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The authors present general considerations and simple models for the operation of isothermal motors
at small scales, in asymmetric environments. Their work is inspired by recent observations on the
behavior of molecular motors in the biological realm, where chemical energy is converted into
mechanical energy. A generic Onsager-like description of the linear (close to equilibrium) regime is
presented, which exhibits structural differences from the usual Carnot engines. Turning to more
explicit models for a single motor, the authors show the importance of the time scales involved and of
the spatial dependence of the motor’s chemical activity. Considering the situation in which a large
collection of such motors operates together. The authors exhibit new features among which are
dynamical phase transitions formally similar to paramagnetic-ferromagnetic and liquid-vapor
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I. INTRODUCTION

Modern biology has shown that an important number
of biological processes are governed by the action of
molecular complexes reminiscent in some way of macro-
scopic machines (Kreis and Vale, 1993; Alberts et al.,
1994). For instance, the words ‘“‘channels” and ‘“‘pumps”
are commonly used to describe protein aggregates pro-
moting, respectively, passive and active transport of ions
and molecules across biological membranes, whereas the
word “motor” is used for proteins or protein complexes
that transduce at a molecular scale chemical energy into
mechanical work. Both rotatory and translationary mo-
tors are known to exist. In this colloquium article, we
focus our attention on translationary (or ‘“linear’’) ”” mo-
lecular motors. We do not give a full review of their
modeling, but rather present a generic and simple de-
scription, which allows one to extract the main features
of the physics involved, deliberately avoiding the bio-
logical complexity.

Extensive studies over the last twenty years have
shown that a significant part of the eukaryotic cellular
traffic relies on “motor” proteins that move in a deter-

*Electronic address: frank.julicher@curie.fr
Electronic address: armand@turner.pct.espci.fr
*Electronic address: jacques.prost@curie.fr

ministic way along filaments similar in function to rail-
way tracks or freeways (see Fig. 1). Three different fami-
lies of motor proteins have been identified: kinesins and
dyneins move along tubulin filaments, myosins move
along actin filaments. For what follows, we need only to
know that the filaments are periodic and fairly rigid
structures with a period of the order of 10 nm. They are
moreover polar, so that one can define a “plus” and a
“minus” extremity. A given motor always moves in the
same direction. Myosin moves along actin filaments to-
wards their plus extremity, and kinesins and dyneins
move along tubulin filaments towards their plus and mi-
nus extremities respectively. From the complex structure
of the motors we need to remember the existence of two
“heads” interacting with filaments of a size comparable
to the filament period (single-headed motor proteins can
also be engineered, and dyneins may in some cases have
three heads), as well as the existence of a tail several
tens of nanometers long, able to attach to vesicles or
assemble in bundles as in muscle fibers. Motor mol-
ecules play a key role not only in muscular contraction
but also in cell division, cellular traffic, material trans-
port along the axons of nerve cells, etc. (Alberts et al.,
1994).
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FIG. 1. Cartoon of a motor protein moving with velocity v
along a periodic and polar track filament. As it carries some
cargo along its way, it moves against an external force f. and
consumes » ATP molecules per unit time, which are hydrolized
to ADP and phosphate (P).
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The experimental work on muscles, dating back to the
early ages of the microscope, was de facto, looking at
macroscopic manifestations of the function of molecular
motors. Excellent early reviews on the modeling of
muscle contraction can be found in A. F. Huxley (1957)
and Hill (1974). A key point in these theories lies in the
existence of several states of a motor, within each of
which the system reaches local thermodynamic equilib-
rium on time scales small compared to the exchange
rates between these states. Local thermodynamic equi-
librium is meaningful because of the following compari-
son of orders of magnitude: from the transient response
of muscles it was known that the fastest characteristic
times of the motors were in the range of milliseconds.
Thermal equilibrium occurs on length scales of 10 nm
after tens to at most hundreds of nanoseconds. The
states of the proteins during muscular contraction there-
fore had to be in local thermal equilibrium. Up to five
and even six different states could be involved' (Lymn
and Taylor, 1971; Hill, 1974). Clearly identified were the
need for asymmetry (i.e., polarity of the motor/filament
interaction), the importance of chemical energy con-
sumption and, in a more subtle way, the relevance of the
fact that the periodicities of motors and filament are in-
commensurate. All of these points will be illustrated in
the following. In the earliest theoretical description, the
asymmetry of the system was introduced via asymmetric
transition rates (A. F. Huxley, 1954). Specific conforma-
tional changes were also discussed (H. E. Huxley, 1969;
A. F. Huxley and Simmons, 1971).

The recent revival of interest in the modeling of mo-
lecular motors stems from the appearance of a new gen-
eration of experiments. Both the filaments and the mo-
tor proteins can be purified to such an extent that clean
reproducible experiments can be performed in vitro.
These experiments can be divided in two classes: (i) the
optical monitoring of motion of single filaments pro-
pelled by many motors, which are absorbed on a flat
substrate (Kron and Spudich, 1986; Harada et al., 1987;
Spudich, 1990; Ishijima et al., 1991; Winkelmann et al.,
1995); or (ii) the observation of motion of single motors
along filaments. The second type of experiment is
achieved by coating a micron-sized silica bead with a
small number of motors and observing the bead motion
along a single filament induced by the interaction of one
of the motors with the filament (Svoboda et al., 1993;
Hunt et al., 1994; Svoboda and Block, 1994). Alterna-
tively, the motion of filaments interacting with single
motors can be monitored (Ishijima et al, 1991; Finer
et al., 1994). Details as refined as the elementary “‘step-
ping” events can be identified. The first class of experi-
ments (called motility assays) typically involves a large
number of motors interacting with a filament. Such mo-
tor collections are fairly similar to the arrangement of
motors in muscle fibers. The second class of experi-
ments, more relevant to our understanding of eucariotic
intracellular transport, raises the question of the inter-

Note that a continuum of states cannot be ruled out a priori.
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ference of fluctuations and Brownian motion with the
directed motion that is characteristic of these motors.

From a theoretical point of view, molecular motors
are microscopic objects that unidirectionally move along
one-dimensional periodic structures. The problem of ex-
plaining this unidirectionality belongs to a larger class of
such problems involving rectifying processes at small
scale. A simple model of such a process is a generaliza-
tion of Feynman’s famous ‘“‘thermal ratchet” (Feynman
et al., 1966). Bittiker (1987) and Landauer (1988)
showed that a periodic distribution of temperatures with
the proper asymmetry was sufficient to induce macro-
scopic motion of a particle in a periodic potential via a
rectification mechanism of the random Brownian forces.
As already discussed, any temperature inhomogeneity at
the scale of a few tens of nanometers decays on time
scales of microseconds, so that even though the devel-
oped concept is very attractive it cannot be retained for
describing motors at the nanometer scale. Note that pe-
riodic temperature gradients in the micron range can be
produced: it would be quite interesting to design experi-
ments able to check the predictions of Buttiker and Lan-
dauer.

