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The authors review the relation between the inflationary potential and the spectra of density waves
(scalar perturbations) and gravitational waves (tensor perturbations) produced, with particular
emphasis on the possibility of reconstructing the inflaton potential from observations. The spectra
provide a potentially powerful test of the inflationary hypothesis; they are not independent but instead
are linked by consistency relations reflecting their origin from a single inflationary potential. To lowest
order in a perturbation expansion there is a single, now familiar, relation between the tensor spectral
index and the relative amplitude of the spectra. The authors demonstrate that there is an infinite
hierarchy of such consistency equations, though observational difficulties suggest only the first is ever
likely to be useful. They also note that since observations are expected to yield much better
information on the scalars than on the tensors, it is likely to be the next-order version of this
consistency equation that will be appropriate, not the lowest-order one. If inflation passes the
consistency test, one can then confidently use the remaining observational information to constrain
the inflationary potential, and the authors survey the general perturbative scheme for carrying out this
procedure. Explicit expressions valid to next-lowest order in the expansion are presented. The
prospects for future observations’ reaching the quality required are then briefly assessed and
simulated data sets motivated by this outlook are considered. [S0034-6861(97)00602-8]
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I. INTRODUCTION

Observational cosmology is entering a new era in
which it is becoming possible to make detailed quantita-
tive tests of models of the early universe for the first
time. Such observations are presently the most plausible
route towards learning some of the details of physics at
extremely high energies, and the possibility of testing
some of the speculative ideas of recent years has gener-
ated much excitement.

One of the most important paradigms in early-
universe cosmology is that of cosmological inflation,
which postulates a period of accelerated expansion in
the universe’s distant past (Starobinsky, 1980; Guth,
1981; Sato, 1981; Albrecht and Steinhardt, 1982; Hawk-
ing and Moss, 1982; Linde, 1982a, 1983). Although infla-
tion was originally introduced as a possible solution to a
host of cosmological conundrums such as the horizon,
flatness, and monopole problems, by far its most useful
property is that it generates spectra of both density per-
turbations (Guth and Pi, 1982; Hawking, 1982; Linde,
1982b; Starobinsky, 1982; Bardeen, Steinhardt, and
Turner, 1983) and gravitational waves (Starobinsky,
1979; Abbott and Wise, 1984a). These extend from ex-
tremely short scales to scales considerably in excess of
the size of the observable universe. During inflation the
scale factor grows quasiexponentially, while the Hubble
radius remains almost constant. Consequently the wave-
length of a quantum fluctuation—either in the scalar
field whose potential energy drives inflation or in the
graviton field—soon exceeds the Hubble radius. The
amplitude of the fluctuation therefore becomes ‘“‘fro-
zen.” Once inflation has ended, however, the Hubble
radius increases faster than the scale factor, so the fluc-
tuations eventually reenter the Hubble radius during the
radiation- or matter-dominated eras. The fluctuations
that exit around 60 e-foldings or so before reheating re-
enter with physical wavelengths in the range accessible
to cosmological observations. These spectra provide a
distinctive signature of inflation. They can be measured
in a variety of different ways including the analysis of
microwave background anisotropies, velocity flows in
the universe, clustering of galaxies, and the abundances
of gravitationally bound objects of various types (for re-
views, see Efstathiou, 1990; Liddle and Lyth, 1993a).

Until the measurement of large-angle microwave
background anisotropies by the Cosmic Background Ex-
plorer (COBE) satellite [Smoot et al., 1992; Wright
et al., 1992; Bennett et al., 1994, 1996; see White, Scott,
and Silk (1994) for a general discussion of the micro-
wave background], such observations covered a fairly
limited range of scales, and it was satisfactory to treat
the prediction of a generic inflationary scenario as giving
rise to a scale-invariant (Harrison-Zel’dovich) spectrum
of density perturbations (Harrison, 1970; Zel’dovich,
1972) and a negligible amplitude of gravitational
waves—though, even then, it was recognized that the
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scale invariance was only approximate (Bardeen et al.,
1983). Since the detection by COBE, however, the spec-
tra are now constrained over a range of scales covering
some four orders of magnitude from one megaparsec up
to perhaps ten thousand megaparsecs. Moreover, shortly
after the COBE detection, a number of authors reexam-
ined the possibility that a significant fraction of the sig-
nal could be due to gravitational waves (Davis et al.,
1992; Krauss and White, 1992; Liddle and Lyth, 1992;
Lidsey and Coles, 1992; Lucchin, Matarrese, and Molle-
rach, 1992; Salopek, 1992; Souradeep and Sahni, 1992;
Adams et al., 1993; Dolgov and Silk, 1993).

Thus the inflationary prediction must now be consid-
ered with much greater care, even in order to deal with
present observations. At the next level of accuracy, one
finds that different inflation models make different pre-
dictions for the spectra, which can be viewed as differing
magnitudes of variation from the scale-invariant result.
In the simplest approximation the spectra are taken to
be power laws. Hence modern observations discriminate
between different inflationary models and are already
sufficient to rule out some models completely (see, for
example, Liddle and Lyth, 1992), while substantially
constraining the parameter space of others (Liddle and
Lyth, 1993a). Future observations will make even stron-
ger demands on theoretical precision, and are certain to
constrain inflation tightly.

These deviations from highly symmetric situations
such as a scale-invariant spectrum provide a distinctive
way of probing inflation that is considerably more pow-
erful than employing historically emphasized predictions
such as a spatially flat universe. Although a spatially flat
universe is indeed a typical (but not inevitable—see, for
example, Sasaki et al.,, 1993; Bucher, Goldhaber, and
Turok, 1995a, 1995b) outcome of inflation, it appears
unlikely that this feature will be unique to inflation.
Moreover, the power that observations such as micro-
wave background anisotropies provide may be sufficient
to override the rather subjective arguments often made
against inflationary models because of their apparent
“unnaturalness.” Regardless of whether a model ap-
pears natural or otherwise, it should be the observations
that decide whether or not it is correct.

In a wide range of inflationary models, the underlying
dynamics are simply those of a single scalar field—the
inflaton—rolling in some underlying potential. This sce-
nario is generically referred to as chaotic inflation
(Linde, 1983, 1990b) in reference to its choice of initial
conditions. This picture is widely favored because of its
simplicity and has received by far the most attention to
date. Furthermore, many superficially more complicated
models can be rewritten in this framework. In view of
this we shall concentrate on this type of model here.

The generation of spectra of density perturbations
and gravitational waves has been extensively investi-
gated in these theories. The usual strategy is an expan-
sion in the deviation from scale invariance, formally ex-
pressed as the slow-roll expansion (Steinhardt and
Turner, 1984; Salopek and Bond, 1990; Liddle, Parsons,
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and Barrow, 1994). At the simplest level of approxima-
tion, the spectra can be expressed as power laws in wave
number; further accuracy entails calculation of the de-
viations from this power-law approximation.

A crucial aspect of the two spectra is that they are not
independent. In a general sense, this is clear, since they
correspond at the formal level to two continuous func-
tions that both have an origin in the single continuous
function expressing the scalar-field potential. Such a link
was noted in the simplest situation, where the spectra
are approximated by power laws, by Liddle and Lyth,
(1992); the general situation in which the two are linked
by a consistency equation was expounded in Copeland
et al. (1993b), and an explicit higher-order version of the
simplest equation was found by Copeland, Kolb, et al.
(1994). If one had complete expressions for the entire
problem, the consistency relation would be represented
as a differential equation relating the two spectra. How-
ever, we shall argue that it is preferable to express the
spectra via an order-by-order expansion. In this case one
obtains a finite set of algebraic expressions that repre-
sent the coefficients of an expansion of the full differen-
tial equation. The familiar situation is a single consis-
tency equation that relates the gravitational-wave
spectral index to the relative amplitudes of the spectra.
This is a result of the lowest-order expansion. The gen-
eral situation of multiple consistency equations does not
seem to have been expounded before, though a second
consistency equation did appear in Kosowsky and
Turner (1995). In practice, the observational difficulties
associated with measurements of the details of the
gravitational-wave spectrum make it extremely unlikely
that any but the first consistency equation will ever be
needed.

Given a particular set of observations of some accu-
racy, one can attempt the bold task of reconstructing the
inflaton potential from the observations. In fact, the situ-
ation one hopes for is stronger than a simple reconstruc-
tion, the language of which suggests the possibility of
finding a suitable potential regardless of the observa-
tions. With sufficiently good observations, one can first
test whether the consistency equation is satisfied; in situ-
ations where observations make this test nontrivial it
provides a very convincing vindication of the inflation-
ary scenario. Thus emboldened, one could then go on to
use the remaining, nondegenerate, information to con-
strain features of the inflaton potential. Figure 1 illus-
trates this procedure schematically.

The main obstacle in reconstruction is the limited
range of scales accessible. Although the observations
may span up to four orders of magnitude, the expansion
of the universe is usually so fast during inflation that this
typically translates into only a brief range of scalar-field
values. One should therefore not overexaggerate the
usefulness of this approach in determining the detailed
structure of physics at high energy, but one should bear
in mind that this may be the only observational informa-
tion available at such energies.

A second obstacle is that one does not observe the
primordial spectra directly, but rather after they have
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FIG. 1. A schematic illustration of the reconstruction strategy.
The spectra Ag of the density perturbations and Ay of the
gravitational waves are measured over a range of scales that
corresponds to some interval of the underlying potential
V(¢). LSS stands for large-scale structure, and CMBR is the
cosmic microwave background radiation.

evolved considerably. Although this is a linear problem
(except on the shortest scales) and hence computation-
ally tractable, the evolution necessarily depends on the
various cosmological parameters, such as the expansion
rate and the nature of any dark matter. The form of the
initial spectra must be untangled from their influence.
We shall discuss this in some detail in Sec. VII.

Earlier papers discuss two possible ways of treating
observational data. The bolder strategy is to use esti-
mates of the spectra as functions of scale (Hodges and
Blumenthal, 1990; Grishchuk and Solokhin, 1991; Cope-
land et al., 1993b). In practice, however, this approach
founders due to the lack of theoretically derived exact
expressions for the spectra produced by an arbitrary po-
tential. We shall therefore argue in this review in favor
of the alternative approach, which is usually called per-
turbative reconstruction (Copeland et al., 1993a; 1993b;
Turner, 1993a, 1993b; Copeland, Kolb, et al, 1994;
Liddle and Turner, 1994). In this approach, the consis-
tency equation and scalar potential are determined
through an expansion about a given point (regarded ei-
ther as a single scale in the spectra or as a single point on
the potential), allowing reconstruction of a region of the
potential about that point. This has the considerable ad-
vantage that one can terminate the series when either
theoretical or observational knowledge runs out.

The outline of this review is as follows. We devote two
sections to a review of the inflation driven by a (slowly)
rolling scalar field. We begin by considering the classical
scalar-field dynamics and then proceed to discuss the
generation of the spectra of density perturbations and
gravitational waves. Because an accurate derivation of
the predicted spectra is crucial to this program, we pro-
vide a detailed account of the most accurate calculation
presently available, that of Stewart and Lyth (1993). In
Sec. IV we consider the simplest possible scenario that
allows reconstruction and introduce the notion of the
consistency equation. Section V reviews the present
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state of the art, where next-order corrections are incor-
porated into all expressions. One hopes that observa-
tional accuracy will justify this more detailed analysis,
though this depends upon which (if any) inflation model
proves correct. Section VI then expands on this by de-
scribing the full perturbative reconstruction framework,
illustrating how much information can be obtained from
which measurements and demonstrating that one can
write a hierarchy of consistency equations. We then
briefly illustrate worked examples on simulated data in
Sec. VII. Before concluding, we devote a section to an
examination of other proposals for constraining the in-
flaton potential, without using large-scale-structure ob-
servations.

Il. INFLATIONARY COSMOLOGY AND SCALAR FIELDS
A. The fundamentals of inflationary cosmology

Observations indicate that the density distribution in
the universe is nearly smooth on large scales, but con-
tains significant irregularities on small scales. These cor-
respond to a hierarchy of structures including galaxies,
clusters, and superclusters of galaxies. One of the most
important questions that modern cosmology must ad-
dress is why the observable universe is almost, but not
quite exactly, homogeneous and isotropic on sufficiently
large scales.

The hot-big-bang model is able to explain the current
expansion of the universe, the primordial abundances of
the light elements, and the origin of the cosmic micro-
wave background radiation; for a review of all these suc-
cesses see Kolb and Turner (1990). However, this model
as it stands is unable to explain the origin of structure in
the universe. This problem is related to the well-known
flatness problem (Dicke and Peebles, 1979) and is essen-
tially a problem of initial data. It arises because the en-
tropy in the universe is so large, S~10% (Barrow and
Matzner, 1977). One expects this quantity to be of order
unity since it is a dimensionless constant.

This paradox can be made more quantitative in the
following way. The dynamics of a Friedmann-
Robertson-Walker (FRW) universe containing matter
with density p and pressure p is determined by the Ein-
stein acceleration equation

a 4ar
;:—%(PJ@P), (2.1)
the Friedmann equation
T 22)
3mp a
and the mass-conservation equation
p+3H(p+p)=0, (2.3)

where a(t) is the scale factor of the universe, H=d/a is
the Hubble expansion parameter, a dot denotes differ-
entiation with respect to cosmic time ¢, myp is the Planck
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mass, and k=0,—1,+1 for spatially flat, open, or closed
cosmologies, respectively. Units are chosen such that
c=h=1.

The Friedmann equation (2.2) may be expressed in
terms of the ) parameter. This parameter is defined as
the ratio of the energy density of the universe to the
critical energy density p, that is just sufficient to halt the
current expansion:

p 3mpH’

QE ) Pc=

; - (2.4)

The current observational values for these param-
eters are p,=1.884>x10"% gem™> and H,=100h

kms ! Mpc™!, where conservatively we have
0.4<h<0.8. Equation (2.2) simplifies to
0O-1= %, (2.5)
a‘H
and this implies that
Q-1 3mpy k 26)

Q8w pa®
Now, for a radiation-dominated universe, the equa-
tion of state is given by p=3p=n’g pT4/30 at some tem-
perature T, where g,= O(10?) represents the total num-
ber of relativistic degrees of freedom in the matter
sector at that time. Thus the scale factor grows as
a(t)<t"> when k=0 and the expansion rate is given by

H= 1.66g},/2< Lz) =l. (2.7)
mp| 2t
Equation (2.7) yields the useful expression
R @
s MeV )

and substituting Eqgs. (2.7) and (2.8) into Eq. (2.6) im-
plies that
-1 ‘ 1043(t) 1037(GeV)2

o |75 TsE T @9

s
where S~10% is the entropy contained within the
present horizon. The large amount of entropy in the uni-
verse therefore implies that () must have been very
close to unity at early times. Indeed, we find that
Q=1+10"'%just one second after the big bang, the time
of nucleosynthesis.

The flatness problem is therefore a problem of under-
standing why the (classical) initial conditions corre-
sponded to a universe that was so close to spatial flat-
ness. In a sense, the problem is one of fine tuning, and
although such a balance is possible, in principle, one
nevertheless feels that it is unlikely. On the other hand,
the flatness problem arises because the entropy in a co-
moving volume is conserved. It is possible, therefore,
that the problem could be resolved if the cosmic expan-
sion was nonadiabatic for some finite time interval
t e[t;,t;] during the early history of the universe.
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This point was made explicitly by Guth in his seminal
paper of 1981. He postulated that the entropy changed
by an amount

S=27°S; (2.10)

during this time interval, where Z is a numerical factor.
In Guth’s original model, this entropy production oc-
curred at, or just below, the energy scale
Tour=0(10"7) GeV associated with the grand unified
theory (GUT) phase transition. This corresponds to a
time scale t~10"* s. Equation (2.9) then implies that
the flatness problem is solved, in the sense that
Q7 1=1|=0(1), if Z=10. It can be shown that the
other problems of the big-bang model, such as the hori-
zon and monopole problems, are also solved if Z satis-
fies this lower bound (Guth, 1981).

Guth called this process of entropy production
inflation, because the volume of the universe also grows
by the factor Z3 between t=t; and t=t;. Indeed, the
expansion of the universe during the inflationary epoch
is very rapid. Further insight into the nature of this ex-
pansion may be gained by considering Eq. (2.6). This
expression implies that the quantity (Q~'—1)pa? is
conserved for an arbitrary equation of state. It follows,
therefore, that

(@ '=Daip=(Q; '=Daip, (2.11)

and, if we assume that the standard big-bang model is
valid for t>1;, we may deduce that (Lucchin and Matar-
rese, 1985b)

pia; |07 =1|=10"Cp@| Q5 '~ 1]. (2.12)

Since our current observations imply that
|Q;'=1|=0(1), the flatness problem is solved if
pais>pa’ . However, Eq. (2.2) implies that the quantity
3ad%>— (8m/mp,) pa’ is also conserved. Consequently, this
inequality is satisfied if d¢;>d;. Thus a necessary condi-
tion for inflation to proceed is that the scale factor of the
universe accelerate with respect to cosmic time:

i(1)>0. (2.13)

This is in contrast to the decelerating expansion that
arises in the big-bang model.

The question now arises as to the nature of the energy
source that drives this accelerated expansion. It follows
from Eq. (2.1) that Eq. (2.13) is satisfied if p+3p<0;
this is equivalent to violating the strong energy condi-
tion (Hawking and Ellis, 1973). The simplest way to
achieve such an antigravitational effect is by the pres-
ence of a homogeneous scalar field ¢, with some self-
interaction potential V(¢)=0. In the FRW universe,
such a field is equivalent to a perfect fluid with energy
density and pressure given by

1.
p= 5"+ V(¢) (2.14)

and

1.
p=50"=V(), (2.15)

Rev. Mod. Phys., Vol. 69, No. 2, April 1997

respectively. Other matter fields play a negligible role in
the evolution during the inflation, so their presence will
be ignored. In this case, Egs. (2.2) and (2.3) become,
respectively,

H2= 877(1'2+v )—k 2.16
RET A LR R (2.16)

and
p+3HP=—V'(¢), (2.17)

where here and throughout a prime denotes differentia-
tion with respect to ¢. Hence —p=<p=<p and we have

the inflationary requirement >0 as long as ¢*<V. In-
flation is thus achieved when the matter sector of the
theory applicable at some stage in the early universe is
dominated by vacuum energy.

Recently an alternative inflationary scenario—pre—
big-bang cosmology—has been developed, whereby the
accelerated expansion is driven by the kinetic energy of
a scalar field rather than its potential energy (Gasperini
and Veneziano, 1993a, 1993b, 1994). If the field is non-
minimally coupled to gravity in an appropriate fashion,
this kinetic energy can produce a sufficiently negative
pressure and a violation of the strong energy condition
(Pollock and Sahdev, 1989; Levin, 1995a). Such cou-
plings arise naturally within the context of the string ef-
fective action. However, models of this sort inherently
suffer from a ‘“‘graceful exit” problem due to the exis-
tence of singularities in both the curvature and the
scalar-field motion (Brustein and Veneziano, 1994; Ka-
loper, Madden, and Olive, 1995, 1996; Levin, 1995b;
Easther, Maeda, and Wands, 1996). Moreover, a satis-
factory mechanism for generating structure formation
and microwave background anisotropies in these models
has yet to be developed, although it is possible that such
inhomogeneities may be generated by quantum fluctua-
tions in the electromagnetic field (Gasperini, Giovan-
nini, and Veneziano, 1995).

