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I. INTRODUCTION

Quasicrystals, which were discovered in 1984, have
aroused great excitement because they are a challenge
to crystallographic analysis, showing at the same time
sharp diffraction peaks and a point-group symmetry that
is incompatible with lattice periodicity. One central
question concerns the way in which their remarkable
structural characteristics affect physical properties. The
purpose of the present paper is to describe theoretical
and experimental results concerning the lattice dynamics
of quasicrystals.
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Quasicrystals were first encountered in AlMn alloys
obtained by rapid solidification from the melt. Shecht-
man et al. (1984) reported electron-diffraction patterns
that consisted of sharp Bragg peaks and that displayed
an icosahedral point-group symmetry. The former
showed that there was long-range order, whereas the
latter excluded lattice translation symmetry. Since this
first experiment, quasicrystalline phases have been
found in many metallic alloys, but very often the degree
of quasicrystallinity was low due to the existence of a
second phase and of a high density of (phason) defects.
Besides quasicrystals with icosahedral symmetry, others
have been found with octagonal, decagonal, dodecago-
nal, or tetrahedral point-group symmetries. New stable
icosahedral alloys with a high degree of quasicrystallin-
ity have been discovered by Tsai and coworkers (Tsai
et al., 1987a, 1987b) in AlCuTM (TM=V, Cr, Fe, Ru,
Os) ternary alloys. And recently a stable quasicrystalline
phase in AlMnPd and AlPdRe alloys has been reported
(Tsai et al., 1990). On the basis of thermodynamic data,
it is presumed that strong chemical-order bonding be-
tween Pd and Al or Mn prevents the Al70Pd20Mn10 qua-
sicrystal from generating atomic disorder and phason
strains during solidification.

The quasicrystalline structure seems to be very close
in energy to other structures. Therefore, depending
upon the preparation conditions, the composition, and
the thermal history, AlFeCu alloys can be observed,
even at room temperature, either in a perfect quasicrys-
talline state without any indication of phason strain
(static disorder) or in a microcrystalline twin state with
an overall pseudo-icosahedral symmetry, and indeed
have been observed by Audier and Guyot (1990),
Calvayrac et al. (1990), and Denoyer et al. (1990), and
Dubois et al. (1991). The periodic microcrystalline struc-
ture has a rhombohedral unit cell. The coherent micro-
domains have orientational relationships that have been
identified in AlFeCu by high-resolution microscopy and
that create a perfect mean icosahedral orientational or-
der.

Since the discovery of quasicrystals, significant
progress has been made in determining their structural
and static properties (Boudard et al., 1992; Corner-
Quiqandon et al., 1991; Elcoro et al., 1994; Janot et al.,
2779(1)/277(38)/$15.70 © 1997 The American Physical Society
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1989) even though atomic positions are not yet precisely
known. However, the understanding of their dynamical
properties is still rather limited. Because quasicrystals
are often presented as an intermediate state between a
periodic and a random system, one of the first questions
that arises is how waves propagate in these quasiperi-
odic systems. In this paper we shall focus on lattice vi-
brations in a quasiperiodic medium and we shall review
what is known up to now theoretically for specific mod-
els and experimentally for three well-studied systems,
AlFeCu, AlCuLi, and AlMnPd. These all have icosahe-
dral symmetry. It has not yet been possible to synthesize
quasicrystals with other symmetries of sufficiently large
size for study. A brief review on the dynamical proper-
ties of the icosahedral AlMnPd system has already been
given by Suck (1993b).

This paper is organized as follows. First, in Sec. II, we
define the problem we are facing and the questions that
arise when one deals with the dynamics of quasiperiodic
structures; then the results of some specific models are
presented. In Sec. III, we review the experimental re-
sults available up to now—for the most part from neu-
tron experiments. Finally, we summarize our review
with some concluding remarks.

II. THEORETICAL CONSIDERATIONS

A. The problem

For ordinary lattice periodic crystals, the oscillations
of the atoms around their equilibrium positions can be
described in terms of elementary excitations, the
phonons. These are propagating waves with a well-
defined frequency and wave vector. The number of de-
grees of freedom in each unit cell is finite, three times
the number s of particles in the unit cell. Although the
atoms are all coupled together, the infinite-dimensional
lattice-vibration problem is reduced to a finite-
dimensional one if one uses the lattice periodicity. The
modes are characterized by a wave vector, which can be
restricted to the first Brillouin zone, and a branch label.
The spectrum consists of bands. The 3s-dimensional dy-
namical matrices for different wave vectors decouple.
The motion of particles connected by a lattice transla-
tion and moving in one mode differ only by a phase
factor in going from one unit cell to another. Therefore
the vibrations are extended, in contrast to the localized
modes one sometimes finds in disordered systems.

In recent decades, systems without lattice periodicity,
but with a great deal of (quasiperiodic) ordering have
been studied. We call a system quasiperiodic if its dif-
fraction pattern has sharp Bragg peaks at positions that
are linear integer combinations of a finite number of
basis vectors:

HW 5(
j51

n

hjaW j* , hjPZ. (2.1)

In other words, the peaks can be indexed by a finite
number of integers. If this number is 3 and the three
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
basis vectors aW j* are not in one plane, this is a lattice
periodic structure; otherwise it is not. If there is no lat-
tice periodicity, there is no proper Brillouin zone. This
leads immediately to the question of whether in such
systems there are also propagating waves, and what the
difference is in dynamics between lattice periodic sys-
tems and aperiodic (but quasiperiodic) systems. In par-
ticular, one can ask about the character of the spectrum
and the existence of extended and localized modes. The
existence of systems without lattice periodicity has been
known for a longer time in the case of incommensu-
rately modulated crystal (IC) phases. A review of ex-
perimental and theoretical results for phonons in IC
phases was given by Currat and Janssen (1988). We give
here a short summary and later compare the situation
with that in quasicrystals.

An IC phase can be described as a lattice periodic
structure with a periodic deformation. For the simplest
case of a displacively modulated IC phase, this means
that the positions of the atoms are given by

rWnj5nW 1rW j1fWj~QW •nW !, (2.2)

where nW is a lattice vector, rW j the position of the jth atom
in the unit cell, fWj a periodic function with period 2p, and
QW a vector with irrational components with respect to
the reciprocal lattice. Typically, such a phase originates
at a temperature Ti via a soft mode with wave vector QW

and branch label n. Then, for T decreasing towards Ti,
the frequency vQW n goes to zero, and just below Ti one
has

fWj~QW •nW !5XQW neiQW •nW eW~QW nuj !1c.c. (2.3)

for an eigenmode (QW n) with eigenvector eW(QW n) and
normal coordinate XQW n . For lower temperatures
the modulation function fWj gets higher harmonics as
well. Very often there is a new phase transition at Tc
towards a commensurate phase. Near Tc, the modula-
tion can be described as an arrangement of nearly peri-
odic domains separated by domain walls called discom-
mensurations. The distance between these is such that
there is no overall lattice periodicity and that, as in the
case of sinusoidal modulation [Eq. (2.3)], the diffraction
pattern shows peaks at positions KW 1mQW , where KW is
a reciprocal lattice vector of the basic structure and m
an integer. The existence of a soft mode is an idealiza-
tion that is seldomly realized. However, such soft modes
have indeed been observed in a number of compounds,
such as biphenyl (Cailleau, 1985) and ThBr4 (Bernard
et al., 1983).

In the incommensurate phase there are new types of
excitations that do not occur in lattice periodic crystals.
Because of the incommensurability, the position of the
modulation wave is irrelevant: one may shift the wave
with respect to the lattice without changing the energy.
This implies that there is, besides the three ordinary
infinite-wavelength excitations of zero frequency, an-
other zero-frequency mode, called the phason. At Ti the
modes with wave vector near QW have for the lowest
branch a parabolic dispersion: v'a(kW 2QW )2. Since the
branches near QW and −QW are degenerate and coupled,
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the new eigenmodes are symmetric and antisymmetric
combinations of the old ones. For T,Ti there is a
branch starting at kW 2QW =0 with zero frequency, the pha-
son branch, and a branch with higher frequency, the am-
plitude branch. These correspond, respectively, to fluc-
tuations in the phase and the amplitude of the
modulation function. The minimum of the latter has
zero frequency only at Ti . The phason branch starts at
zero as long as the IC phase is in the sinusoidal region
(see, for example, Moussa et al., 1987). There has been a
long discussion in the literature about the existence of a
phason gap (Blinc et al., 1986). Some experiments seem
to indicate that the phason branch does not completely
go to zero, but stops at a nonzero frequency. NMR mea-
surements give an indication for a value of 70 GHz or
more for the phason gap. Only in smectic liquid crystals
has a vanishing gap been shown unambiguously (Blinc
et al., 1986).

These branches are the only ones that change qualita-
tively. For the other branches, one may see the modula-
tion as a perturbation, with the modulation amplitude as
a parameter. Because modes of the old system become
coupled by the modulation if their wave vectors differ by
a multiple of QW , there are quantitative changes, but the
overall picture remains the same. One can use the Bril-
louin zone of the basic structure for the characterization
of the eigenmodes. The difference is that the pseudo-
momentum is not a good quantum number (there is cou-
pling with other modes differing by a multiple of QW in
the wave vector), and the dispersion curves are not
smooth, but show gaps.

This can be seen in the dynamic structure factor
S(qW ,v). Above Ti there are acoustic branches starting
from every reciprocal-lattice point. Below Ti new
branches appear starting at v=0 and qW 5mQW (modulo
reciprocal-lattice vectors of the basis structure). Near Ti
where the amplitude of the modulation is small and only
first-order satellites (m=61) are observed, the relevant
new branches start at v=0 and qW 56QW . Near the lock-in
transition at Tc , however, the coupling between the
modes becomes stronger, higher-order satellites appear,
and many new branches can be observed for umu>1 in
S(qW ,v) (Janssen and Currat, 1987). The function
S(qW ,v) then has a very complicated structure: its non-
negligible values are not restricted to a small number of
curves in the (qW ,v) plane but appear everywhere (Fig.
1).

Because a priori the lattice dynamics of quasiperiodic
IC phases are different from those of periodic systems,
researchers have studied the behavior of simple models.
The idea is that, if there is a fundamental difference in
phonon characteristics between lattice periodic and
quasiperiodic systems, this should show up already in
such models. The simplest are linear-chain models. If
un exp(ivt)+c.c. is the displacement of the nth particle
in a chain, and the nth and (n−1)th particles are con-
nected by a spring with constant an , the equations of
motion read

mnv2un5an~un2un21!1an11~un2un11!. (2.4)
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
The sequence $an% or $mn% is taken to be quasiperiodic.
Because the idea is that the periodic modulation influ-
ences the spring constants, this is a model for an IC
phase. For each value of v there are two solutions, but
they are only physically allowed if the solution un does
not grow faster than a polynomial as n goes to 6`. A
value of v for which there is an allowed solution is said
to belong to the spectrum. For a lattice periodic chain
this is only the case when un is bounded. The number of
degrees of freedom for a quasiperiodic system is infinite,
and this number is not reduced by the n-dimensional
translation symmetry. Therefore the determination of
the eigenvibrations comes down to the eigenvalue prob-
lem of an infinite-dimensional matrix. A number of tech-
niques have been used to attack this problem. The first

FIG. 1. Dynamic structure factor for an IC phase: (a) for sinu-
soidal modulation of small amplitude; (b) in the discommen-
suration regime. The modulus of the dynamic structure factor
is indicated by the length of the horizontal strokes. If one plots
this vertically one obtains a surface S(q ,v) above the q-v
plane. Compare this with the S(q ,v) for a quasicrystal in Fig.
9. Wave vectors are in units of the basis of the reciprocal lat-
tice of the basic structure. Frequencies in a.u.
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one is the use of periodic approximants. In this ap-
proach, one considers a series of rational numbers
Ln/Nn tending to the irrational value Q/2p of the modu-
lation. For each periodic approximant, one can deter-
mine the spectrum and the eigenvectors by solving an
Nn-dimensional problem. If these quantities tend to a
limit when n tends to infinity, the limit is supposed to be
the value for the incommensurate case.

Alternatively, one may use finite clusters from the
quasiperiodic structure and let the size of these clusters
go to infinity. For the periodic and cluster approximants,
the dimension of the dynamical matrix grows exponen-
tially. On the other hand, the matrix is sparse—it has
many zeros. This fact is used in the moment method
(Benoit et al., 1990), the Lanczos method and its varia-
tions (Cullum and Willoughby, 1985), and the recursion
method (Haydock et al., 1980).

A third technique, which can be used for chains, uses
a transfer matrix. If the Hamiltonian is written as

H5(
n

H pn
2

2mn
1

an

2
~un2un21!2J , (2.5)

the equations of motion are given by Eq. (2.4). Consider
first the case in which the incommensurability is in
the coupling constants (mn5m); we introduce Qn
5an(un2un21). Then one has the relation

Qn2122Qn1Qn111
mv2

an
Qn50. (2.6)

Notice that the first three terms correspond to a discrete
version of the second derivative. When one expresses
Qn11 in terms of Qn and Qn21, one can write

S Qn11

Qn
D 5TnS Qn

Qn21
D , Tn5S 22mv2/an 21

1 0 D .

(2.7)

Such a matrix Tn is a transfer matrix. From the relation
above follows the relation

S Qn1N11

Qn1N
D5 )

p51

N11

Tn1p21S Qn

Qn21
D . (2.8)

Every value of v for which the displacements un remain
bounded—which is the case if the trace of the product of
Tn’s remains between −2 and +2—is in the spectrum. In
principle, this gives a way to determine the spectrum.
This method is especially useful for one-dimensional sys-
tems.

When the incommensurability is in the masses (an=a),
one may derive from Eq. (2.4) the recurrence relation

un115~22mnv2/a!un2un21 , (2.9)

which gives the mapping

S un11

un
D 5TnS un

un21
D , Tn5S 22mnv2/a 21

1 0 D ,

(2.10)
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and one can determine the spectrum in the same way as
in the case of the modulated spring constants. Of course,
this is nothing but the general duality between two har-
monic chains with nearest-neighbor coupling, one with
masses mn and spring constants an , and one with masses
a2/an and spring constants a2/mn (Toda, 1966).

The simplest modulated-chain model takes mn5m
and

an5a@11d cos~Qn1f!# (2.11)

in Eq. (2.4), with d being the modulation amplitude. Nu-
merically, researchers have observed the appearance of
an infinite number of gaps in the dispersion curve (de
Lange and Janssen, 1981). If one develops Q/2p in a
continued fraction expansion, the main gaps correspond
to those one finds in truncating this series after a few
terms; smaller gaps correspond to higher orders.

The gaps tend rapidly to zero and the spectrum has a
limit. In the limit spectrum one finds a scaling behavior:
a part of the spectrum is a scaled-down version of the
whole spectrum (de Lange and Janssen, 1981). For ex-
ample, if one multiplies the lowest part of the spectrum
for the nth approximant by the appropriate factor, one
finds the lower part of the (n−1)th approximant. This
shows that there are gaps at arbitrarily low frequencies,
but the size of the gaps goes exponentially to zero. This
scaling behavior (Figs. 2 and 3) is very similar to that in
the spectrum of an electron in a crystal in an external
magnetic field (Hofstadter, 1976). The analysis of spec-
tral properties will be discussed later on.

Because of Bloch’s theorem, one knows that in one
mode, the motion of particles connected by a lattice
translation differs only in the phase. This excludes local-
ized states in perfect lattice periodic crystals. Therefore
the modes in the rational approximants are strictly ex-
tended, but their limit behavior may be different. For
low frequencies and small d, the eigenvectors are still
extended, but a careful multifractal analysis for the case
d=1 (and f=p/2) shows that the states are neither ex-
tended nor (exponentially) localized (Janssen and
Kohmoto, 1988). Their character is termed critical. Con-
trary to the periodic case, allowed solutions of Eq. (2.4)
for quasiperiodic systems can be extended, localized,
and critical (or pseudolocalized—see, for example,
de Lange and Janssen, 1984, where this characterization
is given in superspace terms). We recall that generally a
spectrum has three contributions: a point spectrum and
a continuous spectrum, where for the latter one may
distinguish an absolute continuous and a singular con-
tinuous spectrum. Eigenvectors that are normalizable
belong to the point spectrum: they describe localized
states. Allowed states belonging to the continuous spec-
trum are delocalized. If one considers the integrated
density of states I(v), i.e., the fraction of eigenmodes
with frequency smaller than v, these three parts corre-
spond to a function consisting purely of jumps, a smooth
continuous function, and a Cantor function, respectively.
The corresponding states are sometimes called ex-
tended, localized, and critical in these three cases. A
Cantor function is a continuous function that is constant
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except at the points of a nowhere-dense set of points
(see Fig. 4). This interesting class of functions often ap-
pears in discussions of quasiperiodic systems. Physicists
usually call it a (complete) devil’s staircase.

There are simple models in which a displacive IC
phase transition occurs, for example, the discrete frus-
trated f4 (Diffour) model (Janssen and Tjon, 1982) or
the Frenkel-Kontorova model (Frenkel and Kontorova,
1938)—see also Aubry and Le Daeron (1983). In such
models the lattice dynamics have been studied as a func-
tion of temperature.

