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The author presents a theory of color symmetry applicable to the description and classification of
periodic as well as quasiperiodic colored crystals. This theory is an extension to multicomponent fields
of the Fourier-space approach of Rokhsar, Wright, and Mermin. It is based on the notion of
indistinguishability and a generalization of the traditional concepts of color point group and color
space group. The theory is applied toward (I) the classification of all black and white space-group
types on standard axial quasicrystals in two and three dimensions; (II) the classification of all black
and white space-group types in the icosahedral system; (III) the determination of the possible
numbers of colors in a standard two-dimensional N-fold symmetric color field whose components are
all indistinguishable; and (IV) the classification of two-dimensional decagonal and pentagonal n-color
space-group types, explicitly listed for n<25. [S0034-6861(97)00604-1]
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I. INTRODUCTION

We shall describe here a theory of color symmetry
that extends the ideas of traditional theories of color
symmetry for periodic crystals to the broader category
of quasiperiodic crystals. The basic notion is that of as-
sociating a certain attribute, or color, to each of the crys-
tal sites. The different colors may correspond, for ex-
ample, to different chemical species, or the different
orientations of a magnetic moment, or may represent an
actual coloring of a periodic or quasiperiodic drawing.
The colored crystal is said to have color symmetry if
rotations (and, in the special case of periodic crystals,
translations) that are symmetry operations of the uncol-
ored crystal may be combined with global permutations
of the colors to become symmetry operations of the col-
ored crystal.

Before turning to the description of our theory and
the main body of this work we first introduce the basic
terminology used in dealing with quasiperiodic crystals
and clarify exactly what we mean when we say that a
certain rotation is a symmetry of a crystal. We also in-
clude in this Introduction a short account of the existing
work on the color symmetry of quasiperiodic crystals.

A. Quasiperiodic crystals

The International Union of Crystallography (1992)
defines a crystal to be ‘‘...any solid having an essentially
discrete diffraction diagram.’’ We shall be slightly more
specific and consider only quasiperiodic crystals. These
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
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are crystals whose diffraction diagrams are ‘‘essentially
discrete’’ by virtue of having density functions with well
defined Fourier expansions

r~r!5 (
kPL

r~k!eik•r (1)

that require at most a countable infinity of plane waves.
In a real diffraction experiment only a finite number of
Bragg peaks will be observed.

The set L , consisting of all integral linear combina-
tions of the wave vectors appearing in the Fourier ex-
pansion in Eq. (1), is called the lattice or the Fourier
module of the crystal. In all experimentally observed
crystals the lattice may be expressed as the set of all
integral linear combinations of a finite number of wave
vectors. The minimum number D of vectors needed to
generate the lattice in this way is called its rank or its
indexing dimension. A quasiperiodic crystal is periodic if
and only if the rank of its lattice is equal to the physical
dimension d . Only then is the lattice a conventional ‘‘re-
ciprocal lattice’’ related in the familiar way to a lattice of
real-space translations under which the periodic crystal
is invariant (see, for example Ashcroft and Mermin,
1976, Chap. 5). The set of (proper or improper)
rotations,1 which when applied to the origin of Fourier
space merely permute the wave vectors of the lattice,
forms a group called the lattice point group GL (also
called the holohedry).

B. Restoring the notion of symmetry

The traditional theory of crystal symmetry describes
the symmetry of a crystal by its space group, the set of
rigid motions in d-dimensional space—combinations of
translations and rotations—that leave the crystal invari-
ant. Such a description is not valid for quasiperiodic
crystals, not only because there are no longer any trans-
lations that leave the crystal invariant, but also because
there are, in general, no rotations that leave the crystal
invariant.

Two approaches have been taken to extending the
theory of space groups to quasiperiodic crystals. The
‘‘superspace approach’’ of de Wolff, Janner, and Janssen
(de Wolff, Janssen, and Janner, 1981; Yamamoto et al.,
1985; Janssen et al., 1992) treats the quasiperiodic crystal
as a d-dimensional slice of a structure periodic in a
higher-dimensional ‘‘superspace.’’ The symmetry of the
quasiperiodic crystal is then given by the high-
dimensional space group describing the set of rigid mo-
tions in superspace that leave invariant the high-
dimensional structure. The ‘‘Fourier-space approach’’ of
Rokhsar, Wright, and Mermin (1988a; 1988b), which we
shall follow here, treats the quasiperiodic crystal directly
in d-dimensional space by introducing the notion of in-
distinguishability and redefining the concept of point-
group symmetry.

1Throughout the paper the term ‘‘rotation’’ refers to proper
as well as improper rotations.
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The key to this redefinition is the observation that
certain rotations (proper or improper), when applied to
a quasiperiodic crystal, take it into one that looks very
much like the unrotated crystal. This is because the two
crystals are indistinguishable—they contain the same
spatial distribution of bounded structures of arbitrary
size.2 One finds that any bounded region in the unro-
tated crystal is reproduced some distance away in the
rotated crystal, but there is, in general, no single trans-
lation that brings the whole crystals into perfect coinci-
dence. This weaker notion of symmetry is captured by
defining a crystal to have the symmetry of a certain ro-
tation if that rotation leaves invariant all spatially aver-
aged density autocorrelation functions,

C ~n !~r1 ,. . . ,rn!5 lim
V→`

1
V E drr~r12r!•••r~rn2r!.

(2)

In the case of periodic crystals this reduces to the famil-
iar requirement that the rotated and the unrotated crys-
tals differ at most by a translation.

The Fourier-space approach receives its name from
the fact that indistinguishability is more easily expressed
in Fourier space in terms of the density Fourier coeffi-
cients r(k). It can be shown that two densities r and r8
are indistinguishable if their Fourier coefficients are re-
lated by

r8~k!5e2pix~k!r~k!, (3)

where x, called a gauge function, is linear modulo an
integer over the lattice L of wave vectors. By this we
simply mean that x(k11k2)[x(k1)1x(k2) whenever
k1 and k2 are in L , where ‘‘[’’ denotes equality to
within an additive integer. With such a simple expres-
sion at hand one can define the point group G of a scalar
quasiperiodic density r to be the set of operations g
from O(3) satisfying

r~gk!5e2piFg~k!r~k!, (4)

where the gauge functions Fg(k), one for each element
of the point group, are called phase functions. It should
be clear from the point-group condition (4) that G is
necessarily a subgroup of the lattice point group GL .
The point group G along with its set of phase functions
constitutes the generalization of the concept of a space
group for quasiperiodic crystals.

The Fourier-space approach has been applied success-
fully to the classification of a large variety of periodic
and quasiperiodic crystals (see, for example, the refer-
ences cited by Lifshitz, 1996a). Although this paper is
intended to be self-contained, the reader who is unfamil-
iar with the approach might benefit from the detailed
review by Mermin (1992) or at least the introduction by
Lifshitz (1996a) to the Fourier-space approach as it is
used in the context of standard (uncolored) space
groups.

2In the language of tiling theory, two tilings that possess this
property are said to be ‘‘locally isomorphic.’’
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We shall extend the notion of indistinguishability to
colored crystals by requiring that any rotation that is to
be a symmetry operation of a colored crystal leave it
indistinguishable to within a global permutation of the
colors. This will provide the basis for a redefinition of
the concept of a color point group and the starting point
of our theory.

C. Existing work on the color symmetry
of quasiperiodic crystals

The problem of color symmetry has been studied ex-
tensively in the context of periodic crystals. Applications
range from the symmetry analysis of the periodic draw-
ings of M. C. Escher (Macgillavry, 1965) to the descrip-
tion of order-disorder phase transitions and the struc-
tural analysis of magnetic crystals. We refer the reader
to the review by Schwarzenberger (1984), which con-
tains an extensive bibliography on the subject, and also
to the relevant chapters of the book by Opechowski
(1986).

Only a few authors to date have considered the clas-
sification of color groups in the context of quasiperiodic
crystals. Niizeki (1990a; 1990b) has classified in super-
space the icosahedral black and white Bravais classes
and the black and white Bravais classes of lattices with
axial point groups of 5-, 8-, 10-, and 12-fold symmetry.
He used his results to discuss the possibility of order-
disorder transformations in which, in the ordered phase,
two chemical species are arranged according to the
black and white coloring of the structure. We shall ex-
press the notion of colored lattices in the language of
our theory and in Sec. V extend Niizeki’s results to stan-
dard axial lattices of arbitrary rotational symmetry.
Sheng (1994) and Sheng and Elser (1994) have enumer-
ated some of the icosahedral black and white space-
group types for the purpose of constructing quasiperi-
odic minimal surfaces. The minimal surface, like a soap
film, describes the state of equilibrium of the interface
between two fluid phases, associated with the two colors,
and is constructed by minimizing an appropriate free-
energy functional. Elser (1995) has used a similar ap-
proach to construct equilibrium configurations of Cou-
lomb charges in two dimensions, which have the
symmetry of a four-color octagonal space group. Lifshitz
and Mermin (1995) have given an ad hoc classification of
the two-color and five-color decagonal and pentagonal
space groups in two dimensions. In Sec. VII we shall
give a general solution to the classification of decagonal
and pentagonal n-color space groups, listing them ex-
plicitly for n<25.

The issue of colored quasiperiodic tilings has been ad-
dressed by even fewer authors. Li, Dubois, and Kuo
(1994) introduced a black and white Penrose tiling along
with its inflation rules (shown in Fig. 1) and used it for
structural analysis of the alternating layers in decagonal
quasicrystals. Lück (1987; 1995) has introduced a five-
colored Penrose tiling (shown in Fig. 3) and used it for
the analysis of screw dislocations in decagonal quasicrys-
tals. Scheffer and Lück (1996) have produced additional
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decagonal tilings using an ad hoc method of Amman
grids, all with the same five-color space-group type. Ad-
ditional colored tilings, included in this paper (Figs. 2
and 4), have also been created ad hoc. We shall defer to
a subsequent publication the question of general meth-
ods for generating quasiperiodic tilings with prescribed
color symmetry.

Moody and Patera (1994) have considered the sym-
metric coloring of quasicrystals from an algebraic point
of view. Baake (1997) has used algebraic methods to
count the number of invariant sublattices of a given in-
dex in a given parent lattice. We shall see later that this
question is related to the enumeration of color space
groups. In Sec. VI we shall address a similar counting
problem on standard two-dimensional axial lattices us-
ing a geometric approach.

D. Organization of the paper

In Sec. II we extend the notion of indistinguishability
to colored crystals and introduce the concepts of ‘‘color

FIG. 1. The two-color Penrose tiling of Li, Dubois, and Kuo
(1994). Using the notation of Sec. V, we find that the black and
white space group of this tiling is 108m8m . A tenfold rotation
and a horizontal mirror reflection both require the exchange of
black and white to leave the tiling indistinguishable, whereas a
vertical mirror reflection does not. The tiling is created using a
standard inflation procedure and associating colors with the
segments of the inflated tiles. The coloring of the inflated white
tiles is shown in the inset, the coloring of the inflated black
tiles is reversed.
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
point group’’ and ‘‘color space group,’’ used in the de-
scription of such crystals. In Sec. III we establish the
symmetry classification scheme for colored crystals,
which is an organization of lattices, color point groups,
and color space groups into equivalence classes. In Sec.
IV we delve into the group-theoretic details that underly
our approach. In Sec. V we apply our theory to the sim-
plest case—black and white symmetry—and enumerate
all black and white space-group types on standard axial
lattices in two and three dimensions, as well as all the
black and white space-group types in the icosahedral
system. As a second application, we discuss in Sec. VI
the question of invariant sublattices of standard two-
dimensional axial lattices. We conclude with a third ap-
plication in Sec. VII, where we give a general solution to
the classification of two-dimensional decagonal and pen-
tagonal n-color space groups, listing them explicitly for
n<25. In the appendix we prove—in a context more
general than just color symmetry—that the statement of
indistinguishability in Fourier space, used throughout
the paper, is indeed equivalent to the real-space defini-
tion of this notion.

FIG. 2. A two-color Penrose tiling with black and white space
group 10m8m8. Both a horizontal mirror reflection and a ver-
tical mirror reflection require the exchange of black and white
to leave the tiling indistinguishable, whereas a tenfold rotation
does not. The inset shows the scheme by which the Penrose
tiles are colored to produce this two-color tiling. The orienta-
tion of the black and white triangles within the thick rhombus
is determined according to the matching rules (which are not
indicated in the figure).
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FIG. 3. (Color) The five-color Penrose tiling used by Lück (1995) for the analysis of screw dislocations in decagonal quasicrystals.
All five colors belong to a single indistinguishability class. The lattice color group Ge is a cyclic group of order 5 (.Z5), generated
by the permutation g5(C1C2C3C4C5). The color point group is listed as number 5.b .1 in Table XIII. It is generated by (e ,g),
(r10 ,d), and (m1 ,e) and denoted by (10mm ,10mm ,10mm ,5m1uZ5) according to the notation of Sec. VII, which is summarized in
the caption of Table XIII. The color space-group type is given by the phase function Fe

g , which has the value 1/5 on the
lattice-generating vectors, and the two phase functions Fr10

d and Fm1

e , which are zero everywhere.
II. DESCRIBING THE SYMMETRY WITH A COLOR
SPACE GROUP

A. The color field

We represent the colored quasiperiodic crystal by an
n-component vector field rW (r) whose ith component
r i(r) gives the density of points with color ci . We al-
ways assume that the number of colors n is finite and
that no two components of rW are identical scalar
functions3 of r. Color permutations that are combined
with spatial rotations to leave the colored crystal indis-
tinguishable are represented as permutation matrices
acting on the components of the color field. We should
note that rW (r) is not endowed with the full transforma-
tion properties of a vector and is only acted upon by

3The latter assumption might seem obvious, but in the early
days of research on black and white groups one would allow
the black and the white to overlap exactly, creating structures
whose symmetry was described using so called ‘‘gray groups.’’
We exclude such possibilities.
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
these permutation matrices. We need one further rea-
sonable restriction on the color field rW (r) so that we
come up with a sensible theory of color symmetry. We
follow the widely accepted requirement (Senechal, 1975,
1979; Schwarzenberger, 1984) that any two patterns of
different colors are related at least by one symmetry
operation of the crystal. This means that for any two
components of the color field there is at least one per-
mutation that takes one into the other.

Because the colored crystal is quasiperiodic we can
expand the color field rW as a sum of countably many
plane waves with vector coefficients

rW ~r!5 (
kPL

rW ~k!eik•r. (5)

The lattice L is now defined as the set of all integral
linear combinations of wave vectors k for which at least
one component of rW (k) is nonzero. The total density of
the crystal r0(r), called the color-blind density (borrow-
ing from Harker, 1978b), is equal to the sum of all the
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FIG. 4. (Color) A five-color Penrose tiling with color point group (10mm ,2mm ,2,2uZ1), listed as number 5.a .1 in Table XIII. The
colors belong to five different indistinguishability classes containing one color each. In an appropriately chosen gauge the color
space group has all phase functions zero everywhere on the lattice. The tiling is created by associating the five colors with the five
different orientations of each of the two tiles. Arrows are drawn on the tiles as an example of the way in which colors may
represent the different orientations of magnetic moments in a quasiperiodic magnetically ordered crystal.
components of rW (r). In general, the lattice L of the
color field is not equal to the lattice L0 of the color-blind
density.

Two color fields are indistinguishable if they have
identical spatially averaged autocorrelation functions of
rW (r) of any order and for any choice of components,

Ca1 ...an

~n ! ~r1 ,. . . ,rn!5 lim
V→`

1
VE drra1

~r12r!•••ran
~rn2r!.

(6)

We prove in the appendix (in a more general context)
that an equivalent statement for the indistinguishability
of two color fields rW (r) and rW 8(r) is that their Fourier
coefficients are related by

rW 8~k!5e2pix~k!rW ~k!, (7)

where a single gauge function x, which as in the scalar
case of Eq. (3) is linear modulo an integer over the lat-
tice L of wave vectors, relates all the components of the
two fields.
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
B. Point group and phase functions

Having represented the colored crystal by a color field
rW (r) we are ready for a more formal definition of the
point group. We define the point group G of a color field
rW (r) to be the set of all operations g from O(3) that
leave it indistinguishable to within permutations g of its
components. It is clearly a group because if g and h are
rotations that satisfy this condition then so are their
product and inverses. In general, as we shall later see,
there can be many different g’s associated with each el-
ement of G . We denote physical-space rotations by
Latin letters and color permutations by Greek letters.
The identity rotation and the identity permutation are
denoted by e and e, respectively. We use the same sym-
bol g to denote an abstract permutation taking one color
into another, as in gci5cj , and to denote the matrix
operating on the field rW , representing this permutation.

According to the definition of indistinguishability, an
operation g is in the point group of rW if there exists at
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least one permutation g such that all spatially averaged
autocorrelation functions constructed out of rW (gr) and
grW (r) are identical. The equivalent Fourier-space condi-
tion for g to be in the point group G is that there be a
linear gauge function Fg

g(k) relating rW (gk) and grW (k)
as in Eq. (7):

rW ~gk!5e2piFg
g
~k!grW ~k!. (8)

As in the scalar case, given by Eq. (4), the gauge func-
tions that are associated in this way with point-group
operations are called phase functions. In general, there
could be many different phase functions associated with
a single point-group operation g , one for each of the
corresponding permutations g.