In view of this, we shall restrict our discussion to
potential-driven models. We shall focus in this work on
some of the general features of the chaotic inflation sce-
nario (Linde, 1983, 1990b). Although Linde’s original
paper considered a specific potential (a quartic one), the
theme was much more general. We adopt the modern
usage of chaotic inflation to refer to any model in which
inflation is driven by a single scalar field slow rolling
from a regime of extremely high potential energy. The
phrase does not imply any particular choice of potential.
Most, though not quite all, modern inflationary models
fall under the umbrella of this definition. Since the pre-
cise identity of the scalar field driving the inflation is
unknown, it is usually referred to as the inflaton field.

In the chaotic inflation scenario, it is assumed that the
universe emerged from a quantum-gravitational state
with an energy density comparable to that of the Planck
density. This implies that V(¢$)~mp, and results in a
large friction term in the Friedmann equation [Eq.
(2.16)]. Consequently the inflaton will slowly roll down
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its potential, i.e., ||<H|$| and $p><V. The condition
for inflation is therefore satisfied and the scale factor
grows as

t
a(t)Zaiexp( f dt’H(t’)). (2.18)

4
The expansion is quasiexponential in nature, since
H($)~8mV(¢)/3mp is almost constant, and the curva-
ture term k/a’ in Eq. (2.16) is therefore rapidly red-
shifted away. The kinetic energy of the inflaton gradu-
ally increases as it rolls down the potential towards the
global minimum. Eventually its kinetic energy domi-
nates over the potential energy and inflation comes to an

end when ¢>~V(¢). The field then oscillates rapidly
about the minimum, and the couplings of ¢ to other
matter fields then become important. It is these oscilla-
tions that result in particle production and a reheating of
the universe.

The simplest chaotic inflation model is that of a free
field with a quadratic potential, V(¢)=m?$*/2, where
m represents the mass of the inflaton. During inflation
the scale factor grows as

a(t)=ae?4 -] (2.19)

and inflation ends when ¢=0O(1) myp,. If inflation be-
gins when V/( ;) ~m3;, the scale factor grows by a factor
exp(4mm/m?) before the inflaton reaches the minimum
of its potential (Linde, 1990b). One can further show
that the mass of the field should be m~10"%my, if the
microwave background constraints are to be satisfied.

This implies that the volume of the universe will in-

12 .
crease by a factor of Z3~10°"!"" and this is more than

enough inflation to solve the problems of the hot-big-
bang model.

It is important to emphasize that in this scenario the
initial value of the scalar field is randomly distributed in
different regions of the universe. On the other hand, one
need only assume that a small, causally connected region
of the preinflationary universe becomes dominated by
the potential energy of the inflaton field. Indeed, if the
original domain is only one Planck length in extent, its

final size will be of the order 101012 cm; for comparison,
the size of the observable universe is approximately
10?8 cm.

In conclusion, therefore, the chaotic inflationary sce-
nario represents a powerful framework within which
specific inflationary models can be discussed. The essen-
tial features of each model—such as the final reheat
temperature and the amplitude of scalar and tensor
fluctuations—are determined by the specific form of the
potential function V(¢). This in turn is determined by
the particle physics sector of the theory.

Unfortunately, however, there is currently much the-
oretical uncertainty in the correct form of the unified
field theory above the electroweak scale. This has re-
sulted in the development of a large number of different
inflationary scenarios, and the identity of the inflaton
field is therefore somewhat uncertain. Possible candi-
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dates include the Higgs bosons of grand unified theories,
the extra degrees of freedom associated with higher
metric derivatives in extensions to general relativity, the
dilaton field of string theory and, more generally, the
time-varying gravitational coupling that arises in scalar-
tensor theories of gravity.

It is not the purpose of this review to discuss the rela-
tive merits of different models, since this has been done
elsewhere (Kolb and Turner, 1990; Linde, 1990b; Olive,
1990; Liddle and Lyth, 1993a). Traditionally, a specific
potential with a given set of coupling constants is cho-
sen. The theoretical predictions of the model are then
compared with large-scale structure observations. The
region of parameter space consistent with such observa-
tions may then be identified (Liddle and Lyth, 1993a).
However, it is difficult to select a unique inflationary
model by this procedure due to the large number of
plausible models available.

In view of the above uncertainties and motivated by
recent and forthcoming advances in observational cos-
mology, our aim will be to address the question of
whether direct insight into the nature of the inflaton po-
tential may be gained by studying the large-scale struc-
ture of the universe. We therefore assume nothing about
the potential except that it leads to an epoch of infla-
tionary expansion.

We shall proceed in the remainder of this section by
reviewing a formalism that allows the classical dynamics
of the scalar field during inflation to be studied in full
generality. This formalism may then be employed to dis-
cuss the generation of quantum fluctuations in the infla-
ton and gravitational fields.

B. Scalar-field dynamics in inflationary cosmology

In view of the discussion in the previous subsection,
we shall assume throughout this work that the universe
was dominated during inflation by a single scalar field
¢ with a self-interaction potential V(¢), the form of
which it is our aim to determine. We shall further as-
sume that gravity is adequately described by Einstein’s
theory of general relativity. We shall therefore employ
the four-dimensional action

m%lR

— 4 _
S= fdx\/ g Tom

where R is the Ricci curvature scalar of the spacetime
with metric g, and g=detg,,, .

Actually, these restrictions are not as strong as they
seem. For example, even theories such as hybrid infla-
tion, which feature multiple scalar fields, are usually dy-
namically dominated by only one degree of freedom
(Linde, 1990a, 1991, 1994; Copeland, Liddle, et al., 1994;
Mollerach, Matarrese, and Lucchin, 1994). Many other
models invoke extensions to general relativity, and
much effort has been devoted to studying inflation in the
Bergmann-Wagoner class of generalized scalar-tensor
theories (Bergmann, 1968; Wagoner, 1970) and higher-
order pure gravity theories in which the Einstein-Hilbert

1
~ 3PV, (220)
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Lagrangian is replaced with some analytic function
f(R) of the Ricci curvature. Such theories can normally
be rewritten via a conformal transformation as general
relativity plus one or more scalar fields, again with the
possibility that only one such field is dynamically rel-
evant (Higgs, 1959; Whitt, 1984; Barrow and Cotsakis,
1988; Maeda, 1989; Kalara, Kaloper, and Olive, 1990;
Lidsey, 1992; Wands, 1994).

We are unable to discuss models in which more than
one field is dynamically important in the reconstruction
context. While considerable progress has been made re-
cently in understanding the perturbation spectra from
these models (Garcia-Bellido and Wands, 1995, 1996;
Starobinsky and Yokoyama, 1995; Nakamura and Stew-
art, 1996; Sasaki and Stewart, 1996), the extra freedom
of the second field thwarts any attempt at finding a
unique reconstruction, though it is possible to find some
general inequalities relating the spectra (Sasaki and
Stewart, 1996). These problems arise both because there
is no longer a unique trajectory, independent of initial
conditions, into the minimum of the potential and be-
cause with a second field one can generate isocurvature
perturbations as well as adiabatic ones. Fortunately, it
appears that it is hard, though not impossible, to keep
models of this kind consistent with observation, as the
density perturbations tend to be large whatever the en-
ergy scale of inflation (Garcia-Bellido, Linde, and
Wands, 1996). A completely different way of using two
fields is to drive successive periods of inflation, as in the
double-inflation scenario (Polarski and Starobinsky,
1995 and references therein). This can impose very
sharp features in the spectra which, although rather dis-
tinctive, are not amenable to the perturbative approach
that reconstruction requires.

As we saw above, the accelerated expansion during
inflation causes the spatial hypersurfaces to tend rapidly
towards flatness. Moreover, any initial anisotropies and
inhomogeneities in the universe are washed away be-
yond currently observable scales by the rapid expansion.
Since only the final stages of the accelerated expansion
are important from an observational point of view, we
can assume that the spacetime metric may be described
as a spatially flat FRW metric, given by

ds’>=L*(t)dt*—e** [ dx>+dy*+dz?], (2.21)

where L(t) represents the lapse function and
a(t)=e*" is the scale factor of the universe.

By taking this metric, we prevent ourselves from
studying reconstruction in the recently discovered ver-
sions of inflation giving an open universe (Gott, 1982;
Gott and Statler, 1984; Sasaki et al., 1993; Bucher et al.,
1995a, 1995b; Linde, 1995; Linde and Mezhlumian,
1995). In fact these models have not yet been developed
sufficiently to provide the information we need—in par-
ticular the gravitational-wave spectrum has not been
predicted—and the generalization of the reconstruction
program to these models must await further develop-
ments. As this review went to press, the appropriate
techniques were developed (Bucher and Cohn, 1997,
Tanaka and Sasaki, 1997).
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Our analysis will, however, apply in full to low-density
cosmological models in which the spatial geometry is
kept flat by the introduction of a cosmological constant
(or similar mechanism). Our discussion is entirely fo-
cused on the initial spectra, which are independent of
the material composition of the universe at late times.
Of course, in such a cosmology the details of going be-
tween these spectra and actual observables will be
changed, and the impact of this on reconstruction has
been studied by Turner and White (1996).

Substitution of the metric ansatz [Eq. (2.21)] into the
theory given by Eq. (2.20) leads to an Arnowitt, Deser,
and Misner (ADM) (1962) action of the form

2 .2

3mp @’ 1 ¢? v -~
8- 127317 (P)|, (222)

Szf dtULe3“

where U= [d>x is the comoving volume of the universe
and a dot denotes differentiation with respect to ¢. With-
out loss of generality we may normalize the comoving
volume to unity.

In recent years, considerable progress in the treat-
ment of scalar fields within the environment of the very
early universe has been made. The approach we adopt
in this work is to view the scalar field itself as the dy-
namical variable of the system (Grishchuk and Sidorav,
1988; Muslimov, 1990; Salopek and Bond, 1990, 1991;
Lidsey, 1991b). This allows the Einstein scalar-field
equations to be written as a set of first-order nonlinear
differential equations.

The Hamiltonian constraint H=0 is derived by func-
tionally differentiating the action [Eq. (2.22)] with re-
spect to the nondynamical lapse function. One arrives at
the Hamilton-Jacobi equation

4 (as)z (as S
3l | 7 + 79 +2e°*V(¢)=0,

where the momenta conjugate to « and ¢ are
Pa=03Slda=—3mpe’*a/dnL and p,=aS/dp=e>*¢/
L, respectively. This equation follows from the invari-
ance of the theory under reparametrizations of time.
The classical dynamics of this model are determined by
the real, separable solution

(2.23)

2
_ @ 3a
S=— o "H($),
where H(¢) satisfies the differential equation (Grish-
chuk and Sidorav, 1988; Muslimov, 1990; Salopek and
Bond, 1990, 1991)

(2.24)

dH\*> 127 327
(_) e ) (225)

i)
d¢ mp Mp
In the gauge L =1, substitution of ansatz (2.24) into the
expressions for the conjugate momenta implies that
m%l dH .

b dp

Thus H(¢) represents the Hubble expansion parameter
expressed as a function of the scalar field ¢. It follows
immediately from the second of these expressions that

H<0. Consequently, the physical Hubble radius H !

H(¢)=a; (2.26)
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increases with time as the inflaton field rolls down its
potential. The Hubble radius can only remain constant if
the inflaton field is trapped in a metastable false vacuum
state; this is forbidden in the context of “old” inflation
as it can never successfully escape this state, but may be
possible in the context of single-bubble open inflationary
models, which are outside the scope of this paper (see,
for example, Sasaki et al., 1993; Bucher, Goldhaber, and
Turok, 1995a, 1995b; Linde, 1995).

The solution to Eq. (2.25) depends on an initial con-
dition, the value of H at some initial ¢ (Salopek and
Bond, 1990, 1991). If we are to obtain unique results, the
late-time evolution (that is, the evolution during which
the perturbations we see are generated) of H in terms of
the scalar field must be independent of the initial condi-
tion chosen, and fortunately one can easily show that
this is the case (Salopek and Bond, 1990; Liddle et al.,
1994); the late-time behavior is governed by an inflation-
ary ‘“‘attractor” solution, which is approached exponen-
tially quickly during inflation.

The Hamilton-Jacobi formalism we have outlined is
equivalent to the more familiar version of the equations
of motion given by Egs. (2.16) and (2.17) (for k=0).
Equation (2.25) is equivalent to the time-time compo-
nent of the Einstein field equations and therefore repre-
sents the Friedmann equation (2.16). In the form given
by Egs. (2.16) and (2.17), ¢ is an initial condition at
some value of ¢; in the Hamilton-Jacobi formalism the
equivalent freedom allows one to specify H at some ini-
tial value of ¢.

The above analysis of the Hamilton-Jacobi formalism
assumes implicitly that the value of the scalar field is a
monotonically varying function of cosmic time. In par-
ticular, it breaks down if the field undergoes oscillations
(though one can attempt to patch together separate so-
lutions). As a result, this formalism is not directly suit-
able for investigating the dynamics of a field undergoing
oscillations in a minimum of the potential, for example.
However, the scalar and tensor fluctuations relevant to
large-scale structure observations are generated when
the field is still some distance away from the potential
minimum. Moreover, the piece of the potential corre-
sponding to these scales is relatively small, so it is rea-
sonable to assume that the potential is a smoothly de-
creasing function in this regime. The scalar field will
therefore roll down this part of the potential in an un-
ambiguous fashion. In the following we shall assume,
without loss of generality, that ¢>0, so that
H'($)<0. This choice allows us to fix the sign of any
prefactors that arise when square roots appear.

In principle, the Hamilton-Jacobi formalism enables
us to treat the dynamical evolution of the scalar field
exactly, at least at the classical level. In practice, how-
ever, the separated Hamilton-Jacobi equation, Eq.
(2.25), is rather difficult to solve. On the other hand, the
analysis can proceed straightforwardly once the func-
tional form of the expansion parameter H(¢) has been
determined. This suggests that one should view H(¢) as
the fundamental quantity in the analysis (Lidsey, 1991a,
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1993). This is in contrast to the more traditional ap-
proaches to inflationary cosmology, whereby the particle
physics sector of the model—as defined by the specific
form of the inflaton potential V(¢)—is regarded as the
input parameter. In the reconstruction procedure, how-
ever, the aim is to determine this quantity from obser-
vations, so one is free to choose other quantities instead.
It proves convenient to express the scalar and tensor
perturbation spectra in terms of H(¢) and its deriva-
tives.

Unfortunately, exact expressions for these perturba-
tions have not yet been derived in full generality. All
calculations to date have employed some variation of
the so-called “‘slow-roll”” approximation (Steinhardt and
Turner, 1984; Salopek and Bond, 1990; Liddle and Lyth,
1992; Liddle et al., 1994). It is important to emphasize
that there are two different versions of the slow-roll ap-
proximation, with their attendant slow-roll parameters
€, 7, etc., depending on whether one is taking the poten-
tial or the Hubble parameter as the fundamental quan-
tity —the differences are described in considerable de-
tail by Liddle et al. (1994). Here we are defining them in
terms of the Hubble parameter.

We represent the slow-roll approximation as an ex-
pansion in terms of quantities derived from appropriate
derivatives of the Hubble expansion parameter. Since at
a given point each derivative is independent, there are in
general an infinite number of these terms. Typically,
however, only the first few enter into any expressions of
interest. We define the first three as!

3 1.2 1 ] -1 2 H/ 2
e(¢)5% V+ zdﬂ} =ZL:(—H(((;)> . 27
¢ my H'($) mpie'
—_ 2 _"nm —e— 22
M= e~ T H$) ¢ Jome® O
2 12
_mp[H'(¢)H"(P)
m123‘16 12 , 12
=(E7]— 471_) n (2.29)

One need not be concerned as to the sign of the square
root in the definition of &; it turns out that only &, and
not ¢ itself, will appear in our formulas (Liddle et al.,

1994). We emphasize that the choice ¢>0 implies that
Je=—\m%/4mH'|H.

Modulo a constant of proportionality, € measures the
relative contribution of the field’s kinetic energy to its

Note that the definition of the third parameter is different
from that of Copeland, Kolb, et al. (1994; designated CKLL2
in subscript), £cx1o=(ma/4m)H"/H'. The two are related by
&2=¢etcx112. The former definition has proven awkward; be-
cause of the derivative on the denominator it need not be
small in the scale-invariant limit (though the combination
Veéckii, must be). We choose to use this better definition, as
introduced by Liddle er al. (1994), who give further details and
a collection of useful formulas.
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total energy density. The quantity 7, on the other hand,
measures the ratio of the field’s acceleration relative to
the friction acting on it due to the expansion of the uni-
verse. The slow-roll approximation applies when these
parameters are small in comparison to unity, i.e.,
{e,|n|,&}<1; this corresponds to being able to neglect
the first term in Eq. (2.25) and its first few derivatives.
Inflation proceeds when the scale factor accelerates,
a>0, and this is precisely equivalent to the condition
e<1. Inflation ends once € exceeds unity. It is interest-
ing that the conditions leading to a violation of the
strong energy condition are uniquely determined by the
magnitude of € alone. In principle, inflation can still pro-
ceed if | 5| or |£| are much larger than unity, though
normally such values would drive a rapid variation of €
and bring about a swift end to inflation.

For specific results, we shall not go beyond these three
parameters. However, in general one can define a full
hierarchy of slow-roll parameters (Liddle et al., 1994):

|11 I

i=1
:m_1231 (Hr)nle(n+1) 1n
4 H" ’

dinH®
dlna

(2.30)

where B;=17, B,=¢, etc. and a superscript (m) indicates
the mth derivative with respect to ¢. The e parameter
has to be defined separately, though it may be referred
to as By.

These slow-roll parameters, along with analogs de-
fined in terms of the potential, can be used as the basis
for a slow-roll expansion to derive arbitrarily accurate
solutions given a particular choice of potential. How-
ever, this formalism is not necessary when making gen-
eral statements about inflation without demanding a
specific potential.

The amount of inflationary expansion within a given
time scale is most easily parametrized in terms of the
number of e-foldings that occur as the scalar field rolls
from a particular value ¢ to its value ¢, when inflation
ends:

t, 4 d’e H
Ndo= [ Hwa=- 25 [“ao g O

(2.31)

Thus, with the help of Eq. (2.31), we may relate the
value of the scale factor a(¢)=e® at any given epoch
during inflation directly to the value of the scale factor
at the end of inflation, a,:

a(¢)=a.exp[—N(¢)]. (2.32)

An extremely useful formula is that which connects
the two epochs at which a given scale equals the Hubble
radius, the first during inflation when the scale crosses
outside and the second much nearer the present when
the scale crosses inside again. A comoving scale k
crosses outside the Hubble radius at a time which is
N(k) e-foldings from the end of inflation, where
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N =621 k 11016 GeV
(k)= naoHo n V}€/4

V/1</4 1 V1/4

end
+In—7 — 3 In—77.

(2.33)
Vend 3 reh

The subscript 0 indicates present values; the subscript
k specifies the value when the wave number k crosses
the Hubble radius during inflation (k=aH); the sub-
script “‘end” specifies the value at the end of inflation;
and p.., is the energy density of the universe after re-
heating to the standard hot-big-bang evolution. This cal-
culation assumes that instantaneous transitions occur
between regimes and that during reheating the universe
behaves as if it is matter dominated.

It is fairly standard to make a generic assumption
about the number of e-foldings before the end of infla-
tion at which the scale corresponding to the Hubble ra-
dios today first crossed the Hubble radius during infla-
tion; most commonly one sees this number taken as
either 50 or 60. Within the context of making predictions
from a given potential this can have a slight effect on
results, but it is completely unimportant as regards re-
construction.

