivalently the Strehl ratio) causes more light to be
spread into a halo outside the central core.

D. Example of an adaptive optical imaging system

This section is a brief description of an operating
adaptive-optics system. The system described is installed
on a 1.5-m telescope at the U.S. Air Force Phillips Labo-
ratory Starfire Optical Range (SOR) near Albuquerque,
NM. It was developed and continues to evolve as a re-
search tool to provide engineering data on the perfor-
mance of adaptive optics under varying atmospheric
conditions and hardware configurations. The 1.5-m tele-
scope is dedicated full time to the development and use
of this adaptive-optics system. Consequently, it probably
has more operating hours than other systems being
tested or developed for astronomy by groups who have
limited observing time as visitors to astronomical obser-
vatories. For these reasons, the SOR system seems an
appropriate example to highlight in this review.
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The earliest versions of the Starfire 1.5-m adaptive-
optics system have been described by Fugate et al.
(1994). The current hardware configuration and recent
experimental data are presented here. The major fea-
tures of the system are presented in Table I, and the
overall layout of the facility is shown in Fig. 23. This
system is fairly complex, and its configuration is changed
very frequently to support a variety of experiments. For
these reasons, we decided to build up the system in a
coudé room where large optics tables are available and
where the controlled temperature facilitates the mainte-
nance of optical registration and alignment. Locating the
system on the telescope (which may not have been pos-
sible in this case due to the bulk of the system and the
small size of the telescope) would improve the optical
efficiency about one stellar magnitude (a factor of 2.5).
Since we are mainly interested in engineering develop-
ment and understanding factors that limit performance
(and getting a complex system to work at all), we de-
cided on the coudé-room approach. In the material that
follows we describe the main subsystems and show en-
gineering and scientific data obtained with the system.

1. Optics

The principal optical components are the telescope,
relay optics, wave-front sensor optics, track sensor op-
tics, and diagnostic and scientific camera optics. Figure
24 shows the telescope and relay optics located in the
vertical support pedestal. The telescope is a classical
Cassegrain design with a parabolic primary and hyper-
bolic secondary, which produces an f/217 output beam



470 Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
FIG. 23. Overview of the 1.5-m telescope and adaptive-optics facility. The laser and optics are on the ground floor, and the
electronics and control center are located on the second floor of the observatory.
of 10 cm diameter. One feature of the relay optics is a
spherical mirror that converts the f/217 beam to an
f/70 beam and creates an intermediate focal plane half-
way through the support pedestal. A simulated star in
the form of a fiber optic on a precision translation stage
can be positioned in this focal plane to provide a test
source for alignment and adaptive-optics loop checkout
prior to nighttime observing. The beam is directed into
the coudé room through a fused-silica window by means
of a turning flat at the base of the telescope pedestal. As
shown in Fig. 23, nighttime air is constantly pulled
through the dome, telescope, and pedestal by a large fan
located on the ground floor. All large thermal masses
are well insulated in this area to minimize convective
and radiative heat transfer from the building structures
and promote rapid and effective temperature equilibra-
tion of the air in the optical path.

Figure 25 shows schematically key features of the
coudé-room optics. All of these components are
mounted on a large optics table that sits on a foundation
mechanically separated from the building’s foundation.

2. Full-aperture tilt control

The coarse and fine steering mirrors control full-
aperture tilt. The coarse mirror uses voice coil-actuator
technology and can move over the full field of the tele-
scope (300 mrad full angle) but with limited speed (it can
execute a 10 mrad sine wave at 30 Hz). The fine steering
mirror uses piezoelectric actuators and has only a 30
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mrad full-angle motion but can execute a 2 mrad peak-
to-peak sine wave at 200 Hz. These mirrors are con-
trolled by a type-I track processor, which computes the
centroid of a star image on a fiber-optic-synthesized ar-
ray of avalanche photodiodes (Fugate et al., 1993). The
sampling rate of the track sensor is 30–2000 measure-
ments per second, depending on the signal provided by
the object being tracked Fugate, 1994). Furthermore,
the coarse-mirror-control computer also communicates
with the telescope-mount-control computer and can au-
tomatically update the open-loop mount pointing, if
needed, so that the dynamic range of the steering mir-
rors is never exceeded. The open-loop mount pointing is
outstanding for slow-moving objects like stars, and in
normal operation the coarse mirror is caged and the fine
steering is used for all full-aperture tilt corrections.

3. Deformable mirror

The off-axis parabola OAP1 is the second element in
the relay optics, which, in conjunction with the 6.21-m-
focal-length spherical mirror under the telescope (see
Fig. 24), recollimates the beam and images from the pri-
mary mirror onto the plane of the deformable mirror.
This means the primary mirror is optically located at the
entrance pupil of the telescope, and light from objects in
the entire 300-mrad full field of the telescope exactly
overlap at the deformable mirror. This approach is not
ideal in terms of increasing the effective size of the cor-
rected field if the turbulence is predominantly in a layer
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at some altitude above the telescope. However, it is very
practical for a first system, since the light does not move
around on the deformable mirror with pointing and field
object (which would potentially create instabilities in the
closed-loop operation). Furthermore, for continental
sites, most of the turbulence is in the first few kilometers
of the boundary layer, and the mirror is, on average,
well placed at the pupil.

The deformable mirror is of the continuous-face-sheet
variety. It has 341 actuators, but only 241 of these are

FIG. 24. Telescope and relay optics. The f/217 beam out of the
telescope is relayed at f/70 by a spherical focusing mirror be-
low the telescope. Removable source simulators can be placed
in the path at equivalent distances of infinity for natural stars
and 10–14 km for artificial laser guide stars. The pedestal area
is isolated from the coudé room by an optical-quality fused-
silica window.
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enclosed in the image of the pupil. Since the edge of the
face sheet of the deformable mirror is unsupported, the
actuators outside the pupil are used as a ‘‘guard band’’
to effect a smooth transition in the shape of the mirror’s
surface from the actively controlled region inside the
pupil to the region outside, where there is no wave-front
measurement. The actuators are on a square 7-mm grid
and are made from the electrostrictive material lead-
magnesium-niobate (Ealey and Washeba, 1990), which
has negligible hysteresis and a total stroke of 62.5 mm
for an applied voltage of 635 volts. The face sheet is 1.5
mm thick and is made from Corning ULE glass. The
structure is very stiff, having a resonant frequency of
nearly 25 kHz. This mirror has an rms surface figure of
approximately 60 nm when it is unpowered. Using a
high-resolution interferometer, we have demonstrated
that the mirror can be made flat to better than 6 nm rms
over its active area of 112 mm.

4. Laser injection and wave-front sensors

The off-axis parabola OAP2 produces an f/20 focus
after the deformable mirror. A long-wave-pass dichroic
beam splitter is placed in the f/20 beam and passes light
having wavelengths greater than 1.0 mm to scientific
cameras or other sensors or instruments that operate in
the 1.0- to 2.5-mm wavelength region. The long-
wavelength cutoff of 2.5 mm is set by the transmission of
the fused-silica window that isolates the coudé room
from the telescope pedestal. Light having wavelengths
shorter than 1.0 mm is reflected from the long-wave-pass
beam splitter and encounters the aperture-sharing optics
for the copper-vapor laser beam used to generate artifi-
cial guide stars. The aperture-sharing elements for the
laser consist of a polarizing beam splitter (PBS in Fig.
25) and a quarter-wave plate. The laser is injected into
the PBS linearly polarized so that it is reflected into the
coudé beam train. It then passes through a quarter-wave
plate and becomes circularly polarized and is transmit-
ted out the telescope and through the atmosphere to a
focus. Over the past few years, we have adjusted the
range at which the laser comes to best focus from 10.5 to
14 km, depending on the sensitivity of our wave-front
sensor, power of the laser, and transmission of the op-
tics.

Rayleigh backscattered light retains the circular polar-
ization of the transmitted light. When it passes through
the quarter-wave plate on the return trip, it becomes
linearly polarized again but orthogonal to the initial di-
rection (P vs S polarization) and passes through the po-
larizing beam splitter to lens L1 (Fig. 25).

The system has two Shack-Hartmann wave-front sen-
sors, one for natural stars and one for the Rayleigh laser
beacon formed by the copper-vapor laser. The system is
set up in the so-called Fried geometry with actuators at
the corners of the subapertures. The details are shown in
Fig. 26.

The lens L1 and off-axis parabola OAP2 form an im-
aging telescope that, in conjunction with the relay optics
in the two wave-front-sensor camera optical trains,
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FIG. 25. Schematic diagram of the optics and sensors in the coudé room.
forms a 3.2-mm-diameter pupil image on the lenslet ar-
ray. Each lens in the array is 200 mm square and has a
focal ratio of f/32. The pixels in the 64364 charge-
coupled-device array are 24 mm square. A subarray of

FIG. 26. Relationship of the wave-front sensor subapertures
and deformable-mirror actuators.
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434 pixels are assigned to each subaperture, so that on
the CCD array the distance between subapertures is 96
mm. Consequently a relay lens with a magnification of
96/200=0.48 is used between the focal plane of the lens-
let array and the CCD array. This relay lens is mounted
on a piezoelectric-driven XY stage, which is used to
boresight the wave-front sensor (remove full-aperture
tilt) with the track sensor so that there is on average no
full-aperture tilt on the wave-front sensor.

As shown in Fig. 25, mechanical choppers are used in
front of the two wave-front sensors and the avalanche
photodiode tracking sensor. These choppers are disks
rotating at 384 revolutions per second and have an 80%
duty factor. They are carefully synchronized to the laser
pulse rate so that scattered light from each laser pulse is
mechanically blocked from the three sensors until the
pulse is 5 km from the telescope. There is adequate
spectral isolation in the star wave-front sensor (0.7–0.85
mm) and the avalanche photodiodes (0.85–1.0 mm) to
prevent contamination from Rayleigh scattering of the
laser beacon (0.510 and 0.578 mm) when it is at ranges
greater than 5 km. A sharp range gate (resolution of 15
m) is created by the Pockels cell (see Fig. 25).

5. Data-processing algorithms

The real-time processing of the data in this system
involves digital manipulation of wave-front sensor data
in the wave-front sensor processor, the reconstructor,
and the low-pass filter. This is finally converted to ana-
log drive signals for the deformable-mirror actuators.
The functions of each step in this flow are (1) compute
subaperture gradients, (2) compute phases at the cor-
ners of each subaperture, (3) low-pass-filter the com-
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puted phases, and (4) provide actuator offsets to com-
pensate for fixed optical-system errors and real-time
actuator commands for dynamic wave-front corrections
of turbulent distortions.

The wave-front sensor processor performs data for-
matting, individual pixel calibrations, and comparison of
computed real-time wave-front gradients with reference
gradients stored in memory. The reference gradients are
determined differently for the star and laser-beacon sen-
sors. For the star wave-front sensor, a very high-quality
wave front is created by a removable fiber-optic source
on the coudé-room optics table. The wave-front gener-
ated by this source is the most accurate plane wave we
know how to create at the entrance aperture to the star
wave-front sensor. The gradients computed by the wave-
front processor for this plane wave are stored in the
processor’s memory so that they can be subtracted from
the measured atmospheric data. The difference between
the measured and reference gradients represents an er-
ror signal that needs to be driven to zero by adjusting
the actuators of the deformable mirror.

In the case of the laser-beacon wave-front sensor, it is
difficult to create in the laboratory a reference wave
front that accurately represents all the geometrical ef-
fects associated with the length and breadth and range
of the laser beacon as it appears in the atmosphere. The
technique that we have developed for making a refer-
ence for the laser-beacon wave-front sensor is the fol-
lowing. We first close the adaptive-optics loop on a star
using the star wave-front sensor. We then propagate the
laser beacon toward the star and collect laser-beacon
wave-front data using the laser-beacon wave-front sen-
sor. We typically average several hundred frames of
these data to generate a reference for the laser-beacon
wave-front sensor. Since the adaptive-optics loop is
closed on a natural star during these measurements, the
laser-beacon wave-front sensor is viewing the laser-
beacon as it would be for the best possible performance
of the system. Any focus introduced by the finite range
of the beacon is automatically corrected by this tech-
nique. Furthermore, edge effects caused by the finite ex-
tent of the beacon are measured directly. The laser-
beacon reference created by this measurement
technique represents the best method we know for
maximizing performance of the system. Once the refer-
ence is computed, it is loaded into the laser-beacon pro-
cessor so the loop can be closed using the laser beacon.

6. Electronics

The real-time wave-front reconstructor is based on a
previously reported design and uses a parallel array of
256 multiple-accumulator processors. The reconstructor
performs a full-matrix multiplication of a 5123256 re-
constructor matrix and a (13512) vector of gradients
generated by the wave-front sensor processor. The
wave-front sensor measures slopes s over each subaper-
ture. We can easily form a matrix H based on the geo-
metrical relation of the subapertures and deformable-
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
mirror actuators that relates the vector of measured
slopes to the vector of phases f that satisfies the matrix
equation

s5Hf . (107)

The least-squares estimate of the phase is given by Eq.
(91) with the measurement noise sn

2 assumed to be zero:

f5@~HTH !21HT#s5MLSs . (108)

The reconstructor matrix MLS is computed well ahead
of the time it is needed and down-loaded into the
random-access memory of the reconstructor electronics
during system initialization.

The output phase data computed from each wave-
front sensor measurement by the reconstructor is passed
through a digital low-pass filter having programmable
gain G and RC time constant t . The values of G and
t can be adjusted easily by the operator to optimize the
performance of the system as the strength and speed of
the turbulence changes.

