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The basic equations governing noise phenomena are derived from first principles and applied to
examples in optical communications. Quantum noise arises from two sources, the momentum
fluctuations of electrons at optical frequencies and the uncertainty-related fluctuations of the
electromagnetic field. Shot noise results from the beating of the noise sources with the signal field. In
high-gain amplifiers, the spontaneous-emission noise dominates shot noise and results in a noise figure
of at least 3 dB. It is shown explicitly how, at high power, both the laser field and the laser noise source
become classical. The increase in noise in lasers with open cavities is not due to enhanced spontaneous
emission as once thought, but to single-pass amplification. The noise fields and spontaneous currents
have Gaussian distributions, while nonlasing modes have exponential photon-number distributions.
Low-frequency intensity fluctuations arise from the electric current driving the laser and can be
sub-Poissonian, in contrast to shot noise, which has a Poissonian distribution. The calculational tools
are a wave equation for the field operator and a rate equation for the carrier-number operator, each
containing spontaneous current noise sources. The correlation functions of these sources are
determined by the fluctuation-dissipation theorem.
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SYMBOLS AND ABBREVIATIONS
Â vector potential

A slowly varying amplitude of
vector potential

ÂSt(t) positive frequency part of vector
potential at Stokes frequencies

Av frequency component of vector potential

av, a0 attenuation coefficient

aI,aE coefficient of loss internal and external
to laser

âuk
† , âuk creation and annihilation operators

bsig signal-field amplitude

b̂H Hermitian combination of noise-field
amplitudes

b̂0,b̂v noise-field amplitude

b̂ in,b̂out,b̂em amplitude of noise field entering
amplifier, leaving amplifier, and emitted
without amplifier

b̂q
† ,b̂q creation and annihilation operators

of optical phonons
C ,C current, current per unit volume

D0,Dn normalization coefficient

Dq coefficient for Raman scattering by mode q
dN
dvk

,
dN
dvq

density of states

Ê electric field

F̂g,F̂a Langevin force per unit volume associated
with gain and loss

F̂N(t) Langevin force for electron-number
fluctuations

G0(x,x8) Green’s function for the mode 0

G̃ integral operator relating field and
spontaneous current density

G gain of two-level system, amplification
of optical amplifier

g ,gv,g0 gain coefficient

g(z ,z8) z-dependent Green’s-function solution
Ĥ magnetic field

Ĥe,Ĥ int,Ĥrad
electron, interaction, and radiation
Hamiltonians

ĤL optical-phonon Hamiltonian

Ĵ(t) slowly varying amplitude of spontaneous
current density

Ĵ ind(t), Ĵ tot(t) slowly varying amplitude of induced and
total current density

ĵ(t), ĵv positive-frequency part and frequency
component of spontaneous current density

ĵ R(t), ĵ Rv
positive-frequency part and frequency
component of spontaneous current
for Raman amplification

ĵ k current-density operator associated with
transitions at wave vector k

ĵG, ĵG spontaneous current associated with gain
and loss

ĵv eff effective spontaneous current density in
waveguide with scattering

K Petermann noise enhancement factor
k0,kv propagation constant
m̂ number of photons detected in a time interval

N average occupation of upper level of set of
two-level states

N̂, N̂ electron number and density in
conduction band

]Nspont
]t

spontaneous-emission rate

nck,nvk conduction- and valence-band
occupation factors

nsp spontaneous-emission factor
n̄v photon mode occupation number in

equilibrium with electrons
n̄q phonon occupation number of mode q

Ô(t),ÔS,ÔI(t) general quantum-mechanical operator in
Heisenberg, Schrödinger, and interaction
representations

ÔN,ÔA
normal and antinormal orderings of general
operator, applied to energy density, energy
flux, and carrier transition rate

p̂ ,P̂ electron momentum, total momentum

P̂ , P̂ photon number and photon or energy density

pk momentum matrix element at wave vector k
Q̂ energy flux

ru,rd contributions of upward and downward
transitions to gain coefficient

Ŝ energy flux density

V volume containing electrons, volume
of laser cavity, and volume of
dielectric inhomogeneity

vg group velocity

V bias voltage

x both transverse dimensions
x(v) complex linear susceptibility
ev dielectric function
f0(x),F0(x) transverse mode 0 and laser mode 0

vk transition function

vS signal or typical optical frequency

DG0 deviation of gain from threshold of mode 0
Dev inhomogeneity in dielectric function
G loss rate of two-level system
t carrier lifetime
«ck,«vk electron energy in conduction band

and valence band at wave vector k
c electron wave function
(•••)V integral over volume V

I. INTRODUCTION

A. What is photonics?

One answer to this question can be found by looking
at the subjects covered by IEEE Photonics Technology
Letters. They include lasers, optical amplifiers, photode-
tectors, communication systems, integrated optoelec-
tronics, integrated optics, and sensors. Quantum noise,
the subject of this paper, is not essential to all of these
fields, but it is important for applications related to the
information industry. We are interested in basic physical
phenomena associated with noise in photonics. These
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are best illustrated by considering noise in lasers, in
traveling-wave amplifiers, in optical transmission, and in
photodetection.
In considering the interaction of light and matter, we

shall use a model of carriers in a semiconductor. We do
this because lasers and detectors in photonics are made
of semiconductors. However, the results that we obtain
are quite general and are not tied to specific models. For
example, our description of an optical amplifier applies
also to Er-doped fiber amplifiers, which have become
very important in optical communications.
Noise enters into photonics applications in some im-

portant ways. Laser phase noise limits the sensitivity of
coherent optical communications and sensors based on
interference (Garret and Jacobsen, 1986). The laser line-
width itself is due to phase fluctuations (Lax, 1967a;
Henry, 1982). Analog modulation used in cable TV
transmission strongly depends on achieving very low
laser-amplitude noise (Darcie and Bodeep, 1990; Peter-
mann, 1991). Low bit-error rates in high-speed long-
distance digital transmission systems require stable
single-mode operation without jumping even rarely to
other modes. This jumping is usually referred to as
mode-partition noise (Ogawa, 1982; Link et al., 1985)
For a specific bit-error rate, the minimum photon num-
ber per bit is determined by shot noise (Henry, 1985). In
practice, detection of a shot-noise-limited signal requires
low-noise optical preamplification. After amplification,
the minimum signal is determined by both shot noise
and signal-spontaneous emission beat noise (Olsson,
1989; Tonguz and Kazovsky, 1991).
Despite the growing maturity of this field, it is still

difficult for the large population of scientists and engi-
neers working in photonics to obtain a fundamental un-
derstanding of how these optical processes take place
and how to think about the light involved. This is be-
cause of the dual wave and particle behavior of light. In
most situations, light can be thought of as a classical
wave. This concept is useful in describing modes, diffrac-
tion, interference, etc. However, noise phenomena can-
not be described in the framework of classical waves.
Shot noise in detection and laser-intensity noise, for ex-
ample, are often explained in terms of a photon gas.
The contemplation of quantum noise associated with

the generation, amplification, attenuation, and detection
of light raises fundamental questions. For example, what
causes quantum noise? How is quantum noise related to
the uncertainty principle? A wave description of light
accounts for propagation, modes, interference, and
other properties of light. Can it also account for noise?
Are vacuum fluctuations needed? Are they amplified
and attenuated? We expect the fields of lasers and am-
plifiers to behave classically when the number of pho-
tons per mode is large. How does the transition to clas-
sical behavior come about when the sources of these
fields are quantum in origin and characterized by param-
eters equivalent to about one photon per mode?
In this paper, we attempt to give a clear and unified

description of quantum noise that answers these and
other questions. We were motivated to do this to clarify

our own understanding of this subject and by the belief
that many of our colleagues working in photonics would
find a clear and rigorous method of picturing and calcu-
lating quantum-noise phenomena useful.

B. Practical treatments of quantum noise

The practical way of treating noise is to add Langevin
forces to the classical wave and rate equations. Once the
correlation functions of these noise sources, called diffu-
sion coefficients (Lax, 1960), are established, the equa-
tions are solved as if the light were a fluctuating classical
wave. There are a number of different procedures for
finding these diffusion coefficients. The diffusion coeffi-
cient for the autocorrelation of field amplitudes can be
set to account for the known spontaneous-emission rate
into a mode (Henry, 1986a). The diffusion coefficients
associated with photon number and minority-carrier
number can be obtained by applying recombination-
generation statistics to the photon-electron system (Lax,
1960, 1968; Henry, 1986b). An approach favored by en-
gineers familiar with noise in microwave circuits is to
make the analogy between lasers and transmission lines
with Nyquist noise sources (Lowery, 1988; Nilsson et al.,
1991; Nilsson, 1994). Another way is to adapt the diffu-
sion coefficients found in rigorous quantum treatments
of gas lasers to the semiconductor case (Henry, 1983;
Marcenac and Carroll, 1993). After a quantum-classical
correspondence procedure, these treatments reduce the
description of the laser to a set of classical rate equa-
tions with random noise sources called Langevin forces
(Gordon, 1967; Lax, 1967b, 1968; Haken, 1985).
Much work has been done in treating various noise

phenomena in semiconductor lasers during the last 15
years, since single-mode semiconductor lasers were de-
veloped. We mention here some of the basic results as-
sociated with quantum noise. The anomalously broad
linewidths of semiconductor lasers (Fleming and Moora-
dian, 1982) were explained (Henry, 1982). The lineshape
was found to be not a simple Lorentzian but structured
with side peaks (Diano et al., 1983, Vahala and Yariv,
1983). This was explained in detail (Henry, 1983; Vahala
and Yariv, 1983). It was found that the linewidth of a
semiconductor laser could be narrowed from several
tens of megahertz to a few kilohertz by external feed-
back (Wyatt and Devlin, 1983; Link and Pollack, 1986;
Olsson and Van der Ziel, 1987). Modification of the
Langevin rate equations of a laser to account for the
effect of feedback led to a thorough understanding of
this narrowing (Patzak et al., 1983; Kazarinov and
Henry, 1987).
The early semiconductor lasers had no optical lateral

confinement but were gain guided. When this was rem-
edied by the development of index-guided lasers, it was
found that the mode spectrum diminished from many
longitudinal modes to only a few longitudinal modes.
This surprising result was first explained by Petermann
as enhanced spontaneous emission in gain-guided lasers
(Petermann, 1979; Streifer et al., 1982). The physical na-
ture of this phenomenon has been clarified only recently
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(Deutch et al., 1991; Goldberg et al., 1991) and will be
discussed later in this paper.
Another important noise phenomenon is mode-

partition noise in nearly single-mode lasers. It was found
that even when a laser had only one dominant mode, as
a rare event another mode could become intense, rob-
bing strength from the lasing mode (Ogawa, 1982; Ab-
bas and Yee, 1985; Link et al., 1985). This was explained
by calculation of the distribution of intensities of weak
nonlasing modes stemming from fluctuations in sponta-
neous emission (Henry et al., 1984; Miller and Marcuse,
1984; see review of Liu, 1991). Suppression of mode-
partition noise is essential for high-bit-rate transmission.
This need led to the development of distributed-
feedback lasers in which nonlasing modes have very low
intensities, even when the laser is modulated.
The behavior of distributed-feedback lasers is ex-

tremely complex owing to the change of mode suppres-
sion with increasing optical power in the cavity. This
change is brought about by axial-spatial hole burning of
the gain resulting from the nonuniform axial light inten-
sity distribution (and stimulated emission) in the cavity.
To understand these lasers, modeling must take into ac-
count changes in the field and carrier density along the
length of the cavity. This is a departure from most laser
modeling, in which the distributions of carrier density
and field are regarded as fixed. The description of noise
in these lasers requires solving coupled ordinary differ-
ential equations with random noise sources. This has
been done analytically (Olesen et al., 1993; Tromborg
et al., 1994) and by computer simulation (Lowery and
Novak, 1994; Marcenac and Carroll, 1994).
The development of optical-fiber amplifiers doped

with erbium is resulting in practical receivers that are
limited by quantum noise instead of the thermal noise of
electrical amplifiers (Desurvire, 1994; Park and
Granlund, 1994). The amplifier adds a broadband ampli-
fied spontaneous-emission noise field to the signal,
which must be reduced by narrow-band optical filtering
before detection. A quantitative model of this noise, de-
veloped by P. S. Henry for semiconductor optical ampli-
fiers, applies equally well to optical-fiber amplifiers (Ols-
son, 1989; Tonguz and Kazovsky, 1991).
Despite these successes, there are a number of dis-

pleasing aspects to the phenomenological description of
light fluctuations. Rate equations with Langevin forces
were used earlier to describe the generation of radio
waves and thermal noise in electrical circuits (Van der
Pol, 1934; Van der Ziel, 1954). However, going from
\v!kT to \v@kT requires the introduction of noise
sources as quantum-mechanical operators. Replacing
operators by classical Langevin forces may lead to sig-
nificant errors. Furthermore, finding the correlation
functions of Langevin forces by these procedures does
not identify the physical nature of quantum noise.
In addition, the arbitrary switching between wave and

particle pictures to describe light in different situations
is physically unsatisfying. For example, the noise de-
tected after optical amplification is treated as the beat-
ing of signal and noise waves generated in spontaneous

emission. However, a shot-noise contribution is also
added, which is interpreted as noise associated with de-
tection of photons. This is not noise added in the detec-
tion process because, for an opaque detector, all noise is
associated with the optical field. Either a wave or pho-
ton description is permissible, but it is desirable that one
description explain all results and, ideally, the explana-
tion should be a solution of basic equations.
Shot noise is in fact explainable by a wave picture.

Slusher and Yurke (1990) explain how shot noise is in-
troduced in beam splitters through the beating of a noise
field of vacuum fluctuations with the signal field. This
concept of a noise field of vacuum fluctuations is intro-
duced into quantum optics to explain excess noise in
photodetectors of less than unit quantum efficiency by
Yuen and Shapiro (1980) and in beam splitters by Yurke
(1985). A similar noise field is used by Yamamoto and
Imoto (1986) to explain how shot noise occurs in the
intensity noise spectrum of lasers. These explanations of
shot noise are indications that all forms of quantum
noise can be explained from a wave picture provided
that additional noise fluctuations associated with quan-
tum uncertainties are added to the classical description.

C. Prior theories of quantum noise in lasers

The theory that gives a consistent description of the
dual particle and wave behavior of light is the quantum
theory of radiation. It is used in the classic papers on
noise fluctuations of lasers written in the 1960s, princi-
pally by Haken, Lamb, Lax, and their co-workers (Mc-
Cumber, 1966; Gordon, 1967; Lax, 1968; Louisell, 1974;
Sargent et al., 1974; Haken, 1984). These theories are
also summarized in a number of textbooks (Marcuse,
1980; Haken, 1981, 1985; Loudon, 1983; Meystre and
Sargent, 1990; Gardiner, 1991; Chow et al., 1994; Mandel
and Wolf, 1995). The major achievements of these
works are in providing explanations of how the laser
linewidth narrows and how low-frequency intensity fluc-
tuations become reduced as a single-mode laser goes
from below to above threshold. These theories also de-
termine the photocount distributions of laser light from
modes that are both below and above threshold. The
theoretical results are in excellent agreement with ex-
periments on gas lasers (Arecchi et al., 1966; Freed and
Haus, 1966; Gerhardt et al., 1972; Lax and Zwanziger,
1973).
However, these approaches were limited to the de-

scription of lasers with closed cavities. These papers
were written with gas lasers in mind, the well-behaved
lasers of the 1960s, whereas noise is most important for
communications lasers, which are semiconductor lasers.
Gas lasers have highly reflecting end mirrors forming a
nearly closed cavity. It was tempting to regard the cavity
as completely closed and to quantize the modes of the
lossless cavity. Today’s semiconductor lasers and optical
amplifiers have facet reflections that range from more
than 90% to nearly zero and must be regarded as open
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structures. This requires a quantum treatment that, like
the classical one, is not restricted by the need to start
with cavity modes.
Yamamoto and Imoto (1986) pointed out that a cor-

rect description of shot noise in the intensity noise spec-
trum of lasers requires taking into account coupling of
the laser cavity to outside optical modes. Yamamoto and
co-workers (Yamamoto et al., 1986) also predicted the
suppression of the low-frequency part of the intensity
spectrum to below the shot-noise limit when the laser is
pumped with a quiet current source (verified by Rich-
ardson et al., 1991). However, this treatment was still
limited by weak coupling. Working in the related field of
quantum optics, Collett and Gardiner (1984; Gardiner
and Collett, 1985) also developed theories of cavities
coupled to input and output modes, and Carmichael
(1993a, 1993b) developed ‘‘quantum trajectory theory,’’
a general theory of weakly coupled quantized systems.
The theory of Gardiner and Collett is not restricted to
weak coupling and has been applied to model a distrib-
uted photodetector, with an exponentially decaying op-
tical field (Gardiner, 1991).
The exponential growth of the optical field is an im-

portant feature of semiconductor lasers with low facet
reflectivities and travling-wave amplifiers. The problem
of a one-dimensional description of a laser with arbi-
trary facet reflectivities was studied in detail by Ujihara
in a series of papers in which the laser field is expanded
in the quantized modes of a lossless dielectric that ex-
tends to infinity (see, for example, Ujihara, 1977, 1984).
While this pioneering work obtained interesting results,
such as the enhancement of laser linewidth in lasers of
low facet reflectivity, the complexity of Ujihara’s analy-
sis illustrates the cumbersome nature of this expansion.
More recently, a number of authors have approached

this problem in a manner that is closer to the one pre-
sented here. Maxwell’s equations for propagation in one
dimension are solved for a field operator propagating in
an amplifying medium described by a complex dielectric
function. The wave equation also contains a noise-
source operator as an inhomogeneous term (Prasad,
1992; Tromborg et al., 1994; Marani and Lax, 1995).
Parametric-amplifier experiments have been analyzed in
a similar manner (Gardiner and Savage, 1984; Prasad,
1994a, 1994b).