What we do need for reconstruction is a measure of
how rapidly scales pass outside the Hubble radius com-
pared to the evolution of the scalar field; this is essential
for calculating such quantities as the spectral indices of
scalar and tensor perturbations. The formal definition
we take of a scale matching the Hubble radius is that
k=aH. Then one can write

k(¢)=a.H($)exp[—N($)], (2.34)

where N(¢) is given by Eq. (2.31). Differentiating with
respect to ¢ therefore yields

dink 4w H 1 235
g m (2-35)
This concludes our discussion on the classical dynam-
ics of the scalar field during inflation. In the following
section, we discuss the consequences of quantum fluc-
tuations that arise in both inflaton and graviton fields.

lll. THE QUANTUM GENERATION OF PERTURBATIONS

During inflation, the inflaton and graviton fields un-
dergo quantum-mechanical fluctuations. The most im-
portant observational consequences of the inflationary
scenario derive from the significant effects these pertur-
bations may have on the large-scale structure of the uni-
verse at the present epoch. In this section we shall dis-
cuss how these fluctuations arise and the present
expressions for their expected amplitudes. Since the in-
flaton and gravitational perturbations are produced in a
similar fashion, we shall begin with a qualitative descrip-
tion of the effects of the former. We shall then examine
the calculation of both spectra by Stewart and Lyth
(1993), which is the most accurate analytic treatment
presently available.
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A. Qualitative discussion

Fluctuations in the inflaton field lead to a stochastic
spectrum of density (scalar) perturbations (Guth and Pi,
1982; Hawking, 1982; Linde, 1982b; Starobinsky, 1982;
Bardeen et al., 1983; Lyth, 1985; Mukhanov, 1985;
Sasaki, 1986; Mukhanov, 1989; Salopek, Bond, and
Bardeen, 1989). Physically, these arise because the infla-
ton field reaches the global minimum of its potential at
different times in different places in the universe. This
results in a time shift in how quickly the rollover occurs.
Thus a constant density perturbation Sp does not corre-
spond to a constant-time hypersurface; in other words,
there is a density distribution produced by the kinetic
energy of the inflaton field for a given constant-time hy-
persurface. It is widely thought that these density per-
turbations result in the formation of large-scale structure
in the universe via the process of gravitational instabil-
ity. They may also be responsible for anisotropic struc-
ture in the temperature distribution of the cosmic micro-
wave background radiation.

Typically, the inflationary scenario predicts that the
spectrum of density perturbations should be Gaussian
and scale dependent. This is certainly true for the class
of models that we shall be considering here, in which it
is assumed that the inflaton field is weakly coupled.
However, one should bear in mind that the prediction of
Gaussianity is not generic to all inflationary models; it is
possible to contrive models with non-Gaussian perturba-
tions by introducing features in just the right part of the
inflationary potential (Allen, Grinstein, and Wise, 1987;
Salopek and Bond, 1990).

The historical viewpoint on the scale dependence of
the fluctuations was that they were of scale-invariant
(Harrison-Zel’dovich) form, though it had been recog-
nized that the scale invariance was only approximate
(Bardeen et al., 1983; Lucchin and Matarrese, 1985a).
This is because the scalar field must be undergoing some
kind of evolution if inflation is to end eventually, and
this injects a scale dependence into the spectra. As we
shall see, this effect should be easy to measure.

To take advantage of accurate observations, it is im-
perative that the spectra be calculated as accurately as
possible. However, let us first discuss the generation
mechanism qualitatively.

In a spatially flat, isotropic, and homogeneous uni-
verse, the Hubble radius H '(¢) represents the scale
beyond which causal processes cannot operate. The size
of a given scale relative to this quantity is of crucial
importance for understanding how the primordial spec-
trum of fluctuations was generated. Quantities such as
the power spectrum are defined via a Fourier expansion
as functions of comoving wave number k, and the com-
bination k/aH appears in many equations. Different
physical behavior occurs depending on whether this
quantity is much greater or smaller than unity.

Inflation is defined as an epoch during which the scale
factor accelerates, and so the comoving Hubble radius
(aH) ™! must necessarily decrease. This is an important
feature of the inflationary scenario, because it means
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that physical scales will grow more rapidly than the
Hubble radius. As a result, a given mode will start
within the Hubble radius. In this regime the expansion is
negligible and the microphysics in operation at that ep-
och will therefore be relevant. This is determined by the
usual flat-space quantum field theory for which the
vacuum state of the scalar-field fluctuations is well un-
derstood. As the inflationary expansion proceeds, how-
ever, the mode grows much more rapidly than the
Hubble radius (in physical coordinates) and soon passes
outside it. One can utilize a Heisenberg picture of quan-
tum theory to say that the operators obey the classical
equations of motion, and so the evolution of the vacuum
state can be followed until it crosses outside the Hubble
radius. At this point the microphysics effectively be-
comes “frozen.” It turns out that the asymptotic state is
not a zero-particle state—particles are created by the
gravitational field. Corresponding perturbations in the
gravitational field itself are also generated, so a spec-
trum of gravitational-wave (tensor) fluctuations is inde-
pendently produced by the same mechanism.

Once inflation is over, the comoving Hubble radius
begins to grow. Eventually, therefore, the mode in ques-
tion is able to come back inside the Hubble radius some
time after inflation. The overall result is that perturba-
tions arising from fluctuations in the inflaton field can be
imprinted onto a given length scale during the inflation-
ary epoch when that scale first leaves the Hubble radius.
These will be preserved whilst the mode is beyond the
Hubble radius and will therefore be present when the
scale reenters during the radiation-dominated or matter-
dominated eras.

B. Quantitative analysis

If one is to take full advantage of the observations to
the extent one hopes, it is crucial to have extremely ac-
curate predictions for the spectra induced by different
inflationary models. For example, microwave back-
ground theorists have set themselves the stringent goal
of calculating the radiation angular power spectrum (the
C, discussed later in this paper) to within one percent
(Hu et al., 1995), in the hope that satellite observations
may one day provide extremely accurate measurements
of the anisotropies across a wide range of angular scales
(Tegmark and Efstathiou, 1996). This involves a detailed
treatment of a host of subtle physical effects. If inflation-
ary models are to capitalize on this sort of accuracy, it is
essential to have as accurate a determination as possible
of the initial spectra that are to be input into such cal-
culations. Given that the slow-roll parameters are typi-
cally at least a few percent, that implies that a determi-
nation of the spectra to at least one order beyond
leading order in the slow-roll expansion is desired.

The calculations we make are based on linear pertur-
bation theory. Since the observed anisotropies are small,
this approximation is considerably more accurate than
the slow-roll approximation, and we need not attempt to
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go beyond it, though it is possible to extend calculations
beyond linear perturbation theory (Durrer and Sakel-
lariadou, 1994).

Before proceeding, however, let us clarify a notational
point. In earlier literature, especially Copeland, Kolb,
et al. (1994) and Liddle and Turner (1994), orders were
referred to as first order, second order, etc. However, we
feel this can be misleading, because it might suggest that
all terms containing, say, two slow-roll parameters in
any given expression are supposed to be neglected. This
is not the intention, because in many expressions the
lowest-order term already contains one or more powers
of the slow-roll parameters. Because differentiation re-
spects the order-by-order expansion, while multiplying
each term by a slow-roll parameter, it is always valid to
take terms to the same number of orders, however many
slow-roll parameters the actual terms possess. There-
fore, in order to clarify the meaning, we choose to em-
ploy the phrase lowest-order to indicate the term con-
taining the least number of powers of the slow-roll
parameters, however many that may be for a specific
expression. The phrase next-to-lowest order, abbreviated
to next-order, then indicates correction terms that con-
tain one further power of the slow-roll parameters than
the lowest-order terms.

The calculation of the spectra to next order has been
provided by Stewart and Lyth (1993). Because of its cru-
cial importance, we shall devote quite some time to de-
scribing this calculation. The basic principle is to start
with the one known situation in which the spectra can be
calculated exactly, that of power-law inflation. This cor-
responds to each of the slow-roll parameters’ having the
same constant value. To next order, a general inflation-
ary potential can be considered via an expansion in
(e— 7n) about a power-law inflation model with the same
€; as we shall see, it is an adequate approximation to
treat € and #» as different constant values.

In fact, the logic we develop is slightly different from
that of Stewart and Lyth (1993). They computed an ex-
act solution for the situation in which € and # are
treated as exactly constant with different values. For-
mally, this situation does not exist as a precisely constant
e implies e= 5. They then treated power-law inflation as
an exact special case of this situation, and a general in-
flation model to next order as an expansion about their
more general result. Logically, it is more accurate to ex-
pand directly about the exact power-law inflation result,
but nevertheless the final answer is guaranteed to be the
same.

1. Scalar perturbations

Throughout the calculations to derive the spectra of
scalar and tensor fluctuations, the spacetime represent-
ing our universe is decoupled into two components, rep-
resenting the background and perturbation contribu-
tions. The background part is taken to be the
homogeneous and isotropic FRW metric. This is a rea-
sonable assumption to make in view of the high degree
of spatial uniformity in the temperature of the cosmic
microwave background. In this paper we assume the
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background is also spatially flat with a line element
given by Eq. (2.21). The perturbed sector of the metric
then determines the amount by which the actual uni-
verse deviates from this idealization.

Four quantities are required to specify the general na-
ture of a scalar perturbation. These may be denoted by
A, B,V, and E and are functions of the space and time
coordinates. It has been shown by Bardeen (1980) and
by Kodama and Sasaki (1984) that the most general
form of the line element for the background and scalar
metric perturbations is given by

ds?=a*(1){(1+2A)d—2d,Bdx'dr

—[(1-2W)68;+20,9;E]dx'dx'}, (3.1)

where 7=[dt/a(t) is conformal time.

The perturbations can be measured by the intrinsic
curvature perturbation of the comoving hypersurfaces,
which has the form

R——\If—ﬁég{) (3.2)
3 :

during inflation, where 8¢ represents the fluctuation of
the inflaton field and ¢ and H are calculated from the
background field equations [Egs. (2.25) and (2.26)]. To
proceed, we follow Mukhanov, Feldman, and Branden-
berger (1992) and introduce the gauge-invariant poten-
tial

_ ¢
u=a| ¢+ E\If . (3.3)
It also proves convenient to introduce the variable
ag
=g (3.4)
and it follows immediately that
u=—-zR. (3.5)

The evolution of the perturbations is determined by
the Einstein action. The first-order perturbation equa-
tions of motion are given by a second-order action.
Hence the gravitational and matter sectors are separated
and each is expanded to second order in the perturba-
tions. The result for the gravitational component is sim-
plified by employing the ADM form of the action (Ar-
nowitt, Deser, and Misner, 1962; Misner et al., 1973).
The action for the matter perturbations, on the other
hand, can be calculated by expanding the Lagrangian as
a Taylor series about a fixed value of the scalar field,
applying the background field equations, and integrating
by parts. Mukhanov et al. (1992) showed that the full
action for linear scalar perturbations is given by

szf d*x L

1
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where a subscript 7 denotes partial differentiation with
respect to conformal time. For further details the reader
is referred to Mukhanov (1989) and Makino and Sasaki
(1991).

Formally, this is equivalent to the action for a scalar
field in flat spacetime with a time-dependent effective
mass given by m?=—z,./z. This equivalence implies
that one can consider the quantum theory in an analo-
gous fashion to that of a scalar field propagating on
Minkowski spacetime in the presence of a time-varying
external field (Grib, Mamaev, and Mostepanenko,
1980). The time dependence has its origin in the varia-
tion of the background spacetime (Birrell and Davies,
1982).

The momentum canonical to u is given by
3.7

w(7,X)= =u,(1,X),

aL
a(u,)
and the theory is then quantized by promoting u and its
conjugate momentum to operators that satisfy the fol-
lowing commutation relations on the 7= constant hyper-
surfaces:

[a(7,x),a(7,y)]=[7(7,x),7(7,y)]=0, (3.8)
[a(7,x),7(7y)]=i6%(x—y). (3.9)

We expand the operator #i(7,x) in terms of plane
waves

li(T,X)=fm[uk(ﬂﬁkeik'”uz(T)ﬁlte_ik'x],
(3.10)

and the field equation for the coefficients 1, is derived

by setting the variation of the action [Eq. (3.6)] with

respect to u equal to zero. It is given by (Mukhanov,
1985, 1988; Stewart and Lyth, 1993)

d?u,, , 1d’z
—— | k== == |u=
dr zdr
These modes are normalized so that they satisfy the
Wronskian condition

(3.11)

*
L dug duj

UE Uk (3.12)

= — l,
and this condition ensures that the creation and annihi-
lation operators d] and dy satisfy the usual commutation
relations for bosons:

[ax.a)=[a}.4]1=0, [dy.aj]=6P(k-1). (3.13)

The vacuum is therefore defined as the state that is an-
nihilated by all the d,, such that 4,/0)=0.

The modes u,(7) must have the correct form at very
short distances so that ordinary flat spacetime quantum
field theory is reproduced. Thus, in the limit that
k/aH—», the modes should approach plane waves of
the form

1
up(7)— —=e k7, (3.14)

2k
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In the opposite (long-wavelength) regime, where k can
be neglected in Eq. (3.11), we see immediately that the
growing-mode solution is

(3.15)

with no dependence on the behavior of the scale factor
(except implicitly through the definition of z).

Ultimately, the quantity in which we are interested is
the curvature perturbation R. We expand this in a Fou-
rier series:

Up*z,

R= J (—mRk( T)e’* . (3.16)
The power spectrum Pr (k) can then be defined in terms
of the vacuum expectation value
o 2T 3)

(RaRy ) =5 Pré™ (k=1), (3.17)
where the prefactor is in a sense arbitrary but is chosen
to obey the usual Fourier conventions. The left-hand
side of this expression may be evaluated by combining
Egs. (3.5), (3.13), and (3.16):

1
(Rer>:Z_2|uk|25<3)(k_l), (3.18)
yielding
k Uy
PRO=\52 |7 (3.19)

For modes well outside the horizon, the growing mode
of u; will dominate and so the spectrum will approach a
constant value. It is this value that we are aiming to
calculate.

In order to provide a solution, we need an expression
for z../z. This can be straightforwardly obtained as

L% 2P| 1 e ot @ dent st i
za? c-gute2emtguit g

(3.20)
and despite its appearance as an expansion in slow-roll
parameters, this expression is exact.

a. Exact solution for power-law inflation

So far, all the expressions we have written down have
been exact. However, we have reached the limit of ana-
lytic progress for general circumstances. The desired
situation, then, is to obtain an exact solution for some
special case, about which a general expansion can be
applied in terms of the slow-roll parameters. Such an
exact solution is the case of power-law inflation, which
we now derive.

Power-law inflation, where the scale factor expands as
a(t)«t?, corresponds to the particularly simple case in

2t is at this point that our construction of the expansion be-
gins to differ in logical construction from that of Stewart and
Lyth (1993), though the final results will agree.
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which the Hubble parameter is exponential in ¢
(Lucchin and Matarrese, 1985a, 1985b):

4
Hepesp| T2

It follows that the slow-roll parameters are not only con-
stant but equal; we are primarily interested in

(3.21)

1
€= 77=§=;. (3.22)
With a constant €, an integration by parts
da 1 eda
T:J‘m:_a_Hijaz_H (3.23)
supplies the conformal time as
1 1
=T H 1 e (3.24)

Thus 7 is negative during inflation, with 7=0 corre-
sponding to the infinite future.

Since the slow-roll parameters in Eq. (3.20) are con-
stant, Eq. (3.11) simplifies to a Bessel equation of the
form

1
2_ _
) (” 4)

de+k = u,=0, (3.25)
where
3 1
V=5 + pTl (3.26)

The appropriately normalized solution with the correct
asymptotic behavior at small scales is therefore given
by?
m .
l/lk(’T)z \é;et(v+1/2)ﬁ/2(_T)l/ZH(Vl)(_kT), (327)
where H'" is the Hankel function of the first kind of
order v.
Ultimately, we are interested in the asymptotic form
of the solution once the mode is well outside the hori-

zon. Taking the limit k/aH—0 yields the asymptotic
form

i(v=1/2) w2~ v—312 IF'(v) 1

I'(312) ﬁ(

_ kT)varl/Z’

(3.28)

and substituting this into Eq. (3.19) gives the asymptotic
form of the power spectrum

Ug—e

I'(v
127\ _~Hv—172 —
PRU=2" Gy m%, |H

3The choice of phase factor ensures that the behavior de-
scribed by Eq. (3.14) is reproduced at short scales, and the
factor of \/7r/2 implies that condition Eq. (3.12) is satisfied.
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where we have employed Eq. (3.24) to substitute for
k7. A subtle point is that, despite the appearance of this
equation, the calculated value for the spectrum is not the
value at which the scale crosses outside the Hubble ra-
dius. Rather, it is the asymptotic value as k/aH—0, but
rewritten in terms of the values the quantities had when
the Hubble radius was crossed.

This exact expression for the asymptotic power spec-
trum was first derived by Lyth and Stewart (1992). It is
one of only two known exact solutions and is the only
one for a realistic inflationary scenario. The other
known exact solution, found by Easther (1996), arises in
an artificial model designed to permit an exact solution,
and while of theoretical interest it is excluded by obser-
vations.

b. Slow-roll expansion for general potentials

Having obtained an exact solution, we can now make
an expansion about it. The power-law inflation case cor-
responded to the slow-roll parameters’ being equal and
hence exactly constant; we now wish to allow them to be
different, which means they will pick up a time depen-
dence.

At this stage, there is no need to require that the pa-
rameter € be small, for the exact solution exists for all
€<1. However, the deviation of all higher slow-roll pa-
rameters from e must indeed be small, since the differ-
ences vanish for the exact solution. Let us label the first
of these as {=e— 7. There are in general an infinite
number of such small parameters in the expansion but
we shall only need this one.

The first step is to find a more general equation for
7. By integrating by parts in the manner of Eq. (3.23) an
infinite number of times, one can obtain

aH1—€¢ aH

+expansion in slow-roll parameters ¢ etc.,
(3.30)

where e can now have arbitrary time dependence. This
is all very well, but even via an expansion in small { one
cannot analytically solve Eq. (3.11) for a general time-
dependent €; we must resort to a situation in which
aH7t can be taken to be constant for each k mode
(though not necessarily the same constant for different
k). The relevant equation to study is the exact relation

elH=2¢l. (3.31)

What we are aiming to do is to shift the time depen-
dence of € to next order in the expansion, so that it can
be neglected. This is achieved by assuming that € is a
small parameter as well as { (that is, that both € and »
are small), in which case one can expand to lowest order
to obtain

B 1
T———H(1+€).

- (3.32)



386 Lidsey et al.:

We shall return to the question of the error in assuming
constant € shortly.

Having this expression for 7, we can now immediately
use Eq. (3.20), which must also be truncated to first or-
der. This gives the same Bessel equation [Eq. (3.25)],
but now with v given by

3
v==+2e— 7y

5 (3.33)

The assumption that leads us to treat e as constant also
allows 7 to be taken as constant, but crucially € and 7
need no longer be the same, since we are consistent to
first order in their difference. The differences between
further slow-roll parameters and € lead to higher-order
effects, and so incorporating € and % in this manner is
applicable to an arbitrary inflaton potential to next or-
der. The same solution, Eq. (3.29), can be used with the
new form of v, but for consistency it should be expanded
to the same order. This gives the final answer, which is
true for general inflation potentials to this order (Stew-
art and Lyth, 1993),

2

P1|H| k=aH,

PR (k)=[1-(2C+1)e+Cnl— (3.34)
where C=—2+In2+y=—0.73 is a numerical constant,
v being the Euler constant originating in the expansion
of the gamma function. Since the slow-roll parameters
are to be treated as constant, they can also be evaluated
at horizon crossing.