Various isothermal rectifying processes have been dis-
cussed. For instance in the context of biophysics they
were invoked both for the function of ion pumps (As-
tumian et al., 1987) and for the translocation of proteins
(Simon et al., 1992). Periodic isothermal ratchets have
been discussed from different perspectives (Doering,
1995; Astumian, 1997). We can distinguish three differ-
ent approaches.

(i) Fluctuating forces: a pointlike particle is placed in a
periodic, asymmetric potential W(x) and is submitted to
a fluctuating force that does not satisfy a fluctuation-
dissipation theorem. Typically the particle motion is de-
scribed by the Langevin equation

dx
£ == LW HF(), (1)

where ¢ is a constant friction coefficient, x the position
of the particle, and W(x) the potential energy it experi-
ences. The fluctuating force F(¢) has zero averaged
value, (F(¢))=0, but has richer correlation functions
than a simple Gaussian white noise. These correlations
of the fluctuating forces reflect the energy source: their
structure depends for example on the complexity of an
underlying chemical process. As soon as the fluctuation-
dissipation theorem is broken, a rectified motion sets in
with a direction that depends in a subtle manner on the
details of the statistics (Buttiker, 1987; Landauer, 1988;
Magnasco, 1993; Doering et al., 1994; Magnasco, 1994;
Millonas and Dykman, 1994; Chialvo and Millonas,
1995; Luczka et al., 1995; Mielke, 1995a, 1995b; Millo-
nas, 1995; Bartussek ef al., 1996). A time-dependent ex-
ternal force leads to similar results (Magnasco, 1993;
Ajdari et al., 1994; Bartussek et al., 1994). In principle,
inertial terms could be added in Eq. (1). The motion of
a massive particle subject to a fluctuating force is a beau-
tiful theoretical problem (Hondou and Sawada, 1995;
Jung et al., 1996). We shall not go into this subject here:
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indeed, the characteristic crossover time between under-
damped and overdamped behavior is of the order of a
few picoseconds on the 10-nm scale.

(ii) Fluctuating potentials: A pointlike particle is
placed in a periodic, asymmetric potential with a value
that depends on time:

dx

o= AW (D). @)
x, & and W keep the same meaning as in Eq. (1) but the
potential W depends explicitly on time, and the random
forces f(t) are Gaussian white noise which obeys a
fluctuation-dissipation theorem:

(f()=0, (f)f(t"))y=2£T6(t—1"). (3)

The energy source is now implicit in the time depen-
dence of the potential W. Most works have considered
the case in which W(x,1)=A(¢)V(x) (Ajdari, 1992; Aj-
dari and Prost, 1992; Astumian and Bier, 1994; Doering,
1995). If A(¢) is a random variable which can adopt two
different values and if the distribution of residence times
at each value is given by a Poisson distribution, Eq. (2)
corresponds to the motion of a particle fluctuating be-
tween different states for which the transition rates be-
tween states are constant.

(iii) Particle fluctuating between states: the notion of
well-defined states, introduced earlier in the discussion
of muscles, is used (Chauwin et al., 1994; Peskin et al.,
1994; Prost et al., 1994; Zhou and Chen, 1996; Harms
and Lipowsky, 1997). In each of the states, the ‘“par-
ticle” experiences a classical Langevin equation:

dx
& == W) (D). ()

Here, the index i refers to the considered state, i
=1...N, and f;(¢) satisfies a fluctuation-dissipation
theorem:

(fi))=0, (fl)fi(1"))=2&T8(1—1")6;. (5)

The dynamics of transitions between the states have to
be added independently, which is most conveniently
done in a Fokker-Planck formalism, as will be discussed
in Sec. III. Rectification is obtained only to the extent
that at least one of the transitions does not satisfy de-
tailed balance. Although approaches (i) to (iii) may dif-
fer in the details of the rectification process, they share
in common their main features.

Aiming at a more realistic description on the molecu-
lar level, several authors have added internal variables
(which become necessary if the time required to achieve,
for instance, a conformational change is not small com-
pared to other time scales), in particular in order to
quantify the significance of correlations between the two
heads of the motors (Ajdari, 1994; Peskin and Oster,
1995; Derényi and Vicsek, 1996; Duke and Leibler,
1996). Such models often aim at describing more closely
specific features of particular biological motors, such as
the two-head walk of kinesin or the power stroke of
myosin.

In the next sections, and in the spirit of a colloquium
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article, we focus on a simple description in which we
keep only two different states. This approach follows the
basic idea of the Ising model for phase transitions: the
aim is not to describe molecular details but to extract
generic features of motion generation and to extend the
modeling to the case of many motors. The generic prop-
erties we extract can be used as guides not only to the
understanding of molecular motors but also to the con-
ception of new particle separation devices.

In Sec. II, following the early analysis of Kedem and
Caplan (1965), we illustrate the originality of isothermal
motors by analyzing their behavior close to thermal
equilibrium using a simple linear-response theory. In
particular, we calculate the efficiency of these motors
and show how they differ from Carnot engines. The re-
sults presented in this section are completely indepen-
dent of any underlying microscopic mechanism. In real
life, molecular motors work in fact far from equilibrium:
to go further, and in particular to be able to discuss non-
linear regimes, one needs to construct more specific
models. In Sec. III, we introduce the two-state model:
we choose it because it is simple enough to be tractable
and generic enough to give physical insight into many
physical realizations. We show the importance both of
the time scales involved and of the spatial dependence
of chemical activity within the motor. In Sec. IV, we
consider the situation in which a large number of motors
operate together and concentrate on the qualitatively
new features that emerge from the many-motor prob-
lem: We show the existence of a dynamical phase tran-
sition formally similar to the liquid-vapor transition.
One natural consequence of this phase transition is the
possibility of spontaneous oscillations whenever elastic
elements are added in series to the motor collection.
This feature could be relevant to the understanding of
the oscillations of insect flight muscles such as those of
wasps and bees (Pringle, 1977; Yasuda et al., 1996). In
our concluding remarks we summarize the main ideas
and discuss possible technological applications of the
concepts discussed here.