D. Our perspective

In this paper, we extend the quantum theory of lasers
and amplifiers to arbitrary geometries ranging from
closed cavities to traveling-wave amplifiers. We believe
that this theory will appeal to those working in photon-
ics because it has a form very similar to that of classical
electromagnetic theory.
There are two fundamental sources of quantum noise

in a system of coupled electrons and electromagnetic
fields. One source is spontaneous currents resulting from
momentum fluctuations at optical frequencies of elec-
trons localized by atomic or crystalline fields. The other

source is field fluctuations caused by the quantum-
mechanical uncertainty of electric and magnetic fields.
The first part of this paper is devoted to delineating

the properties of the electrons and the spontaneous and
induced currents. Later, we show by a number of ex-
amples how our theory can be used to describe the
quantum-noise phenomena encountered in photonics.
We describe optical noise from the point of view of

fluctuations of electromagnetic fields, without the need
to switch from a wave to a particle description of light.
In this description, quantum-noise phenomena are gov-
erned by two equations: a scalar wave equation for the
optical field and a carrier rate equation. Both equations
contain spontaneous current-density noise sources. The
beating of the optical field with spontaneous currents
alters the rate of optical transitions and gives rise to
recombination-generation noise of the carriers. The
spontaneous current-density source in the wave equa-
tion results in the emission of a noise field. In electron
systems with populated upper states, this is the field of
spontaneous emission. In ‘‘cold’’ systems with unpopu-
lated upper states, the noise field contributes to vacuum
or zero-point fluctuations that are associated with the
uncertainty of the electric and magnetic field of the op-
tical wave (Loudon, 1983). The current of a photodetec-
tor is quadratic in the fields and results from the mutual
beating of the signal and noise fields.
The problems of quantum noise in amplifying or ab-

sorbing media differ from those traditionally considered
in the quantum theory of radiation and require different
methods of solution. The conventional quantum treat-
ment of radiation is the theory of Dirac (1927), which is
beautifully presented in the review of Fermi (1932). This
theory considers an atom interacting with modes of ra-
diation in free space or with modes of a closed cavity.
The mode amplitudes are taken to be operators. A ra-
diation Hamiltonian and operator commutation rela-
tions are chosen that reproduce Maxwell’s equations.
An electron-field interaction is then introduced and ab-
sorption, emission, and scattering processes can then be
calculated by perturbation theory. This can be extended
phenomenologically to lossless dielectrics by including a
dielectric function in the Hamiltonian (Carniglia and
Mandel, 1971; Ujihara, 1975; Glauber and Lewenstein,
1991; Vogel and Welsch, 1994). However, the Dirac
theory is not useful in describing the propagation of light
in photonics. The modes of a dielectric extending over
all space are not of direct interest and do not explicitly
take into account the exponential growth and decay dur-
ing propagation that accompanies gain and loss.
Instead, we assume as a first principle that the field

and the current-density operators obey Maxwell’s equa-
tions in free space. The precedents for making this as-
sumption are discussed below. These equations can be
expressed through the vector potential, in the Coulomb
gauge, as a vector wave equation with a current-density
source. To simplify our procedures, we approximate the
vector wave equation by a scalar wave equation, an ap-
proximation that is often made in photonics applications
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and that is usually a good approximation when effects of
polarized light can be neglected.
We expand the current-density operator in powers of

the field, keeping the field-independent and linear terms.
Averaging the linear term over the electrons results in
the Kubo formula, which describes the induced current
density in terms of a susceptibility. We show that the
correlation functions of spontaneous current operators
are related to the imaginary part of this susceptibility in
accordance with the fluctuation-dissipation theorem.
The derivation covers the case of a biased semiconduc-
tor, including one with an inverted population, and it
extends the validity of the fluctuation-dissipation theo-
rem to the case in which the electrons in the valence and
conduction bands are separately in equilibrium and
characterized by different quasi-Fermi levels.
If we express the current density as composed of a

spontaneous part and a part induced by the field, the
wave equation becomes one describing propagation in a
complex dielectric medium with spontaneous current-
density sources. This is the same equation that occurs in
classical electrodynamics, but this quantum treatment
differs from a classical one in that the fields are noncom-
muting Heisenberg operators with spontaneous current-
density operator sources, which do not exist in a classical
treatment.
Only averages of operators can be related to measur-

able quantities. The averages of a pair of current-density
operators are given by the fluctuation-dissipation theo-
rem. We show that averages of higher-order products of
current-density operators can be determined in terms of
averages of operator pairs in a manner reminiscent of
Wick’s theorem in quantum field theory. The higher mo-
ments are useful in calculating field and photon-number
distributions in specific cases.
In most problems of quantum noise, a linear relation

exists between the field and the spontaneous current-
density sources. Proceeding exactly the same way as in
classical electromagnetic problems, a solution of the
wave equation can be found relating the field to the
sources. The field-operator averages can then be deter-
mined in terms of averages of the spontaneous current-
density operators.
An energy conservation equation is derived from the

wave equation. From this equation we are able to find
operators for the energy density and energy flux density.
We show that whenever the averages of the energy den-
sity or energy flux density in a given spectral range be-
come large compared to these densities for vacuum fluc-
tuations, the noncommuting parts of these averages
become negligible and the field can be treated as classi-
cal. The noise field in an amplifier and the noise sources
in lasers (Langevin forces) are noncommuting operators
related to both loss and gain. In the transition to classi-
cal fields, the noncommuting parts of the two sources of
noise nearly cancel, and the effective noise source can
be treated as classical. This treatment of the transition
from quantum to classical behavior of the field is, in our
view, physically transparent and differs from that given
in prior work.

E. The Lifshitz method

The approach outlined above was used earlier to treat
quantum effects of the electromagnetic field in complex
geometries. As far as we know, it was first used by Lif-
shitz (1956) to find the force between closely spaced di-
electric surfaces. As limiting cases, he obtained Ca-
simir’s formula for a force between uncharged metal
surfaces (Casimer, 1948) and London’s formula for the
Van der Waals force between molecules. The Casimir
force is attributed to the pressure of vacuum fluctua-
tions, which is altered when the two surfaces approach
each other (see Milonni, 1994). Further work on this
problem by Schwinger et al. (1978) confirmed the valid-
ity of Lifshitz’s results. Lifshitz’s formula was confirmed
experimentally, as discussed by Milonni (1994). Landau
and Lifshitz (1960) described this method in their book,
Electrodynamics of Continuous Media, and applied it to
fluctuations of blackbody radiation and van der Waals
forces. A related approach was taken by Agarwal in a
series of papers discussing the influence of dielectric and
metal surfaces on quantum-electrodynamic phenomena
(Agarwal, 1974a–1974c).
The Lifshitz method resembles the semiclassical treat-

ment of radiation found in textbooks. Schiff (1955)
shows that the spontaneous-emission rate of an atom is
correctly given by solving Maxwell’s equations with a
current-density source. Earlier, Blatt and Weisskopf
(1952) derived general formulas for the decay rates of
nuclei by radiative multipole transitions in the same
manner. In carrying out these calculations, one makes
the transition to quantum mechanics by replacing the
squared integral over the current density by a squared
matrix element of the current-density operator between
the initial and final states. These same squared matrix
elements enter into our expressions for the averages of
the spontaneous current-density sources.
A number of authors justify the use of an operator

wave equation with operator noise sources to describe
light propagation in inhomogeneous, lossy, and disper-
sive dielectric media. Glauber and Lewenstein (1991)
consider light propagation in an inhomogeneous dielec-
tric, without dispersion or loss, and show that the vector-
potential operator satisfies the classical vector wave
equation. Caves and Crouch (1987) show that loss, dis-
persion, and noise can be included in a traveling-wave
description of electromagnetic radiation by adding ficti-
tious beam splitters, which create loss and dispersion,
and by coupling vacuum fluctuations into the beam,
which act as noise sources (see also Jeffers et al., 1993).
Hunter and Barnett (1992) derive the operator wave
equation with a noise source, loss, and dispersion from a
microscopic model of light propagation in a dielectric
(see also Kupiszewska, 1992; Grunner and Welsh, 1995).
Matloob et al. (1995) show that the noise operators are
compatible with both the expected equal-time commu-
tation rules of the field and the expected mean-square
average field of vacuum fluctuations.
The organization of this paper is shown in the Table

of Contents. For the convenience of the reader, we have
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listed specific results in Tables I and II along with equa-
tion numbers, indicating where they can be found in the
text.

II. THE ORIGIN OF QUANTUM NOISE

A. Spontaneous current fluctuations

Classical noise arises from fluctuations in the motion
of particles and in the number of particles within a given
volume. Examples of this noise are thermal noise and
shot noise. Quantum noise arises from uncertainty con-
cerning the position and momentum of quantum-
mechanical objects. For example, consider an electron in
a potential well in its ground state, shown in Fig. 1. With
a classical description, there would be no fluctuations,
but the uncertainty principle does not allow a confined
particle to be motionless. The operator

ĵ5
e

m
p̂ (2.1)

is proportional to the current. We are interested in the
frequency spectrum of the fluctuations of ĵ . In noise
theory, this is given by the Fourier transform of the cor-
relation function ^ ĵ(t) ĵ(0)&.
In quantum mechanics, ĵ and p̂ are operators, and the

time dependence of an operator is described by the
Heisenberg representation. In this representation, the
wave function co is time independent and describes only
initial conditions. More familiar, perhaps, is the Schrö-
dinger representation where the average value of Ô(t)
is given by

^Ô~ t !&5^c~ t !uÔSuc~ t !& , (2.2)

where the subscript S indicates a time-independent
Schrödinger operator. The formal solution of the Schrö-
dinger equation for the wave function is

c~ t !5expS 2
i

\
Ĥ~ t2t0! Dco , (2.3)

where co5c(t0). Using this solution, the average be-
comes

^Ô~ t !&5^couÔ~ t !uco&, (2.4)

where the Heisenberg operator Ô(t) is

Ô~ t ![expS i\ Ĥ~ t2t0! D ÔSexpS 2
i

\
Ĥ~ t2t0! D (2.5)

and Ĥ is the Hamiltonian. Equations (2.4) and (2.5) de-
fine the Heisenberg representation.
We can write ^ ĵ(t) ĵ(0)& as a sum over a complete set

of states, which can be chosen as energy eigenstates.
Then ^ ĵ(t) ĵ(0)& becomes

^ ĵ~ t ! ĵ~0 !&5S em D 2(
n
exp@2i~En2Eo!t/\#

3u^cnup̂uco&u2. (2.6)

We see that the spectrum of current fluctuations is just
the optical excitation spectrum and the spectral density
is just the modulus squared of the transition-matrix ele-
ments. This spectrum has only positive frequencies, that
is, frequencies corresponding to transitions from ground
states to excited states. If excited states are also occu-
pied, both positive and negative frequencies will appear
in the spectrum.
Heisenberg operators of the same quantity at two dif-

ferent times do not commute. For example, with ĵ(t)
and ĵ(0) interchanged in Eq. (2.6), the resulting corre-
lation function with the electron in the ground state
would have negative frequencies instead of positive fre-
quencies. This clearly shows that currents at two differ-
ent times are noncommuting operators:

^ ĵ~ t ! ĵ~0 !&Þ^ ĵ~0 ! ĵ~ t !&. (2.7)

Since the electron is a charged particle, the momen-
tum or velocity fluctuations are a source of electromag-
netic radiation and hence a source of quantum noise.

B. Electromagnetic-field uncertainty

The other source of quantum noise is the quantum
uncertainty between electric and magnetic fields. Con-
sider the simple example of the electromagnetic field in
a closed, lossless cavity. The field in the cavity can be
decomposed into modes, which are characterized by
specific spatial distributions and resonant frequencies.
The energy stored in a mode oscillates between electric
and magnetic forms similar to the way it oscillates be-
tween the kinetic and potential forms for a mechanical
oscillator. This analogy motivated Dirac (1927) to re-
gard the electric and magnetic fields of the mode as the
generalized coordinates and momenta of an oscillator
and to apply quantum mechanics to describe it [see Pais
(1986) and Schweber (1994) for a summary of Dirac’s
work and earlier work by Born, Heisenberg, and Jor-
dan]. This treatment leads to quantization of the mode
energies, which are known as photons, see Fig. 2(a). As
a quantum harmonic oscillator, the mode has an equidis-
tant energy spectrum with level separations \v and a
ground-state energy of \v/2:

En5~n1 1
2 !\v . (2.8)

Just as in the case of an electron in a potential well,
the finite energy of the ground state is caused by mo-
mentum and coordinate fluctuations associated with the
uncertainty principle. The fluctuating electromagnetic
field in the ground state is referred to as the field of
vacuum fluctuations. The electric and magnetic fields of
a mode satisfy a similar uncertainty principle as the co-
ordinates and momenta in quantum mechanics. The un-
certainty principle follows from the well-known commu-
tation rules between coordinate and momentum
operators (Bohm, 1951). From the correspondence be-
tween coordinates and momenta and the electric and
magnetic fields, Dirac concluded that the electric and
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TABLE I. Summary of results.

Result Equation

Uncertainty-related field fluctuations
Emission from a cold opaque source mimics vacuum
fluctuations.

(7.10)

The energy flux of the uncertainty-related field
fluctuations is neither attenuated nor amplified.

(A.8), Sec. VI.D

The correlation function of vacuum fluctuations in
an opaque medium decays with distance because
attenuation is accompanied by uncorrelated
generation with energy conserved.

(B.8 - B.9), after (7.10)

Vacuum fluctuations excite no optical transitions of
electrons from lower levels.

before (6.15), after (8.31)

Shot-noise fluctuations of the photon flux of amplified
and attenuated signals are the beating
of the uncertainty-related
field fluctuations with the signal field

(7.26),(7.40)

Spontaneous currents

Spontaneous currents are momentum fluctuations at
optical frequencies of confined electrons.
They persist in cold systems, having only lower-level
occupation.

(2.6)

In Raman amplifiers, spontaneous currents result
from the mixing of lattice fluctuations
and the optical field of the pump.

(7.45)

The correlation functions of spontaneous current
pairs are related to loss and gain coefficients
by the fluctuation-dissipation theorem.

(4.38),(4.42)

Shot noise in a nearly transparent photodetector is a
beating of the signal and spontaneous
currents within the detector, which
modulates the rate of optical absorption.

(7.32)

The fluctuation-dissipation theorem also holds for
scattering loss, where the noise source is vacuum
fluctuations scattered into the guided modes.

(7.50)

Generation and propagation of noise fields
Maxwell’s equations for the field and current
operators can be approximated as a scalar wave
equation for field-operator propagation
in a complex dielectric with spontaneous
current-density operator sources.