Let us now return to the question of the error in as-
suming € to be constant. The crucial aspect is that the
variation of € is important only around k=aH. In either
of the two extreme regimes the evolution of u; (in rela-
tion to z) is independent of € [Egs. (3.14) and (3.15)].
Assuming the variation of € is only important for some
unspecified but finite number of e-foldings, Eq. (3.31)
measures that change (per e-folding). As long as we are
assuming e to be small as well as ¢, that change is next
order and can be neglected along with all the other next
order terms we did not attempt to include.

Finally, one can see from the complexity of this calcu-
lation the obstacles to obtaining general expressions that
go to yet higher order. This would involve finding some
way of solving the Bessel-like equation in the situation
where its coefficients could not be treated as constant.

This concludes our discussion on the generation of
scalar perturbations during inflation. In the remainder of
this section we shall present the analogous result for the
tensor fluctuations.

2. Gravitational waves

The propagation of weak gravitational waves on the
FRW background was investigated by Lifshitz (1946).
Quantum fluctuations in the gravitational field are gen-
erated in a similar fashion to that of the scalar perturba-
tions discussed above. A gravitational wave may be
viewed as a ripple in the background spacetime metric
[Eq. (2.21)], and in general the linear tensor perturba-

Rev. Mod. Phys., Vol. 69, No. 2, April 1997

Reconstructing the inflaton potential . . .

tions may be written as glLV:az(T)[nW-i—hW], where
|h M|<1 denotes the metric perturbation and 7, is the
flat spacetime metric (Bardeen, 1980; Kodama and
Sasaki, 1984). In the transverse traceless gauge, we have
hoy=ho;=d'h;;=5"h;=0, and there are two indepen-
dent polarization states (Misner et al., 1973). These are
usually denoted as A=+, X.

The gravitons are the propagating modes associated
with these two states. The classical dynamics of the
gravitational waves are determined by expanding the
Einstein-Hilbert action to quadratic order in £, and it
can be shown that this action takes the form (Grishchuk,
1974, 1977)

2

S,= f drd*xa*(7)d b 9*h . (3.35)

¢ 6dm

It proves convenient to introduce the rescaled variable

Pli(x)=(mp/32m) a(7)h'|(x), (3.36)

and substitution of this expression into the action [Eq.
(3.35)] implies that

S =1J drd>x
8 2

(9,P))(I7P')—8(9,P)(3,P))

(3.37)

where we have ignored a total derivative. This expres-
sion resembles the equivalent action [Eq. (3.6)] for the
scalar perturbations. Indeed, we may interpret Eq.
(3.37) as the action for two scalar fields in Minkowski
spacetime, each with an effective mass squared given by
a,./a. This equivalence between the two actions implies
that the procedure for quantizing the tensor fluctuations
is essentially the same as in the scalar case.

We perform a Fourier decomposition of the gravita-
tional waves by expanding P’ j:

A d’k
Pi=

i~ 2 )3/2ka(7') Lk N )e® X,

(3.38)
In this expression e ,(k \) is the polarlzatlon tensor and
satisfies the conditions €;;=¢€;;, =0, k‘e =0, and

€ ;(k,\)e/* (k,\")=5),. The analy51s is further simpli-
fied if we choose €;;(—k,\)=¢€}; ( k,\), since this ensures
that vy ,\=v¥,,. We may consider each polarization
state separately. The effective graviton action during in-
flation therefore takes the form

1

ng 2

drd’k

(19T|Uk,x|)2_( - 7) [vkal }
(3.39)

We quantize by interpreting vy ,(7) as the operator

Oen(m=vi(pag\+ovi(ma’,,, (3.40)

where the modes v satisfy the normalization condition
given by Eq. (3.12) and have the form given by Eq.
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(3.14) as aH/k—0. This ensures that the creation and
annihilation operators satisfy

[dird] 1= 856" a1 |0),

and the spectrum of gravitational waves P,(k) is then
defined by

D(k-1), (3.41)

. mpa’ 2
(DrOi\) = oa k7 e P, S (k-1). (3.42)
The field equation for u, , derived by varying the ac-
tion [Eq. (3.39)], is

d’v; e ! d*a\ 43
a7 adr) =0 (3.43)
and the scale-factor term can be written as
| da =2a’H?| 1 ! 3.44
dTZ =za - 5 €. ( . )

This puts us in a very similar situation to that for the
density perturbations. The situation is simplified since it
is a rather than z that appears directly in the equation of
motion, but the strategy is exactly the same.

For power-law inflation we can again solve exactly by

writing
a 1 1
TT - 2_ -
where
3 1

For power-law inflation v and u coincide, though in gen-
eral they do not. The appropriate solution for v is given
by Eq. (3.27), as before, after replacing v with w. It fol-
lows, therefore, that

2 I'(w) H
Pl/z k :_2;/,71/2 -12 12—p
8 ( ) \/; F(3/2)( ) mp; k= aH
(3.47)
where P, has been multiplied by a factor of 2 to account

for the two polarization states. This exact solution was
first obtained by Abbott and Wise (1984a) and we note
that for power-law inflation

7)1/2 4
=4\e.
=
PE b
The final step is to carry out the expansion in the same

way as in the scalar case to yield the slow-roll expression
for the tensor spectrum. This gives

(3.48)

3

p=s+e (3.49)

and hence
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Py (k)=[1- (C+1)e] (3.50)

H
\/— mpy|,_,
IV. LOWEST-ORDER RECONSTRUCTION

In the previous section we discussed the derivation of
expressions for the two initial spectra ’Pl/2 and P;/Z,
which were accurate to next order in the slow-roll pa-
rameters. Before proceeding, let us relate our notation
to other notations with which the reader may be familiar
concerning the present-day spectra. In order to derive
these, one needs the transfer functions 7'(k) and
T,(k) for scalars (Efstathiou, 1990) and tensors
(Turner, White, and Lidsey, 1993), respectively, which
describe the suppression of growth on a scale k relative
to the infinite-wavelength mode. The transfer functions
in general depend on a whole range of cosmological pa-
rameters, as discussed later. The present-day spectrum
of density perturbations, denoted P(k), is given by

k? k¢

— B A )

52 P(k) (a H) T2(k)Pr(K), (4.1)
while the energy density (per octave) in gravitational
waves is

1
O (k)= 57 To(k)Py(k). (4.2)

2478
These expressions apply to a universe of critical density;
for models with a cosmological constant they require
generalization (see Turner and White, 1996). Note,
though, that in the following sections we shall always be
working with (rescaled versions of) the initial spectra
and not with the present-day spectra.

In this section we shall concentrate on the lowest-
order situation, where all expressions are truncated at
the lowest order. This is not equivalent to assuming that
€ and 7 are zero, for in some expressions, such as the
spectral indices, the lowest-order terms contain e and
7, as we shall see. This approximation can be regarded
as being extremely useful for the present state of obser-
vations. However, optimistically one hopes that future
observations, particularly satellite-based high-resolution
microwave background anisotropy observations, will re-
quire a higher degree of accuracy, as discussed in Sec. V.

A. The consistency equation and generic predictions
of inflation

In the forthcoming analysis it will prove convenient to
work with rescaled expressions for the spectra Pk’ and
7’2/2 which we shall use throughout the rest of the pa-
per. To lowest order we obtain

4 2
Ag(k)=2P)5=c ——r , (43)
5 mp|H'| k=aH
Aq(k)= 7>”2/10—i£ (4.4)
! SE Y P
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The specific choice of normalizations is arbitrary.* The
above choice ensures that Ag coincides precisely with
the quantity 8y as defined by Liddle and Lyth [1993a,
Eq. (3.6)]. This parameter may be viewed as the density
contrast at Hubble-radius crossing. The normalization
for the tensor spectrum is then chosen so that to lowest-
order e=A%/A%.

During inflation the scalar field slowly rolls down its
self-interaction potential. This causes the Hubble pa-
rameter to vary as a function of cosmic time and there-
fore with respect to the scale at Hubble-radius crossing.
The expressions for the perturbations therefore acquire
a dependence on scale and it is conventional to express
this variation in terms of spectral indices. In general,
these indices are themselves functions of scale and there
appear to be two ways in which they may be defined. In
the first case, one may simply write the power spectra as

k n(k)—1
A§<k>=A§<ko>(k—0) :
K\ 7Tk
A%(k)=A%(ko) k—o) : (4.5)

Although these definitions are completely general, they
do require a specific choice of k, to be made. This fea-
ture implies that the definitions are nonlocal, a consid-
erable drawback. A more suitable alternative is to define
the spectral indices differentially via

dInA%
dInA%
ny(k)=—— (4.7)

We shall adopt this second choice in this work. The two
definitions coincide for power-law spectra, where the in-
dices are constant. In general, however, they are in-
equivalent.

At the level of approximation we are considering in
this section, the spectral indices may be expressed di-
rectly in terms of the slow-roll parameters € and #. One
calculates the first derivatives of the amplitudes with re-
spect to ¢ from Egs. (4.3) and (4.4) and converts to
derivatives with respect to wave number with the help of
Eq. (2.35). It is straightforward to show that

n(k)—1=2n—4e,
np(k)=—2e.

(4.8)
(4.9)

“We note that these expressions have different prefactors
from those contained in our original papers (Copeland et al.,
1993b; Copeland, Kolb, et al., 1994); while one normalization is
as valid as any other, the normalizations chosen in those pa-
pers were atypical of the literature. Those used here conform
more readily to the conventions employed in the existing lit-
erature and in particular to those of Stewart and Lyth (1993).
In fact, the numerical difference is only 0.3%. The ratio of the
tensor and scalar amplitudes is unaffected by this change.
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The conventional statement attached to these expres-
sions is that inflation predicts spectra that, to the pres-
ently desired accuracy, can be approximated as power
laws; that is, that the slow-roll parameters can be treated
as constants. While this statement is formally correct, it
requires some discussion. In particular, it is important to
realize that the power-law approximation has no direct
connection to the slow-roll approximation, but rather is
a statement that the relevant observations cover only a
limited range of scale and do so with limited accuracy.
As far as the derivations of the spectra are concerned,
the approximation is that for each scale the parameters
can be treated as constant while that scale crosses out-
side the Hubble radius. However, in this ““adiabatic” ap-
proximation, there is no need for those constant values
to remain the same from scale to scale. Thus the expres-
sions for the spectra can be applied across the complete
range of scales. Although they are an approximation at
each scale, the approximation does not deteriorate when
one attempts to study a wider range of scales. The fea-
ture that allows the spectra to be treated as power laws
is that the range of scales over which observations can
be made is quite small in terms of the range of ¢ values;
taking additional derivatives of the spectra introduces
into the lowest-order result an extra power in the slow-
roll parameters. For example, although differentiating
Eq. (4.8) gives the correct lowest-order expression for
dnldlnk, this will be of order € and hence a small effect
over the short range of scales that large-scale structure
samples. Were large-scale structure able to sample, for
example, scales encompassing twenty orders of magni-
tude rather than four, the approximation by power law
would be liable to break down for typical inflation mod-
els. With high-accuracy observations, the power-law ap-
proximation represented by these lowest-order expres-
sions may prove inadequate even over the short range of
accessible scales.

We emphasize that the spectral indices do not have to
satisfy the exact power-law result n —1=n at this level
of approximation. Each spectrum is uniquely specified
by its amplitude and spectral index. The overall ampli-
tude is a free parameter determined by the normaliza-
tion of the expansion rate H during inflation (or, equiva-
lently, the scalar-field potential V). On the other hand,

the relative amplitude of the two spectra is given by
A—ZT =€ (4.10)
Ai‘ . .

Thus there exists a simple relationship between the rela-
tive amplitude and the tensor spectral index:

2
At
—.
A
This is the lowest-order consistency equation and repre-
sents an extremely distinctive signature of inflationary
models. It is difficult to conceive of such a relation’s

occurring via any other mechanism for the generation of
the spectra.

np=—2 (4.11)
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Since it is possible for the spectra to have different
indices, the assumption that their ratio is fixed can be
true only for a limited range of scales, but the correction
enters at a higher order in the slow-roll parameters.

This expression is often written in a slightly different
form in order to bring the right-hand side closer to ob-
servations. Since the spectra can be defined with arbi-
trary prefactors, they themselves have no definite signifi-
cance. The environment in which each spectrum may
have an effect that allows direct comparison is in large-
angle microwave background anisotropies. In this case
the scalar and tensor fluctuations each contribute inde-
pendently to the expected value of the microwave mul-
tipoles C; (defined and discussed in more detail in Sec.
VII), and in the approximation where only the Sachs-
Wolfe term is included and perfect matter domination at
last scattering is assumed, one is able to write the lowest-
order consistency equation as (Liddle and Lyth, 1992,
1993a)

¢/
—5=—62n7. (4.12)
&

This equation applies for moderate values of / corre-
sponding to scales that are sufficiently small for the cur-
vature of the last scattering surface to be negligible and
yet are large enough to be well above the Hubble radius
at decoupling.’

Equations (4.8), (4.9), and (4.10) contain all the infor-
mation one requires to determine the generic behavior
of inflationary models at this order. Moreover, the cur-
rent status of observational data is such that they are
sufficient to allow a reasonable degree of precision to be
attained in the study of large-scale structure and micro-
wave background anisotropies. In the forthcoming
years, however, data quality will inevitably improve and
a higher degree of accuracy in the theoretical calcula-
tions will therefore be required. Indeed, high-precision
microwave anisotropy experiments are likely to be the
first type of observation demanding just such an im-
provement in accuracy.

In the next section we shall show how these improve-
ments may be implemented. For the purposes of our
present discussion, however, there are only two input
parameters that need to be determined before one can
proceed to investigate inflation-inspired models of struc-
ture formation (Liddle and Lyth, 1993b). The key points

>The exact number in this relation is sometimes written in
different ways. It was first evaluated exactly as
25(1+487%/385)/9 in the scale-invariant limit by Starobinsky
(1985). This is numerically equal to 6.2. There is no regime
where this strictly holds, as corrections from the “Doppler”
peak and from the universe’s not being perfectly matter domi-
nated at last scattering intervene before the asymptote is
reached. Other authors evaluate only part of the expression to
approximate it as 27, or even 6. Finally, many authors con-
sider the ratio of contributions to the quadrupole /=2. In this
case there is a geometrical correction from the curvature of the
last scattering surface that makes the factor close to 7.
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TABLE I. This table illustrates the different possible inflation-
ary behaviors and quotes a specific inflation model for each
(except the bottom left case, which while possible in principle
has not had any specific inflationary model devised). The de-
scription “‘large” implies significantly larger than zero (but still
less than unity).

Gravitational waves Gravitational waves

Important Negligible
n<l € large, n<2e e small, n<—2e
Power-law inflation Natural inflation
n=1 € large, n=2¢€ €, | 5| small
Intermediate inflation Hybrid inflation
n>1 € large, n>2¢€ e small, n>2e

Hybrid inflation

are that (a) the density perturbation spectrum has a
power-law form and that (b) some fraction of the large-
angle microwave anisotropies might be due to gravita-
tional waves. These conditions represent two completely
independent parameters, but fortunately they are the
only two new parameters one requires in the lowest-
order approximation. This is true even though one has
complete freedom in choosing the functional form of the
underlying inflationary potential. A large number of pa-
pers have now investigated the implications of these in-
flationary parameters for structure-formation models
such as cold dark matter and mixed dark matter models.
Some consider only the possibility of tilt (Bond, 1992;
Cen etal., 1992; Liddle, Lyth, and Sutherland, 1992;
Pogosyan and Starobinsky, 1995) and some also allow
for gravitational waves (Liddle and Lyth, 1993b;
Schaefer and Shafi, 1994; Liddle et al., 1996).

One can classify the generic behavior of all inflation-
ary models consistent with the lowest-order approxima-
tion into six separate categories, as summarized in Table
I. Each sector is characterized by the direction of the tilt
away from scale-invariant density perturbations and by
the relative amplitude of the gravitational waves. In gen-
eral, spectra with n>1 increase the short-scale power of
the density-perturbation spectrum. Such spectra were
named blue spectra by Mollerach et al. (1994). Con-
versely, those spectra with n<<1 subtract short-scale
power.’ It is a general feature of inflation that n<1 is
easier to produce than n>1. The reason for this follows
from the definition [Eq. (4.8)] for the scalar spectral in-
dex. To lowest order, a necessary and sufficient condi-
tion for the spectrum to be blue is simply that n>2e.
Since e is positive by definition, this condition is not easy
to satisfy and this is particularly so during the final
stages of inflation where € must necessarily begin to ap-
proach unity. However, specific inflation models have
been constructed for each possibility, with the exception
of a blue spectrum accompanied by a large gravitational-
wave amplitude. This last possibility, while still techni-

%We resist calling them red since the usual definition of red
spectra is n<0, not n<1.
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cally possible, is particularly hard to realize because it
requires a large € overpowered by a yet larger 7.

B. Reconstructing the potential

Copeland et al. (1993b) developed a framework initi-
ated by Hodges and Blumenthal (1990) that one might
call functional reconstruction. In this approach one views
the observations as determining the spectra explicitly as
functions of scale. Hodges and Blumenthal (1990) con-
sidered only scalar perturbations, and then Grishchuk
and Solokhin (1991) made an investigation, considering
only the tensors, with the aim of determining the time
evolution of the Hubble parameter. Copeland et al
(1993b) provided a unified treatment of both scalars and
tensors. The ultimate aim of such a procedure is to then
process the functions through the differential equations
describing the evolution of the universe during inflation.
One thereby determines the potential driving inflation
as a function of the scalar field. If such a procedure
could be carried out exactly, the quantities in the consis-
tency equation would also be functions of scale.

An important point worth emphasizing here is that
only by including the tensors can a full reconstruction be
achieved. The scalar perturbations determine the poten-
tial only up to an unknown constant. As the underlying
equations are nonlinear, different choices of the con-
stant lead not just to a rescaling of the potential but to
an entirely new functional form. Thus there are many
potentials that lead to the same scalar spectrum, and
there is no unique reconstruction of the potential from
the scalar spectrum. Any piece of knowledge concerning
the tensors is enough to break this degeneracy.

From a practical point of view, one finds that the
functional-reconstruction procedure is not very useful,
although it does allow some theoretical insight to be
gained. The reason is that exact formulas for the ampli-
tudes of the spectra do not exist for an arbitrary inflaton
potential. Consequently, even though the classical dy-
namics of the scalar field can be accounted for exactly,
one must input the information on the spectra using re-
sults that depend directly on the slow-roll expansion. At
some level, it is inconsistent to treat the dynamics ex-
actly and the perturbations approximately; formally one
should truncate both at the same order of approxima-
tion. The next-order calculations we provide in the fol-
lowing section show that this joint truncation is indeed
preferable. In general, the next-order correction to the
magnitude of the potential arising from the spectra has
an opposite sign and is slightly larger than the correction
to the dynamics. In effect, therefore, an exact treatment
of the dynamics actually leads to a less accurate answer
than that obtained by treating the entire problem to low-
est order in slow roll.