A quasiperiodic system can always be obtained from a
periodic structure in higher-dimensional space. If n is
the number of indices for the diffraction pattern, the
basis vectors, which are of course linearly dependent in
three dimensions if n>3, can be seen as a projection
from an n-dimensional reciprocal lattice S* on physical
space. This means that there is an n-dimensional peri-
odic structure, the lattice S, for which S* is the recipro-
cal lattice that in projection on the physical space gives
the position of the diffraction spots. One can show that
the physical quasiperiodic structure is just the intersec-
tion of the n-dimensional periodic system with physical

FIG. 2. Spectra for the modulated-chain model with spring
constants an=a[1+0.3 cos(Qn+f)] as functions of the wave
vector Q . Shown are the spectra for each approximant L/N of
Q/2p, with N<50. The main gaps can be obtained in first-order
perturbation calculations, the other gaps in higher-order calcu-
lations. Frequencies: a.u; Q in 2p/a .
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
space, which is a hyperplane in the n-dimensional space.
Therefore each point in ‘‘superspace’’ has coordinates in
physical space and coordinates in the additional space,
called internal or perpendicular space. For point atoms,
the periodic n-dimensional systems consist of (n−3)-
dimensional hypersurfaces that intersect the physical
space in the atom positions. These hypersurfaces are
then called atomic surfaces. For a simple displacively
modulated IC phase, for example, the atom positions
are given by Eq. (2.2). They are the intersection of the
lines

t°@nW 1rW j1fWj~QW •nW 1t !,t# ~real t ! (2.12)

with the hyperplane t=0 (Fig. 5). The atomic surfaces
are, in this case, lines in four dimensions.

B. Quasicrystals

Since 1984, we have known of a class of quasiperiodic
systems termed quasicrystals (Shechtman et al., 1984).
Originally found in rapidly quenched AlMn, such phases
have been discovered in a large number of binary and
ternary alloys. It is characteristic that their diffraction
patterns show sharp peaks and that the symmetry of
these patterns is a point group that is incompatible with
lattice periodicity in three dimensions. The latter follows
from the fact that there are fivefold, eightfold, tenfold,

FIG. 3. The vibrational spectra in the low-frequency region
for a number of commensurate approximants S/N up to
(32A5)/2, together with an enlarged version of them. This
shows that the spectra have scaling behavior.
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or twelvefold rotation symmetries. The diffraction pat-
terns can be indexed with a finite number of integer
indices, which shows that these structures are quasiperi-
odic. For compounds such as AlMn, AlMnPd, and Al-
CuFe, the rank n is equal to six. For other quasicrystals,
like the decagonal and octagonal ones, it can be five.

The vibrational properties of quasicrystals have much
in common with those of IC phases. The difference is
that quasicrystals cannot be seen as a small deformation
of a periodic structure. Therefore the vibrational prop-
erties are more like those in the discommensuration re-
gion (near Tc) of IC phases. The point-group symmetry
implies that the topology of the interconnections is dif-
ferent: the coordination number of the atoms varies.
Even if all interatomic interactions are the same, the
vibration problem is by no means trivial.

On the other hand, the approaches used for the lattice
vibration problem in IC phases can be used for quasi-
crystals as well: simple models for which one studies ap-
proximants or series of clusters, or uses transfer-matrix
techniques.

Quasicrystals, in common with all quasiperiodic sys-
tems, can be embedded into a higher-dimensional space,
such that the quasicrystal is obtained as the intersection
of a lattice periodic n-dimensional structure with the
three-dimensional physical space, which is given as
t=constant [we use here t instead of t for the (n−3)-
dimensional perpendicular component] and is denoted
by VE . The additional space is VI , sometimes called
perpendicular space or internal space, and the
n-dimensional space is termed the superspace. We sup-
pose here that n>3, which means that the three-
dimensional structure is aperiodic. Its Fourier spectrum
consists of d peaks at positions

kW 5(
i51

n

hiaW i* , hiPZ. (2.13)

FIG. 4. Example of a Cantor function. It is a continuous non-
decreasing function with plateaus at all rational values be-
tween 1/4 and 1/2.
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All the vectors of this form belong to the Fourier mod-
ule of the structure, which is denoted by M* and is the
projection of the n-dimensional reciprocal lattice S* .
This lattice is the reciprocal of a direct lattice S in n
dimensions. One can view the quasiperiodic structure as
the intersection of a periodic structure in n
dimensions—with S as translation lattice—and the
physical space VE . One says that the n-dimensional
structure is S-periodic.

There is a difference between the embedding of an IC
phase and that of a quasicrystal. For the latter, the at-
oms in the physical space t(PVI)=constant are the inter-
sections of bounded atomic surfaces Vj at positions rj in
the n-dimensional unit cell. An atomic surface for an
atom j at the position rWs intersects the physical space if
t−rWI belongs to Vj (Fig. 6). Therefore the positions in
the physical space are (n1rj)E for all nPS for which
t−nIPV j .

Quasicrystals can often be modeled by quasiperiodic
tilings in three dimensions. A tiling is an arrangement of
copies of a finite number of three-dimensional objects,
which fills space without gaps and without overlaps. The
objects play the role of the unit cells for periodic crys-
tals. They may contain a certain configuration of atoms
(a decoration). For example, a three-dimensional (3D)
Penrose tiling is a quasiperiodic arrangement consisting
of rhombohedra of two types. The vertices are the inter-
section of physical space with a six-dimensional lattice
periodic system consisting of three-dimensional triacon-
tahedra (regular polytopes with 30 faces) positioned in
the lattice points of a 6D lattice. A decoration of both
rhombohedra with atoms gives a quasiperiodic 3D atom
arrangement. The diffraction pattern is of rank six: one
needs six integer indices.

FIG. 5. Embedding of a sinusoidally modulated IC phase in
superspace. The undulating lines are the atomic surfaces. The
space VE is the physical space, and VI is the internal or per-
pendicular space. The intersections of the lines with the physi-
cal space yield the atomic positions in physical space.
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If (n1rj)E are equilibrium positions of the quasicrys-
tal, vibrations around this equilibrium configuration are
given by a displacement field unjt , which can be taken to
be a vector field with only components parallel to the
physical space. In the harmonic approximation, the vi-
brations for a single mode are unjt exp(ivt)+c.c. More-
over, because of the lattice periodicity in n dimensions,
the modes are characterized by a wave vector in the
n-dimensional Brillouin zone and a branch label n. Then
the mode

unjt
qn 5exp~ iqn !Uj

qn~t2nI!, ~t2nIPV j! (2.14)

has frequency vqn . It is clear that the displacement is
only defined if the atomic surface really intersects the
physical space. Then the function U j

qn(x) is defined on
the atomic surface Vj and has as values vectors parallel
to physical space. This function can still be horribly com-
plicated.

The function Uj(t) is a S-periodic vector-valued func-
tion on the atomic surfaces Vj . Therefore, it can be de-
veloped in a Fourier series:

Uj
qn~t!5 (

KPS*
AKj

qnexp~ iKIt!. (2.15)

This gives for the displacement field of a single mode

unjt
qn 5exp~ iqn ! (

KPS*
AKj

qnexp@ iKI~t2nI!# . (2.16)

Notice that the displacement for the real physical system
is obtained by putting t=0. This means that the displace-
ment field in physical space is not a Bloch wave but the
product of a phase factor and a quasiperiodic function:

FIG. 6. Embedding of a quasicrystal in n-dimensional super-
space. The vertical lines indicate the (n−3)-dimensional atomic
surfaces. An atomic surface V in the lattice point nPS inter-
sects physical space if t−nIPV.
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uW ~rW !5exp~ ikW •rW !U~rW !

5exp~ ikW •rW ! (
KW PM*

aW ~KW !exp~ iKW •rW !. (2.17)

This is exactly as for IC phases (Currat and Janssen,
1988). For quasicrystals this has been discussed by
Kitaev (1988). The infinite set of thee-dimensional vec-
tors A Kj

qn forms the equivalent of an eigenvector for the
lattice dynamics of a three-dimensional lattice periodic
crystal. There its number of components is three times
the number of atoms in the unit cell. Here the number
of components is infinite, because the number of degrees
of freedom in the n-dimensional unit cell is infinite (all
points of the s atomic surfaces). The dynamical matrix
for a quasicrystal is, consequently, infinite dimensional
as well.

The displacement field does not change if one re-
places q by q1Q , with QPS* . Consider then a fixed
value for t. Then

unjt
qn 5ei~qn1QEnE! (

KPS*
AKj

qneiKItei~QI2KI!nI. (2.18)

Therefore the same displacement field in the hyperplane
t=constant is given for the wave vector q̄ 5q1(QE,0)
and the eigenvector

Ā Kj
q̄ n5A ~K1Q !j

qn eiQIt. (2.19)

The description in terms of wave vector and eigenvector
is not unique. This is well known already in the case of
incommensurate crystal phases.

If the wavelength of the vibration is large with respect
to the interatomic distances, one can consider a con-
tinuum approximation to the problem. This means that
the time-dependent discrete displacement field un(t) is
replaced by a continuous function u(x ,t). In the har-
monic approximation, the equations of motion become

]2

]t2 u~x ,t !5T~x !
]2

]x2 u~x ,t !, (2.20)

where T(x) is the average force constant a divided by
the local mass density: T(x)5a/m(x). The mass distri-
bution is quasiperiodic, and consequently the function
T(x) can be embedded into n dimensions, yielding
T(x ,t), xPVE ,tPVI . The harmonic approximation
considers solutions u(x ,t)5U(x)exp(ivt). The func-
tion U(x) can also be considered as dependent on the
perpendicular component t. The equations of motion
then become

2v2U~x ,t!5T~x ,t!
]2

]x2 U~x ,t!. (2.21)

Because of the periodicity, the solutions can be written
as Bloch waves, and the function T(x ,t) can be ex-
panded in a Fourier series:

U~x ,t!5 (
KPS*

cq~K !eiqx1iKEx1iKIt, (2.22)
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T~x ,t!5 (
KPS*

A~K !eiKEx1iKIt. (2.23)

Substitution gives the eigenvalue problem

v2cq~K !5(
K8

~q1KE1KE8 !2A~K8!cq~K2K8!,

(2.24)

in which the squares of the frequencies are the eigenval-
ues of an infinite-dimensional operator. Because A is
the Fourier transform of the inverse-mass distribution,
its main contributions correspond to those wave vectors
K for which the structure factor has strong peaks as well.
As follows from Eq. (2.19), the wave vector q is not
unique. The same displacement field may be described
by q1Q for every Q in the Fourier module.

This shows that the dispersion around the origin is
repeated at every vector QW of the Fourier module. In an
inelastic-scattering experiment with momentum transfer
qW and energy transfer \v one also sees the mode at
qW 2QW , which has a component at qW because of the cou-
pling between Fourier components. This is significant if
A(Q) is big. Hence waves with wave vectors differing
by a vector QW from the Fourier module for which the
static structure factor is big have a strong interaction.
The result is the appearance of pseudo-Brillouin zone
boundaries between such strong peaks. They appear
halfway between two strong Bragg peaks. In general this
is not a position belonging to the Fourier module, but
rather the projection of a reciprocal-space vector with
integer and half-integer coordinates with respect to the
reciprocal lattice.

Such points again have a one-to-one correspondence
between the three-dimensional vector and an
n-dimensional vector. The points of the Fourier module
correspond to the G points in reciprocal space, the points
of the reciprocal lattice. The other special points are
projections of points on the n-dimensional Brillouin
zone. These special points have been investigated by Ni-
izeki and Akamatsu (1990)—see also Niu and Nori
(1990). Because they correspond to Brillouin-zone
boundary points, at their projection in physical space
one may expect to find the critical points for the phonon
density of states.

The equations of motion for the quasicrystal are

v2una5(
mb

FS n m

a b D umb . (2.25)

The solutions can be written as

C5(
na

unauna&, (2.26)

which are eigenfunctions of the operator H :

HC5v2C , ^nauHumb&5FS n m

a b D . (2.27)

For a basis

uka&5
1

AN
(

n
exp~ ikn !una&, (2.28)
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the equations for the coefficients c(ka) with respect to
this basis are

v2c~ka!5(
k8b

^kauHuk8b&c~k8b!. (2.29)

The matrix elements

^kauHuk8b&5(
s

eik8sF ei~k82k !nFS n n1s

a b D G
5(

s
exp~ ik8s !Asab~k82k !

are only different from zero if k82k belongs to the Fou-
rier module.

In a coherent inelastic-scattering experiment there is a
momentum transfer \HW and an energy transfer \v to
the scattered neutron. (We use HW for the scattering vec-
tor to avoid confusion with vectors QW from the Fourier
module, such as the modulation wave vector for IC
phases.) For general modes, the coherent differential
scattering cross section is given by the expression

]2s

]V]EU
coh

~HW !5
kf

ki
(
qn

(
KPM*

uFu2~nqn1 1
2 6 1

2 !

3d~v6vqn!d~HW 6qW 2KW !, (2.30)

where nqn is the temperature-dependent Bose-Einstein
occupation factor, and F a matrix element that, for a
quasicrystal with one atom per vertex, is given by

F5
b̄

Amvqn

e2W~H !(
n

eiHnC~t2nI!

3 (
QPS*

H•AQ
qneiqn1iQI~t2nI!. (2.31)

Here, C(x) is the characteristic function on the atomic
surface (with value unity on V and zero outside). This
function can be developed in a Fourier integral,

C~x !5E B2keikxdk . (2.32)

Substitution of this integral, followed by the summation
over n , yields

F5
b̄

Amvqn

e2W~H ! (
QPS*

BHI2QI
e2iHItH•AQ

qn . (2.33)

The intensity of the scattering is, therefore, determined
by two factors. One is the dynamic eigenvector A Q

qn,
while the other is the factor B , which corresponds to the
static structure, because the static structure factor is

F0~H !5(
n

C~t2nI!eiHEnE5BHI
e2iHIt. (2.34)

The situation here is fully comparable with that in in-
commensurate crystal phases, where the dynamic scat-
tering is also determined by these two processes. This
implies that scattering is important only if the static
structure factor is strong.
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FIG. 7. Two approximants to the octagonal tiling: (a) with L/N51/1'A2/2, and (b) with L/N=5/7.
For the general case of more atomic surfaces per
n-dimensional unit cell, Eq. (2.33) generalizes to

F5(
j51

s b̄ j

Amjvqn

e2Wj~H !eiHrj

3(
Q

BHI2QI

j e2iHItH•AQj
qn , (2.35)

when the Fourier integral of the characteristic function
of Vj is given by

Bk
j 5

1
Vj

E
V j

dx eikx. (2.36)

A quasiperiodic structure is the limit of a series of
periodic approximants. If the lattice S of the embedded
quasiperiodic structure has basis vectors ai5(aEi ,aIi),
an approximant is obtained by replacing the irrational
components of aIi by rationals. Then the intersection of
S with VE is a lattice, and the intersection of the
n-dimensional structure with VE is periodic. In the case
of tilings, the form of the tiles remains the same if one
keeps the components of aEi fixed. As an example, con-
sider the octagonal tiling that is the result of intersecting
VE with a four-dimensional periodic structure with basis
vectors (cospj/4,sinpj/4,cos3pj/4,sin3pj/4) (j=1, . . . ,4)
and an atomic surface equal to the projection of the unit
cell of S on VI . The tiles are squares or rhombuses with
an angle p/4. If one replaces the components &/2 by a
rational number L/N , S intersects VE in a lattice with
basis vectors (L1N&/2,L1N&/2) and (2L2N&/
2,L1N&/2). The unit cell is composed of the same
squares and rhombuses as the quasiperiodic tiling, but
they are now arranged in a periodic fashion (Fig. 7). The
diffraction pattern of this periodic approximant lives on
a square reciprocal lattice, but the intensity distribution
is very similar to that of the quasiperiodic octagonal til-
ing (Fig. 8).
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The dynamic structure factor S(q ,v) for the quasi-
periodic structure is the limit of that for the series of
approximants,

S~q ,v!L/N;(
kn

U(
j51

s

eiqrjq•e j~kn!U2

D~q2k !

3d~v2vkn!, (2.37)

where j runs over the particles in the unit cell, and e(kn)
is the eigenvector for the mode kn . The sum over the
exponential functions replaces, in Eq. (2.35), the contri-
butions of exp(iHrj) and BHI2QI

j , while the eigenvector

FIG. 8. The diffraction patterns for the 2/3 approximant to the
octagonal tiling. Strong Bragg peaks are near the positions of
Bragg peaks of the quasiperiodic tiling. The four basis vectors
of the Fourier module are the projections of four four-
dimensional vectors that span a 4D Brillouin zone. The projec-
tion of this zone is shown. Wave vectors are in units of the
reciprocal lattice basis vector.
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ej replaces A Qj
qn . Because of the function D (the sum of

delta functions on the reciprocal lattice), a given mode
contributes to the scattering with an infinite number of
wave vectors q . The intensity, i.e., the value of S(q ,v),
however, varies considerably. Therefore, even if for
large values of L and N the mesh of the reciprocal lat-
tice becomes finer and finer, there are no big changes in
S(q ,v), just as the static structure factor does not
change much from one approximant to another.