II. MOTION AND EFFICIENCY CLOSE
TO THERMAL EQUILIBRIUM

As explained above, molecular motors are isothermal,
which implies that internal states can be defined that are
locally in equilibrium at a constant temperature 7. The
action of the motor is induced by generalized forces,
which for the motor/filament system may be identified as
the mechanical force f., applied to the motor, and the
chemical potential difference A, which measures the
free-energy change per consumed “‘fuel” molecule. The
force f., describes external forces, for example of opti-
cal tweezers, microneedles, or the viscous load of an ob-
ject that is carried. f., could also include viscous friction
forces between the motor and the surrounding solvent if
the latter is considered as “‘external.” The chemical po-
tential difference Au is for the process of the hydrolysis
of adenosinetriphosphate (ATP) to adenosinediphos-
phate (ADP) and phosphate (P), ATP=ADP+P, given
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by Apu=parp— app— Mp- At chemical equilibrium
Ap=0, whereas it is positive when ATP is in excess and
negative when ADP is in excess. The action of these
generalized forces leads to motion and fuel consump-
tion, characterized by generalized “currents”’—the aver-
age velocity v and the average rate of consumption of
fuel molecules r (i.e., the average number of ATP mol-
ecules hydrolyzed per unit time, per motor).

The dependencies v (fexi,Ap) and r(fey,Ap) of ve-
locity and fuel consumption as functions of forces are in
general nonlinear. Molecular motors mostly operate far
from equilibrium (A w=10kzT'), where these nonlineari-
ties are important. However, it is instructive first to ex-
plore the linear regime (Au<<kzT). In this regime, a
linear-response theory holds (Hill, 1974; Julicher et al.,
1997), which allows us to write

V=N1fea T AN 2A L,

r=Nfeat AnAu. (6)

Here, we have introduced a mobility coefficient A{; and
the mechano-chemical coupling coefficients A1, and \,; .
The latter are nonzero only if the filaments are polar. Ay,
is a generalized mobility relating ATP consumption and
chemical potential difference. On general grounds, an
Onsager relation holds: N\ ;=\, (Hill, 1974). The stabil-
ity of the system requires \;;>0 and XAy —N2h2>0.
This insures that the dissipation rate II is positive:

H:fextv+rA/L>0' (7)

Whenever f.w<0, work is performed by the motor;
whenever rA u <0, chemical energy is generated. Thus a
given motor/filament system can work in any of eight
different regimes (see Fig. 2). Four of them are essen-
tially passive,” whereas the other four are more interest-
ing: uses ATP and ADP in one of the following ways:

(A) rApu>0, fov<0: the motor uses the hydrolysis of
ATP in excess to generate work,

(B) rAu<0, foqv>0: the system produces ATP al-
ready in excess from mechanical input,

(C) rAu>0, fouw<0: the motor uses ADP in excess
to generate work,

(D) rAu<0, foqv>0: the system produces ADP al-
ready in excess from mechanical input.

Linear-response theory tells us that a sign change of
Ap leads to a velocity reversal of the motor. This phe-
nomenon may be out of reach for the currently known
molecular motors, which operate in general in the non-
linear extension of regime A far from equilibrium. How-
ever, this velocity reversal is conceptually interesting

2If both f.w and rAu are positive, there is no energy output
from the system. Instead, all work performed at the system is
simply dissipated in the thermal bath. This is what we call a
purely passive system. The case for which both f. v and rAu
are negative would imply that the system performs both me-
chanical and chemical work, taking the energy from a single
heat bath. This case is forbidden by the second law of thermo-
dynamics, which requires 11>0.
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FIG. 2. Operation diagram for an isothermal chemical motor
in the linear regime as a function of externally applied force
fext and chemical force Au. In regimes A and C, the motor
transforms chemical energy into work, while in regimes B and
D it generates chemical energy from mechanical input. Lines
of maximal mechanical efficiency 7,, and chemical efficiency
7. are indicated.

since it allows direction reversal without any need for
changing the microscopic mechanism.

Efficiencies are also worth consideration. In regimes
A and C one can define the efficiency as for any macro-
scopic motor,

_fextv
rAup’

®)

that is, by the ratio of mechanical work performed to
chemical energy consumed. For regimes B and D, the
quantity of interest is the chemical efficiency

Mm=

rAu
c= = P 9
g Jextv ©)

which is the inverse of the mechanical efficiency. Clearly
the efficiencies vanish along the boundaries of the cor-
responding domains (where either v, fe, r, Or Ay van-
ish), and they have a constant maximal value 7,,,,=(1
—J1=A)%/A with A=\},/(\j;Ay) along straight lines
merging at the origin. Thus thermal equilibrium (Au
=0, foxe=0) represents a singular limit: At this point the
efficiencies given by Eqgs. (8) and (9) are not defined. In
the limit where equilibrium is approached starting from
one of the regimes A-D, a finite efficiency is reached.
Note also that the often expressed statement that effi-
ciency is maximum around ‘‘stall force” (i.e., the force
for which v=0 for a given value of Aw) is wrong: at stall
force the efficiency vanishes. This is an important differ-
ence from Carnot engines, which have maximal effi-
ciency at stall conditions when the Carnot engine oper-
ates reversibly.

lll. A TWO-STATE MODEL FOR A SINGLE MOTOR

We shall now discuss a concrete model for force gen-
eration and motion of linear molecular motors. We re-
strict our analysis to a two-state model (Peskin et al.,
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FIG. 3. Schematic picture of the two [-periodic asymmetric
potentials. Although the two potentials are flat on a larger
scale, motion is expected when the ratio of transition rates
w1 /w, is driven away from its equilibrium value given by Eq.

(15).

1994; Prost et al., 1994), in which the fuel consumption
triggers a conformational change between two states 1
and 2. Transitions between these states are described by
standard chemical kinetics. For each of the states, a
position-dependent one-dimensional potential can be
defined in the following way: The motor is allowed to
find its equilibrium position close to the filament with
the constraint that the x coordinate of the center of mass
is given. The free energy of the motor in state i confined
at point x defines the potential W;(x). This definition
implies that the symmetry of the filament is reflected in
the symmetry of the potentials: W;(x) is both periodic
and asymmetric. Note that this potential is defined for
any x, irrespective of the range of interactions involved.
The variations of this potential can in principle be esti-
mated by measuring the force required to maintain the
particle at the prescribed position x. An experiment
along these lines suggests that the distance between
minimum and maximum is of the order of 3 nm for
actin/myosin (Nishizaka et al., 1995), but in general we
do not know the potential shape.