We therefore advocate an alternative approach that
may be referred to as perturbative reconstruction. The
fundamental idea behind perturbative reconstruction
follows directly from the fact that the scalar field must
roll sufficiently slowly down its potential if inflation is to
proceed at all. This is important for the following rea-
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son. Typically, the modes that ultimately lead to obser-
vational effects within our universe first crossed the
Hubble radius somewhere between 50 and 60
e-foldings before inflation came to an end. (The precise
number of e-foldings depends on the final reheating
temperature, but this does not affect the general fea-
tures of the argument.) During these 10 e-foldings of
inflationary expansion, the change in the value of the
inflaton field is typically small. In effect, therefore, the
position of the field in the potential would have re-
mained essentially fixed at some specific value ¢,. It fol-
lows that cosmological and astrophysical observations
can only yield information regarding this small segment
of the potential. Hence it is consistent to expand the
underlying inflationary potential as a Taylor series about
the point ¢,. The use of such a procedure to lowest
order was suggested by Turner (1993a) and by Copeland
et al. (1993a, 1993b). Turner (1993b) then included a
next-order term in the potential. The formalism was
then developed fully to next order by Copeland, Kolb,
et al. (1994), including a next-order term in the deriva-
tives as well as the potential and outlining the frame-
work for the general expansion. This framework was re-
cast into a more observationally based language by
Liddle and Turner (1994) who further discussed the
meaning of the order-by-order expansion.

Perturbative reconstruction can be performed in a
controlled way using the slow-roll expansion order by
order. The dynamics can be treated to arbitrary order in
this expansion by employing the formalism developed
by Liddle et al. (1994). In contrast, however, the treat-
ment of perturbations is presently available only to next
order. In this case there seems to be no obvious frame-
work by which one can establish an order-by-order ex-
pansion, and even just obtaining terms to one higher
order is a very difficult task.

Modulo questions of convergence, the perturbative
reconstruction procedure successfully encodes func-
tional reconstruction in the sense that perturbative re-
construction performed to infinite order is formally
equivalent to functional reconstruction. Perturbative re-
construction can also be rewritten as an expansion in the
observed spectra. The advantage of considering an ex-
pansion of this type is that it indicates exactly how the
features in the observed spectra yield information on the
inflationary potential. Such an explicit account of the
observational expansion has not been given before.

Before launching into specific calculation, however, it
will be helpful to identify each observable quantity with
some order in the slow-roll expansion. This may be
achieved by considering which slow-roll parameters oc-
cur in the lowest-order term. Thus one may employ the
lowest-order expressions for the spectra. One sees by
direct differentiation that the information associated
with the accumulation of observables is as follows: H
gives A%, e gives A% and ny, 7 gives n and dny/dlnk,
& gives dn/dlnk and d*n;/dlnk?, and so on. The key
feature is that the tensor spectrum always remains one
step above the scalar one. Furthermore, we shall see that
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an additional derivative of the Hubble parameter for
each order is required to obtain a higher-order expres-
sion for each observable.

We shall now proceed to derive expressions for the
potential and its first two derivatives correct to lowest
order in the slow-roll expansion. We consider the Taylor
series

V(¢)=V(do)+V'(do)Ap+ = V”(¢0)A¢>2

(4.13)

about the point ¢,. At this order, the Hamilton-Jacobi
equation (2.25) reduces to V(¢)=3mpH?*(p)/8m, so
the derivatives in this expansion may be expressed di-
rectly in terms of the slow-roll parameters from Egs.
(2.27) and (2.28). It is consistent to expand the potential
only to quadratic order, because the third derivative will
contain terms that are of the same order as terms that
were neglected in the original expressions for the ampli-
tudes. In other words, the lowest-order expressions do
not permit any higher derivatives to be obtained.
It follows by direct substitution, therefore, that Eq.
(4.13) may be written as
2 172

_3mP1 01, _ 1/2A_¢
V(g)= 3 1—-(16meg) P,
2 3
+4m(ey+ no)(A(é) +O((A(€) ”, (4.14)
Mmp Pl

where a subscript 0 implies that quantities are to be
evaluated at ¢= ¢,. Hence H, represents the expansion
rate when the scale corresponding to this value of the
scalar field first crossed the Hubble radius during infla-
tion.

We write the coefficients that arise in this expansion
in terms of the spectra by employing Egs. (4.3) and (4.4)
for the amplitudes, the definition (4.8) for the scalar
spectral index, and the definitions of the slow-roll pa-
rameters. We find that

4

V(¢0)_ T(ko) (4.15)
, B 75\/— A7(kg)
Vi(¢o)=——5 PIAS(k) (4.16)
2(ky) 3
V)= 2 A k)| 9 zz(ks)—zu—no),
(4.17)

where k is the scale at which the amplitude and spectral
indices are determined and n is the scalar spectral in-
dex at ky. As already implied by Eq. (4.8), if n exceeds
unity the potential must be convex (V">0) at the point
being probed. However, n being less than unity says
nothing definite about convexity or concavity.
Perturbative reconstruction can be possible even if it
ultimately transpires that the observations necessary to
test the consistency equation nontrivially cannot acquire
sufficient accuracy. Similar work on reconstruction to
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this level of approximation has been done by Adams
and Freese (1995), Mielke and Schunck (1995), and
Mangano, Miele, and Stornaiolo (1995).

However, it is clear that a determination of the
gravitational-wave amplitude on at least one scale is es-
sential for the reconstruction program to work. Pres-
ently, such a quantity has not been directly determined,
but we may nevertheless draw some interesting conclu-
sions from the above calculation. In particular, there are
a number of limiting cases to Eq. (4.14) that are of in-
terest. First, when e= 7, Eq. (4.14) is the expansion for
the exponential potential Voexp(—+16med/myp).
(Without loss of generality we may perform a linear
translation on the value of the scalar field such that
¢o=0.) Secondly, the potential has the form

V(¢)=A[1+2m(n—1)¢*/m3], (4.18)

in the limiting case where e<<1. This class of potentials
produces a negligible number of gravitational waves, but
a tilted scalar perturbation spectrum. The tilt arises be-
cause the curvature of the potential is significant. The
direction of the tilt, as determined by the sign of
(n—1), depends on whether the effective mass of the
inflaton field is real or imaginary.

The dynamics of inflation driven by a potential of the
form given by Eq. (4.18) for n>1 has an interesting
property. The kinetic energy of the inflaton field is de-
termined from H'(¢) via the second expression in Eq.
(2.26). As the field rolls down the potential towards
¢=0, H' gradually decreases whilst H tends towards a
positive constant. Hence the field slows down as it ap-
proaches the minimum, but it loses kinetic energy in
such a way that it can never reach the minimum in a
finite time. Hence the de Sitter universe is a stable at-
tractor for this model and consequently the inflationary
expansion can never end.

There are two ways of circumventing this difficulty.
First, one can argue that the potential resembles Eq.
(4.18) only over the small region corresponding to cos-
mological scales. This is rather unsatisfactory, however,
since it requires ad hoc fine tuning of the potential and
therefore goes against the overall spirit of inflation. A
much more plausible suggestion is that the first term of
Eq. (4.18) arises because a second scalar field is being
held captive in a false vacuum state. This is the case, for
example, in Linde’s Hybrid Inflation scenario (Linde,
1991, 1994; Copeland, Liddle, et al., 1994), where an as-
sociated instability can end inflation.

We end this section by quoting formulas appropriate
to the situation in which one is given the potential and
must calculate the predicted spectra; in general, one can-
not analytically find the H(¢) corresponding to a given
V(¢). In order to obtain the spectra, one uses the Fried-
mann equation [Eq. (2.25)] and its derivatives in combi-
nation with the slow-roll approximation. To lowest or-
der, the spectral indices were first given by Liddle and

Lyth (1992) and are
n_1:_6év+27]v, (419)

nr=-—2ey, (4.20)



392 Lidsey et al.. Reconstructing the inflaton potential . . .

where
_m%’l V2 _mlz’l v
NTlem\ V) NT8x VvV

are slow-roll parameters defined from the potential and
differ slightly from the definitions made in terms of the
Hubble parameter used in the rest of this paper [see
Liddle et al. (1994) for more details]. It is also possible
to write down next-order expressions for the spectral
indices in terms of the potential (Stewart and Lyth, 1993;
Kolb and Vadas, 1994). Expressions such as these writ-
ten in terms of the potential make sense only because of
the existence of the inflationary attractor.

(4.21)

V. NEXT-ORDER RECONSTRUCTION

The level of accuracy discussed in the previous sec-
tion, while perfectly adequate at present, is unlikely to
be sufficient once high-resolution microwave back-
ground anisotropy experiments are carried out. The the-
oretical benchmark for calculating the radiation power
spectrum from a matter power spectrum has been set at
one percent in order to cope with such observations (Hu
et al., 1995). If inflation is to take advantage of this level
of accuracy, it is vital that the initial power spectrum be
considered to at least a similar level of accuracy. At the
very least this will require next-order expressions for the
spectra, which represent the highest level of accuracy
presently achieved.

For many potentials, the next-order corrections may
be small, perhaps smaller than the likely observational
errors on the lowest-order terms. We shall see this in the
simulated example later in this paper. In such a case the
next-order calculation is still useful, because it serves as
an estimate of the theoretical error bar on the calcula-
tion, which can be contrasted with the observational er-
rofr.

We devote this section to describing the next-order
results in detail.

A. The consistency equations

Let us first consider the next-order version of the
lowest-order consistency equation (4.11). The best avail-
able calculations of the perturbation spectra are those
by Stewart and Lyth (1993) containing the next order,
which we reviewed extensively in Sec. III. To this order,
the amplitudes for the scalar and tensor fluctuations are
given by

4 H?
As(k)—%[l—(zc“)ﬁcn]m o (5.1)
Ak _ 2 1-(C+1 il 5.2

7( )_SJE[ ( )e]mm e (5.2)

respectively, where we choose the same normalizations
for Ag and A 7 as in Sec. IV. We recall that C=—0.73 is
a constant. Once again, the right-hand sides of these ex-
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pressions are to be evaluated when the scale in question
crosses the Hubble radius during inflation.

Throughout the remainder of this section we shall be
quoting results that feature a leading term and a correc-
tion term, the next-order term, which is one order higher
in the slow-roll parameters. We shall utilize the symbol
“=”" to indicate this level of accuracy. The correction
terms will be placed in square brackets, so the lowest-
order equations can always be obtained by setting the
square bracket equal to unity, except in Egs. (5.3) and
(5.20) where it needs to be set to zero.

To next order, the scalar and tensor spectral indices
may be expressed in terms of the first three slow-roll
parameters by differentiating Egs. (5.1) and (5.2) with
respect to wave number k and employing Eq. (2.35).
Some straightforward algebra yields (Stewart and Lyth,
1993)

1-n=4e-2n+[8(C+1)e®—(6+10C)en+2CE],
(5.3)
ny=—-2e[1+(3+2C)e—2(1+C)7]. (5.4)

A very useful relationship may be derived by consid-
ering the ratio of the tensor and scalar amplitudes and
replacing the derivative of the Hubble expansion rate
with e. We find that

A2
T
GZP[l—ZC(e— 7)]. (5.5)
s
This relationship is the next-order generalization of Eq.
(4.10). It plays a central role in deriving the next-order
expressions for the potential and its first two derivatives
in terms of observables. Moreover, substitution of this
expression into Eq. (5.4) implies that
2
np=—2—[1+3e—27). (5.6)
A
Now, since all the quantities in the square brackets of
this expression are accompanied by a lowest-order pre-
factor, they may be converted into observables by apply-
ing the lowest-order expressions, Egs. (4.8) and (4.10).
We conclude, therefore, that
43
1-—F+(1-n
a7

nr=

. (5.7)

or
A

This is the next-order version of the lowest-order con-
sistency equation n,=—2A%/A%, given first by Cope-
land, Kolb, et al. (1994) and translated into more obser-
vational language by Liddle and Turner (1994). It is
interesting to note that the corrections entering at next
order depend only on the relative amplitudes of the
spectra and on xn. They do not depend on n or on any
of the derivatives of the indices, because they can be
removed consistently using the lowest-order version of
the same equation. This has an important consequence
that has been only implicit in the literature thus far. We
anticipate that n will be considerably easier to measure
than ny. It is reasonable to suppose, therefore, that if
one has enough observational information to test the
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lowest-order consistency equation, one will also have
sufficient data to test the next-order version as well. In
other words, the situation in which only the quantities in
the lowest-order consistency equation are known is un-
likely to arise. Consequently, one should employ the
next-order consistency equation when testing the infla-
tionary scenario, rather than the more familiar version
given by Egs. (4.11) or (4.12).

Another new feature of extending the observables to
allow reconstruction at this order is that one has an en-
tirely new consistency equation, the lowest-order ver-
sion of the derivative of the original consistency equa-
tion. One calculates dny/dlnk by differentiating Eq.
(5.4) with respect to scale k and employing Egs. (2.27)
and (2.35). One finds that

dl’lT
dlnk

Conversion of this expression into observables follows
immediately by substituting in the lowest-order results
given by Egs. (4.8) and (4.10), giving
dny AZT AzT

=2—|2—5+(n—1)|.
aink 2az\*az T

=—4e(e—7). (5.8)

(5.9)

This equation was derived by Kosowsky and Turner
(1995), though they did not explicitly recognize it as a
new consistency equation. Unfortunately, the observ-
ables appearing in the above expression are far from
promising from the point of view of practical applica-
tion.

B. Reconstruction of the potential to next order

Now that we have discussed the formalism necessary
for calculating the dynamics and perturbation spectra up
to next order in the slow-roll expansion, we shall pro-
ceed to consider the reconstruction of the inflationary
potential at this improved level of approximation.

We begin by deriving expressions for the potential
and its derivatives directly from the field equation [Eq.
(2.25)] and the definitions [Egs. (2.27)-(2.29)] for the

5\VT

A7(ko)
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slow-roll parameters. Successive differentiation of Eq.
(2.25) with respect to the scalar field yields the exact
relations

1% it 3 5.10

- 877 ( _6)5 ( . )
mP1H2 n

V'i=— ——¢€2(3-17), 5.11

V'=H?*QBe+3n—(5*+&)). (5.12)

Our immediate aim is to consider these expressions at a
single point ¢, and to rewrite them in terms of observ-
able quantities. The amplitude of the potential is derived
by substituting Egs. (5.2) and (5.5) into Eq. (5.10):

TSmy 5 Azr(ko)
4
mP T( 0)

At this stage, it is interesting to consider how this result
would be altered if one treated the scalar-field dynamics
in full generality rather than truncating at next order. It
follows from the general expression for the potential
[Eq. (5.10)] that the numerical factor on the next-order
term in the last expression of Eq. (5.13) would become
—1/3. This means that the next-order correction to the
potential due to the spectra dominates the dynamical
corrections. This is true for all inflationary models. Since
the sign of the spectral correction is opposite to that of
the dynamical ones, the overall sign of the correction is
reversed.

Since the first derivative of the potential contains 7,
we need information regarding the value of the scalar
spectral index at k, if we are to obtain V'(¢). We re-
place the H? term in Eq. (5.11) by substituting the ten-
sor amplitude Eq. (5.2) and collecting together the terms
containing {€,n} to linear order. These may then be
written in terms of the spectra via the lowest-order ex-
pressions, Egs. (4.8) and (4.11). The result is

Vi(go)=——¢ m,,lA (k)[1+(C+2)e+(C 1/3) 7]
5w LAYk
~— PIAT(kO)[1+127€ 1.067]
IS5\ S Aj(ky) A(ky)
< mPlA o) 1-0.85- 70—~ VTN +0.53(1—ny)|. (5.15)

The calculation for V"(¢,) is much more involved. A new observable is needed to determine &, the easiest
example being the rate of change of the scalar spectral index. This will be substantially harder to measure, though,
and it is fortunate that it only enters at next order. [However, it would enter at leading order in V"' (¢,), as was
mentioned by Copeland, Kolb, et al. (1994); it was derived fully by Liddle and Turner (1994).] We can obtain the
next-order correction to V" (¢,) directly in terms of the slow-roll parameters by employing Egs. (5.2) and (5.12). We
find that
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772_,_52
n+te

" 15m 2 42 1
Vi(o)=——mpAi(ko)(et ) 1+(2C+2)e—3 (5.16)

To proceed, we must convert the prefactor (e+ ) into observables, accurate to next order. To accomplish this we
must employ the next-order result [Eq. (5.3)] for the scalar spectral index. A straightforward rearrangement of this
latter equation yields

ad1 4c . 3+5C C & 1-ny ATl 14 - o3 Cc &l 1-n,
e+ n=3e +§( +1)e 3 7;-1—?? > + =( )E+ ( )77+—— >
(5.17)
where the second expression follows after substitution of Eq. (5.5). Substituting this into Eq. (5.16) yields
i 2257 ,AY(ko)[ 4C+10 L 63 +C§2 ST 5 2\ L2040
(o) = 4 mPlAS(kO) 3 € 3 7173 | g Me (ko) (1 —=ng)[1+( )€]
25
== muAT ko) (77 + ), (5.18)

where the last term is an entirely next-order one. Note that there are two lowest-order terms. An interesting case is
n=—¢€, corresponding to Hx ¢% for which the lowest-order term vanishes identically and the final term of Eq.
(5.16) is the only one to contribute. The second derivative of the potential is the lowest derivative at which it is
possible for the expected lowest-order term to vanish.

The final step is to convert the next-order terms into the observables. As they are already of next order, one needs
only the lowest-order term in their expansion to complete the conversion. From the lowest-order expression for the

scalar spectral index, one finds, to lowest order, that

€ 26d1k

+5n—4e

(5.19)

Note that the derivative of the spectral index is of order €. Finally, substitution of Egs. (4.8), (4.11), and (5.19) into

Eq. (5.18) yields

A%(ky) 3

v DT 242k 9 1
(o) = Y (ko) XQS(TO 2( ng)

T( 0)

2
+| (36C+ ) AT (ko) 7

where the first two terms in the curly brackets represent
the lowest-order contribution.

Before we conclude this section, it is worth remarking
on a point that has perhaps been implicit in the existing
literature but has not been stated explicitly before. The
determination of each successive derivative of the po-
tential requires an extra piece of observational informa-
tion. In particular, for the case of lowest-order perturba-
tive reconstruction, we conclude that the first term in the
Taylor expansion requires only A, but the second re-
quires both Ag and A ;. The third term, on the other
hand, needs both of these together with n,. The ability
to make the observations therefore dictates how many
derivatives we can determine. On the other hand, a com-
parison of the lowest-order and next-order expressions
for the derivatives implies the following: the new piece
of information necessary for the derivation of the
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1
—(1—-ng)*—(12C— 6)7

A7(ko)

AL

(3C 1)

dlnk

] (5.20)

0

lowest-order term in V' is also sufficient to yield the
next-order term in V. Likewise, the next observation
will give the lowest-order term in V" and this is enough
to give the next-order term in V'. Furthermore, it is also
sufficient, in principle, to give the third-order term in
V. We stress in principle because the theoretical machin-
ery has not been developed to allow the calculation of a
third-order term in the potential or the reconstruction of
its derivatives. Hence, while observational limitations
constrain how high a derivative we can reach, it may be
theoretical rather than observational limitations that
prevent higher accuracy in the lower derivatives. This
will be the case even though the necessary observational
information may become available.

Table II lists the inflation parameters required for re-
construction of a given derivative of the potential. Re-
construction requires the inflation parameters in terms
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TABLE II. A summary of the inflationary parameters [ H and
the slow-roll parameters €, 7, and ¢ defined in Egs. (2.27)-
(2.29)] needed to reconstruct a given derivative of the poten-
tial to a certain order. See Egs. (5.10)—(5.12). Note that the
next-order result is exact.