Consider, as an example, the Fibonacci chain. This is
the intersection of a structure whose lattice is generated
by (1,−t) and (t,1) @t 5 (A5 1 1)/2# . It is a 1D tiling with
tiles of length 1 and t. The atoms are at positions
m1nt . If one replaces t in the internal coordinate by
Fn11/Fn , where Fn are the Fibonacci numbers
(F05F151, Fn5Fn211Fn22), one obtains a periodic
structure with unit cell of length Fn1Fn11t . Consider
the case in which there are atoms of mass m1 at the right
vertex of an interval of length 1, and m2 for one at the
end of an interval of length t. Because the positions in
the unit cell of an approximant are irrational, the func-
tion S(q ,v) is not periodic. For v=0, the only contrib-
uting mode is the acoustic k=0 mode, and for that mode
S(q ,0) is just the static structure factor, since this has
Bragg peaks that are intense if q52h1t1h2'0. The
points of the Fourier module correspond to the G points
for lattice periodic systems. The intensities at these G
points are determined by the structure factor. The plots
of S(q ,v) do not change much if one changes the ap-
proximant. An example is given in Fig. 9. Starting from a
strong Bragg peak, there is an acoustic branch with sig-
nificant intensity, whereas from other Bragg peaks, only
very weak branches start. For higher frequencies, the
branches starting from different peaks meet, and there is
a parabolic behavior of the intensity maxima. For fre-
quencies near the maximal frequency many neighboring
q vectors differing by a reciprocal-lattice vector give a

FIG. 9. The function S(q ,v) for the Fibonacci chain with two
masses. There is a branch running from the origin to the first
intense Bragg reflection near q=4.8. In between a branch starts
at the less intense Bragg peak near q=3.0 (a.u.).
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strong contribution. This is partially due to the fact that
the states at high frequency tend to be more localized.
From Eq. (2.37), it follows then that there is a broad
distribution of contributing q vectors. If the unit cell
tends to infinity, and the reciprocal lattice meshes to
zero, this will give a broadening of the measured peaks.
In Fig. 9 one clearly can see the gaps in the spectrum as
valleys with vanishing values of S(q ,v).

As a second example, we consider the octagonal tiling
and its approximants (Fig. 8). With springs along the
edges of the rhombuses and between the atoms that are
closest together, one can calculate the eigenvalues, the
eigenvectors, and the corresponding dynamic structure
factor. In the case of an approximant to the octagonal
tiling, one gets the picture of Fig. 10. Here the intensity
is plotted for a path in reciprocal space from one strong
Bragg peak Fig. 8 to another. Again, from both peaks
originate narrow acoustic branches, which coalesce for
higher frequencies. At still higher frequencies one ob-
serves a decrease of intensity and a broadening.

C. Scaling properties

The spectra for the modulated-spring model show
self-similarity both as functions of energy and as func-
tions of energy and modulation wave vector. The self-
similarity for one given modulation wave vector can be
seen if one compares spectra for various approximants
to the incommensurate value. For example, if one con-
siders approximants 1/2, 2/3, 3/5, 5/8, and so on, to the
irrational number t215(A521)/2, and compares the
spectra for the modulated-spring model, the lower part
of the spectrum for the approximant Fn/Fn11 is very
similar to the whole spectrum for Fn21/Fn , up to a scale
factor.

In the limiting case of d=1 for the modulated-spring
model [Eq. (2.11)] the total measure, meaning the sum
of all bandwidths, goes to zero if the order of the ap-
proximant (n) goes to infinity. This approach occurs ex-

FIG. 10. S(qW ,v) for the 2/3 approximant to the octagonal til-
ing (41 atoms per unit cell). The path runs from (5,2) to (5,5)
(a.u.).
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ponentially. If the bands in the nth approximation have
widths D i

(n), the total measure B(n)5( iD i
(n) behaves as

B ~n !;exp~2ne!. (2.38)

The number of particles Nn in the unit cell increases
like ln, where l is the scale factor [for Fibonacci l
5(11A5)/2]. Therefore one has

e52 lim
n→`

lnB ~n !

lnNp
lnl . (2.39)

If this limit exists, it is called the spectral scaling index.
Such scaling behavior has also been found for the

modulated-spring model with modulation function

an5 Ha if 0<nt mod 1,t
b otherwise (2.40)

and for similar chains with a finite number of values for
the coupling constants.

This scaling occurs even for the separate bands. If one
plots the logarithm of the width of the top band against
the order n of the approximant, or equivalently against
the logarithm of the number of particles in the unit cell,
one finds a straight line, i.e., exponential falling off of
the width. The exponent, however, is different from the
value of e for the whole spectrum. Suppose that the
bands show such a scaling behavior. That means that the
widths decrease as a function of the order of the approx-
imant as

D i
~n !;exp~2ne i!.

The index i is not a good label, because a band at ap-
proximately the same energy gets a label that increases
with increasing order n . However, if one normalizes the
index on the interval [0,1], one can write

e~n !~ i/Nn!52
lnD i

~n !

lnNn
lnl . (2.41)

If this function on the unit interval converges, then at all
energies there is scaling behavior. An example is given
in Fig. 11. For the Fibonacci chain the function e(n)(x) is
there plotted on the interval [0,1] for three values of n .
The peaks converge, albeit slowly, to a finite value. For
example, for x512t5(32A5)/2, there is a peak with a
limiting value of 1.7 (for clarity only four low values of n
are used in the figure).

In later subsections we shall see examples of scaling
behavior in more than one dimension.

D. Studies with one-dimensional models

As for IC phases the lattice dynamics of quasicrystals
have been studied on simple models. These consist usu-
ally of an n-dimensional (n=1,2,3) tiling with atoms at
the vertices, at the center of a tile, or with another given
location within each tile, and springs between neighbor-
ing atoms. As expected, the effects are the strongest for
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
one-dimensional systems, but for two- and three-
dimensional quasicrystal models one also finds behavior
that differs from that of ordinary periodic crystals.

One-dimensional quasiperiodic tilings can be consid-
ered to be modulated crystal phases, because there is an
average structure, and the deviations from this structure
can be interpreted by means of a modulation function.
For the Fibonacci chain, the average lattice constant is
a=3t−4, and the modulation function is the discontinu-
ous function

f~x !5~t22 !Frac~x2x0!. (2.42)

[Here, Frac denotes the fractional part: Frac(x)5x-
largest integer smaller than x .] Therefore it is not sur-
prising that the results for one-dimensional quasicrystals
are very similar to those for one-dimensional modulated
chains (de Lange and Janssen, 1981). The vibrational
properties of the Fibonacci chain have been studied by

FIG. 11. The function e(n) for a number of approximants to
the Fibonacci chain. (a) For x'0, i.e., for long wavelengths,
the waves are barely distinguishable from extended waves. (b)
For the values x5m1nt (mod1) the function converges, al-
beit slowly, to a limiting value (e.g., at x=2−t'0.38).
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several workers (e.g., Kohmoto and Banavar, 1986). The
model is a linear chain with masses mn and harmonic
springs with coupling constants an . Usually the masses
are taken to be equal and the force constants take two
values, one for bonds across long intervals, and one for
those over short intervals.

If one uses the transfer-matrix technique, the matrices
Tn have only two forms, one with an=a and one with
an=b. We denote them by Ta and Tb . In contrast to an
IC phase, a quasiperiodic system often has scaling sym-
metry. We show this on the Fibonacci chain. It can be
constructed in another way. If one considers the set of
intervals (of length 1 and t), one can transform the latter
as follows. Replace a long interval by a long-short pair
and a short interval by a long one. If one starts with a
long interval and repeats the transformation, one ar-
rives, after five steps, at the series LSLLSLSLLSLLS ,
and, in the limit of an infinite number of steps, at the
Fibonacci chain. This process is equivalent to the follow-
ing one. Start with two patches of intervals S0 and S1 .
The nth patch Sn is obtained by putting Sn22 behind
Sn21. If one starts with S05S and S15L , then
S55LSLLSLSL and again, in the limit, one obtains
the Fibonacci chain. The ratio of the lengths of two con-
secutive patches goes to (11A5)/2. The number of in-
tervals in the nth patch is the Fibonacci number Fn .

For the products of the transfer matrices one can in-
troduce

M ~n !5)
j51

Fn

Tj→M ~n11 !5M ~n !M ~n21 !. (2.43)

Because v belongs to the spectrum if in the limit the
trace of M(n) remains between −2 and +2, one has to
investigate this asymptotic behavior. Denote the trace of
M(n) by 2xn . For 232 matrices with determinant equal
to +1, as we have here for transfer matrices and their
products, one has the relation

A2B5A Tr~AB !2B .

Then every product of transfer matrices can be reduced
to one without squares, i.e., their traces can be expressed
as

x05 1
2 Tr~Tb!, x15 1

2 Tr~Ta!, x25 1
2 Tr~TaTb!.

(2.44)

For example,

x35 1
2 Tr~TaTbTa!5 1

2 Tr~Ta!Tr~TaTb!2 1
2 Tr~Tb!.

In general, one gets

xn1152xnxn212xn22 . (2.45)

This is called the trace map, devised by Kohmoto et al.
(1983). It can be used to study the spectrum. It is a non-
linear mapping in three dimensions, but the orbits are
restricted to a two-dimensional surface, because there is
an invariant
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I5xn
21xn21

2 1xn22
2 22xnxn21xn22 . (2.46)

Therefore the analysis can be performed on the surface
I=constant. For other chains with more than two inter-
vals, similar trace maps have been constructed. The
trace map can be used to determine the spectrum. One
scans the values of v2 for which the values of xn remain
bounded.

Another way to use the self-similarity is to consider
successive approximants. By replacing the irrational in-
ternal components of the higher-dimensional lattice by
rational ones, one causes the intersection of the periodic
structure to become itself periodic. If one replaces the
value t by Fn11/Fn in the Fibonacci case, one obtains a
periodic chain with Nn5Fn11 sites in the unit cell. The
dispersion curves then form bands, and in each band one
has a fraction 1/Nn of the states. This means that the
integrated density of states (IDS) has Nn−1 plateaus: it
is constant in the gaps. The IDS curves then tend to a
limit curve, which in 1D is generally a Cantor function
(see Fig. 12).

Luck and Petritis (1986) considered the equation

~Lu !n1zun50, ~Lu !n5
un112un

an
2

un2un21

an21
,

(2.47)

where un is the displacement and z the square of the
frequency in reduced units. The force constants are a1=1
and a2=r<1. Using the transfer matrix technique and the
trace map for the Fibonacci chain starting from (1, 1−rz/
2, 1−z/2), they determined the spectral properties nu-
merically. They showed that, for small frequency (z!1),
the integrated density of states is barely distinguishable
from that of the linear chain with a force constant equal
to the average, which is

I~z !av5
1
p

cos21S 12
zâ

2 D .

For high frequencies (near the top), scaling in the spec-
trum is observed. The top part of the spectrum will re-
appear up to a change of scale after six iterations of the
inflation rule, i.e., when one compares the spectra of two
finite clusters, one corresponding to s(p) and one to
s(p16), if s is the substitution rule for the Fibonacci
chain. The scale factor is related to an eigenvalue of the
linearized trace map near a six cycle. If this eigenvalue is
L(z), the scale factor for the spectrum is 6 ln(t)/lnL(z).
A careful analysis of the low-frequency part by means of
the escape time (the number of steps in the trace map
that lead to a point beyond a certain distance) shows
that there are gaps at every scale and no absolute con-
tinuous part of the spectrum. This is in agreement with
the conjecture that all states are critical, which can be
proven numerically by means of a study of the moments
of the eigenvectors $un%. The plot of the moment m`

shows a peaked structure and self-similarity.
Lu et al. (1986) arrived at comparable conclusions.

They used the transfer-matrix technique to study the
spectrum numerically. They also noticed that at low fre-
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quencies there was not much difference in the integrated
density of states from that of a periodic chain. They also
found self-similarity in the spectrum, especially at higher
frequencies, and showed the IDS to be a Cantor func-
tion. Moreover, they studied the opening of gaps when
the ratio of the force constants was brought from unity
down and were able to calculate this with a renormaliza-
tion procedure. In the case of Fibonacci chains, the big
gaps seemed to correspond to repetition of small units.

Ashraff and Stinchcombe (1989) studied the dynamic
structure factor

S~q ,v!5 lim
h→0

lim
N→`

ImGN~q ,v2ih!

for the Green’s function GN . They used a renormaliza-
tion procedure for this study. Because the atoms are po-
sitioned at the sites of a Fibonacci chain, which enter
through the expression

FIG. 12. The integrated density of states in the Fibonacci
chain. The functions converge to a Cantor function. There are
plateaus for all values of v in a gap. Because there is a fraction
1/N in each band for a period N approximant, the values of the
integrated density of states (IDS) in the gaps is mL/N (modZ),
if the incommensurability is approximated by L/N . In the limit
gaps occur for all values mQ of the IDS.
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GN~q ,v!5
1
N (

lm
Glm~v!exp~ iqrlm!,

the function S(q ,v) is not trivial, even for equal force
constants. This reflects the fact that neutron scattering
proceeds partly via the eigenvectors of the vibrations,
and partly via the static structure. In the (q ,v) plane one
sees ridges emanating from points (Q ,0), where the Q’s
are the positions of the Bragg peaks. The multitude of
phonon branches in the (q ,v) plane resembles closely
that of incommensurate crystal phases in the region
where the modulation is described by discommensura-
tions (Currat and Janssen, 1988), in contrast to that in
the sinusoidal region, where the proliferation of
branches is less visible.

Benoit et al. (1990) also calculated the differential
cross section, this time by means of the spectral-
moments method. From calculations on big samples
they came to the following conclusions. If one calculates
the cross section at constant distance from a Bragg peak,
one always finds a maximum in v at the same position.
This v value is linear in the distance to the peak. There-
fore, near Bragg peaks, there is linear dispersion. More-
over, the intensity is proportional to the intensity of the
static structure factor at the peak. For small frequencies,
the excitations behave like (extended) Bloch waves, but
in fact the IDS is a Cantor function. The spectral-
moments method introduces a (small) imaginary part in
the frequency (like h in the dynamic structure factor
above). This can be seen as a finite lifetime of the pho-
non. The result for the calculation is that narrow gaps
are washed out. Eigenvectors are not found by this
method, but one can calculate the displacement-
displacement correlation function. This shows that, for
frequencies near the top, the states are rather localized.
The localization is increased by increasing the value
of h.

E. Electrons in quasicrystals

The model calculations for lattice vibrations in quasi-
periodic systems and the characteristic features of these
excitations agree very well with those for electrons in
such aperiodic structures. This was already known for
incommensurate crystal phases. The spectra and wave
functions of electrons in a crystal in an external mag-
netic field can be studied on the model system that leads
to the Harper or almost-Mathieu equation

cn211cn111l cos~an1f!cn5Ecn . (2.48)

Here cn is the wave function on the site n in a chain,
whereas a/2p is an irrational number. It has been shown
that, for almost all values of a, the spectrum is absolute
continuous and the wave functions extended for l<2,
while for l>2 there is a point spectrum and the wave
functions are localized. For l=2 the spectrum is singular
continuous and the wave functions are critical. This is
very much the same as the situation for the modulated-
spring model with sinusoidal modulation of amplitude



290 M. Quilichini and T. Janssen: Phonon excitations in quasicrystals
(d) equal to unity (de Lange and Janssen, 1981; Janssen
and Kohmoto, 1988). The almost-Mathieu equation is
one of the few examples in which these results have
been proven. A general review of such quasiperiodic
Hamiltonian operators was given by Simon (1983).

The situation seems to be more complicated for the
incommensurate Kronig-Penney model (de Lange and
Janssen, 1983), for which the Schrödinger equation
reads

2
\2

2m

]2

]x2 c~x !1(
n

md~x2xn!c~x !5Ec~x !, (2.49)

where m is the electron mass, m is the strength of the
d potential, and the positions xn form an incommensu-
rately modulated chain, for example, xn5na
+e cos(an+f). Simultaneously extended, localized, and
pseudo-localized (critical) states have been found nu-
merically (de Lange and Janssen, 1984).

The first model for electrons in a quasicrystal was the
tight-binding model on a Fibonacci chain, for which the
discrete Schrödinger equation reads

tncn211tn11cn111encn5Ecn . (2.50)

Here cn is the wave function on the site n , en a site-
dependent potential, and tn the hopping frequency be-
tween sites n and n−1. Usually one takes either tn or en
to be independent of n and the other to be a function of
n that takes two values in the sequence of a Fibonacci
chain. This model and some generalizations were stud-
ied extensively, mainly by numerical methods (Kohmoto
et al., 1983; Ostlund et al., 1983; Kohmoto and Oono,
1984; Ostlund and Pandit, 1984; Niu and Nori, 1986; Sire
and Mosseri, 1989).

One of these methods involves the use of a transfer
matrix and the trace map. The Schrödinger equation for
the Fibonacci tight-binding model can be written as
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This equation then can be transformed to a trace map in
the same way as was discussed for the phonon problem.

The results of various models agree in that the spec-
trum is singular continuous of zero measure, that there
is a scaling invariance of the spectrum as a function of
energy, and that the wave functions are neither ex-
tended nor localized, but are critical, sometimes with
self-similarity properties. The scaling indices agree with
the eigenvalues of the linearized trace map around an n
cycle, a periodic orbit with period n , where n depends
on the model and the energy that is being considered.
This scaling behavior has been studied by means of mul-
tifractal analysis known from dynamical systems. Re-
views of these scaling properties have been given by
Hiramoto and Kohmoto (1989, 1992).

Generalizations of the Fibonacci tight-binding model
include generalized Fibonacci chains (Holzer, 1988; Sire
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
and Mosseri, 1989; Severin and Riklund, 1989), the Fi-
bonacci Kronig-Penney model, chains with a periodic
potential different from that in the almost-Mathieu
equation,

V~x !5l tanh@m cos~2px !#/tanhm ,

chains with three or more values for the hopping or site-
energy terms, and chains with a deterministic order dif-
ferent from quasiperiodic systems, such as Thue-Morse
or Rudin-Shapiro chains.

These chains can, like the Fibonacci chain, be ob-
tained by a substitution rule. One starts with two or
more letters and iterates the substitution of a given word
for each letter. For example, for the Fibonacci chain one
starts with two letters (A and B) and replaces in every
step A by AB and B by A . The result in the limit of an
infinite number of iterations is a deterministic chain.
Whether or not the result is quasiperiodic depends on
the substitution. The electron spectra for such systems
have been studied by Niu and Nori (1990), Dulea et al.
(1992a, 1992b) Deng et al. (1993), and Janssen (1994).