The final mirror-actuator commands are determined
by summing the output of the low-pass filter with offset
values representing a ‘‘system-flat’’ condition for the de-
formable mirror. The actuator commands needed for
the system flat are determined by iteratively measuring
the error signal at the wave-front sensor using the star
simulator in the telescope pedestal, computing the wave-
front error and applying the actuator commands to
eliminate the error, repeating the wave-front measure-
ment to refine the error estimate, updating the actuator
commands, and so on until the error is minimized. The
resulting actuator commands are saved in the offset file
for future use. We have found it necessary to update the
static offset commands (to make a new system flat) ap-
proximately once per year.

Many diagnostic signals are available for recording
while the system is in operation. These include wave-
front sensor focal-plane-camera intensity data, com-
puted subaperture gradients, reconstructed phases, low-
pass-filter response, and actuator command signals.

7. Scientific and engineering cameras

We have two charge-coupled-device cameras that can
be positioned at the output of the adaptive-optics system
at plate scales appropriate for the technical objective at
hand. One camera is a 64364 pixel array that can collect
data at nearly 2000 frames per second and store it in a
computer for 10 seconds (164 Mbytes of data). The ex-
posure time and framing format is readily adjustable by
the observer. We also have a 5123512 pixel CCD cam-
era with low-noise readout for long-exposure, high-
resolution, scientific images. Both of these cameras are
used extensively to obtain engineering data that can be
analyzed to assess the performance of the system.

8. Examples of engineering data

Stars make excellent objects by which to assess the
engineering performance of the adaptive-optics system.
In this section we present example star images, which
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are analyzed and compared with performance predic-
tions based on the system design and atmospheric con-
ditions present when the data were collected.

Figure 27 shows two inverted-gray-scale images of a
bright star made with and without adaptive optics. The
images are shown logarithmically scaled in order that
the uncompensated image on the left be detectable in
print. The exposure time was 20 seconds for both im-
ages. The peak intensity of the compensated image is
16.4 times brighter than the uncompensated image, and
the full-width-at-half-maximum image size of 0.14 arcsec
is 6.2 times smaller than the uncompensated image. The
imaging wavelength was 880 nm through a 50-nm band-
pass filter. The Strehl ratio of the compensated image is
0.62. Figure 28 is a linear surface plot of these same two

FIG. 27. Uncompensated (left) and compensated (right) im-
ages of a bright star made with 20-second exposures of an
attenuated CCD camera. Relative intensities are 190 for the
uncompensated images and 3120 for the compensated images.
The Strehl ratio of the compensated image is 0.62, full width at
half maximum is 0.14 arcsec, and the imaging wavelength is
880 nm. The star was used as the beacon (natural-guide-star
adaptive optics).

FIG. 28. Surface plot of the images shown in Fig. 27.
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images, which shows rather dramatically the improve-
ment in the Strehl ratio made possible with the adaptive
optics.

These images were acquired at a zenith angle of 31°,
the Greenwood frequency fG was measured at 47 Hz,
and the Fried coherence diameter was 7.9 cm (scaled to
500 nm at zenith). The bandwidth of the higher-order
loop was 80 Hz measured at 23 dB error rejection and
the closed-loop full-aperture-tilt-correction bandwidth
was approximately 150 Hz, producing a one-axis rms er-
ror of 90 nrad.

The careful observer will notice four dim spots in a
square pattern centered on the compensated image (this
is visible in the gray-scale image and the linear three-
dimensional plot). These spots are the result of diffrac-
tion created by a ‘‘waffle’’ pattern on the deformable
mirror. The waffle pattern is created when actuators are
alternately up and down relative to the average surface.
This mode on the deformable mirror is unsensed by the
wave-front sensor due to the fact that the actuator spac-
ing exactly matches the subaperture dimension. Since
the mode is unsensed, it is not suppressed by the control
loop and can come and go unpredictably. Also the re-
constructor matrix mathematically projects waffle mode
out of the reconstructed wave front. However, it is only
possible to make the net waffle in the reconstructed
wave front zero. If there are pockets of waffle all over
the mirror that have a change of sign at boundaries, the
net waffle can still be zero mathematically, but the dif-
fraction effects will be seen in the image. These effects
can be controlled somewhat with careful design of re-
constructors. It is also possible to suppress these modes
by observing the deformable mirror with a high-
resolution local-loop interferometer and using its output
to suppress undesired modes by appropriately injecting
control signals in the servo loop.

It is interesting and important to compare an estimate
of the Strehl ratio with that measured from the two-
dimensional modulation transfer function of the com-
pensated image in Fig. 27. We can estimate the Strehl
ratio from scaling laws as the product of errors due to
fitting, wave-front-measurement noise, control-loop
servo lag, and tracking errors. These errors are due, re-
spectively, to the finite number of actuators, finite
signal-to-noise ratio in the wave-front measurement,
noise propagation in the wave-front reconstruction pro-
cess, the finite bandwidth of the closed-loop servo due to
the finite readout time of the CCD in the wave-front
sensor and processor delays, and imperfect correction of
full-aperture tilt.

Expressions for the variances of these errors are well
known and summarized as follows. The fitting error is
given as

s fit
2 50.28S d

r0
D 5/3

50.28S 0.092
0.127D

5/3

50.164 rad2, (109)

where d is the subaperture diameter. The servo-lag er-
ror was previously given in Eq. (103) and is 0.184 rad2

for fG529 Hz and f3 dB=80 Hz. The wave-front variance
due to wave-front measurement noise is negligible in
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this case, since we were using a very bright star. The
Strehl ratio due to tracking errors is given by

Strack5F11
p2

2 S suD

l D 2G21

5F11
p2

2 S 903102931.5
0.8831026 D 2G21

50.89, (110)

where su is the one-axis rms full-aperture tracking error,
D is the full-aperture diameter, and l is the imaging
wavelength. In these formulas, the values of fG and r0
have been scaled to the imaging wavelength of 880 nm.

The resultant Strehl ratio is given by

Stotal5exp@2~0.16410.184!#30.8950.63. (111)

This is remarkably (fortuitously?) close to the measured
value of 0.62.

Figure 29 is the modulation transfer function (MTF),
computed from two-dimensional Fourier transforms of
the images shown in Fig. 27. Also shown in Fig. 29 are
the unobscured-aperture diffraction-limited MTF and
the MTF computed from a simulation of the adaptive-
optics system [similar to that described by Ellerbroek
(1994)]. Considering the complexity of these systems
and the uncertainty in the measurement of atmospheric
parameters, the agreement between the simulation and
the measured data is reasonable. It is also important to
note that some response exists even at the highest spa-
tial frequencies. If the signal-to-noise ratio in the image
is high enough, post-signal processing techniques, dis-
cussed later in Secs. VI and VII in this review, are likely
to be successful in recovering a high-contrast diffraction-
limited image.

As discussed in Sec. III.A.1, we expect focus
anisoplanatism associated with laser beacons to degrade
the performance of the adaptive optics obtained with

FIG. 29. Modulation transfer functions. Diffraction-limited ap-
erture, simulated adaptive-optics system, experimentally mea-
sured adaptive-optics system, and tilt-only correction.
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natural guide stars. Figure 30 shows three-dimensional
intensity profiles of two short-exposure images of a star
obtained by using the star itself as the beacon for the
adaptive optics [image labeled (a)] and using the
copper-vapor laser beacon [image labeled (b)]. These
images are 10-ms exposures at a wavelength of 880 nm.
The image (a) has a Strehl ratio of 0.59 and a full-width-
at-half-maximum intensity of 0.13 arcsec. The image (b)
has a Strehl ratio of 0.48 and a full-width-at-half-
maximum intensity of 0.13 arcsec. Note the differences
in the peak intensities and the distribution of light in the
halo region surrounding the peak. The relative perfor-
mance of natural-guide-star vs laser-guide-star compen-
sation depends critically on the upper-atmospheric tur-
bulence conditions present and the height of the laser
beacon.

The performance of the laser-beacon adaptive-optics
system is illustrated in Fig. 31, which contains images of
the binary star b-Del. These are one-minute exposures.
The track loop was closed during both exposures, so the
left image does include tilt compensation. The laser-
beacon adaptive optics provided higher-order compen-
sation in the right image. The angular separation of the
two stars is 0.199 arcsec when this image was made
(Sept. 1993), and the full-width-at-half-maximum inten-
sity for each star is 0.14 arcsec. The peak intensity is 384
counts for the uncompensated image and 3260 for the
laser-beacon-compensated image. These are raw-data
images—no post processing of any kind has been done.

9. Scientific images

We conclude this section with two examples of images
that have been used to obtain new science. The first is of
the Trapezium region in the Orion nebula. Figure 32
shows three views of the Trapezium—a region known
for young-star formation. The left two images were
made through a 656.3-nm hydrogen-alpha filter (light
generated by ionized hydrogen) and the right image
through a continuum filter at 647.0 nm. The increased
detail in the morphology of this region is immediately

FIG. 30. Short-exposure images obtained with natural guide
star (a) and laser guide star (b).



476 Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
FIG. 31. Images of the binary star b-Delphinius obtained with laser-beacon adaptive optics. The uncompensated image is on the
left, and the image obtained with the laser-beacon adaptive optics is on the right. Details are discussed in the text.
apparent when comparing the left two images. The use
of the hydrogen-alpha filter shows immediately the pres-
ence of ionized hydrogen. Everything that is visible in
the center image but not in the right image is basically
ionized hydrogen. The source of the ionization is most
likely the bright O star in the center of the image, des-
ignated u1C Ori. On closer examination, one can see
cometlike structure in the objects in the center image.
The tails of the ‘‘comets’’ point away from the center
star, indicating a strong stellar wind being generated by
u1C. The objects seen in the center image but not in the
right image are new stars being formed from gravita-
tional collapse of hydrogen in the nebula. However,
there is a competing process, since the wind from u1C is
also ripping these hydrogen clouds apart. Additional de-
tails of these images and significant scientific conclusions
are reported by McCullough et al. (1995).
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Another example is shown in Fig. 33. This is an image
of Saturn obtained July 23, 1994 at 10:35 UTC (Univer-
sal Time Convention). A specialized near-infrared imag-
ing correlation tracker was used for full-aperture tilt
compensation, and the laser-beacon adaptive optics was
used for higher-order correction. The laser propagation
direction was centered on the planet. The image encom-
passes a wide spectral band from 0.65 to 0.95 mm and
was a three-second exposure. When displayed on the
computer, the fine structure in the rings is striking and
clearly shows the crepe inner ring, the Cassini and
Encke divisions at the outer edge. The polar caps are
also quite visible in the atmosphere as are several bands.
Some image processing hints at an atmospheric storm
near the equator (not visible in this unprocessed image).
The moon Rhea is visible under the rings to the lower
left, and its shadow cast on the lower right edge of the
FIG. 32. Images of the Trapezium new-star forming region in the Orion nebula. The left two images were made through a
hydrogen-alpha filter (656.3 nm) and the right image through a continuum filter (647.0 nm). The right two images were compen-
sated with laser-beacon adaptive optics. The exposures were 4 minutes each and the field is 40 arcsec square. The scientific content
is discussed in the text.



477Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
planet is also quite visible. The moon Dione is also seen
in front of the planet during transit. Additional informa-
tion on the engineering and scientific aspects of Saturn
images can be found in the work of Fugate et al. (1996).

This technique was also used with a tunable very nar-
row spectral filter operated by the NASA Goddard
Space Flight Center to investigate the impact of the
Shoemaker-Levy comet on Jupiter and to measure the
surface features of Titan through its hazy atmosphere.
Data analysis is still underway from those observations.

IV. SPECKLE IMAGING

The first efforts to overcome the effects of atmo-
spheric turbulence relied purely on post-detection pro-
cessing of short-exposure images measured through tur-
bulence. Pure post-processing techniques are now
referred to as speckle-imaging methods, in reference to
the speckled appearance of the measured images. In
speckle imaging a high-resolution image of the object is
not measured directly. Rather, an estimate of the Fou-
rier transform of the object is computed, and an image is
obtained by the inverse-Fourier-transform operation.
Speckle imaging is not a single technique, but rather a
collection of post-processing techniques for recovering
an estimate of both the modulus and the phase of the
Fourier transform of the object. An estimate of the ob-
ject is then obtained by applying the inverse Fourier
transform to the spectral data. Topics related to speckle
imaging have been reviewed by Dainty (1975); Labeyrie

FIG. 33. Image of the planet Saturn obtained with laser-
beacon adaptive optics. The laser was directed to the center of
the planet. Tracking was provided by an imaging correlation
tracker operating in the near infrared. Note the detail in the
ring structure, the atmosphere, and the shadow cast on the
lower-right surface of the planet by the small moon Rhea, vis-
ible to the left of the planet.
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(1976, 1978); Bates (1982); Roddier (1988b); Aleksoff
et al. (1993); Beckers (1993).

All of the techniques used in speckle imaging arise
from Labeyrie’s observation that the speckles in short-
exposure images contain more high-spatial-frequency in-
formation about the object than long-exposure images
(Labeyrie, 1970). In his seminal paper Labeyrie pro-
posed a method for estimating the modulus of the Fou-
rier transform of an object, also referred to as the modu-
lus spectrum of the object. Labeyrie’s technique is today
referred to as speckle interferometry. However, the
phase of the Fourier transform of an object, often re-
ferred to as the phase spectrum of the object, is needed
for applications where an image is required. The two
most widely used methods for estimating the phase spec-
trum of an object are referred to as the Knox-Thompson
or cross-spectrum method (Knox and Thompson, 1974)
and the bispectrum method (Lohmann et al., 1983). Nei-
ther the Knox-Thompson nor the bispectrum method
can provide a direct estimate of the phase spectrum of
the object. Rather they provide quantities which contain
linear combinations of the elements of the phase spec-
trum of the object. A distinct operation is required to
reconstruct the object phase spectrum from the cross
spectrum or bispectrum.