TABLE IV. The inflation parameters may be expressed in
terms of the observables AZT, Aé, n, and dn/dlnk (see Sec.
V.A). Through judicious use of the consistency relations one
may employ different combinations of observables than those
listed here, e.g., ny rather than AZT/Ag.

Lowest order Next order (exact)

V(¢o) H( ) H( ), €(b)

V' (o) H( ), e( o) H( ), €(bo), 1(o)
V'(¢o) H(o), (o), n(do) H(o), €(bo), n(bo), (o)
V(o) H (o), e(bo), 1( o), £(o)

of observables. Relations between inflationary param-
eters and observables are given in Tables III and IV. A
combination of information from Tables II and IV re-
sults in Table V, the observables needed to reconstruct a
given derivative of the potential to a certain order. Al-
though we know the information required for the next-
to-next order given in Table V, we do not know the
coefficients of the expansion.

VI. THE PERTURBATIVE RECONSTRUCTION
FRAMEWORK

Although the next-order results of the previous sec-
tion represent the theoretical state of the art, it is pos-
sible to see the general pattern. We discuss this in this
section and also introduce an expansion of the observa-
tions corresponding to perturbative reconstruction.

A. A variety of expansions

During reconstruction, there are three types of expan-
sion being carried out. There is an expansion in terms of
observables, an expansion in terms of slow-roll param-
eters, and an expansion of the potential itself.

Since the underlying theme behind the reconstruction
program is that one is driven by observations, let us first
consider what information might be available. The re-
construction program assumes that some measurements
of Ag(k) and A (k) are available over some range of
scales. In practice, the likely range of observations for
the scalars will probably be no greater than
—5<In(k/kq)<5, with a much shorter range for the ten-
sors. In accordance with the perturbative reconstruction

TABLE III. The observables, A2T, A%, n, and dn/dlnk at the
point k, may be expressed in terms of H and the slow-roll
parameters at the point ¢,. The inflation parameters required

to predict the observable to the indicated order are listed (see
Sec. V.A).

Observable Lowest order Next order
A7(ko) H () H(y), (o)
A3(ko) H (o), €( o) H( o), €($o), 1(bo)
n(kg) (o), 7( o) €(do), 1(bo), £( o)
dn/dInk|, (o), 7( o), £(b0o)

Rev. Mod. Phys., Vol. 69, No. 2, April 1997

Parameter Lowest order Next order

H A3 A% A

€ A%, A% A%, A%.n

n A2 A% n A2, A% n,dnl/dlnk
3 A% A%, n, dn/dink

strategy, the spectra should be expanded about some
scale k( which corresponds to the scale at horizon cross-
ing when ¢= ¢y. The appropriate expansion is in terms
of In(k/ky), and of course it makes best sense to carry
out the expansion about a wave number close to the
middle of the available data.

In general, the expansions can be written as

InA%(k)=1nA%(ky)+[n(k )—1]ln£
S S\ 0 kO

TR L 6.1
2dnk|, ke T (6.1)
0
InA2(k)=InA%(ko)+n(k )1n5
T T\"0 T\"0 k()
1 dnT 2k
T2 amk| Mt (62)
0

where the coefficients continue as far as the accuracy of
observations permit. There is no obligation for the two
series to be the same length. Indeed, we anticipate that
information associated with the scalars will be consider-
ably easier to obtain in practice.

The range of Ink over which data are available leads
to the range of ¢ over which the reconstruction con-
verges well. Notice that, since we believe In(k/k;) can be
somewhat greater than unity, convergence of this type of
series will occur only if the successive coefficients be-
come smaller. Fortunately, we have already seen in Sec.
IV that the lowest-order inflationary predictions attach
an extra slow-roll parameter to each higher derivative of
the spectra taken, so convergence can still occur as long
as the slow-roll parameters are smaller than
1/max|In(k/kg)|. This forms a good guide as to how wide
a range of scales can be addressed via perturbative re-
construction. The observation that the spectral index (at
least of the scalars) is not too far from unity suggests
that the slow-roll parameters are small. Hence the ob-
servational expansion might continue to converge well
outside the range of Ink actually observed. The equiva-
lent statement regarding the potential would be to say
that, if it is reconstructed very smoothly for the range
A ¢ corresponding to observations, one should feel fairly
confident in continuing the extrapolation of the poten-
tial beyond the region in which direct observations were
available (though in a practical sense this does not cor-
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TABLE V. A summary of the observables needed to reconstruct a given derivative of the potential
to a given order. The potential and its derivatives are given at a point ¢, and AZT, Aé, n, and

dnl/dk are to be evaluated at the point k.

Lowest order Next order Next-to-next order
v A% A%, A3 A%, A%, n
14 A%, A% A2 A%n A% A% n, dnldink
14 A% Ain A%, A%, n, dn/dink
v A%, A%, n, dnl/dink

respond to any extra information).

The observational expansion discussed above is
closely related to the slow-roll expansion. In particular,
we may consider the expansion of the spectra at a given
k in terms of slow-roll parameters, as discussed in Sec.
III. A qualitative comparison of the two expansions then
yields a general pattern. Each term from the scalars al-
lows the determination of one extra slow-roll parameter.
With regard to the tensors, a single piece of information
(presumably the amplitude) is necessary before one can
proceed at all, as we have discussed previously. Beyond
that, however, extra terms for the tensors do not provide
new slow-roll parameters. Instead, they lead to degener-
ate information and hence to consistency relationships.
If one has the first two terms for the tensors and the first
scalar term, one can test the consistency equation
np=—2A%/A%. Further tensor terms result in a whole
hierarchy of consistency equations, as we shall discuss
further in the next subsection.

By including terms consisting of products of more and
more slow-roll parameters, one builds up a more accu-
rate answer. However, there are two separate factors
that prevent arbitrary accuracy from being obtained.
The first is that of the observational limitations. For a
practical observational data set with error bars, the ob-
servational expansion discussed above can be carried
out only to some term, beyond which the coefficients are
determined as being consistent with zero within the er-
rors. (If the error bars are still small when this happens,
it may still correspond to useful information.) This re-
flects directly on the number of slow-roll parameters e,
7, &, etc., that one can measure. In general, however,
there are an infinite number of slow-roll parameters, and
formally they are all of the same order (meaning that for
a “‘generic’”’ potential, one expects them all to be of simi-
lar size). This appears to be rather problematic, since a
finite number of terms in the observational expansion
cannot constrain an infinite number of slow-roll param-
eters. Fortunately, however, only a finite (and usually
small) number of such terms ever appear when a specific
expression is considered.

The second restriction is that current technical knowl-
edge concerning the generation of the spectra, as re-
viewed in Sec. III, allows the calculation only of a
lowest-order term plus a correction involving single
slow-roll parameters. In general, one anticipates further
corrections including products of two or more slow-roll
parameters, but that has not been achieved. It follows,
therefore, that the number of derivatives in the potential
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that may be calculated is determined by observational
restrictions, whilst the accuracy of each derivative is also
constrained by theoretical considerations.

It should be emphasized that once an expression writ-
ten as an expansion in slow-roll parameters has been
found, it can be differentiated an arbitrary number of
times. It is interesting that the derivatives are accurate
to the same number of orders in the slow-roll param-
eters. This follows because differentiation respects the
order-by-order expansion. However, differentiation in-
troduces higher and higher slow-roll parameters from
the infinite hierarchy. An important point here is that
the “lowest-order” can be a product of any number of
slow-roll parameters; the phrase is not synonymous with
setting the slow-roll parameters all to zero.

Having started with the observations, we now come to
the crux of the reconstruction process: the inflaton po-
tential. In perturbative reconstruction, one aims to cal-
culate the potential and as many of its derivatives as
possible at a single point to some level of accuracy in
slow-roll parameters. The ultimate goal is to use this
information to reconstruct some portion of the potential
about this point, by carrying out some expansion of
V(¢) about the point ¢,. The simplest strategy is to use
a Taylor series

1
V(d)=V(do)+V'(hy)Adp+ 5V”(¢0)A¢2+ RN
(6.3)

and we shall consider only that case here. The literature
does include more ambitious strategies such as Padé ap-
proximants, which may become useful when specific
data are available (Liddle and Turner, 1994). The suc-
cess of this expansion is governed by how far away from
¢y one hopes to go, which ultimately arises from the
range of observations one has available, as well as on
how accurately the individual derivatives are deter-
mined.

The Taylor series expression shows us that perturba-
tive reconstruction of the potential actually involves two
expansions. We have already seen that the potential is
obtained up to some accuracy in the slow-roll expansion.
However, for reconstruction to be successful, it is also
imperative that we consider how accurate the expansion
in A ¢ might be. Determining the coefficients of only the
first one or two terms may be completely useless if A¢
turns out to be large.

The key to investigating this is to rewrite A ¢ in terms
of Alnk, the range of scales over which observations can
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realistically be expected to cover.” Broadly speaking this
corresponds to the interval from 1 Mpc to about 10*
Mpc, so assuming a center point in the middle of this
region implies a range for Alnk between —5 and +5.
This may be biased through tensor data being available
only on large scales, though it will also be of consider-
ably lower quality than the scalar data. The relationship
that allows one to achieve a comparison between A¢
and Alnk is the exact formula [Eq. (2.35)] presented ear-
lier,

mpj \/;

dp muH' 1 6
dink 47 He—1 ([4pe—1’ 6.4)

together with its derivatives. One can then expand A ¢ in
terms of Alnk, expanding each coefficient up to some
order in the slow-roll expansion. Such an expansion

V()
A7(ko)

where numerical constants have not been displayed. The
square brackets represent the expansion of the potential
and its derivatives at ¢, while the curly brackets repre-
sent A ¢, which itself is written as an expansion in Alnk
with coefficients expanded in slow roll.

For the slow-roll expansion to make sense, we need
B<<1. One can see from the schematic layout of Eq.
(6.6) that convergence of the expansion will fail unless
BAInk<1, as successively higher-order terms will other-
wise become more and more important. However, we
have agreed that Alnk itself need not be small. In re-
gions where it is, it is clear that the best results are ob-
tained by calculating the low derivatives of the potential
as accurately as possible. In regions where Alnk is not
small, however, it is more fruitful to calculate higher
derivatives.

B. The consistency equation hierarchy

In the previous subsection, we stated that there exists
an infinite hierarchy of consistency equations. It is not
difficult to see why such a hierarchy should exist. Even
though exact expressions for the spectra as a function of
scale are not presently available, one can imagine having
such expressions, at least in principle. In this case, one
could then write down a consistency equation in the full

"Turner (1993b) and Liddle and Turner (1994) carried out a
similar analysis using AN, the number of e-foldings. This is
perfectly valid but somewhat harder to interpret in terms of
observable scales since it is formally equivalent only in a
lowest-order approximation. In this work, however, we desire
a simple interpretation of the next-order results.
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begins
mpj
Ap=— e[1+e+---]Alnk
¢ m( [ ]
Mp 5
+ JVe[e—n+---1(Alnk)>+ - - -, (6.5)

V16

where, for illustrative purposes, the first coefficient has
been given to next order in slow roll and the second one
to lowest order. The signs are chosen in accordance with
our convention that V'<0.

For clarity we shall employ B to represent a generic
slow-roll parameter. One can then schematically repre-
sent the double expansion (one in A¢ and one in the
slow-roll parameters) as

~[148+---]+BAInk[1+ 8+ - {1+ B+ BAlnk+ - -}+ B*(Alnk)*[1+ B+ --]{1+ B+ BAInk+---},

(6.6)

functional-reconstruction framework that applied over
all available scales. This equation could then be repre-
sented in the perturbative reconstruction framework by
performing a Taylor (or similar) expansion on both sides
of it. The perturbative consistency equations could then
be derived by equating the coefficients of the expan-
sions. The key idea here is that the full functional con-
sistency equation and all its derivatives must be satisfied
at the point about which perturbative reconstruction is
being attempted. The equality of each derivative at this
point, however, represents a separate piece of informa-
tion.

In Sec. IV we presented the consistency equation [Eq.
(4.11)] for lowest-order perturbative reconstruction. The
connection between the tensor-scalar ratio and the ten-
sor spectral index was first presented by Liddle and Lyth
(1992) and has been much discussed in the literature.
This consistency equation is simply the (unknown) full
functional consistency equation applied at a single point
and, moreover, it is the version of that equation trun-
cated to lowest order in slow roll. Indeed, it does not
require a determination of » and it corresponds to the
lowest nontrivial truncation of the expansion of the ob-
served spectra.

The next order in slow roll introduces »n and
dny/dInk. This not only supplies enough information to
impose a next-order version of the original consistency
equation, but is also enough to impose a lowest-order
version of the derivative of the consistency equation.
The next-order versions of the original consistency
equation were supplied by Copeland, Kolb, et al. (1994)
and Liddle and Turner (1994); we discussed these in Sec.
V. We also discussed the lowest-order version of the
derivative of the consistency equation in that section.
This equation was first given by Kosowsky and Turner
(1995).
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This pattern continues at all orders in the expansion.
One can ask why it has not been emphasized before.
One reason is that, until now, a clear understanding has
not been established regarding the type of observational
information that appears at each order in the expansion.
At the same stage that one introduces »n in the slow-roll
expansion, one should also introduce the rate of change
of the tensor spectral index. The latter does not provide
any new information regarding the reconstruction, in the
same way that n; did not provide new information at
lowest order in slow roll. However, it is subject to the
new consistency equation. Researchers have not paid at-
tention to the new consistency equation because it re-
quires dny/dInk and it seems very unlikely that this
could ever be measured.

This concludes our discussion of the theoretical
framework for perturbative reconstruction. In the fol-
lowing section, we shall discuss whether the observa-
tions are likely to reach an adequate level of sophistica-
tion in the foreseeable future and then consider a
worked example that illustrates how the reconstruction
program might be applied in practice.

VIl. WORKED EXAMPLES OF RECONSTRUCTION
A. Prospects for reconstruction

In this subsection, we shall consider the long-term
prospects for reconstructing the inflaton potential. It is
clear that one must determine the amplitudes of the pri-
mordial power spectra of scalar and tensor fluctuations
on at least one scale, together with the slope of the sca-
lar spectrum at that scale. Such information would pro-
vide enough information to reconstruct the potential
and its first two derivatives to lowest order. However, a
measurement of n is also required if one is to test the
inflationary hypothesis via the consistency equation. If
such information becomes available at all, it will prob-
ably be after Ag, A7, and n have themselves been de-
termined, so reconstructing to lowest order should prove
easier to accomplish than testing the scenario via the
consistency equation.

It is convenient to separate the full cosmological pa-
rameter space into two sectors. The first contains the
inflationary parameters essential for reconstructing the
potential and testing the consistency equations. They are

(7.1)

where all are evaluated at £, and the list extends to as
many derivatives of the spectra as one wishes to con-
sider. The tensor-scalar ratio r=12.44%/A% is defined so
that r=1 corresponds to an equal contribution to large-
angle microwave anisotropies from the scalar and tensor
fluctuations, as follows from Egs. (4.11) and (4.12).

The second set consists of the other cosmological pa-
rameters

(Q0,Q4 . Qepm Qupm . Qh bz, .. ), (7.2)

where the () represent the densities in matter of various
sorts, respectively the total matter density, cosmological

(A57r’n’nT5 s )’
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constant, cold dark matter, hot dark matter, and bary-
onic matter. Here z; represents the redshift of reioniza-
tion; it may be that this single parameter is adequate or
the full ionization history may have to be taken into
account. In the standard cold dark matter (CDM) model
these parameters take the values [A(k(),0,1,0] and
(1,0,0.95,0,0.0125,0.5), respectively (further parameters
concerning derivatives of the spectral indices in the first
set being zero); that is, the scalar amplitude is the only
free parameter available to fit to observations. The stan-
dard ionization history of the universe is also assumed.

Experiments measuring microwave background
anisotropies offer the most promising route towards ac-
quiring such information to within the desired level of
accuracy. Although redshift surveys provide valuable in-
sight into the nature of the scalar spectrum at the
present epoch, uncertainties in the mass-to-light ratio of
galaxy distributions imply that it is very difficult to de-
termine the primordial spectrum from these observa-
tions alone. There are further complications associated
with uncertainties in the type of non-baryonic dark mat-
ter in the universe. These can lead to significant modifi-
cations in the form of the transfer function. One crucial
advantage that microwave background experiments
have, however, is that the level of anisotropy above 10
arcmin is almost independent of whether the dark mat-
ter is hot or cold (Seljak and Bertschinger, 1994; Stom-
por, 1994; Ma and Bertschinger, 1995; Dodelson, Gates,
and Stebbins, 1996). Moreover, as we shall see in Sec.
VIII, a direct detection of the stochastic background of
gravitational waves by laser interferometers seems
highly improbable. Thus the microwave background
anisotropies appear to be the only practical route at
present towards determining the gravitational-wave am-
plitude.

It is conventional to expand the temperature distribu-
tion on the sky in terms of spherical harmonics

AT 2”:
Ty, =
where the monopole and dipole terms have been sub-
tracted out and T(,=2.726 K is the present mean back-
ground temperature. The /th multipole corresponds
loosely to an angular scale of 7/, and a comoving length
scale of 100k ' Mpc at the last scattering surface sub-
tends an angle of about one degree (for Qy=1).
Inflation theory predicts that the a,, are Gaussian
random variables, with a rotationally invariant expecta-
tion value for their variance C;=(|a,,,|?). The radiation
power spectrum is defined to be [(/+1)C,; this is ex-
actly constant in the case of a scale-invariant density-
perturbation spectrum (n=1,=0) when the Sachs-
Wolfe effect is the sole source of anisotropy (Sachs and
Wolfe, 1967; Bond and Efstathiou, 1987). In general,
both tensor and scalar perturbations contribute to the
observed radiation power spectrum, and for inflation
these contributions are independent, so C,=C;+ C] .

Accurate calculations of the C; from both scalar and
tensor modes require numerical solutions using a Boltz-

> (Y (%),

1
m=—1

(73)
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mann code (Bond and Efstathiou, 1987), and this can
now be done to an extremely high accuracy, of around
one percent or so (Hu et al., 1995). A recent innovation
is a new algorithm based on an integral solution of the
Boltzmann equation (Seljak and Zaldarriaga, 1996a),
which obtains this level of accuracy at a much lower
computational expense. In principle, high-quality obser-
vations can approach this accuracy, though the question
of foreground remains a delicate one (Hu et al., 1995;
Tegmark and Efstathiou, 1996) and so the true level of
observational accuracy will be lower. These types of nu-
merical study seem essential for high-accuracy work, al-
though they are complemented by analytical ap-
proaches, which can be made both for scalars (Hu and
Sugiyama, 1995) and for tensors. The latter case is the
easier for two reasons; first, only gravitational effects
need to be considered and secondly, gravitational waves
redshift away once they are inside the Hubble radius, so
their main influence is only on the lower multipoles, up
to /=100. Analytic studies, of increasing sophistication,
have been made by Abbott and Wise (1984a, 1984b),
Starobinsky (1985), Turner, White, and Lidsey (1993),
Atrio-Barandela and Silk (1994), Allen and Koranda
(1994), Koranda and Allen (1994), and Wang (1996).
These results show good agreement with the numerical
calculations of Crittenden et al. (1993) and Dodelson,
Knox, and Kolb (1994), who evolve the photon distribu-
tion function by applying first-order perturbation theory
to the general relativistic Boltzmann equation for radia-
tive transfer.