(6.5)

When gain is time independent, a Green’s function
linearly relates the noise field to spontaneous
current-density sources.

(6.7)

Noise fields emitted from an opaque source account
for Planck radiation and
light-emitting diode emission.

(7.9)

Narrow-band noise in high-gain amplifiers is the
beating of the signal field with the field of
amplified spontaneous emission.
The minimum amplifier noise figure is 3 dB.

(7.40)

Spontaneous emission and internally generated
and external vacuum fluctuations contribute to the
Langevin force of a laser mode.

(8.9)
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magnetic mode field amplitudes are also operators satis-
fying similar commutation rules (Loudon, 1983).
Since a general electromagnetic field can always be

decomposed into modes, it can be regarded as a
quantum-mechanical system with an infinite number of
degrees of freedom. Just as in the classical case, the elec-
tromagnetic field satisfies Maxwell’s equations with cur-
rent sources. The only change is that, in the quantum-
mechanical case, both the field and the current are
operators. This description of the field interacting with
the current is called quantum electrodynamics, or the
quantum theory of radiation when restricted to the
transverse part of the field associated with radiation
(Fermi, 1932).
There are two independent sources of quantum noise

in a system of coupled electrons and electromagnetic
fields. One results from the Heisenberg uncertainties be-

tween position and momentum of electrons, and it leads
to spontaneous current fluctuations. The other is the
Heisenberg uncertainty between electric and magnetic
fields, which results in quantum field fluctuations. (An-
other noise source, essential for the description of Ra-
man amplifiers, will be discussed in Sec. VII.F.) Ideally,
in situations where the field is weakly interacting with
electrons absorbing and emitting light, we can regard the
light and electrons as two systems, each having its own
uncertainty-related and thermal fluctuations. In reality,
the two systems are coupled, and this coupling causes
each system to induce fluctuations and dissipations in
the other.
Consider a closed cavity with heated walls that can

both absorb and emit radiation. The field in thermal
equilibrium can be regarded as both damped and gener-
ated by fluctuating currents in the walls. It is convenient

TABLE II. Summary of results.

Result Equation

Optical transition noise and spontaneous emission

A general equation for the rate of optical transitions
of carriers is derived which accounts for
absorption, stimulated and spontaneous emission, and noise.

(5.10 - 5.11)

The beating of an external optical field with
spontaneous currents modulates the rate
of stimulated emission and absorption,
causing recombination-generation noise.

(5.13)

Spontaneous emission into a cavity mode is weighted
by the spatial distribution of the squared
mode field and goes to zero at nodes in this field.

(8.32)

The rate of spontaneous emission into a laser mode is
not enhanced in open cavities by the Petermann
factor as once thought. Instead, the enhancement
of noise and mode intensity is due to
single-pass ampflication.

(8.32),(8.44)

Dirac’s formula for the rates of optical absorption
and stimulated and spontaneous emission
holds in the limit of lossless modes.

(8.50)

Probability distributions of observables inferred from higher-order
correlation functions

Higher-order spontaneous current correlation functions
are calculated in terms of pair-correlation
functions, with rules resembling Wick’s theorem.

after (4.62)

The real and imaginary parts of the noise fields
and the spontaneous currents have Gaussian distributions.

(7.19)

Shot noise in an opaque detector has a Poisson
distribution.

(7.26 - 7.27)

Nonlasing modes near threshold have an exponential
photon-number distribution. This distribution
has high-intensity fluctuations causing mode-partition noise.

(8.19)

809C. H. Henry and R. F. Kazarinov: Quantum noise in photonics

Rev. Mod. Phys., Vol. 68, No. 3, July 1996



to extend the process of attenuation and emission by the
walls to zero temperature as a way of describing the
ground state of the combined system. This is the ap-

proach that is followed in this paper. Thus we treat
vacuum fluctuations as emitted and absorbed like ther-
mal radiation. We do this despite the fact that vacuum
fluctuations cannot be detected directly (see end of Sec.
VI.C). We find that the calculated emission from opaque
walls at zero temperature mimics the flux of vacuum
fluctuations from empty space (see Sec. VII.A). There-
fore we shall not distinguish the noise field emitted from
a cold absorber and the noise field coming from empty
space. The emission from cold absorbers is also useful in
describing shot noise (see Sec. VII.C) and noise in lasers
(see Secs. IV.H and VIII.A).

III. SEMICONDUCTOR MODEL

In this section, we introduce fluctuating electron cur-
rents, which we regard as a principal source of quantum
noise. For clarity of description, we shall use a model of
noninteracting electrons and holes in a semiconductor.
Our results are, however, general and not restricted to
this specific model.

TABLE II. (Continued.)

Photons interacting with carriers in a closed
lossless cavity have a Bose-Einstein distribution
of photon number.

(8.22 - 8.23)

Energy conservation of narrow-band radiation interacting with carriers
The quantum wave equation and the quantum carrier
rate equations are consistent with conservation of the energy
stored in the electron and photon systems.

(6.12)

Photon-flux density and photon-number density
operators are identified from terms in the energy
conservation equation.

(6.13 - 6.14)

The signal of an ideal opaque photodetector measures
photon flux received, with no additional noise.

(6.16)

The low-frequency fluctuations of the photon flux
emitted from a laser cavity follow the
fluctuations in electrical current.
These fluctuations are sub-Poissonian because of
the low electrical current noise.

(8.57)

Classical behavior at high fields

The uncertainty-related field fluctuations are not
amplified and become negligible at high fields.

(A.7 - A.8), Sec. VI.D

As laser power increases, the noncommuting
contributions to the Langevin force associated with spontaneous
currents and vacuum fluctuations cancel, leaving a Langevin rate
equation that can be treated as classical.

(4.56),(8.12)

The noncommuting contributions to the energy flux of
amplified spontaneous emission from spontaneous currents
and induced by vacuum fluctuations cancel.

(7.35b),(7.36)

Consequently, the noise field of a high-gain
amplifier can be treated as classical.

FIG. 1. Origin of spontaneous currents. The potential well has
bound electron states. There are momentum fluctuations asso-
ciated with the confinement. The frequencies of the fluctua-
tions of a bound electron are the frequencies of transitions to
other levels. Momentum fluctuations of charged particles are
spontaneous currents.
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A. Second-quantization description of electrons

It is convenient in describing a many-body system to
use the second quantization of the electron field. Clear
discussions of second quantization can be found in the
books of Landau and Lifshitz (1958a) and Schrieffer
(1964). Let uuk& represent the semiconductor one-
electron states, where u5c ,v and refers to the conduc-
tion or valence band and where k is the wave vector of
the state [see Fig. 2(b)]. In the second-quantization de-
scription, the wave function of the system is described in
terms of occupation numbers nuk of one-electron states,
where nuk can only take the values of 0 and 1 because of
the Pauli principle:

c5unck1,nck2, . . . nvk1,nvk2, . . . & . (3.1)

The alternative is to describe the many-electron wave
function of the system as a Slater determinant of one-
electron wave functions, but this is very cumbersome.
Creation and annihilation operators âuk

† and âuk are
introduced that alter these occupation numbers. The
creation operator âuk1

† acts to raise the occupation num-
ber of state uk1 from zero to one:

âuk1
† u0uk1,nuk2, . . . &5u1uk1,nuk2, . . . &. (3.2)

Similarly, the annihilation operator âuk1 lowers the oc-
cupation number:

âuk1u1uk1,nuk2, . . . &5u0uk1,nuk2, . . . &. (3.3)

Because of the Pauli principle (each state cannot be oc-
cupied by more than one electron) and the indistinguish-
ability of electrons (a wave function can change only
phase when two electrons are interchanged), it can be
shown that the wave function changes sign when two
electrons are interchanged. When combined with Eqs.
(3.2) and (3.3), this leads to the anticommutation rules
of the operators:

âuk
† âu8k81 âu8k8âuk

† 5du ,u8dk ,k8, (3.4a)

âukâu8k81 âu8k8âuk5 âuk
† âu8k8

†1 âu8k8
†âuk

† 50. (3.4b)

These equations imply that pairs of Hermitian-conjugate
operators associated with the same state are related by
âukâuk

† 512 âuk
† âuk and all other pairs of operators anti-

commute.
Consider an operator acting on a system of identical

electrons. For example, consider the total momentum,
which is the sum of momentum of all electrons,

P̂5(
i
p̂i . (3.5)

The matrix elements of the momentum between two
many-body wave functions (Slater determinants) can be
shown to simplify to

^cAuP̂ucB&5(
uk

(
u8k8

^ukup̂uu8k8&^cAuâuk
† âu8k8ucB&.

(3.6)

Since the momentum operator is diagonal between
states of wave vector, but has nondiagonal components
between bands, Eq. (3.6) simplifies to

^cAuP̂ucB&5(
k

^ckup̂uvk&^cAuâck
† âvkucB&

1(
k

^vkup̂uck&^cAuâvk
† âckucB&. (3.7)

These equations show that the total-momentum matrix
element can be written in terms of creation and annihi-
lation operators acting on occupation factors, such as the
wave function in Eq. (3.1). This applies to any operator
acting on a single-electron coordinate. This description
can be extended to particle interactions that involve
two-electron coordinates, but we do not need this for
our discussion here.

B. Hamiltonian and current-density operators

The interaction of the electrons of a semiconductor
with the electromagnetic field involves the current-
density operator Ĵ. The time dependence of all opera-
tors is determined by the Hamiltonian. To proceed, we

FIG. 2. Analogy between photon creation and annihilation op-
erators and spontaneous current operators: (a) The energy of
an optical mode vs its amplitude. The quantized field states
have equidistant energy levels, which are photons. The transi-
tions between the equidistant levels 1, 2, 3, . . . are described
by creation and annihilation operators b̂†(t) and b̂(t), which
oscillate at the frequency corresponding to the level separa-
tion. (b) A simplified band diagram of a semiconductor with
conduction band and valence band. Spontaneous current-
density operators are associated with the upward and down-
ward transitions and oscillate at frequencies corresponding to
the level separations.
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need to express both the Hamiltonian and the current
density as second-quantized operators.
The Hamiltonian operator Ĥe has diagonal matrix el-

ements and is given by

Ĥe5(
k

@«ckâck
† âck1«vkâvk

† âvk# , (3.8)

where «ck and «vk are the one-electron energies in the
conduction and valence bands. We need consider only
currents associated with interband optical transitions.
These components of the current are diagonal with re-
spect to wave vector. The current-density operator asso-
ciated with these transitions, for the current in a particu-
lar direction, is

ĴS5
e

Vm(
k

@^vkup̂uck&âvk
† âck1^ckup̂uvk&âck

† âvk#

5 ĵ S1 ĵ S
† , (3.9)

where e is the electron charge (negative number) and
V is the volume normalization. We see that ĵ S is associ-
ated with downward transitions and ĵ S

† is associated with
upward transitions. The energy bands and transitions
are illustrated in Fig. 2(b), which shows the analogy of
these currents and the creation and annihilation opera-
tors for photons. Strictly speaking, the current operator
has an additional term proportional to the vector poten-
tial. However, this term does not cause optical transi-
tions and other effects that we consider, so we shall skip
it.
We shall consider V to be a volume small in scale

compared to a wavelength of light but still containing
thousands of carrier states in each band. The interaction
of the subsystem of carriers in volume V with an exter-
nal electromagnetic field described by the vector poten-
tial Â(x,t) is given by

Ĥ int52
V

c
ĴS•Â~ t !, (3.10)

where Â is assumed to be uniform within the small vol-
ume V . For brevity, throughout this paper we shall refer
to the vector potential Â and its frequency components
as the ‘‘optical field’’ or simply as the ‘‘field.’’ In describ-
ing the electromagnetic field, we use Gaussian units, the
units used by several classic texts on electromagnetic
theory (Landau and Lifshitz, 1960; Jackson, 1968). The
Hamiltonian of the radiation is given by the familiar ex-
pression

Ĥr5E dx
Ê21Ĥ2

8p
, (3.11)

where Ê52Â˙/c and Ĥ5¹3Â. In the Schrödinger rep-
resentation, the operators ĴS and ÂS act on different
sets of occupation-number states and therefore com-
mute.

IV. TIME-DEPENDENT CURRENT-DENSITY OPERATORS

Here we introduce time-dependent current-density
operators, which are usually referred to as operators in

the Heisenberg representation. We expand these opera-
tors in powers of the electromagnetic field, keeping only
the field-independent and linear terms. The field-
independent operator is the spontaneous current, and
the operator linear in the field is the induced current.
The induced current is described in terms of a suscepti-
bility that is related to the averages of the commutator
of the spontaneous current-density operators. This is
known as the Kubo formula. We derive the fluctuation-
dissipation theorem, which relates correlation functions
of the spontaneous current-density operators to the
imaginary part of the susceptibility. The fluctuation-
dissipation theorem is extended to the case of an
electron-hole system with different quasi-Fermi levels,
which allows us to describe how the correlation func-
tions depend on the level of population inversion. We
also develop a procedure for evaluating higher-order
correlation functions of the spontaneous current-density
operators.

A. Time-dependent operators

The operators Ĥe and ĴS defined by Eqs. (3.8) and
(3.9) are regarded as operators in the Schrödinger rep-
resentation. In this representation, the wave function de-
pends on time, but the operators are time independent.
The time dependence of physical quantities results from
the time dependence of the wave function. There is an-
other way to calculate the time-dependent averages of
physical quantities, and that is to use the Heisenberg
representation as was done in Eqs. (2.3)–(2.5). Consider
a time-independent operator ÔS in the Schrödinger rep-
resentation. The matrix element between states A and
B is

^cA~ t !uÔSucB~ t !&[^cA~ t0!uÔ~ t !ucB~ t0!&. (4.1)

On the right side of this expression, Ô(t) is the Heisen-
berg operator [Eq. (2.5)], which acts on the initial states.
We can now find a formal solution of the Schrödinger

equation:

i\ċS5@Ĥe1Ĥ int~ t !#cS . (4.2)

In the case of an electromagnetic interaction, the inter-
action is small and can be treated by perturbation
theory. We shall follow a procedure that was developed
for quantum field theory and introduce another repre-
sentation, the interaction representation (Abrikosov
et al., 1963). In this representation, the wave function
cI is related to cS by

cS~ t !5expS 2
i

\
Ĥet DcI~ t !. (4.3)

The purpose of this substitution is to remove the large
term Ĥe from the Schrödinger equation. Substituting
Eq. (4.3) into Eq. (4.2), we see that cI obeys a Schrö-
dinger equation with an effective time-dependent but
small Hamiltonian ĤI(t):

i\ċI~ t !5ĤI~ t !cI~ t !, (4.4a)
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ĤI~ t ![expS i\ Ĥet D Ĥ int~ t !expS 2
i

\
Ĥet D . (4.4b)

Substituting Eq. (4.3) into the expression for the average
value of operator ÔS given in Eq. (4.1), we have

^cA~ t !uÔSucB~ t !&5^cAI~ t !uÔI~ t !ucBI~ t !&, (4.5)

where

ÔI~ t ![expS i\ Ĥet D ÔSexpS 2
i

\
Ĥet D (4.6)

is an operator in the interaction representation.
We can solve the Schrödinger equation for cI(t) [Eq.