In the case of periodic crystals one can show [Mermin,
1992, Eq. (2.18)] that any gauge function 2px(k), relat-
ing two indistinguishable color fields, is necessarily of
the form k•d for some constant vector d independent of
k, so that rW 8(r)5rW (r1d) and indistinguishability re-
duces back to identity to within a translation. One can
then combine rotations and color permutations with
translations to recover the traditional color space groups
of periodic crystals, containing operations that satisfy

rW ~gr!5grW ~r1dg
g!, (9)

leaving the color field identical to what it was. In the
quasiperiodic case one must retain the general form of
Fg

g(k), which is defined only on the lattice and cannot
be linearly extended to arbitrary k.

C. The color point group and the color space group

The possible relations between elements of the point
group G and the permutations g, as we shall see later in
Sec. IV, are severely constrained by the point-group
condition (8). For now, let us just make the basic obser-
vation that if (g ,g) and (h ,d) both satisfy condition (8)
then it follows from the equality

rW ~@gh#k!5rW ~g@hk# ! (10)

that so does (gh ,gd). This establishes that the set G of
all the permutations g is a group, and that the set of
pairs (g ,g) satisfying the point-group condition (8) is
also a group. The latter is a subgroup of G3G , which we
call the color point group GC . For each pair (g ,g) in the
color point group there is a corresponding phase func-
tion Fg

g(k). The equality (10) further requires that all
the phase functions satisfy the group compatibility con-
dition:

;~g ,g!,~h ,d!PGC: Fgh
gd~k![Fg

g~hk!1Fh
d~k!.

(11)

In summary, the object that we call the color space
group, describing the symmetry of a colored crystal, con-
sists of the following three components:

(1) A lattice of wave vectors L , characterized by a rank
D , and a point group GL under which the lattice is
left invariant. Only in the case of periodic crystals is
L reciprocal to a lattice T of real-space translations
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
which leave the colored crystal invariant (without
requiring any permutation of the colors).

(2) A color point group GC , whose elements (g ,g)
leave the density of the colored crystal indistinguish-
able, a criterion which in the case of periodic crys-
tals reduces to identity to within a translation. The
point group G of the crystal, containing all the rota-
tions g that appear in elements of GC , is a subgroup
of the lattice point group GL .

(3) A set of phase functions Fg
g(k), one for each pair

(g ,g)PGC , satisfying the group compatibility con-
dition (11), which only in the periodic case may be
given by a corresponding set dg

g of real-space trans-
lations in the form 2pFg

g(k)5k•dg
g .

We continue to call this a color space group even
though its spatial part is no longer a subgroup of the
Euclidean group E(3). Nevertheless, the color space
group may be given an algebraic structure of a group of
ordered triplets (g ,g ,Fg

g), in a manner similar to that
shown originally by Rabson, Ho, and Mermin (1988)
and recently again by Dräger and Mermin (1996), in the
context of ordinary space groups for uncolored crystals.

III. THE SYMMETRY CLASSIFICATION SCHEME

There are infinitely many colored crystal structures,
each of which has a color space group describing its sym-
metry. The common symmetry properties of the differ-
ent structures become clear only after they are classified
into properly chosen equivalence classes. We are con-
cerned here with the classification of colored crystals
into Bravais classes (Sec. III.A), color geometric crystal
classes (Sec. III.B), color arithmetic crystal classes (Sec.
III.C), and color space-group types (Sec. III.D).

A. Bravais classes

Colored crystals as well as uncolored crystals are clas-
sified into Bravais classes according to their lattices of
wave vectors. Intuitively, two lattices are in the same
Bravais class if they have the same rank and point group
(to within a spatial reorientation) and if one can ‘‘inter-
polate’’ between them with a sequence of lattices, all
with the same point group and rank. Stated more for-
mally, as presented by Dräger and Mermin (1996), two
lattices L and L8 belong to the same Bravais class if:

(1) The two lattices are isomorphic as Abelian groups,
i.e., there is a one-to-one mapping, denoted by a
prime (8), from L onto L8,

8: L→L8

k→k8 (12)

satisfying

~k11k2!85k181k28 ; (13)

(2) the corresponding lattice point groups GL and GL8
are conjugate subgroups of O(3),
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GL8 5rGLr21, (14)

for some proper three-dimensional rotation r ; and
(3) the isomorphism (12) between the lattices preserves

the actions of their point groups, namely,

~gk!85g8k8, (15)

where g85rgr21.

Since the classification of lattices for color vector fields is
the same as that for scalar density functions we shall not
expand on this issue further but rather refer the inter-
ested reader to previous discussions (Mermin, 1992;
Mermin and Lifshitz, 1992; Lifshitz, 1995; Dräger and
Mermin, 1996).

B. Color geometric crystal classes

When we say that two colored crystals ‘‘have the same
color point group’’ we normally mean that they belong
to the same equivalence class of color point groups,
called a color geometric crystal class. We say that two
n-color point groups GC and GC8 are in the same color
geometric crystal class if they are conjugate subgroups of
O(3)3Sn , where Sn is the full permutation group of n
colors. This simply means that

GC8 5~r ,s!GC~r ,s!21, (16)

for some three-dimensional rotation r and some permu-
tation s. The effect of the rotation r on the point group
G is to reorient its symmetry axes in space. The effect of
the permutation s is to ‘‘rename’’ the colors, or to
remap the components of the color field to actual colors.

C. Color arithmetic crystal classes

The concept of a color arithmetic crystal class is used
to distinguish between colored crystals that have equiva-
lent lattices and equivalent color point groups but differ
in the manner in which the lattice and the color point
group are combined. Two colored crystals belong to the
same color arithmetic crystal class if their lattices are in
the same Bravais class, their color point groups are in
the same color geometric crystal class, and it is possible
to choose the lattice isomorphism [Eq. (12)] such that
the proper rotation r used in Eq. (14) to establish the
lattice equivalence is the same rotation used in Eq. (16)
to establish the color point-group equivalence.

D. Color space-group types

The finer classification of crystals in a given color
arithmetic crystal class into color space-group types is an
organization of sets of phase functions into equivalence
classes according to two criteria:

(1) Two indistinguishable colored crystals rW and rW 8,
related as in Eq. (7) by a gauge function x, should
clearly belong to the same color space-group type. Such
crystals are necessarily in the same color arithmetic crys-
tal class but the sets of phase functions F and F8 used to
describe their space groups may, in general, be different.
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It follows directly from Eq. (7) and from the point-group
condition (8) that two such sets of phase functions are
related by

F8g
g~k![Fg

g~k!1x~gk2k!, (17)

for every (g ,g) in the color point group and every k in
the lattice. We call two sets of phase functions that de-
scribe indistinguishable color fields gauge-equivalent and
Eq. (17), converting F into F8, a gauge transformation.
The freedom to choose a gauge x by which to transform
the Fourier coefficients rW (k) of the color field and all the
phase functions F, describing a given colored crystal, is
associated in the case of periodic colored crystals with
the freedom one has in choosing the real-space origin
about which all the point-group operations are applied.

(2) Two distinguishable colored crystals rW and rW 8,
whose color space groups are given by lattices L and L8,
color point groups GC and GC8 , and sets of phase func-
tions F and F8, have the same color space-group type if
they are in the same color arithmetic crystal class and if,
to within a gauge transformation (17), the lattice isomor-
phism (12) taking every kPL into a k8PL8 preserves
the values of all the phase functions

F8g8
g8~k8![Fg

g~k!, (18)

where g85rgr21 and g85sgs21. Two sets of phase
functions that are related in this way are called scale-
equivalent. This nomenclature reflects the fact that the
lattice isomorphism (12) used to relate the two lattices
may often be achieved by rescaling the wave vectors of
one lattice into those of the other.

IV. ALGEBRAIC STRUCTURE OF THE COLOR
SPACE GROUP

In the preceding sections we used the notion of indis-
tinguishability to redefine the concepts of ‘‘color point
group’’ and ‘‘color space group.’’ We also described a
scheme by which one can classify these groups into
meaningful equivalence classes. To this end it was suffi-
cient to use the definition of the color point group as
containing all pairs (g ,g) satisfying the point-group con-
dition (8). For dealing with more practical matters, like
the enumeration of all color space-group types with a
given point group G , a better understanding of the al-
gebraic structure of the color space group is required. It
is the purpose of this section to provide the reader with
the necessary details.

In order to simplify some of the points made in this
section we shall introduce an additional assumption that
the color field is a generic one. By this we mean that the
color field rW never has more symmetry than that re-
quired by its color space group. The justification for
making such an assumption is the practical statement
that when classifying color space groups we are not in-
terested in nongeneric cases—the color fields we use
should have nothing more than the symmetry properties
common to all color fields with the same color space-
group type.
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In Sec. IV.A we describe the general structure of the
color point group. In Sec. IV.B we analyze in more de-
tail the interplay between rotations and color permuta-
tions. In Sec. IV.C we investigate the close relation be-
tween the lattice color group—a special subgroup of the
group G of color permutations which will be introduced
shortly—and the lattice L of the crystal. We finish in
Sec. IV.D with a comparison of our theory with the tra-
ditional theory of color symmetry, used for periodic
crystals. The reader might find it helpful to refer
throughout this section to Table I below, which lists the
various point groups associated with the color field.

A. Structure of the color point group GC

Recall that the color point group GC is a subgroup of
G3G with the property that every element of G and
every element of G appears in at least one pair of GC .
Such a subgroup is easily shown to have the following
structure:

(1) The set of point-group operations Ge associated
with the identity of G forms a normal subgroup of G .

Proof: Any element hPG is paired in GC with at least
one dPG , so (h ,d) and its inverse (h21,d21) are in GC .
It then follows that if (g ,e) is in GC then so is
(hgh21,e).

Note: It follows from successive applications of the
group compatibility condition (11) that the correspond-
ing phase functions are related by

;gPGe , ~h ,d!PGC :

Fhgh21
e

~hk![Fg
e~k!1Fh

d~gk2k!. (19)

(2) The set of color permutations Ge associated with
the identity of G forms a normal subgroup of G. This
subgroup of color permutations plays a central role in
the enumeration process and is called the lattice color
group for reasons that will become clear in Sec. IV.C.

Proof: The same as the proof of (1) with the roles of
G and G interchanged.

Note: In this case the corresponding phase functions
are related by

;gPGe , ~h ,d!PGC : Fe
dgd21

~hk![Fe
g~k!. (20)

(3) The pairs appearing in GC associate all the ele-
ments of each coset of Ge with all the elements of a
single corresponding coset of Ge . This correspondence
between cosets is an isomorphism between the two quo-
tient groups G/Ge and G/Ge .

Proof: One easily verifies for any g in G that the ele-
ments of G paired in GC with g constitute a single coset
of Ge . Every coset of Ge is paired with some g since
every element of G is paired with some g . This estab-
lishes a map of G onto the quotient group G/Ge which is
easily seen to be a homomorphism. The kernel of this
homomorphism is clearly Ge , which establishes the iso-
morphism of G/Ge and G/Ge .
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The group compatibility condition (11) further implies
that

(4) The lattice color group Ge is Abelian.
Proof: This is established by noting that the phase

functions, associated with the elements of $e%3Ge , sat-
isfy

;g ,dPGe : Fe
gd~k![Fe

g~k!1Fe
d~k!, (21)

requiring through the point-group condition (8) that
gdrW (k)5dgrW (k) for every k, and therefore that
gd5dg .

Note: It follows directly from Eq. (21) that the com-
plex numbers e2piFe

g(k), for a given k, form a one-
dimensional representation of Ge .

B. Relation between rotations and color permutations

1. Point groups associated with the color field

One may characterize the effect of rotations on the
color field in a number of ways, each leading to a defi-
nition of a different kind of point group. The point
group G of the color field rW (r), for example, is defined
as the group of all rotations that leave the color field
indistinguishable to within a permutation of its compo-
nents. The normal subgroup Ge of G , introduced above,
contains all rotations that leave the color field indistin-
guishable without requiring any permutation of the com-
ponents.

By considering in more detail the effect of rotations
on the individual components of the color field one can
define two additional types of point groups which are of
practical importance. The first is the point group H of
one of the components of the color field, say, the ith
one. This is the subgroup of G containing all rotations
that leave the scalar function r i(r) indistinguishable as
defined by Eq. (4). The second is the point group H0
containing all rotations that leave indistinguishable all
the components of the color field. Clearly, H0 is a sub-
group of H , and it contains Ge as a subgroup. We em-
phasize that, in general, there may be rotations in H0
that are not in Ge—they leave indistinguishable each
individual component of the field but still require a non-
trivial permutation of the colors to leave the whole field
indistinguishable.

For completeness, one may also consider the point
group G0 of the color-blind density r0(r), defined ear-
lier as the sum of the n components of the color field.
But clearly (see Sec. IV.C.3) any rotation in the point
group G of the color field is also in the point group G0
of the color-blind density. Furthermore, if the color field
is generic then there is no reason for G0 to contain any
additional rotations that are not already in G . Thus we
may always assume that G05G .

Recall that we require that for every two colors, or
two components of rW , there is at least one permutation
in G that takes one into the other. The permutation
group G is said to be transitive on the set of colors. This
requirement implies, through the point-group condition
(8), that every two components of rW (r) are indistinguish-
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TABLE I. The different point groups associated with a color field. Each group is a subgroup of all
the groups listed above it (Ge#H0#H#G#G0). If the color field is generic then G5G0 .

Group Symbol Effect of the group on the color field

Point group of the
color-blind density

G0 Leaves the color-blind density r0(r)5S ir i(r)
indistinguishable.

Point group of the
color field

G Leaves the color field rW (r) indistinguishable
to within a permutation of its components.

Point group of a
single-color density

H Leaves indistinguishable all components r i(r)
in a single indistinguishability class.

Largest normal subgroup
of G contained in H

H0 Leaves all the individual components of the
color field indistinguishable.

Kernel of the homomorphism
from G to G/Ge

Ge Leaves the color field rW (r) indistinguishable
without any permutation of its components.
able as scalar fields to within a spatial rotation. From
this it follows that the point groups H of the different
components of the color field are all equivalent—they
are all conjugate subgroups of G . Consequently H0 ,
which is the largest subgroup of G contained in all the
subgroups H for the different choices of colors, may be
equivalently defined as the largest normal subgroup of
G contained in a particular H .

The various kinds of point groups associated with the
color field are summarized in Table I. The classification
of subgroups H and H0 for a given point group G ap-
pears also in the traditional theory of color point groups
(Senechal, 1975). Such subgroups have been listed by
Harker (1976) for all 32 point groups compatible with
periodic crystals and for the two icosahedral point
groups and are listed below in Table IX for the two-
dimensional decagonal and pentagonal point groups.
Subgroups H of index 2 have also been listed for the
pentagonal, octagonal, and decagonal point groups by
Boyle (1969) and are listed below in Table III for all
three-dimensional axial point groups.

2. Indistinguishability classes of colors

As a special case of the observation made above, com-
ponents of the color field that are related by permuta-
tions in the lattice color group Ge are required to be
indistinguishable as scalar fields even without a rotation
because

;gPGe : rW ~k!5e2piFe
g
~k!grW ~k!. (22)

It proves useful to arrange the colors into indistinguish-
ability classes according to the lattice color group Ge .
Two colors ci and cj are in the same class4 (denoted by

4It might be more accurate to call these ‘‘Ge classes’’ rather
than ‘‘indistinguishability classes’’ because there may exist par-
ticular color fields in which two components happen to be in-
distinguishable as scalar fields even though they are not related
by a permutation in Ge . Nevertheless, recall that we are as-
suming that when classifying color space groups we are always
dealing with generic color fields in which two components are
not indistinguishable unless they are required to be so by the
color space group.
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ci>cj) if they are related by a permutation in Ge . We
denote the classes by C1 .. .Cq where q is the number of
classes. The basic property of these indistinguishability
classes is that

Claim: Each indistinguishability class contains the
same number of colors.
Proof: If ci>cj , meaning that ci5gcj for some per-
mutation gPGe , then

;dPG: dci5dgcj5@dgd21#dcj . (23)

Because Ge is a normal subgroup of G it contains
dgd21 which implies that dci>dcj . The permuta-
tion d takes all the colors in the class containing ci
into colors in the class containing dci . Similarly,
d21 takes all the colors in the class containing dci
into colors in the class containing ci . This estab-
lishes that the two classes contain the same number
of colors. Because G is transitive on the set of col-
ors, the argument above holds for any pair of
classes implying that all classes contain the same
number p of colors, so that the total number of col-
ors n5pq .

One can thus label a given color either as the ith color
ci with the index i ranging from 1 to n , or as the kth
color in the jth indistinguishability class Cj

k with
j51 . . . q , and k51 . . . p . From the above proof it fol-
lows that any color permutation dPG may be viewed as
a two-step process, first acting on whole indistinguish-
ability classes, permuting the lower indices of the Cj

k ,
and then permuting colors within their indistinguishabil-
ity classes.

We say that a color point group (or a color space
group) is simple if for every dPG the permutation of
colors required within the indistinguishability classes is
identical in all classes and can therefore be expressed as
a permutation of the upper indices of the Cj

k . If there is
only a single indistinguishability class (q51) or if all
classes contain just a single color (p51), then the color
point group is necessarily simple, otherwise it may be
nonsimple. We shall defer to a later publication a de-
tailed analysis of the conditions for crystals in a given
Bravais class to be able to accommodate nonsimple
color groups. We give an example of a nonsimple color
space group in Sec. IV.C.6.
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3. Point-group rotations and permutations
of indistinguishability classes

It follows directly from the definition of the indistin-
guishability classes that two color permutations in the
same coset of Ge necessarily induce the same permuta-
tion of the indistinguishability classes. Note that the con-
verse is not true because, even though all the permuta-
tions in Ge permute colors only within their
indistinguishability class, not every permutation that
does so is necessarily in Ge . Any point-group rotation h
is paired in the color point group with all the permuta-
tions in a single coset dGe , all inducing the same permu-
tation of the indistinguishability classes. In fact, the ef-
fect of applying h on the color field without following up
with one of the color permutation in dGe is to permute
the indistinguishability classes according to the permuta-
tion induced by the elements of the coset d21Ge . One
can therefore sensibly associate indistinguishability-class
permutations with point-group rotations.