A. Overview of speckle imaging

In this section we qualitatively describe speckle imag-
ing and provide the foundation for the algorithms pre-
sented in the succeeding sections. The speckle-imaging
technique is shown in block diagram form in Fig. 34.
Two sets of image data are required to perform speckle
imaging: (1) a set of N short-exposure images of the
object of interest, with the nth image of the object de-
noted by in(xW ), and (2) a set of M short-exposure im-
ages of a bright nearby reference star, with the mth im-
age of the reference star denoted by rm(xW ). The size of
the data sets is generally driven by signal-to-noise-ratio
considerations, with typical values of N and M on the
order of a several tens to a few thousand. Exposure
times on the order of a few milliseconds to a few tens of
milliseconds are commonly used with the goal of freez-
ing a single realization of the turbulence during the ex-
posure time. All correction for turbulence effects is ac-
complished by the speckle-imaging estimators. In
practice, the brightest possible reference star is used, to
insure that the signal-to-noise ratio of the reference data
be much higher than the signal-to-noise ratio of the ob-
ject data. It is also good practice to measure the
reference-star data immediately before or after the ob-
ject data is measured to maximize the likelihood that the
atmospheric statistics for the object and the reference-
star data are the same.

The first step in post processing is to compute the
Fourier transform of the images i(xW ), denoted by I( fW).
The Fourier transform is, in general, a complex quantity,
which has modulus uI( fW)u and phase f i( fW) given by

I~ fW !5uI~ fW !uexp@ if i~ fW !# . (112)
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FIG. 34. Block diagram for speckle imaging.
Two processing steps are performed on the Fourier-
transformed images. One step is to estimate the average
modulus squared, or second moment of the Fourier
transform of the object data and the reference-star data.
These quantities are denoted by ^uI( fW)u2& for the object
data and ^uR( fW)u2& for the reference-star data. The sec-
ond moment of the image spectrum is of interest in
speckle imaging. The spectrum of the object irradiance
distribution O( fW) is constant, while I( fW) is random due
to turbulence-induced random fluctuations in the optical
transfer function H( fW). Computing the average modulus
squared of I( fW) yields the following relationship:

^uI~ fW !u2&5uO~ fW !u2^uH~ fW !u2&. (113)

As shown later, the second moment of the OTF is finite
out to the diffraction-limited cutoff frequency of the
telescope, D/ldi (Korff, 1973). Hence, if uO( fW)u2 is
greater than zero for frequencies approaching the cutoff
frequency of the telescope, then the second moment of
the image spectrum will contain diffraction-limited in-
formation. ^uH( fW)u2& is referred to as the speckle trans-
fer function. Note that the phase spectrum of the object
is lost in computing the second moment of the image.
Hence an image cannot be obtained directly from
^uI( fW)u2&.
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We now consider the requirement for imagery of a
reference star. Note that in general uO( fW)u2 is not a con-
stant function of spatial frequency. Rather, uO( fW)u2

takes its maximum value at ufWu50 and generally dimin-
ishes with increasing ufWu. The spectral components of
^uI( fW)u2& are further attenuated by multiplication with
^uH( fW)u2&. An image obtained by inverse-Fourier-
transforming such strongly attenuated spectral data
would appear badly blurred, even if the spectral data
was perfectly known. Now consider the case of an unre-
solved source, such as a distant star, which has an irra-
diance distribution r(xW ) that is proportional to a delta
function. The Fourier transform of the reference-star ir-
radiance distribution is, in this case, a constant function
of fW , say CR . Hence the average modulus squared of the
reference-star image spectrum, ^uR( fW)u2&, is given by

^uR~ fW !u2&5CR
2 ^uH~ fW !u2& . (114)

^uR( fW)u2& can be normalized to take the value of unity at
ufWu50 to obtain an estimate of the second moment of
the OTF, ^uH( fW)u2&. If the ratio of ^uI( fW)u2& and the nor-
malized version of ^uR( fW)u2& is now formed, we obtain
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^uI~ fW !u2&

CR
22^uR~ fW !u2&

5
uO~ fW !u2^uH~ fW !u2&

^uH~ fW !u2&
5uO~ fW !u2, (115)

which is the modulus squared of the object spectrum,
the desired quantity. Thus the purpose of collecting and
processing reference-star data is to provide a means of
calibrating the average modulus squared of the object
image spectrum for the effects of the second moment of
the transfer function of the combined atmosphere-
telescope system. Equation (115) is the essence of La-
beyrie’s speckle-interferometry technique.

The phase spectrum of the object is estimated by com-
puting either the average cross spectrum or the average
bispectrum of the images. The cross spectrum and the
bispectrum encode the phase of the object spectrum as
phase differences. In either case the object phase spec-
trum must be reconstructed from these phase differ-
ences.

B. Speckle interferometry

As discussed in Sec. IV.A, speckle interferometry is a
technique for estimating the modulus of the Fourier
transform of an object from a set of speckled images of
the object. In this section we establish two key points
required to understand speckle interferometry: (1) the
atmosphere-telescope system allows diffraction-limited
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
information to be present in the second moment of the
image spectrum, and (2) the signal-to-noise-ratio consid-
erations make speckle interferometry a practical tech-
nique.

1. Speckle transfer function

As indicated in Eq. (113), the average performance of
speckle interferometry depends critically upon the
speckle transfer function, ^uH( fW)u2&. In this subsection
^uH( fW)u2& is shown to have finite value at high spatial
frequencies. The analysis presented here is based on the
geometrical-optics model for wave propagation through
the atmosphere. This model for wave-front propagation
was discussed in Sec. II.B. The phase fluctuation in the
aperture plane arising from propagation through the at-
mosphere is denoted by c(xW ). The second moment of
the optical transfer function may be written as

^uH~ fW !u2&5NF
22K U E dxW W~xW !W~xW 2 fWldi!

3exp$i@c~xW !2c~xW 2 fWldi!#%U2L , (116)

where NF is a normalizing constant given by
NF5*dxW uW(xW )u2. The expression in Eq. (116) can be
evaluated analytically (Korff, 1973; Goodman, 1985;
Roggemann and Welsh, 1996) with the result
^uH~ fW !u2&5NF
22E dxW E dxW 8W~xW !W~xW 2 fWldi!W~xW 8!W~xW 82 fWldi!

3expH 2Dc~ ufWldiu!2Dc~ uxW 2xW 8u!1
1
2

Dc~ uxW 2xW 81 fWldiu!1
1
2

Dc~ uxW 2xW 82 fWldiu!J . (117)
The results of a numerical evaluation of Eq. (117) for
a circular aperture are presented in Fig. 35 for
D/r052, 5, 10, and 15. The horizontal axis of Fig. 35
is expressed in terms of the normalized spatial
frequency, (fxldi /D), where fx is one orthogonal com-
ponent of the spatial frequency vector fW . Note that
^uH( fW)u2& is greater than 1023 out to normalized spatial
frequencies of greater than 0.7 for D/r0510. This result
can be compared to the normalized spatial frequency
at which the mean optical transfer function ^H( fW)& es-
sentially goes to zero. Inspection of Fig. 9 shows that, for
D/r0510, ^H( fW)& goes to zero at a normalized spatial
frequency of less than 0.15. Thus we conclude that
speckle-interferometry measurements will provide
higher-spatial-frequency information than conventional
long-exposure imaging through turbulence.

The discussion in this subsection demonstrates that
the speckle-interferometry method can, on average, pro-
vide high-spatial-frequency information about objects
imaged through turbulence. However, the analysis pre-
sented thus far does not address the fidelity of the data.
A detailed analysis of the effects of randomness arising
from both turbulence and measurement noise, leading
to an expression for the signal-to-noise ratio for speckle
interferometry, is required. In the next subsection this
analysis is presented.

2. Signal-to-noise-ratio considerations

Since speckle interferometry is a frequency-domain
technique, the signal-to-noise-ratio analysis has been
conducted in the Fourier-transform domain of the mea-
sured images. Two fundamental sources of randomness
are present in the measured images: (1) turbulence-
induced randomness in the OTF, or, equivalently, in the
point-spread function, and (2) randomness due to the
random locations and arrival times of photoevents in the
image plane, referred to as photon noise. Because of
photon noise, the second moment of the measured im-
age spectrum is not directly proportional to the modulus
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FIG. 35. Second moment of op-
tical transfer function for vari-
ous values of D/r0. The hori-
zontal axis is normalized to the
diffraction-limited cutoff fre-
quency D/ldi .
squared of the object spectrum, uO( fW)u2. Rather, a
photon-noise bias is present, which must be removed in
the data processing.

The bias-removal approach most widely used was pro-
posed by Dainty and Greenaway (1979). An alternative
bias-removal approach (Goodman and Belsher, 1977;
Goodman, 1985) was shown to have lower signal-to-
noise ratio than Dainty’s technique. The unbiased
speckle-interferometry estimator of Dainty and Green-
away, Q( fW), is given by

Q~ fW !5uD~ fW !u22K , (118)

where K is the actual number of photoevents detected
per image, and the notation D( fW) is the photon-noise-
corrupted detected spectrum of the image as defined in
Eq. (55). The mean of Q( fW) is given by

^Q~ fW !&5~K̄ !2^uH~ fW !u2&uOn~ fW !u2. (119)

The relevant signal-to-noise ratio for speckle interfer-
ometry is thus the signal-to-noise ratio of Q( fW), given by

SNRQ~ fW !5
^Q~ fW !&

var$Q~ fW !%1/2
. (120)

The variance of Q( fW) has been evaluated with the result
(Dainty and Greenaway, 1979; Roggemann and Welsh,
1996)

var$Q~ fW !%5~K̄ !21~K̄ !2uOn~2 fW !u2^uH~2 fW !u2&

12~K̄ !3uOn~ fW !u2^uH~ fW !u2&

1~K̄ !4uOn~ fW !u4@^uH~ fW !u4&2^uH~ fW !u2&2# .

(121)
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If additive zero-mean Gaussian noise is present, such as
might arise in a charge-coupled-device camera, then
var$Q( fW)% is increased by the amount (Psn

2)2, where
P is the number of pixels in the image and sn

2 is the
variance of the additive noise expressed in photoelec-
trons. Monte Carlo simulations of imaging through tur-
bulence are often used to evaluate ^uH( fW)u4& when adap-
tive optics are present. Such simulations have been used
to evaluate these statistics for both uncompensated (that
is, no adaptive optics) imaging and compensated imag-
ing using adaptive optics (Roggemann and Matson,
1992).

In the case of uncompensated imaging through turbu-
lence, a simple expression can be obtained for
^uH( fW)u4&. For spatial frequencies, ufWu.r0 /ldi , the
mean optical transfer function is essentially zero. Fur-
ther, the real and imaginary parts of the OTF are known
to be Gaussian-distributed random variables with equal
variances for ufWu.r0 /ldi , so that the Gaussian-moment
theorem may be used to write (Papoulos, 1991)

^uH~ fW !u4&52^uH~ fW !u2&2, ufWu.
r0

ldi
. (122)

It is shown by Korff (1973) and Dainty and Greenaway
(1979) that a simple expression for ^uH( fW)u2& can be ob-
tained in terms of the telescope diameter D and the
Fried seeing parameter r0, for frequencies in the range
ufWu.r0 /ldi . This expression is given by

^uH~ fW !u2&50.435H0~ fW !S r0

D D 2

, (123)

where H0( fW) is the diffraction-limited OTF of the tele-
scope. If attention is limited to frequencies greater than
0.5D/ldi , the second term of Eq. (121) is eliminated,
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FIG. 36. Signal-to-noise ratio
SNR Q( fW) for K̄ 510 000, 100,
and 10, for the fixed value of
D/r0510. The object is an unre-
solved star, and the horizontal
axis is normalized to the
diffraction-limited cutoff fre-
quency.
since the speckle transfer function is zero at frequencies
greater than the diffraction-limited cutoff. This yields
the result

var$Q~ fW !%5~ k̄ !212~K̄ !3uOn~ fW !u2^uH~ fW !u2&

1~K̄ !4uOn~ fW !u4^uH~ fW !u2&2. (124)

The square root of Eq. (124) can now easily be taken
and included in the expression for SNRQ( fW) to obtain
(Dainty and Greenaway, 1979; Goodman, 1985)

SNRQ~ fW !5
K̄ uOn~ fW !u2^uH~ fW !u2&

11K̄ uOn~ fW !u2^uH~ fW !u2&
, ufWu.

0.5D

ldi
.

(125)

Note that SNRQ( fW) is bounded from above by unity.
Hence, even for infinitely bright objects, characterized
by K̄ →` , the maximum possible SNRQ( fW) is unity. For
objects with finite K̄ , and for extended objects, which
have uOn( fW)u!1 at mid and high spatial frequencies,
SNRQ( fW) is substantially less than one. This is a consid-
erable practical impediment to performing speckle inter-
ferometry. To boost SNRQ( fW), many independent real-
izations of Q( fW) must be averaged. Such averaging
boosts SNRQ( fW) according to

SNRQ
N~ fW !5ANSNRQ~ fW !, (126)

where N is the number of independent realizations av-
eraged and the notation SNRQ

N( fW) is used to represent
the signal-to-noise ratio of the averaged Q( fW). Practical
values of N range from a few hundred to several thou-
sand.
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Examples of the behavior of SNRQ( fW) obtained using
simulations described by Roggemann and Welsh (1996)
are shown in Figs. 36 and 37. Note that the simulation
was used to provide an estimate of SNRQ( fW) to generate
Figs. 36 and 37. In both figures the object of interest is
an unresolved star. In Fig. 36 SNRQ( fW) is plotted for
K̄ 510 000, 100, and 10, for the fixed value D/r0510.
In Fig. 37 SNRQ( fW) is plotted for D/r0=5, 10, and 20 for
the fixed value K̄ 51000. Examining the K̄ 5100 curve
in Fig. 36 shows that SNRQ( fW) at a normalized spatial
frequency of 0.5 is approximately 0.2. Thus to obtain an
SNRQ( fW) of unity at this frequency would require aver-
aging approximately 25 independent frames.