In order to develop a stochastic description of the dy-
namics, we introduce the probability density P;(x,t) for
the motor to be at position x at time ¢ in state i. This
periodic system with period / is shown schematically in
Fig. 3. The evolution of the system can be described by
two Fokker-Planck equations with source terms:

3 P1+0J1=—w1(x) P+ wy(x) Py, (10)
9 Py+ 3. J,= w1(x)P1— wy(x) Py, (11)
where the currents result from diffusion, interaction

with the filament, and the action of a possible external
force foy:

Ji=pul —kgTd Pi—P;d Wi+ Pfeyl. (12)

The source terms are determined by the rates w;(x) at
which the motor switches from one state to the other.
The functions w;(x) again have the symmetry properties
of the filament.

The set of Egs. (10)-(12) can be used not only to il-
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FIG. 4. Schematic picture of the effective potential W g(x)
acting on the particle if the transition rates between the two
states do not obey detailed balance.

lustrate the motion of molecular motors but also to show
explicitly in terms of an effective one-dimensional equa-
tion how this motion and force generation emerge. This
effective description is obtained by evaluating the
steady-state particle current J=J(x)+J,(x) for
[-periodic P;(x). Introducing P=P;+P, and A(x)
=P(x)/P(x), it takes the form

J=perl —kpTdP—PI Wt Pfey] (13)

with an effective mobility given by pep=pA+u(1—N)
and an effective potential that reads

AN W+ usr(1=N)3, W,
MM+ pa(1=N)

+kpTIN(per) T - (14)

One can show that, with periodic boundary condi-
tions, A(x) has the potential symmetry. So if the poten-
tial is symmetric, the integrand in Eq. (14) is antisym-
metric and the effective potential is periodic: W (n/)
=W4(0) for integer n. It is thus flat on large scales and
cannot generate motion.

For asymmetric potentials, the effective potential ge-
nerically has a nonzero average slope [W (/)
—W,(0))/] on large scales (see Fig. 4), although W and
W, are flat on large scales (see Fig. 3). This average
slope corresponds to an average force that the motor
develops, able to generate motion against weaker exter-
nal forces fy;.

However, this average force exists (i.e., the system op-
erates as a motor) only if the system consumes chemical
energy. If no energy is provided to the system, detailed
balance has to be satisfied:

Wi(x)—Wjy(x)
kgT )

As a consequence A=(1+exp[(W(x)—W,(x))/
kgT])~! and W is the [-periodic free energy of the
motor, which is obviously flat on large scales. Thus
breaking detailed balance is also a clear requirement for
spontaneous motion.

As already discussed, in biological systems detailed
balance is broken most of the time by ATP hydrolysis.
Let us assume that an hydrolysis event triggers, say, the

Weg(x") = We(0) = fox dx

01(x)=wy(x)exp (15)
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[ localized perturbation

homogeneous perturbation

o Q

FIG. 5. Schematic diagram of the spontaneous average veloc-
ity v (for zero external force f,,,=0) of the particle as a func-
tion of (), which measures the departure from equilibrium and
is related to the fuel concentration [see Eq. (17)].

change of the motor from state 1 to state 2 (the other
choice would give similar results). Then standard chemi-
cal kinetics allows us to write

w1(x)=(a(x)e*aTp/ 8T 1 (x))e W1/ kpT
W, (x) = (a(x)e#aprtrr) kpT 4 4 (x))eWa)kBT - (16)

The a(x) term corresponds to the transitions induced
by the chemical reaction, and the w(x) represents the
thermally excited ones. Note that « and o have to be
[-periodic functions but are otherwise a priori not speci-
fied. Let us construct a quantity measuring the local de-
viation from detailed balance:

w -Ww
Q(x)=w(x)—wy(x)exp % (17)
Using Eq. (16), one finds
Q(x):a(x)exp Wl(xk)‘l'T/LATP (1 —ef(A:U‘/kBT))’
B
(18)

in which we have used our earlier definition of Au. For
practical purposes, we write Q(x)=Q6(x), where the
perturbation amplitude () measures the distance to equi-
librium and [} 6(x)dx is normalized to one. For A u—0,
Q) vanishes linearly with Aw in accordance with our
choice of generalized forces. For Au>kgT it is essen-
tially proportional to the ATP concentration (which is
the relevant case for biological motors).

More generally the transition rates may be perturbed
by any means, for example in the case of artificially con-
structed systems by photon fluxes, which could induce
state changes provided an appropriate frequency range
were chosen. In this case, ) and 6(x) are still a good
measure of both the intensity and the spatial depen-
dence of a departure from the equilibrium transition
rates.

As a result of broken detailed balance, the motor be-
gins to move on average and can work mechanically
against a load as described by Egs. (13) and (14). Its
average velocity v is determined by J=uv[ldxP(x)/l.
However, to get explicit expressions for the velocity and
the efficiency of the process, one needs to calculate A (x)
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P,

U N

FIG. 6. Motion generation for W,=const and f.,,=0: A par-
ticle trapped in state 1 is excited to state 2, where it diffuses
freely. It returns to state 1 after a typical lifetime w, ' when it
has a Gaussian probability distribution P,. With a probability
proportional to the hatched area of the Gaussian distribution,
it arrives at the next minimum of W, provided it has sufficient
time in state 1 to slide to that minimum.

and thus solve Egs. (10)-(12). It is then necessary to
specify the potential shapes in order to get specific re-
sults. For Au/(kgT)<1 and fl/(kgT)<1, one recov-
ers the linear regime described in Sec. II, and it is pos-
sible to verify analytically the Onsager symmetry
relations (Julicher ef al., 1997). An analytical treatment
is also possible beyond the linear regime for piecewise
linear potentials and a piecewise constant perturbation
0(x) if the “deexcitation” rate w, is taken constant and
if at the same time W,— W ;>kzT, which permits ne-
glect of thermally excited transitions from conformation
1 to 2. In this “far from equilibrium” situation, Egs.
(10)-(12) can be solved using standard linear algebra
(Prost et al., 1994). In more general situations one
should solve these equations numerically.

Two interesting limits can be identified: a homoge-
neous perturbation 6(x)=1/I, or a perturbation “local-
ized” in the vicinity of the minima of W, 6(x)
=3,8(x—xy+nl). The latter case corresponds to the
notion of ‘““active sites” in biology: it tells us that the
(ATP-assisted) transition from state 1 to 2 is basically
impossible, except when the protein is at a specific loca-
tion along the filament. Independent of any detailed cal-
culation, it is easy to show that the behavior of the spon-
taneous velocity v (fe=0) as a function of the
excitation rate () differs fundamentally in these two
cases (Fig. 5).