The mapping between the point group G and the set
of indistinguishability-class permutations, induced by
the elements of G, is clearly a homomorphism because
the mapping between G and the cosets of Ge is a homo-
morphism. The kernel of this homomorphism is the sub-
group H0 , containing all rotations that leave all the
components of the color field indistinguishable. The
color permutations that are then required in order to
leave the whole color field indistinguishable permute
colors only within their indistinguishability classes and
therefore induce the identity permutation of the indis-
tinguishability classes. Rotations in H leave indistin-
guishable the density of a given color and are therefore
paired in the color point group with permutations that
permute that particular color only within its indistin-
guishability class. The rotations in H are therefore asso-
ciated with cosets of Ge that induce indistinguishability-
class permutations which leave invariant a single
indistinguishability class but may otherwise nontrivially
permute all the other classes.

Following similar ideas of Senechal’s (1975) one can
establish a clear connection between the cosets of H and
the indistinguishability classes of the colors. Choosing an
indistinguishability class, say C1 , defines H as the point
group of all the components of the color field belonging
to that class. One can verify that two rotations are in the
same left coset of H if and only if the permutations of
the indistinguishability classes associated with these ro-
tations both take C1 into the same class. There are thus
as many cosets as there are indistinguishability classes—
each coset giH corresponds to a single class Ci and the
number q of indistinguishability classes is therefore
equal to the index of H in G . Multiplying each coset of
H by any rotation g in G induces a permutation of the
cosets and therefore a corresponding permutation of the
indistinguishability classes. Thus H determines the per-
mutation group of the indistinguishability classes, which,
as established above, is isomorphic to G/H0 . In the spe-
cial case when H is itself a normal subgroup of G and
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therefore equal to H0 , the order of the quotient group
G/H0 is equal to the number of indistinguishability
classes.

In summary, the n colors are arranged into q indistin-
guishability classes each containing p colors. Any color
permutation may be viewed as first permuting whole in-
distinguishability classes of colors and then permuting
the colors within their classes. The subgroup H of G ,
describing the point-group symmetry of one component
of the color field, uniquely determines the indistinguish-
ability-class permutation associated with each rotation
gPG . This is due to the correspondence between the q
indistinguishability classes and the q left cosets of H in
G . In the next section we shall establish how one deter-
mines the additional permutation for a given g , which is
required within the indistinguishability classes to leave
the color field indistinguishable.

C. Relation between the lattice L and the lattice color
group Ge

Let us focus now on the normal Abelian subgroup Ge .
It contains all the color permutations g that leave the
color field indistinguishable without requiring any rota-
tion in physical space. In the special case of periodic
crystals, these are color permutations that when com-
bined with a translation leave the colored crystal invari-
ant. The phase functions Fe

g(k) therefore contain the
information that generalizes to the quasiperiodic case
the concept of a ‘‘colored lattice,’’ also called a ‘‘color
translation group,’’ or ‘‘color lattice group.’’ 5 We
choose to call Ge the lattice color group because, as we
shall show in this section, it is a group of color permu-
tations which even in the quasiperiodic case is closely
related to the lattice L of wave vectors.

Recall that the lattice itself is an Abelian group, with
vector addition as the group composition law. We shall
show that there exists a sublattice L0 of L for which the
modular lattice (or quotient group) L/L0 , in which vec-
tor addition is performed modulo vectors in L0 , is iso-
morphic to Ge . We shall shortly define L0 , then prove
the isomorphism between L/L0 and Ge , and then show
that L0 is none other than the lattice of the color-blind
density, first introduced in Sec. II.A. We shall then pro-
ceed to show that the isomorphism L/L0.Ge is invari-
ant under the full color point group, which imposes an
additional constraint on the lattice color group Ge and
also determines the nature of all color permutations that
are paired in the color point group with a given rotation.
But first, let us review the properties of the phase func-
tions associated with the elements of $e%3Ge .

5For the precise definition and use of these concepts in the
traditional theory of color symmetry for periodic crystals see,
for example, Harker (1978a; 1978b) or Opechowski (1986, Sec.
13.4.1).
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1. Properties of the phases Fe
g(k)

(1) Gauge invariance. All phase functions of the form
Fe

g are independent of the choice of gauge—they
are left invariant under any gauge transformation
(17).

(2) Linearity on the lattice L . This is a property of all
phase functions, in particular,

;gPGe:

Fe
g~k11k2![Fe

g~k1!1Fe
g~k2!, k1 ,k2PL . (24)

(3) Linearity on the group Ge . The group compatibil-
ity condition (11) for the phases Fe

g(k) states that

;kPL :

Fe
g1g2~k![Fe

g1~k!1Fe
g2~k!, g1 ,g2PGe . (25)

Thus, for any fixed k, the phases Fe
g(k) are a lin-

ear function on Ge in the sense that the group
composition law of Ge can be expressed as addi-
tion (because Ge is Abelian).

(4) Possible values. Because Ge is a finite group it has
an exponent m , which is the smallest integer satis-
fying gm5e for every g in Ge . It then follows from
the group compatibility condition (25) that

;kPL ,gPGe:

Fe
g~k![

j

m
, j50,1, . . . ,m21. (26)

(5) Invariance under the full color point group GC .
The lattice L is invariant under the point group
G ; the group Ge is invariant under the full permu-
tation group G; from successive applications of the
group compatibility condition (11) we find that

;kPL ,gPGe:

Fe
dgd21

~hk![Fe
g~k!, ~h ,d!PGC , (27)

which may be interpreted as saying that the phases
Fe

g(k) are invariant under the full color point
group GC .

Properties (1) through (4) imply that the phase func-
tions Fe

g(k) provide a gauge-invariant bilinear mapping
from L3Ge into Zm—the cyclic group of order m . Most
of the structural relation between the lattice L and the
lattice color group Ge , described below, is a general con-
sequence of having such a bilinear mapping (for more
details, see for example Lang, 1971, Sec. I§11). Property
(5) imposes the symmetry of the full color point group
on the bilinear mapping which in turn adds a further
requirement on the structural relation between L and
Ge .

2. Proof of isomorphism between L/L0 and Ge

The group Zm , which is represented above as the ad-
dition modulo 1 of fractions with denominator m , may
also be represented in exponential form as the product
of the mth roots of unity e2piFe

g(k). In the latter form,
property (3) states that the phase functions define a
mapping f from the lattice L to the set IR(Ge) of irre-
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ducible representations of Ge . That is, every wave vec-
tor k is associated with one of the irreducible represen-
tations of Ge . One can easily convince oneself that the
set of irreducible representations of a finite Abelian
group, all of which are one dimensional, is itself a group.
Consequently, property (2) establishes in addition that f
is actually a group homomorphism from L to IR(Ge).
That is, the representation associated with the wave vec-
tor k11k2 is the product of the two representations as-
sociated with k1 and k2 .

Let L0 be the kernel of this homomorphism—the sub-
lattice containing all wave vectors k that are mapped to
the identity representation of Ge or, equivalently, for
which all phases Fe

g(k)[0. The mapping f is then a
homomorphism

f : L/L0→IR~Ge! (28)

which is injective—all wave vectors in a single coset of
L0 are mapped to the same representation of Ge , and
any two wave vectors that belong to different cosets of
L0 are mapped to distinct representations of Ge . This
implies that

uL/L0u<uIR~Ge!u5uGeu, (29)

where u . . . u denotes the order of a group, and the equal-
ity on the right is a property of any finite Abelian group.

Exchanging the roles of L and Ge , one similarly finds,
using properties (2) and (3), that the phase functions
define an injective homomorphism

c : Ge→IR~L/L0! (30)

and so

uGeu<uIR~L/L0!u5uL/L0u. (31)

From Eqs. (29) and (31) it follows that the orders of Ge
and L/L0 are equal and therefore that f and c are ac-
tually isomorphisms.

We complete the proof that L/L0 and Ge are isomor-
phic by noting that any finite Abelian group is isomor-
phic to its group of irreducible representations.6 Thus
the isomorphism of L/L0 and Ge is established via their
corresponding groups of irreducible representations.

3. L0 is the lattice of the color-blind density

Recall that the color-blind density r0 is defined as the
sum of all the components of rW . By summing the com-
ponents on the two sides of the point-group condition
(8),

;~g ,g!PGC : r0~gk!5e2piFg
g
~k!r0~k!, (32)

6Since any finite Abelian group may be expressed as a prod-
uct of cyclic groups, and since by simple inspection any cyclic
group is isomorphic to its group of irreducible representations,
all that one is left to show is that if A and B are two
finite Abelian groups then IR(A3B) is isomorphic to
IR(A)3IR(B). For details see the discussion on dual groups
by Lang (1971, Sec. I§11).
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one finds, as expected, that any rotation in G is also in
the point group of the color-blind density. A priori, we
expect any wave vector k in L to be in the lattice of the
color-blind density unless the sum of the components of
rW (k) happens to vanish systematically at a subset of the
k’s so as to reduce L to one of its sublattices. To deter-
mine for which k’s r0(k) vanishes one needs to examine
the color point group symmetries of the form (e ,g). For,
as can be seen from Eq. (32), if g5e then

;kPL : r0~k!5e2piFe
g
~k!r0~k!, (33)

which directly implies that r0(k) must vanish unless
Fe

g(k)[0 for all g in Ge . This is just the set of wave
vectors that are mapped to the identity representation of
Ge and form the sublattice L0 . Thus L0 , defined earlier
as the kernel of the mapping f from L to IR(Ge), is in
fact the lattice of the color-blind density.7

4. Canonical choice of generators for the lattice color
group Ge

We have established that the following groups are all
isomorphic:

(1) The lattice color group Ge ;
(2) the modular lattice L/L0 ;
(3) the set of all phase functions fe

g(k), one for every
gPGe , acting as the group of irreducible representa-
tions of the modular lattice L/L0 ; and

(4) the sets of phase values $fe
g1(k),fe

g2(k), . . . %, one
set for every kPL/L0 , acting as the group of irreducible
representations of the lattice color group Ge .

Let b1 . . . bl be a chosen set of independent genera-
tors for the modular lattice, and let m1 . . . ml be their
corresponding orders (i.e., mi is the smallest integer
such that mibiPL0). We would like to introduce a ca-
nonical choice of generators g1 . . . g l for the lattice
color group.

Because the values of all phase functions on the vec-
tors of the sublattice L0 are zero, we have ;gPGe :
miFe

g(bi)[0, or

;gPGe : Fe
g~bi![0,

1
mi

,
2

mi
•••

mi21
mi

. (34)

We choose the generators g1 . . . g l , with corresponding
orders m1 . . . ml such that their phase functions corre-
spond to the irreducible representations of the modular
lattice that are given by

Fe
g i~bj![

1
mj

d ij i ,j51 . . . l , (35)

7Operations of the form (g ,g) for gÞe may require r0(k) to
vanish at additional wave vectors k but only if they lie in the
invariant subspace of g . These additional wave vectors will,
nevertheless, remain in the lattice due to its closure under vec-
tor addition. This has been proven by Lifshitz (1996b) in the
context of spin-density fields. The proof in the case of color
fields should be similar.
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where d ij is the Kronecker delta. One may easily verify
that these l distinct phase functions, which must exist
due to the isomorphism of the first three groups above,
indeed generate the complete set of phase functions.
The color permutations g1 . . . g l are therefore a valid
set of generators for the lattice color group Ge .

We have thus established that, for a given lattice L
and a given point group G , the determination of the
abstract structure of all the compatible lattice color
groups Ge along with the values of their associated phase
functions Fe

g(k) is equivalent to the characterization of
all distinct sublattices L0 of L that are invariant under
G and can play the role of the lattice of the color-blind
density. We emphasize that the sublattice L0 determines
the group Ge only to within an isomorphism. There
could still be different lattice color groups Ge that are
isomorphic. We shall see next how the requirement that
the isomorphism between L/L0 and Ge be invariant un-
der the full color point group (a) may further restrict the
possible lattice color groups that are compatible with L
and G and (b) determines the nature of the color per-
mutation, paired in the color point group with a given
rotation.

5. Invariance of the isomorphism of L/L0 and Ge under
the color point group

We have established in Sec. IV.B that identifying the
subgroup H of G uniquely determines the indistinguish-
ability-class permutation, induced by permutations d
which are paired with a rotation hPG , according to the
effect of h on the left cosets of H in G . We have shown
here that identifying the invariant sublattice L0 of L
determines the abstract structure of Ge and its associated
phase functions. We shall now establish that the invari-
ance of the isomorphism L/L0.Ge under the full color
point group GC determines the way in which permuta-
tions d are further required to permute colors within
their indistinguishability classes, uniquely identifying the
coset of Ge paired in GC with h .

Let (h ,d) be any operation in the color point group
GC . It then follows from the invariance [Eq. (27)] of the
phases Fe

g(k) under GC that the one-dimensional rep-
resentation of Ge associated with k assigns the same
characters to the elements g as does the representation
associated with hk to the elements dgd21. Two such
representations of Ge are said to be conjugate to each
other relative to G. The permutation d induces an auto-
morphism on the group IR(Ge) of irreducible represen-
tations of Ge through the corresponding automorphism
it induces on the group Ge itself. So, if kPL/L0 is
mapped by the isomorphism L/L0.Ge to an element
gPGe through some representation of Ge then hk is
mapped through a conjugate representation to the con-
jugate element dgd21PGe . This is the sense in which
the isomorphism between L/L0 and Ge is invariant un-
der the color point group.

A necessary condition for satisfying the invariance of
the isomorphism L/L0.Ge under GC is that the ar-
rangement of vectors in L/L0 into stars or orbits of the
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point group G corresponds to a similar arrangement of
the elements of Ge into orbits of the full permutation
group G. Because Ge is a normal subgroup of G all the
color permutations in G are taken from the group of
automorphisms of Ge—the set of all color permutations
that leave Ge invariant. The invariance of the isomor-
phism L/L0.Ge under GC determines which of these
color permutations are paired in the color point group
with a given rotation h . These are the permutations that
produce the automorphism of Ge required by the effect
of h on the modular lattice L/L0 .

6. Consequences and examples

Let us illustrate the ideas of this section with the help
of two examples, both involving two-dimensional four-
colored periodic crystals, the first on a square lattice and
the second on a triangular lattice. The lattice L is gen-
erated by two wave vectors of equal length, b1 and b2 ,
separated in the first case by 90 degrees and in the sec-
ond case by 120 degrees. Let us restrict ourselves to the
simplest point group generated by a single rotation r ,
which in the first case is a fourfold rotation and in the
second case a threefold rotation.

Let L0 be the sublattice generated by 2b1 and 2b2
(containing all points indexed by a pair of even inte-
gers). The modular lattice (or quotient group) L/L0 is
isomorphic to Z23Z2 , containing the four elements: 0,
b1 , b2 , and b11b2 . Let us denote the corresponding
elements of Ge by e, g1 , g2 , and g125g1g2 ; and the
irreducible representations of Z23Z2 by D0 , D1 , D2 , and
D125D1D2 . The color point group may be generated by
the three elements: (e ,g1), (e ,g2), and (r ,d), where d is
a representative of the coset of Ge , paired with r in the
color point group.

One can verify from the character table

e g1 g2 g12

D0 1 1 1 1

D1 1 21 1 21

D2 1 1 21 21

D12 1 21 21 1

(36)

that it is always possible, through a renaming of the el-
ements of Ge , to assign the representations D1 and D2 to
the wave vectors b1 and b2, respectively. By renaming
we mean choosing which two elements to call g1 and g2
and use as generators of the group. Any of the other five
possible assignments will lead to equivalent color space
groups, as defined in Sec. III.D. Furthermore, one can
easily show, in both the square and the triangular cases,
that there exists a gauge [Eq. (17)] in which the phase
function Fr

d(k) is zero everywhere on the lattice L .
Stated explicitly, the phase functions associated with

the generators of the color point group, to within a
gauge transformation (17) and a renaming of the ele-
ments of Ge , are
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Fe
g1~b1![ 1

2 , Fe
g1~b2![0,

Fe
g2~b1![0, Fe

g2~b2![ 1
2 ,

Fr
d ~b1![0, Fr

d~b2![0. (37)

Thus choosing L0 not only determines the abstract
structure of Ge but also determines the assignment of
phases to the corresponding phase functions. Up to this
point both the square and the triangular crystals behave
in the same manner. They differ in the actual lattice
color groups Ge that are allowed due to the requirement
that the isomorphism between the modular lattice L/L0
and Ge be invariant under the respective color point
groups. The different lattice color groups, derived below
for the two cases, are illustrated in Fig. 5.

The fourfold rotation interchanges b1 and b2 (modulo
vectors in L0) so any permutation d, paired in the color
group with r , must interchange g1 and g2 . There are
two possible lattice color groups satisfying this require-
ment:

g1 g2 g12 d

1. (c1c2)(c3c4) (c1c3)(c2c4) (c1c4)(c2c3) (c2c3)
2. (c1c2) (c3c4) (c1c2)(c3c4) (c1c4)(c2c3)

This gives two different four-color square space groups
with point group G54 and with the chosen sublattice
L0 . Note that in the first case the four colors belong to a
single indistinguishability class whereas in the second
they belong to two different indistinguishability classes.
The second case is an example of a nonsimple color
space group, as defined in Sec. IV.B.2.