(4.4)], the time evolution of the wave function, in the
interaction representation. The well-known formal solu-
tion of this equation is

cI~ t !5Ŝ~ t ,t0!cI~ t0!, (4.7a)

Ŝ~ t ,t0!5T̂FexpF2
i

\Et0
t
ĤI~u !duG G , (4.7b)

where T̂ is a time-ordering operator (not needed in what
follows) and Ŝ(t ,t0) is the evolution operator (Abriko-
sov et al., 1963). If we take t0 to be an early time 2` ,
when there is no interaction, and then turn on the inter-
action slowly, the initial states cS(t0) and cI(t0) are the
same. We can now express the matrix element at time
t in terms of the initial states:

^cAI~ t !uÔI~ t !ucBI~ t !&

5^cA~ t0!uŜ~ t ,t0!
21ÔI~ t !Ŝ~ t ,t0!ucB~ t0!&. (4.8)

Comparing this equation with the definition of the
Heisenberg operator in Eq. (4.1), we see that

Ô~ t !5S~ t ,t0!
21ÔIS~ t ,t0!. (4.9)

Expanding the evolution operator [Eq. (4.7b)], we find

Ŝ~ t ,t0!512
i

\Et0
t
ĤI~u !du1••• , (4.10)

and keeping only the zeroth- and first-order terms, we
arrive at an approximate expression for the Heisenberg
operator Ô(t),

Ô~ t !.ÔI~ t !1
i

\Et0
t
@ĤI~u !,ÔI~ t !#du . (4.11)

B. Spontaneous and induced current

We call the current density existing in the absence of a
field the spontaneous current density Ĵ(t) associated
with a small volume V . The Heisenberg operator for a
current density in the presence of a field is given by
substituting Ĥ int of Eq. (3.10) into the formula for con-
structing the approximate Heisenberg operator [Eq.
(4.11)]:

Ĵtot~ t !5Ĵ~ t !2
iV

\cE2`

t
@Ĵ~u !,Ĵ~ t !#Â~u !du , (4.12)

where Â(t) is the Heisenberg operator for the external
field. The meaning of the external field is that it excludes
that part of the field emitted from within the volume
V . The external field originates in other volumes. We
call this operator Ĵtot(t) because it is the sum of the
spontaneous current density and a current density in-
duced by an external field. The first term is the sponta-
neous current, a current not induced by the field. It is
the source of the noise field and can be regarded as a
quantum Langevin force.
The second term in Eq. (4.12) is proportional to the

commutator of the spontaneous current at different
times. It also has a fluctuating part, but, in the spirit of
low-order perturbation theory, we shall neglect a Lange-
vin force proportional to the electromagnetic field and
replace the commutator in the second term by its aver-
age value over the electron states. With this assumption,
and substituting u5t2t into Eq. (4.12), we find Ĵtot(t)
has the form

Ĵtot~ t !5Ĵ~ t !1Ĵind~ t !, (4.13a)

Ĵind~ t !52
iV

\cE0
`

^@Ĵ~ t2t!,Ĵ~ t !#&Â~ t2t!dt .

(4.13b)

We see that Ĵtot(t) is the sum of a spontaneous cur-
rent term Ĵ(t) that is independent of field and an in-
duced current Ĵind(t) that is proportional to the external
field.

C. Time dependence of the spontaneous current

We want to find the time dependence of Ĵ(t) in the
interaction representation. Applying Eq. (4.6) for the
time dependence of an operator in the interaction rep-
resentation to the operator for the current density, we
find

Ĵ~ t !5expS i\ Ĥet D ĴSexpS 2
i

\
Ĥet D

5
e

mV(
k
pkexpS i\ Ĥet D âvk† âckexpS 2

i

\
Ĥet D

1H.c.,

5
e

mV(
k

@pkâvk
† ~ t !âck~ t !1pkâck

† ~ t !âvk~ t !# ,

(4.14)

where âck(t)5exp@(i/\)Ĥet#âckexp@2(i/\)Ĥet#, etc., and
pk[^vkupuck&.
The time dependence of âck(t) is readily found by

differentiating this operator and applying the anticom-
mutation rules, Eq. (3.4). We find

dâck
dt

5
i

\
@Ĥe , âck#5

i

\
«ck@ âck

† âck , âck#52
i

\
«ckâck ,

(4.15)

with the solution
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âck~ t !5exp~2i«ckt/\!âck . (4.16a)

Similarly, we write

âvk~ t !5exp~2i«vkt/\!âvk . (4.16b)

Substituting the time-dependent creation and destruc-
tion operators into the equation for Ĵ(t), we have

Ĵ~ t !5(
k
ĵkexp~2ivkt !1 ĵ k

†exp~ ivkt !,

[ ĵ~ t !1 ĵ~ t !†, (4.17a)

where

ĵ k5
epk
mV

âvk
† âck (4.17b)

and

vk5
«ck2«vk

\
(4.17c)

is the optical transition frequency (shown in Fig. 3).
We see that Ĵ(t) is the sum of two terms having posi-

tive and negative frequencies, where exp(2ivkt) is de-
fined as a positive-frequency component. The positive-
frequency current ĵ(t) is associated with downward
transitions. It destroys a conduction-band electron and
creates a valence-band electron. The negative-frequency
current ĵ(t)† is associated with upward transitions. The
analogy between these operators and the photon cre-
ation and annihilation operators is illustrated in Fig. 2.
The order of a pair of operators ĵ(t1) and ĵ†(t2) is

important because these operators do not commute. We
will refer to the pair ĵ†(t2) ĵ(t1) with the positive fre-
quency current density to the right as ‘‘normally or-
dered’’ and to the pair ĵ(t1) ĵ

†(t2) with the positive fre-
quency current density to the left as ‘‘antinormally
ordered.’’ This notation will also be used in referring to
pairs of positive and negative frequency components of
the field.

D. Kubo’s formula for the induced current

We can simplify the formula for the induced current,
Eq. (4.13b), by separating the positive and negative fre-
quency terms using Eq. (4.17). We can also write the
vector potential Â(t) as a sum of positive- and negative-
frequency components:

Â~ t !5E
0

` dv

A2p
~Âve

2ivt1Âv
† eivt!. (4.18)

The current induced by a single positive-frequency Fou-
rier component Âvexp(2ivt) is given by Eq. (4.13) as

ĵ ind~ t !52
iV

\cE0
`

dt^@Ĵ~ t2t!,Ĵ~ t !#&eivtÂve
2ivt.

(4.19)

We make the assumption of ‘‘stationarity,’’ that the
average ^Ĵ(t2t)Ĵ(t)& is independent of the absolute

time t . Since, when interactions are included, the corre-
lation function decays in a polarization relaxation time
(Kazarinov et al., 1982), which for a semiconductor is
less than a picosecond, stationarity actually means that
the electron distribution is not changing during this time.
With this assumption, we write

^@Ĵ~ t2t!,Ĵ~ t !#&5^@Ĵ~0 !,Ĵ~t!#&52^@Ĵ~t!,Ĵ~0 !#&.
(4.20)

The commutation rules in Eq. (3.4) show that ĵ(t)
and ĵ(t8) commute, so only the combinations
^@ j(t),j†(0)#& and ^@ j(t)†,j(0)#& contribute to the com-
mutator. Only the first of these has a positive frequency
exp(2ivkt) capable of canceling exp(ivt) and giving a
resonant term. Keeping only this term, we have

ĵ ind~ t !5x~v!Âve
2ivt, (4.21)

where

x~v![
iV

\cE0
`

^@ ĵ~t!, ĵ†~0 !#&eivtdt . (4.22)

This is Kubo’s formula relating the susceptibility to the
average value of the spontaneous current commutator at
two times (Kubo, 1966; Martin, 1968).
A formula for x9(v)5(x(v)2x(v)* )/2i is found by

taking the complex conjugate of Eq. (4.22). The formula
for 2x(v)* is the same as x(v), but with the limits of
integration changed to 2` and 0, so the imaginary part
of the susceptibility x9(v) is given by

FIG. 3. Parameters of the semiconductor model. The energy
diagram of a biased semiconductor is shown with the
conduction- and valence-band energies «c and «v as functions
of wave vector k . These energies are separated by \vk . The
positions of the quasi-Fermi levels mc and mv of the carriers in
the conduction and valence bands are shown by dashed lines.
In semiconductor lasers, the quasi-Fermi levels are separated
by eV, where V is the bias voltage at the active layer.
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x9~v!5
V

2\cE2`

`

~^ ĵ~t! ĵ†~0 !&2^ ĵ†~0 ! ĵ~t!&!eivtdt .

(4.23)

We can evaluate x(v) for a system of noninteracting
one-electron states. In a system with interacting states
the correlation function ^j(t)j(0)†& decays in about an
electron-scattering time. We shall mimic this behavior in
a noninteracting system by adding e2et to the integrand
in Eq. (4.22) for x(v), where e→0 in our model of non-
interacting electrons. This will ensure convergence of
the integral. Using Eq. (4.17) to express ĵ(t) in terms of
frequency components and creation and destruction op-
erators, we find

x~v!5
ie2

\cVm2(
k

upku2^@ âvk
† âck , âck

† âvk#&

3E
0

`

ei~v2vk!t2etdt . (4.24)

Evaluating the average of the commutator with the rules
of Eq. (3.4) and then doing the integral leads to

x~v!5
e2

\cVm2(
k

upku2~ n̄vk~12n̄ck!2~12n̄vk!n̄ck!

vk2v2ie
,

(4.25)

where n̄ck[^âck
† âck& is the average occupation of state

ck , etc. Converting the sum to an integral with
(k→V*(dN/dvk)dvk and noting that the imaginary
part of (vk2v2ie)21 is pd(vk2v), we can write

x9~v!5
dN

dvk

pe2

\cm2 upku2@ n̄vk~12n̄ck!2~12n̄vk!n̄ck#

(4.26)

evaluated at vk5v . We see that the imaginary part of
the susceptibility is the difference between contributions
of the upward and downward optical transitions at v
and is weighted by the average occupation factors asso-
ciated with these transitions.

E. Fluctuation-dissipation theorem

The imaginary part of the susceptibility [Eq. (4.23)] is
the Fourier transform of the difference of antinormally
and normally ordered correlation functions of spontane-
ous current-density operators at two different times.
These same Fourier integrals occur when we seek the
correlation functions of the frequency components of
the spontaneous current-density operators. A positive-
frequency component of the spontaneous current opera-
tor is given by

ĵv5
1

A2p
E

2`

`

dtĵ~ t !eivt. (4.27)

The correlation function of the frequency components
of the spontaneous current density is

^ ĵv ĵv8
† &5

1
2pE2`

`

dtei~v2v8!tE
2`

`

dt^ ĵ~ t1t! ĵ†~ t !&eivt.

(4.28)

Due to stationarity, the average in this equation is inde-
pendent of t , and the integral over t becomes a delta
function:

^ ĵv ĵv8
† &5E

2`

`

dt^ ĵ~t! ĵ†~0 !&eivtd~v2v8!. (4.29a)

Similarly, we write

^ ĵv8
† ĵv&5E

2`

`

dt^ ĵ†~0 ! ĵ~t!&eivtd~v2v8!. (4.29b)

The difference of the two correlation functions is related
to x9(v) by Eq. (4.23):

^ ĵv ĵv8
† &2^ ĵv8

† ĵv&5
2\c

V
x9~v!d~v2v8!. (4.30)

By finding the ratio of ^ ĵv ĵv8
† & and ^ ĵv8

† ĵv&, we can relate
these averages individually to x9(v). These relation-
ships constitute the fluctuation-dissipation theorem.
We can find the ratio of these correlation functions by

evaluating ^ ĵv ĵv8
† & with our semiconductor model. The

Fourier component is found by taking the Fourier trans-
form of ĵ(t) defined by Eq. (4.17):

ĵv5
1

A2p
(
k
ĵkE

2`

`

dt exp~ i~v2vk!t !

5A2p(
k
ĵkd~v2vk!. (4.31)

The average product ^ ĵv ĵv8
† & is found using ^jkjk8

† &
= ^jkjk

†& dkk8 and d(v2vk)d(vk2v8)=d(v2vk)d(v2v8).
It is

^ ĵv ĵv8
† &52p(

k
^jkjk

†&d~v2vk!d~v2v8!. (4.32)

The (kd(v2vk) can be replaced by V(dN/dvk) evalu-
ated at vk5v , and the average ^jkjk

†& can be evaluated
using Eq. (4.17b). This results in

^ ĵv ĵv8
† &5

dN

dvk

2pe2upku2

m2V
n̄vk~12n̄ck!d~v2v8!,

(4.33a)

where the matrix element and the density of states are
evaluated at vk5v . Similarly, the other order of the
correlation function is

^ ĵv8
† ĵv&5

dN

dvk

2pe2upku2

m2V
~12n̄vk!n̄ckd~v2v8!.

(4.33b)

Notice that the general relation between the difference
in correlation functions and x9 [Eq. (4.30)] is satisfied by
the semiconductor model [see Eqs. (4.33) and (4.26)].
The ratio of correlation functions is just the ratio of

occupation factors associated with the upward and
downward rates:
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^ ĵv ĵv8
† &

^ ĵv8
† ĵv&

5
n̄vk~12n̄ck!

~12n̄vk!n̄ck
. (4.34)

The ratio is determined by the level-occupation factors
associated with upward and downward transitions. We
show in Sec. IV.G that this ratio is more conveniently
written in terms of n̄v , the average optical-mode occu-
pation factor of photons in equilibrium with a biased
semiconductor:

^ ĵv ĵv8
† &

^ ĵv8
† ĵv&

5
n̄v11

n̄v

. (4.35)

We use this ratio [Eq. (4.35)] and the difference in
correlation functions [Eq. (4.30)] separately to evaluate
the correlation functions in terms of x9(v):

^ ĵv ĵv8
† &5

2\c

V
x9~v!d~v2v8!~ n̄v11 !, (4.36a)

^ ĵv8
† ĵv&5

2\c

V
x9~v!d~v2v8!n̄v . (4.36b)

These equations are precisely the fluctuation-dissipation
theorem of Callen and Welton (1951). A derivation can
also be found in Landau and Lifshitz (1958b). The deri-
vation given here includes quasithermal equilibrium
(discussed in Sec. IV.G) and correlations of noncom-
muting operators not considered in the earlier deriva-
tions. Another derivation of the fluctuation-dissipation
theorem that includes these effects has been given by
Marani and Lax (1995). The fluctuation-dissipation
theorem is general and depends only on the form of the
current-field interaction H int given by Eq. (3.10). Notice
that no details of the semiconductor model appear in
Eq. (4.36).
The correlation functions of the spontaneous currents

[Eq. (4.36)] are proportional to the rates of upward and
downward optical transitions. However, x9(v) and the
dissipation rate are proportional to the net rate of up-
ward transitions, which is the difference in the two rates.
Thus expression of the individual correlation functions
in terms of x9 requires additional information. This is
supplied by the factors n̄v11 and n̄v .
The fluctuation-dissipation theorem can be general-

ized to correlations between operators at different spa-
tial points. So far we have been considering a small vol-
ume V , with dimensions small compared to the
wavelength of light, but large enough to contain thou-
sands of carrier states. Suppose we divide the system of
interest into many of these volumes. It is reasonable to
assume that the spontaneous currents associated with
carriers in different volumes are uncorrelated. Therefore
we can generalize Eq. (4.36) to an equation for the cor-
relations of spontaneous current densities at two points
x and x8 by replacing V21 by d(x2x8).
A more thorough derivation of the spatial depen-

dence is given by Martin (1968), who relates correlation
functions to generalized susceptibilities. Applying his
method, we find that the susceptibility determines the
current induced at one point by an optical-frequency

field applied at another point. The correlation function
of the spontaneous current density falls off with spatial
separation in the same way as this generalized suscepti-
bility. Martin’s result is derived in Appendix B for the
special case of the correlation function of optical fields.
In deriving the wave equation, it will be shown in Eq.

(6.4) that the imaginary part of the susceptibility is re-
lated to more commonly used optical constants,

4p

c
x9~v!5kv~x!av~x!5

v2

c2
ev9 ~x!, (4.37)

where kv(x) is the real propagation constant, av(x) is
the attenuation coefficient, and ev9 (x) is the imaginary
part of the dielectric function. These constants are re-
lated to the real and imaginary parts of the refractive
index by kv(x)5vnv8 (x)/c and av(x)52vnv9 (x)/c .
When we use the first equality in this equation and the
delta-function substitution for V , the fluctuation-
dissipation theorem is

S 4p

c D 2^ ĵv~x! ĵv8
†

~x8!&58p\kv~x!av~x!~ n̄v~x!11 !

3d~x2x8!d~v2v8!, (4.38a)

S 4p

c D 2^ ĵv8
†

~x8! ĵv~x!&58p\kv~x!av~x!n̄v~x!d~x2x8!