With this calculational power in place, there are two
main obstacles to determining the primordial spectra.
These are known as ““‘cosmic variance” and ‘‘cosmic con-
fusion,” respectively, and are described as follows.

1. Cosmic variance

A given inflationary model predicts values for the
quantities C,={|a,,|?), but the observed multipoles

measured from a single point in space are
ai=3""_ |a,,|*/47. These represent only a single real-

ization of the C;. It is well known that a finite sampling
of events generated from a random process leads to an
intrinsic uncertainty in the variance even if the experi-
ment is perfectly accurate; this is sometimes called
sample variance. In the limit of full-sky coverage this
uncertainty is known as cosmic variance.

More precisely, the a7 are a sum of 2/+1 Gaussian
random variables and therefore have a probability dis-
tribution that is a y? distribution with 2/+1 degrees of
freedom. Thus for each multipole there are 2/+1
samples, so the uncertainty in the C, is given by

AC, [ 2
C, N2i+1

This implies that cosmic variance is proportional to
[7'2 and is therefore less significant on smaller angular
scales. However, for any given experiment, the beam
width limits how high an / can be obtained before ex-
perimental noise intervenes, and anyway in standard

(7.4)
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cosmological models the predicted signal cuts off rapidly
beyond /~1000 due to the finite thickness of the last
scattering surface. Thus the information on the tensor
components is limited because there is very little signal
in near-scale invariant models for /=200, where the ef-
fects of cosmic variance are less significant.

2. Cosmic confusion

The anisotropy for /<60 is essentially determined by
the inflationary parameters in Eq. (7.1) and by , and
Q,, since it is dominated by the purely gravitational
terms rather than the details of the matter content of the
universe. On the other hand, the anisotropies are highly
model dependent for />60 due to the complexity of the
operating physical processes. In particular, the precise
level of anisotropy in this range depends sensitively on
the values of the cosmological parameters listed in Eq.
(7.2). Bond et al. (1994) have suggested that different
sets of values for these parameters sometimes lead to
power spectra that are extremely similar (for a review
see Steinhardt, 1994). This leads to degeneracies in de-
termined parameters, which Bond e al. refer to as “cos-
mic confusion.” Cosmic confusion is problematic for the
reconstruction program and the degeneracy must be
lifted before it can proceed. Fortunately, things have
moved on since the discussion of Bond et al., and it is
now acknowledged that observations can be carried out
at such a high accuracy that the degeneracy is lifted (Hu
et al., 1995, Jungman et al, 1996). Tegmark and Ef-
stathiou (1996) have found that the microwave back-
ground anisotropies can be determined to very high pre-
cision even in the presence of multicomponent
foreground noise by the Planck satellite.

It should also be noted that other methods are avail-
able for determining cosmological parameters. For ex-
ample, the primordial light-element abundances imply
that 0.009<Qph?<0.022, and these limits may become
stronger as observations of deuterium in quasar absorp-
tion lines improve (Olive et al., 1990; Copi, Schramm,
and Turner, 1995). Furthermore, an accurate measure-
ment of &, certainly to within 10%, seems achievable
with the Hubble Space Telescope (Freedman et al.,
1994), whilst polarization of the microwave background
may provide insight into the ionization history of the
universe (Crittenden, Davis, and Steinhardt, 1993; Crit-
tenden, Coulson, and Turok, 1994; Frewin, Polnarev,
and Coles, 1994; Kosowsky, 1996). There has also been
improved understanding recently of the possibility of us-
ing polarization to probe gravitational waves (Kamion-
kowski, Kosowsky, and Stebbins, 1996; Zaldarriaga and
Seljak, 1996; Seljak and Zaldarriaga, 1997). Because
gravitational waves typically contribute more (relative
to density perturbations) to the polarization than to the
total anisotropy, and indeed because one can identify a
combination of the polarization parameters that cannot
be induced by density perturbations at all, it may ulti-
mately be possible to use polarization to do better than
the cosmic-variance-limited studies of the temperature
alone, which we discuss below.
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In view of this, it is important to consider to what
degree the next generation of satellites will be able to
determine the inflationary parameters in Eq. (7.1). Knox
and Turner (1994) have considered what might be de-
duced from two experiments A and B whose window
functions are centered around /4~55 and [5~200, re-
spectively. Experiment B measures anisotropy due only
to the scalar fluctuations, whereas A will be sensitive to
both scalar and tensor fluctuations. Knox and Turner
considered ‘‘standard” cosmological parameters #=0.5,
05~0.05, Q,=0, and a scale-invariant spectrum. They
concluded that if the tensor-scalar ratio r=0.14, one
should be able to rule out r=0 with 95% confidence
95% of the time. Thus the gravitational-wave amplitude
should be quantitatively measurable for r=0.14. If n is
reduced, the limit is improved slightly to r=0.1. Knox
and Turner (1994) further conclude that full-sky mea-
surements on angular scales 0.5° and 3° should acquire
the sensitivity required for making such a detection.

For reconstruction to proceed at lowest order, how-
ever, one also requires C; for some / and also the spec-
tral index n. Knox (1995) has simulated a set of micro-
wave background experiments within the context of
chaotic inflation driven by a ¢* potential. This model
predicts n=0.94, n=—0.04, and r=0.28. He considered
a third measurement made on a smaller angular scale
than those of A and B. It is this measurement that de-
termines C; and that may be combined with the mea-
surement at the intermediate scale /5 to determine the
slope n. Finally, r is inferred by identifying the ‘“‘excess
power” arising in measurement A with the gravitational
waves. He concludes that the quantity C5 130" " could
be measured to an accuracy of =0.3% and the error in
the slope of the scalar spectrum could be as small as
+0.02. If n~1, the error on r is =0.1 and improves
slightly for smaller n. A full-sky experiment designed
with current technology and with a 20 arcmin beam
should be able to achieve such precision.

However, these results are derived on the assumption
that the cosmological parameters have been accurately
determined by other means. Indeed, to achieve the
above precision on r and n, one requires the errors in
Qgh? to be no more than 10% and 6%, respectively
(Knox, 1995). Furthermore, the Hubble parameter will
have to be determined to within 6% for r or 14% for
n if 0, =0.8, and the uncertainty in ), must be below
7% .

More recently, Jungman ef al. (1996) carried out an
analysis in which all inflationary and cosmological pa-
rameters are allowed to vary. They confirmed the expec-
tation that the estimates provided by Knox (1995) are
very optimistic. If all the other cosmological parameters
are left completely free, it is impossible to get any useful
information on the gravitational waves at all—the re-
quired value of r is somewhat larger than mentioned
above, and n would have to be extremely large. How-
ever, that represents a somewhat pessimistic assessment,
because certainly many of the cosmological parameters
will be constrained by other types of observations, and
more importantly one may also feel content to live
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within a subset of cosmological parameter space (for ex-
ample, critical-density universes with only cold dark
matter).

The accuracy to which the above parameters can be
observationally determined will dictate whether the in-
formation is good enough to push any of the expressions
beyond lowest order. Another possibility is that a more
sophisticated observable may become available; Ko-
sowsky and Turner (1995) have considered the possibil-
ity that dn/dlnk might be observable in the microwave
background. For most models this seems unlikely, as the
effect will be small, but there do exist inflationary mod-
els leading to an effect that is large enough to be observ-
able. Whether this parameter generates any degenera-
cies with other inflationary or cosmological parameters
in the shape of the C,; remains to be addressed.

B. Toy model reconstructions with simulated data

We devote this subsection to carrying out a worked
example of reconstruction on a faked data set, to indi-
cate the kind of accuracy that might be possible. We
have tried to make the outcome of analyzing the simu-
lated data at least reasonably indicative of the sort that
high-resolution microwave background experiments
might achieve, based on the analysis by Knox (1995); see
also Jungman et al.,, 1996). However, our approach is
strictly a toy model; it is not intended to bear any resem-
blance to what one might actually do with high-accuracy
observations. It seems very unlikely that observations
such as cosmic microwave background anisotropies
might be used to estimate directly the k-space spectra
(though such an approach is common with galaxy red-
shift surveys); the expectation is that if suitable quality
data are obtained then the appropriate procedure will
be to push the theory forward from the spectra rather
than try to calculate the primordial spectra directly from
the observations. That is, some analysis such as a likeli-
hood analysis would be used to find best-fitting param-
eters such as the amplitude and spectral indices of the
scalars and tensors directly. Knox (1995) has taken some
first steps in this direction.

Perturbative reconstruction requires an expansion of
the observations about a single scale, which will end up
corresponding to the location ¢, on the potential about
which it is to be reconstructed. As discussed earlier, an
expansion of the logarithm of the spectra in terms of the
logarithm of the wave number is the best way to pro-
ceed. It will always make the most sense to choose the
scale k, about which the expansion is done to be near
the “central” point of the logarithmic k interval.® Thus
we write

8The word “central” is in quotes to indicate that the effective
center point of the data may be biased through tensors’ being
available only on large scales, with scale-dependent error bars
on both scalars and tensors. The word is intended to refer to
the point best determined by the data assuming the type of fit
attempted.
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where we have explicitly written in the observational
quantities to which the coefficients of the expansion cor-
respond.

A given observational program produces some finite
set of data with error bars, such as a list of galaxy red-
shifts and sky positions, or a pixel map of the microwave
sky. As mentioned above, it is unlikely to be a useful
strategy to try and obtain the power spectra from this
data set, and then use these spectra to reconstruct.
Rather, one should push the theory towards the data by
parametrizing the spectra and fitting for those param-
eters, as has been done so successfully with COBE.
Other parameters that affect the data interpretation,
such as the cosmological parameters, can be fixed or si-
multaneously fitted as required. The general reconstruc-
tion framework we have described indicates an efficient
parametrization of the spectra that could be used.

Despite the above, for our illustrative examples we
have chosen to simulate data for the spectra themselves,
as it is the simplest thing to do. Enough is known (Knox,
1995; Jungman et al., 1996) about the capabilities of sat-
ellites for measuring the microwave background in par-
ticular to enable a fairly realistic example (in terms of
the observational uncertainties) to be constructed. To
do anything else would obscure the principal issues. Our
aim therefore is to simulate a set of data, with errors, for
the spectra, which when fitted gives similar errors on
parameters to those expected had we carried out the full
task of simulating, say, a microwave sky and fitting di-
rectly for the spectral parameters. It is well outside the
scope of this paper to attempt a realistic simulation of
what future data might actually look like.

As a simple test, we have simulated fake data sets for
two different models, as follows.

(1) A power-law inflation model with power-law index
p=21, chosen to yield n—1=nr=-—0.1. Since power-
law inflation can be solved exactly, we know the precise
amplitude of the spectra corresponding to a given nor-
malization of the spectra [Egs. (3.29) and (3.47)]. This
particular model has been advocated by White et al.
(1995) as providing a good fit to the current observa-
tional data.

(2) An intermediate inflation model (Barrow and
Liddle, 1993), which gives a scale-invariant spectrum of
density perturbations but still possesses significant gravi-
tational waves. We choose a version for which scalars
and tensors contribute equally to COBE (to be precise,
their contributions to the tenth multipole are chosen to
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be the same). In this case, a precise calculation of the
spectra cannot be made, so we compromise by using the
next-order approximation to generate the spectra from
the underlying model.

These models both have quite substantial gravita-
tional waves. They have been chosen to be compatible
with present observational data, though they can be re-
garded as rather extreme cases that maximize the
chance of an accurate reconstruction.

The simulated data are constructed by the following
procedure.

The overall normalization reproduces the COBE re-
sult.

The scalar error bars are consistent with cosmic-
variance-limited microwave anisotropy observations up
to /=200 (except that, for simplicity, we have modeled
the errors by a Gaussian rather than the formally correct
X3+, distribution). Other cosmological parameters,
which affect the microwave anisotropy spectrum, are as-
sumed to be fixed. The Planck satellite can go to much
higher /, but of course the other cosmological param-
eters will be uncertain, which limits the estimation of the
inflationary parameters. By stopping at /=200, we find
that the accuracy we obtain is similar to that suggested
by Jungman ef al. (1996) for the full problem, so it serves
as a reasonable compromise.

For the tensors, reasonable a priori estimates for the
error bars are harder to establish. We have assumed
data corresponding to / up to 40, which is where the
tensor contribution to C; begins to cut off, and we have
chosen error bars so as to reproduce the observational
uncertainty in the tensor amplitude suggested by Knox
(1995). We then accept whatever uncertainty in the ten-
sor spectral index this gives us, and it happens to be in
reasonable agreement with that suggested by Knox.

The simulated data for Model 1 are shown in Fig. 2,
along with the best-fit reconstructions. Since scalar data
run from /=2 to 200, they cover two orders of magni-
tude in wave number, corresponding to Alnk=4.6. The
input and output parameters are shown in Table VI. We
performed two fits, the first being a power-law fit and
the second also allowing for a variation in the scalar
spectral index (though in fact the underlying spectrum
has none). The figures and subsequent discussion use the
former.

The results for Models 1 and 2 contain no particular
surprises. Although this is intended only to be indicative
and certainly falls way short of the sophistication that
can be brought into play on realistic data, the error bars
are probably fairly reasonable. As expected, the tensor
spectral index is the real stumbling block, but at least
with these models one obtains a strong handle on A%,
thus allowing a unique reconstruction. For these recon-
structions, we find that the lowest-order consistency
equation [Eq. (4.11)] is indeed satisfied,

A%
0.108+0.013=2-—=—n7=0.25£0.10

e (7.7)

for Model 1 and



402 Lidsey et al.. Reconstructing the inflaton potential . . .

-10

10 F 3

Amplitudes

10-‘1 L i

10 L L :
10° 10° 10"
k

FIG. 2. The simulated data of Model 1, with error bars. The
circles are A% and squares are A%. The horizontal axis is in
h Mpc™!. The lines show the best power-law fits to the simu-
lated data, as given in Table II. Showing the data in the form
of the spectra is schematic; an analysis of true observations
would directly fit the amplitude and spectral index to mea-
sured quantities.

2

0.14=0.02=2— = —n,=0.12=0.11
AS

(7.8)

for Model 2. The same is true for the next-order version,
Eq. (5.7). For Model 1 we obtain

T T
1= F+(1-n)
Asl Aj

=—n;=0.25+0.10,
whereas for Model 2 we find

2 2

0.13002=22T| 1 - L+(1-n)

0.114=0.014=2

(1.9)

=—n;=0.12%0.11. (7.10)

While this is encouraging, we see that the test is not
particularly strong due to the poorly determined ny. In
models where the tensors are even weaker than those
considered here, the task of testing the consistency
equation will be yet harder.

Proceeding on to the reconstruction, Table VII shows
lowest-order and next-order reconstructions, in com-
parison to the exact underlying potential for both mod-
els. The consistency equation has been used to eliminate
np as it is the most poorly determined quantity. A next-
order version of V"(¢,) cannot be obtained without a
value for dn/dlnk|k0, though the size of the correction

could be bounded from the error bars on the null result.
The reconstructed potentials for Model 1, both lowest
order and next order, are shown in Fig. 3 in comparison
to the underlying potential. A Taylor series has been
used to generate them, and the range of ¢ shown corre-
sponds to the range of observational data (a range of
two orders of magnitude in k) determined using Eq.
(6.5).

We see that in both models the lowest-order recon-
struction has been very successful. The errors are domi-
nated by those in measuring the tensor amplitude. How-
ever, in neither case does the next-order result offer a
significant improvement, given the observational error
bars. The main importance of the next-order result ap-
pears therefore to be in bounding the theoretical error,
rather than in providing improved accuracy in the over-
all reconstruction.

Figure 3 can be compared to a similar figure in Liddle
and Turner (1994), who investigated reconstruction of a
similar exponential potential. However, they did not in-
clude any observational errors, concentrating instead on
the theoretical errors and on the efficacy of different
expansion techniques for the potential. They also as-
sumed reconstruction over a wider range of scales and
had somewhat poorer convergence of the reconstructed
potential because they expanded about one end of the
data (the quadrupole) rather than the center.

TABLE VI. Input and output values from the two simulated data sets. The amplitudes are given at
the central k value (in log units) for the scalars, notionally corresponding to the 20th multipole.

Model 1 Input Output (power-law fit) Output (including dn/ dlnk|kn)
A3 2.5%10710 (2.45=0.09) x 10710 (2.45+0.10)x 10710

A2 0.12x10°10 (0.132+0.015)x 107 1° (0.132+0.015)x 107 1°
n—1 -0.1 —0.11+0.02 —0.115+0.035

nr -0.1 —0.25+0.10 —0.25+0.10
dn/dnk|, 0 0.003+0.018

Model 2 Input Output (power-law fit) Output (including dn/dlnkl; )
A% 1.34x10710 (1.27+0.04) x 10710 (1.28+0.04) x 10710

A 0.094x 10710 (0.09+0.01)x 10710 (0.09+0.01)x 10710
n—1 0.00 0.04+0.02 0.06+0.03

ny -02 —0.12+0.11 —0.12+0.11
dnldink|,, 0 —0.01+0.02
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TABLE VII. Input potential compared with reconstructions for the two models.

Model 1 Underlying Lowest-order Next-order
potential reconstruction reconstruction
1012V (o) /my, 28.2 31+4 31+4
1012V (o) /m3, -43.6 —51+9 —52+9
102V () /m3, 67.5 83+25
Model 2 Underlying Lowest-order Next-order
potential reconstruction reconstruction
1012V () /my, 22.4 21%2 21%2
102V (o) /m3 -38.9 —40+7 -37+6
102v7( 4’0)/”112:1 94.5 123+27

VIIl. OTHER WAYS TO CONSTRAIN THE POTENTIAL

Up until now we have concentrated, at least implicitly,
on observations connected to large-scale structure in the
universe, including microwave background anisotropies.
These certainly provide the best source of constraints on
the inflationary potential, and one should be very
pleased at the prospect of obtaining such constraints.
However, they do cover only a small portion of the full
inflationary potential. There is of course no way of un-
covering information about the potential relevant to
larger scales (beyond waiting the relevant number of
Hubble times), but in principle there are a variety of
ways of constraining the potential appropriate to smaller
scales. We shall discuss such possibilities in this section.
In particular, one may constrain the potential from the
fact that inflation must come to an end some 50
e-foldings after the large-scale-structure scales pass out-
side the Hubble radius. Further constraints are associ-
ated with the scalar and tensor perturbations on small
scales. In principle, laser interferometers could observe
the tensor spectrum as a stochastic background, though
we shall see that this is not promising. The possible over-
production of primordial black holes immediately after
inflation places upper limits on the amplitude of the last
scalar fluctuation to cross the Hubble radius just before
inflation ends, while distortions to the microwave back-
ground spectrum limit scalar fluctuations on mass scales
well below large-scale-structure scales.

A. To the end of inflation and the area law

In traditional inflation models, inflation can come to
an end in one of two ways. The first is via some drastic
event, such as a quantum tunneling (for example in ex-
tended inflation) or a sudden instability (probably con-
nected to a second field, as in hybrid inflation). If this
happened, it is likely that little information could be
drawn from the behavior approaching the end of infla-
tion. The second way inflation might come to an end is
simply by the potential’s becoming too (logarithmically)
steep to sustain inflation any longer, as in generic cha-
otic inflation models, so that e reaches unity.
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Let us see what one can conclude in the latter case.
For definiteness, let us assume that 50 e-foldings are
supposed to occur after the scale k, about which recon-
struction is attempted, leaves the horizon. The modest
dependence of this number on the details of reheating
will not be important. By assumption, inflation will end
precisely when e=1. The number of e-foldings that oc-
cur between two scalar-field values is given exactly by

N (4 f ¢ 1 dd

mi o Je(p)

For our purposes, this can be neatly written as an inte-
gral constraint (Liddle, 1994a):

d¢ 50

¢’end 1
[

(8.1)

(8.2)

V(¢)/mp|4
2x10~™M 2.5x10™" 3x107"" 3.5x107" 4x107"!