The threefold rotation, on the other hand, cyclically
permutes the three vectors b1 , b2 , and b11b2 . A per-
mutation d, paired in the color group with r , must cycli-
cally permute the three elements g1 , g2 , and g12 . There
is only one lattice color group satisfying this require-
ment:

g1 g2 g12 d

1. (c1c2)(c3c4) (c1c3)(c2c4) (c1c4)(c2c3) (c2c3c4)

The second possibility on the square lattice is not pos-
sible on the triangular lattice because the fact that the
three vectors b1 , b2 , and b11b2 belong to the same or-
bit of the point group requires the three elements g1 ,
g2 , and g12 to be conjugate in G. Thus there is only a
single four-color trigonal space group with point group
G53 with this choice for the sublattice L0 .

D. Relation to the traditional theory of color symmetry

The standard procedure in the case of periodic color
space groups, as presented, for example, by Senechal
(1975; 1979), Schwarzenberger (1984), or Opechowski
(1986), is to formulate the problem in terms of sub-
groups of space groups. After fixing the origin in real
space, one assigns to each element of a space group G
(including its translations) a unique permutation g of the
n colors required to leave the colored crystal invariant.
This defines a homomorphism from G onto the permu-
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FIG. 5. (Color) Illustration of four-color space groups with lattice color groups isomorphic to Z23Z2 . With fourfold symmetry
there are two possibilities for lattice color groups, (a) generated by g15(c1c2)(c3c4) and g25(c1c3)(c2c4) or (b) generated by
g15(c1c2) and g25(c3c4). With threefold symmetry only the first possibility can be realized, as shown in (c).
tation group G. The elements of G associated with per-
mutations that leave a given color c1 invariant form a
subgroup H of index n in G. The elements of G associ-
ated with permutations that take color c1 into color ck
form a left coset of H, and there is a correspondence
between cosets of H and colors. The permutation g as-
sociated with a given element g of G is determined by
the permutation of the left cosets of H induced by g .
Because G is determined uniquely by H (up to a relabel-
ing of the colors and a global shift of the origin), the
color space group is denoted by the group-subgroup pair
G(H).

If H and G share the same lattice of translations they
are called translation equivalent and if they have the
same point group they are called class equivalent. Ac-
cording to a theorem by Hermann (Senechal, 1990, p.
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72) every subgroup of a space group that is of finite
index is a translation-equivalent subgroup of a class-
equivalent subgroup. This allows one to split the enu-
meration problem into two, considering colored lattices
(in terms of sublattices of lattices of translations) and
color point groups (in terms of subgroups of point
groups) and composing them to construct the color
space groups.

Our theory, based on the Fourier-space approach,
does not deal with translations, making it equally appli-
cable to periodic and to quasiperiodic crystals. The em-
phasis is shifted from combinations of rotations and
translations that leave the crystal invariant to rotations
that leave it indistinguishable. Consequently a given
point-group rotation is not associated with a unique per-
mutation of the colors but rather with a whole coset of
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permutations with which it may be combined to leave
the crystal indistinguishable. Alternatively, each point-
group rotation is associated with a unique permutation
of whole indistinguishability classes of colors, followed
by any one of the permutations of colors within their
indistinguishability classes that produces the desired au-
tomorphism of the lattice color group Ge .

One can readily identify the space groups G and H in
our theory as the space group of the color-blind density
r0(r) and the space group of a single component r i(r) of
the color field, respectively. In the periodic case color
permutations associated with pure translations are those
which leave the color field indistinguishable without re-
quiring any rotation, constituting the lattice color group
Ge . The enumeration of color Bravais classes in the pe-
riodic case is therefore equivalent to the enumeration of
the distinct lattice color groups Ge , compatible with lat-
tices in a given ordinary Bravais class.

Translation-equivalent color groups are those for
which Ge contains only the identity permutation. In
these color groups L5L0 , each indistinguishability class
contains just a single color (p51), and the subgroups
H0 and Ge are equal (because in such a case if you leave
all the individual components of the field indistinguish-
able then you necessarily leave the whole field indistin-
guishable).

Class-equivalent color groups are those for which
G5H(5H0), requiring that there be only a single in-
distinguishability class of colors (q51). These are also
the color groups for which the lattices Li of the indi-
vidual components r i of the color field are necessarily all
equal, containing the same set of wave vectors. In gen-
eral, these lattices are required to be equal only to
within rotations in the point group.

V. BLACK AND WHITE SPACE GROUPS

Though in many ways quite trivial, black and white
space groups still deserve careful consideration since
they are probably the most important when it comes to
applications. The color field rW (r) has two components
corresponding to a black density and a white density.
The permutation group G is the simplest one possible,
containing the identity e and the exchange of black and
white, which we denote by g. Tables of periodic black
and white space-group types—also known as ‘‘Shub-
nikov groups’’ or ‘‘magnetic groups’’—in two and three
dimensions are given by Shubnikov and Belov (1964,
Tables 10 and 11), Opechowski (1986, Tables 11.2 and
17.3), and the original papers cited therein. We shall
outline some general considerations regarding black and
white groups, after which we shall enumerate all two-
and three-dimensional black and white space-group
types on standard axial lattices and the black and white
space-group types in the icosahedral system.

A. General considerations

There are two kinds of black and white space groups
depending on the lattice color group Ge . In the first, Ge
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contains only the identity permutation, and the two
components of the color field are distinguishable. In the
second, Ge contains g as well, and the two colors belong
to a single indistinguishability class. In both cases the
subgroups H , H0 , and Ge of the point group G are all
equal. One is usually interested in enumerating all the
black and white space-group types with a lattice L from
a given Bravais class and a point group G compatible
with that Bravais class. The enumeration proceeds dif-
ferently depending on the lattice color group Ge as out-
lined below.

1. The colors are distinguishable (G5$e,g%; Ge5$e%;
G/Ge.Z2)

a. Color geometric crystal classes

Because G/Ge is isomorphic to G/Ge , which is iso-
morphic to Z2 , one needs to consider all subgroups Ge
of index 2 of the point group of interest G . Elements in
Ge are paired in the color point group only with the
identity permutation e, the rest of the elements being
paired only with the exchange of black and white g.
Consequently there is just one element in the black and
white point group GC associated with each element of
G . One can specify the black and white point group GC
in any of the following ways: (1) by listing the group-
subgroup pair G(Ge); (2) by giving a set of elements
that generate GC ; or (3) by using the international
(Hermann-Mauguin) symbol for the point group G (e.g.,
International Union of Crystallography, 1995, Sec. 2.4)
and denoting by a prime each element that is paired
with g in GC .

A simple way of finding all the subgroups Ge of index
2 in G is to pick a set of generators for G and consider
all combinations in which each generator of even order
is associated once with e (i.e., is in Ge) and once with g
(i.e., is not in Ge). The resulting black and white point
groups then need to be checked for equivalence under
arbitrary rotations in O(3) as explained in Sec. III.B.

As an example, consider the orthorhombic point
group mm2. Taking the two mirrors as generators, one
can associate g with just one of them (in which case the
twofold rotation is also associated with g) or with both
of them. This gives three black and white point groups,
m8m28, mm828, and m8m82, of which the first two are
equivalent through a fourfold rotation which exchanges
the two mirrors, yielding just two black and white geo-
metric crystal classes.

b. Color arithmetic crystal classes

In practice, what one needs to consider here are the
distinct ways of orienting the black and white point
group GC relative to the lattice L , as explained in Sec.
III.C. As an example, consider the same orthorhombic
point group mm2 on a periodic orthorhombic
C-centered lattice. In such a lattice the z direction is
distinguished from the x and y directions. The different
black and white arithmetic crystal classes (with primes
denoting point-group elements associated with g) are
Cm8m28 (which is equivalent to Cmm828), Cm8m82,
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C28m8m , C28mm8, and C2m8m8 (the last three are
more commonly expressed in an A setting as Amm828,
Am8m28, and Am8m82). These five classes correspond
to the two arithmetic crystal classes Cmm2 and C2mm
in the uncolored case, with the additional distinction be-
tween primed and unprimed mirrors.

c. Color space-group types

Because there is just one element in GC for every
element of G , there is also only one phase function as-
sociated with every element of G . Consequently the
group compatibility conditions (11) and their solutions
are identical to those one would get when enumerating
ordinary (uncolored) space groups, using the standard
Fourier-space approach for scalar density functions. Due
to the form of the gauge transformation (17), the orga-
nization of sets of phase functions, satisfying the group
compatibility conditions, into gauge-equivalence classes
is also identical to that in the scalar case. Thus, in enu-
merating black and white space-group types with Ge
5$e%, one can use the known gauge-equivalence classes
of phase functions for the corresponding arithmetic crys-
tal class from the scalar case.

One can specify the black and white space groups in
any of the following ways: (1) by taking the international
(Hermann-Mauguin) symbol for the corresponding un-
colored space group and adding primes to account for
the exchange of black and white; (2) by explicitly speci-
fying the lattice L , the black and white point group GC ,
and the values of the phase functions; or (3) by specify-
ing the group-subgroup pair G(H), where G is the space
group of the color-blind density and H is the space
group of one of the components of the color field.

When checking for scale equivalence one needs to be
careful to distinguish rotations that are combined with
the exchange of black and white from those that are not.
This is because no scale transformation (18) can take a
phase function of the form Fg

g into one of the form Fg
e .

As an example, consider the orthorhombic color arith-
metic crystal class Cm8m28. Solutions to the group
compatibility conditions (which are the same for the col-
ored and uncolored cases) are arranged into four gauge-
equivalence classes: Cmm2, Ccm21 , Cmc21 , and
Ccc2. In the uncolored case, Ccm21 and Cmc21 are
scale equivalent (through the fourfold rotation which ex-
changes the two mirrors), yielding a total of three space-
group types. In the colored case, where only one of the
mirrors is primed, Cc8m218 and Cm8c218 are not scale-
equivalent, giving a total of four black and white space-
group types.

2. The colors are indistinguishable (G5Ge5$e,g%;
G/Ge.Z1)

Because Ge5G every operation g in G is associated
with both e and g, so there is exactly one black and
white point group GC for every point group G . The
enumeration of colored geometric and arithmetic crystal
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
classes is therefore the same as in the uncolored case.
The corresponding phase functions—two for every ele-
ment of G—satisfy

;gPG : Fg
g~k![Fg

e~k!1Fe
g~k!. (38)

Solving the group compatibility conditions (11) associ-
ated with the phase functions Fg

e and arranging the so-
lutions into gauge-equivalence classes is again identical
to solving for the phase functions Fg when there are no
colors. It is thus only necessary to find the (gauge-
invariant) phase function Fe

g and this will determine all
the phase functions Fg

g through Eq. (38) for each of the
gauge-equivalence classes. One is then left only with the
task of checking for scale equivalence.

Finding the possible solutions for Fe
g(k) amounts, as

explained earlier, to finding all the sublattices L0 of L of
index 2 that are invariant under the point group G . Re-
call that this is equivalent, in the traditional theory of
color symmetry, to the task of finding the possible Bra-
vais classes of black and white lattices. The possible so-
lutions for Fe

g(k) are restricted by the following con-
straints:

(1) Since g25e , the group compatibility condition (21)
requires that

Fe
g~k![0 or 1

2 . (39)

This corresponds to the assignment of either of the
two one-dimensional representations of Ge.Z2 to
each wave vector k. Note that, for any chosen set of
lattice generating vectors, at least one must have the
value 1

2 assigned to it, otherwise all lattice vectors
will belong to L0 .

(2) Since G is Abelian, the requirement (27) that Fe
g(k)

be invariant under the color point group reduces to

;gPG: Fe
g~gk![Fe

g~k!. (40)

The value of Fe
g is therefore the same on all the

vectors in a single orbit or star of the point group G .

Notation for black and white space groups with
Ge5$e ,g% consists of adding a subscript to the Bravais
class symbol indicating the type of sublattice L0 . The
point-group elements are left as in the scalar case (with
no primes) with the understanding that each of them
appears in the black and white point group both with
and without the exchange of black and white.

B. Axial black and white space groups
(on standard lattices)

Rokhsar, Wright, and Mermin (1988a) have enumer-
ated the two-dimensional axial space-group types on
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TABLE II. Two-dimensional axial black and white space-group types. The space groups are given by
their International (Hermann-Mauguin) symbol as explained in Sec. V.A, where a prime denotes
point-group operations that are combined with the exchange of black and white. The third column
lists the black and white space-group types with Ge5$e%, describing crystals in which the densities of
the two colors are distinguishable. The fourth column lists the black and white space-group types with
Ge5$e ,g%, describing crystals in which the densities of the two colors are indistinguishable. The latter
are possible only if the rotational symmetry n is a power of 2. A subscript P is added to the Bravais
class symbol to indicate the existence of a sublattice L0 of index 2 in L describing the color-blind
density.

Point-group
order n

Lattice
order N

Space groups
with Ge5$e%

Space groups
with Ge5$e ,g%

Periodic
example

n52 j, j.1 N5n Pn8 PPn 4

HPnm8m8

Pn8mm8

Pn8m8m

PPnmm

HPng8m8

Pn8gm8

Pn8g8m

PPngm

other even n N5n Pn8 none 6

HPnm8m8

Pn8mm8

Pn8m8m

n5pj, p odd prime N52n Pnm81 none 3
Pn1m8

other odd n N52n Pnm8 none none
standard lattices.8 Rabson, Mermin, Rokhsar, and
Wright (1991, henceforth RMRW) have enumerated the
corresponding three-dimensional axial space-group
types. We shall use these results to enumerate the black
and white axial space-group types in two and three di-
mensions as outlined in the previous subsection.

The results in two dimensions are given explicitly in
Table II. We give a prescription for constructing the
three-dimensional black and white space groups by com-
bining the information given in Tables III and IV below
and the tables of the ordinary space groups given by
RMRW.

1. The colors are distinguishable (G5$e,g%; Ge5$e%;
G/Ge.Z2)

a. Two-dimensional case

The two-dimensional black and white axial space-
group types with Ge5$e% are listed explicitly by their

8A standard two-dimensional lattice with N-fold symmetry is
composed of all integral linear combinations of an N-fold star
of wave vectors, separated by an angle of 2p/N . Mermin,
Rokhsar, and Wright (1987) have shown that all N-fold lattices
with 2,N,46 or N548, 50, 54, 60, 66, 70, 84, and 90 are
standard. For other values of N additional types of lattices
exist which we do not consider here.
., Vol. 69, No. 4, October 1997
international symbol in the third column of Table II.
Black and white space groups that correspond to the
same uncolored space-group type are grouped together.

b. Three-dimensional case

The three-dimensional axial black and white point
groups are listed in Table III. These groups are specified
in three equivalent ways: by their international symbol,
by a set of generating pairs (g ,g), and by the subgroup
Ge of G . Black and white point groups GC with the
same point group G are arranged together. This list may
be used in conjunction with the tables of RMRW to
construct all the three-dimensional axial black and white
space-group types on standard lattices. The only inter-
mediate step required is the enumeration of color arith-
metic crystal classes. These may be inferred directly
from Table III with the following provisos:

(1) A black and white group, listed in brackets, belongs
to the same color geometric crystal class as the
group directly above it. When combined with an
n-fold lattice this geometric crystal class results in
two different color arithmetic crystal classes, given
by the symbols shown.

(2) As in the uncolored case, when n is a power of an
odd prime the two black and white point groups
nm8 and n28, when combined with a P (vertical)
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TABLE III. Three-dimensional axial black and white point groups with Ge5$e%. The first two columns give the point group G by
listing its international symbol and its generators, where, following the notation of Rabson et al. (1991), r is an n-fold rotation, r̄
is the same rotation followed by the inversion, m is a vertical mirror containing the n-fold rotation axis, h is a horizontal mirror
perpendicular to the n-fold axis, and d is a dihedral (twofold) axis perpendicular to the n-fold axis. The last three columns give
the corresponding black and white point groups GC in three different ways: (a) by listing their symbol, where primes denote
operations that are applied along with the exchange of the two colors; (b) by listing their generators, where g denotes the
exchange of black and white; and (c) by listing the subgroup Ge . The information given in this table may be used in conjunction
with the tables of Rabson et al. (1991) to construct the corresponding list of black and white space-group types, with the following
provisos: (1) Black and white point groups in brackets belong to the same color geometric crystal class as the ones above. When
used to construct black and white space groups they must be considered in their two orientations relative to the lattice-generating
vectors, which produce two distinct color arithmetic crystal clases, given by the two symbols as shown. (2) If n is a power of an odd
prime, the two black and white point groups nm8 and n28, when combined with a P (vertical) lattice, each result in two different
color arithmetic crystal classes denoted by Pnm81, Pn1m8, and Pn281, Pn128.