In the first case of a homogeneous perturbation, a
well-defined velocity maximum occurs at a given value
of ). Indeed, for low excitation rates, the system is close
to thermodynamic equilibrium and v grows linearly with
Q) starting from zero at =0 in agreement with linear-
response theory. At very large (), only state 2 is popu-
lated, which restores a Boltzmann distribution in this
state, so that in the absence of an external force the
velocity vanishes as 1/Q3. The maximum velocity is ob-
tained when two pairs of characteristic times are
matched. This can be understood in the case of a con-
stant potential W, (Fig. 6): suppose the particle starts
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from an energy minimum of the ground state 1 and gets
excited to state 2. In this state it will undergo a diffusion
process, which will lead after a time ¢ to a Gaussian
probability distribution with halfwidth (2k T u,t)"2.
After a typical lifetime 7,=w, !, the particle will return
to the ground state. Depending on whether this transi-
tion takes place on the right or the left of the maximum
of W{(x), the process will contribute to net motion (to
the right) or not, as shown in Fig. 6. We want the num-
ber of favorable events contributing to the net motion to
be as large as possible: A short lifetime 7, would yield a
small contribution to motion but letting the diffusive
stage last too long would allow the particle to jump to
the left with an appreciable probability too. So, in scal-
ing form, optimal conditions read 7,=a?/k 3T u, (for the
definition of the length a, see Fig. 6). Now we want the
particle that moved over the barrier to have sufficient
time in state 1 to drift down the potential slope to reach
the next minimum. Since waiting there would lead to a
loss of time, the second time matching for optimization
is 71=w;'=Q"'=b%(u;W,). This determines the
value (* at which the maximum velocity is reached in
Fig. 5.

In the second case of highly localized excitations,
there is no maximum in the v({}) curve. Indeed, while
the previously mentioned time matching in state 2 is still
needed, particles will now always drift downhill to the
energy minimum of state 1 before being reexcited to
state 2. The less time spent in the minimum, the faster
the cycle and the larger the velocity. Thus the maximum
is pushed towards ) =0,

Note that in both cases a diffusive step is needed. This
is due to the fact that in the situation of Fig. 3, the par-
ticle has to escape from a valley by diffusion in either
state 1 or state 2. Thus the case considered in Fig. 6,
where one of the potentials is flat, allows for the fastest
escape. If the mobilities x; and w, are comparable, the
velocity scale is consequently limited by the “‘slow’ dif-
fusive step, so that a typical value is v ypical
=(uyw,/kpT)", which under optimal conditions is
equivalent to vypica=a/Ty=purkpT/a. Using the ap-
proximations described above to get analytical results,
one can show that the maximum velocity is about twice
as large for a localized perturbation as for a homoge-
neous one, everything else being kept alike. Indeed, not
every drift event down towards the potential minimum
is efficient in the case of homogeneous perturbations,
where particles may be excited before actually reaching
the minimum, whereas they are all efficient in the other
case.

Note also that we have discussed here two extremes: a
homogeneous perturbation 6(x)=1// and a perturbation
localized to a point §(x)= 6(x mod /), whereas in gen-
eral one expects a smoother function of x. In this inter-
mediate case, a maximum of the velocity still exists for
finite (), but the velocity does not vanish for large ().
Experimental curves for motor proteins show no evi-
dence for a maximum when the velocity is plotted as a
function of the ATP concentration. This observation
supports the idea of active sites.
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FIG. 7. “Shifted” potentials: if the “shift” d between the ex-
trema of the two potentials is large enough, the particle can
drift without having to overcome energy barriers by diffusion,
a scenario more efficient than that shown in Fig. 3.

It may seem naive to compare the results of a calcu-
lation based on point particles with the behavior of a
system involving complex objects such as proteins whose
size is comparable to the period of the track filament.
The conformation changes necessarily take time and
may result in spatially rearranged binding sites. This
may involve a displacement of the center of mass of the
motor along the filament, contributing to the net motion
and would correspond for instance to the idea of power
strokes (H. E. Huxley, 1969; A. F. Huxley and Simmons,
1971; Spudich, 1990). A simple although blind way of
taking these features into account is to consider nonlocal
transitions between states with rate kernels w;(x,x',t
—1t"), where x' is the location of the particle before ex-
citation at time t’, x its location after the excitation at
time ¢. These functions have to be /-periodic in both x
and x', and because of time translational invariance
only r—t' can describe temporal dependencies.

A simple illustration of the importance of nonlocality
may be obtained in the following way (Ajdari et al.,
1993; Chauwin et al., 1994). Consider a system consisting
of two potentials W (x) and W,(x) with coinciding
minima and maxima, but with nonlocal transition rate
kernels so that every transition from 1 to 2 is accompa-
nied by a displacement d to the right, while every tran-
sition from 2 to 1 is accompanied by displacement to the
left. Formally this reads w;(x,x",t—t")=w;(x") S(x—x'
+(—1)'d)8(t—t") for i=1,2. This system is equivalent
to another one in which W,(x) is shifted with respect to
W,(x) by a distance d, but in which the transition rates
are local (see Fig. 7). In this simple picture, one clearly
sees that macroscopic motion can result from a succes-
sion of downhill drifts. It is however essential to remem-
ber that, although surprising in view of Fig. 7, no current
is generated if the transition rates obey detailed balance.
The geometry (Fig. 7) in which progression to the right
does not require actual hopping over potential hills is
not less generic than the one depicted in Fig. 3. Conse-
quently, in situations out of equilibrium, we now have a
mechanism for motion without diffusive steps, so that
the typical velocities and forces developed are fixed by
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the slopes of the potentials: v ypica=pdW=uW/a. This
allows an increase of force and velocity by a factor
W/kgT as compared to our example of Fig. 6. This fac-
tor can be of order ten in biological systems and much
more in artificial ones. Optimization is again reached by
matching two pairs of time scales for a homogeneous
perturbation and one pair for a localized one. Note,
however, that partially localized excitations can now
lead to monotonic v () with a maximum at ) —oo,

A qualitatively different illustration of the importance
of time scales is obtained by choosing potentials that
obey Wy (x)=—W;(x)+const: permuting the lifetimes
in states 1 and 2 exactly changes the sign of the velocity
(Chauwin et al., 1995). Note that the vanishing of the
velocity for equal lifetimes is a consequence of the sym-
metry properties of the system and is not related to ther-
mal equilibrium.