For such substitutional chains, and for chains obtained
from a circle map, there are rigorous results (e.g., Suto,
1987, 1990; Bovier and Ghez, 1993, 1995).

For tight-binding models in two and three dimensions,
there are only numerical results. These are based on di-
agonalization of huge but sparse matrices or on renor-
malization methods. Two-dimensional models are tight-
binding Hamiltonians on the standard octagonal or the
Penrose tiling (Sire and Bellissard, 1990; Fu et al., 1991;
Liu and Ma, 1991; Liu et al., 1992; You et al., 1992). The
density of states shows a very rich structure with many
pseudogaps. This is similar to the situation for phonons,
as we shall see in the ensuing sections.

In three dimensions, researchers have studied, besides
simple models (Niizeki and Akamatsu, 1990; Kasner
et al., 1991), more realistic models, in the sense that the
structure as determined with x rays or neutrons can be
taken into account (Hafner and Krajci, 1993a, 1993b).
The electronic structure and transport properties of
three-dimensional quasicrystals and their approximants
have been studied by Fujiwara and co-workers (Fuji-
wara, 1993; Fujiwara et al., 1994; Trambly de Laissar-
dière and Fujiwara, 1994), and the electronic structure
of AlZnMg has been studied by Hafner and Krajčı́.
These materials show a pseudogap near the Fermi sur-
face, which is related to the stability of quasicrystals.
This kind of pseudogap does not have a counterpart in
the phonon problem, to which we now return.

F. Two-dimensional phonon models

For higher-dimensional systems, there are not so
many results and practically no rigorous ones. In two
dimensions, there are numerical calculations for the
three ‘‘standard’’ quasiperiodic tilings of rank two: the
octagonal, the Penrose, and the dodecagonal tilings.

Simple models consider scalar phonons, which are ex-
citations with just one degree of freedom per site, for
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example, a displacement perpendicular to the plane.
These can be compared directly with a tight-binding
model:

mv2unm5 (
n8m8

a~nm ,n8m8!un8m8 . (2.52)

In general, the displacement is a vector.
A simple two-dimensional quasiperiodic structure can

be built with quasiperiodic linear chains, such as a peri-
odic or quasiperiodic array of Fibonacci chains. If the
couplings are separable, i.e., when

mv2unm5~Hxu !nm1~Hyu !nm , (2.53)

with

~Hxu !nm5anm~unm2un21m!1an11m~unm2un11m!,

and

~Hyu !nm5bnm~unm2unm21!1bnm11~unm2unm11!,

the frequencies of the two-dimensional system are

v25vx
21vy

2, (2.54)

expressed in the frequencies of the chains with coupling
constants anm and bnm . The density of states (DOS)
then is the convolution

DOS~v2!5E dz DOSx~z !DOSy~v22z !. (2.55)

For a vector model with decoupling between x and y
displacements, the density of states is the sum of the
individual densities of states.

Odagaki and Nguyen (1986) studied clusters from a
Penrose tiling with kites and darts. The equations of mo-
tion involving scalar phonons were solved for

müi52(
j

kij~ui2uj!, (2.56)

where the coupling constant kij takes only two values,
one for a short edge and one for a long one. The cou-
pling constant is nonzero only for atoms connected by
an edge. Spectra were calculated for clusters up to 391
sites as a function of the ratio of the coupling constants.
However, because of the smallness of the sample, it is
difficult to make statements about the gap structure.

A model starting from atoms at the vertices of a Pen-
rose pattern with rhombuses and with a Lennard-Jones
potential was studied by Janssen (1988). First the system
was relaxed to a minimal-energy configuration. This
turned out to be a quasiperiodic structure, again with
pentagonal symmetry, but with deformed tiles. The Fou-
rier module was the same as that for a Penrose tiling,
but the intensities were different. Such a structure is not
a modulated quasicrystal but a modulated tiling. For an
8/5 periodic approximation (t'8/5) of the modulated til-
ing, with two types of springs (along the edges of the
rhombuses and between atoms a distance t−1 apart), a
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
highly structured density of states was found, suggesting
a large number of van Hove singularities. It was ob-
served that there were states with a high degree of lo-
calization at higher frequencies.

Ashraff et al. (1990) studied 2D quasiperiodic systems
consisting of a periodic or quasiperiodic array of Fi-
bonacci chains with scalar phonons. The integrated den-
sity of states still showed plateaus, at values Frac(mt)
for integer m . At low frequencies the density of states
was almost linear. For increasing values of the ratio of
the spring constants, more and more gaps appeared. The
dynamic structure factor showed a structure like that for
a Fibonacci chain if one runs along the (1,1) direction in
reciprocal space. The scalar phonons in a Penrose tiling
by Robinson triangles cannot be expressed in terms of
phonons in lower-dimensional systems. Numerically, the
spectrum was calculated for clusters of 539 sites as a
function of the ratio between the force constants along
short and long bonds. For certain intervals in this ratio
there were gaps in the spectrum.

Liu et al. (1992) studied vectorial phonons (i.e., where
the displacements are two-dimensional vectors) numeri-
cally in the standard octagonal tiling, using the recursion
method (Haydock et al., 1972, 1975). They claim that
there is an anomaly at low frequencies, but this is not
confirmed by other model calculations.

Vector phonons in the standard octagonal tiling were
also studied by Los et al. (1993a). Their model consisted
of atoms on the vertices of the standard (Beenker or
Ammann) octagonal tiling. The atoms were connected
by springs along the edges, the small diagonals of the
rhombuses, and the diagonals of the squares. The poten-
tial energy is

V5
a

4 (
i

(
j~ i !

@ urW i1uW i2rW j2uW ju2urW i2rW ju#2. (2.57)

Here, the summation runs over all pairs connected by
one of the above-mentioned bonds. The quasiperiodic
system is approximated by a systematic series of peri-
odic approximants, obtained by replacing & in the per-
pendicular coordinates of the four-dimensional lattice
by 1/1,3/2,7/5,17/12, . . . . This results in a square unit cell
with 7,41,1393,8119, . . . sites, respectively. For these ap-
proximants, the dynamic matrix is diagonalized using a
variation on the Lanczos method, which makes use of
the sparseness of the dynamical matrix. In this way one
finds the spectrum and eigenvectors, and from that the
density of states. There is a fairly rapid convergence.
One can already see the essential features in the 41 ap-
proximant.

The density of states in this model shows a great deal
of structure (Fig. 13). There are many pseudogaps, and
at higher frequencies there are also real gaps. There are
many singularities. Pseudogaps occur at low frequencies,
but their depth decreases rapidly for frequencies tending
to zero. Near zero, the deviations from linear behavior
are extremely small. This is proven also by the calcula-
tion of the vibrational specific heat, which does not dif-
fer from that of a square lattice with appropriate force
constants.
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Dispersion curves have been calculated as well (Fig.
14). They show an interesting scaling behavior. If one
compares the dispersion curves for different approxi-
mants, they are practically identical, apart from a scale
factor of 1+& in the frequency. This implies that the
observed horizontal optical branches are present at ar-
bitrarily low frequencies. This scaling behavior is found
again when one calculates the bandwidths. A multifrac-
tal analysis shows that the bandwidths, defined as the
difference between the maximum and the minimum of
the ith eigenvalue in the Brillouin zone, go exponen-
tially to zero as i increases. Moreover, the analysis
shows that there is a distribution of scaling exponents.
This is an indication of a singular continuous spectrum.
At low frequencies, however, the scaling exponent
barely deviates from unity, which would be the value for
an absolute continuous spectrum. The corresponding
eigenvectors are like Bloch waves. Numerically, it is al-
most impossible to find the critical character for long-
wavelength phonons.

If one randomizes the octagonal tiling, by allowing for
a number of phason jumps, much of the structure disap-
pears. There are no longer gaps or pseudogaps in the
density of states.

G. Icosahedral structures

An important class of three-dimensional quasicrystals
is formed by those with icosahedral symmetry. This
means that the symmetry group of the diffraction pat-
tern is the symmetry group 5̄ 3̄ m of the icosahedron, or
the dodecahedron. It is a group with 120 elements gen-
erated by a fivefold rotation, a threefold rotation, and
the total inversion −E . The rotation subgroup of order
60 has, besides the unit element, 24 fivefold rotations,
with axes pointing to the vertices of the icosahedron, 20
threefold rotations, with axes to the centers of the tri-

FIG. 13. Density of states for the two-dimensional standard
octagonal tiling. It shows many pseudogaps and gaps and is
very spiky. (Frequency in a.uj.)
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angles of the icosahedron, and 15 twofold rotations, with
axes through the midpoints of the edges.

The Fourier module of these structures is of rank six:
all diffraction spots can be labeled with six integer indi-
ces. Six basis vectors can be chosen along the fivefold
axes. With respect to a cubic basis in reciprocal space,
these six basis vectors can be chosen as

aW 1* 5b~1,t ,0!, aW 2* 5b~21,t ,0!, aW 3* 5b~0,1,t!,

aW 4* 5b~t ,0,1!, aW 5* 5b~t ,0,21 !, aW 6* 5b~0,1,2t!,
(2.58)

with t5(A511)/2. With respect to this basis, every dif-
fraction spot has integer coefficients hi such that

kW 5b@h12h21~h41h5!t ,h31h61~h11h2!t ,h42h5

1~h32h6!t# (2.59)

is an arbitrary diffraction vector.
The basis of the Fourier module can be seen as the

projection of a six-dimensional reciprocal lattice with
basis vectors

~aW 1* ,aW 1* !, ~aW 2* ,2aW 2* !, ~aW 3* ,2aW 4* !,

~aW 4* ,2aW 6* !, ~aW 5* ,2aW 3* !, ~aW 6* ,2aW 5* !. (2.60)

The symmetry group of the embedded six-dimensional
periodic structure is then a six-dimensional superspace
group with a point group generated by

FIG. 14. Dispersion curves for an approximant to the octago-
nal tiling. The next approximant has almost the same disper-
sion curve, up to a scale factor in the frequency (a.u.).



293M. Quilichini and T. Janssen: Phonon excitations in quasicrystals
S 1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

D ,

S 0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 0 1 0

0 0 21 0 0 0

0 0 0 21 0 0

0 1 0 0 0 0

D ,
(2.61)

and the central inversion. Not all icosahedral reciprocal
lattices belong to the same Bravais class. The given basis
aW 1* . . .aW 6* gives the primitive icosahedral lattice in 6D. Be-
sides that, there are two other Bravais classes: the body-
centered and the face-centered icosahedral lattices.
They are characterized, respectively, by (hi=even and
hi1hj=even (for all i ,j). All icosahedral quasicrystals
found up till now have a symmorphic space group, either
P5̄ 3̄ m or F5̄ 3̄ m .

Special planes in the reciprocal space are those
through a number of axes. An important plane is the xy
plane. The x and y axes are twofold axes, and in the
plane lie a threefold axis and a fivefold axis.

The direct lattice corresponding to the six-
dimensional reciprocal lattice can, by a shear transfor-
mation, be deformed such that three independent vec-
tors belong to the physical space. Then the intersection
of the periodic 6D structure with the physical space is a
periodic lattice. Such a structure is an approximant.
When this shear gives a basis that is obtained from the
one given above by replacing the value t for the internal
components by the ratio of two consecutive Fibonacci
numbers (t'3/2,5/3,8/5, etc.) the three-dimensional
structure has a cubic lattice. Because of the shear, the
symmetry is lowered to tetrahedral. These tetrahedral
approximants have indeed been found. When one ap-
plies a shear to deform an icosahedral phase to a tetrag-
onal periodic-lattice phase, in between the structure is
still quasiperiodic of rank six, but the icosahedral sym-
metry is broken. The structure is a tetrahedral quasicrys-
tal.

H. Three-dimensional models

A number of model calculations have been performed
for three-dimensional quasicrystals. Some of the fea-
tures found in one and two dimensions can also be
found in three-dimensional systems, but usually in a less
pronounced fashion. Janssen (1988) studied a three-
dimensional icosahedral Penrose tiling with atoms in the
vertices. The atoms interacted with identical harmonic
springs along the edges of the constituent rhombohedra,
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
and there was only one degree of freedom per site (sca-
lar phonons). The same icosahedral Penrose tiling was
studied by Los and Janssen (1990), this time with vecto-
rial phonons. If the jth atom in the structure is displaced
by a vector uW j , the potential energy is

V5
1
4 (

i
(
j~ i !

a ij@~uW i2uW j!• r̂ ij#
2, (2.62)

with spring constants depending on the distance. The
masses are taken to be equal. A more general interac-
tion, which allows for other than pair interactions, is
(Los et al., 1993a, 1993b)
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@a ijuiji
2 1b ijuij'

2 # . (2.63)

Not only the perfect icosahedral Penrose tiling was stud-
ied, but also a version of it that was randomized by al-
lowing a finite density of phason jumps. A seemingly
more realistic model was studied by Los and Janssen
(1990). It mimicked icosahedral AlMnSi and was the
icosahedral Penrose tiling decorated according to a
model given by Janot et al. (1989). The interactions as
characterized by the spring constants derived from a
Lennard-Jones potential as used in intermetallic com-
pounds (Hafner, 1980) with a core distance that ensured
stability of the structure.

More realistic interactions derived from pseudopoten-
tials were used by Hafner and co-workers. Hafner and
Krajci (1990) studied a model for AlZnMg based on the
icosahedral Penrose tiling. This structure was left free to
relax to a minimum in the potential energy. This yielded
a modulated tiling, a quasiperiodic structure with de-
formed rhombohedra but still with icosahedral symme-
try, as in the modulated Penrose tiling (Janssen, 1988).
The interaction constants were derived as the second
derivatives of the pseudopotentials in this relaxed posi-
tion. A similar model, starting from an icosahedral Pen-
rose tiling with a decoration proposed by Henley and
Elser, was discussed by Hafner and Krajci (1993a,
1993b). A model for AlCuLi based on the same icosa-
hedral Penrose tiling with decoration and with force
constants given by a pseudopotential in a relaxed struc-
ture was described by Windisch and Hafner (1994).

Poussigue et al. (1994) presented a model for AlMn.
Again, the starting structure was an icosahedral Penrose
tiling. It was also supposed to model AlMnPd because
the latter, although face centered icosahedral, can be
obtained from a simple icosahedral structure by chemi-
cal ordering. The icosahedral-Penrose-tiling model used
a decoration proposed by Duneau and Oguey. The in-
teraction was a long-range pair potential in which
strength decreased with increasing distance. Similar re-
sults were also obtained for a dynamical model based on
the three-dimensional quasiperiodic Danzer tiling (Dan-
zer, 1989; Kasner et al., 1991).

The quasiperiodic structures have been studied by
means of approximations. Los et al. (1993a, 1993b) used
both a cluster method (a finite piece of quasicrystal with
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up to 16 009 atoms and with free or fixed boundary con-
ditions) and approximants. The latter approximation
consisted of replacing the coordinate t in perpendicular
space by the ratio Fn11/Fn of two consecutive Fibonacci
numbers. This yielded a periodic structure with cubic
unit cell. The approximants were denoted by this ratio
(1/1,2/1,3/2,5/3,8/5, . . . ). The other authors all used peri-
odic approximants as well. The behavior of the quasi-
periodic system was considered to be that of the limit of
these approximants.

The calculations for the vibrational density of states
were confirmed by Cordelli and Gallo (1995). These au-
thors used a spring potential in the cluster approxima-
tion. They considered periodic approximants to an
icosahedral 3D model structure and to a model for
AlPdMn based on experimentally determined positions.

For the cluster method and for the periodic approxi-
mants one has to diagonalize a very large dynamical ma-
trix or carry out an analogous procedure. Los et al. used
the sparseness of the dynamical matrix and performed
the calculations by a variation on the Lanczos method,
one without reorthogonalization. Hafner et al. (1990)
used the recursion method (Haydock et al., 1972, 1975).
This did not directly give the eigenvectors, but one could
calculate the dynamic structure factor. Poussigue et al.
(1994) used the spectral-moments method, which has
similar possibilities (Benoit, 1987, 1989; Benoit et al.,
1992).

The density of states shows a large number of peaks.

FIG. 15. Dispersion curves in the Brillouin zone of an approx-
imant to the three-dimensional Penrose tiling. There is a
strong bunch of very flat optical bands. In going to the next
approximant one finds exactly the same picture, up to a scale
factor in the frequency. In the quasiperiodic limit the optical
bands are expected to occur at arbitrarily low frequencies
(a.u.). After Los et al., 1993b.
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In principle, there is an infinite number of van Hove
singularities. Introduction of deviations from perfect
quasiperiodicity by means of randomization tends to
blur these details. The dynamical structure factor shows
acoustic branches starting from the strong Bragg peaks,
but at higher frequencies these branches broaden. There
is a clear scaling behavior (Fig. 15). At low frequencies,
there are pseudogaps at ever lower frequencies, if one
goes to higher-order approximants, but the size of these
pseudogaps tends to zero. The optical branches in the
approximants run very flat. Moreover, the dispersion
curves in successive approximants scale with a constant
factor. This implies that these ‘‘optic’’ branches occur at
arbitrarily low frequencies. Their contribution to the
function S(qW ,v), however, decreases, such that at low
frequencies near strong Bragg peaks the acoustic
branches dominate. The character of the modes can be
given by their participation ratio. Especially at higher
frequencies, there are modes with a low participation,
but such modes also occur for relatively low frequencies.