Point group G Black and white point group GC

Symbol Generators Symbol Generators Subgroup Ge

n̄ r̄ n̄ 8 ( r̄ ,g)
n

2
~n! n even (odd)

n̄ 2m
(n even)

r̄ ,m n̄ 28m8 ( r̄ ,e), (m ,g) n̄

n̄ 828m ( r̄ ,g), (m ,e)
n

2
mm Sn2 mD n

2
even (odd)

n̄ 82m8 ( r̄ ,g), (m ,g)
n

2
22 S n

2
2D n

2
even (odd)

n̄ m r̄ ,m n̄ m8 ( r̄ ,e), (m ,g) n̄

(n odd) n̄ 8m ( r̄ ,g), (m ,e) nm

n̄ 8m8 ( r̄ ,g), (m ,g) n2

n
(n even)

r n8 (r ,g)
n

2

nmm
(n even)

r ,m nm8m8 (r ,e), (m ,g) n

n8mm8 (r ,g), (m ,e)
n

2
mm Sn2 mD n

2
even (odd)

@n8m8m# [(r ,g), (m ,g)] [9]

nm
(n odd)

r ,m nm8 (r ,e), (m ,g) n

n22
(n even)

r ,d n2828 (r ,e), (d ,g) n

n8228 (r ,g), (d ,e)
n

2
22 S n

2
2D n

2
even (odd)

@n8282# [(r ,g), (d ,g)] [9]

n2
(n odd)

r ,d n28 (r ,e), (d ,g) n

n/m
(n even)

r ,h n/m8 (r ,e), (h ,g) n

n8/m (r ,g), (h ,e)
n

2Ym ~n̄ !
n

2
even (odd)

n8/m8 (r ,g), (h ,g) n̄ Sn̄2D n

2
even (odd)
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
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TABLE III. (Continued).

Point group G Black and white point group GC

Symbol Generators Symbol Generators Subgroup Ge

n/mmm r ,h ,m n/m8mm (r ,e), (h ,g), (m ,e) nmm
(n even) n/mm8m8 (r ,e), (h ,e), (m ,g) n/m

n/m8m8m8 (r ,e), (h ,g), (m ,g) n22

n8/mmm8 (r ,g), (h ,e), (m ,e)
n

2Ymmm ~n̄ 2m!
n

2
even (odd)

@n8/mm8m# [(r ,g), (h ,e), (m ,g)] [9]

n8/m8mm8 (r ,g), (h ,g), (m ,e) n̄ 2m Sn̄2 mD n

2
even (odd)

@n8/m8m8m# [(r ,g), (h ,g), (m ,g)] [9]
lattice, each result in two different color arithmetic
crystal classes denoted by Pnm81, Pn1m8, and
Pn281, Pn128.

As an example, let us use Table III to construct the
list of black and white space-group types with point
group 10/mmm . There are four gauge-equivalence
classes of solutions to the group compatibility conditions
leading, in the scalar case, to four distinct space-group
types denoted by P10/mmm , P10/mcc , P105 /mmc ,
and P105 /mcm (see Table XI of RMRW). The same
solutions exist for the black and white space groups,
only now we need to consider for each of the four solu-
tions the seven different ways of associating e and g with
the elements of the point group as shown at the bottom
of Table III. This gives a total of 28 black and white
space-group types associated with the point group
10/mmm . The seven black and white space-group types
corresponding to the second solution, for example,
would be denoted by P10/m8cc , P10/mc8c8,
P10/m8c8c8, P108/mcc8, P108/mc8c , P108/m8cc8, and
P108/m8c8c .

2. The colors are indistinguishable (G5Ge5$e,g%;
G/Ge.Z1)

a. Two-dimensional case

A standard two-dimensional N-fold lattice L may be
generated by an N-fold star of wave vectors, denoted
here by b1 . . . bN where N is even. We want to find all
distinct sublattices L0 of index 2 in L that are invariant
under the point group G . This amounts to finding the
possible values for the phase function Fe

g that satisfy the
group compatibility conditions and, if applicable, check-
ing for scale equivalence among them.

From the general considerations outlined earlier, sum-
marized by Eqs. (39) and (40), all the vectors in the
N-fold star have the same phase Fe

g(bi), which is either
0 or 1

2 . If p is a divisor of N then there is a p-fold star of
wave vectors among the bi which add up to zero. The
linearity of the phase function then requires that
pFe

g(bi)[0, which for odd p implies that Fe
g(bi)[0.

Thus the phase associated with the vectors of the N-fold
star can be 1

2 only if N is a power of 2. As a consequence,
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a standard N-fold lattice may have an invariant sublat-
tice of index 2 only if N is a power of 2.

Since there is only one solution, one does not need to
check for scale equivalence. The resulting black and
white space-group types, one for each uncolored space-
group type, are listed in the fourth column of Table II. A
subscript P denotes the fact that the lattice of the color-
blind density L0 is a sublattice of L that is also a stan-
dard N-fold lattice.

b. Three-dimensional case

Let us first review the different Bravais classes of stan-
dard axial lattices in three dimensions.9 All such lattices
are constructed by stacking two-dimensional standard
lattices in the third dimension. It is always possible to
construct three-dimensional axial lattices by adding to
the N-fold generating star of the horizontal sublattice a
vertical stacking vector c along the axis of rotation. The
rotational symmetry of the vertically stacked lattice is
the same rotational symmetry N of its horizontal sublat-
tice, which is always even. The Bravais class of such lat-
tices is denoted either by a V (for ‘‘vertical’’) or by a P
(for ‘‘primitive’’).

Only if N is twice a power of a single prime is it also
possible to have a second Bravais class, in which the
horizontal sublattices are stacked by a staggered stack-
ing vector cs5c1h with a horizontal shift h from layer to
layer. When N is a power of 2, the staggered lattice
continues to have the full N-fold symmetry; when N is
twice an odd prime the rotational symmetry n of the
staggered lattice is half that of its horizontal sublattice.
The Bravais class of staggered lattices is denoted by S
(for ‘‘staggered’’) except for the trigonal and tetragonal
cases, where the more common notation is R (for
‘‘rhombohedral’’) and I (for ‘‘body-centered’’). We note
that a staggered lattice with n-fold symmetry (n5ps, p
prime) repeats every p layers. Furthermore, we note
that the staggered stacking vector cs may always be cho-

9For more detail see Mermin, Rabson, Rokhsar, and Wright
(1990) or the summary in RMRW (Rabson et al., 1991).
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TABLE IV. Invariant sublattices of index 2 in standard three-dimensional axial lattices. The sublattices are found by solving the
group compatibility conditions for the phase function Fe

g as detailed in Sec. V.B.2. The solutions are given by the values of the
phase function at the vectors bi which generate the horizontal sublattice and at the additional stacking vector, c in the vertical case,
and cs in the staggered case. The solutions, previously derived in five-dimensional superspace by Niizeki (1990b) for the special
cases n55,8,10,12, agree with the results given here. A subscript is added to the Bravais class symbol of L to indicate the type of
sublattice L0 , as explained in Sec. V.B.2. These symbols may be directly combined with the symbols of the uncolored space-group
types, given Rabson et al. (1991), to produce the corresponding axial black and white space-group types. For example, the
uncolored space group P10/mcc produces one black and white space-group type, P2c10/mcc , whereas the space group P8/mcc
gives three black and white space-group types: P2c8/mcc , PP8/mcc , and PS8/mcc .

Point group
order n

Vertical stacking Staggered stacking
Periodic
exampleFe

g(bi) Fe
g(c) Fe

g(bi) Fe
g(cs)

n52 j, j.1 P2c : 0 1
2 SP : 0 1

2 4
PP : 1

2 0
PS : 1

2
1
2

other even n P2c : 0 1
2 N/A 6

n5pj, p odd prime P2c : 0 1
2 SS : 0 1

2 3

other odd n P2c : 0 1
2 N/A none
sen such that when subtracted from its image under an
n-fold rotation rn gives one of the vectors in the N-fold
horizontal star:

rncs2cs5bi . (41)

We know from the two-dimensional analysis above
that the possible phases associated with the vectors of
the N-fold star (before considering stacking) are

Fe
g~bi![H 0 or 1

2 N52s,

0 NÞ2s.
(42)

The vertical stacking vector c is independent of the gen-
erators of the horizontal sublattice, so the phase Fe

g(c)
may independently be zero or 1

2 . This gives for vertical
lattices a total of three solutions when N is a power of 2
and a single solution otherwise, as summarized in the
second column of Table IV. We denote by P2c the solu-
tion in which only the stacking vector c has a phase
value of 1

2 to indicate that the sublattice L0 of the color-
blind density contains all the even layers of L . The sym-
bol PP denotes the solution in which only the horizontal
generating vectors bi are given the value 1

2 . The sublat-
tice L0 in this case is also a P lattice with the same
periodic spacing as L . The third solution in which all the
generating vectors are assigned the value 1

2 is denoted by
PS because in this case the sublattice L0 is staggered.

The staggered stacking vector cs is not independent of
the bi . The phase Fe

g(cs) may be 0 or 1
2 , but the linear

constraint of Eq. (41) implies that in the case of stag-
gered lattices the phases at the N-fold horizontal star
must be zero because from Eq. (40)

Fe
g~bi![Fe

g~rncs!2Fe
g~cs![0. (43)

This gives only one solution for staggered lattices, sum-
marized in the third column of Table IV. We denote this
solution by SS if N52ps and p is an odd prime, and by
SP if p52. This is because horizontal sublattices repeat
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every p layers, yielding a vertical sublattice L0 if p52
and a staggered one otherwise.

The results, previously derived by Niizeki (1990b) for
the special case of rank-5 axial lattices (n-fold lattices
with n55,8,10,12), agree with our general results shown
in Table IV. To construct a list of all the black and white
space-group types (with black and white in the same
indistinguishability class) one simply has to prepend to
the symbol of each uncolored space-group type the sym-
bols from Table IV denoting the possible solutions for
Fe

g . In this way, for example, the uncolored space group
P10/mcc produces one black and white space-group
type, P2c10/mcc , whereas the space group P8/mcc gives
three black and white space-group types: P2c8/mcc ,
PP8/mcc , and PS8/mcc .

C. Icosahedral black and white space groups

We conclude this section by enumerating the icosahe-
dral black and white space-group types. The results of
the enumeration are given in two tables: Table V lists
the black and white space-group types with Ge5$e%
where the two colors belong to two indistinguishability
classes of colors; Table VI lists the space-group types
with Ge5$e ,g% where the two colors belong to a single
indistinguishability class.

1. The colors are distinguishable (G5$e,g%; Ge5$e%;
G/Ge.Z2)

The space groups with Ge5$e% are very simple be-
cause in this case there is only one black and white
icosahedral point group. It is associated with the full
icosahedral point group 5̄ 3̄ m and its proper subgroup
532, which is of index 2. The exchange of black and
white is associated with all the improper rotations. The
black and white point group is therefore denoted by
5̄ 83̄ 8m8. The black and white icosahedral space groups
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with Ge5$e% are listed in Table V. They follow directly
from the uncolored space-group types, tabulated by
Mermin (1992, Table VIII).

2. The colors are indistinguishable (G5Ge5$e,g%;
G/Ge.Z1)

For the enumeration of the icosahedral black and
white space-group types with Ge5$e ,g% we need to find
the distinct solutions for the phase function Fe

g(k).
There are three Bravais classes of rank-6 icosahedral
lattices:10 P (primitive), F* (face centered in Fourier
space), and I* (body centered in Fourier space). We
shall consider each one separately.

a. Primitive icosahedral lattices

An icosahedral P lattice can be generated by taking
all integral linear combinations of a single star of 12
wave vectors pointing to the vertices of an icosahedron
(only 6 of the 12 vectors are integrally independent).
The value of the phase function Fe

g must be the same on
all the 12 vectors of the star. We need to check whether
there are any linear relations among these wave vectors

10For details see Rokhsar, Mermin, and Wright (1987) or
Mermin (1992, p. 18)

TABLE V. Icosahedral black and white space-group types
with Ge5$e%. The black and white point group associates the
exchange of the two colors with all the improper rotations of
the full icosahedral group, as denoted by primes in the space-
group symbol. It may be generated by the two elements (m ,g)
and ( r̄ 3 ,g). Their associated phase functions are taken from
those of the corresponding generators m and r̄ 3 in the uncol-
ored case. The phase function Fm

g is given by its values on the
sets of generators for the icosahedral lattices used by Mermin
(1992, see p. 18). The phase function F r̄ 3

g is zero everywhere in
an appropriate gauge. The space-group types are also given in
terms of a group-subgroup pair G(H), in which G is the space
group of the color-blind density and H is the space group de-
scribing the symmetry of one of the colors. There is a slight
discrepancy with the results previously derived by Sheng
(1994, Table 3.3.)

5̄ 3̄
2
m

~Yh! Fm
g G(H)

P P5̄ 83̄ 8
2

m8
000 000 P 5̄ 3̄

2
m

~P532!

P 5̄ 83̄ 8
2
q8

1
2

1
2 0 000 P5̄ 3̄

2
q

~P532!

F* (I) F* 5̄ 83̄ 8
2

m8
000 000 F* 5̄ 3̄

2
m

~F* 532!

I* (F) I* 5̄ 83̄ 8
2

m8
000 000 I* 5̄ 3̄

2
m

~I* 532!

I* 5̄ 83̄ 8
2
q8

1
2

1
2 0 00 1

2 I* 5̄ 3̄
2
q

~I* 532!
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which would disallow this value from being 1
2 . This can

happen only if there is an odd number of vectors in the
star that sum to zero. Since this is not the case, the non-
trivial solution, assigning the phase function Fe

g a value
of 1

2 on the vectors of the star, exists. The color-blind
sublattice is an F* lattice, generated by taking integral

TABLE VI. Icosahedral black and white space-group types
with Ge5$e ,g%. Such space groups exist only on P and I*
lattices. When the point group G is 5̄ 3̄ m , the black and white
point group is generated by (e ,g), ( r̄ 3 ,e), and (m ,e). When
the point group G is 532, the black and white point group is
generated by (e ,g), (r3 ,e), and (r2 ,e). The possible values of
the phase function Fe

g are derived in the text. The values for
the other phase functions are taken from the uncolored case as
tabulated by Mermin (1992, Tables VIII and IX). All phase
functions are given by their values on the sets of generators for
the icosahedral lattices as chosen by Mermin (1992, p. 18). The
solution for the phase function Fe

g is denoted in the space-
group symbol by adding a subscript, which specifies the Bra-
vais class of the sublattice L0 of the color-blind density. The
space-group types are also given in terms of a group-subgroup
pair G(H), in which G is the space group of the color-blind
density and H is the space group describing the symmetry of
one of the colors. There are some discrepancies with the re-
sults previously derived by Sheng (1994, Tables 3.4 and 3.5).
Note particularly that the nonsymmorphic uncolored space-
group type I* 5̄ 3̄ 2/q turns into three black and white space-
group types, denoted by IP* 5̄ 3̄ 2/q , IP* 5̄ 3̄ 2/r , and IP* 5̄ 3̄ 2/s ;
these three space-group types the G(H) symbol is not unique
and should be avoided.

P 5̄ 3̄
2
m

~Yh! Fe
g Fm

e G(H)

PF* 5̄ 3̄
2
m

1
2

1
2

1
2

1
2

1
2

1
2 000 000 F* 5̄ 3̄

2
m S P 5̄ 3̄

2
m

PF* 5̄ 3̄
2
q

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 000 F* 5̄ 3̄

2
q S P 5̄ 3̄

2
q D

532 (Y) Fe
g Fr2

e G(H)

PF* 532 1
2

1
2

1
2

1
2

1
2

1
2 000 000 F* 532 (P532)

PF* 5132 1
2

1
2

1
2

1
2

1
2

1
2

1
5 00 4

5
1
5 0 F* 5132 (P5132)

I* (F) 5̄ 3̄
2
m

~Yh! Fe
g Fm

e G(H)

IP* 5̄ 3̄
2
m

1
2

1
2

1
2 000 000 000 P5̄ 3̄

2
m S I* 5̄ 3̄

2
m

IP* 5̄ 3̄
2
q

1
2

1
2

1
2 000 1

2
1
2 0 00 1

2 P5̄ 3̄
2
q S I* 5̄ 3̄

2
q D

IP* 5̄ 3̄
2
r

1
2

1
2

1
2 000 00 1

2
1
2

1
2

1
2 P5̄ 3̄

2
q S I* 5̄ 3̄

2
q D

IP* 5̄ 3̄
2
s

1
2

1
2

1
2 000 1

2
1
2

1
2

1
2

1
2 0 P5̄ 3̄

2
q S I* 5̄ 3̄

2
q D

532 (Y) Fe
g Fr2

e G(H)

IP* 532 1
2

1
2

1
2 000 000 000 P532 (I* 532)

IP* 5132 1
2

1
2

1
2 000 1

5 0 1
5

3
5 0 3

5 P5132 (I* 5132)
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linear combinations containing an even number of the
12 vectors from the original star.

b. Face-centered icosahedral lattices

An icosahedral F* lattice can be generated by a single
star of 30 wave vectors pointing to the midpoints along
the edges of an icosahedron (along the twofold axes).
Because the twofold axes are perpendicular to threefold
axes there exist many triplets among the 30 vectors of
the star that sum to zero. For this reason it is not pos-
sible to assign the phase function Fe

g a value of 1
2 on the

vectors of the star. Consequently an icosahedral F* lat-
tice has no icosahedral sublattice of index 2 and there-
fore there cannot be black and white space groups on
F* lattices where the two colors are indistinguishable.

c. Body-centered icosahedral lattices

An icosahedral I* lattice can be generated by two
concentric stars, of 12 vectors each, pointing to the ver-
tices of an icosahedron, with one star a factor t larger
than the other (t being the golden mean). On each star
we can independently set the value of the phase function
Fe

g to zero or 1
2 , because each star by itself is the same as

the single star that generates a P lattice, and any com-
bination of vectors that sum to zero contains an even
number of vectors from each star. The three nontrivial
solutions, setting the value of Fe

g to 1
2 on the inner star,

on the outer star, or on both, are scale-equivalent under
successive rescaling of the lattice by a factor of t and
therefore produce only one distinct solution. The color-
blind lattice is a P lattice generated either by the 12
vectors of the outer star, the 12 vectors of the inner star,
or the 12 vectors of a third star a factor t2 larger than
the inner star.