3d~v2v8!. (4.38b)

F. Slowly varying envelope approximation

We are interested in describing time-dependent noise
fields with frequency components near a particular fre-
quency vS , which, for example, may be the signal fre-
quency or the frequency of the lasing mode. For a small
range of such components, the field and spontaneous
current-density operators are

Â~ t !5Â~ t !e2ivSt1Â†~ t !eivSt, (4.39a)

Ĵ~ t !5 Ĵ~ t !e2ivSt1 Ĵ†~ t !eivSt. (4.39b)

We can think of Â and Ĵ as operators for the slowly
varying envelopes of the field and current density. The
spontaneous current densities Ĵ(t) and Ĵ†(t8) have the
correlation function

^ Ĵ~x,t !Ĵ†~x8,t8!&5
1
2pE dvE dv8^ ĵv~x! ĵv8

†
~x8!&

3e2i~v2vS!t1i~v82vS!t8. (4.40)

Using the fluctuation-dissipation theorem [Eq. (4.38)] to
evaluate the correlation function, we have

S 4p

c D 2^ Ĵ~x,t !Ĵ†~x8,t8!&5
8p\

2p E kv~x!av~x!~ n̄v~x!11 !

3e2i~v2vS!~ t2t8!dvd~x2x8!.

(4.41)

The integrand is highly oscillatory except near v5vS . If
kv(x)av(x)(n̄v(x)11) is approximated as constant and
removed from the integral, the correlation functions are
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S 4p

c D 2^ Ĵ~x,t !Ĵ†~x8,t8!&>8p\kvS
~x!avS

~x!~ n̄vS
~x!11 !

3d~x2x8!d~ t2t8!, (4.42a)

S 4p

c D 2^ Ĵ†~x,t8!Ĵ~x,t !&>8p\kvS
~x!avS

~x!n̄vS
~x!

3d~x2x8!d~ t2t8!. (4.42b)

G. Equilibrium of photons and carriers in a biased
semiconductor

In a biased semiconductor (see Fig. 3), there is only
partial thermal equilibrium. The Fermi levels of each
band are separated by eV, where V is the bias voltage.
The carriers of each band are separately in thermal equi-
librium, and their one-electron states are occupied ac-
cording to Fermi statistics:

n̄ck ,vk5
1

expS «ck ,vk2mc ,v

kT D11
, (4.43)

where mc ,v are the chemical potentials or Fermi levels of
each band. The Fermi levels are separated by

mc2mv5eV. (4.44)

For true thermal equilibrium eV50. Evaluation of the
occupation factors in Eq. (4.34) shows that the ratio of
the spontaneous current correlation functions is

^ ĵv ĵv8
† &

^ ĵv8
† ĵv&

5expS \v2eV
kT D . (4.45)

It is useful to express this ratio in terms of another
parameter n̄v , which is defined as the average photon
occupation number per mode that would occur if the
photons were in equilibrium with the carriers of a biased
semiconductor. Such a hypothetical equilibrium can oc-
cur only if the photons are associated with an optical
cavity that is closed and lossless, except for optical-
absorption transitions between the semiconductor
bands. The rate of upward transitions is determined
by the level occupations and is proportional
to n̄vk(12n̄ck)n̄v . Similarly, we expect the rate of
downward transitions to be proportional to
n̄ck(12n̄vk)(n̄v11), where 1 is added to n̄v to include
spontaneous emission (see Sec. VIII.F). In steady state,
this ratio is unity and hence the ratio of correlation func-
tions becomes

^ ĵv ĵv8
† &

^ ĵv8
† ĵv&

5
n̄v11

n̄v

5expS \v2eV
kT D . (4.46)

Using this equation, we find that

n̄v5
1

expS \v2eV
kT D21

. (4.47)

With eV50, this is the familiar mode occupation de-
scribed by Planck’s formula. With eVÞ 0, it has the form

of the occupation of states of a Bose gas, with eV playing
the role of the chemical potential m . The chemical po-
tential is the free energy required to add an additional
photon. However, for a Bose gas in thermal equilibrium,
m.0 is not allowed because it results in negative occu-
pation numbers, which are unphysical.
When the Fermi levels of the two bands are separated

by eV, we are dealing with a highly nonequilibrium sys-
tem. To understand Eq. (4.47), consider a biased ideal
semiconductor enclosed within a closed lossless optical
cavity. Photons below the energy gap do not interact
with the electrons and can be thought of as separately in
equilibrium and as having a Planck distribution [Eq.
(4.47)] with m[eV50.
For this idealized case, photons above the energy gap

Eg come into equilibrium with the electrons and have
m5eV. For eV,Eg , the mode occupation number n̄v is
positive and described by Eq. (4.47). As eV approaches
the energy of the first cavity mode having \v>Eg ,
n̄v→` . The physical reason for this singular behavior is
explained in the next section [after Eq. (4.50)]. The
mode becomes a lasing mode, and this change can be
interpreted as Bose-Einstein condensation of the pho-
tons into this mode. Therefore eV cannot exceed this
energy. This limitation applies to the steady-state equi-
librium situation only.
In discussing Fig. 2, we pointed out the analogy be-

tween the current operators ĵ† and ĵ and the photon
creation and annihilation operators b̂† and b̂ . This anal-
ogy extends to the operator correlation functions. The
correlation functions of the b̂ and b̂† operators for pho-
tons in thermal equilibrium are ^b̂b̂†&5n̄v11 and
^b̂†b̂&5n̄v , showing the similarity with the fluctuation-
dissipation theorem Eq. (4.36).

H. Dependence of correlation functions on population
inversion

The spontaneous currents act as quantum Langevin
forces. These noise sources are characterized by the cor-
relation functions ^ ĵ ĵ†& and ^ ĵ† ĵ&, whose inequality shows
that these noise sources are nonclassical. These correla-
tion functions as well as x9(v) and n̄v are all dependent
on the occupation of the levels associated with transi-
tions at optical frequency v . To gain insight into how
these quantities change with the level occupation, we
consider a simple model: a cavity filled uniformly with
two-level atoms. Either the ground state or the excited
state of each atom is occupied. The levels are shown in
Fig. 4(a).
Let N be the occupation probability of the upper level

and let 12N be that of the lower level. The plots in Fig.
4 are versus N , which has a range from 0 to 1. The value
N50 corresponds to a cold system, with the upper level
unpopulated. The value N51/2 corresponds to the
point of transparency, when both levels are equally
populated. The value N51 corresponds to complete
population inversion. The upward and downward transi-
tion rates depend on the populations and are propor-
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tional to 12N and N , respectively. The imaginary sus-
ceptibility x9 is proportional to the difference in the
upward and downward rates, x9;122N . The gain (rate
of growth of a mode amplitude) is proportional to 2x9
and can be written as

G5Go~2N21 !, (4.48)

where Go is the gain at full inversion. The gain is plotted
in Fig. 4(a).
The spontaneous current correlation functions associ-

ated with gain are ^ ĵGĵG
† & and ^ ĵG

† ĵG&. The difference
between the two correlation functions is proportional to
G , and the ratio of two correlation functions is equal to
the ratio of upward and downward rates. These two con-
ditions are satisfied by

^ ĵG
† ĵG&5aGoN , (4.49a)

^ ĵGĵG
† &5aGo~12N !, (4.49b)

where a is a constant of proportionality. These correla-
tion functions are plotted in Fig. 4(b).
The ratio of the antinormally and normally ordered

correlation functions is equal to the ratio of
(n̄v11)/n̄v [Eq. (4.46)]. Using this relation and Eq.
(4.49), we find

n̄v5
N

122N
. (4.50)

This relation is plotted in Fig. 4(c). We see that n̄v is
zero for a cold system, becomes singularly large at the
transparency point, and becomes negative when popula-
tion inversion occurs.
For a lossless cavity, the photons of a cavity mode,

with \v equal to the level separation, will come into
equilibrium with the system of two-level atoms. Then,
n̄v equals the number of photons in the mode. This sin-
gular growth of the number of photons is a Bose-
Einstein condensation. (In a semiconductor, this hypo-
thetical situation takes place when eV→\v .) The
photon number n̄v is determined by the balance of
spontaneous emission and optical absorption. The latter
goes to zero at the transparency point, resulting in the
singular growth of n̄v . Population inversion cannot oc-
cur in the case of thermal equilibrium, so negative n̄v

and unphysical negative numbers of photons do not oc-
cur, as we discussed previously.
A real laser has cavity losses, and a true reversible

equilibrium does not exist. Instead, there is a steady
state, with the energy lost continually being resupplied,
and population inversion is possible. It is customary to
describe population inversion by a new positive param-
eter nsp[2n̄v . Accordingly, we write

nsp5
N

2N21
. (4.51)

Suppose a uniform loss G , shown in Fig. 4(a), exists in
the cavity. It will be shown in Sec. VIII.B that the aver-
age photon number of a laser mode, for a uniform
closed cavity, is given by

^P̂&5
Gnsp

~G2G !
. (4.52)

Let N th be the threshold population for which
G(N th)5G , as shown in Fig. 4(a). From the above equa-
tions relating nsp and G to N , we find

^P̂&5
N

2N th22N
, (4.53)

which is plotted in Fig. 4(c). The photon number in-
creases with N in a manner quite similar to that of Bose-
Einstein condensation, as described by Eq. (4.50).
In practice, laser threshold current is found by plot-

ting laser power versus current and extrapolating lin-
early back to the current of zero power. The gain is

FIG. 4. Dependence of the gain, the correlation functions of
Langevin forces, and the photon number on level population.
The population of the upper level N ranges from 0 to 1. The
correlation functions of the Langevin force and spontaneous
currents are order independent (classical) at the values of N
corresponding to laser threshold, shown by the light vertical
lines for lossless and lossy cavities. At these values, the nor-
mally ordered and antinormally ordered correlation functions
in (b) are equal. This classical condition is approached as the
photon number increases. The plot of photon number has a
range of 20. Actual lasers have photon numbers 3–4 orders of
magnitude higher than this. Population inversion occurs at
N51/2. For N.1/2, n̄v,0 and the positive parameter
nsp52n̄v is used.
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nearly pinned at the value corresponding to the thresh-
old current and asymptotically approaches G(Nth) with
increasing power.
Associated with the loss will be a spontaneous current

ĵG(t). The total Langevin force will then be

F̂~ t !; ĵG~ t !1 ĵG~ t !. (4.54)

We shall assume that the loss comes from a cold ab-
sorber. The correlation functions are

^ ĵG
† ĵG&50, (4.55a)

^ ĵG ĵG
† &5aG , (4.55b)

where a is the same constant of proportionality used in
estimating the correlation functions associated with gain.
In the absence of loss, F̂(t); ĵG(t) and the two corre-

lation functions ^F̂†F̂& and ^F̂F̂†& are linear functions of
N that cross at N51/2, where the singular buildup in
photons due to Bose-Einstein condensation occurs, as
shown in Fig. 4. With the inclusion of loss, there is an
additional contribution to ^F̂F̂†&, shifting the crossing
point of the Langevin force correlation functions to that
of laser threshold N th , as shown in Fig. 4. The equality
of the Langevin force correlation functions at laser
threshold is easily established. Their difference is

^F̂†F̂&2^F̂F̂†&5^ ĵG
† ĵG&2^ ĵGĵG

† &2^ ĵG ĵG
† &

5aGo~2N21 !2aG

5a~G2G!. (4.56)

At threshold, G5G and the two correlation functions
become equal. The two crossings of the normally and
antinormally ordered correlation functions, shown in
Fig. 4(b), occur where the photon number becomes infi-
nite. It appears that whenever the photon number be-
comes large, the classical condition of commuting
Langevin forces is approached, and the fields generated
by these forces can be treated as classical. This will be
shown more generally in Sec. VIII.A.
In a semiconductor, population inversion occurs for

eV.\v , and av and n̄v become negative. It is conven-
tional to work in terms of positive parameters
nsp52n̄v and gv52av . The following changes are
made in this case:

av→2gv , (4.57a)

n̄v→2nsp , (4.57b)

avn̄v→gvnsp , (4.57c)

av~ n̄v11 !→gv~nsp21 !. (4.57d)

I. Evaluation of higher-order correlation functions

The average product of arbitrary numbers of sponta-
neous current operators Ĵ(t) and Ĵ†(t8) can be calcu-
lated in terms of pair averages. These higher moments
are used later to calculate the probability distribution of
fluctuating fields and photon numbers. For example, we
can find the distribution of photons in a nonlasing mode.
The spontaneous current for frequencies near vS can

be expressed as

Ĵ~ t !5(
k
ĵke

2i~vk2vS!t, (4.58)

where ĵ k5(epk /mV) âvk
† âck . The average is ^ Ĵ(t)&50

since the operators âvk
† and âck act on states of different

bands and their thermal averages among these states are
zero. Similarly, averages of odd numbers of Ĵ(t) and
Ĵ(t8)† are zero.
Only pairs involving âck and âck

† or âvk and âvk
† are

nonzero. Therefore

^ Ĵ~ t !Ĵ†~ t8!&5(
k

S eupku
mV D 2^ âvk† âvk&

3^âckâck
† &e2i~vk2vS!~ t2t8!

5(
k

^jkjk
†&e2i~vk2vS!~ t2t8!. (4.59a)

Similarly, we write

^ Ĵ†~ t8!Ĵ~ t !&5(
k

^ ĵ k
† ĵ k&e

2i~vk2vS!~ t2t8!. (4.59b)

The averages ^ Ĵ(t) Ĵ(t8)& and ^ Ĵ(t)†Ĵ(t8)†& are zero be-
cause the operator pairs do not contain pairs of creation
and destruction operators of the same state.
We can develop a general rule for calculating higher-

order averages by calculating the average of two Ĵ(t)
and two Ĵ(t)† operators:

^ Ĵ~ t1!Ĵ
†~ t2!Ĵ~ t3!Ĵ

†~ t4!&5(
k1

(
k2

(
k3

(
k4

^ ĵ k1 ĵ k2
† ĵ k3 ĵ k4

† &

3e2i~vk1
2vS!t1 . . . . (4.60)

The average ^ ĵ k1 ĵ k2
† ĵ k3 ĵ k4

† & is nonzero only if the ki’s are
equal in pairs or if all four ki’s are equal:

^ Ĵ~ t1!Ĵ
†~ t2!Ĵ~ t3!Ĵ

†~ t4!&5(
k1

^ ĵ k1 ĵ k1
† &(

k3
^ ĵ k3 ĵ k3

† &e2i~vk1
2vS!~ t12t2!e2i~vk3

2vS!~ t32t4!

1(
k1

^ ĵ k1 ĵ k1
† &(

k3
^ ĵ k3
† ĵ k3&e

2i~vk1
2vS!~ t12t4!e2i~vk3

2vS!~ t32t2!

1(
k1

^ ĵ k1 ĵ k1
† ĵ k1 ĵ k1

† &e2i~vk1
2vS!~ t12t21t32t4!. (4.61)
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The first two terms come from pairing âc and âc
† opera-

tors and pairing âv and âv
† operators that belong to the

same pair of current operators. The last term comes
from additional pairings of creation and annihilation op-
erators when this is not the case. There is no need to
discuss this last term because the case of all operators
with the same k occupies a smaller region of phase space
and can be neglected. If we neglect the last term, we
have

^ Ĵ~ t1!Ĵ
†~ t2!Ĵ~ t3!Ĵ

†~ t4!&5^ Ĵ~ t1!Ĵ
†~ t2!&^ Ĵ~ t3!Ĵ

†~ t4!&

1^ Ĵ~ t1!Ĵ
†~ t4!&

3^ Ĵ†~ t2!Ĵ~ t3!&. (4.62)

This simple result resembles Wick’s theorem for aver-
ages of creation and annihilation operators at a finite
temperature (Abrikosov et al., 1963), and we shall refer
to this result as ‘‘Wick’s theorem.’’ As applied to our
case, it states that an average of the product of an even
number of Ĵ(t) and Ĵ†(t8) operators can be expanded as
a sum of the averages of all possible pairings of the op-
erators.
We can summarize the rules of obtaining averages: (1)

averages of odd Ĵ’s are zero; (2) averages need equal
numbers of Ĵ’s and Ĵ†’s; (3) the average equals the sum
of all possible pairings, which is similar to Wick’s theo-
rem in quantum field theory.
Similar rules were found by Senitsky (1960, 1961),

who wrote pioneering papers discussing the quantized
harmonic oscillator with loss and noise, and occur as
well in the classical theory of Brownian motion (Wang
and Uhlenbeck, 1945).