One expects that the hierarchical structure of quasi-
crystals, with their usually imperfect scaling symmetry,
will be reflected in the eigenvectors. Indeed, a multifrac-
tal analysis of the eigenvectors gives an indication of this
phenomenon. For one-dimensional models, eigenvectors
may be strictly self-similar. In higher dimensions, one
sees a distribution of exponents with which the local am-
plitudes of an eigenvector tend to zero. The vibrations
of hierarchical clusters in icosahedral quasicrystals have
been considered by Janot (1994). The author analyzed
the icosahedral phase of AlMnPd as self-similar clusters
of clusters with length scales inflated by a factor of t3.
Within this scheme, he derived the eigenmodes, which
appeared as standing modes within the structural units
generated at each inflation step. This is in agreement
with the scaling of the dispersion curves as found in Los
et al. (1993b, 1993c).

We now summarize the conclusions from the follow-
ing publications: Los and Janssen (1990), Hafner and
Krajci (1992, 1993a, 1993b), Los et al. (1993b, 1993c),
Poussigue et al. (1994), and Windisch and Hafner (1994).

(a) The density of states for the 1/1 approximant is the
well-known curve for face-centered cubic structures.
Starting from the 2/1 approximant, the density-of-states
curve is very different. It shows many peaks, corre-
sponding to van Hove singularities. In the calculations of
Hafner and Krajci (1992, 1993a, 1993b) and Windisch
and Hafner (1994), various bands are clearly visible, and
there is a spiky structure near the maximum frequency
(Fig. 16). In those of Los and Janssen (1990), Los et al.
(1993b, 1993c), and Poussigue et al. (1994), the structure
is more smeared out (Figs. 17 and 18). Also, in experi-
ment one sees less structure than in the figures in Hafner
and Krajci (1992, 1993a, 1993b) and Windisch and
Hafner (1994). This might also be due to the disorder
that occurs in real samples. The density of states is sen-
sitive to the presence of disorder (Hafner, and Krajci,
1992, 1993a, 1993b; Windisch and Hafner 1994). A small
amount of phason disorder wipes out most of the details.
Also, the type of interaction is important. For
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pure two-body interactions there is a broad distribution.
Introducing bending forces besides stretching forces
shifts the peak to higher frequencies (Los and Janssen,
1990; Los et al., 1993b, 1993c)—see Fig. 19.

(b) The dynamical structure factor. S(qW ,v) shows pro-
nounced acoustic branches starting with zero frequency
from strong Bragg peaks. These ridges in the S(qW ,v)
surface are narrow near zero frequency. This means
that, in this regime, the acoustic propagating waves are
well defined. The Bragg peak positions correspond to G
points in the six-dimensional reciprocal space. In going
from one strong peak to another, one passes a pseudo-
Brillouin-zone boundary (Fig. 20). This corresponds to
special points in reciprocal space, i.e., points with a site

FIG. 17. Weighted density of states for AlMn, as calculated by
Poussigue et al. (1994) for three approximants to the icosahe-
dral phase.

FIG. 16. Density of states for three approximants to the icosa-
hedral AlZnMg, as given in Hafner and Krajci (1993b): the
approximants are the 2/1 (dotted), 3/2 (dashed), and 5/3
(solid).
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symmetry higher than that of other points that are in-
finitesimally close. In the 6D reciprocal space, these
points form a lattice with a lattice parameter that is
twice as small as that for the reciprocal lattice (Niizeki
and Akamatsu, 1990). For higher frequencies the
branches broaden, due to two effects (Fig. 21). First,
there is a collection of very flat bands close together
(Los and Janssen 1990; Los et al., 1993b, 1993c). Due to
the scaling behavior, these topic branches also occur at
lower frequencies, albeit with a much smaller contribu-
tion to S(qW ,v). The other reason is that for higher fre-
quencies the modes are more localized.

At high frequencies, there are many bands with a
weak dispersion, i.e., ridges parallel to the qW axes. This is
similar to the behavior of the S(qW ,v) function for IC
phases when the modulation is not a small-amplitude

FIG. 18. Comparison of the calculated (solid line) and mea-
sured densities of states for AlCuLi in the icosahedral (circles)
and R-phases (crosses). The calculations were made by Win-
disch et al. (1994). The measured values are due to Suck, 1990c
(see also Fig. 39).

FIG. 19. Density of states for the icosahedral-Penrose-tiling
model with only stretching forces (solid line) or with stretching
and bending forces (dashed lines) (a.u.).
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sinusoidal function, but can be described by discommen-
surations (Currat and Janssen, 1988). The dynamical
structure factor has been calculated for a plane perpen-
dicular to a twofold axis. This plane contains two two-
fold axes, a threefold, and a fivefold axis.

(c) The spectrum for one-dimensional systems is most
probably singular continuous. Multifractal analysis in

FIG. 20. Dispersion curves are observable in this plot of the
dynamic structure factor along the twofold axis of an icosahe-
dral phase. The diameter of the dots is a measure for the
modulus of the dynamic structure factor. Compare this with
Fig. 1, especially the case of the discommensuration region,
and the S(q ,v) for the Fibonacci chain in Fig. 9 (Hafner and
Krajčı́, 1993b). The letters indicate the symmetry points in the
6D Brillouin zone.
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more than one dimension gives reason to believe that
there is a singular continuous component there as well
(Los and Janssen, 1990; Los et al., 1993b, 1993c).

(d) The low-frequency part of the spectrum shows scal-
ing behavior. This implies an infinity of gaps accumulat-
ing at zero frequency. The size of these gaps goes expo-
nentially to zero, so that the relevance for experiment is
rapidly lost (Los and Janssen, 1990; Los et al., 1993;
1993c). The fast closing of gaps in the limit of zero fre-
quency allows one to find an average density of states.
For sufficiently small values of the frequency, the den-
sity of states behaves like vd21, where d is the dimen-
sion of space. This is the classical behavior that reflects
the fact that very long wavelength waves are insensitive
to details in the structure. There is no evidence for
anomalous behavior, which could lead to observable ef-
fects in the lattice specific heat.

(e) The maxima in the S(qW ,v) function form curves in
the (qW ,v) plane, which can be considered to be disper-
sion relations. Near the strong Bragg peaks, the disper-
sion is linear. Moreover, its slope does not depend on
the direction. For icosahedral models, the dispersion is
isotropic, in agreement with the group-theoretical pre-
diction that materials with icosahedral symmetry should
have isotropic elastic constants. Moreover, the fre-
quency for transverse acoustic phonons does not depend
on the direction of the polarization vector (Hafner and
Krajci, 1992, 1993a, 1993b; Windisch and Hafner, 1994).

There are bands of optical modes at higher frequen-
cies with little dispersion. The acoustic branches are
FIG. 21. Calculated inelastic cross section for
six values of 9 along a path from D to E in
reciprocal space, i.e., between two strong
Bragg peaks. Close to the Bragg peak (small
energy) the width is small; for higher energies
the width increases. This can be seen also in
Figs. 9 and 10.
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symmetric around high-symmetry points, which lie on
the pseudo-Brillouin-zone boundaries. Such pseudo-
zone-boundaries are planes perpendicular to and bisect-
ing the line between two strong Bragg peaks. The fre-
quency maxima in the dispersion curves correspond to
peaks in the density of states.

(f) The character of the eigenstates has been discussed
in recent papers. There is a claim (Hafner and Krajci,
1993a) that there are strictly confined states in quasicrys-
tals, i.e., states that are strictly zero outside a certain
region. These are supposed to be connected to specific
topological configurations. Whether or not this is true,
or whether the effect is an artifact of the finite size of the
calculations is an open question.

Another claim (Liu et al., 1992) is that there are states
of fracton-like nature. Fractons are the self-similar exci-
tations found in certain fractal models. The inverse par-
ticipation ratio varies widely over the states. Near the
maximum frequency the states have a localized charac-
ter. Their inverse participation ratio is relatively high. In
going to higher approximants this value diminishes,
however, which is an indication that the states are not
exponentially localized. A multifractal analysis gives an
indication that the states are critical (Los and Janssen,
1990; Los et al., 1993b, 1993c).

Near zero wave vector, the states have more the char-
acter of Bloch waves. Numerically, it is impossible to
show whether or not these states are extended. Because
there are (very small) gaps at arbitrarily low frequencies,
the situation could be analogous to that in one-
dimensional models, where the states are in reality criti-
cal, but this property becomes unimportant if the wave-
length approaches the coherence length. The same
physical consideration is valid for localized or pseudolo-
calized states. Even if the state for an ideal infinite qua-
sicrystal were critical, but with the state decaying expo-
nentially to very small values, the state could not
practically be distinguished from really localized states.

(g) Phason hopping, a special type of dynamics, may
be present. This is not a harmonic motion. The phenom-
enon is possible because the quasicrystalline ground
state is just slightly above an infinity of structures with
phason defects, produced by phason jumps. If the bar-
rier between the ground state and one of these nearby
states is low enough, phason hopping is possible. Be-
cause a phason flip, generally, makes other phason flips
easier, these motions may migrate through the structure.
A coherent motion of this type is a new type of excita-
tion, typical of quasicrystals. It may be related to the
‘‘breather’’ suggested by Aubry (1993)—a long-lived vi-
bration having large amplitude (see Sec. III.G.3).

III. EXPERIMENTAL RESULTS

A. Neutron scattering from icosahedral quasicrystalline
phases measured with a three-axis spectrometer:
Introduction

Three-axis experiments provide a unique technique
that allows the measurement of phonon dispersion
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
curves and the determination of their symmetry proper-
ties in crystalline solids. One of the main reasons for
measuring the dispersion curves for lattice vibrations is
to obtain information on the forces between the atoms.
In pure Al or in pure Cu, such measurements have
shown that nearest-neighbor interactions are dominant,
but there is also a weak longer-range force system with
interactions extending to at least sixth-nearest neighbors
(Yarnell, 1965). In lattice periodic crystals, modes are
classified with the irreducible representations of the
group of the wave vector. They have specific symmetry
properties that can be studied in a neutron-scattering
experiment.

The experiment deals with a scattering process in
which incoming neutrons with a wave vector kW i (energy
Ei) are scattered by the sample through an angle f to an
outcoming wave vector kW f (energy Ef). For ordinary lat-
tice periodic crystals, the conservation laws are

kW i2kW f5HW 5GW 1qW , (3.1)

uEi2Efu5\v , (3.2)

for the transferred momentum and energy, respectively.
The vectors kW i ,kW f ,HW define the scattering geometry

and also the so-called scattering plane. The phonon ex-
citations have a wave vector qW , which in lattice periodic
crystals is measured from a zone center (Bragg peak)
located at GW (GW is a vector of the reciprocal lattice). For
aperiodic crystals, this decomposition is not unique, but
the differential cross section can still be measured in the
plane through kW i and kW f .

In the experiments we shall present here, the scatter-
ing plane was chosen so as to measure phonon disper-
sion curves in a plane where strong Bragg peaks are
located. As has been seen in Sec. II, it is here that one
expects to see dispersion curves.

For the experiments on icosahedral quasicrystals, a
plane was chosen through the main symmetry axes of
the icosahedral phase. This plane is shown in Fig. 22. It
is defined by two orthogonal twofold axes and contains
threefold and fivefold axes, too. Circles locate Bragg re-
flections; they are labeled following the indexing method
for icosahedral quasiperiodic crystals proposed by Cahn
et al. (1986). If the diffraction peaks are located on po-
sitions

@h1h8t ,k1k8t ,l1l8t# ,

with respect to a cubic reference frame, one defines

N5h21h821k21k821l21l82,

M5h821k821l8212~hh81kk81ll8!. (3.3)

Notice that N and M do not characterize the points of
the Fourier module uniquely. With respect to the basis
defined in Eq. (2.58), with b=1+2t, one has indices hi
(i=1,2, . . . ,6). Large dark circles indicate high-intensity
peaks. The quasicrystalline compounds that have been
investigated by means of neutrons have the same point
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group but their space-group symmetry defined in the 6D
superspace representation may be different. In Table I
we have listed all the Bragg reflections of interest for the
experiments described in this section, which are repre-
sented by dark circles in Fig. 23. They are all located on
the main symmetry axes.

The differential scattering cross section has been
given in Eq. (2.30). In lattice periodic crystals, the inelas-
tic neutron dynamical response S(HW ,v) is given by

S~HW ,v!5 (
n51

all modes

Sn~HW ,v!, (3.4)

where the summation is over all vibrational modes of
the crystal. For a single mode one has

FIG. 22. The scattering plane. Circles locate Bragg reflections.
Large dark circles indicate high-intensity peaks around which
acoustic modes were measured. Peaks are labeled following
the indexing method of icosahedral quasiperiodic crystals by
Cahn et al. (1986).
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Sn~HW ,v!5^n~v!10.560.5&uF in~HW !u2d@v6vn~qW !#

3d~HW 6qW 2GW !. (3.5)

In this expression, the first term is the usual Bose fac-
tor written for phonon creation (+) and annihilation (−),
respectively, and F is the matrix element

F in~HW !5(
j51

mj
21/2vn~qW !21/2bj@eW j

n~qW !•HW #exp~ iHW rW j!

3exp@2W~H !# , (3.6)

where mj is the mass of the atom j and bj its coherent
scattering length, which depends on the isotope and on
the nuclear spin. The scattering lengths for neutrons
vary rapidly from element to element and are much

FIG. 23. The reciprocal plane of the AlMnPd phase chosen as
the scattering plane for neutron inelastic measurements.
TABLE I. Indices and labels of the strong reflections shown on the scattering plane of the AlMnPd phase.

N M h h8 k k8 l l8 h1 h2 h3 h4 h5 h6

18 29 1 2 2 3 0 0 1 0 0 0 0 0 A

20 32 2 4 0 0 0 0 1 −1 0 0 0 0 C

26 41 3 4 0 1 0 0 −1 0 1 1 1 1 P

46 73 3 6 0 1 0 0 1 −2 1 0 0 1 E

46 73 1 2 4 5 0 0 2 1 −1 0 0 −1
52 84 4 6 0 0 0 0 0 0 0 1 1 0 D

60 96 4 6 2 2 0 0 1 1 −1 1 1 −1 K

70 113 1 2 4 7 0 0 1 0 1 0 0 1 H

80 128 4 8 0 0 0 0 2 −2 0 0 0 0
90 145 5 8 0 1 0 0 0 −1 1 1 1 1 N

90 145 3 4 4 7 0 0 0 1 1 1 1 1 M

72 116 4 6 2 4 0 0 0 0 1 1 1 1 L

102 165 5 8 2 3 0 0 1 0 0 1 1 0 I
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smaller than the scattering factors for x rays. Further-
more, this difference is enhanced by the fact that they
enter as squared quantities in the formulas for the scat-
tered intensity. This is a reason why large samples are
needed for neutron experiments. Neutrons are weakly
absorbed by most elements, which allows investigation
of large samples. In Eq. (3.6), W(H) is the exponent of
the Debye-Waller factor and eW j

n is the eigenvector of
the nth mode. For lattice periodic systems it has 3s com-
ponents and describes the pattern of the displacements
of the s atoms in one unit cell. This displacement field
consists of plane waves and is periodic through the lat-
tice. For any qW in the Brillouin zone, one has 3s disper-
sion curves, which reach the zone boundary (Bragg
plane) generally with a horizontal slope. When qW is
along a high-symmetry direction of the structure, the
phonon modes have specific symmetry properties. For a
nonsymmorphic space group, degeneracy may occur at
the zone boundary and then dispersion curves have non-
zero slope at this point.

The occurrence of the scalar product eW j
n
•HW in Eq.

(3.6) allows us, in simple cases, to find a geometry in
which the identification of the observed modes, which
have to be polarized in the scattering plane, is easy. For
small q , the inelastic structure factor of acoustic modes
scales with the static structure factor of the Bragg peak
from which they emanate. Thus one measures acoustic
phonon modes near strong Bragg peaks. Usually we do
not work with perfect ideal crystals, and there are all
kinds of departures from this perfection, such as anhar-
monicity, phase-transition precursors effects, electron-
phonon interactions, impurities, disorder, and so on. As
a consequence, the phonon quasiparticle has a finite life-
time and the plane wave is either damped or diffusive.
Thus the scattering function does not remain a delta
function. The response function in energy transfer is
very often taken to be that of a damped harmonic oscil-
lator, which reads as

Gn~qW ,T !

@v22vn
2~qW ,T !#21v2Gn

2~qW ,T !
. (3.7)

Here vn(qW ,T) is the quasiharmonic frequency of the os-
cillator and Gn(qW ,T) its damping. This last parameter
can be given by an analytical expression if we have a
model that describes the anharmonicity of the system.

In a three-axis experiment, the measured intensity is
the convolution product of the dynamic structure factor
with the resolution function of the spectrometer. This
last function depends on kW i , and kW f , and in the Gaussian
approximation the surfaces of equal probability are
four-dimensional ellipsoids called ‘‘ellipsoids of revolu-
tion.’’ Dorner (1972) has given an explicit expression for
the normalization of the resolution function of a three-
axis spectrometer. The important point to emphasize
here is that, when one measures transverse acoustic
modes, the setting of the spectrometer has to be ‘‘focal-
ized,’’ which means that the larger main axis of the el-
lipsoid has to be roughly parallel to the dispersion curve.
One weak point of three-axis measurements is that for
longitudinal acoustic modes we cannot work in a ‘‘focal-
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
ized geometry,’’ so the signal is less well resolved. This is
also the case when one measures dispersionless optic
modes. In the experimental work that we shall report on
in the following subsections, we shall be concerned with
these technical constraints, which make the interpreta-
tion of the raw data rather delicate.