These results agree with those found by Niizeki
(1990a) for the black and white icosahedral lattices in
six-dimensional superspace. To generate the list of black
and white space-group types we take the solutions for
the gauge-equivalence classes in the uncolored case,
which were tabulated by Mermin (1992, Tables VIII and
IX), and use them for the phase functions Fg

e . As a
notation for the black and white space group we take
the corresponding notation for the uncolored space
group and add a subscript to the Bravais class symbol
which specifies the Bravais class of the color-blind sub-
lattice. In the case of the I* Bravais class some care is
needed when checking for scale equivalence, since scale
equivalence is also used to relate the three solutions for
Fe

g . When the point group is 5̄ 3̄ m we find that three
gauge-equivalence classes that were scale-equivalent in
the uncolored case are no longer scale-equivalent in the
black and white case and give rise to three distinct black
and white space-group types, which differ in their glide
planes. When the point group is 532 we find that the
gauge-equivalence classes that are scale-equivalent in
the uncolored case remain scale-equivalent in the black
and white case as well. These results are summarized in
Table VI.
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VI. LATTICE COLOR GROUPS OF STANDARD
TWO-DIMENSIONAL AXIAL LATTICES

An important step in enumerating the color space-
group types for lattices L in a given Bravais class is to
find the possible lattice color groups Ge that are compat-
ible with L . In this section we shall use a very simple
geometric approach, which will yield a partial answer to
this question, namely, the possible orders of lattice color
groups Ge that are compatible with L . We shall be look-
ing for the possible indices of invariant sublattices L0 of
L , which due to the isomorphism between L/L0 and Ge
determine the number of elements in Ge .

In the special case when all the colors belong to a
single indistinguishability class the lattice color group
Ge , which is Abelian, is also required to be transitive on
all the colors. One can easily show that under such cir-
cumstances the order of Ge is equal to the total number
of colors.11 Thus finding the possible indices of invariant
sublattices L0 of L also enables one to determine the
possible numbers n of colors in color fields with lattice L
in which all the components of the field are indistin-
guishable. In the previous section we fixed the number
of colors to n52 and looked for the possible lattices L
that could accommodate a two component color field in
which the components are indistinguishable. Here we fix
L and look for the possible numbers n of colors.

The geometric procedure that we use here is very
similar to the one used by Harker (1978b) to enumerate
‘‘colored lattices’’ in the periodic case. A different ap-
proach to this question, which involves the use of gener-
ating functions of Dirichlet series, is taken by Baake
(1997). Baake’s algebraic approach gives the possible in-
dices of invariant sublattices and also the number of dis-
tinct sublattices with a given index. We determine the
actual distinct sublattices of a given index either by solv-
ing the group compatibility conditions (21) on the phase
functions Fe

g(k), as we did in Sec. V in the case of black
and white groups, or equivalently, by considering the
distinct modular lattices L/L0 compatible with the re-
quired symmetry, as we shall do in Sec. VII when we
enumerate the pentagonal and decagonal color space-
group types.

We shall consider here the case of two-dimensional
N-fold lattices, with 2,N,46. N is necessarily even be-
cause any lattice contains the negative of its vectors.
Mermin, Rokhsar, and Wright (1987) have shown that
all such lattices are standard—they consist of all integral
linear combinations of an N-fold star of wave vectors,
separated by an angle of 2p/N . Consequently any in-
variant sublattice of such a standard N-fold lattice must
itself be a standard N-fold lattice.

Any arbitrary vector hPL belongs to an N-fold star
which generates a sublattice L0 of L . One can thus gen-
erate all the sublattices of L simply by letting h run

11A permutation group that is transitive on n colors clearly
contains at least n elements. One can easily show that if it
contains more than n elements it cannot be Abelian.



1204 R. Lifshitz: Theory of color symmetry
through all wave vectors in L . The index of the sublat-
tice may be calculated by taking the magnitude of the
determinant of the matrix, which gives the basis of L0 in
terms of the basis of L . If one requires the sublattice
also to be invariant under the mirrors that leave L in-
variant, then the vector h must be restricted to lie either
along one of the mirrors or exactly between two of
them.

The smallest point group to consider on an N-fold
lattice is G5n , generated by an n-fold rotation rn ,
where

n5H N N twice an even integer,

N

2
N twice an odd integer.

(44)

It is convenient12 to generate the N-fold lattice L with
the integrally independent subset of star vectors b1 ,
b2 , . . . ,bD , where

rnbj5H bj11 j51, . . . ,D21,

(
i51

D

kibi j5D .
(45)

The rank D of the lattice is given by the Euler totient
function D5f(N), which is defined as the number of
positive integers less than and relatively prime to N , and
is calculated by

D5F~N !5N)
i

pi21
pi

, (46)

where pi are the distinct prime factors of N . The inte-
gral coefficients ki in Eq. (45), giving rnbD in terms of
b1 , . . . ,bD , can easily be determined for any given lat-
tice.

With this choice of basis the vector h is represented by
a column vector HW , consisting of D arbitrary integers,
and the n-fold rotation rn is represented by the D3D
matrix

R5S 0 . . . 0 k1

1 k2

� A

1 kD

D . (47)

The basis of L0 is given by HW , RHW , . . . ,RD21HW , and
the index of L0 in L is simply

m5udet~HW RHW . . .RD21HW !u. (48)

The index m is therefore a function of the D indepen-
dent integers that determine HW and can have no other
form than that given by Eq. (48).

For any given standard N-fold lattice we determine
the rank D and the integers ki in Eq. (45). We then use
a simple MATHEMATICA program to generate the deter-

12For a justification of this choice of lattice-generating vectors
see, for example, footnote 8 in Rabson et al. (1991).
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minant in Eq. (48) and to calculate its possible values up
to a given cutoff. The results for sublattices, invariant
under the point group G5n , are summarized in Table
VII for N-fold lattices up to rank D58. In Table VIII
we give the restricted values of the indices m for sublat-
tices that are invariant under the full point group of L
up to rank D54.

VII. DECAGONAL AND PENTAGONAL COLOR SPACE
GROUPS IN TWO DIMENSIONS

To illustrate many of the ideas presented in this pa-
per, we conclude with an enumeration of the decagonal
and pentagonal color space-group types in two dimen-
sions, explicitly listing them for color fields with up to 25
colors. This example avoids some unnecessary complica-
tions owing to the fact that ordinary decagonal and pen-
tagonal space groups for uncolored crystals are all
symmorphic—in a suitably chosen gauge all the phase
functions are zero everywhere on the lattice.13

The lattice L , which in this example is the two-
dimensional tenfold lattice, contains a fivefold star of
vectors (shown in Fig. 6) of which four, labeled
b1 . . . b4 , can be taken as integrally independent lattice-
generating vectors. The lattice point group is 10mm ,
generated by the tenfold rotation r10 and either a mirror
of type m1 which leaves the fivefold star invariant or a
mirror of type m2 which takes the star into the fivefold
star containing the negatives of the lattice-generating
vectors.

We first determine the abstract structure of the modu-
lar lattices L/L0 and therefore also of lattice color
groups Ge , compatible with L . We then explicitly
specify the values of the distinct sets of phase functions
Fe

g(k) which satisfy the group compatibility conditions
(11). We then specify the actual lattice color groups Ge ,
which allows us to proceed to the actual enumeration of
color point groups and color space-group types.

A. Decagonal and pentagonal point groups
and their subgroups

When enumerating color space groups on the decago-
nal lattice, the point group G of the color field may be
taken as the full lattice point group 10mm or any of the
following subgroups: 10, 5m (in its two orientations with
respect to the lattice 5m1 and 51m), and 5. For each of
these choices of G we list in Table IX all the possible
subgroups H , the corresponding normal subgroup H0 (if
different from H), and the index q of H in G . These
values of q (1, 2, 4, 5, 10, and 20) determine the possible
numbers of indistinguishability classes of colors in a two-
dimensional decagonal or pentagonal color field. Also
listed in Table IX are the indistinguishability-class per-
mutations associated with the generators of G , which

13For more detail see Rokhsar, Wright, and Mermin (1988b).
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TABLE VII. Possible indices of invariant sublattices of standard two-dimensional N-fold lattices
(without mirror symmetry). The values of these indices are equal to the possible numbers of colors in
an N-fold symmetric color field whose components are all indistinguishable, or equivalently, to the
orders of lattice color groups Ge , compatible with an N-fold lattice. The sublattices are required to be
invariant only under the point group G5n and not under the full point group of the N-fold lattice,
which also contains mirror reflections. The indices are calculated by evaluating the determinant in

Eq. (48), letting the D integral components of the arbitrary vector HW run between properly chosen
values.

Lattice
order N

Point group
G

Possible indices of sublattices,
invariant under G5n

Rank 2

4 4 1,2,4,5,8,9,10,13,16,17,18,20,25,26,29,32,34,36,37, . . .
6 3,6 1,3,4,7,9,12,13,16,19,21,25,27,28,31,36,37,39,43, . . .

Rank 4

8 8 1,2,4,8,9,16,17,18,25,32,34,36,41,49,50,64,58,72, . . .
10 5,10 1,5,11,16,25,31,41,55,61,71,80,81,101,121,125,131, . . .
12 12 1,4,9,13,16,25,36,37,49,52,61,64,73,81,97,100,109, . . .

Rank 6

14 7,14 1,7,8,29,43,49,56,64,71,113,127,169,197,203,211,232, . . .
18 9,18 1,3,9,19,27,37,57,64,73,81,109,111,127,163,171,181, . . .

Rank 8

16 16 1,2,4,8,16,17,32,34,49,64,68,81,97,113,128,136,162, . . .
20 20 1,5,16,25,41,61,80,81,101,121,125,181,205,241,256, . . .
24 24 1,4,9,16,25,36,49,64,73,81,97,100,121,144,169,193, . . .
30 15,30 1,16,25,31,61,81,121,151,181,211,241,256,271,331, . . .
are uniquely determined by the subgroup H . The infor-
mation given in Table IX is illustrated graphically in
Fig. 7.

B. Decagonal modular lattices L/L0

For any choice of L0 , the modular lattice L/L0 may
still be generated by the same four wave vectors
b1 . . . b4 that generate L , but in general these vectors
may no longer be integrally independent modulo L0 . If
the first l vectors b1 . . . bl (1<l<4) cannot be ex-
pressed as integral linear combinations (modulo L0) of
each other and

bl115(
i51

l

hibi ~modulo L0! (49)

for some integral coefficients hi , then due to the fivefold
symmetry of L and L0 all other vectors in the fivefold
star may be expressed as integral linear combinations
(modulo L0) of the first l . The vectors b1 . . . bl can thus
be taken as a generating basis for the modular lattice
L/L0 .

If m is the smallest integer such that mb1 is in L0 ,
then fivefold symmetry requires m to satisfy the same
condition for the other generators of L/L0 . Any vector
in L/L0 can therefore be expressed as an integral linear
combination of the generators b1 . . . bl with coefficients
., Vol. 69, No. 4, October 1997
between 0 and m21. The modular lattice L/L0 is a
rank-l lattice in which arithmetic is performed modulo
m .

If the generators b1 . . . bl are integrally independent
modulo L0 (i.e., ( i51

l c ibiPL0 implies that all
ci50 mod m) then as an Abelian group the modular
lattice is isomorphic to (Zm) l—the direct product of l
cyclic groups, each of order m . The modular lattice
L/L0 contains ml vectors or, equivalently, the index of
L0 in L is ml. Determining the lattice color group Ge to
within isomorphism amounts to finding the possible
combinations of m and l that are compatible with five-
fold symmetry, noting the subset of those that are also
compatible with having mirror symmetry.

If the generators b1 . . . bl are not integrally indepen-
dent modulo L0 then the modular lattice is not isomor-
phic to (Zm) l. This happens when the sublattice L0 is
restricted to lie along particular orientations, the first
example occurring when L0 is generated by a vector of
the form h5pb11pb22pb32pb4 and its images under
fivefold rotations. In this case one can show that the
modular lattice is isomorphic to Z5p3Zp3Zp3Zp which,
for the smallest value of p=2, requires 80 colors in each
indistinguishability class. We shall not pursue these spe-
cial cases any further because they do not add any addi-
tional insight into the enumeration process and because
they are not relevant for our classification of color
groups with up to 25 colors.



1206 R. Lifshitz: Theory of color symmetry
The modular lattice L/L0 is left invariant under the
point group G of the color field. It therefore carries an
l-dimensional representation of G over Zm , i.e., every
element g of G is represented by an l3l matrix of inte-
gers modulo m given by the effect of g on the generators
b1 . . . bl . The fivefold rotation r5 takes each generator
bi into bi11 if i,l , and takes bl into the linear combina-
tion given in Eq. (49). It is therefore represented on the
modular lattice by an l3l integral matrix Rl (whose co-
efficients may be taken modulo m):

l51: R15~h1!,

l52: R25S 0 h1

1 h2
D ,

l53: R35S 0 0 h1

1 0 h2

0 1 h3

D ,

TABLE VIII. Possible indices of invariant sublattices of stan-
dard two-dimensional N-fold lattices (with mirror symmetry).
The values of these indices are equal to the possible numbers
of colors in an N-fold symmetric color field whose components
are all indistinguishable, or equivalently, to the orders of lat-
tice color groups Ge , compatible with an N-fold lattice. The
sublattices are required to be invariant under the full point
group of the N-fold lattice including its mirror reflections. The
indices are calculated by evaluating the determinant in Eq.

(48), restricting HW to lie either along or between mirror lines.
If N is twice the power of a single prime, then two sets of
indices are given, corresponding to sublattices generated by
N-fold stars oriented along or between the mirror lines of L .
The two sets are related by a common factor—the index of the
largest sublattice generated by a star oriented between the
mirror lines. If N is not twice the power of a single prime then
L itself may be generated by a star oriented between the mir-
ror lines, so there is no distinction between the two orienta-
tions.

Lattice
order N

Point
group

G
Possible indices of sublattices,

invariant under G

Rank 2

4 4mm Hh251,4,9,16,25,36,49, . . .

2h252,8,18,32,50,72,98, . . .

6 3m ,6mm H h251,4,9,16,25,36,49, . . .

3h253,12,27,48,75,108,147, . . .

Rank 4

8 8mm H~2h22k2!251,4,16,49,64,81,196, . . .

2~2h22k2!252,8,32,98,128,162, . . .

10 5m ,10mm H~h22hk2k2!251,16,25,81,121, . . .

5~h22hk2k2!255,80,125,405, . . .
12 12mm (3h22k2)251,4,9,16,36,64,81,121, . . .
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l54: R45S 0 0 0 21

1 0 0 21

0 1 0 21

0 0 1 21
D . (50)

For the case l54 the matrix R4 is given by the repre-
sentation of the fivefold rotation on the full lattice L .
This means that for any m there always exists a modular
lattice isomorphic to (Zm)4. This is the modular lattice
one gets by taking the sublattice L0 to be the one gen-
erated by mbi (i51, . . . ,4). Such sublattices L0 are
compatible with having mirror symmetry in the point
group of the color field. If l,4 then one needs to find
the integral coefficients hi for which the matrix Rl is
indeed a representation of a fivefold rotation.

The sum of an arbitrary vector in the full lattice L
with its four successive images under a fivefold rotation
must be zero. This requirement still holds when vector
arithmetic is performed modulo m . Thus, for the matrix
Rl to represent a fivefold rotation on L/L0 , it must sat-
isfy

Il1Rl1Rl
21Rl

31Rl
450 modulo m , (51)

where Il is an l3l unit matrix. Note that if condition
(51) is satisfied then Rl

55Il is satisfied as well, but the
converse is not true. Condition (51) is a necessary and
sufficient requirement for Rl to represent a fivefold ro-
tation on L/L0 .

Because L0 contains the negative of each of its vec-
tors, if it is invariant under a fivefold rotation then it is
also invariant under a tenfold rotation. It then follows
that if it is invariant under any of the ten mirrors that
leave L invariant then it is invariant under all of them.
Thus to check whether for a given set of coefficients hi
the modular lattice L/L0 is compatible with having mir-
ror symmetry in the point group it is sufficient to check
for a single mirror. We choose to take the mirror that
interchanges the two vectors b1 and bl11 . If the sublat-
tice L0 is invariant under this mirror then its represen-
tation on L/L0 , given by one of the l3l matrices Ml ,

FIG. 6. Generating vectors for the two-dimensional decagonal
lattice. There are five conjugate mirrors of type m1 which take
vectors of the fivefold star into others in the same star, and five
conjugate mirrors of type m2 which take vectors of the fivefold
star into the negatives of such vectors.
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TABLE IX. Association of rotations with indistinguishability-class permutations in the decagonal and pentagonal point groups.
For each of the decagonal and pentagonal point groups G , columns 2 and 3 list all subgroups H along with the normal subgroup
H0 if different from H . Column 4 lists a point group isomorphic to the quotient group G/H0 , which is isomorphic to the group of
indistinguishability-class permutations induced by the cosets of H in G . Column 5 lists the number q of indistinguishability classes.
Columns 6 and 7 give the actual permutations d and m associated with the generators of G—a tenfold or fivefold rotation and a
mirror, respectively. Column 8 refers to the number of the star in Fig. 7 with the corresponding color point-group symmetry.