C. Fourier phase estimation techniques

As discussed in the previous section, speckle interfer-
ometry provides only the modulus of the Fourier trans-
form of an object. The phase of the Fourier transform is
required to construct an image of the object. The Knox-
Thompson, or cross-spectrum, method and the bispec-
trum method are post-detection image-processing tech-
niques for reconstructing the phase spectrum of an
object viewed through turbulence. In this section an
analysis of the cross-spectrum and bispectrum phase re-
construction techniques is presented.

Two key points must be addressed to understand
phase-spectrum estimation using either the cross-
spectrum or the bispectrum technique. The first issue is
to demonstrate that high-spatial-frequency information
related to the object’s phase spectrum is present in these
specialized moments of the image Fourier transform.
The second key issue is phase-spectrum reconstruction.
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FIG. 37. Signal-to-noise ratio
SNR Q( fW) for D/r055, 10, and
20, with the fixed photon-flux
level, K̄ 51000. The object is an
unresolved star, and the hori-
zontal axis is normalized to the
diffraction-limited cutoff fre-
quency.
Neither the cross spectrum nor the bispectrum approach
provides object phase-spectrum information directly. A
separate processing step is required to reconstruct the
object phase spectrum.

1. Knox-Thompson, or cross-spectrum, technique

The cross spectrum of a single image, C( fW ,D fW), is de-
fined as (Knox and Thompson, 1974)

C~ fW ,D fW !5I~ fW !I* ~ fW1D fW !, (127)

where D fW is a small, constant-offset spatial frequency. A
single realization of the cross spectrum is given by

C~ fW ,D fW !5uO~ fW !uuO~ fW1D fW !uuH~ fW !uuH~ fW1D fW !u

3exp$i@fo~ fW !2fo~ fW1D fW !1fH~ fW !

2fH~ fW1D fW !#%. (128)

Phase-difference information, that is, the difference in
phase between points in the object phase spectrum, is
encoded in the exp$i@fo(fW)2fo(fW1DfW)#% term in Eq.
(128). However, in a single image realization this object
phase-difference information is corrupted by random
phase differences due to the atmosphere-telescope OTF
contained in the exp$i@fH( fW)2fH( fW1D fW)#% term in Eq.
(128).

Corruption of the object-spectrum phase-difference
information by phase differences due to the OTF is
overcome by averaging. Consider the average cross
spectrum defined by
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^C~ fW ,D fW !&5uO~ fW !uuO~ fW1D fW !u

3exp$i@fo~ fW !2fo~ fW1D fW !#%

3^H~ fW !H* ~ fW1D fW !&. (129)

The specialized moment of the optical transfer function,
^H( fW)H* ( fW1D fW)& , is referred to as the cross-spectrum
transfer function. It is shown later that the cross-
spectrum transfer function is real valued. Hence the
phase of the average cross spectrum, fC( fW ,D fW), is given
by

fC~ fW ,D fW !5fo~ fW !2fo~ fW1D fW !, (130)

which clearly encodes the object phase spectrum.

a. Unbiased estimator for the cross spectrum

When the cross spectrum is computed directly from
photon-limited images, a bias arises similar to the
photon-noise bias present in speckle interferometry
(Ayers et al., 1988). The unbiased estimator for the cross
spectrum for photon-limited images, CU( fW ,D fW), is (Ay-
ers et al., 1988; Beletic, 1989)

CU~ fW ,D fW !5D~ fW !D* ~ fW1D fW !2D* ~D fW !. (131)

No bias arises in the cross spectrum due to additive
noise in the image measurement.

b. Cross-spectrum transfer function

The cross-spectrum transfer function can be written in
terms of the telescope-pupil function P(xW ) and the
turbulence-induced phase aberration c(xW ), as
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H~ fW !H* ~ fW1D fW !&5NF
22E dxW E dxW 8P~xW !P~xW 2 fWldi!P~xW 8!P~xW 82 fWldi2D fWldi!

3^exp$i@c~xW !2c~xW 2 fWldi!2c~xW 8!1c~xW 82 fWldi2D fWldi!#%&. (132)

The expectation inside the integral in Eq. (132) can be simplified analytically. The result of this operation is

^exp$i@c~xW !2c~xW 2 fWldi!2c~xW 8!1c~xW 82 fWldi2D fWldi!#%&

5expH 2
1
2

@Dc~ ufWldiu!1Dc~ uxW 2xW 8u!2Dc~ uxW 2xW 81 fWldi1D fWldiu!2Dc~ uxW 2xW 82 fWldiu!

1Dc~ uxW 2xW 81D fWldiu!1Dc~ ufWldi1D fWldiu!#J . (133)

FIG. 38. Cross-spectrum trans-
fer function for D/r052, 5, 10,
and 15. For the D/r0515 case
the offset vector was set at
D fW50.033D/(ldi) in the fx di-
rection. For all other D/r0 val-
ues the offset vector was set at
D fW50.05D/(ldi) in the fx di-
rection. The horizontal axis is
normalized to the diffraction-
limited cutoff frequency
D/(ldi).
The cross-spectrum transfer function can be evaluated
numerically. Note that it is necessary to pick a fixed
value for the offset frequency D fW to obtain a two-
dimensional expression for the cross-spectrum transfer
function. A plot of such an evaluation is shown in Fig.
38. In Fig. 38 an fx-axis slice of the cross-spectrum trans-
fer function is shown for the cases of D/r052, 5, 10, and
15. For the D/r0515 case the offset vector was set at
uD fWu50.033D/(ldi) in the fx direction. For all other
D/r0 values the offset vector was set at
uD fWu50.05D/(ldi) in the fx direction. The horizontal
axis in Fig. 38 has been normalized to the diffraction-
limited cutoff frequency D/(ldi). Figure 38 shows that
the mean cross spectrum contains high-spatial-frequency
information.
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Note that in all cases in Fig. 38 the offset spatial fre-
quency uD fWu was chosen to be small compared to the
frequency r0 /(ldi). It is possible to show analytically
that the cross-spectrum transfer function becomes small
as uD fWu increases, though this exercise provides little in-
sight into why this should be. Knox and Thompson
(1974) analyzed the autocorrelation of the atmosphere-
telescope OTF and found the width of this autocorrela-
tion to be approximately r0 /(ldi). For offset spatial fre-
quencies less than r0 /(ldi), the specialized moment of
the optical transfer function, ^H( fW)H* ( fW1D fW)&, is non-
zero, as illustrated in Fig. 38. However, if the offset fre-
quency is greater than r0 /(ldi), the OTF components at
fW and ( fW1D fW) are approximately uncorrelated, so that



484 Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
^H~ fW !H* ~ fW1D fW !&'^H~ fW !&^H* ~ fW1D fW !&'0,

uD fWu.r0 /~ldi!, (134)

since, at spatial frequencies ufWu.r0 /(ldi), the average
OTF is approximately zero. A similar conclusion was
obtained by Ayers et al. (1988), using a simulation of the
cross-spectrum technique. Thus spatial-frequency offsets
in the range uD fWu,r0 /(ldi) are always used in the cross-
spectrum method.

As a final comment, we note that the cross-spectrum
transfer function is not shift indifferent (Ayers et al.,
1988; Roggemann and Welsh, 1996). That is, the cross
spectrum is a function of the tilt component of the
turbulence-induced aberration. Turbulence-induced ran-
dom tilt causes the image to move randomly about the
image plane but does not affect the image in any other
way. Random image motion results in attenuation of the
average cross spectrum. To avoid this attenuation the
images in a data set are generally shifted to have a com-
mon center of mass before the cross spectrum is com-
puted.

c. Phase-spectrum reconstruction from the cross spectrum

The fact that the cross-spectrum transfer function is
nonzero at spatial frequencies approaching the
diffraction-limited cutoff frequency is the enabling fac-
tor in the usefulness of the cross-spectrum technique. A
suitable phase reconstruction algorithm is required to
obtain the phase spectrum from the cross spectrum. To
reconstruct a two-dimensional phase map, two offset
vectors in orthogonal directions are required. The need
for orthogonal offset vectors can be shown by the fol-
lowing analysis. Let one of the offset vectors be parallel
to the fx axis and denoted by Dfx and let the other offset
vector be parallel to the fy axis and denoted by Dfy . The
phase differences generated by these offset vectors are

Dfx~fx ,fy!5fo~fx ,fy!2fo~fx1Dfx ,fy!

'
]fo~ fW !

]fx
Dfx ,

Dfy~fx ,fy!5fo~fx ,fy!2fo~fx ,fy1Dfy!

'
]fo~ fW !

]fy
Dfy , (135)

where the notation Dfx(fx ,fy) and Dfy(fx ,fy) denotes
phase differences in the fx and fy directions, respec-
tively. The partial derivatives in Eq. (135) form the or-
thogonal components of the gradient of the object phase
spectrum, ¹fo( fW). In practical applications of the cross-
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spectrum method all of the operations leading to Eq.
(135) are performed in a sampled space. As a conse-
quence, fx , fy , Dfx , and Dfy may only take on a discrete
set of values. It is assumed that the frequency domain is
sampled on a uniform grid with scalar sample spacing
given by Df . Hence fx , fy , Dfx , and Dfy may only take
on values given by integer multiples of Df .

The phase differences given in Eq. (135) can be used
to reconstruct recursively the phase of the object spec-
trum in the following way. One possible path to obtain-
ing the phase at any point in the sampled frequency
space is

fo~NxDfx ,NyDfy!52 (
i50

Nx21

Dfx~ iDfx ,0 !

2 (
j50

Ny21

Dfy~0,jDfy!, (136)

where Nx and Ny are integers. Equation (136) says that
the phase at any point that can be written as an integer
multiple of (Dfx ,Dfy) can be obtained by summing the
phase differences from fW5(0,0) to the point of interest.
It should be noted that Eq. (136) indicates only one path
to the point fW5(NxDfx ,NyDfy). However, a multiplicity
of paths from fW5(0,0) to any point (NxDfx ,NyDfy) ex-
ist. In a noise-free system all of the possible paths to any
point in frequency space would sum to the same phase
value. However, noise effects can cause the sums of the
phase differences along different paths to the same point
to have different values. Averaging the sum of the phase
differences along nonredundant paths to a given point in
frequency space is often used to reduce the effects of
noise (Knox, 1976).

2. Bispectrum technique

The bispectrum approach provides another technique
for obtaining the phase spectrum of the object from
short-exposure images. Like the cross spectrum, the
bispectrum uses a specialized moment of the measured
image spectrum. The bispectrum of an image is defined
as (Lohmann et al., 1983)

B~ fW1 , fW2!5I~ fW1!I~ fW2!I* ~ fW11 fW2!. (137)

The bispectrum is a four-dimensional data object since it
is a function of four scalar spatial variables. The bispec-
trum has eightfold symmetry (Lohmann et al., 1983).

The object phase spectrum is encoded in the phases of
the bispectrum. The relationship between the bispec-
trum phase and the object phase spectrum is
B~ fW1 , fW2!5uO~ fW1!uuO~ fW2!uuO~ fW11 fW2!uuH~ fW1!uuH~ fW2!uuH~ fW11 fW2!uexp$i@fo~ fW1!

1fo~ fW2!2fo~ fW11 fW2!1fH~ fW1!1fH~ fW2!2fH~ fW11 fW2!#%. (138)
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The object phase-spectrum information is encoded in
the exp$i@fo(fW1)1fo(fW2)2fo(fW11fW2)#% term of Eq. (138).
In a single realization of the bispectrum, the object
phase-spectrum information is corrupted by the random
phase spectrum of the optical transfer function, present
in the exp$i@fH( fW1)1fH( fW2)2fH( fW11 fW2)#% term of Eq.
(138). This corruption is overcome by averaging. The
expected value of the bispectrum is given by

^B~ fW1 , fW2!&5O~ fW1!O~ fW2!O~ fW11 fW2!

3^H~ fW1!H~ fW2!H* ~ fW11 fW2!&. (139)

The term ^H( fW1)H( fW2)H* ( fW11 fW2)& relates the object-
spectrum information to the bispectrum and is referred
to as the bispectrum transfer function. An argument
similar to that leading to Eq. (133) can be used to show
that the bispectrum transfer function is real (Lohmann
et al., 1983). The key result of these analyses is that the
average bispectrum is found to be nonzero out to spatial
frequencies approaching the diffraction-limited cutoff
frequency, if the range of allowed values of ( fW11 fW2) is
suitably constrained.

Unlike the cross spectrum, the bispectrum is insensi-
tive to random motion of the image centroid. The prac-
tical consequence of this insensitivity to turbulence-
induced random motion of the image is that, unlike the
cross-spectrum case, images do not have to be shifted to
a common centroid prior to computing the bispectrum.
At low light levels and for extended objects, significant
errors can be present in the estimate of the location of
the centroid (Yura and Tavis, 1985), leading to an at-
tenuation of the average cross spectrum, which is not
present in the average bispectrum.