In lattice periodic crystals that have a nonsymmorphic
space group, three-axis experimental results are fre-
quently displayed in the extended-zone scheme. In such
a scheme one takes into account the way in which the
glide symmetry modifies the relevant phase factor of the
mode that propagates with a given q vector. For lattice
periodic crystals, the extended-zone scheme representa-
tion of the dispersion curves displays the behavior of the
inelastic structure factor of the measured modes. For
aperiodic crystals, this extended-zone scheme is the
natural one, because there is no Brillouin zone, or one
may say that its volume is zero.

Up to now, three-axis experimental results have been
obtained for only three quasicrystalline icosahedral
phases. In shorthand notation, these three phases are
AlFeCu, AlLiCu, and AlMnPd. They were studied with
coherent neutron scattering experiments that followed
the same procedure. Experiments were carried out on
monodomain samples of very different size and mosaic
spread. As shown in Tables II and III, one can calculate
average values of b and s for the studied phases. Then a
simple calculation shows that 7 mm3 of the AlFeCu
phase has the same scattering efficiency as 161 mm3 of
the AlLiCu phase, or of 20 mm3 of the AlMnPd phase.

We have seen in the theoretical section that, for qua-
siperiodic structures, strong Bragg peaks act as pseudo-
Brillouin-zone centers and, as in a periodic crystal, the
degeneracy at Bragg planes (pseudo-zone-boundary)
still exists. This degeneracy should open up, on disper-
sion curves, a gap that has a width proportional to the
diffraction amplitude at the corresponding Bragg plane.
Furthermore, as we reminded the reader in the experi-
mental introduction, in periodic-lattice crystals the in-

TABLE II. Atomic coherent scattering length b and nuclear
absorption cross section s.

Element bcoh. (10−12 cm) s (10−24 cm2)

Al 0.3449 0.231
Li −0.203 70.5
Cu 0.7718 3.78
Fe 0.954 2.56
Mn −0.373 13.3
Pd 0.591 6.9

TABLE III. Mean coherent scattering length and mean ab-
sorption cross section.

Mean bm b m
2 Mean sm

Al60.3Li29.2Cu10.5 0.230 0.053 21.12
Al63Fe12Cu25 0.525 0.275 1.4
Al68.7Pd21.7Mn9.6 0.329 0.108 2.93
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tensity of acoustic modes scales with that of the Bragg
peaks from which they emanate. Therefore, for each
compound studied up to now, the measurements were
undertaken mainly around the selected strong Bragg re-
flections. The scattering intensity was measured along a
path in reciprocal space going from one intense Bragg
peak to another. We now turn to the specific examples
AlCuFe, AlCiLi, and AlMnPd to discuss the experi-
ments in some detail.

B. Results for Al63Cu25Fe12

This compound was investigated by Quilichini et al.
(1990), using a sample with a volume of 7 mm3. A
neutron-diffraction study on a four-circle instrument
(5C2 at the ORPHEE reactor, Saclay) permitted a com-
plete structure analysis (Cornier-Quiqandon et al.,
1991). To check the icosahedral symmetry, a set of
symmetry-related Bragg reflections was measured, and
equivalent reflections did indeed have the same inten-
sity. The high quality of the sample was ascertained by
studying profiles that corresponded to almost the instru-
mental resolution obtained by measurements on an ideal
single crystal of germanium. Furthermore, a study of the
mosaic spread was performed using g rays from a gold
source. Rocking curves of three (20,32) reflections were
recorded and showed that the measured full width at
half maximum varied from 0.04° to 0.06°; this is roughly
one order of magnitude greater than that of a good sili-
con crystal. These results indicate a perfect quasicrystal
without any phason strain, especially when compared to
monodomain icosahedral AlLiCu samples, the best of
which show a ‘‘mosaicity’’ of about 0.8° and a strong and
typical dependence of the reflection profiles on the per-
pendicular component of the scattering vector H' ; this
dependence was completely absent for the AlFeCu
sample. Data were collected on the intensities of all
Bragg peaks up to H=11.6 Å−1 in order to make a com-
plete structure analysis. Such an analysis, which is far
from trivial for quasicrystalline structures, was first pro-
posed for this compound by Cornier-Quiqandon et al.
(1991), who specified several steps:

(1) First the 6D space group must be determined. For
this icosahedral AlCuFe it was found to be the centered
symmorphic icosahedral group F 5̄ 3̄ m with a lattice pa-
rameter equal to 2a (a=0.63146 nm).

(2) Then a 6D Patterson analysis is carried out, in
order to locate the atomic surfaces. There are three such
atomic surfaces with full icosahedral symmetry at the
nodes [0,0,0,0,0,0] and at the body center 1/2[1,1,1,1,1,1]
of the 6D unit cell. This analysis also demonstrates that
atomic surfaces are embedded in 3D hyperplanes paral-
lel to the internal space.

(3) Finally, geometrical shapes and the attributes of
the chemical species within these atomic surfaces are
determined. This step requires specific models and has
not yet been fully carried out. Still, the Patterson analy-
sis leads to an insight into the geometrical properties of
these atomic surfaces.
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This structural characterization also showed that the
sample was a high-quality monodomain quasicrystal.
There was no indication of the presence of the micro-
crystalline phase in the temperature range in which the
measurements were performed.

Inelastic measurements, performed at the ORPHEE
reactor, were undertaken by Quilichini et al. (1990)
around strong Bragg reflections of the scattering plane
with qW either parallel to or normal to symmetry axes.
Phonon acoustic modes were detected in transverse and
longitudinal configurations and found to follow the usual
linear dispersion. A systematic data analysis was carried
out to account for the convolution of the instrumental
resolution with the observed linear dispersion. In the
fitting procedure, the phonon response was described by
the response function of a damped harmonic oscillator.
At room temperature, the signal-to-background ratio
became very low for energy higher than about 2.5 THz;
therefore the sample was heated up to 400 °C to in-
crease the thermal population and a reasonably good
signal up to 3.8 THz was achieved.

The fitted data give evidence for two ‘‘regimes.’’ The
first regime corresponds to wave vectors uqW u smaller than
approximately 0.45 Å−1; there, the observed modes have
no intrinsic width and dispersion curves are linear as in
lattice periodic crystals. Furthermore, the slopes of these
curves (sound velocities: v l=7700 m/s, v t=3650 m/s), for
both longitudinal and transverse acoustic branches, are
independent of the direction of propagation and of the
Hb values (Fig. 24). This proves that we have only two
elastic constants CT and CL , as expected from the icosa-
hedral point-group symmetry, whereas the indepen-
dence of the results with respect to the chosen Bragg
peak supports the idea of a pseudo-Brillouin zone.

The second regime starts from wave vectors greater
than 0.4 Å−1, where the inelastic signal, obtained in
transverse geometry, loses its intensity as q increases.
Furthermore, this loss is accompanied by a spread of the
signal over an appreciable energy range. This was ac-
counted for in the data analysis by introducing an intrin-
sic phonon linewidth G and a decrease of the slope of the
dispersion curve, as shown in Fig. 25.

For the longitudinal geometry the signal remains too
poor to give reliable results (Quilichini et al., 1992). A
general discussion is postponed until after the descrip-
tion of the experimental three-axis data obtained for the
three icosahedral phases.

C. Results for Al60.3Cu10.5Li29.2

The properties of AlCuLi were reported on by Gold-
man et al. (1991, 1992). The inelastic measurements
were carried out on single grains of icosahedral AlLiCu
and the related cubic R phase. A 0.4 g single grain of
Al60.3Cu10.5Li29.2 with an approximate volume of 192
mm3 was characterized by electron microscopy, neu-
trons, and x-ray Laue photographs. The size and the
shape of diffraction spots indicated that the entire grain
contributed to the diffraction. However, the mosaic
spread was rather broad and equaled 1.2° (full width at
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half maximum). A 1.3 g grain of cubic Al56Cu12Li32 was
also prepared and characterized. A complete neutron
and x-ray structural analysis of this AlCuLi was pro-
posed by de Boissieu et al. (1991), who showed that this
quasicrystalline structure has a centrosymmetric super-
space group P53m and that the asymmetric unit in the
unit cell of the periodic superspace contains three
atomic surfaces parallel to perpendicular space. These
atomic surfaces are located at the node sites [0,0,0,0,0,0],
at the mid-edge sites [1/2,0,0,0,0,0], and at the body-
center sites 1/2[1,1,1,1,1,1].

Recently Elcoro et al. (1994) have proposed a general
program (QUASI) for the refinement of quasicrystalline
structures. In this program, the superspace formalism is
used and the contours of each symmetry-independent
atomic hypersurface in the internal space are param-
etrized in terms of linear combinations of radial
(surface-harmonic) functions that are invariant for the
hypersurface point group in internal space. The program
has been used to refine the structure of the same icosa-
hedral quasicrystal of AlCuLi (Elcoro and Perez Mato,
1994), leading to a structural model that confirms the
structure proposed by de Boissieu et al. (1991), except
for some significant variation of the detailed shape of
the lithium surface and the chemical disorder of the
other two atomic surfaces.

The inelastic neutron experiment was performed at
the high-flux reactor of the Institut Laue-Langevin at
Grenoble (France) and at the ORPHEE reactor in

FIG. 24. Transverse acoustic dispersion curve in the linear re-
gime for icosahedral Al63Cu25Fe12 ; q(reduced unit)
=q(Å−1)3a/2p (a=16.944 Å, where a is a pseudocubic lattice
parameter). Pseudoindices H ,K ,L , are calculated using
H5h1h8t , K5k1k8t , H5h1h8t , where t is the golden
mean). Notation: d 2/4, 0/0, 0/0; n 0/0, 2/4, 0/0; h 1/2, 2/3, 0/0;
* 0/0, 4/6, 0/0; s 4/6, 0/0, 0/0; 3 4/6, 2/4, 0/0; + 2/3, 5/8, 0/0. The
dashed line gives the sound velocity in pure Al (Stedman and
Nilsson, 1966) for the transverse mode with q along [001]. Af-
ter Quilichini et al. (1990).
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
Saclay. The scattering plane was as described in the in-
troductory part of this section. The R phase sample was
oriented so as to have the analogous plane coincident
with the scattering plane. In Fig. 26 one can see the close
similarity between the diffraction patterns of the icosa-
hedral and of the R phase. This results from the fact that
the dominant scattering clusters in the cubic unit cell of
the R phase have icosahedral symmetry.

These inelastic measurements consisted of constant-H
energy scans taken along the twofold, threefold, and
fivefold directions of the icosahedral sample. Acoustic-
like modes were in evidence, as in the experiment on the
icosahedral phase of AlFeCu described in the previous
subsection. The slopes of the linear dispersion curves for
the transverse and longitudinal acoustic branches were
isotropic, as expected from the point-group symmetry
and in good agreement with ultrasonic measurements
obtained by Reynolds et al. (1990) on single grains of
icosahedral AlLiCu: v l=(6.460.1)3103 m/s, v t=(3.8
60.1)3103 m/s. In addition, Fig. 27 shows, for the icosa-
hedral phase, the dependence of the phonon integrated
intensity (normalized to Q2) upon the integrated inten-
sity of the zone-center Bragg peak. This shows that the
inelastic structure factors of long-wavelength acoustic
modes scale to the static structure factor of the Bragg
reflections near which they are measured, as expected in
lattice periodic crystals. This, again, supports the
pseudo-Brillouin-zone concept mentioned above for
icosahedral AlFeCu. As can be seen in Fig. 28 and
Fig. 29, this concept is nicely illustrated by the dispersion
of curves of the longitudinal mode along the fivefold axis
(between L and M Bragg peaks) and of the transverse
acoustic phonon along the twofold axis (between N
and I).

FIG. 25. Dispersion curve of the unique transverse acoustic
mode in icosahedral Al63Cu25Fe12 ; dependence on q of the
width G of this mode; q(reduced unit)=q(Å−1)3a/2p (a=17.09
Å at 400 °C). After Quilichini et al. (1992).
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Hence one may define pseudo-Brillouin zones in the
reciprocal space of the quasicrystalline phase between
pairs of strong Bragg reflections. A set of similar mea-
surements at small qW was carried out for the R phase.
An interesting result was observed for the transverse
acoustic modes, which propagate along [100] and [011].
There, the elastic anisotropy expected from the cubic
symmetry, which predicts two elastic constants C44 and
1/2(C112C12), was not detected and the transverse
sound velocity for the cubic phase was the same as that
of the icosahedral phase. So far, it appears that in the
long-wavelength limit, longitudinal and transverse pho-
non dispersion curves for the icosahedral and cubic R
phase are quite similar. However, differences were

FIG. 26. Twofold planes of AlLiCu investigated by neutron
inelastic-scattering measurements: (a) icosahedral phase, and
(b) the R phase. The dashed lines denote the directions of
inelastic scans for the twofold longitudinal and transverse
modes. The arrows in the R-phase plane denote the threefold
and the fivefold axes of the icosahedral phase for comparison.
After Goldman et al. (1992).
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found at higher energies for a phonon wave vector
larger than about 0.4–0.5 Å−1. In the R phase, longitudi-
nal modes along twofold axes drawn on a special path in
the reciprocal space show a dispersive opticlike behav-
ior, while in the quasicrystalline phase the same disper-
sion curve is rather flat for an equivalent path. This flat
dispersion observed at high energy in the icosahedral
phase is quite similar to the trend already noticed in the
icosahedral phase of AlFeCu and is reminiscent of the
behavior of localized modes. Finally, this latter experi-
ment demonstrates the interest of studying approximant
phases along with the corresponding parent quasicrystal
phases.

D. Results for Al68.7Pd21.7Mn9.6

AlMnPd was investigated by de Boissieu et al. (1993).
An analysis (Boudard et al., 1992) of diffraction data
collected with the neutron four-circle spectrometer 5C2
(at the ORPHEE reactor, Saclay) has allowed—with the
help of a simple model—description of its structure in
the 6D space. The unit cell is cubic and primitive with a
parameter a=6.451 Å. There is, however, a set of super-
structure reflections, whose indices are all half integer.
This superstructure is induced by small differences in
atomic hypersurface shapes, volumes, and/or the chemi-

FIG. 27. Dependence of phonon-integrated intensity, mea-
sured in icosahedral AlLiCu: h, upon the integrated intensity
of the zone-center Bragg peak; d, upon the static structure
factor obtained from Gayle (1987). Letters denote the zone
center for the measurements, and the solid line is a guide to
the eye. After Goldman et al. (1992).
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cal species involved. The space group is either F53m or
F532, and atomic surfaces are located at the nodes of
high symmetry in the 6D cubic unit cell: [0,0,0,0,0,0],
[1,0,0,0,0,0], 1/2[1,1,1,1,1,1], and 1/2[1,1,1,1,1,1,1̄ ] (n0 , n1 ,
bc0 , and bc1 , respectively). The authors have proposed
that these atomic surfaces be defined as follows:

(1) A core of Mn (radius 0.83a) surrounded by an
intermediate shell of Pd (extending up to 1.26a) and an
outer shell of Al (up to 1.55a) centered at position n0 .

(2) A core of Mn (radius 0.52a) surrounded by a shell
of Al (up to 1.64a) centered at position n1 .

(3) A ball of Pd (radius 0.71a) at position bc1 and a
small ball of Al (radius 0.3a) or an empty volume at bc0 .

The sample used for the three-axis experiment, per-
formed at the ORPHEE reactor, was a single grain of
volume 250 mm3, which was grown by a Bridgman tech-
nique. It was built up of about 10 slightly misoriented
subdomains, each having a mosaic spread of about 0.15°,
leading to an overall mosaicity of 1.5°. With such a
sample, the measured signal was an order of magnitude
greater than that obtained with AlFeCu. The selected
strongest Bragg reflections of the scattering plane were
nearly the same set as for AlFeCu. They were 52/84
(D ,D8) and 20/32 (C) on the twofold axes, 18/29 (A)
on the fivefold axis, and 102/165 on the threefold axis;
for all of them a systematic study of the transverse
acoustic and longitudinal acoustic (LA) modes was car-
ried out. As in the other two icosahedral phases, the
acoustic dispersion curves show two regimes. For small
q values, the modes have no intrinsic width and the
branches are linear, giving sound velocities for trans-

FIG. 28. Longitudinal modes along the fivefold axis between
points L and M of the icosahedral AlLiCu phase. After Gold-
man et al. (1991).
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verse and longitudinal modes that are isotropic and
in good agreement with values obtained from ultrasonic
measurements (Amazit et al., 1992), namely 3593(3)
ms−1 and 6520(10) ms−1 for the TA and LA branches,
respectively. For larger values of q (q greater than
0.35 Å−1 for the TA modes and q greater than 0.15 Å−1

for the LA modes), modes were fitted to a damped har-
monic oscillator, showing, as q increased, a damping pa-
rameter G that increased, an intensity that decreased,
and a quasiharmonic frequency that seemed to saturate
around 3 THz. This is clearly in evidence in Fig. 30,
which presents the dispersion curves of the TA modes
emanating from D and D8, respectively, and which
propagate along a twofold axis. For both curves, it seems
that there is a horizontal slope for a q value roughly
equal to 1.45 Å−1; however, note that the TA branch
starting from D has an energy that saturates at almost 4
THz, while the TA branch coming from D8 saturates at
an energy of 3 THz.

Two paths were studied intensively in this phase; the
aim was to observe the behavior of the dispersion curves
at what could be a pseudo-Brillouin-zone boundary.