According to the arguments developed above, the
two-state system can work in a continuum of different
regimes of which only limiting cases have been de-
scribed here. We have already shown that the absence of
a velocity maximum as a function of the ATP concen-
tration was in agreement with the idea of “active sites”
used by biologists and expressed in our language by a
highly localized transition rate w;(x). It would also be
rewarding to extract information concerning the shapes
of the potentials if possible. A two-level system may be a
gross oversimplification of the biological complexity, but
one would like for instance to be able to infer from the
comparison between experiment and theory whether or
not a diffusive step is taking place in the process. It turns
out that, even though very beautiful experiments have
been made on single motors (Svoboda et al., 1993; Hunt
et al., 1994; Svoboda and Block, 1994), we are not able
to answer this simple question. Indeed, within a wide
range of potential shapes and parameter choices [includ-
ing all the limits described in this paper provided w{(x)
is highly localized] it is possible to reproduce (Chauwin,
1995) both the observed dependence of the velocity on
the applied force or the ATP concentration and the sto-
chastic “‘stepping” motion of the motor as reported by
Svoboda et al. (1993). In the absence of independent
knowledge of the mobilities and of the ATP hydrolysis
rate, no answer to the above-stated question can be de-
duced with reasonable confidence.

This situation may change in the future, in particular
if we can have access to efficiency measurements and to
the force dependence of the velocity when the force
helps the motors. Indeed, these two measures are sensi-
tive to the existence of a “flat” state with constant W,.
The efficiency depends very much on the probability for
a motor to move over one period after one ATP hy-
drolysis event: in the shifted potential case it is very
high, whereas if a diffusive step is needed it is signifi-
cantly lower. Similarly, if an external force helps the
natural motion, it is more effective and the resulting ve-
locity is higher if one of the states is “flat” than if both
of them exhibit significant “Kramers” barriers (Chau-
win, 1995).
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IV. COLLECTIVE EFFECTS

All the considerations developed up to now have been
focused on the behavior of a single motor with one spa-
tial degree of freedom and two ‘“‘configurational” states.
Molecular motors have been classified in two groups de-
pending on whether they are designed to operate in
groups (“‘rowers”) or individually (“porters’) (Leibler
and Huse, 1991, 1993). In this section, we illustrate the
original features that emerge when collections of motors
rather than isolated ones are considered. Note that this
case is relevant for experimental situations called ‘“‘mo-
tility assays,” for muscle contraction and possibly for
vesicle transport in cells. We show in particular that
asymmetry of the potentials can become inessential in
view of a possible symmetry-breaking transition (Juli-
cher and Prost, 1995). Other collective effects which re-
sult from steric hindrance between particles, are dis-
cussed by Derényi and Vicsek (1995) and Derényi and
Ajdari (1996).

A natural generalization of the previous case for de-
scribing collective effects is obtained by attaching N par-
ticles at points y,=X+nq, n=1... N, with equal spac-
ing g to a rigid ““backbone” while keeping the two-state
model for each of them (Fig. 8). Here, X denotes the
displacement of the backbone. In the following, we fo-

() q

-— -

o - = %
:

W,
W,

Y

(b) -

(©) ~—

FIG. 8. (a) Schematic representation of a two-state many-
motor system. Particles are attached periodically with spacing
g via springs to a backbone at positions y,, . Particle positions
are denoted by x,. The potentials W and W, are /-periodic.
(b) Rigid coupling of particles with y,=x, . (c) Rigid system
coupled elastically to the environment via an elastic element
K.
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cus on the case in which ¢/! is irrational and the period-
icities of particle attachments and the potentials are in-
commensurate. This choice is motivated by the
incommensurate arrangement of motors and filaments
in muscle fibers. Indeed, muscle fibers are made of linear
bundles of motors interacting with filaments, the respec-
tive periods of which are incommensurate. Similarly in
motility assays, filaments are sedimented on a glass sur-
face which is randomly coated with motors. Incommen-
surability or disorder allows particles to operate asyn-
chronously, since different particles are at the same time
in different states (H. E. Huxley, 1969).

In general, particles are attached to the backbone via
elastic elements of elastic modulus c¢. The nth particle
positioned at x=x, exerts a force f,=c(y,,—x,) on the
backbone. The rigidity of the backbone forces all par-
ticles to move with equal time-averaged velocity v=X
=(x,). For an incommensurate system and large num-
ber N of particles, the force f= EnN= Jn /N exerted per
particle is given in the steady state by the time-averaged
force of a single particle, f=(f,).

Two extreme limits can be distinguished where the
elastic elements are “soft” and “stiff,”” respectively: For
small c<W /I?, where W denotes the maximal amplitude
of the potentials, the particles are able to move many
potential periods away from their attachment points:
|y,—x,|>1. Since the particles in this case behave like
free particles, the system behaves as if single-particle
forces were simply added and no collective effects occur.
For large ¢>W /I?, the behavior of the system changes
significantly. In this case, |x,,—y,| =/ and cooperative ef-
fects become important.

These cooperative effects can be discussed most easily
for the case of a rigid coupling of particles to the back-
bone. This case, which is shown schematically in Fig.
8(b), corresponds to the limit of large ¢ where x,=y,
and positional fluctuations of particles are neglected.
The force exerted on the backbone by the nth particle is
now given by f,=—4,W;(x,). Since the potentials are
periodic, the forces f,, depend only on the particle posi-
tions relative to the potential period. We therefore in-
troduce a cyclic position variable é&=x mod [ with 0<¢
<. The state of this rigid infinite system is characterized
by the two p-periodic distribution functions P;(§¢) of a
particle in the two states.

The incommensurability or disorder of particle attach-
ments leads to a total distribution function P(§)
=P, (&) + P,(€&), which has constant value P(¢)=1/I for
large N. This results from the fact that for an incom-
mensurate structure, each particle can be found at a dif-
ferent position ¢ within the period /, and the interval 0
=< ¢</ is homogeneously filled.

The equations of motion for the system read (Julicher
and Prost, 1995)

0 P1+vdP1=—w(§)P1+ wy(E) P,
Py +v3:Pr=wi(§)P1— wy(§)P,. (19)

The excitation rates w;(£) and deexcitation rates w,(¢)
are those used in Egs. (10) and (11). The velocity v
=4,X is determined by
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v=p(feutf), (20)

where w is a mobility.3 The external force f., and the
average force

1
f=- Jodg(Plf?ng(f)+P2¢9§W2(§)) (21)
exerted by the potentials are normalized per particle.
Equations of this type were discussed early by A. F.
Huxley (1957) and Hill (1974). For an incommensurate
system with P,=1/[— P, the steady state obeys

(&)
l 9

VP 1= —(01(§) T w2 (§))P1+ (22)

v i
fext:;+fodgpla§(wl_w2)- (23)
Equations (22) and (23) allow the determination of the
external force f,,(v) that corresponds to a constant ve-
locity v.