It is necessary to constrain the range of allowed values
of ( fW11 fW2). This is generally accomplished by letting fW1
sweep through the entire range of frequency space of
interest and letting fW2 be a small offset vector that we
shall denote as D fW . Simulation studies (Matson, 1991;
Beletic and Goody, 1992) and theoretical investigations
(Ayers et al., 1988) have shown that little useful infor-
mation is obtained from the bispectrum if uD fWu
.r0 /ldi . A heuristic argument can be used to under-
stand the reason for this limitation. Consider the bispec-
trum transfer function ^H( fW1)H( fW2)H* ( fW11 fW2)& for the
case of ufW1u@r0 /ldi , fW25D fW , and uD fWu,r0 /ldi . In this
case the optical transfer function at D fW is finite and,
based on the earlier discussion of the cross-spectrum
transfer function, approximately uncorrelated with the
OTF at fW1 and fW11D fW , so that

^H~ fW1!H~D fW !H* ~ fW11D fW !&

'^H~D fW !&^H~ fW1!H* ~ fW11D fW !&. (140)

The second term on the right side of Eq. (140),
^H( fW1)H* ( fW11D fW)&, is recognized as the cross-spectrum
transfer function presented in Eq. (132). As shown in
the discussion of Eq. (132), the ^H( fW1)H* ( fW11D fW)&
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term has significant value only for uD fWu,r0 /ldi . Thus
the bispectrum has significant value for bispectrum ele-
ments in the range uD fWu,r0 /ldi .

a. Unbiased estimator for the bispectrum

When the bispectrum is computed directly from
photon-limited images, a photon-noise bias arises similar
to the photon-noise bias present in speckle interferom-
etry and the cross spectrum. The unbiased estimator for
the bispectrum BU( fW1 , fW2) is given by (Lawrence et al.,
1992)

BU~ fW1 , fW2!5D~ fW1!D~ fW2!D* ~ fW11 fW2!2uD~ fW1!u2

2uD~ fW2!u22uD~ fW11 fW2!u212K . (141)

If additive noise is present in the image measurement
then an additional term is needed in the unbiased esti-
mator for the bispectrum to remove the bias that arises
from the additive noise. In the presence of additive
noise the unbiased estimator for the bispectrum is

BU~ fW1 , fW2!5D~ fW1!D~ fW2!D* ~ fW11 fW2!2uD~ fW1!u2

2uD~ fW2!u22uD~ fW11 fW2!u212K13Psn
2 .

(142)

b. Phase-spectrum reconstruction from the bispectrum

The most widely used technique for reconstructing the
object phase spectrum from the phase of the bispectrum
is recursive in nature and is similar to the cross-spectrum
reconstruction technique presented in Sec. IV.C.1. The
recursive reconstruction process uses the fact that the
object phase spectrum at ( fW11 fW2) can be expressed as

fo~ fW11 fW2!5fo~ fW1!1fo~ fW2!2fB~ fW1 , fW2!, (143)

where fB( fW1 , fW2) is the phase of the mean bispectrum.
Thus, if the object spectrum at fW1 and fW2 is known, the
object phase spectrum at ( fW11 fW2) can be computed di-
rectly. Of course, two starting points are required for
this process—the object phase spectrum at some initial
values of fW1 and fW2 must be determined. The object
phase spectrum at fW50 is identically zero so that
fo( fW50)50. While this is a sufficient starting point for
object phase-spectrum reconstruction from the cross
spectrum, an additional known phase is required for
phase reconstruction from the bispectrum. The addi-
tional starting point typically used is to choose

fo~6Df ,0!50,

fo~0,6Df !50, (144)

where Df is the sample spacing in the frequency domain.
In words, Eq. (144) says that the phase of the four points
closest to fW5(0,0) are set equal to zero. It is easy to
show that any nonzero choice of fo(6Df ,0) or
fo(0,6Df) causes a term linear in Df to appear in the
reconstructed phase. This linear phase term corresponds
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to a shift of the image in space. Since we are typically
indifferent to the absolute location of the object within
the image, no information of value is lost by making the
choice in Eq. (144).

Within the bispectrum there are many possible com-
binations of fW1 and fW2 that sum to ( fW11 fW2). Under noise-
free conditions the reconstructed phase at ( fW11 fW2)
would be the same for all paths. However, noise effects
corrupt the phase estimation process so that the recon-
structed phase at ( fW11 fW2) is a function of the path
taken. To reduce these noise effects the phase estimates
from several unique paths to ( fW11 fW2) are generally av-
eraged (Lawrence et al., 1992).

It should be noted that the bispectrum phases are only
known modulo 2p . Hence the recursive reconstructor in
Eq. (143) could, and in practice often does, lead to 2p
phase mismatches between the phase-spectrum values
computed along different paths to the same point in fre-
quency space. Phases from different paths to the same
point cannot be averaged to reduce noise under this con-
dition (Northcott et al., 1988). To overcome this prob-
lem, a variation of Eq. (143) is often used. In this varia-
tion the recursive phase reconstruction is performed
using unit-amplitude phasors. Mathematically, the unit-
amplitude-phasor recursive reconstructor is given by
(Meng et al., 1990)

exp$ifo~ fW11 fW2!%5exp$ifo~ fW1!%exp$ifo~ fW2!%

3exp$2ifB~ fW1 , fW2!%. (145)

The object phase spectrum is obtained by computing the
argument of the left-hand side of Eq. (145). Phase-
spectrum values obtained using Eq. (145) are indifferent
to the 2p phase ambiguities. Hence phase-spectrum val-
ues obtained from multiple paths to the same point may
be averaged to reduce noise effects. The unit-amplitude-
phasor recursive reconstructor has been used success-
fully in several studies of the bispectrum technique (Ay-
ers et al., 1988; Northcott et al., 1988; Meng et al., 1990;
Matson, 1991; Lawrence et al., 1992).

While the present treatment of phase reconstruction
from the bispectrum has been limited to recursive phase
reconstruction, it should be noted that this problem has
received a great deal of attention in the literature. Meng
et al. (1990) have developed a least-squares formulation
of the phase reconstruction problem. Northcott et al.
(1988) have developed a reconstruction technique based
on the projection-slice theorem of tomography and the
Radon transform. Matson (1991) and Matson et al.
(1992) have developed two weighted-least-squares esti-
mation formulations of the phase reconstruction prob-
lem. Ayers et al. (1988) and Nakajima (1988) have per-
formed extensive studies of the signal-to-noise-ratio
behavior of the bispectrum, and Matson et al. (1992)
have studied phase-spectrum reconstruction errors when
using noisy bispectra. These analyses have consistently
shown that the bispectrum phase-spectrum reconstruc-
tion technique can be used to obtain high-quality phase-
spectrum estimates for point-source objects in the mid-
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frequency regime of 40–60 % of the diffraction-limited
cutoff frequency of the telescope at low light levels. This
performance improves as the light level increases (Be-
letic and Goody, 1992).

D. Image reconstruction for speckle imaging

In this section the problem of reconstructing an image
from speckle-imaging measurements and computations
is discussed. Representative results of speckle imaging
are provided to demonstrate the level of imaging perfor-
mance that can be expected for speckle imaging. All of
the results presented were obtained using a simulation
of speckle imaging.

The modulus squared of the object spectrum may be
obtained using a variation of the Wiener filter (Gonzalez
and Woods, 1993), given by

uÕ n~ fW !u25
Q~ fW !

QR~ fW !1a/SNRQ~ fW !
, (146)

where SNRQ( fW) is the signal-to-noise ratio of Q( fW)
computed from sample-based estimates of the mean and
standard deviation of Q( fW) and a is a constant selected
by the user. The purpose of the term a/SNRQ( fW) in Eq.
(146) is to reduce the effects of noise at high spatial
frequencies similar to the Wiener filter (Gonzalez and
Woods, 1993; Roggemann, Caudill et al., 1994).

Next, the square root of uÕ n( fW)u2 is computed, and
the phase spectrum reconstructed from the bispectrum
phase is associated with uÕ n( fW)u to obtain Õ n( fW). After
the average unbiased bispectrum was obtained, the
phase spectrum was reconstructed using the recursive
technique (Northcott et al., 1988) for all examples shown
here. An image can be obtained by applying the inverse-
Fourier-transform operation to Õ n( fW).

Some examples are now presented to illustrate the
level of performance that can be provided by speckle
imaging. A one-meter-diameter telescope was simulated
for these examples. A binary star was modeled with
separation of 1.5 mrad, with one star twice as bright as
the other. The Fried seeing parameter was set at two
different levels, r050.1 m and r050.05 m, at the wave-
length of 500 nm to obtain D/r0510 and D/r0520, re-
spectively. Note that the atmospheric-seeing angular-
resolution limit l/r0 is given by 10 mrad for the
r050.05 m case and 5 mrad for the r050.1 m case, while
the diffraction-limited angular resolution l/D50.5
mrad. Hence this binary star could not be resolved using
conventional long-exposure imaging, but could be re-
solved with diffraction-limited telescope performance.
The average number of photoevents per image was set
at three different levels using the visual magnitudes
mv=4, 8, and 12. Exposure time for the image measure-
ments was fixed at 10 ms, and the mean wavelength was
chosen to be 500 nm with a bandwidth of 50 nm, cen-
tered on the mean wavelength. These choices yield the
following average numbers of photoevents per image:
for mv54, K̄ 545 177; for mv54, K̄ 51 135; and for
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mv512, K̄ 5180. Two hundred frames were used to
obtain all of the results shown. The reconstructed im-
ages for the binary star are shown in Fig. 39. The images
in the left column are for D/r0510, and the images in
the right column are for D/r0520. Reconstructed im-
ages for mv54 are in the top row, reconstructed images
for mv58 are in the middle row, and reconstructed im-
ages for mv512 are in the bottom row. Note that for the
higher signal levels and better seeing conditions the bi-
nary star is easily resolved. However, as r0 decreases
and mv increases, two effects become apparent: (1) the
resolution, as indicated by the width of one of the star
images, becomes degraded, and (2) the images become
noisier, as indicated by the energy in the ‘‘halo’’ sur-
rounding the reconstructed stars.

FIG. 39. Reconstructed binary-star images: (a) D/r0510,
mv54; (b) D/r0520, mv54; (c) D/r0510, mv58; (d)
D/r0520, mv58; (e) D/r0510, mv512; (f) D/r0520,
mv512. Angular separation of the binary components is 1.5
mrad, the telescope diameter is 1.0 m, and the ratio of bright-
nesses is 2:1. The central 1003100 pixels of 2563256 pixel
images are presented. Negative images are displayed for clar-
ity.
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E. Conclusion

This section has provided a discussion of pure post-
detection image-processing techniques for overcoming
the effects of atmospheric turbulence on astronomical
imaging systems. While we have attempted to cover all
of the relevant topics, it is impossible to give a fully
comprehensive review of all of the relevant literature
here. Detailed presentations on specific related topics
are available in the literature, including the signal-to-
noise ratio of Q( fW) (Miller, 1977; Dainty and Green-
away, 1979; Goodman, 1985; Roggemann and Matson,
1992), phase-spectrum reconstruction from the cross
spectrum (Knox and Thompson, 1974; Knox, 1976; Ay-
ers et al., 1988), phase-spectrum reconstruction from the
bispectrum (Lohmann et al., 1983; Ayers et al., 1988;
Matson, 1991), a treatment of photon-noise effects on
the bispectrum (Ayers et al., 1988: Nakajima, 1988), and
the effects of photon noise on the quality of the phase
spectrum reconstructed from the bispectrum (Ayers
et al., 1988; Matson, 1991; Matson et al., 1992; Rogge-
mann and Matson, 1992). In addition, an interesting
comparison of the cross spectrum and bispectrum tech-
niques is provided by Ayers et al. (1988).

Recently, two alternatives to the conventional
speckle-imaging techniques presented here have been
explored in the literature: (1) blind deconvolution;
(Ayers and Dainty, 1988; Davey, Lane, and Bates, 1989;
Lane 1992; Jefferies and Christou, 1993); and (2) phase-
diverse speckle imaging (Paxman et al., 1992). Blind de-
convolution involves jointly processing ensembles of
speckled images to estimate the object using a con-
strained iterative approach. Useful constraints have
been shown to be positivity (i.e., pixel values cannot be
negative) and object support (i.e., nonzero pixels are not
allowed outside some region in the image where the ob-
ject is known to lie). Recently, a new approach to blind
deconvolution of speckled images has been developed
that is based on maximum-likelihood estimation of the
object using an algorithm that automatically enforces
positivity in the images (Schulz, 1993). Phase-diverse
speckle imaging is based on the phase-diversity concept
initially proposed by Gonsalves (1982), which requires
joint processing of a speckled image and a simulta-
neously recorded image that is slightly out of focus. It is
not known at this time how the images reconstructed by
either of these algorithms are affected by shot noise and
noise in the imagery arising from turbulence-induced
randomness.

V. DECONVOLUTION FROM WAVE-FRONT SENSING

Deconvolution from wave-front sensing (DWFS) is a
hybrid imaging technique that uses simultaneous mea-
surements of a short-exposure image and a wave-front
sensor. A block diagram of the DWFS method is shown
in Fig. 40. Light entering the telescope is divided using a
beam splitter between a wave-front sensor and an imag-
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FIG. 40. Block diagram of the
deconvolution from wave-front
sensing (DWFS) method.
ing camera. An image of the pupil field is presented at
the input to the wave-front sensor, which makes a mea-
surement of the turbulence-induced phase aberration
c(xW ). Image and wave-front sensor measurements are
made simultaneously and are recorded for later process-
ing. Wave-front sensor measurements are processed in
the computer to reconstruct an estimate of c(xW ), de-
noted c̃ (xW ), which is combined with a pupil model to
form an estimate of the generalized pupil function given
by W(xW )exp$ic̃ (xW)%, where W(xW ) is the pupil function.
The estimate of the generalized pupil function is pro-
cessed to compute an estimate of the optical transfer
function, denoted H̃( fW), and this estimate of the OTF is
used in a spatial-frequency-domain deconvolution pro-
cedure described below. Averaging of many realizations
of the estimator is used to improve the signal-to-noise
ratio of the spectral data.