V. OPTICAL TRANSITIONS OF CARRIERS

In this section, we deduce an equation for the rate of
optical transitions of carriers. Spontaneous currents con-
tribute to the rate, causing recombination-generation
noise and spontaneous emission. Let us calculate the

rate of change Ṅ̂(t) of electrons in the conduction band
as a result of interaction with the electromagnetic field
Â(t). In the Schrödinger representation, the operator
N̂S is

N̂S[(
k
âck
† âck . (5.1)

In the Heisenberg representation, this operator is

N̂~ t !5expS i\ Ĥt D N̂SexpS 2
i

\
Ĥt D , (5.2)

where the total Hamiltonian is Ĥ5Ĥe1Ĥ int1Ĥr . The
rate of change of N̂(t) can be found by differentiating
this equation. This results in the term @Ĥ ,N̂S# . The op-
erators Ĥe and N̂S are constructed from the same opera-
tors âck

† âck and therefore commute. The field operators
in the Schrödinger representation do not affect carrier
occupation numbers and, similarly, the electronic opera-

tors do not affect the photon occupation numbers, so
these operators commute. That is, @Ĥr ,N̂S#50. Thus
only the contribution @Ĥ int ,N̂S# is nonzero and

dN̂~ t !

dt
5

i

\
exp~ iĤt/\!@Ĥ int ,N̂S#exp~2iĤt/\!. (5.3)

We can work out this commutator in the Schrödinger
representation, where

Ĥ int52
V

c
~ ĵ S1 ĵ S

† !~ÂS1ÂS
† !. (5.4)

It is easily shown, using the explicit forms of N̂S in Eq.
(5.1) and ĵ S and ĵ S

† in Eq. (3.9) and applying the commu-
tation rules in Eq. (3.4), that

@ ĵ S ,N̂S#5 ĵ S , @ ĵ S
† ,N̂S#52 ĵ S

† . (5.5)

With these results, we find

dN̂~ t !

dt
52

iV

\c
eiĤt/\~ ĵ S2 ĵ S

† !~ÂS1ÂS
† !e2iĤt/\,

52
iV

\c
@ Ĵ tot~ t !e

2ivSt2 Ĵ tot
† ~ t !eivSt#

3@Â~ t !e2ivSt1Â~ t !†eivSt# , (5.6)

where Ĵ tot(t) is the sum of spontaneous and induced cur-
rents and Â(t) is the amplitude of the field in the slowly
varying envelope approximation. The dependence of
N̂(t) on t is slow compared to an optical frequency, so
there is no need to keep terms Ĵ(t)Â(t)e22ivSt and
Ĵ†(t)Â†(t)e2ivSt, which are at twice the optical fre-
quency. Averaging over an optical period nulls the con-
tribution of these terms. Without these terms,
dN̂(t)/dt reduces to

dN̂~ t !

dt
5
iV

\c
@ Ĵ tot~ t !

†Â~ t !2Â†~ t !Ĵ tot~ t !# . (5.7)

We have rearranged the order of Â(t)† and Ĵ(t). With
this ordering, the operator is Hermitian and normally
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ordered. The operators ÂS
† and ĴS commute in the

Schrödinger representation and thus can be taken in ei-
ther order. The commutation rules of operators do not
change as we go from the Schrödinger to the Heisenberg
representations. The order independence of dN̂(t)/dt
will be discussed at greater length in Appendix A.
The operator Ĵ tot(t) can be written as

Ĵ tot~ t !5
1

A2p
E dvx~v!Âve

2i~v2vS!t1 Ĵ~ t !. (5.8)

For a narrow range of optical frequencies near vS ,
x(v)'x(vS) and

Ĵ tot~ t !5x~vS!Â~ t !1 Ĵ~ t !. (5.9)

Expressing x(vS)9 in terms of the absorption and
propagation constants [Eq. (4.37)], we obtain the rate of
change of carrier number,

dN̂~ t !

dt
5
akV

2p\
Â†~ t !Â~ t !1F̂N~ t !, (5.10)

where

F̂N~ t !5
iV

\c
~ Ĵ†~ t !Â~ t !2Â†~ t !Ĵ~ t !!. (5.11)

The first term of Eq. (5.10) is the average rate of optical
transitions given by the golden rule (Landau and Lif-
shitz, 1958a, Sec. 42). The second term of Eq. (5.10),
F̂N(t), is a Langevin force representing fluctuations in
the carrier transition rate brought about by the field’s
interacting with the spontaneous current. [Subscript N
refers to the variable N̂(t).] The average value of
F̂N(t) is not zero because a small part of the field is
generated by spontaneous currents within V and con-
tributes to a nonzero average value of F̂N(t), which is
the average spontaneous-emission rate. We shall discuss
this in Sec. VIII.D.
The behavior of one or several variables driven by

white noise is conveniently described by Langevin rate
equations, such as Eq. (5.10). The Langevin rate equa-
tion expresses the rate of change of a variable as the sum
of a steady change, the drift term, and a fluctuating
change, the Langevin force. Langevin forces cause fluc-
tuations, while drift terms restore the system to its
steady state (Lax, 1960, 1968). The correlation functions
of the random forces at two times are delta functions
[see Eq. (5.13)]. For example, a semiconductor laser op-
erating above threshold is often described by three vari-
ables: phase, photon number, and minority-carrier num-
ber. There are three coupled Langevin rate equations
and a matrix of diffusion coefficients describing the cor-
relations of the three noise sources (see, for example,
Henry, 1983). Equation (5.10) represents only the rate
of change of carriers due to optical transitions. Addi-
tional terms are needed to fully characterize the fluctua-
tions of carriers in a laser and to determine the steady-
state carrier density [see Eq. (8.51)].
The Fokker-Planck equation provides an alternative

method of describing classical noise fluctuations. It is a

partial differential equation for the probability distribu-
tion of a system as a function of the variables and time
(Lax, 1968). The same drift and diffusion coefficients
enter into both the Langevin rate equations and the
Fokker-Planck equation. The name ‘‘diffusion coeffi-
cient’’ is appropriate because, in the absence of restoring
forces (drift terms), the Fokker-Planck equation reduces
to a diffusion equation. This is the case for the phase of
a laser, and phase noise is often referred to as phase
diffusion.
The fluctuations in the recombination rate occur be-

cause the field, whose source is external to V, beats with
the spontaneous currents within V. This noise is charac-
terized by the autocorrelation function of F̂N(t). We cal-
culate this quantity, regarding Â(t) as external in origin
and uncorrelated with the spontaneous current:

^F̂N~ t !F̂N~ t8!&5
V2

\2c2
@^ Ĵ†~ t !Ĵ~ t8!&^Â~ t !Â†~ t8!&

1^ Ĵ~ t !Ĵ†~ t8!&^Â†~ t !Â~ t8!&# . (5.12)

Evaluating the averages of the spontaneous currents
[Eq. (4.42)] results in

^F̂N~ t !F̂N~ t8!&5
akV

2p\
@~ n̄vS

11 !^Â†~ t !Â~ t !&

1n̄vS
^Â~ t !Â†~ t !&#d~ t2t8!. (5.13)

The coefficient of d(t2t8) is the sum of two terms. In
the usual notation, this coefficient is 2DNN . The two
terms are the rates of induced upward and downward
transitions. This can be seen as follows. In the case of an
external classical field, we can neglect the difference of
^Â†Â& and ^ÂÂ†& ; then the difference of the two terms
is just the net transition rate given by the first term in
Eq. (5.10). The ratio of the two terms is (n̄v11)/n̄v ,
which was shown to be the ratio of the upward and
downward rates [Eq. (4.46)]. This is exactly what is
found in carrier recombination-generation statistics,
where 2DNN is just the sum of the rate of generation
and the rate of recombination (Lax 1960, 1968).
The equation for the rate of optical transitions of car-

riers can be understood as the rate of transfer of energy
between an electromagnetic field and a system of carri-
ers. Recall the well-known result of classical electrody-
namics. The rate of work done by an electric field E per
unit volume on a system of charges with current density
J is given by E·J; see Jackson (1968). If we regard E and
J as operators, express the field in terms of the vector
potential, expand the current density in terms of induced
and spontaneous contributions, and identify the work
done as @dN̂(t)/dt#\vS, we obtain the rate equation
(5.10).
We illustrate the phase relations between the compo-

nents of E and J in Fig. 5. There we consider the same
transverse vector components of E and J, with positive
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frequency ;exp(2ivSt). The fields are illustrated as
classical but are actually Heisenberg operators. The
phase between the external signal field Êext and the in-
duced current density Ĵ ind is constant, resulting in a con-
stant rate of optical transitions, if the signal is noise free.
This is what is predicted by the golden rule. The compo-
nent of Ĵ ind in phase with Êext is determined by x9(v). If
x9(v) is positive, the two operators are in phase, and
energy is transferred from the field to the carriers. Con-
versely, if x9(v) is negative, energy is transferred from
the carriers to the field, which is amplified.
The phase relation between this signal and the spon-

taneous current is random and results in fluctuations in
the rate of optical transitions. In addition, there is a
spontaneously emitted field that has a constant phase
relation relative to the spontaneous current.

VI. FIELD PROPAGATION

In this section, we introduce a wave equation for the
field operator and discuss the approximations that we
make in order to solve it in specific cases. This equation
contains the spontaneous current-density operator as a
source. An energy conservation equation is derived
from the wave equation. We identify terms in this equa-
tion as the energy flux density and energy density opera-
tors. These operators have normally ordered and anti-
normally ordered forms, and we discuss their physical
meaning. The difference in the two operator orderings is
associated with uncertainty-related field fluctuations. In

the case of high photon number, this difference becomes
negligible, which we interpret as the transition to classi-
cal fields.

A. Wave equation with noise sources

In using the electric and magnetic fields E and H to
describe radiation, it is convenient to write these fields
in terms of vector and scalar potentials A and F . Max-
well’s equations in a vacuum reduce to the vector wave
equation for A with a current-density source Jtot . Only
the transverse part of the current-density source enters
the vector wave equation, which holds both classically
and in the quantum theory as an operator identity
(Glauber and Lewenstein, 1991). We assume there is no
free charge, i.e., that the mobile charges are neutralized
by a static background charge. For this assumption, we
can choose F50 and express the fields as E52Ȧ/c and
H5¹3A. In the Coulomb gauge, with ¹•A50, the vec-
tor wave equation reduces to a scalar wave equation for
each transverse component (see Jackson, 1968, Sec. 6.5):

¹2Â~x,t !2
1
c2

]2

]t2
Â~x,t !52

4p

c
Ĵtot~x,t !, (6.1)

where Ĵtot(x,t) is the sum of the induced and spontane-
ous current densities.
We assume that this equation holds as an operator

identity. The hats indicate that, in the quantum theory,
Â(x,t) and Ĵtot(x,t) are Heisenberg operators acting on
the wave function of the system consisting of the elec-
tromagnetic field and carriers. We cannot describe the
wave function of the system of interacting carriers and
light explicitly. What we do know is the equilibrium dis-
tribution of the electrons and holes. We restrict our de-
scriptions to electromagnetic fields emitted by several
systems of carriers separately in equilibrium.
Solutions of Eq. (6.1) will allow us to express Â(x,t)

in terms of the sources Ĵtot(x,t). Both Â(x,t) and
Ĵtot(x,t) can be written as integrals over their frequency
components:

Â~x,t !5E
0

` dv

A2p
@Âv~x!e2ivt1Âv

† ~x!eivt# , (6.2a)

Ĵtot~x,t !5E
0

` dv

A2p
@ ĵ tot v~x!e2ivt1 ĵ tot v

† ~x!eivt# . (6.2b)

The positive- and negative-frequency components are
Hermitian conjugates, so their sum forms a Hermitian
operator.
It follows from Eqs. (4.13) and (4.21) that ĵ tot v(x) has

spontaneous and induced contributions,

ĵ tot v~x!5 ĵv~x!1xv~x!Âv~x!. (6.3)

Let us substitute Eqs. (6.2) and (6.3) into the wave equa-
tion [Eq. (6.1)] and bring the induced term to the left
side, where it contributes to the complex dielectric con-
stant, leaving only the spontaneous current density on

FIG. 5. Phase relations of current densities, vector potentials,
and electric fields. The component of J ind in phase with Eext is
determined by x9(v). When x9(v) is positive, energy is trans-
ferred from the field to the carriers, and the field is attenuated.
The energy transfer is in the form of optical transitions. When
x9(v) is negative, energy flows from the carriers to the field,
which is amplified. The phase between Jspont and Eext can take
any value and causes fluctuations in the rate of optical transi-
tions. In addition, there is a fixed phase relation between the
Jspont and Espont consistent with transfer of energy to the field
by spontaneous emission. The illustrated physical quantities
are pictured as classical; however, operator equations of mo-
tion underlie this description.
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the right side. We shall write the term with the suscep-
tibility as a squared complex propagation constant,

v2

c2
1
4p

c
x~x,v!5Fkv~x!1i

av

2
~x!G2,

'kv~x!21ikv~x!av~x!, (6.4)

where kv(x) is the real propagation constant and
av(x) is the attenuation coefficient. With these changes,
the wave equation becomes

¹2Âv~x!1@kv
2 ~x!1ikv~x!av~x!#Âv~x!52

4p

c
ĵv~x!.

(6.5)

When population inversion occurs, the attenuation coef-
ficient changes sign and becomes gain. We shall make
this change explicit by replacing the attenuation coeffi-
cient av(x) with 2gv(x), where gv(x) is the gain coef-
ficient.
In deriving the wave equation, we have used the Kubo

formula [Eqs. (4.21) and (4.22)] to replace a commutator
of spontaneous current operators by its average value,
which is the susceptibility. This procedure corresponds
to the self-consistent-field approximation. Classically, it
is the conventional procedure for accounting for the di-
electric medium.
Equation (6.5) appears linear, but nonlinearities enter

into the description of lasers and amplifiers through the
dependence of the propagation constants on carrier den-
sity and temperature. The average value of the current-
density commutator in the Kubo formula for the suscep-
tibility [Eq. (4.22)] is a function of the carrier
concentration and the carrier temperature, which are in
turn dependent on optical power. The dependence of
the carrier concentration on optical power can be found
by solving rate equations. This procedure is part of the
conventional theory of lasers and amplifiers and, for ex-
ample, results in the pinning of the Fermi levels of the
carriers in lasers above threshold. The dependence of
the carrier temperature on optical power can also be
found by solving kinetic equations; however, this part of
semiconductor laser theory is not well developed and
this nonlinearity is usually described phenomenologi-
cally by gain-saturation parameters. What is omitted
here are the effects of optical mixing and second-
harmonic generation as well as spectral hole-burning ef-
fects. However, we do cover noise phenomena in Ra-
man amplifiers in Sec. VII.F; those phenomena are
based on the mixing of the optical field of a pump with
atomic vibrations.
The above description is an approximation that has

replaced the vector wave equation with the scalar wave
equation for each component of the field. The approxi-
mation can be traced to our assumption that the charge
density is zero. In inhomogeneous dielectrics, charge ex-
ists at gradients and discontinuities of the dielectric
function, such as at interfaces. This charge results in dis-
continuities in the field at these interfaces, which do not
occur in solutions of the scalar wave equation. In most
photonics applications, the field discontinuities are

small, and the scalar wave equation is a good approxi-
mation that is often used in the calculation of modes and
light propagation. This is the case when one or more of
the following conditions exist: the dielectric discontinu-
ity is small, the mode overlap with the interface is small,
or the electric field is nearly parallel to the interface. It is
with this in mind that we use the scalar wave equation in
discussing quantum noise.

B. Green’s-function solution

Without the source, Eq. (6.5) is a classical wave equa-
tion governing propagation of light in a medium. With
ĵv(x) on the right side, this is an equation for operators.
The operator aspects of ĵv(x) show up only when we
take products of two or more operators. Then, the order
of the operators makes a difference. In many situations,
the solution is a linear relation between Âv(x) and
ĵv(x8). This relation can be found by solving the wave
equation in exactly the same way as for classical fields.
The solution is expressed through a classical Green’s
function Gv(x,x8) satisfying

¹2Gv~x,x8!1@kv
2 ~x!1ikv~x!av~x!#Gv~x,x8!