Equation (22) can be solved either analytically for
some potential shapes or in a power expansion as a func-
tion of the velocity v:

o0

Pi(§)= 2 P (", (24)

with
(n) — _ (n—=1)

P - 9Py , (25)

and P\") = w, /[ (w;+ wy)1].
The force-velocity behavior can be written as

Fouf+ (a7 0+ 3, S0, (6)

where
!
fo'= fodsPﬁ"wg(Wl ~W). @7

Here, the index () denotes that all coefficients implicitly
depend on the perturbation amplitude defined in Eq.
(17). As in the single-motor case, one can easily check
that the breaking of detailed balance is mandatory for
obtaining any motion. For =0, there is no spontane-
ous force, f)=0, and f}}), is always positive, which im-
plies that thermal transitions of particles lead to addi-
tional dissipation, which increases friction (Tawada and
Sekimoto, 1991; Leibler and Huse, 1993). £ differs
from zero only if both () #0 and the potentials are asym-
metric. This coefficient f(QO) induces spontaneous motion

3Note that for simplicity we introduce a single coefficient
independent of the state of the system, which describes the
mobility of the complete system normalized per motor.
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FIG. 9. Symmetric system with localized perturbation 6(¢) and
constant potential W,(&). The potentials are shown schemati-
cally together with the distribution P;(£) for v=0 within one
potential period /. The broken line for P, indicates the defor-
mation of P; for motion with v>0.

in asymmetric potentials, which corresponds to the
mechanism for motion in the single-particle case.*

In order to discuss cooperative effects, we first con-
sider a system with symmetric periodic potentials W;(§)
and a symmetric localized perturbation 6(¢). This situa-
tion is shown schematically in Fig. 9. Since the equations
of motion depend only on W, — W, we have chosen W,
to be constant. By symmetry, all even coefficients of the
force expansion now vanish, fﬁ))z f(ﬂz) =...=0, and
fext(v) is antisymmetric. If no external force is applied,
the velocity obeys

0=(p '+ v+ v +0®). (28)

As long as u~ '+ f{>0, the only solution is v=0 and
the system does not move. Broken detailed balance now
allows f) to become negative. At Q=0 with

p+fola, =0, (29)

a new situation occurs: For >0, and u~'+f)<0,
two moving solutions for f.,=0 appear with

1 fole, "
v+=7 ]@W(Q—QL) . (30)

These two moving solutions are both stable while the
nonmoving solution v =0 becomes unstable at ().. The
stability of steady states follows from the sign of the
effective mobility e (v)=(dfoxe/dv) L. Therefore a
continuous onset of motion occurs at (=) via sponta-
neous symmetry breaking (see Fig. 10).

This spontaneous symmetry breaking can be under-
stood qualitatively as follows. Consider an excitation
perturbation 6(¢) localized near the potential minimum

*This is not exactly true: The relation P{¥=1/[(1+exp[(W;
—W,)IT]+Q06(8)/wy(£))!] implies that f1) is zero if 0(&)/w, (&)
is constant. Therefore, for constant w,, no force is generated
for a homogeneous perturbation (&) =1//, which strongly dif-
fers from the single-particle behavior.

Rev. Mod. Phys., Vol. 69, No. 4, October 1997

0
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FIG. 10. Spontaneous velocity v as a function of the excitation
amplitude for a symmetric system (f.=0). At the critical
point )=( ., spontaneous motion occurs continuously via
spontaneous symmetry breaking.

as shown in Fig. 9. For simplicity, we neglect the effect
of thermal transitions and assume that excitations occur
only where 6(¢)#0. Figure 9 shows the distribution
P (&) for v=0 as a solid line. Excitations Q6(¢) lead for
v=0 to a depletion of P;(§) near the potential mini-
mum. Since §(£) and the potentials are symmetric func-
tions, the force f vanishes. If the system is now per-
turbed and the backbone moves to the right with a small
velocity v, the depletion of P(&) is transported to the
right as indicated in Fig. 9 by a broken line. Now, the
population along the positive potential slope is depleted
while the negative one has gained particles. As a result,
the average force f pulls the backbone to the right and
increases the initial fluctuation. This effect results in a
negative value of fg) As the bare mobility u stabilizes
the nonmoving state, a critical excitation amplitude (.
has to be exceeded before instability is reached [see Eq.
(29)1.

This argument demonstrates that the localization of
excitations near the potential minimum is important. If
0(¢) were localized near the potential maximum, the
depletion of the lower energy potential W, would have a
stabilizing effect with fg)>0. Spontaneous motion
would be suppressed.

The instability of the system can also be studied in the
presence of an external force. Starting, for example, with
fexx=0 and v=v, , the velocity decreases as a load f.,<0
is applied (see Fig. 11). As the minimum of the curve
fext(v) is reached, the steady state becomes unstable and
a discontinuous change of the velocity occurs. Rather
than moving against the force, the system now follows it.
If the external force is reversed at this point, a similar
instability occurs at the maximum of f.(v).

The behavior of the symmetric system near )=}, is
analogous to that of a ferromagnet near its critical point.
The velocity v corresponds to the magnetization, the ex-
ternal force f.,; to the field, and Q to the inverse tem-
perature. Since each particle feels the mean force of all
other particles, one finds the mean-field behavior
lv|~(Q—Q,)" as given by Eq. (30). Similarly, the ve-
locity at =0, obeys v~f.3.
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fext Q=0

FIG. 11. External force f,,, as a function of velocity v for a
symmetric system as defined in Fig. 9, for different values of
the excitation amplitude ). At a critical value Q=0,., the
solution v =0 becomes unstable and two moving solutions with
v=v. bifurcate for f.,=0.

Let us now consider asymmetric potentials. Symmetry
breaking transitions are no longer possible since the ve-
locity is nonzero at zero external force, for any nonvan-
ishing excitation (). However, the possibility remains
that a critical point may signal the appearance of veloc-
ity discontinuities as a function of the external force (see
Fig. 12). At the critical excitation amplitude 1=, the
corresponding curve f.(v) exhibits a critical point for
fexi=f. and v=v,. with diverging wu.i(v.)=%. Beyond
this critical point, a maximum and a minimum of f.(v)
occur, between which the corresponding steady states
are unstable.