. M |
-0.2 -0.1 0.1 0.2

0
(¢_¢o)/ Mpy

FIG. 3. The reconstructed potentials compared to the under-
lying one, from the data in Model 1 in Table IV. The dashed
line shows the true underlying exponential potential. The two
solid lines, which nearly overlap, are Taylor-series reconstruc-
tions, one using just lowest-order information and the other
using the available next-order information. The length of these
lines corresponds to the range of k for which the simulated
data are available. The observational errors (not shown) domi-
nate the theoretical errors, and of course when taken into ac-
count the reconstructions are consistent with the true poten-
tial.
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FIG. 4. An illustration of the area law. Reconstruction finds
€ and perhaps its derivative, between 60 and 50 e-foldings
from the end of inflation, illustrated by the solid part of the
curve, which ends at a scalar-field value indicated by ¢s,. Af-
ter large-scale-structure scales leave the horizon, € (now shown
as a dotted curve) must behave so that it reaches unity just as
the shaded area under the curve of e~V against ¢/mp reaches

50/\/4r.

This constraint can most easily be thought of graphi-
cally. We have reconstructed the value of € and its de-
rivative at ¢, and know €( ¢.,q) =1. As shown in Fig. 4,
if we plot the curve of 1/\/e against ¢/myp, it must be
such that it reaches unity just as the area under it
reaches 50/\47. While there remain many ways in
which the curve may do this, it does exclude some pos-
sibilities such as a sudden flattening of the potential after
observable scales leave the horizon.”

B. Local detection of primordial gravitational waves

A number of authors have examined the possibility
that the stochastic background of primordial gravita-
tional waves produced during inflation could be detected
locally (Allen, 1988; Grishchuk, 1989; Sahni, 1990;
Souradeep and Sahni, 1992; White, 1992; Turner et al.,
1993; Bar-Kana, 1994; Liddle, 1994b). In general, the
wave number of the gravitational waves is related to the
value of the inflaton field during inflation via the relation
In(k/ky)=60— N, where N is the number of e-foldings
before the end of inflation and ky=a,Hy~3%x10"'®h
Hz is the wave number of the mode that is just reenter-

°It appears that this can be used to derive an upper limit,
albeit a weak one, on (@.na— ¢o), from the knowledge that
e<1. In fact this is not the case, since H starts to exhibit strong
variation when € approaches one. The number of e-foldings
should then strictly be characterized by the increase in aH
rather than a alone [see Liddle er al. (1994) for details]. In
principle, a yet weaker constraint may be derived by using
energy-scale arguments to limit how much H can decrease in
the late stages of inflation, but such a constraint seems too
weak to be worth pursuing.
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ing the Hubble radius at the present epoch. Thus the
modes with wave numbers associated with the maximum
sensitivity of typical beam-in-space experiments
(~1073 Hz) first crossed the Hubble radius approxi-
mately 25 e-foldings before the end of inflation. A direct
detection of such waves would therefore provide unique
insight into a region of the inflationary potential that
cannot be probed by large-scale-structure observations.
However, we shall see that this is unlikely to be possible.

There are a number of gravitational-wave detectors
currently under construction or proposal (see, for ex-
ample, Thorne, 1987, 1995). The ground-based Laser In-
terferometer Gravitational-Wave Observatory (LIGO)
should have a  peak  senmsitivity of (),
~10""4"2 at 10 Hz (Christensen, 1992), where Q, is
the energy density per logarithmic frequency interval.
The proposed space-based interferometers, the Laser
Gravitational Wave Observatory in Space (Faller et al.,
1985; Stebbins et al., 1989) and the Laser Interferometer
Space Antenna (Danzmann, 1995) probe lower frequen-
cies, but with a sensitivity to flat-spectrum stochastic
sources that is less than that of LIGO.

After inflation, the evolution of the gravitational-wave
perturbation is determined by Eq. (3.43). We have al-
ready studied the effect of modes that have wavelengths
greater than the Hubble radius by the time of last scat-
tering, which contribute to microwave background
anisotropies. However, the scales that can be detected
locally will have reentered the Hubble radius before the
onset of matter domination. In this regime they behave
as radiation, so their energy density stays fixed during
the radiation era but falls during the matter era. This
suppression factor is directly measured by the radiation
density today, Q,,q=4X10"3h"2. Thus the predicted
amplitude on scales reentering before matter-radiation
equality is (Allen, 1988; Sahni, 1990; Liddle, 1994b)

2
X4x1077,

Q,h? 2 (i (8.3)

g _377 mp;
For the inflation models we have been discussing, H
always decreases with time, and hence the primordial
amplitude on short scales is always less than that on
large scales.!” The quadrupole anisotropy already places
an extremely stringent limit on the amplitude of the
spectrum at large scales, and this immediately translates
into a conservative, but robust, constraint across all
short scales of (Liddle, 1994b)

QO h*<4x1075. (8.4)

This puts the inflationary signal well out of reach of any
of the proposed experiments.

10«Syperinflation” models have been considered within the
context of superstring-motivated cosmologies, and it appears
that in that case the gravitational-wave amplitude could rise
sufficiently on short scales to be detectable (Brustein et al.,
1995). However, no complete model demonstrating how super-
inflation might successfully end has been constructed thus far
(Brustein and Veneziano, 1994; Levin, 1995a).
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C. Primordial black holes

It has been conjectured that primordial black holes
might form during the reheating phase immediately af-
ter inflation (Khlopov, Malomed, and Zel’dovich, 1985;
Carr and Lidsey, 1993; Carr, Gilbert, and Lidsey, 1994;
Garcia-Bellido et al., 1996; Randall, Soljaci¢, and Guth,
1996). While there are considerable theoretical uncer-
tainties attached to this possibility, if such formation did
occur, it could constrain the scalar spectrum at very
short scales. During inflation the first scales to leave the
Hubble radius are the last to come back in, and this
implies that the very last fluctuation to leave will be the
first to return. In some regions of the post-inflationary
universe, the fluctuation will be so large that the collapse
of a local region into a black hole will become inevi-
table. The higher the rms amplitude, the larger the frac-
tion of the universe forming primordial black holes. The
observational consequences of the evaporation of these
black holes then leads to upper limits on the number
that may form and hence on the magnitude of the spec-
trum on the relevant scales. Thus one may constrain the
amplitude of the density spectrum on scales many orders
of magnitude smaller than those probed by large-scale-
structure observations and microwave background ex-
periments. These constraints lead to an upper limit on
the spectral index and may therefore provide insight
into features of the inflationary potential towards the
end of inflation.

We parametrize the density spectrum in terms of the
mass scale M associated with the Hubble radius when a
given mode reenters. Hence 8(M)x M~ defines the
scalar spectral index. Primordial black holes are never
produced in sufficient numbers to be interesting if
n<1, but they could be if the spectrum is “blue” with
n>1.

When an overdense region with equation of state
p = yp stops expanding, it must have a size greater than
'y times the horizon size in order to collapse against the
pressure. The probability of a region of mass M forming
a primordial black hole is (Carr, 1975)

2
The constraints on B(M) in the range 10"

g<M<=10"g have been summarized by Carr and Lidsey
(1993). In particular, primordial black holes with an ini-
tial mass ~10% g will be evaporating at the present ep-
och and may therefore contribute appreciably to the ob-
served gamma-ray and cosmic-ray spectra at 100 MeV
(MacGibbon and Carr, 1991). On the other hand, pri-
mordial black holes with a mass of 10'° g have a lifetime
~ 1 s and, if produced in sufficient numbers, would lead
to the photodissociation of deuterium immediately after
the nucleosynthesis era (Lindley, 1980). Primordial
black holes of mass slightly below 10'° g could alter the
photon-to-baryon ratio just prior to nucleosynthesis. An
upper limit therefore emerges when we require that
evaporating primordial black holes not generate a
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photon-to-baryon ratio exceeding the current value
S¢=10° (Zel’dovich and Starobinsky, 1976).

Carr et al. (1994) have considered the constraints on
B(M) below 10!° g. In this region the strongest con-
straint arises if evaporating primordial black holes leave
behind stable Planck-mass relics (MacGibbon, 1987;
Barrow, Copeland, and Liddle, 1992). The observational
constraint from the relics derives from the fact that they
cannot have more than the critical density at the present
epoch, O ,<1.

The upshot of this analysis is that the spectral index is
typically constrained to be less than about 1.5, depend-
ing weakly on assumptions as to the reheat temperature
after inflation and whether one takes into account the
black-hole relic constraint. Because the constraint ap-
plies at the end of inflation, on scales greatly separated
from the microwave anisotropies, it is independent of
the COBE normalization and also of the choice of dark
matter. However, in this form it relies on the spectral
index’s being constant right across those scales [which it
would be in the hybrid inflation model (Copeland,
Liddle, et al, 1994)]. For general inflation models it
should be reinterpreted as a specific constraint on the
amplitude at the short scales being sampled.

Finally, a constraint on the amplitude of the spectrum
at a scale corresponding to a horizon mass ~0.1M¢ can
in principle be derived from the recent observations of
massive compact halo objects (MACHO’s; Alcock et al.,
1993; Aubourg et al., 1993). The estimated mass range of
these objects suggests that they constitute a few percent
of the critical density. Although the favored explanation
for these microlensing events is that they are due to sub-
stellar baryonic brown dwarfs, it is quite possible that
MACHO'’s may be primordial black holes and therefore
non-baryonic in nature (Nasel’skii and Polnarev, 1985;
Ivanov, Nasel’skii, and Novikov, 1994; Yokoyama,
1995). Such primordial black holes could form from
vacuum fluctuations in the manner discussed above if
the amplitude of the spectrum were sufficiently high on
the appropriate scale. This might be possible, for ex-
ample, if the potential had a suitable form (Ivanov et al.,
1994). Alternatively, a spike might be imposed on the
underlying spectrum by the quantum fluctuations
of a second scalar field (Yokoyama, 1995; Garcia-
Bellido et al., 1996; Randall et al., 1996). If the amplitude
were too high on this particular scale, however, it would
lead to the overproduction of MACHO-primordial
black holes. Consistency with the observations therefore
constrains both the spectrum and the inflationary poten-
tial.

D. Spectral distortions

A further constraint on §(M) over mass scales con-
siderably smaller than those corresponding to large-
scale structure may be derived by considering depar-
tures of the microwave spectrum from a pure blackbody.
[For detailed reviews see, for example, Danese and de
Zotti (1977) and Sunyaev and Zel’dovich (1980)].
Above a redshift of z,~2.2X 10*(Qph?) 12, Compton



406 Lidsey et al.. Reconstructing the inflaton potential . . .

scattering is able to establish local thermodynamic equi-
librium whenever there is a sudden redistribution or re-
lease of energy into the universe (Burigana, Danese, and
de Zotti, 1991). This produces a Bose-FEinstein spectrum
no[exp(x+u)—1]7! that is characterized by a chemical
potential u, where x=hv/kT. (A Planck spectrum cor-
responds to £ =0.) On the other hand, equilibrium can-
not be established for redshifts just below z,. The dis-
tribution of energy at this time could therefore lead to
observable spectral distortions (x#0) in the microwave
background at the present epoch. The Far Infrared Ab-
solute Spectrophotometer (FIRAS) aboard COBE has
constrained the spectral distortion to be |u|<3.3X1074
(Mather et al., 1994), whilst Hu, Scott, and Silk (1994)
have strengthened this limit by considering the COBE
measurement of temperature fluctuations on angular
scales of 10° (Bennett et al, 1994). They find that
w<5.0X10°(AT/T)3,,~6.3X1077.

These limits imply that photon diffusion would have
been the dominant mechanism for producing spectral
distortions (Daly, 1991). Silk (1967) first showed that the
damping of adiabatic fluctuations can proceed if their
mass scales are below a characteristic mass known as the
Silk mass. At sufficiently early times, the photons and
baryons in the universe are strongly coupled through
Thomson scattering and they therefore behave as a
single viscous fluid. When adiabatic fluctuations reenter
the Hubble radius, they set up pressure gradients and
these result in pressure waves that oscillate as sound
waves. As the epoch of recombination approaches, how-
ever, the mean free path of the photons increases and
the photons are able to diffuse out of the overdense
regions into underdense regions. Thus the inhomogene-
ities in the photon-baryon fluid are damped. The energy
stored in the fluctuations is redistributed by the diffusion
of photons and it is this transfer of energy during the
epoch near to z, that produces the spectral distortions.
The fluctuations that lead to these potentially observ-
able effects have mass scales in the range
1073<M/M »<10* (Sunyaev and Zel’dovich, 1970; Bar-
row and Coles, 1991).

The observational upper limit on x implies an upper
limit on the amplitude of the pressure wave and there-
fore a limit on 8(M). The energy density in a linear
sound wave is pu?, where u~c/\/3 is the sound speed.
Thus the dimensionless energy release caused by the
damping is g~ /3. It can be shown that the spectral
distortion is given by u~1.4¢g and it follows, therefore,
that 6<1.46y/u~0.01.

By normalizing the spectrum at COBE scales
(~10?2M,), one may derive an upper limit on the spec-
tral index. Barrow and Coles (1991) and Daly (1991)
assume that the distortion is entirely due to the largest-
amplitude wave and deduce a limit of n<1.8 for
M~10"3Mg. (The limit becomes weaker for larger
scales.) Hu et al. (1994) have derived a stronger con-
straint of n<1.5 by refining these calculations. This is
comparable to the primordial-black-hole constraints we
have just discussed (though somewhat weaker if one be-
lieves the primordial-black-hole relic constraint). How-
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ever, it is probably more reliable because it is based on
physics that is relatively well understood and requires a
less severe extrapolation to smaller scales.

IX. CONCLUSIONS

In this paper, we have reviewed the relationship be-
tween observations of microwave anisotropies and those
of large-scale structure and the possibility of connecting
them to the potential energy of a scalar-field driving in-
flation. We have argued that, given suitable quality ob-
servations, the inflationary idea can be tested and then
features of the inflationary potential can be directly
measured. In many ways this is remarkable, given that it
is impossible, by many orders of magnitude, for an
Earth-based accelerator to pursue this task.

It is predicted that inflation produces both gravita-
tional waves and density perturbations. Consequently,
the employment of observations may be divided into
two main parts. The most challenging is the test of the
inflationary consistency relations; if these prove testable
and are confirmed, it will provide a powerful vindication
of the chaotic inflation paradigm. One could then feel
confident in following the less observationally challeng-
ing task of employing observations to discern informa-
tion regarding the inflationary potential, in the form of
its value and that of its first few derivatives at a single
point.

We have indicated the different approximation
schemes that must be invoked. Of paramount impor-
tance is the slow-roll expansion, but this must also be
coupled to an expansion of the observables. In the sim-
plest instance this latter expansion corresponds to the
approximation of power-law spectra. The lowest levels
of approximation are certainly able to cope with
present-day observations of both microwave anisotro-
pies and large-scale structure. However, in this work we
have been looking forward, since the demands that will
be imposed on theoretical accuracy by future observa-
tions, especially satellite-based microwave background
anisotropy measurements, will be high. Indeed, they
could in principle threaten the limits of present-day the-
oretical knowledge regarding the calculation of the spec-
tra.

We must emphasize that our calculations have all
been implemented within the standard paradigm for
chaotic inflation. The vast majority of known viable
models can be expressed within this class, either trivially
or by cunning manipulation, but one should bear in
mind that there exist some models of inflation for which
this is not the case. In some examples, such as old ver-
sions of the open inflationary scenario or some multi-
field theories, this is because the predictions turn out to
be dependent on initial conditions. Although such a situ-
ation would be unfortunate, it is not logically excluded.
Other theories, such as the recently investigated single-
bubble open inflationary models, rely on dynamics that
are much more complicated than that of the standard
scenario (Sasaki et al., 1993; Bucher et al., 1995a, 1995b;
Linde, 1995). They therefore lead to a more complicated
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relationship between theory and observations. Further-
more, even if the inflationary hypothesis is indeed cor-
rect, it may be the case that the actual model produces a
very low amplitude of gravitational waves (Lyth, 1997).
This would make them impossible to measure, and such
a situation would remove the ability to make a consis-
tency check and thus eliminate most of the potential for
reconstruction.

Finally, there remains every possibility that the entire
inflationary idea is incorrect; if so, one can at least hope
that this is manifested in a failure of the consistency
relations. However, it may not prove possible to test the
consistency relations; might one then blunder into re-
constructing a nonexistent object? With sufficiently
good observations, such as a microwave background sat-
ellite will provide, the answer should be no. The C; spec-
trum, when it is observed, will contain huge amounts of
degenerate information. If the correct underlying theory
is that of topological defects (see, for example, Vilenkin
and Shellard, 1994), the spectral shape should be very
different from any simple inflation model for any values
of the cosmological parameters. One can certainly re-
construct a “‘potential”’ that would give the observed
C,, but it would probably be of such a complex form as
to have little particle physics motivation, leaving people
to search for other explanations.

In a standard inflation scenario, the C; give a com-
plete description of the Gaussian perturbations gener-
ated. This prediction can also be tested against observa-
tions; present observations are compatible with
Gaussianity, though they are not strong enough to give a
convincing test. In the future we can expect such tests to
be widely applied. While in principle it is possible to
construct inflation models giving non-Gaussian pertur-
bations, in practice such models are so contrived that
again, were such features detected, one would quickly
be looking for a more plausible theory for the origin of
perturbations. It might well be also that the shape of the
power spectrum might be incompatible with the non-
Gaussian nature, within the general context of inflation.

The bulk of this review has covered work already dis-
cussed in the literature. We have given an extensive ac-
count of the Stewart and Lyth (1993) calculation of the
perturbation spectra, which provides the accuracy
needed to discuss anticipated observations. The recon-
struction framework has then been described to an ac-
curacy that ought to be sufficient for years to come.
However, as well as the review material, we have
brought to light a few new results and viewpoints and we
summarize these here.

The consistency equation discussed in the present lit-
erature is just one of an infinite hierarchy of consistency
equations, each of which can be taken (in principle)
to arbitrary accuracy in the slow-roll expansion. Ko-
sowsky and Turner (1995) have written down the form
for the second member and we have reproduced it here.
However, it is probable that only the first consistency
equation will ever be tested.

We have indicated that since scalar perturbations are
much easier to measure than tensor ones, the appropri-
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ate form of the first consistency equation to consider is
not the lowest-order version, but rather the next-order
version. One requires the tensor spectral index ny to test
the lowest-order version and it is very unlikely that such
observations would be available without there also being
the appropriate ones to include the next-order version.
(The only new ingredient in the next-order version, over
and above those quantities in the lowest-order version,
is the scalar spectral index n.)

We have been more explicit than previous authors as
to how observations of the primordial spectra should be
handled in terms of an expansion in Ink. We discussed
how this expansion relates to the slow-roll expansion. A
worked example on simulated data has illustrated these
ideas in action.

In conclusion, therefore, the relationship between in-
flationary cosmology and large-scale-structure observa-
tions is well understood and the theoretical machinery
necessary for taking advantage of high-accuracy obser-
vations is now in place. These promise the possibility of
constraining physics at energies inaccessible to any other
form of experiment. Such observations are eagerly
awaited.
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