5d~x2x8!. (6.6)

The solution relating the field to the current density is

Âv~x!52
4p

c E Gv~x,x8! ĵv~x8!dx8. (6.7)

Once Gv(x,x8) is found, averages of products of
Âv(x) operators can be expressed as averages of prod-
ucts of ĵv(x). The latter averages are calculated using
the fluctuation-dissipation theorem [Eq. (4.38)] and
Wick’s theorem for finding higher-order averages, given
in Sec. IV.I.
The case of a laser above threshold is more compli-

cated than the one just described. The Green’s function
has poles in the lower half of the complex v plane that
correspond to damped modes below threshold. As the
laser approaches threshold, a pole associated with the
lasing mode approaches the real v axis and, for frequen-
cies near this pole, the Green’s function becomes reso-
nantly large. The position of the pole is determined by
the carrier number, so that the equation for carrier num-
ber must be solved simultaneously with the wave equa-
tion. Even in this case, the average steady-state laser
field above threshold is described by the Green’s func-
tion [Eq. (6.7)] with a fixed carrier density and gain.
However, small fluctuations about the steady state re-
quire an approximate simultaneous solution of the wave
equation and the carrier-density rate equation.

C. Energy conservation

In most photonics applications, we are concerned with
only a small spread of optical frequencies about a cen-
tral frequency vS , which may be that of the signal or the
laser mode. Then we can write the field as an operator
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Â(x,t) describing the amplitude of the field that is
slowly varying compared to an optical frequency [Eq.
(4.39)]. The frequency range of interest is usually small
compared to the spectral width of the material gain or
loss. Over this spectral range, we shall consider loss and
gain to be independent of the frequency and approxi-
mate the dispersion of the squared propagation constant
as linear. Near vS , we can write

kv~x!25k2~x!1
dkv

2 ~x!

dv
~v2vS!, (6.8a)

av~x!'a~x!. (6.8b)

This expansion limits us to a linear dispersion described
by a group velocity vg(x), where dkv

2 (x)/dv
52k(x)/vg(x). If necessary, additional terms describing
higher-order dispersion can be added to Eq. (6.8a).
We can find a wave equation for the slowly varying

envelope of the field Â(x,t) by Fourier transforming
the wave equation for Âv(x) [Eq. (6.5)] with
*dv/A2pexp@2i(v2vS)t# and substituting Eq. (6.8). We
find

¹2Â~x,t !1@k~x!21ik~x!a~x!#Â~x,t !

1i
dk2~x!

dv

]

]t
Â~x,t !52

4p

c
Ĵ~x,t !. (6.9)

The squared complex propagation constant in the
wave equation (6.9) is shown as time independent. How-
ever, a careful derivation starting with the time-
dependent wave equation would show that this quantity
can change in time. The time dependence is due to
changes in level occupation. The propagation constant
and loss (or gain) follow these changes adiabatically pro-
vided they take place in a time long compared to an
energy relaxation time (a few picoseconds). Then the
wave equation is unchanged. When this equation is
applied to a laser in steady-state operation,
a(x)→2g(x). For laser transients, the changes in both
propagation and gain are usually written as
Dk(x,t)2iDg(x,t)/2→(2i/2)Dg(x,t)(12ia), where a
is known as the linewidth enhancement factor (Lax,
1967a; Henry, 1982).
The energy conservation law can be derived from the

wave equation for Â(x,t) [Eq. (6.9)] in a conventional
way. This is done by multiplying this equation by
Â†(x ,t) on the left side and subtracting from this the
equation for Â†(x,t) multiplied by Â(x,t) on the right
side. In so doing, we find that the term k2Â†Â cancels
and the terms Â†¹2Â2¹2Â†Â can be rewritten as a
divergence. The result is

¹•~Â†¹Â2¹Â†Â !1i
dk2

dv

]

]t
~Â†Â !1i2akÂ†Â

2
4p

c
~ Ĵ†Â2Â†Ĵ !50. (6.10)

All terms in this equation are normally ordered, with the
positive frequency current density and field operators on

the right. Later, we shall consider similar terms that are
antinormally ordered. To distinguish the two types of
related operators, we shall use subscripts N and A to
label normal and antinormal ordering. The physical
meaning of the difference in the two operator orders will
be discussed in Sec. VI.D.
In Sec. V, Eq. (5.10), we showed that the rate of

change of the carrier density N̂ (in the conduction band)
due to interaction with the field is given by

]N̂N

]t
5

ak

2p\
Â†Â1

i

\c
~ Ĵ†Â2Â†Ĵ !. (6.11)

If we divide Eq. (6.10) by 4p\i , the last two terms of
this equation are equal to ]N̂N/]t , and the conservation
law becomes

¹•ŜN1
]ṖN
]t

1
]N̂N

]t
50, (6.12)

where

ŜN~x,t !5
1

4p\i
@Â~x,t !†¹Â~x,t !2¹Â~x,t !†Â~x,t !#

(6.13)

and

P̂N5
dk2

dv

Â~x,t !†Â~x,t !
4p\

. (6.14)

The natural interpretation of Eq. (6.12) is that, in the
interaction between the field and the carriers, the sum of
the number of photons and electrons in the conduction
band is conserved. With this interpretation, P̂N(x,t) is
the photon density operator and ŜN(x,t) is the photon
flux density operator. We are considering only a small
range of frequencies about vS . We cannot distinguish
this interpretation from that of energy conservation. If
we regard Eq. (6.12) as a law of energy conservation,
ŜN\vS is the energy flux density and P̂N\vS is the field
energy density.
In the remainder of the paper, we shall refer to ŜN

both as the photon flux density and as the energy flux
density of the optical field. It will be understood that the
latter must be multiplied by \vS to be in correct units.
Similarly, we shall refer to P̂N both as the photon den-
sity and as the energy density of the optical field. Two
names are needed because ŜA and P̂A , discussed in Sec.
VI.D, include the energy flux and energy density of the
uncertainty-related field fluctuations, which is an addi-
tional energy not due to photons.
The operators P̂N(x,t) and ŜN(x,t) are zero for

vacuum fluctuations (emission from cold sources). This
can be demonstrated by applying the fluctuation-
dissipation theorem and Wick’s theorem. These opera-
tors are related through the Green’s-function solution
[Eq. (6.7)] to the normally ordered products of sponta-
neous current operators ĵv

† (x) ĵv8(x8). The fluctuation-
dissipation theorem [Eq. (4.38)] shows that the average
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of this product is zero for cold sources. Furthermore,
applying Wick’s theorem shows that the averages of
powers of P̂N and ŜN are also zero, because these aver-
ages decompose into products of pair averages and be-
cause these products contain at least one normally or-
dered pair average, which is zero.
Another useful operator is the energy flux passing

though a surface,

Q̂N5E ŜN•da. (6.15)

We now show that it is Q̂N that is measured in photo-
detection. The photodetector can be regarded as a cold
system, with only the lower electron levels occupied. If
opaque, such a system emits only vacuum fluctuations
and has no normally ordered outward flux. The photo-
count m̂ during time T is found by integrating ]N̂N/]t
over the photodetector volume and time T . Applying
the normally ordered energy conservation equation [Eq.
(6.12)] and integrating shows that the photodetector
count is just the difference of the incident normally or-
dered energy flux Q̂Nin(t) integrated over time T and
the change of the number of photons within the detector
during time T . The latter can be neglected because the
number of photons residing within the detector is very
small compared to the number of photons received dur-
ing time T . (This is so because the time photons spend
within the photodetector is just the time to travel an
absorption length, about 10214 sec, for an absorption
length of one micron, which is much less than the values
of T that we need to consider.) We conclude that, to a
good approximation, the photodetector measures the
normally ordered energy flux:

m̂5E
0

T
Q̂Nin~ t !dt . (6.16)

Since Q̂N is zero for vacuum fluctuations and is mea-
sured by an ideally efficient opaque photodetector, we
are justified in referring to it as the ‘‘photon flux.’’

D. Uncertainty-related field fluctuations

So far we have discussed energy conservation in terms
of normally ordered operators. However, as discussed in
Appendix A, the equation for energy conservation can
also be written in terms of antinormally ordered opera-
tors for the energy density and energy flux density. The
physical meaning of these antinormally ordered opera-
tors is that, in addition to the photon flux and photon
density, they represent the energy flux and energy den-
sity associated with the uncertainty-related field fluctua-
tions. In the absence of photons, they represent these
quantities for the vacuum fluctuations.
As shown in Appendix A, the time derivative of

P̂A2P̂N and the divergence of ŜA2ŜN are zero, but
P̂AÞP̂N and ŜAÞŜN . These operators are formed from
products of the field operators Â and Â† in different
orders. These products depend on operator order be-
cause the creation and annihilation operators that com-

pose the field operators do not commute. Associated
with this operator noncommutation is an uncertainty in
the physical quantities described by these operators. The
normally ordered energy flux Q̂N(t) can be measured
directly by an opaque photodetector. The difference be-
tween Q̂A(t) and Q̂N(t) is a consequence of field uncer-
tainty, and it contributes to the fluctuations of Q̂N(t) as
shot noise on a signal. The uncertainty-related field fluc-
tuations are not affected by amplification or attenuation
because the Heisenberg field uncertainty remains con-
stant. Shot noise is the beating of the signal with these
field fluctuations and thus is a fluctuation in Q̂N(t) that
is proportional to the signal field.
This is a description of shot noise in the wave picture

of light. A conventional explanation of shot noise is that
Q̂N(t) consists of a flux of uncorrelated particles, the
photons. But the photon picture can be thought of as
originating from the Heisenberg uncertainty principle it-
self. The photon picture is based on a quantum oscillator
having equidistant discrete energy levels. This directly
follows from the commutation rules of the coordinate
and momentum of a harmonic oscillator (Landau and
Lifshitz, 1958a). For an optical mode, the coordinate is
the vector potential, which has the same phase as the
magnetic field, and the momentum is the electric field.
Thus the wave and particle pictures of shot noise have
the same origin.

FIG. 6. Growth of normally and antinormally ordered energy
density and energy flux density: (a) the energy flux in an opti-
cal amplifier vs propagation distance; (b) the energy density in
a laser vs time. The constant differences between the curves
are the corresponding values of the uncertainty-related field
fluctuations. In the absence of radiation, these fluctuations are
vacuum fluctuations (VF). This occurs at the input of the am-
plifier and for the laser at the initial time in our example.
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An important consequence of the order independence
of the divergence of the energy density is illustrated in
Fig. 6(a), which shows the energy flux propagating
through an optical amplifier with no input signal. The
average energy fluxes ^Q̂N& and ^Q̂A& are found by in-
tegrating ŜN and ŜA over the cross-sectional area of the
amplifier and averaging. As a consequence of the equal-
ity of the divergences of energy flux densities of differ-
ent operator orders [Eq. (A8)], the difference of ^Q̂N&
and ^Q̂A& is a constant equal to ^Q̂A& for the vacuum-
fluctuation noise field at the input of the amplifier. (It
was shown in Sec. VI.C that Q̂N(t)50 for vacuum fluc-
tuations.) It is clear from the figure that ^Q̂A2Q̂N& is a
constant, as we have already discussed. At high fields,
this difference becomes negligible. When the average
energy flux in a spectral range becomes large compared
to that of the vacuum fluctuations, the fields can be
treated as order independent and classical.
Similarly, Fig. 6(b) shows the growth of ^P̂N& and

^P̂A& with time for a laser, beginning at an initial time
when the laser cavity contains only vacuum fluctuations.
As a consequence of Eq. (A7), the two orders of energy
density differ only by the energy density of the vacuum
fluctuations, so when the energy density in a given spec-
tral range becomes much larger than that of vacuum
fluctuations, it can be treated as order independent and
classical.
The above discussion anticipates results to be worked

out in detail in the next two sections. Shot noise results
from the beating of the uncertainty-related field fluctua-
tions and the signal field, in both attenuators (Sec.
VII.C) and amplifiers (Sec. VII.E). At high amplifica-
tion, noise fields of an optical amplifier can be treated as
commuting and classical (Sec. VII.E). As threshold is
approached, the steady-state laser field can be treated as
commuting and classical (Sec. VIII.A).

VII. QUANTUM NOISE IN OPTICAL
WAVEGUIDE TRANSMISSION

We start our discussion of applications by considering
light propagating in a single transverse mode of a wave-
guide. The noise field emitted by spontaneous currents
from an opaque source is calculated. The real and imagi-
nary parts of this field are shown to be Gaussian distrib-
uted. The noise field emitted from a cold opaque source
mimics the field of vacuum fluctuations. For a source at
higher temperature, the noise field is that of Planck ra-
diation, and for a biased semiconductor it is light-
emitting diode radiation. The beating of the noise field
of vacuum fluctuations and a noise-free monochromatic
signal field results in shot noise measured by an ideal
opaque photodetector. The beating of an optical-signal
field with spontaneous currents causes fluctuations in the
rate of optical absorption. This would result in shot
noise in a nearly transparent photodetector. The noise
occurring in optical amplification is calculated. The
dominant noise is amplified spontaneous emission,
which at high gain can be regarded as a fluctuating clas-

sical wave field. In Raman amplification, spontaneous
currents result from lattice fluctuations mixing with the
optical field of the pump. Finally, we show that the
fluctuation-dissipation theorem, derived earlier for ab-
sorption loss, also holds for scattering loss. These results
can be found in the text at the places listed in Tables I
and II.

A. Emission from an opaque source

Let us calculate the field emitted from an opaque por-
tion of the waveguide shown in Fig. 7. The gain g(x) in
Fig. 7 will be used later in discussing the traveling-wave
amplifier, but it is ignored here. The only difference be-
tween the absorbing region, with z,0, and the transpar-
ent region, with z>0, is the presence of the absorption
coefficient a(x), where x represents both transverse co-
ordinates. Reflections at interfaces, where the absorp-
tion (or gain) changes, can be ignored. We assume the
waveguide is index guided and has a set of real ortho-
normal transverse modes fn(x). We shall only be con-
cerned with the noise field of a single transverse mode
f0(x). The field of the mode is

Âv5b̂v~z !f0~x !. (7.1)

In the transparent region the mode is given by
f0(x)exp(ik0z), where

]2f0~x !

]x2
1k2~x !f0~x !5k0

2f0~x !. (7.2)

In the opaque region, with optical absorption coefficient
a(x), k2(x)→k2(x)1ik(x)a(x), where we assume that
a(x)!k(x). A perturbation calculation shows that the
propagation constant is k01ia0/2, where

k0a05E f0
2~x !k~x !a~x !dx . (7.3)

FIG. 7. Waveguide geometry used to discuss the emission
from an opaque source and propagation in attenuating and
amplifying waveguides. An unending waveguide is shown with
absorption coefficient a(x) for z,0 and gain g(x) for
0,z,L . The gain g(x) is only nonzero for the case of an
optical amplifier. The field distribution of transverse mode
f0(x) is also shown. The vertical boundaries, indicating
changes in loss or gain, are assumed to be nonreflecting.
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The Green’s function for the generation of a field in
mode 0 by sources is given by Morse and Feshbach
(1953; see also Henry, 1986a):

G0~x,x8!5g~z ,z8!f0~x !f0~x8!, (7.4a)

where, for the case of forward propagation z>z8 and
z8<0,

g~z ,z8!5H 1
2ik0

e ~ ik02a0/2!~z2z8!, z<0,

1
2ik0

eik0z2~ ik02a0/2!z8, z.0
(7.4b)

is the z-dependent Green’s function. The complete
Green’s function, which is not needed here, is obtained
by summing over the different transverse modes. We
shall not consider the dependence of k0 on v . This ne-
glects the effect of the delay in propagation, which is not
important for this discussion.
Using the G0(x,x8) to express the field at z.0 in

terms of the ĵv , we obtain the Green’s-function solution
[Eq. (6.7)]:

b̂v~z !52
4p

c

1
2ik0

eik0zE
2`

0
dz8e2~ ik02a0/2 !z8

3E dx8f0~x8! ĵv~x8,z8!. (7.5)

A similar expression can be written for Âv
† (x) by taking

the Hermitian conjugate of this equation.
We can calculate ^b̂vb̂v

† & using the fluctuation-
dissipation theorem [Eq. (4.38)] to determine ^ ĵv ĵv8

† &.
We find

^b̂v~z !b̂v8
†

~z !&5
2p\

k0
2 ~ n̄v11 !d~v2v8!