The resemblance of the curves shown in Fig. 12 with
van der Waals isotherms suggests that the point
(ve,fe,Q.) is equivalent to a liquid-gas critical point.
From the expansion given in Eq. (26) one obtains the
corresponding mean-field exponents |v—uv |~(Q

fext Q:O

FIG. 12. External force f.,, as a function of velocity v for an
asymmetric system, for different values of the excitation ampli-
tude Q. A critical point (f.,v.,Q.) exists. For Q>Q,, the
velocity shows instabilities and discontinuities as a function of
the force f.y -
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FIG. 13. Sliding velocity v of an asymmetric system as a func-
tion of the excitation amplitude () for two different external
forces f..>f. and f.<f., where f. denotes the critical force.
For f..<f., discontinuities of v occur for Q=Q; and
=Q,.

_QC)UZ for fext:fc and |U_vc|~(fext_fc)1/3 for Q
=Q,.

The dependence of the velocity on the excitation am-
plitude () is shown in Fig. 13 for two different values of
the external force. If f.>f., no instability occurs and
the velocity increases monotonically. For f. <f., dis-
continuities of the velocity occur: starting from the up-
per branch of the curve v({)) and decreasing (), the
velocity exhibits a discontinuity at 1=}, while, simi-
larly, starting from the lower branch () and increasing,
the velocity shows a discontinuity at Q=(),.

It is natural to wonder whether one would still have
collective behavior of rigidly coupled particles if one
made changes in the model. Indeed, for wide classes of
potential functions and excitation localizations 6(x),
collective behavior does exist. It also exists when motors
are connected via springs to the rigid structure [see Fig.
8(a)]. Furthermore, fluctuations due to the finite length
of the filaments may be shown to be unimportant in
physiological cases when the number of motors is of the
order of 100 (Julicher and Prost, 1997).

Whereas such discontinuities of the sliding velocity as
a function of external force may be difficult to find ex-
perimentally, some other consequences of this collective
behavior may be more spectacular. Suppose that we
connect the backbone to the filament externally via an
elastic spring [see Fig. 8(c)]. This corresponds in a crude
way to the structure found in striated muscles (Alberts
et al., 1994). Now, the effective external force is the ac-
tual external force plus the force due to the
compression/dilation of the elastic spring: fgfftz foxt
—KX (where K is the spring constant and X the dis-
placement of the spring extremity; note v=d X/dt). For
0>, and with a soft spring, the system will sponta-
neously start to oscillate in a characteristic way (Julicher
and Prost, 1997). This can be seen as follows: Taking for
example the force-velocity relation shown in Fig. 11 of a
symmetric system, starting with positive velocity, one
finds that the spring is compressed more and more and
the effective external force increases (in absolute value)
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(a) t

(b)

FIG. 14. Spontaneous oscillations of a collective system
coupled via an elastic element to its environment. (a) The os-
cillations of a symmetric system show characteristic cusps at
the maxima and minima where the sliding velocity changes
discontinuously, corresponding to the instabilities in the force-
velocity curve. (b) For an asymmetric system, the broken sym-
metry is reflected by the oscillation curve.

until the system reaches the lower unstable point of Fig.
11. At this point, the velocity changes sign discontinu-
ously and the spring is now extended. This happens until
the upper unstable point is reached and the velocity is
again reversed discontinuously: As a result of the elastic
coupling, the hysteresis loop of the first-order transition
is transformed into an oscillation. See Fig. 14(a).

We described for convenience the example of a sym-
metric system, but oscillations persist for a wide range of
asymmetric potentials. In fact, this asymmetry directly
translates to the asymmetry of the oscillation curve as
shown in Fig. 14. The conclusion of this analysis is that,
in principle, muscle fibers could oscillate provided they
are placed in appropriate conditions, even if it they are
not designed by nature to oscillate. Interestingly, skel-
etal muscle myofibrils have been shown to oscillate
spontaneously in vitro, in the absence of any external
driving (Yasuda et al., 1996). The shape of the oscilla-
tions, the independence of their frequency and ampli-
tude on any external load, and the frequency ranges are
all consistent with this model. Spontaneous oscillations
of asynchronous muscles, which operate in the wings of
many insects such as wasps and bees, could also be re-
lated to this kind of collective behavior.

V. CONCLUDING REMARKS

The ideas that emerge from the analysis in the previ-
ous sections may be summarized fairly simply. Molecu-
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lar motors, which are ubiquitous in eukaryotic life, are
different from Carnot engines. A striking feature is that
they are isothermal and therefore do not obey the Car-
not efficiency rules. Thermal equilibrium (i.e., reversibil-
ity) is a singular limit: along some paths approaching
equilibrium, the efficiency is strictly zero, while along
some others it is constant. It is worth remarking that a
departure from reversibility may lead to an increase in
efficiency in contrast to what is sometimes assumed. This
possibility is particularly clear in the collective motor
case. In an almost symmetric system close to equilib-
rium, efficiency may be made as close to zero as one
wishes, whereas beyond the spontaneous dynamical
transition (i.e., moving away from reversibility), the ef-
ficiency easily reaches values as high as 50% to 60%.

The second lesson is that time scales play a very im-
portant role. For given interaction potentials, the effi-
ciency of the operation of molecular motors depends on
how lifetimes, drift times, and diffusion times are
matched. Even the motor’s direction of motion can de-
pend on this matching. Note also that the comparison of
our model’s predictions for v ({}) with experiments sup-
ports the idea of “active sites” developed earlier by bi-
ologists.

The third lesson is that motor collections might in-
volve dynamic phase transitions, including hysteretic be-
havior and spontaneous oscillations. These phenomena
are examples of mechano-chemical couplings involving
thresholds. They might be prototypes of a larger class of
“triggers” and ‘‘switches” in biology.

Eventually, the models described here may stimulate
new types of experiments. Two-level systems made us-
ing artificial polar structures can easily be set up in prac-
tice and have been shown to induce motion of small
objects in the absence of any global force or gradients, in
agreement with theory. This can be done using very dif-
ferent technologies, both at microscopic scales (Leibler,
1994; Rousselet et al.,, 1994; Faucheux etal, 1995;
Faucheux and Libchaber, 1995), and at more macro-
scopic ones (Osada et al., 1992; Gorre et al., 1996; San-
dre and Silberzan, 1997). These systems not only allow
one to study experimentally the effects described here
but also may lead to new devices for the separation of
particles (Ajdari and Prost, 1992; Ajdari et al, 1993;
Faucheux and Libchaber, 1995; Bier and Astumian,
1996).
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