(1) The first path was (EDE8FE in Fig. 23), built with
the two symmetry-related Bragg peaks 46/73 and the
Bragg reflection 52/84 located on the twofold axis (0.691
Å−1 away from 46/73). Along DE(DE8) the wave vector
qW is parallel to a fivefold axis and measurements were
performed with a geometry allowing the wave vector to
be ‘‘focalized’’ either for the acoustic modes that come

FIG. 29. Transverse phonon modes along the twofold direc-
tion of the icosahedral (top panel) and the cubic R phase (bot-
tom panel) of AlLiCu. The G points denote the zone-center
positions. The straight lines indicate the low-energy acoustic
mode. After Goldman et al. (1992).
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from the 52/84 Bragg reflection or for the acoustic
modes that emanate from the 46/73 reflection. This al-
lowed the measured modes to be identified more easily
and to give more reliable fitted results. The ratio of the
structure factors of D and E reflections is roughly 10;
this is also the ratio of the inelastic structure factors of
the TA modes that come from D and E , respectively.
Along DE (DE8), HW is neither parallel nor orthogonal
to qW . Thus both transverse and longitudinal modes are
measured. The fitted results are displayed in Fig. 31: one
sees that no gap is opened at the middle point between
D and E . The dispersion curves cross—which would, in
a lattice periodic crystal, suggest that these two modes
are of different symmetry. Furthermore, the TA branch
that comes from D has a horizontal slope for q=0.691
Å−1 (iDE , above the weaker Bragg peak E). The results
in Fig. 31 may be reminiscent of what is observed in
nonsymmorphic crystals for modes having a wave vector
parallel to a screw axis when they are pictured in a two-
fold extended-zone scheme. Along the direction EE8,
we have another example of measured dispersion
curves. Here, the wave vector qW is parallel to a twofold
direction. Thus one expects to see the TA modes from E
and E8. Experimentally, the situation is slightly more
complex, and these TA modes are observed along with
modes that come from the D reflection. For instance, at
the midpoint F , the spectrometer is set in a longitudinal
geometry for the point D ; hence one may measure, in
the same scan, TA modes from the E ,E8 peaks and the
LA mode emanating from the D reflection. For all the
other points along EE8, the symmetry of the phonon
coming from D is not pure. Figure 31 sums up all the
results gathered along this (EDE8FE) path; in particu-
lar, it can be seen that at the midpoint F there is a gap

FIG. 30. Dispersion relation (d) and phonon width (s) for the
transverse acoustic modes that emanate from Bragg reflec-
tions: (a) D ; (b) D8. They propagate along twofold axes, which
are parallel to two different directions in icosahedral AlMnPd.
After de Boissieu et al. (1993).
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on the TA branches which comes from E and E8, re-
spectively, suggesting that they are truly of the same
symmetry.

(2) A second path drawn along D8H (parallel to a
threefold symmetry direction) between the two Bragg
reflections 52/84 and 70/113 at a distance of 1.64 Å−1 was
intensively studied. In this case the data were collected
with constant-H energy scans with a constant ki=3.85
Å−1, giving an energy resolution roughly equal to 1 THz.
This large value of the incident neutron wave vector ki
was necessary to fulfill the momentum-transfer condi-
tion in this region of the scattering plane. Along this
path, the TA and LA modes that propagate along the
threefold direction were studied, and it was seen that
they present the two energy regimes described above. In
the nonlinear regime of the dispersion curve, only the
TA mode can be followed. As for the previous path pre-
sented above, the measured signal was fitted with a
damped harmonic oscillator having, as q increased, an
increasing damping, a decreasing intensity, and a quasi-
harmonic frequency that also saturated around 3 THz.
The dispersion curves of acoustic modes propagating
along this D8H direction are shown in Fig. 32. Here the
TA modes reach the midpoint between the two Bragg
reflections with a horizontal slope, suggesting again that
symmetry relations exist between them and that the

FIG. 31. Dispersion relation between points D (52/84) and E
(46/73) of icosahedral AlMnPd. The linear dispersion of trans-
verse and longitudinal acoustic modes is shown as solid lines.
Broken lines are a guide for the eye. The damping G of the
harmonic oscillator used during the fitting procedure is also
drawn as a function of q for both transverse acoustic (3) and
longitudinal acoustic (h) modes. There is a dispersionless op-
tic mode around 4 THz. After de Boissieu et al. (1993).
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midpoint acts as a zone boundary.
Finally, a recent experiment (Boudard et al., 1994),

undertaken on a larger sample, has clearly shown the
existence of four broad excitations. They are centered at
1.8, 3, 4, and 6 THz and have a width roughly equal to 1
THz. These dispersionless excitations are presented in
Fig. 33 and may be referred to as ‘‘optic modes.’’ As will
be seen in Sec. III.G, these data are in agreement with
the time-of-flight results obtained by Suck (1993a).

E. Conclusions from three-axis experiments

(1) The three quasicrystal phases studied up to now
with inelastic neutron scattering and presented in the
three preceding subsections are ternary alloys with an
aluminum-rich composition. It is interesting here to re-
mind the reader of the early inelastic-neutron work of
Stedman and Nilsson (1966) and of Yarnell (1965) on
pure aluminum. In Fig. 34 we reproduce the TA mode
that propagates along the [100] direction and reaches
the X zone boundary at 5 THz, whereas the LA mode
saturates at 9.5 THz (Stedman and Nilsson, 1966). Un-
derneath are the corresponding phonon widths. This fig-
ure illustrates the great similarity, in the long-
wavelength limit, between true acoustic modes of pure
aluminum and pseudoacoustic modes of the three qua-
sicrystalline alloys that are discussed in the preceding
subsections. With the same experimental technique,
Weymouth and Stedman (1970) also reported small
Kohn anomalies in pure Al.

FIG. 32. Dispersion relation along the direction D8 (52/84)-
H(70/113) of icosahedral AlMnPd. The transverse acoustic
mode emanating from D4 bends over in the 3-THz energy
range. The low-energy mode around 2 THz is an acoustic
branch arising from an out-of-plane Bragg reflection. After de
Boissieu et al. (1993).
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(2) Up to now, three-axis experiments have been un-
dertaken only on icosahedral phases. We have described
above the main results obtained for three of them. Con-
sistent with the icosahedral point-group symmetry,
acoustic modes with isotropic dispersion have been mea-
sured. In the long-wavelength limit they behave as lat-
tice periodic crystals having a linear dispersion, no in-
trinsic width, and a structure factor that scales with the
structure factor of the Bragg reflection from which they
emanate. Thus pseudo-Brillouin zones can be defined
around strong Bragg peaks, and acoustic modes are
propagative modes. In this limit, the vibrational states
behave as if they were extended. For larger values of q
(smaller wavelength) we are more sensitive to the mi-
croscopic details of the structure. In this regime the col-
lected data, if fitted to a damped harmonic oscillator,
show a damping factor G that increases as q increases; at
the same time a decrease of the intensity is observed
which seems to be related to a spread of the signal along
the energy axis. Many different processes can lead to
this broadening of the signal. It may be the signature of
some anharmonicity and/or we may have several nearly
degenerate modes, which—due to the ‘‘pseudolocaliza-
tion’’ expected from theoretical predictions—have a
weak dispersion and overlap.

(3) Friedel and Denoyer (1987) generalized to quasi-
crystals the Hume-Rothery criterion and proposed a
pseudo-Brillouin zone built with the most intense Bragg
reflections. This pseudozone is an approximation that
defines the smallest distance between atoms. For
AlFeCu and AlMnPd this pseudozone is a triacontahe-
dron generated by 30 vectors N=20, M=32 [Eq. (3.3)]
(K=3.13 Å−1 and 3.063 Å−1 for AlFeCu and AlMnPd,

FIG. 33. Dispersion relation for excitations measured around
the Bragg peak D (G point) in a transverse geometry. The
different symbols correspond to the different maxima identi-
fied in the measured signal. The full dots are for the acoustic
signal. The main pseudo-Brillouin-zone boundaries as deter-
mined from the 6D description (de Boissieu et al., 1993) are
indicated as ZB . After Boudard et al. (1994).
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respectively) truncated by a dodecahedron generated by
12 vectors N=18, M=29 (K=2.96 Å−1 and 2.913 Å−1 for
AlFeCu and AlMnPd, respectively). For AlCuLi the
pseudozone is built up with 60 vectors N=26, M=41 (K
=3.15 Å−1). Following this simple model we would ex-
pect a gap opening at the pseudozone boundary located
at about q=1.5 Å−1. This pseudozone behavior seems to
have been observed in AlMnPd, for the two TA modes
that start from the two Bragg reflections on a twofold
axis—D and D8—which propagate with a wave vector
parallel to a twofold axis (Fig. 30).

(4) The Hume-Rothery rule is a special case, for al-
loys, of a more general property studied in metals by
Peierls (1955). This property has received an important
illustration in the so-called ‘‘Peierls transition,’’ or
conductor-insulator transition, which occurs in com-
pounds exhibiting charge-density-wave instabilities. For
such a transition, a static electronic charge-density wave

FIG. 34. Dispersion curves for aluminum at 80 K (d) and 300
K (s) along the [100] direction. Underneath are correspond-
ing phonon widths. After Stedman and Nilsson (1966) (9 in
units p/a).
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develops within the conduction-electron gas and a gap
opens at the Fermi surface. The important point to em-
phasize here, following Peierls’s analysis, is that the lat-
tice is also involved in the transition and, as a result of
coupling between lattice and charge density, a lattice
distortion generally develops coupled to the charge-
density wave. The wave vector of the modulation is
qd52kF , which is not commensurate to the underlying
lattice, and therefore the insulating phase is incommen-
surate. In many metallic layered dichalcogenides, such
as 2H-TaSe2 and 2H-NbSe2, where such a transition is
known to occur, a mode softening at the large Kohn-like
anomaly has been measured by inelastic-neutron scat-
tering (Moncton et al., 1977). For the sinusoidal regime
in the incommensurate phase, the phason and amplitu-
don modes have also been seen with the same experi-
mental technique (Pouget et al., 1991).

(5) In contrast to quasicrystals, for this class of com-
pounds and for incommensurate dielectric materials it is
possible to define an average structure. Therefore an av-
erage Brillouin zone exists in which dispersion curves
may be represented. This gives a frame of reference for
studying how modes of the periodic-lattice crystalline
state are modified in the incommensurate phase. Inside
this average Brillouin zone one expects that gaps will
open at 1/2(G1mqd) (m=2,3,4, . . . ), where qd is the
wave vector of the first-order satellite reflection, the
largest gap occurring at 1/2qd . In addition, in the simple
case in which the modulated distortion is well approxi-
mated by a sinusoidal function (l=2p/qd), coupling
terms between modes of the average structure are in-
duced by this new periodicity and give rise to a ‘‘rear-
rangement’’ of low-frequency dispersion curves. More
specifically, we observe two branches connected to the
fluctuations of the phase and of the amplitude of the
modulation, the phason and the amplitudon, respec-
tively. If the higher-order satellites at q2d, q3d, . . . be-
come large enough, they act as second-order param-
eters. In this soliton (discommensuration) regime the
distortion is no longer sinusoidal, and more coupling
terms are allowed. Therefore the original scheme of dis-
persion curves of the average phase is quite modified. In
such a nonlinear regime there is no sliding phason, but,
as stated by Currat and Janssen (1988), phasons are
more like jumps of atoms between atomic positions
across an energy barrier. Thus there are several points in
common between incommensurate crystal phases and
quasicrystals, and these similarities show up as well in
the lattice dynamics.

(6) For the icosahedral quasicrystalline phases, the
dispersion curves obtained by three-axis measurements
may be represented in a pseudozone scheme centered
around a strong Bragg peak. Inside such a pseudozone,
gaps located at Bragg planes (Brillouin planes) are ex-
pected, and we may think that, in analogy to the soliton
regime in incommensurate structures, the complex pic-
ture reflected in the dispersion curves results from cou-
pling terms in the potential energy, which are induced
by several periodicities that are not commensurate. One
may ask: is the semiconductor behavior observed in qua-
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sicrystalline alloys connected with a mechanism whereby
lattice and electron density are coupled?

F. Ultrasonic and Brillouin measurements

1. Introduction

Group-theoretic arguments lead to the conclusion
that icosahedral quasicrystals are elastically isotropic.
The elastic stiffness is described by a fourth-rank tensor
Cijkl , which is invariant for appropriate rotations. The
elastic tensor in an icosahedral phase contains only two
independent components—associated with the longitu-
dinal and the shear acoustic modes, respectively. As
pointed out by Bak (1985, 1986), Lubensky et al. (1985)
and Lubensky (1988), the behavior of icosahedral quasi-
crystals in the hydrodynamic regime is based on six con-
tinuous variables associated with the phases of the six
mass-density waves needed to describe the icosahedral
state. The free energy of the icosahedral phase is invari-
ant under the translation operation of a 6D space. This
allows us to define six continuous symmetries in the real
3D space that are associated with six hydrodynamic
acoustic vibrational modes. Three of these translational
symmetries transform as the irreducible vector represen-
tation of the icosahedral point group; they can be iden-
tified as rigid displacements corresponding to shifts of
the 6D crystal along a 3D plane parallel to the real space
and give the usual acoustic modes. The three remaining
symmetries represent internal rearrangements of the at-
oms, and they are associated with displacements of the
6D crystal normal to the 3D real space. These last sym-
metries are similar to the phase shift in incommensurate
systems and are the so-called ‘‘phasons.’’ These latter
modes are diffusive because atomic distances are not
conserved, while acoustic modes are true Goldstone
modes. In the expression of the elastic energy of a qua-
sicrystal there are phonon and phason terms, plus a
coupled phonon-phason term. Thus we expect, on the
one hand, that an experiment carried out on an icosahe-
dral phase in the long-wavelength limit, using, for ex-
ample, ultrasonic technique, will exhibit elastic isotropy
and ultrasonic-attenuation anisotropy, and, on the other
hand, that any experiment related to inelastic measure-
ments should give an indication of a quasielastic signal
very near elastic peaks. In Secs. III.F.2 and III.F.3 we
present ultrasonic data that are available for the two
icosahedral phases AlCuLi (Reynolds et al., 1990) and
AlMnPd (Amazit et al., 1992). In Sec. III.G we shall de-
scribe time-of-flight results, which reveal a quasielastic
response that can be related to the phason excitation.

2. Al5.1CuLi3

Reynolds et al. (1990) performed an ultrasonic experi-
ment on a single-grain quasicrystal of composition
Al5.1CuLi3 grown from the melt at a rate of 2 mm/hr.
The sample was cut with faces perpendicular to a two-
fold axis and a fivefold axis. Pulsed longitudinal and
transverse sound waves were sent through the samples
and velocity measurements for each mode were taken
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
using the transit-time method. It was shown that the lon-
gitudinal and the transverse sound velocities (v l and v t ,
respectively) are the same along the twofold and fivefold
axes, and that v t is independent of polarization along the
twofold axis. These results are thus consistent with a
system whose elastic response can be described by two
elastic coefficients, C11 and C44 . In this experiment the
authors were unable to observe the anisotropy of the
acoustic attenuation, which is not incompatible with the
symmetry, due to experimental limitations. The results
are summarized in Table IV (r=2.464 g/cm3).

3. Al68.7Mn9.6Pd21.7

Amazit et al. (1992) made ultrasonic measurements
on the large Bridgman-grown sample that was already
used in the neutron three-axis experiment described
above. The sample was cut with faces perpendicular to a
twofold axis and a fivefold axis. Both longitudinal and
shear velocities were measured accurately using a reso-
nance method. The resonance frequencies are given by
n=n3v/2l , where v is the phase velocity of the wave (v l
or v t), n is an integer, and l the thickness of the sample.
In this experiment, the absolute values of v l and v t were
determined with an accuracy of 2.10−3 m/s, and it was
shown that when the polarization of the shear waves
propagating along a twofold axis is changed the velocity
remain the same within an experimental uncertainty of
10−4. Results are summarized in Table V (r=5.08 g/cm3).

Amazit et al. (1992) also undertook differential mea-
surements to investigate with good accuracy the anisot-
ropy of the attenuation. They compared the tempera-
ture dependence of the shear-wave attenuation for
different polarizations. Significant differences, which
confirm theoretical predictions, were observed when
measuring the attenuation of shear waves propagating
along a twofold axis with a polarization either parallel to
another twofold axis or parallel to the fivefold axis. Fig-
ure 35 shows that the evolution with temperature of
these attenuations is different and that the slopes are not
identical. The diminution of the attenuation when tem-

TABLE IV. Ultrasonic shear velocities measured along the
twofold and fivefold axes and corresponding elastic constants
for Al5.1CuLi3 (Reynolds et al., 1990).

Axis v l 105

(cm/s)
v t 105

(cm/s)
C11

(dyn/cm2)
C44

(dyn/cm2)

2 6.460.1 3.860.1 1.0 0.35
5 6.560.2 3.760.2 1.0 0.33

TABLE V. Ultrasonic shear velocities measured along the
twofold and fivefold axes, and corresponding elastic constants
for Al68.7Mn9.6Pd21.7 (Amazit et al., 1992).

Axis v l (m/s) v t (m/s) C11 (GPa) C44 (GPa)

2 6512 3595 215 65
5 6530 3590 216 65
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perature is decreased suggests that this attenuation must
be related to a thermally activated process.

So far, the ultrasonic technique is the only one that
can be used for high-accuracy measurements of long-
wavelength excitations in a quasicrystalline alloy.