The basic concept for DWFS was first proposed by
Fontanella (1985). This concept was later extended by
Fried (1987), who used a different estimator from that
proposed by Fontanella, and independently by Primot
et al. (1990), who provided the first laboratory experi-
mental results. Gonglewski et al. (1990) provided the
first experimental validation of DWFS on real astro-
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nomical images. Welsh and Von Niederhausern (1993)
provided an analysis of the DWFS method using an op-
timal estimator for the wave-front phase. Roggemann,
Welsh et al. (1994) showed that the Primot estimator is
biased and proposed an alternative measurement and
processing technique that is immune to the effects of this
bias. They also devised an expression for the signal-to-
noise ratio of DWFS. Their unbiased DWFS technique
is analyzed here. It has also been shown that the DWFS
estimator proposed by Fried is appropriate for use in
conjunction with adaptive-optics compensation (Rogge-
mann and Meinhardt, 1993; Roggemann et al., 1995).

The remainder of this section is organized as follows.
In the next subsection we present the estimators used
for deconvolution from wave-front sensing. This discus-
sion is followed by a presentation of the wave-front
phase reconstructor used for DWFS. Representative re-
sults for the DWFS transfer function are provided.
Signal-to-noise-ratio considerations are presented in the
subsection that follows, and the DWFS signal-to-noise
ratio is compared to the signal-to-noise ratio of the
speckle-interferometry estimator Q( fW). Examples of
DWFS imaging performance are provided in the final
subsection.
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A. DWFS estimators

In this subsection we examine the estimators used to
reconstruct images in the DWFS method. The estimator
for the optical transfer function is based on the expres-
sion for the OTF given in Eq. (36) and is given by

H̃~ fW !5NF
21E dxW W~xW !W~xW 2 fWldi!

3exp$i@c̃ ~xW !2c̃ ~xW 2 fWldi!#%. (147)

A single realization of the object-spectrum estimate
Õ ( fW) proposed by Primot et al. (1990) is given by

Õ ~ fW !5
D~ fW !H̃* ~ fW !

uH̃~ fW !u2
. (148)

Õ ( fW) is random due to turbulence and measurement-
noise effects. Hence averaging is used to boost the
signal-to-noise ratio of Õ ( fW). The averaging technique
proposed by Primot et al. is given by

^Õ ~ fW !&5
^I~ fW !H̃* ~ fW !&

^uH̃~ fW !u2&
5

O~ fW !^H~ fW !H̃* ~ fW !&

^uH̃~ fW !u2&
, (149)

where ^D( fW)&5O( fW)^H( fW)&. An estimate of the object
irradiance distribution o(xW ) is obtained by applying the
inverse Fourier transform to ^Õ ( fW)&. The form of Eq.
(149) leads to the definition of the average DWFS trans-
fer function ^S( fW)& as

^S~ fW !&5
^H~ fW !H̃* ~ fW !&

^uH̃~ fW !u2&
. (150)

One motivation for the form of the numerator of Eq.
(149) can be seen by comparing the numerator of Eq.
(150) to the speckle transfer function ^uH( fW)u2&. In the
limit of perfect wave-front estimation, the result

^H~ fW !H̃* ~ fW !&→^uH~ fW !u2& (151)

is obtained. The right-hand side of Eq. (151) is exactly
the speckle transfer function, which was previously
shown to be nonzero out to spatial frequencies ap-
proaching the diffraction-limited cutoff frequency. Thus,
if excellent wave-front reconstruction is obtained, the
numerator of Eq. (149) will contain nearly diffraction-
limited object-spectrum information.

Another motivation for the estimator of Eq. (149) is
that deconvolution from wave-front sensing provides
both the magnitude and the phase of the object spectrum
directly. No intermediate Fourier phase-spectrum recon-
struction step, such as computing and processing the
cross spectrum or bispectrum, as is required in speckle
imaging, is needed in DWFS. Hence DWFS provides a
computational advantage over speckle imaging, but at
the expense of making wave-front sensor measurements
and post-processing wave-front sensor data.

Note that the mid and high spatial frequencies
of O( fW) are highly attenuated by multiplication with
^H( fW)H̃* ( fW)& , and hence an image formed by applying
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the inverse Fourier transformation to the numerator
of Eq. (149) would be badly blurred. The intended
purpose of the denominator of Eq. (149) is to boost
the attenuated spatial-frequency components of
O( fW)^H( fW)H̃* ( fW)& to their proper values. This goal is
accomplished if ^H( fW)H̃* ( fW)& and ^uH̃* ( fW)u2& have the
same value. Unfortunately, detailed analysis has shown
that in general

^uH̃* ~ fW !u2&Þ^H~ fW !H̃* ~ fW !&, (152)

so that the DWFS transfer function given in Eq. (150)
does not provide object-spectrum estimates Õ ( fW) with
the proper amplitudes (Roggemann, Welsh et al., 1994).
The reason for the inequality in Eq. (152) is that the
atmospheric phase c(xW ) and the estimated phase c̃ (xW )
have different correlation properties, as shown by
Roggemann, Welsh et al. (1994). Equation (152) implies
that undesired results will be obtained when the object-
spectrum estimate of Eq. (149) is used. For example, it is
possible for u^S( fW)&u.1, which results in undesired
amplification of some spatial-frequency components
(Roggemann, Welsh et al., 1994).

Roggemann, Welsh et al. (1994) proposed a remedy to
this problem, which is analogous to the reference-source
calibration used in speckle interferometry. Rather than
use the estimated OTF H̃( fW) in the denominator of Eq.
(149), one uses measurements obtained from a reference
star. Note that the spectrum of the reference-star image,
normalized to have the value of unity at fW50, gives the
OTF of the atmosphere-telescope system at any instant,
which we denote by Href( fW). A wave-front sensor mea-
surement made simultaneously with the star-image mea-
surement can be used to obtain an estimate of the OTF,
denoted by H̃ref( fW). Finally, a new definition of the de-
nominator of Eq. (149), which has the same mean as the
numerator of Eq. (149) if atmospheric and light-level
conditions are constant, is given by ^Href( fW)H̃ref( fW)* &.
The final form of the DWFS estimator is thus given by

^Õ ~ fW !&5
^D~ fW !H̃* ~ fW !&

^Href~ fW !H̃ref~ fW !* &
. (153)

Wave-front sensing and reconstruction for DWFS is
based on the principles of wave-front sensing and
deformable-mirror control discussed in Sec. III.B. How-
ever, in the case of DWFS, considerably more freedom
exists for the choice of elementary functions to use in
obtaining the phase estimate c̃ (xW ). Examples of elemen-
tary functions that have been used include Zernike poly-
nomials (Gonglewski et al., 1990; Primot et al., 1990;
Roggemann and Welsh, 1994; Roggemann, Welsh et al.,
1994), two-dimensional Gaussian functions (Welsh and
Niederhausern, 1993), and two-dimensional triangle
functions (Roggemann et al., 1995).

B. Evaluation of the DWFS transfer function

In this subsection the numerator of the DWFS trans-
fer function ^H( fW)H̃* ( fW)& is evaluated. Representative
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results are obtained using a simulation described by
Roggemann and Welsh (1996). The speckle transfer
function ^uH( fW)u2& for the appropriate seeing condition
is also presented for purposes of comparison. The pa-
rameters of the system simulated are given in Table II.

Simulation results are presented in Fig. 41 for a vari-
ety of wave-front sensor signal-to-noise ratios SNRW .
For a shot-noise-limited detector in a Hartmann sensor
SNRW5K̄ in Eq. (75). Both ^H( fW)H̃* ( fW)& and
^uH( fW)u2& are plotted in Fig. 41. The variable fx in Fig. 41
is one of the orthogonal components of the spatial fre-
quency variable fW , so that with normalization the condi-
tion 0<fxldi /D<1 is obtained. In Fig. 41(a)
^H( fW)H̃* ( fW)& and ^uH( fW)u2& are shown for r0550 cm at
l5500 nm, and SNRW5` , 5, 3, and 2. Figure 41(b)
shows a similar family of curves for r0510 cm at
l5500 nm.

Inspection of Figs. 41(a) and 41(b) provides insight
into the limits of performance of DWFS and provides a
qualitative comparison of DWFS and speckle imaging.
For r0550 cm, which gives D/r052, and high SNRW ,
^H( fW)H̃* ( fW)& is reasonably close to the speckle trans-
fer function ^uH( fW)u2&. The condition ^$H( fW)H̃* ( fW)%
<E^uH( fW)u2& exists, since the phase of the optical trans-
fer function is imperfectly estimated in deconvolution
from wave-front sensing. As expected, ^H( fW)H̃* ( fW)& de-
creases with decreasing SNRW . It must be noted that
the D/r052 case represents extremely good seeing,
which would rarely, if ever, be encountered in practice
at visible wavelengths on a one-meter-diameter tele-
scope.

The more realistic seeing case of D/r0510 shown in
Fig. 41(b) illustrates some of the limits of the DWFS
method. Observe that, for D/r0510 at all values of
SNRW , ^H( fW)H̃* ( fW)& is significantly less than
^uH( fW)u2& for fxldi /D>0.15 and is less than 1024 for
fxldi /D>0.55. By comparison, ^uH( fW)u2& does not fall
below 1024 until fxldi /D>0.93. Hence speckle interfer-
ometry will on average provide measurements with
higher spatial-frequency content, though it must be
noted that the speckle-interferometry measurements
will not contain any object phase-spectrum information.

While the speckle transfer function ^uH( fW)u2& has
been shown to be greater than ^H( fW)H̃* ( fW)&, we cannot

TABLE II. Input parameters for DWFS transfer-function
results.

Parameter Value

Pupil diameter D 1 m
Subaperture side length d 0.1 m
lW 500 nm
lI 600 nm
No. of Zernike polynomials 61
r0 0.5 m, 0.1 m at l=500 nm
SNRW ` , 5, 3, 2
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conclude that speckle imaging is in every case superior
to DWFS. Such a conclusion must be based on signal-to-
noise-ratio considerations, which include the effects of
the object spectrum, measurement noise, and random-
ness in the appropriate transfer function, uH( fW)u2 in the
case of speckle imaging and H( fW)H̃* ( fW) in the case of
DWFS. In the next subsection the DWFS signal-to-noise
ratio is derived and compared to the signal-to-noise ra-
tio of the unbiased speckle-interferometry estimator
Q( fW).

C. Signal-to-noise-ratio considerations

In this subsection the spatial-frequency-domain
signal-to-noise ratio of the DWFS method is derived for
the case of photon-limited detection. The signal-to-
noise-ratio analysis must account for all sources of ran-
domness in the DWFS process. In the DWFS case the
sources of randomness include photon noise in the de-
tected image, randomness in the OTF, and randomness
in the estimated OTF. We shall see that the DWFS
signal-to-noise-ratio expression is similar to the image-
spectrum signal-to-noise ratio obtained in Eq. (69) for
the photon-limited detection case. However, the DWFS
signal-to-noise ratio will be expressed in terms of the
mean and variance of H( fW)H̃* ( fW) and the second mo-
ment of H̃( fW), rather than just the mean and variance of
H( fW). The signal-to-noise ratio for DWFS is then com-
pared to the signal-to-noise ratio for the unbiased
speckle-imaging estimator Q( fW). The relevant signal-to-
noise ratio for DWFS, SNRDW( fW), is the signal-to-noise
ratio of the numerator of the object-spectrum estimate
Õ ( fW) given by

SNRDW~ fW !5
u^D~ fW !H̃* ~ fW !&u

Avar$D~ fW !H̃* ~ fW !%
, (154)

where D( fW) represents the spectrum of the detected
photon-limited image and var$•% represents the variance
of a random quantity. The analysis of the DWFS signal-
to-noise ratio was first presented by Roggemann and
Welsh (1994). The result of this analysis is that the
signal-to-noise ratio of DWFS is given by

SNRDW~ fW !

5
K̄ uOn~ fW !^H~ fW !H̃* ~ fW !&u

~K̄ ^uH̃~ fW !u2&1~K̄ !2uOn~ fW !u2var$H~ fW !H̃* ~ fW !%!1/2
.

(155

Comparing Eq. (155) to the general expression for the
signal-to-noise ratio of the unbiased speckle-
interferometry estimator SNRQ( fW) given in Eq. (125)
shows that SNRDW( fW) is linear with respect to the
modulus of the normalized object spectrum uOn( fW)u,
while SNRQ( fW) is a function of uOn( fW)u2. One conse-
quence of this different dependence on the object spec-
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FIG. 41. Speckle transfer function and nu-
merator of DWFS transfer function for
SNRW5` , 5, 3, and 2 for (a) D/r052 and (b)
D/r0510.
trum is that DWFS can have a signal-to-noise ratio com-
parable to speckle interferometry for measuring
extended objects. Analytic evaluation of Eq. (155)
would require numerical evaluation of an eight-
dimensional integral to obtain var$H( fW)H̃* ( fW)%. This
calculation is impractical on widely available computers.
Hence simulations have been used to evaluate Eq. (155)
(Roggemann and Welsh, 1994).

Numerical results for SNRDW( fW) are now presented
to illustrate the performance of DWFS. The simulation
described by Roggemann and Welsh (1996) was used to
obtain numerical values for ^H( fW)H̃* ( fW)&, ^uH̃( fW)u2&,
and var$H( fW)H̃* ( fW)% for a range of seeing conditions
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
and wave-front sensor light levels. These statistical
quantities were then used to evaluate Eq. (155) for a set
of objects and light levels of interest. The simulation was
also used to obtain ^uH( fW)u2&, ^uH(2 fW)u2&, and

^uH( fW)u4&, so that the signal-to-noise ratio SNRQ( fW) of
the unbiased speckle-interferometry estimator Q( fW)
could be calculated using Eqs. (120) and (121). The
optical-system parameters are summarized in Table III.