G H H0 G/H0 q d m #

10mm 10mm - 1 1 e e 1
10 - m 2 e (C1C2) 2
5m - 2 2 (C1C2) e 3
5 - 2mm 4 (C1C3)(C2C4) (C1C4)(C2C3) 4

2mm 2 5m 5 (C1C2C3C4C5) (C2C5)(C3C4) 5
2 - 5m 10 (C1C3 . . . C9)(C2C4 . . . C10) (C1C10)(C2C9) . . . (C5C6) 6
m 1 10mm 10 (C1C2 . . . C10) (C2C10)(C3C9)(C4C8)(C5C7) 7
1 - 10mm 20 (C1C3 . . . C19)(C2C4 . . . C20) (C1C20)(C2C19) . . . (C10C11) 8

10 10 - 1 1 e 1
5 - 2 2 (C1C2) 3
2 - 5 5 (C1C2C3C4C5) 5
1 - 10 10 (C1C2 . . . C10) 7

5m 5m - 1 1 e e 9
5 - m 2 e (C1C2) 10
m 1 5m 5 (C1C2C3C4C5) (C2C5)(C3C4) 11
1 - 5m 10 (C1C3 . . . C9)(C2C4 . . . C10) (C1C10)(C2C9) . . . (C5C6) 12

5 5 - 1 1 e 9
1 - 5 5 (C1C2C3C4C5) 11

FIG. 7. Association of rotations with indistinguishability-class permutations in the decagonal and pentagonal point groups. The
group-subgroup pairs G(H) are listed beneath the figures. The figures are to be used as an aid in determining the
indistinguishability-class permutations associated with the different rotations of the point group as summarized in Table IX.
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
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l51: M15~h1!,

l52: M25S h1 0

h2 1 D ,

l53: M35S h1 0 0

h2 0 1

h3 1 0
D , (52)

must satisfy the requirement that

Ml
25Il modulo m . (53)

We use a simple MATHEMATICA program to find, for
any combination of m and l , the distinct integral coeffi-
cients hi satisfying condition (51) and for each set check
whether it satisfies condition (53). Each distinct set of
coefficients corresponds to a different sublattice L0 for
which the modular lattice is isomorphic to (Zm) l, or
equivalently, as we show in the next section, to a distinct
solution of the group compatibility conditions (21) for a
lattice color group isomorphic to (Zm) l.

C. Values of the phase functions Fe
g(k)

Because Ge is isomorphic to (Zm) l any element
gPGe satisfies gm5e , which through the group compat-
ibility condition (21) requires that ;kPL : mFe

g(k)[0,
or

;kPL : Fe
g~k![0,

1
m

,
2
m

•••
m21

m
. (54)

We choose a canonical set of generators g1 . . . g l for
Ge , as shown in Sec. IV.C.4, for which the correspond-
ing phase functions satisfy

Fe
g i~bj![

1
m

d ij, i ,j51 . . . l . (55)

The values of these l generating phase functions on any
other vector k5( j51

l njbj in the modular lattice are given
by

Fe
g i~k![(

j51

l

njFe
g i~bj![

1
m (

j51

l

njd ij[
ni

m
,

i51 . . . l . (56)

Thus the values of the phase functions for the generators
of Ge on the remaining generating vectors of the full
lattice, bl11 . . . b4 , are simply given by the representa-
tion of these vectors on the modular lattice in terms of
the basis b1 . . . bl . These are determined by successive
applications of the rotation matrix Rl on the vector bl .

Tables X–XII list for l51,2,3, the first values of m for
which lattice color groups and modular lattices, isomor-
phic to (Zm) l, are compatible with the tenfold lattice L .
In each case, the distinct modular lattices isomorphic to
(Zm) l are listed by giving the coefficients of the vectors
b1 . . . b5 in terms of the basis of the modular lattice
b1 . . . bl . From Eq. (56) this is equivalent to listing the
values of the generating phase functions on the same
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
wave vectors, giving the distinct solutions to the group
compatibility conditions (21). The tables also specify
whether the maximal point group of color fields with
such lattice color groups is 10mm , containing the ten
mirrors, or just 10. In the latter case the distinct modular
lattices are arranged in enantiomorphic pairs in which
one modular lattice is the mirror image of the other.

D. Decagonal lattice color groups

The next step is to find the actual lattice color groups
that are isomorphic to (Zm) l and satisfy the additional
requirement, of Sec. IV.C.5, that the isomorphism
L/L0.Ge be invariant under the color point group. A
necessary condition for this invariance to hold is that the
organization of color permutations into orbits of the full
permutation group G be the same as the organization of
the elements of the modular lattice into orbits of the
point group G . Since the lattice generators b1 . . . b4 as
well as b5 are related by successive applications of the
fivefold rotation r5 , they are in a single orbit of any
decagonal or pentagonal point group. The generators
g1 . . . g l of the lattice color group Ge must therefore be
conjugate in G, i.e., they must have the same cycle struc-
ture. Furthermore, the permutation g1

h1 . . . g l
hl (corre-

sponding to the vector bl115( i51
l hibi in the isomor-

phism L/L0.Ge) must also have the same cycle
structure. Because, as one may directly verify, the coef-
ficients hi are all nonzero modulo m , this puts a serious
constraint on the possible lattice color groups isomor-
phic to (Zm) l that are realizable on the decagonal lattice.
Each g i (i51 . . . l) must be a product of an equal num-
ber of m-cycles. The permutation g1

h1 . . . g l
hl will neces-

sarily contain a greater number of m-cycles unless the g i
all permute the same colors. This leaves only a single
possibility for a decagonal lattice color group, isomor-
phic to (Zm) l, described as follows.

There are q indistinguishability classes with ml colors
each. One can arrange the colors in each class in an
imaginary l-dimensional cube of side m , denoting each
color in the jth indistinguishability class by l upper indi-
ces, each ranging from 1 to m , Cj

i1 . . . i l. Each generator
g1 . . . g l acts on a single one of the upper indices, en-
suring that they all commute. This possibility satisfies
the additional requirement that any product of the pow-
ers of the generators have the same structure having
qml21 m-cycles. We label the colors such that the first
generator of Ge , for example, is given by

g15 )
j51 . . . q

i251 . . . m
A
i l51 . . . m

~Cj
1,i2 , . . . ,i lCj

2,i2 , . . . ,i l . . . Cj
m ,i2 , . . . ,i l!,

(57)

with the obvious analogous forms for the rest of the
generators.

Thus, for a given combination of the parameters m , l ,
and q , there is only a single lattice color group Ge . The
structure of the only possible lattice color groups en-
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TABLE X. Two-dimensional decagonal lattice color groups isomorphic to Zm . The distinct modular lattices isomorphic to Zm are
listed by giving the coefficients of the vectors b1 . . . b5 in terms of the generator b1 of the modular lattice. From Eq. (56) this is
equivalent to listing the values of the generating phase function Fe

g1 on the same wave vectors, giving the distinct solutions to the
group compatibility conditions (21). The right-hand column specifies whether the maximal point group of color fields with such
lattice color groups is 10mm or just 10. In the latter case the distinct modular lattices are arranged in enantiomorphic pairs in
which one modular lattice is the mirror image of the other.

Ge.Zm (l51)
m mFe

g1(b1) mFe
g1(b2) mFe

g1(b3) mFe
g1~b4! mFe

g1(b5) G

5 1 1 1 1 1 10mm

11 1 3 9 5 4 10
1 4 5 9 3 10

1 5 3 4 9 10
1 9 4 3 5 10

31 1 2 4 8 16 10
1 16 8 4 2 10

1 4 16 2 8 10
1 8 2 16 4 10

41 1 10 18 16 37 10
1 37 16 18 10 10

1 16 10 37 18 10
1 18 37 10 16 10

55 1 16 36 26 31 10
1 31 26 36 16 10

1 26 16 31 36 10
1 36 31 16 26 10

61 1 9 20 58 34 10
1 34 58 20 9 10

1 20 34 9 58 10
1 58 9 34 20 10

71 1 5 25 54 57 10
1 57 54 25 5 10

1 25 57 5 54 10
1 54 5 57 25 10
sures that all decagonal and pentagonal color space
groups are simple, as defined in Sec. IV.B.2. This situa-
tion is analogous to the example given in Sec. IV.C.6 in
the case of the triangular lattice.

E. Decagonal and pentagonal color point groups

We are now at a position where we have all the re-
quired information to construct the decagonal and pen-
tagonal color point groups. Given the number n of col-
ors in the color field we first consider all possible
factorizations of n into q indistinguishability classes,
each containing ml colors. The possible values of q are
taken from Table IX. If l51, 2, or 3 then the possible
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
values of m are taken from the corresponding Tables
X–XII. If l54 then m can take any integer value. For
each combination of the parameters q , m , and l we con-
sider all the combinations of G and H from Table IX for
which q is the index of H in G , excluding cases in which
G contains any mirrors if the values of m and l are
incompatible with mirror symmetry.

The generators of the color point group are
(e ,g1), . . . ,(e ,g l), (r ,d), and possibly also (m ,m),
where r is either a tenfold rotation r10 (if G is 10mm or
10) or a fivefold rotation r5 (if G is 5m1, 51m , or 5), and
m is either a mirror of type m1 (if G is 10mm or 5m1)
or type m2 (if G is 51m), as defined in Fig. 6. The color
permutations g i , generating the lattice color group Ge ,
are given by Eq. (57) for each possible lattice color
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TABLE XI. Two-dimensional decagonal lattice color groups isomorphic to Zm3Zm . The distinct modular lattices isomorphic to
Zm3Zm are listed by giving the coefficients of the vectors b1 . . . b5 in terms of the basis b1 ,b2 of the modular lattice. From Eq. (56)
this is equivalent to listing the values of the generating phase functions on the same wave vectors, giving the distinct solutions to
the group compatibility conditions (21). The right-hand column specifies whether the maximal point group of color fields with such
lattice color groups is 10mm or just 10. In the latter case the distinct modular lattices are arranged in enantiomorphic pairs in
which one modular lattice is the mirror image of the other.

Ge.Zm3Zm (l52)
m mFe

g i(b1) mFe
g i(b2) mFe

g i(b3) mFe
g i(b4) mFe

g i(b5) G

5 S10D S01D S42D S33D S24D 10mm

11 S 1
0 D S 0

1 D S 10
3 D S 8

8 D S 3
10D 10mm

S 1
0 D S 0

1 D S 10
7 D S 4

4 D S 7
10D 10mm

S10D S01D S29D S76D S16D 10

S10D S01D S61D S67D S92D 10

S10D S01D S78D S15D S28D 10

S10D S01D S82D S51D S87D 10

19 S10D S01D S18
4 D S 15

15D S 4
18D 10mm

S10D S01D S18
14D S 5

5 D S 14
18D 10mm

29 S10D S01D S28
5 D S 24

24D S 5
28D 10mm

S10D S01D S28
23D S 6

6 D S 23
28D 10mm

31 S10D S01D S30
12D S 19

19D S 12
30D 10mm

S10D S01D S30
18D S 13

13D S 18
30D 10mm

S10D S01D S15
10D S 26

22D S 20
29D 10

S 1
0 D S 0

1 D S 29
20D S 22

26D S 10
15D 10

S 1
0 D S 0

1 D S 23
6 D S 14

28D S 24
27D 10

S 1
0 D S 0

1 D S 27
24D S 28

14D S 6
23D 10
group listed in Tables X–XII. The coset dGe , containing
all the color permutations that are paired in the color
point group with r , is uniquely determined. Each of its
elements must permute the indistinguishability classes
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
according to the permutation of the left cosets of H in
G , which is induced by r , and then permute the colors
within the classes so as to induce the automorphism of
Ge , required by the invariance of the isomorphism
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TABLE XII. Two-dimensional decagonal lattice color groups isomorphic to Zm3Zm3Zm . The distinct modular lattices isomor-
phic to Zm3Zm3Zm are listed by giving the coefficients of the vectors b1 . . . b5 in terms of the basis b1 ,b2 ,b3 of the modular
lattice. From Eq. (56) this is equivalent to listing the values of the generating phase functions on the same wave vectors, giving the
distinct solutions to the group compatibility conditions (21). The right-hand column specifies whether the maximal point group of
color fields with such lattice color groups is 10mm or just 10. In the latter case the distinct modular lattices are arranged in
enantiomorphic pairs in which one modular lattice is the mirror image of the other.

Ge.Zm3Zm3Zm (l53)
m mFe

g i(b1) mFe
g i(b2) mFe

g i(b3) mFe
g i(b4) mFe

g i(b5) G

5 S1
0
0
D S0

1
0
D S0

0
1
D S1

2
3
D S3

2
1
D 10mm

11 S1
0
0
D S0

1
0
D S0

0
1
D S3

1
6
D S7

9
4
D 10

S1
0
0
D S0

1
0
D S0

0
1
D S4

9
7
D S6

1
3
D 10

S1
0
0
D S0

1
0
D S0

0
1
D S5

8
1
D S5

2
9
D 10

S1
0
0
D S0

1
0
D S0

0
1
D S9

2
5
D S1

8
5
D 10

31 S1
0
0
D S0

1
0
D S0

0
1
D S 2

6
14
D S 28

24
16
D 10

S 1
0
0
D S 0

1
0
D S 0

0
1
D S 16

24
28
D S 14

6
2
D 10

S 1
0
0
D S 0

1
0
D S 0

0
1
D S 4

20
22
D S 26

10
8
D 10

S 1
0
0
D S 0

1
0
D S 0

0
1
D S 8

10
26
D S 22

20
4
D 10
Ge.L/L0 under (r ,d). The coset of Ge containing m is
determined in a similar way. The freedom to choose the
actual coset representatives d and m will be utilized in
the next section. This completely specifies all the pos-
sible color point groups, except for the special cases
when the lattice color group is not isomorphic to (Zm) l.
We explicitly list, in Table XIII, all decagonal and pen-
tagonal color point groups for color fields with up to 25
colors. Each color point group is given a sequential
number but may also be uniquely specified by the sym-
bol (G ,H ,H0 ,GeuGe). In this notation, the color point
groups of the tilings of Figs. 3 and 4 are
(10mm,10mm,10mm,5m1uZ5) and (10mm,2mm,2,2uZ1),
respectively.

F. Decagonal and pentagonal color space-group types

In order to complete the enumeration of all color
space-group types we need to find for every color point
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
group the distinct sets of phase functions that satisfy the
group compatibility conditions (11). As always, we
specify each given set by listing the values of the phase
functions corresponding to the generators of the color
point group on the generating vectors of the lattice
b1 . . . b4 .

The values of the gauge-invariant phase functions Fe
g i

(i51 . . . l) on the lattice-generating vectors are already
given in Tables X–XII for l51, 2, or 3, and by Eq. (55)
for l54. We need only specify the phase function Fr

d

and possibly also Fm
m . We show below that both these

phase functions can be taken to be zero everywhere on
the lattice.

We choose to consider enantiomorphic pairs of gauge-
equivalence classes of phase functions as distinct space-
group types. Thus the entries of Tables X–XII along
with Eq. (55) for the case l54 give not only the gauge-
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TABLE XIII. Two-dimensional decagonal and pentagonal color point groups for color fields with up to 25 colors. Color point
groups are arranged according to the number n of colors. In each case the groups are listed in separate sections corresponding to
the decomposition of n into a product of the number q of indistinguishability classes and the number ml of colors in each class.
The left-hand side of the table lists the point groups G , H , H0 , and Ge along with two point groups isomorphic to the quotient
groups G/H0 and G/Ge . A point group is not listed if it is equal to the one on its left. The right-hand side of the table explicitly
lists the color point groups by giving their generators. These are the generators (e ,g i), expressed generally in Eq. (57), along with
(r ,d) and possibly also (m ,m). Since all decagonal and pentagonal color point groups are simple, the color permutations are all
given as a product of a barred permutation, which permutes whole indistinguishability classes of colors (operating on the lower
indices of the colors Cj

k), and an unbarred permutation, which simultaneously permutes colors within each class (operating on the
upper indices of the colors Cj

k). In most cases the permutations d and m are given explicitly; in some cases, to save space, they are
given only in terms of their effect on the generators g i of the lattice color group. In the cases with Ge.Z11 the integer h1 refers to
the value of 11Fe

g(b2) given in Table X. As notation for the color point groups we use either (1) the sequential number listed in
the leftmost column (the additional number in parentheses refers to the numbering of color space-group types), or (2) the symbol
(G ,H ,H0 ,GeuGe). For example, the color point group (or color space-group type) number 10.b .1 is denoted by
(10mm ,10,10,5uZ5).

2 colors
Ge.Z1 , q52 d̄ 5m̄ 5(C1C)

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

2.1 10mm 10 - - m m (r10 ,e), (m1 ,m̄ )
2.2 10mm 51m - - 2 2 (r10 , d̄ ), (m1 ,m̄ )
2.3 10mm 5m1 - - 2 2 (r10 , d̄ ), (m1 ,e)
2.4 10 5 - - 2 2 (r10 , d̄ )
2.5 5m1 5 - - m m (r5 ,e), (m1 ,m̄ )
2.6 51m 5 - - m m (r5 ,e), (m2 ,m̄ )

4 colors
Ge.Z1 , q54 d̄ 5(C1C3)(C2C4), m̄ 5(C1C4)(C2C3)

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

4.1 10mm 5 - - 2mm 2mm (r10 , d̄ ), (m1 ,m̄ )

5 colors
Ge.Z1 , q55 d̄ 5(C1C2C3C4C5), m̄ 5(C2C5)(C3C4)

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

5.a .1 10mm 2mm 2 - 5m 5m (r10 , d̄ ), (m1 ,m̄ )
5.a .2 10 2 2 - 5 5 (r10 , d̄ )
5.a .3 5m1 1m1 1 - 5m 5m (r5 , d̄ ), (m1 ,m̄ )
5.a .4 51m 11m 1 - 5m 5m (r5 , d̄ ), (m2 ,m̄ )
5.a .5 5 1 1 - 5 5 (r5 , d̄ )

Ge.Z5 , q51 g5(C1C2C3C4C5), d5m5(C2C5)(C3C4)
No. G H H0 Ge G/H0 G/Ge Generators of the color point group

5.b .1 10mm 10mm - 5m1 1 2 (e ,g), (r10 ,d), (m1 ,e)
5.b .2 10 10 - 5 1 2 (e ,g), (r10 ,d)
5.b .3 5m1 5m1 - 5m1 1 1 (e ,g), (r5 ,e), (m1 ,e)
5.b .4 51m 51m - 5 1 m (e ,g), (r5 ,e), (m2 ,m)
5.b .5 5 5 - 5 1 1 (e ,g), (r5 ,e)
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
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TABLE XIII. (Continued).