4. Brillouin spectroscopy experiments

Brillouin spectroscopy experiments are rather difficult
for alloys. The penetration of light into an opaque ma-
terial is determined by its conductivity. It is well known
that for a metal it is very hard to detect bulk phonon
modes, and only surface phonons will be observed in a
Brillouin experiment on a quasicrystal. Up to now
Vanderwal et al. (1992) have performed the only Bril-
louin measurements to be published in the literature.
They studied acoustic surface waves in the quasicrystal
Al63.5Cu24.5Fe12 . The sample used in this experiment was
polycrystalline and mechanically polished. Backscatter-
ing geometry was employed with a tandem Fabry-Perot
interferometer operating in a five-pass configuration,
along with standard optics and an argon-ion laser. The
spectrum consists of a sharp peak at the frequency of the
Rayleigh wave (nR), followed by a shoulder extending
towards the high-energy side, where bulk waves are al-
lowed. It was proposed that a continuum of coupled
shear and longitudinal bulk acoustic phonons (called
Lamb waves) modulated the sample surface, giving rise
to scattering. From these data the bulk longitudinal
acoustic-wave velocity v l was shown to be 7191 m/s

FIG. 35. Temperature dependence of ultrasonic attenuation
Da for shear waves propagating along a twofold axis in icosa-
hedral AlMnPd. The polarization is parallel either to a twofold
axis (s) or to a fivefold axis (L). After Amazit et al. (1992).
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(smaller than in the neutron experiment). Then the bulk
transverse-wave velocity v t was calculated using the fol-
lowing equation:

F22S vR

v t
D 2G4

516F12S vR

v l
D 2GF12S vR

v t
D 2G . (3.8)

In this equation, vR is the Rayleigh surface-wave veloc-
ity. Assuming elastic isotropy, the elastic constants are
calculated from the velocities (r=4.5 g/cm3). The experi-
mental results obtained for the AlFeCu sample are pre-
sented in Table VI.

In this work, the corresponding values of vR , v l , and
v t for pure aluminum were also measured to be 2845
m/s, 6393 m/s, and 3022 m/s. From these data it was
concluded that the quasicrystal behaves very much like a
metal for surface Brillouin scattering measurements.

G. Time-of-flight experiments

1. Introduction

In a triple-axis experiment one measures the wave-
length of the neutron, while in a ‘‘time-of-flight’’ experi-
ment one determines its velocity. From the incident-
neutron flux, a six-chopper device allows one to obtain
narrow monochromatic bursts. An appropriate choice of
phase differences between the windows of the six disks
leads to selected incident wavelengths in the range 1–10
Å. After scattering, the final energy of neutrons is deter-
mined by measuring the time of flight (Dt) of the neu-
tron over a well known flight path (L) between sample
and detector [Ef50.5mn(L/Dt)2]. The angular position
2u of the detector yields the final momentum. Then one
obtains the scattering function S(HW ,v).

2. Generalized vibrational density of states
and total dynamic structure factor

Since the first work by Miceli et al. (1986) on AlMn,
dynamical properties of alloys presenting an icosahedral
phase have been studied on powder samples by Suck
et al. (1987) using the thermal time-of-flight spectrom-
eter IN4 and the cold-neutron time-focussing time-of-
flight spectrometer IN6 of the high-flux reactor at the
Institut Laue-Langevin in Grenoble. These experimen-
tal data were compared to those obtained using the
same experimental technique for metallic glasses and
crystalline phases having closely related composition.
All the systems investigated are listed in Table VII.

The generalized vibrational density of states
(GVDOS) under investigation is the weighted sum of
the Fourier transform of the normalized velocity auto-
correlation functions; it reads as

TABLE VI. Sound velocities in AlFeCu for the surface Ray-
leigh, and transverse and longitudinal acoustic modes (m/s)
and corresponding elastic constants (Vanderwal et al., 1992).

vR (m/s) v l (m/s) v t (m/s) C11 (dyn/cm2) C12 (dyn/cm2)

3529 7191 3809 2.331012 1.031012
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TABLE VII. List of alloys with noncrystallographic point symmetry studied with neutron time-of-flight technique.

Al80Mn20 Miceli et al., 1986 icosahedral, crystallized
Pd58.8Si20.6U20.6 Suck, 1987 glassy, icosahedral, crystallized
Al74Mn20Si6 Suck, 1988 icosahedral, crystallized (a+b)
Al65Cu20Fe15 Suck, 1990 melt spun, slow-cooled and annealed
Al57Li32.2Cu10.8 Suck et al., 1990 T2 phase, R phase (slow-cooled and annealed)
AlMn Suck et al., 1990 decagonal, crystalline (m phase)
Al75Cu15V10 Suck and Guentherodt, 1990 glassy, icosahedral, crystallized
Al62Cu25.5Fe12 Klein et al., 1993 icosahedral, tetragonal
Al71Pd19Mn10 Suck, 1993a icosahedral
where exp22W(HW ) is the Deby-Waller factor, ci is the rela-
tive concentration, ssc is the scattering cross section, and
Mi is the mass of the element i in the sample, while gi is
its partial density of states. The total dynamic structure
factor S(H ,v) is then determined. Among the systems
listed in Table VII, PdSiU and AlCuV are the only two
that can be stabilized in the three states—the glassy,
icosahedral, and crystalline phases. They are therefore
good candidates for a reasonable comparison of physical
properties and especially of atomic dynamics. One could
expect drastic changes in the GVDOS in going from an
amorphous phase to a long-range-ordered phase, but in
both PdSiU and AlCuV the GVDOS of the icosahedral
phase and of the glassy phase are strikingly similar. For
example, as shown in Figs. 36 and 37 for AlCuV, the
GVDOS, which consists of three main bands with
maxima near 14.5 meV (for the glassy phase) or 16 meV
(for the icosahedral phase), 22 and 29 meV, is changed

FIG. 36. Generalized vibrational density of states (GVDOS)
of the metallic glass (s) and of the icosahedral phase (d) in
Al75Cu15V10 . The maxima of the three main bands are near
14.5 MeV (glass), 16 MeV (icosahedral phase), 22 MeV and 29
MeV. After Suck (1990a).
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by less than 10% for energies between 6 and 45 meV in
going from the glass to the icosahedral phase. The only
important changes are the shift of the maximum of the
band at lowest energy and a slight decrease of intensity
at the low-energy slope. One does not find the spiky
structure that appears in the density of states for some
icosahedral models. This is perhaps due to the quality of
the samples. The density of states is more in agreement
with the calculations presented by Poussigue et al.
(1994).

On the other hand, it is seen that the GVDOS of the
icosahedral alloy and of the crystallized sample present
the same three bands, but after crystallization of the
icosahedral alloy the first maximum becomes very sharp
and there is a drastic loss of low-energy modes. The
presence of low-energy modes in the GVDOS of disor-
dered solids is normal (Buchenau et al., 1988), but is

FIG. 37. GVDOS of the icosahedral alloy Al75Cu15V10 (d)
and of the crystalline sample Al2Cu,Al3V (s). The maxima of
the three main bands remain the same after crystallization of
the icosahedral alloy, but the first maximum becomes sharp
and a drastic loss of low-energy modes is observed at the tran-
sition from the icosahedral phase to the crystallized sample.
After Suck (1990b).
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quite unexpected for quasicrystals. In thermodynami-
cally stable icosahedral alloys such as AlFeCu or
AlMnPd these low-energy modes do not show up. It was
concluded that low-energy modes are found in meta-
stable icosahedral alloys obtained by a rapid quench
where disorder (phason strain, lattice defects, fluctuating
decoration) is known to occur. Let us consider the GV-
DOS for icosahedral Al71Pd19Mn10, presented in Fig. 38.
It consists of two main broad bands centered near 16
meV and 33 meV separated by a pseudogap near 22
meV; its profile looks very similar to the GVDOS ob-
tained for the other icosahedral phases. The lowest-
energy band is easily related to the modes measured in
the three-axis experiment on the monodomain sample of

FIG. 38. GVDOS of slowly cooled icosahedral Al71Pd19Mn20
measured at 120 K with thermal-neutron energy-loss spectros-
copy. The region between 0 and 8 MeV is bridged by a Debye
model fitted to the measured data. After Suck (1993a).

FIG. 39. GVDOS of Al57Cu10.8Li32.2 (T2 phase) (s) and
Al56Cu12Li32 (R phase) (d). Two main bands are clearly dis-
tinguishable with a shallow pseudogap near 23.5 MeV. Only
the band at lower energy transfers is well resolved in this ex-
periment. After Suck (1990c).
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this same phase, whereas the second broad maximum
clearly relates to the recent evidence of optic modes
found by Boudard et al. (1994).

When we further compare the GVDOS of the crystal-
line and of the icosahedral states of the alloys AlLiCu
and AlFeCu, displayed in Figs. 39 and 40, respectively,
we see that while the peak positions remain the same in
the icosahedral and the crystalline phases, the broad
band at lowest energies becomes a sharp peak for the
crystal, in spite of the fact that there is a large number of
atoms in the unit cell (160 atoms for R-AlCuLi).

In conclusion, we have seen that, in agreement with
the theoretical prediction presented in Sec. II, the
GVDOS of each icosahedral alloy measured with a
time-of-flight spectrometer has a profile that is broad
and with little structure. In contrast, the GVDOS of ap-
proximant crystalline phases, when available, have a
profile that is strongly structured. The low-energy modes
are present in the GVDOS of icosahedral phases that
are not perfect.

FIG. 40. GVDOS measured with inelastic cold-neutron scat-
tering in neutron energy gain at 280 K: (a) icosahedral
Al62Cu25.5Fe12.5; (b) tetragonal Al70Cu20Fe10 . After Klein et al.
(1993).
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3. ‘‘Phason hopping’’

Recent experiments with the time-of-flight spectrom-
eter MIBEMOL of the Léon Brillouin Laboratory in
Saclay (Coddens et al., 1991) gave the first evidence of
another type of excitation, a dynamical phason mode. A
first series of experiments was carried out on three
nonisotopic samples with compositions Al62Cu25.5Fe12.5
(perfect sample), Al63Cu24.5Fe12.5 (imperfect sample),
and Al50Cu25Fe25 (b phase). The perfect sample exhib-
ited sharp Bragg peaks with widths that were given by
the experimental resolution and was stable in the icosa-
hedral phase within the entire temperature range
(20 °C–800 °C). The imperfect sample was annealed for
one hour at 800 °C and two hours at 600 °C. This sample
remained perfect down to 700 °C, but exhibited a mor-
phological evolution between 700 °C and 650 °C. The
samples were encapsulated in Nb cylinders and mounted
in a furnace. The experiments were carried out with in-
coming neutrons having a wavelength of 7 Å and an
energy resolution of 77 meV full width at half maximum
(FWHM). Runs were made at 790, 750, 675, 625 °C, and
at room temperature. The results are presented in Fig.
41.

They clearly exhibit a quasielastic component at the
foot of the elastic peak for the two icosahedral samples;
this component disappears completely for T lower than
600 °C. For the crystalline sample no quasielastic signal
could be observed in the entire temperature range of the
experiment. This quasielastic response is well fitted by a
Lorentzian function having a FWHM G equal to 95
meV. This signal has tentatively been associated with
‘‘phason hopping’’ of a relaxation time t=7 ps. For the
well-known model of atomic jumps between equivalent
sites separated by a distance d , the incoherent scattering
function is given by

FIG. 41. Time-of-flight spectra on an enlarged scale to bring
out the low-intensity features in AlFeCu. The maximum of the
(triangular) elastic peak (channel 279) is not shown. The broad
peak between channels 50 and 150 corresponds to phonons in
neutron energy gain. The Lorentzian at the foot of the elastic
peak is the signature of phason hopping, which has disap-
peared completely at room temperature. After Coddens et al.
(1991).
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S~HW ,v!50.5@11j0~Hd !#d~v!

10.5@12j0~Hd !#L~v!exp~22W !, (3.10)

where HW is the scattering vector, j0 the zeroth-order
spherical Bessel function, exp(−2W) the Debye-Waller
factor, and L(v) a Lorentzian function. The quasielastic
signal was further studied in a detailed experi-
ment (Coddens, 1993; Coddens et al., 1993); using the
method of isotopic substitution—which allows separa-
tion of the contributions of different atomic species. The
nominal sample composition was Al62Cu25.5Fe12.5. Sev-
eral samples were used, with each natural atomic species
being replaced by a pure isotope. Data were collected
for samples prepared with 54Fe, 57Fe, 63Cu, 65Cu, and
65Cu/57Fe, and they demonstrate that the signal was en-
tirely due to Cu motion. These results also indicated that
the width G of the quasielastic response is H indepen-
dent, which means that it does not correspond to long-
range translational diffusion. An effective jump distance
d=3.9 Å was determined from the position of the inten-
sity maximum. This is close to a second-neighbor dis-
tance Cu-Cu of 4.06 Å given by diffraction data. Fur-
thermore, G was shown to be temperature insensitive,
while the intensity I followed an Arrhenius law (Fig.
42).

This is opposite to the normal situation and character-
istic of cooperative motion, i.e., of assisted hopping.
Aubry (1993) has suggested that ‘‘breathers’’ could be
responsible for such hopping. Breathers are localized
long-lived vibrations that have a large amplitude. They
are encountered in anharmonic systems as solutions of
nonlinear dynamical equations. These breathers are re-

FIG. 42. Temperature dependence of the quasielastic scatter-
ing for the 65Cu sample (see text). The inset shows the Arrhen-
ius plot for the total intensity I. After Coddens et al. (1993).
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sponsible, in the system, for regions in which the thermal
energy is self-localized. Their density is temperature de-
pendent, so the experimental quasielastic response will
have an intensity that increases as the temperature is
raised, whereas its width is nearly constant. It is this
localized thermal energy that will assist the hopping of
Cu atoms above the energy barrier, which would other-
wise be too high (Fig. 43).

Hopping is a dynamic phason phenomenon, in con-
trast to the static phason strain in many quasicrystals.
Because the hopping occurs between two almost degen-
erate levels, this possibility is perhaps supported by a
study of the acoustic shear waves at high frequency, in
which Vernier et al. (1993) showed the existence of tun-
nelling states in AlMnPd. Although there is not yet an
unambiguous explanation for these results, the corre-
spondence between Vernier’s and Coddens et al. (1991)
results shows that the dynamics of quasicrystals are
richer than those of lattice periodic crystals.

IV. CONCLUDING REMARKS

In recent years we have seen a rapid increase in our
knowledge of systems with a high degree of order but
without lattice periodicity. In particular, incommensu-
rate crystal phases and quasicrystals have been studied.
For the latter, increasing quality and size of available
samples have made it possible to study the lattice dy-
namics. Experimental advances have been paralleled by
the development of theoretical models. In this way we
have reached the stage of basic understanding. Although
many details still remain to be investigated, and only
samples of a specific class—the icosahedral
quasicrystals—have been studied, we believe that the
principles are now understood. It turns out that quasi-
crystals have, like IC phases, much in common with lat-
tice periodic systems. On the other hand, there are fun-
damental differences.

For IC phases several examples have been observed
of phase transitions via a soft mode, additional optically
active modes, and modes that are characteristic of IC

FIG. 43. Hopping of the Cu atom assisted by a breather. The
observed displacement of Cu atoms in the icosahedral phase
AlFeCu requires an abnormally large displacement of neigh-
boring Al atoms.
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phases: the phasons and amplitudons. The effects of
quasiperiodicity in quasicrystals are usually more pro-
nounced, but modes equivalent to soft modes, amplitu-
dons, and phasons do not occur.

Model studies of lattice dynamics in quasicrystals have
been carried out on one-dimensional chains, two- and
three-dimensional tilings, and three-dimensional model
systems with icosahedral symmetry. Only in one-
dimensional systems has it been possible to prove math-
ematically certain properties. In the models one finds
propagating waves. In the 1D case it has been shown
that the spectrum is singular continuous, generally
speaking, and the wave functions are critical. In higher
dimensions the long waves behave like extended states,
but for higher frequencies the character is closer to that
of a critical or pseudolocalized state. For the dynamic
structure factor this implies that, for low frequencies,
there are well-defined and narrow ridges along disper-
sion curves, which broaden for higher frequencies. The
density of states shows many peaks, corresponding to
generalized van Hove singularities.

These theoretical findings are in agreement with ex-
periments carried out by means of inelastic neutron scat-
tering. The samples under investigation were icosahe-
dral phases of AlCuFe, AlMnPd, AlCuLi, and AlMn.
The main features of the experiments are understood.

There remain several open questions. The character
of the spectrum for 2D and 3D systems has been studied
only numerically. Mathematical analysis is still missing
here. In models on tilings, one finds self-similarity prop-
erties of the states. It is unclear to what extent these are
determined by the scaling properties of the underlying
tiling. There is some evidence for the role of phason
hopping in dynamical processes, but this point still has
to be investigated theoretically.

In experiment, the existence or nonexistence of gaps
in the dispersion curves is not clear. This is partly due to
the still rather small size of the samples. Size has also
made it hitherto impossible to investigate other quasi-
crystal systems. A good candidate without icosahedral
symmetry is the decagonal phase, but here one has to
wait for an improvement in quasicrystal growing tech-
niques.

In model calculations, the properties of approximants
other than the simplest ones do not differ much from
those of the quasicrystal. It would be worthwhile to
study a series of approximants by experimental means as
well.

For lattice periodic systems, lattice-dynamics studies
are simplified enormously by the use of the lattice peri-
odicity. The character of the spectrum and the wave
functions are fully understood. The quasiperiodic sys-
tems are beginning to be understood, but this remains a
rich field for research. Just as quasiperiodic systems have
forced crystallographers to reconsider the fundamentals
of their field, these systems show remarkable properties
in their physics as well.
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Hafner, J., and M. Krajčı́, 1990, Europhys. Lett. 13, 335.
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