Photon-limited detection was assumed for both the
wave-front sensor and the imaging camera. Integration
times in the wave-front sensor and the imaging camera
were assumed to be identical. It was further assumed
that equal photon-flux densities, specified in units of
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TABLE III. Input parameters for DWFS signal-to-noise-ratio results.

Parameter Value

Pupil diameter D 1 m
Subaperture side length d 0.1 m
Wave-front sensor wavelength lW 500 nm
Imaging wavelength lI 600 nm
No. of Zernike polynomials 40
r0 0.5 m, 0.1 m, 0.07 m at l = 500 nm
SNRW ` , 5, 3, 2

K̄ ` , 1963.5, 706.9, 314.2
photons/(m2s), were present at the telescope pupil at
both lI and lW and that the optical losses and detector
quantum efficiencies in the imaging and wave-front sen-
sor legs were identical. Results for four wave-front sen-
sor signal-to-noise-ratio values are presented,
SNRW5` , 5, 3, and 2, corresponding to wave-front sen-
sor light levels of K̄ W5` , 25, 9, and 4, respectively.
With these assumptions the mean number of photoev-
ents per image per integration time K̄ can be computed
by noting that the telescope aperture is approximately
78.5 times larger than a wave-front sensor subaperture.
Hence the appropriate average numbers of photoevents
per image per integration time are K̄ 5` for
SNRW5` , K̄ 51963.5 for SNRW55, K̄ 5706.9 for
SNRW53, and K̄ 5314.2 for SNRW52. Note that the
SNRW5` case eliminates the effects of measurement
noise in the wave-front sensor and image plane, and this
provides an upper bound on the performance of both
DWFS and speckle interferometry. The Fried seeing pa-
rameter r0 was specified at a wavelength of 500 nm. Spe-
cific values of r0 used to obtain the results that follow
are r0550 cm, 10 cm, and 7 cm.

Results are presented for a computer-generated ren-
dering of a simulated satellite object shown in Fig. 42.
SNRDW( fW) for the computer-generated satellite object is
shown in Fig. 43, and corresponding results for
SNRQ( fW) are shown in Fig. 44. The results presented in
Figs. 43 and 44 were obtained by computing the full two-
dimensional SNR array and then averaging around

FIG. 42. Computer-generated rendering of a simulated satel-
lite object.
., Vol. 69, No. 2, April 1997
circles of constant radius to express SNRDW( fW) and
SNRQ( fW) as functions of a scalar spatial frequency.

Inspection of Figs. 43 and 44 shows that speckle inter-
ferometry has a small signal-to-noise-ratio advantage
over DWFS for the extended-object case, since
SNRDW( fW) depends upon uOn( fW)u, while SNRQ( fW) de-
pends on uOn( fW)u2, and uOn( fW)u,1 everywhere except
fW50 for the extended object. These results allow us to
draw the conclusion that speckle interferometry and
DWFS can provide competitive performance on ex-
tended objects (Welsh and Roggemann, 1994b).

VI. DECONVOLUTION OF COMPENSATED IMAGES

In adaptive-optics imaging systems the optical transfer
function varies randomly from instant to instant. Any
analysis of adaptive-optics system imaging performance
must account for this source of randomness. Both fully
and partially compensated adaptive-optics imaging sys-
tems provide good signal-to-noise ratio at high spatial
frequencies in the measured images (Roggemann, 1991,
1992). However, the average OTF of the atmosphere-
telescope system may be highly attenuated in a partially
compensated system, which leads to blurred raw-image
measurements. Deconvolution of these blurred mea-
sured images provides sharper, higher-resolution im-
ages. There are, however, limits on deconvolution, im-
posed by signal-to-noise-ratio effects which must be
understood to avoid amplifying noise effects in the de-
convolution process. In this subsection we address the
spatial-frequency-domain signal-to-noise ratio of the de-
tected image in adaptive-optics imaging systems, present
a linear deconvolution measurement and processing al-
gorithm, and discuss the signal-to-noise-ratio-imposed
limits on deconvolution of adaptive-optics images.

The theoretical basis for deconvolving compensated
images derives from Eq. (69). The key point is that it has
been shown that a sufficiently high signal-to-noise ratio
exists at sufficiently high frequencies to allow deconvo-
lution of images measured with highly attenuated OTF’s
(Roggemann, 1991).

Of course, the form of SNRH( fW) given in Eq. (70) is
critical. Examples of ^H( fW)& and (var$H( fW)%)1/2 are



493Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
FIG. 43. SNRDW( fW) for computer-generated
satellite object for SNRW5` , 5, 3, and 2 for
(a) r0550 cm and (b) r0510 cm.
shown in Fig. 45. The associated plot of SNRH( fW) is
shown in Fig. 46. An adaptive-optics simulation de-
scribed by Roggemann and Welsh (1996) was used to
obtain all of the results presented in Fig. 45, using input
parameters shown in Table IV. The influence functions
of the actuators were modeled as two-dimensional tri-
angle functions (Gaskill, 1978) with base width equal to
two times the actuator grid spacing. Least-squares re-
construction was used to map wave-front sensor mea-
surements to actuator commands. It was assumed that
no delay between sensing and correcting the turbulence-
induced aberration was present in the adaptive-optics
system and that the beacon for the wave-front sensor
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
was infinitely bright, assumptions that make the results
presented in Fig. 45 upper bounds on performance. The
statistical quantities presented in Fig. 45 were obtained
for 200-frame data sets. In all cases the appropriate two-
dimensional function was created with the simulation,
and the two-dimensional arrays were then averaged
around circles of constant radius to obtain results that
are a function of a scalar spatial frequency variable.

Observe from Fig. 45 that the ^H( fW)& plots for
r057.5 cm and r055 cm are significantly lower than for
the r0520 cm and r0510 cm cases at all spatial fre-
quencies ufWu.0. Thus it is expected that the images mea-
sured in the r055 cm, 7.5 cm, and 10 cm cases will be
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FIG. 44. SNRQ( fW) for computer-generated
satellite object for SNRW5` , 5, 3, and 2 for
(a) r0550 cm and (b) r0510 cm.
more blurred than the image measured in the r0520 cm
case. Figure 47 shows this expectation to be correct. In
Fig. 47 average simulated images of a binary star with
components separated by 1.2 mrad and brightness ratio
of 2:1 are shown for the r0520 cm, 10 cm, 7.5 cm, and 5
cm cases. The adaptive-optics configuration used to gen-
erate these figures was identical to the configuration
used to generate Fig. 45. However, the images shown in
Fig. 47 contain the effects of finite signal levels in the
wave-front sensor and in the image plane. The binary
star was assumed to have visual magnitude mv56 with
the same spectral distribution as the sun. The wave-front
sensor was assumed to operate in the wavelength range
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
lW5600660 nm, and the imaging camera was assumed
to operate in the wavelength range lI5700670 nm. In-
tegration time of 1 ms was assumed in both the wave-
front sensor and the imaging camera, and the transmis-
sion efficiency from the top of the atmosphere to the
output of both detectors was assumed to be 10%. The
result of these assumptions is that the average number
of photoevents per integration time per subaperture in
the wave-front sensor is K̄ W5120, and the average num-
ber of photoevents per image is K̄ 55358. Data sets of
200 images were averaged to obtain Fig. 47. Observe
that as r0 decreases the images of the binary-star com-
ponents become broader and the individual binary-star
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FIG. 45. Adaptive-optics performance for
r0520 cm, r0510 cm, r057.5 cm, and
r055 cm: (a) average optical transfer function

^H( fW)& and (b) (var$H( fW)%)1/2 for one-meter-
diameter telescope.
components become more strongly overlapping, which is
consistent with a loss of resolution.

The image-spectrum signal-to-noise ratios SNRD( fW)
for the binary-star images shown in Fig. 47 are shown in
Fig. 48. The plots in Fig. 48 were created by averaging
the two-dimensional SNRD( fW) arrays along circles of
constant radius to create plots that are a function of a
scalar spatial frequency. The horizontal axis of Fig. 48 is
normalized by the diffraction-limited cutoff frequency
for the OTF, D/(ldi), for the aperture diameter D51
m and the imaging wavelength lI5700 nm. Choosing
the threshold of 0.1 on SNRD( fW) to define the signal-to-
noise-ratio-limited effective cutoff frequency fSNR ,
which corresponds to AMSNRD( fW)'1.4 for the case of
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
M5200 used here, we observe that fSNR lies in the range
0.89<fSNRldi /D<0.97. Hence, even though the images
shown in Fig. 47 are blurred, high signal-to-noise-ratio
information is present in the images at high spatial fre-
quencies.

The blurred images shown in Fig. 47 can be sharpened
using deconvolution (Biemond et al., 1990; Roggemann,
1992; Roggemann and Matson, 1992; Gonzalez and
Woods, 1993). The goal of deconvolution is to remove,
or at least reduce, the effects of the average OTF on
images. Two simple and widely used deconvolution
techniques are the inverse filter and the Wiener filter
(Gonzalez and Woods, 1993). In the noise-free case an
estimate of the object spectrum Õ ( fW) within the pass-
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FIG. 46. SNRH( fW) for r0520 cm, r0510 cm,
r057.5 cm, and r055 cm for a one-meter-
diameter telescope.
band of H( fW) can easily be obtained if the OTF H( fW) is
known by using

Õ ~ fW !5
I~ fW !

H~ fW !
5

O~ fW !H~ fW !

H~ fW !
, (156)

which is the classic inverse filter (Gonzalez and Woods,
1993). In the context of adaptive-optics imaging of space
objects it must be noted that both the OTF and the de-
tected image are random. Hence it is necessary to work
with the average detected image spectrum ^D( fW)& and
an estimate of the average OTF obtained from a refer-
ence star ^Href( fW)&. The estimate of the average OTF
^Href( fW)& is obtained by measuring images of a nearby
reference star dref(xW ) and then computing the average
OTF using

^Href~ fW !&5K Dref~ fW !

Dref~0 !
L , (157)

where Dref( fW) has been used to represent the Fourier
transform of dref(xW ).
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
The appropriate form of the object-spectrum estimate
Õ ( fW) obtained from the detected image spectrum
D( fW) using the classic inverse filter is given by

Õ ~ fW !5
^D~ fW !&

^Href~ fW !&
(158)

for ^Href( fW)& Þ 0, and

Õ ~ fW !50 (159)

for ^Href( fW)&50.
Unfortunately, the classic inverse filter cannot be di-

rectly applied to realistic astronomical imaging problems
because it neglects measurement-noise effects. To see
how the object-spectrum estimate Õ ( fW) obtained from
the classic inverse filter is affected by noise, consider the
simplified case of an image spectrum IC( fW) corrupted
with additive noise N( fW), given by

IC~ fW !5O~ fW !H~ fW !1N~ fW !, (160)
TABLE IV. Input parameters for adaptive-optics imaging results.

Parameter Value

Pupil diameter D 1 m
Subaperture side length d 0.1 m
Actuator spacing 0.12 m
Wave-front sensor wavelength lW 600 nm
Imaging wavelength lI 700 nm
Number of independent frames 200
r0 0.2 m, 0.1 m, 0.07 m, 0.05 m at l=500 nm

K̄ W
120

K̄ 5 358
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where we shall assume that the OTF H( fW) is perfectly
known. Let us now apply the classic inverse filter to
IC( fW) to obtain an estimate of the object spectrum
Õ C( fW), given by

Õ C~ fW !5
IC~ fW !

H~ fW !
5

O~ fW !H~ fW !

H~ fW !
1

N~ fW !

H~ fW !
. (161)

The first term of Eq. (161) is the desired result. The
second term of Eq. (161) is not desired, since it contains
the effects of additive noise. Recall that H( fW) takes its
maximum value of unity at fW50 and is less than unity

FIG. 47. Average simulated binary-star images using adaptive
optics: (a) r0520 cm; (b) r0510 cm; (c) r057.5 cm; (d) r055
cm. Angular separation of the binary components is 1.2
mrad, the telescope diameter is 1.0 m, and the ratio of bright-
nesses is 2:1. Negative images are displayed for clarity.
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everywhere else. Hence we conclude from Eq. (161) that
the effect of inverse filtering on images corrupted with
additive noise is both to sharpen the image and to am-
plify the noise. Photon-noise effects in ^D( fW)& are also
amplified by the classic inverse filter, even though this
noise cannot be modeled as additive in nature.

Noise amplification by the classic inverse filter is not a
serious problem in spatial frequency regions where
^Href( fW)& and SNRD( fW) are significantly greater than
zero. However, when ^Href( fW)& or SNRD( fW) are small,
noise amplification effects can dominate the object irra-
diance distribution estimate õ (xW ) (Biemond et al., 1990;
Gonzalez and Woods, 1993). The general character of
õ (xW ) obtained using the classic inverse filter directly on
noisy images is that õ (xW ) is also very noisy, such that in
some cases the actual object irradiance distribution may
be completely obscured by the noise effects (Biemond
et al., 1990).

One technique for overcoming some of the noise ef-
fects associated with the classic inverse filter is to pass
the Õ ( fW) obtained from the inverse filter through an
additional filtering step. A new object-spectrum estimate
Õ 1( fW) is obtained from this additional filtering step
given by

Õ 1~ fW !5Õ ~ fW !H~ fW !, (162)

where H( fW) represents the filter applied to Õ ( fW)
(Roggemann et al., 1992).