10 colors
Ge.Z1 , q510 d̄ 15(C1C3 . . . C9)(C2C4 . . . C10), d̄ 25(C1C2 . . . C10)

m̄ 15(C1C10) . . . (C5C6), m̄ 25(C2C10)(C3C9)(C4C8)(C5C7)
No. G H H0 Ge G/H0 G/Ge Generators of the color point group

10.a .1 10mm 2 2 - 5m 5m (r10 , d̄ 1), (m1 ,m̄ 1)
10.a .2 10mm 11m 1 - 10mm 10mm (r10 , d̄ 2), (m1 ,m̄ 1)
10.a .3 10mm 1m1 1 - 10mm 10mm (r10 , d̄ 2), (m1 ,m̄ 2)
10.a .4 10 1 - - 10 10 (r10 , d̄ 2)
10.a .5 5m1 1 - - 5m 5m (r5 , d̄ 1), (m1 ,m̄ 1)
10.a .6 51m 1 - - 5m 5m (r5 , d̄ 1), (m2 ,m̄ 1)

Ge.Z5 , q52

g5 P
j51,2

~Cj
1Cj

2Cj
3Cj

4Cj
5!, d5m5 P

j51,2
~Cj

2Cj
5!~Cj

3Cj
4!

d̄ 5m̄ 5 P
i51, . . . ,5

~C1
i C2

i !

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

10.b .1 10mm 10 - 5 m 2mm (e ,g), (r10 ,d), (m1 ,m̄ )
10.b .2 10mm 51m - 5 2 2 (e ,g), (r10 ,dd̄ ), (m1 ,m̄ )
10.b .3 10mm 5m1 - 5 2 2 (e ,g), (r10 ,dd̄ ), (m1 ,e)
10.b .4 10 5 - - 2 2 (e ,g), (r10 ,dd̄ )
10.b .5 5m1 5 - - m m (e ,g), (r5 ,e), (m1 ,m̄ )
10.b .6 51m 5 - - m m (e ,g), (r5 ,e), (m2 ,mm̄ )

11 colors
Ge.Z11 , q51 g5(C1C2 . . . C11), d10 :g→g2h1

3
, d55d10

2 :g→gh1

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

11.1(1–4) 10 10 - 1 1 10 (e ,g), (10,d10)
11.2(1–4) 5 5 - 1 1 5 (e ,g), (5,d5)

16 colors

g15 P
i2 ,i3 ,i451,2

~C1,i2 ,i3 ,i4C2,i2 ,i3 ,i4!

g25 P
i1 ,i3 ,i451,2

~Ci1,1,i3 ,i4Ci1,2,i3 ,i4!

g35 P
i1 ,i2 ,i451,2

~Ci1 ,i2,1,i4Ci1,i2,2,i4!

g45 P
i1 ,i2 ,i351,2

~Ci1 ,i2 ,i3,1Ci1 ,i2 ,i3,2!

Ge . (Z2)4, q 5 1 d5 :g1→g2→g3→g4→g1g2g3g4→g1 , d105d5
3

m :g1→g4→g1 ;g2→g3→g2

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

16.1 10mm 10mm - 2 1 5m (e ,g1), (e ,g2), (e ,g3), (e ,g4), (r10 ,d10), (m1 ,m)
16.2 10 10 - 2 1 5 (e ,g1), (e ,g2), (e ,g3), (e ,g4), (r10 ,d10)
16.3 5m1 5m1 - 1 1 5m (e ,g1), (e ,g2), (e ,g3), (e ,g4), (r5 ,d5), (m1 ,m)
16.4 51m 51m - 1 1 5m (e ,g1), (e ,g2), (e ,g3), (e ,g4), (r5 ,d5), (m2 ,m)
16.5 5 5 - 1 1 5 (e ,g1), (e ,g2), (e ,g3), (e ,g4), (r5 ,d5)
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
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TABLE XIII. (Continued).

20 colors
Ge.Z1 , q520 d̄ 5(C1C3 . . . C19)(C2C4 . . . C20), m̄ 5(C1C20) . . . (C10C11)

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

20.a .1 10mm 1 - - 10mm 10mm (r10 , d̄ ), (m1 ,m̄ )

Ge.Z5 , q54 g5 P
j51, . . . ,4

~Cj
1Cj

2Cj
3Cj

4Cj
5!, d5 P

j51, . . . ,4
~Cj

2Cj
5!~Cj

3Cj
4!

d̄ 5 P
i51, . . . ,5

~C1
i C3

i !~C2
i C4

i !, m̄ 5 P
i51, . . . ,5

~C1
i C4

i !~C2
i C3

i !

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

20.b .1 10mm 5 - - 2mm 2mm (e ,g), (r10 ,dd̄ ), (m1 ,m̄ )

22 colors
Ge.Z11 , q52 g5 P

j51,2
~Cj

1Cj
2 . . . Cj

11!, d :g→g2h1
3

d̄ 5 P
i51, . . . ,11

~C1
i C2

i !

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

22.1(1 –4) 10 5 - 1 2 10 (e ,g), (10,dd̄ )

25 colors
Ge.Z5 , q55 g5 P

j51, . . . ,5
~Cj

1Cj
2Cj

3Cj
4Cj

5!, d5m5 P
j51, . . . ,5

~Cj
2Cj

5!~Cj
3Cj

4!

d̄ 5 P
i51, . . . ,5

~C1
i C2

i C3
i C4

i C5
i !, m̄ 5 P

i51, . . . ,5
~C2

i C5
i !~C3

i C4
i !

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

25.a .1 10mm 2mm 2 1 5m 10mm (e ,g), (r10 ,dd̄ ), (m1 ,m̄ )
25.a .2 10 2 2 1 5 10 (e ,g), (r10 ,dd̄ )
25.a .3 5m1 1m1 1 - 5m 5m (e ,g), (r5 , d̄ ), (m1 ,m̄ )
25.a .4 51m 11m 1 - 5m 5m (e ,g), (r5 , d̄ ), (m2 ,mm̄ )
25.a .5 5 1 1 - 5 5 (e ,g), (r5 , d̄ )

Ge.(Z5)2, q51 g15 P
i251, . . . ,5

~C1,i2C2,i2 . . . C5,i2!, g25 P
i151, . . . ,5

~Ci1,1Ci1,2 . . . Ci1,5!

d10 :g1→g1
2g2

2→g2→g1
3g2, d55d10

2 :g1→g2→g1
4g2

2

m1 :g1→g2→g1 , m2 :g1→g2
4; g2→g1

4

No. G H H0 Ge G/H0 G/Ge Generators of the color point group

25.b .1 10mm 10mm - 1 1 10mm (e ,g1), (e ,g2), (r10 ,d10), (m1 ,m1)
25.b .2 10 10 - 1 1 10 (e ,g1), (e ,g2), (r10 ,d10)
25.b .3 5m1 5m1 - 1 1 5m (e ,g1), (e ,g2), (r5 ,d5), (m1 ,m1)
25.b .4 51m 51m - 1 1 5m (e ,g1), (e ,g2), (r5 ,d5), (m2 ,m2)
25.b .5 5 5 - 1 1 5 (e ,g1), (e ,g2), (r5 ,d5)
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
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equivalence classes but also the scale-equivalence
classes and therefore the color space-group types them-
selves. Combined with Table XIII they provide an ex-
plicit listing of all decagonal and pentagonal color space-
group types for color fields with up to 25 colors.

1. Making F r
d vanish everywhere on the lattice

We can make the phases Fr
d(bi)[0 (i51 . . . 4) and

therefore the phase function Fr
d zero everywhere on the

lattice with a gauge transformation (17) given by the
gauge function14

x~bi!5
1
n

Fr
d(~12rn21!•••~12r2!bi), i51 . . . 4,

(58)

where n510 or 5 depending on whether r is the tenfold
rotation r10 or the fivefold rotation r5 , and where an
operator (12g) applied to a vector k is simply k2gk.
Using the identity15

n5~12rn21!~12rn22!•••~12r ! (59)

we establish that the gauge transformation determined
by Eq. (58) changes Fr

d(bi) by

DFr
d~bi![x~rbi2bi![2x(~12r !bi)[2Fr

d~bi!,

i51 . . . 4, (60)

thereby setting the phase function Fr
d to zero every-

where on the lattice.

2. Choosing d and m to make Fm
m vanish everywhere

on the lattice

If a mirror m is among the generators of the point
group G then one may verify that within the coset of Ge ,
paired with m in the color point group, there always
exists at least one color permutation m satisfying
m25e . We pick (m ,m) as a generator for the color point
group. We may similarly pick the other generator (r ,d)
such that the color permutation d5m , paired with the
mirror r5m , also satisfies (d5m)25e (here d55d , or d2

depending on whether r5r5 , or r10). With this choice of
color permutations for the generators of the color point
group the following relations hold among the genera-
tors:

~m ,m!25~e ,e! (61)

and

~r5 ,d5!~m ,m!~r5 ,d5!5~m ,m!. (62)

Since we are in a gauge with Fr5

d5(bi)[0, the generat-

ing relation (62) gives via successive applications of the
group compatibility condition (11) the condition that

14This is the same gauge function used in the uncolored case
by Rabson et al. (1991, p. 708).

15One may use the relation rn5e51 to verify directly that
this identity holds for the special cases n55, 10 or see the
general proof given by Rabson et al. (1991, p. 708).
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Fm
m (bi)[Fm

m (b1), i52 . . . 5. Because the sum of the five
vectors b1 . . . b5 is zero, linearity of the phase function
requires that

5Fm
m ~b1![0. (63)

If the point group G is 10mm or 5m1, then m is of
type m1 , leaving the vector b1 invariant, and one gets
through the generating relation (61) the additional re-
quirement that

2Fm
m ~b1![0. (64)

The two requirements, given by Eqs. (63) and (64), are
satisfied only if Fm

m (bi)[0 for i51 . . . 5, establishing
that Fm

m vanishes everywhere on the lattice.
If the point group G is 51m then m is of type m2 ,

taking the vector b1 to 2b1 , and one has only the re-
quirement of Eq. (63) that Fm

m (bi)[j/5 for some integer
j between 0 and 4. In this case, consider the additional
gauge function x̄ (bi)[1/5. The gauge transformation
determined by such a gauge function changes Fm

m (b1) by

DFm
m ~b1![x̄ ~mb12b1![x̄ ~22b1![22/5. (65)

Since 2 and 5 are both prime, repeated applications of
the gauge transformation (65) can change the phases
Fm

m (bi) by an arbitrary multiple of 1/5 setting Fm
m to

zero everywhere on the lattice. Note that the gauge
transformation (65) does not alter the value of Fr

d(bi)
[0, r being r5 in this case, because

Dfr
d~bi![x̄ ~bi112bi![0, i51 . . . 4. (66)
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APPENDIX: INDISTINGUISHABILITY
OF QUASIPERIODIC MULTICOMPONENT FIELDS

1. Quasiperiodic multicomponent fields

Let us consider the more general case of a multicom-
ponent quasiperiodic field cJ(r) whose components
ca(r) could specify a tensor field, as in magnetically or-
dered solids or liquid crystals, or a number of fields un-
related to spatial orientation, such as the components in
a Potts model or—the case on which we focus in this
paper—the fields of different colors in a quasiperiodic
colored crystal. By ‘‘quasiperiodic’’ we mean that the
Fourier expansion of the multicomponent field

cJ~r!5 (
kPL

cJ~k!eik•r (A1)

is well defined and requires at most a countable infinity
of plane waves. The lattice L consists of all integral lin-
ear combinations of wave vectors k at which at least one
component of the field has a nonvanishing Fourier coef-
ficient ca(k).

2. The theorem

We define two quasiperiodic multicomponent fields
cJ(r) and cJ8(r) to be indistinguishable if the positionally
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
averaged autocorrelation functions of cJ(r) of any order
and for any choice of components are identical to the
corresponding autocorrelation functions of cJ8(r). This
definition implies, as in the scalar case, that the two mul-
ticomponent fields have the same spatial distribution of
bounded substructures on any scale.

We prove below that an equivalent statement of indis-
tinguishability is that the Fourier coefficients of the two
fields are related by

cJ~k!5e2pix~k!cJ~k!, (A2)

where x, called a gauge function, is linear modulo an
integer over the lattice L of wave vectors. This is similar
to the statement of indistinguishability of two single
component densities with the added requirement that it
be the same gauge function x which relates all the com-
ponents of the two fields.

3. The proof

The equality of all autocorrelation functions is the
statement that
lim
V→`

1
V E drca1

~r12r!•••ca j
~rj2r!•ca j11

* ~rj112r!•••can
* ~rn2r!

5 lim
V→`

1
V E drca1

8 ~r12r!•••ca j
8 ~rj2r!•ca j11

8* ~rj112r!•••can
8* ~rn2r! (A3)

for any choice of the components a1 . . . an and of the indices j and n . The asterisk denotes complex conjugation,
should the multicomponent field be complex.

The Fourier decomposition of the individual components of cJ(r) is given by

ca~r!5 (
kPLa

ca~k!eik•r,

ca* ~r!5 (
kPLa

ca* ~k!e2ik•r5 (
kPLa

ca* ~2k!eik•r, (A4)

where the lattice La is the set of all integral linear combinations of wave vectors with nonvanishing ca(k), which in
general may differ from one component to another. We can form the lattice L of cJ by taking all integral linear
combinations of wave vectors appearing in the union øaLa .

In Fourier space the condition (A3) for the indistinguishability of cJ and cJ8 then requires that

ca1
~k1!•••ca j

~kj!•ca j11
* ~2kj11!•••can

* ~2kn!5ca1
8 ~k1!•••ca j

8 ~kj!•ca j11
8* ~2kj11!•••can

8* ~2kn! (A5)
whenever k11•••1kn50, for any choice of the compo-
nents a1 . . . an and of the indices j and n . For n52 and
j51,2 this gives

ca1
8 ~k!ca2

8* ~k!5ca1
~k!ca2

* ~k!, (A6)
ca1
8 ~k!ca2

8 ~2k!5ca1
~k!ca2

~2k!. (A7)

When a15a25a Eq. (A6) becomes

uca8 ~k!u25uca~k!u2, (A8)
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which implies that the corresponding individual compo-
nents of cJ and cJ8 differ by only a phase:

ca8 ~k!5e2pixa~k!ca~k!. (A9)

Equation (A7) (still with a15a25a) and the corre-
sponding equation for the third-order correlation func-
tion ca(k1)ca(k2)ca(2k12k2) then establish that
xa(k) is linear on the lattice La to within an additive
integer and thus has all the usual properties of a gauge
function, but only with regard to a single component
of cJ :

(1) The equality (A5) for any higher-order correlation
function constructed from a single component of cJ

is then ensured through the linearity of the corre-
sponding gauge function.

(2) Because the gauge function xa(k) is linear on the
lattice La it can be uniquely extended to all of La to
cover points at which it cannot be inferred from Eq.
(A9) because ca(k)50.

(3) It is only necessary to specify the values of xa on a
set of generating vectors of La in order to specify it
everywhere on La .

Next we use Eqs. (A6) or (A7) together with Eq. (A9)
to establish the identity

xa1
~k![xa2

~k! (A10)

for all wave vectors for which ca1
(k) and ca2

(k) are
both nonzero. It then holds for all k in La1

ùLa2
due to

the unique linear extensions of xa1
(k) and xa2

(k) over
these lattices. Because any two gauge functions are
equal on the intersection of their lattices of definition we
can define a single function x(k) on the union øaLa as

x~k!5H xa1
~k! if kPLa1

,

xa2
~k! if kPLa2

,

A A .

(A11)

By definition, x(k) is linear over each individual lat-
tice La . We now show that x(k) can be linearly ex-
tended over the whole of L (which is the set of all inte-
gral linear combinations of vectors in øaLa), such that

x~k11k2![x~k1!1x~k2!, k1PLa1
,k2PLa2

.
(A12)

This is the case if for every linearly dependent set of
wave vectors

k11k21•••1kn50, k1PLa1
. . . knPLan

, (A13)

the value of x(k11k21•••1kn), which by Eqs. (A12)
and (A11) is equal to xa1

(k1)1xa2
(k2)1•••1xan

(kn),
necessarily vanishes. This requirement is indeed satisfied
due to the equality of the correlation functions,

ca1
~k1!ca2

~k2!•••can
~kn!

5ca1
8 ~k1!ca2

8 ~k2!•••can
8 ~kn!. (A14)

Thus a single function x(k), linear on the whole of L ,
serves as one gauge function relating all the components
Rev. Mod. Phys., Vol. 69, No. 4, October 1997
of two indistinguishable multicomponent fields as shown
in Eq. (A2). The existence of this gauge function ensures
that condition (A5) is satisfied for any other possible
correlation function.
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