The results of reconstructing the images shown in Fig.
47 using Eq. (162) are shown in Fig. 49. Comparison of
Figs. 47 and 49 shows that the outcome of the deconvo-
lution process is a sharper image, that is, an image in
which the components of the binary star are more
clearly defined and the halo surrounding the binary-star
components has been reduced. However, consistent with
the earlier discussion of noise effects in inverse filtering,
the deconvolved images are somewhat noisier than the
FIG. 48. Image-spectrum signal-to-noise ratio
SNRD( fW) for the binary-star images shown in
Fig. 47.
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measured images. Noise effects are particularly evident
in Fig. 49(d), where some noise-induced artifacts in the
reconstructed image are present.

Another technique for overcoming noise effects in de-
convolution is the so-called Wiener filter (Biemond
et al., 1990; Gonzalez and Woods, 1993). The appropri-
ate form of the Wiener filter HW( fW) in the present con-
text is

HW~ fW !5
^Href~ fW !&*

u^Href~ fW !&u21EN~ fW !/EO~ fW !
, (163)

where EN( fW) is the power spectral density of the noise
and EO( fW) is the power spectral density of the object-
irradiance distribution. The object-spectrum estimate
obtained using the Wiener filter is given by

Õ ~ fW !5^D~ fW !&HW~ fW !. (164)

While the Wiener filter is a minimum-error filter, the
form of the Wiener filter given in Eq. (163) is rarely
used in practice because one must know the power spec-
tral density of the object irradiance distribution EO( fW)
(Biemond et al., 1990). Rather, modified, suboptimal
versions of the Wiener filter are used. One useful form is
given by

HW
mod~ fW !5

^Href~ fW !&*

u^Href~ fW !&u21a/SNRD~ fW !
, (165)

FIG. 49. Simulated binary-star images measured using adap-
tive optics and reconstructed using the classic inverse filter fol-
lowed by the cone filter: (a) r0520 cm; (b) r0510 cm; (c)
r057.5 cm; (d) r055 cm. Angular separation of the binary
components is 1.2 mrad, the telescope diameter is 1.0 m, and
the ratio of brightnesses is 2:1. Negative images are displayed
for clarity.
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where 0<a<1 is a user-selected parameter. The moti-
vation for the second term in the denominator of Eq.
(165) derives from the interpretation of the
EN( fW)/EO( fW) term in Eq. (163) as a ‘‘noise-to-signal’’
ratio. Qualitatively, the purpose of the a/SNRD( fW) term
in Eq. (165) is to reduce the response of HW

mod( fW) in
regions where SNRD( fW) is small, thereby mitigating
some of the noise-amplification effects that would be
present in the classic inverse filter. The parameter a can
be varied in Eq. (165) to obtain a visually pleasing
õ (xW ). As a final comment, we note that, while the
Wiener filter defined in Eq. (163) minimizes a measure
of mean-squared error in image space, the reconstruc-
tions obtained with the Wiener filter have been criti-
cized as ‘‘overly smooth’’ for human visual-system inter-
pretation (Biemond et al., 1990).

While we have only presented reconstructed images
that are based on linear filtering ideas, it must be noted
that several nonlinear image reconstruction algorithms
have been explored, which may be appropriate for use
on adaptive-optics imagery. There are currently at least
five classes of nonlinear algorithms: (1) those based on
maximum-likelihood estimation (Richardson, 1972;
Lucy, 1974; Schulz, 1993); (2) the blind deconvolution
algorithm (Ayers and Dainty, 1988; Davey et al., 1989;
Jefferies and Christou, 1993); (3) the CLEAN algorithm
(Thompson et al., 1986; Fried, 1995); (4) the maximum-
entropy algorithm (Frieden, 1972; Frieden and Burke,
1972; Gull and Daniell, 1978; Cornwell and Evans,
1985); and (5) super-resolution algorithms (Sementilli
et al., 1993). The Richardson-Lucy algorithm is based on
treating the image and the object as probability density
functions and estimating the most likely object to have
caused the measured image. Blind deconvolution is a
constrained iterative approach to image reconstruction,
which allows joint estimation of both the object and the
associated point-spread function. The CLEAN algo-
rithm is an iterative algorithm that uses successive sub-
traction of properly weighted and located ‘‘dirty point-
spread functions’’ (i.e., the point-spread function
associated with a very sparse array) located at the
brightest point in the image. A properly weighted and
located ‘‘desired’’ point-spread function, often chosen to
be a Gaussian function, is simultaneously placed in a
‘‘clean’’ image array. This process is repeated until the
residual image in the original array reaches the rms
noise level of the data. The CLEAN algorithm is widely
used to reconstruct images obtained in radio astronomy.
The maximum-entropy algorithm is based on maximiz-
ing a specialized measure of error, which is based on the
concept of entropy used in information theory, between
the measured data and a model of the solution. Finally,
super-resolution algorithms attempt both to obtain an
accurate estimate of the object spectrum within the mea-
sured passband of the telescope, and to reconstruct the
object spectrum outside the measured passband. The
most recently proposed super-resolution algorithm is
based on a maximum a posteriori estimation scheme us-
ing a Poisson model for the detected image. While these
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algorithms hold promise for reconstructing adaptive-
optics images, the effects of measurement noise and
turbulence-induced randomness on the various estima-
tors and the associated reconstructed images have not
been fully evaluated.

VII. COMPENSATED SPECKLE IMAGING

Compensated speckle imaging is the term used to de-
scribe the application of speckle-imaging techniques, in-
troduced in Sec. IV, to images measured with adaptive
optical imaging systems. The compensated-speckle-
imaging paradigm is as follows. An adaptive optical im-
aging system is used to measure a data set of short-
exposure images of the object of interest. A similar data
set is obtained for a nearby reference star. The object
spectrum is then estimated from the measurements us-
ing speckle-imaging algorithms, and an estimate of the
object irradiance distribution is obtained by applying an
inverse Fourier transform to the estimated spectral data.
Motivation for compensated speckle imaging arises from
the fact that it has been shown that limited or partial
wave-front phase correction improves the residual wave-
front phase statistics, improving the statistical perfor-
mance of the speckle-imaging estimators (Roggemann
and Matson, 1992).

Historically, Nisenson and Barakat (1987) were the
first to note that limited wave-front correction signifi-
cantly improves the performance of speckle-imaging es-
timators. Roggemann and Matson (1992) later extended
this idea by deriving a rigorous expression for the signal-
to-noise ratio of the unbiased speckle-interferometry es-
timator Q( fW). Roggemann and Matson also showed that
even very limited predetection wave-front correction re-
sults in improvements in both the signal-to-noise ratio of
Q( fW), SNRQ( fW) and the phase-spectrum estimate. One
key result of their analysis is that, when adaptive-optics
correction is applied, SNRQ( fW) is not bounded from
above by unity for spatial frequencies in the range
ufWu.r0 /(ldi), as is the case when no adaptive-optics
compensation is present (Dainty and Greenaway, 1979).
Subsequent experimental results confirmed the key pre-
dictions of earlier theoretical work in compensated
speckle imaging (Roggemann, Caudill et al., 1994).

Compensated speckle imaging is most easily studied
using a simulation. The simulation used to obtain the
results that follow implements predetection wave-front
correction as described by Roggemann and Welsh
(1996). Speckle-imaging post processing was then ap-
plied to the simulated images. Labeyrie’s speckle-
interferometry technique, presented in Sec. IV.B, was
used to estimate the modulus squared of the object spec-
trum uÕ n( fW)u2. The bispectrum phase reconstruction
technique, which was presented in Sec. IV.C.2, was used
to obtain an estimate of the phase of the object spec-
trum f̃ ( fW). The telescope was modeled as a one-meter-
diameter unobscured aperture. A Hartmann-type wave-
front sensor was modeled with square subapertures
having a side length of 10 cm. The influence functions of
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
the deformable-mirror actuators were modeled as two-
dimensional triangle functions (Gaskill, 1978) with base
width equal to two times the actuator grid spacing. The
deformable-mirror actuators were placed on a Cartesian
grid with grid spacing of 12 cm. Least-squares recon-
struction, described in Sec. III.B.3, was used to map
wave-front sensor measurements to actuator commands.
It was assumed that no delay between sensing and cor-
recting for the turbulence-induced aberration was
present in the adaptive-optics system.

To illustrate the effects of adaptive-optics compensa-
tion on SNRQ( fW), adaptive-optics imaging of a single
star was simulated. These input parameters are summa-
rized in Table IV. The star was assumed to have visual
magnitude mv56 with the same spectral distribution as
the sun. The wave-front sensor was assumed to operate
in the wavelength range lW5600660 nm, and the imag-
ing camera was assumed to operate in the wavelength
range lI5700670 nm. The Fried seeing parameter r0
was specified at the wavelength of 500 nm, and four dif-
ferent values of r0 were used: r0520 cm, 10 cm, 7.5 cm,
and 5 cm. Integration times of 1 ms were assumed in
both the wave-front sensor and the imaging camera, and
the transmission efficiency from the top of the atmo-
sphere to the output of both detectors was assumed to
be 10%. The result of these assumptions is that the av-
erage number of photoevents per integration time per
subaperture in the wave-front sensor is K̄ W5120, and
the average number of photoevents per image is
K55358. Data sets of 200 images were used to obtain
sample-based estimates of ^Q( fW)&, SNRQ( fW), and the
average bispectrum ^B( fW1 , fW2)&.

SNRQ( fW) results for the single-star images are pre-
sented in Fig. 50. The plots in Fig. 50 were created by
averaging the two-dimensional SNRQ( fW) arrays along
circles of constant radius to create plots that are a func-
tion of a scalar spatial frequency. The horizontal axis of
Fig. 50 is normalized by the diffraction-limited cutoff
frequency of the OTF, D/(ldi), for the aperture diam-
eter D51 m and the imaging wavelength lI5700 nm. In
contrast to the uncompensated-speckle-imaging case, il-
lustrated in Fig. 37, SNRQ( fW) is not bounded from
above by unity for spatial frequencies in the range
ufWu>r0 /(ldi), when adaptive optics are used. Hence in
compensated speckle imaging fewer frames must be av-
eraged to obtain a desired level of SNRQ( fW), or, con-
versely, a higher value of SNRQ( fW) is obtained from a
fixed number of compensated frames.

VIII. CONCLUSION

In this paper we have reviewed the effects of atmo-
spheric turbulence on imaging systems and emerging
technologies for overcoming the effects of turbulence.



500 Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
FIG. 50. SNRQ( fW) for adaptive-optics-
imaging case of a single star with mv56 and
r0520 cm, 10 cm, 7.5 cm, and 5.0 cm.
As these technologies mature and come into more wide-
spread use, we will certainly be presented with clearer
pictures of the sky and deepening knowledge of the uni-
verse. We expect that, even in the age of the space tele-
scope, ground-based astronomy will continue to play a
large and important role in the continuing effort to un-
derstand the universe, due to the complexity and ex-
pense of space systems and limitations on the diameter
of a primary mirror that can be boosted into space.
However, many challenges remain to fully exploit adap-
tive optics and image reconstruction technologies. In
this final section we comment on the direction of present
research and possibilities for future research.

One of the most fundamental unresolved issues in at-
mospheric and adaptive optics is the small correctable
field of view, or isoplanatic angle, provided by adaptive-
optics systems, which is limited to a few tens of micro-
radians at visible wavelengths. The small isoplanatic
angle imposes a severe barrier to performing high-
resolution sky surveys. Efforts to overcome the
isoplanatic-angle limitation will receive a great deal of
attention in the future. Promising efforts include use of
multiple artificial guide stars (Sasiela, 1994) and use of
multiple wave-front sensors and multiple deformable
mirrors that correct for the effects of various layers in
the atmosphere (Beckers, 1988; Johnston and Welsh,
1994).

Another area for future research is the development
of control algorithms for deformable mirrors. It has
been shown that minimum-variance controllers, which
use information about measurement noise of the wave-
front sensor and the correlations present in the
turbulence-induced phases, provide superior perfor-
mance to least-squares approaches to controlling the de-
formable mirror (Roggemann, 1992). However, imple-
menting a minimum-variance controller requires
knowledge of the signal and noise levels in the wave-
front sensor, and the current seeing conditions. These
quantities can change significantly over the course of a
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
night’s observation, implying that the controller will
need to be updated in near real time. Hence, to make a
truly optimal deformable-mirror controller, steps must
be taken to monitor the local seeing conditions and the
wave-front sensor’s signal-to-noise ratio, and this infor-
mation must be used to update the deformable-mirror
controller to maintain optimal performance.

Given the complexity and expense of adaptive-optics
systems and the push toward making telescopes on the
order of eight to ten meters in diameter, it is safe to
assume that so-called partially compensated adaptive-
optics systems will continue to be of interest in as-
tronomy. Use of partial compensation provides dramatic
improvements in resolution over uncompensated imag-
ing, and post-detection image processing has been
shown to further improve resolution for partially com-
pensated imaging systems. Hence we expect that the ap-
plication of advanced image reconstruction algorithms
and the evaluation of the performance of these algo-
rithms on dim objects will continue to be an area of
active research interest.

Finally, the desire to measure higher-resolution im-
ages of the sky than could be obtained with any present
or envisioned monolithic aperture remains strong.
Hence optical interferometric systems, which extend
long-baseline radio-astronomy concepts to optical wave-
lengths will likely be an active research area. These in-
terferometers will consist of large, physically separated
telescopes connected by optical fibers or optical relays
based on mirrors. Measurements made by these interfer-
ometers, when processed by appropriate reconstruction
algorithms, will measure the finest details of the sky ever
seen. However, the challenges to optical interferometry
are large. For example, the individual apertures must be
compensated for atmospheric turbulence effects, and the
path-length differences between the telescopes and the
beam-combining and fringe-measurement system must
be carefully controlled. While these problems are diffi-
cult, the promise of interferometric imaging will moti-



501Roggemann, Welsh, and Fugate: Improving the resolution of telescopes
vate an active research community to continue develop-
ing the required technology.
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