3E
2`

0
dz8exp~a0z8!

3E dxf0~x !2a~x !k~x !. (7.6)

The first integral is a0
21, and the second integral is

a0k0 from Eq. (7.3). We see that the absorption coeffi-
cient a0 drops out, leaving

k0
2p\

^b̂vb̂v8
† &5d~v2v8!~ n̄v11 ! (7.7a)

and similarly

k0
2p\

^b̂v8
† b̂v&5d~v2v8!n̄v . (7.7b)

The result is similar to that obtained in the theory of
blackbody radiation, where the emission of an opaque
body is independent of the absorption coefficient.
The photon flux [Eq. (6.15)] along z can be calculated

using Eq. (6.13) and Â(x ,z ,t);exp(ik0z). It is given by

Q̂N5
k0
2p\

b̂†~ t !b̂~ t !. (7.8)

We can calculate the average photon flux by
Fourier-transforming Eqs. (7.7) with
1/2p *dv*dv8exp@2i(v 2v8)t]. The integral over v8
is removed by integrating the delta function. We restrict
the integral over v to a small range of optical frequen-
cies 2pDn , then

^Q̂N&5
k0
2p\

^b̂†~ t !b̂~ t !&5Dnn̄v . (7.9)

This is just what would have been obtained from a con-
ventional treatment using quantized modes of propaga-
tion. For a waveguide of length L , the number of modes
is (LDv)/(2pvg), and the photon flux per mode is
n̄vvg /L .
A similar calculation shows that the energy flux of the

uncertainty-related field fluctuations is given by

^Q̂A&2^Q̂N&5
k0
2p\

@^b̂~ t !b̂†~ t !&2^b̂†~ t !b̂~ t !&#5Dn .

(7.10)

When n̄v represents a thermal mode occupation,
^Q̂N& [Eq. (7.9)] expresses Planck’s law of radiation
(into a single transverse mode). The photon flux density
^Q̂N& also describes the emission from an opaque biased
semiconductor. For \v2eV@kT , the first term in the
denominator of the formula for n̄v , Eq. (4.47), is domi-
nant and n̄v'exp(eV2\v/kT). This agrees with the
well-known result of Shockley and Queisser (1961) that
the intensity of a light-emitting diode increases as
exp(eV/kT). Equation (7.10) also describes the flux of
vacuum fluctuations with n̄v50 and, consequently,
^Q̂N&50. Vacuum fluctuations are not directly detect-
able by a photodetector. Nevertheless, vacuum fluctua-
tions are an important source of noise. We find it con-
venient to represent external vacuum fluctuations as
generated by spontaneous currents in cold absorbers
surrounding devices. This is used in discussions of noise
in traveling-wave amplifiers (Sec. VII.E, Fig. 7), noise
associated with scattering loss in waveguides (Sec.
VII.G, Fig. 12), and noise in lasers (Sec. VIII.A, Fig. 13).
The antinormally ordered energy flux and field corre-

lation functions of a signal and vacuum fluctuations
propagating in a cold absorbing waveguide are shown in
Fig. 8. The correlation functions of the signal field and
the field of vacuum fluctuations in this figure are de-
scribed by Eqs. (B9) and (B11). With z15z2, these
equations also describe the energy flux. The energy flux
of the incident fields decays to the flux of the vacuum
fluctuations and remains constant thereafter. All fields,
including those of vacuum fluctuations, obey the wave
equation and are attenuated by optical absorption. The
constancy of the energy flux in the mode results from
emission of noise fields by spontaneous currents in the
absorber, which are partially coupled into the waveguide
mode. For vacuum fluctuations propagating in the wave-
guide mode, the added energy flux of these noise fields
exactly balances the loss of optical absorption. The bal-
ance between absorption and emission of optical energy,
which occurs for all optical modes coupled to the ab-
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sorber, also preserves the stability of the atomic ground
states of the absorbing atoms. This will be discussed fur-
ther in Sec. VIII.D and in Appendix E.
The added noise field is uncorrelated with the initial

field in the mode. This lack of correlation is consistent
with the decay of the correlation function of the
vacuum-fluctuation field at two points. This correlation
function is given by Eq. (B9). It decays completely as
shown in Fig. 8. The rate of decay is the same as that of
the Green’s function governing light propagating in a
waveguide with optical attenuation.
The decay of the correlation function follows from a

different form of the fluctuation-dissipation theorem
(Martin, 1968), which shows that, for a system in ther-
mal equilibrium, the field correlation function decays
spatially in exactly the same way as the field decays in
response to an external force. This falloff is described by
the spatial decay of the classical Green’s function. This
should apply to all forms of radiation, including vacuum
fluctuations. A derivation of this theorem for the specific
case of a noise field generated by spontaneous current
sources is given in Appendix B. We conclude that
vacuum fluctuations propagating in an opaque wave-
guide are simultaneously attenuated and generated.
These changes preserve the (antinormally ordered) en-
ergy flux but cause the field correlation function to de-
cay with distance.
The absorption and emission of the field of vacuum

fluctuations may bother some readers who are used to
associating the vacuum field with the stationary ground
states of quantized optical modes. The ground states of
the optical field coupled to absorbing atoms is very com-
plicated because each mode of the field is coupled to

currents in the atoms that in turn are coupled to other
modes. These ground states are stationary, but the field
of a mode that we are interested in is not. If we follow
the propagation of only this field, we shall find it simul-
taneously undergoing attenuation and generation.

B. Field distribution of thermal radiation and vacuum
fluctuations

The Ê, Ĥ, and Â noise fields at a point x are all Her-
mitian linear combinations of b̂(t) and b̂(t)† given by

b̂H~ t ![cb̂~ t !1c* b̂†~ t !, (7.11)

where b̂(t) and b̂†(t) are linearly related to ĵv(x8,z8)
and ĵv

† (x8,z8) by the Fourier transform of Eq. (7.5), and
c is a complex number. This can be expressed symboli-
cally as

b̂H5cG̃ĵ1c* G̃* ĵ†. (7.12)

Let us calculate the lower moments of b̂H(t). In Sec.
IV I, we showed that averages of odd numbers of
ĵ(x ,t) are zero. Since the fields are linearly related to
these operators,

^b̂H&5^b̂H
3 &5^b̂H

5 &•••50. (7.13)

In calculating the powers of b̂H(t), we shall neglect
terms such as b̂(t)b̂(t), which are at twice the optical
frequency and also average to zero when calculated in
terms of the spontaneous current-density operators.
Therefore the second moment is just the sum of the two
contributions given by the correlation functions (7.9)
and (7.10),

^b̂H
2 &5

2p\Dn

k0
ucu2~2n̄v11 !. (7.14)

In the notation of Eq. (7.12), the second moment is

^b̂H
2 &5^~G̃ĵ1G̃* ĵ†!~G̃ĵ1G̃* ĵ†!&

5G̃G̃* ^ ĵ ĵ†&1G̃* G̃^ ĵ† ĵ&. (7.15)

The fourth moment is

^b̂H
4 &5^~G̃ĵ1G̃* ĵ†!~G̃ĵ1G̃* ĵ†!~G̃ĵ1G̃* ĵ†!

3~G̃ĵ1G̃* ĵ†!& . (7.16)

According to Wick’s theorem, this reduces to the prod-
uct of all possible combinations of average pairs. There
are three independent ways to pair the bracketed terms,
and each results in ^b̂H

2 &2, hence

^b̂H
4 &53^b̂H

2 &2. (7.17)

Similarly, there are five ways to form the first pair and
three ways to form the second pair for ^b̂H

6 &, etc., hence

^b̂H
6 &55•3^b̂H

2 &3, (7.18a)

^b̂H
8 &57•5•3^b̂H

2 &4. (7.18b)

FIG. 8. Average energy flux and correlation functions of fields
propagating in a cold absorber: solid curve, the average of the
antinormal ordered energy flux of a signal and vacuum fluctua-
tions, which decays to the energy flux of the vacuum fluctua-
tions; dashed lines, the absolute value of the correlation func-
tion of the field at two values of z , which decays to zero with
increasing separation. The decaying of the correlation function
on either side of z0 is interpreted to mean that the field of
vacuum fluctuations is attenuated and emitted in an uncorre-
lated manner with energy conserved.
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These are just the moments of a Gaussian probability
distribution for the values bH of the operator b̂H:

P̂~bH!;expS 2
bH
2

2^b̂H
2 &

D . (7.19)

We see that the noise fields Ê, Ĥ, and Â are Gaussian
distributed.
The same arguments can be applied to the spontane-

ous current-density operator. Any Hermitian combina-
tion of ĵ and ĵ† is Gaussian distributed; i.e., it is a Gauss-
ian random variable. This conclusion applies to Ĵ [Eq.
(4.39b)] and to the operators associated with the real
and imaginary parts of ĵ . Consequently, the real and
imaginary parts of the laser Langevin forces are Gauss-
ian random variables. [Langevin forces were introduced
in the discussion after Eq. (5.10).] The laser Langevin
force is defined in Eqs. (8.5) and (8.6). The theories of
laser linewidth and mode-partition noise make use of
this important property (Lax, 1967a; Henry, 1982; Henry
et al., 1984). The Gaussian distribution follows from ap-
plication of Wick’s theorem, which in turn relies on the
assumption that transitions between many different
pairs of levels contribute to the averages of spontaneous
currents (see derivation in Sec. IV.I).

C. Optical shot noise

Let us consider the propagation of a monochromatic
noise-free signal and vacuum fluctuations in a cold ab-
sorbing waveguide. The attenuation of the signal and the
contributions to the vacuum fluctuations are shown in

Fig. 9. The incident energy flux of vacuum fluctuations is
attenuated at the same rate as the signal energy flux.
However, the combined effects of emission of vacuum
fluctuations and attenuation result in a constant back-
ground of vacuum fluctuations with increasing distance
along the waveguide. The field of vacuum fluctuations is
not detectable, but the interference of this field and the
signal field results in a modulation of the photon flux
that is detectable. This modulation is shot noise.
As we have seen in Sec. VII.A, these vacuum fluctua-

tions have a constant average flux given by Eq. (7.10).
We represent the optical signal and noise fields after
attenuation by

Â~x,t !5@bsig1b̂~ t !#f0~x !exp~2ivSt !, (7.20)

where the signal amplitude bsig is a complex classical
c-number and the noise field amplitude b̂(t) is given by
the Fourier transform of Eq. (7.5), with f0(x) and
exp(2ivSt) removed.
The correlation functions of b̂(t) at two times t1 and

t2 are given by Fourier transforming Eq. (7.7) with
n̄vS

50. This results in

k0
2p\

^b̂~ t1!b̂
†~ t2!&5d~ t12t2!, (7.21a)

k0
2p\

^b̂†~ t1!b̂~ t̂2!&50. (7.21b)

The photon flux [Eq. (6.15)] in the transverse mode at
time t is

Q̂N~ t !5
k0
2p\

@bsig* 1b̂†~ t !#@bsig1b̂~ t !# . (7.22)

The total number of photons m̂ passing a position dur-
ing time T is

m̂5E
0

T
dtQ̂N~ t !

5
k0
2p\

ubsigu2T1
k0
2p\E0

T
@bsig* b̂~ t !1bsigb̂

†~ t !#dt

1
k0
2p\E0

T
b̂†~ t !b̂~ t !dt . (7.23)

The average of m̂ is

m̄5
k0
2p\

ubsigu2T . (7.24)

Combining the last two equations, the fluctuations of
m are

Dm̂5m̂2m̄

5
k0
2p\E0

T
dt@bsig* b̂~ t !1bsigb̂~ t !†1b̂†~ t !b̂~ t !# .

(7.25)

Squaring this equation and averaging, with the help of
Eq. (7.21), we find

FIG. 9. Contributions to the average energy flux of vacuum
fluctuations propagating in a cold absorber. The initial average
energy flux of the vacuum fluctuations (dashed line) decays at
the same rate as the signal flux (solid line). The total energy
flux of vacuum fluctuations (dot-dashed line) remains constant
because of a buildup from spontaneous current emission (dot-
ted line).
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^Dm̂2&5
k0
2p\

ubsigu2E
0

T
dt1E

0

T
dt2d~ t12t2!5m̄ . (7.26)

A similar calculation for ^Dm̂3& yields

^Dm̂3&5
k0
2p\

ubsigu2E
0

T
dt1E

0

T
dt2E

0

T
dt3d~ t12t2!

3d~ t22t3!

5m̄ . (7.27)

Both of these moments agree exactly with those of a
Poisson distribution, which is a feature of shot noise
(Mandel and Wolf, 1995). The Poisson distribution char-
acterizes the noise expected when a stream of uncorre-
lated photons is detected. Unlike a Gaussian distribu-
tion, the Poisson distribution has a definite relation
between the second moment and the average value, and
it can have odd moments about its average value. The
noise in the photon flux Q̂N will be exactly what is de-
tected by an ideal photodetector. Such a detector is
opaque, and all photons received are converted into
photoelectrons. There is no additional noise in this con-
version process.

D. Shot noise in optical absorption

Now consider the opposite situation of a nearly trans-
parent photodetector. There is additional noise associ-
ated with the optical absorption process. Suppose a
strong noise-free light signal bsig traveling in the funda-
mental mode passes through a length Dz of an optical
waveguide. The number of photocarriers generated by
optical absorption is given by Eq. (6.11) integrated over
x and Dz ,

Ṅ̂N5ubsigu2
k0a0Dz

2p\
1

i

\cE dzdxf0~x !~ Ĵ†bsig2bsig* Ĵ !.

(7.28)

The average number of photocarriers generated in time
T is given by the first term

m̄5ubsigu2
k0
2p\

a0DzT . (7.29)

Integrating Eq. (7.28) over time T we have

Dm̂5m̂2m̄5
i

\cE0
T
dtE dzdxf0~x !~ Ĵ†bsig2bsig* Ĵ !.

(7.30)

The average ^Dm̂2& is found by squaring and averaging
this equation and keeping only the nonzero antinormally
ordered term:

^Dm̂2&5
ubsigu2

\2c2 E0
T
dt1E

0

T
dt2E dz1dx1

3E dz2dx2^ Ĵ~x1 ,t1!Ĵ
†~x2 ,t2!&

3f0~x1!f0~x2!. (7.31)

Using the fluctuation-dissipation theorem [Eq. (4.42)] to
evaluate the spontaneous current-density correlation
function, this reduces to

^Dm̂2&5ubsigu2
k0
2p\

a0DzT5m̄ . (7.32)

Therefore ^Dm̂2& is consistent with shot noise.
We demonstrated in the preceding section that ab-

sorbing regions generate vacuum fluctuations that beat
with the transmitted signal, resulting in fluctuations in
the photon flux Q̂N(t). Conservation of energy [Eq.
(6.12)] requires that a fluctuation in photon flux be ac-
companied by a correlated fluctuation in the rate of gen-
eration of photo-excited carriers. As we discussed at the
end of Sec. VI.C, the photon energy stored in a small
volume is negligible and, consequently, energy conserva-
tion reduces to DQ̂N(t)1dN̂N/dt50. This conservation
is possible because the changes in Q̂N(t) and in
dN̂N/dt are controlled by the phase of the spontaneous
current-density relative to that of the external field and
are equal and opposite to one another. This is illustrated
in Fig. 10. The phase relations are shown in Fig. 5.
The shot noise in a nearly transparent photodetector

is due to fluctuations in the rate of optical absorption.
This noise will be present in the currents of photodetec-
tors with less than unit quantum efficiency. Excess noise
in such photodetectors has been modeled by Yuen and
Shapiro (1980) and Yurke (1985), by a different mecha-
nism. They do not use spontaneous currents as just de-
scribed. Instead, they represent the real photodetector
as equivalent to an ideal opaque photodetector and a
beam splitter in the incident optical field. The beam
splitter reduces the detection efficiency and introduces
vacuum fluctuations which add noise. The equivalence
of these two models has not been established and needs
further investigation.

E. Traveling-wave amplification

We now turn to noise generated in optical amplifica-
tion. A traveling-wave amplifier of length L is shown in

FIG. 10. How fluctuations of photon flux and fluctuations in
the carrier transition rate combine to conserve energy. The
fluctuation in the rate of optical transitions DṄ is caused by
the beating of the spontaneous current J and the field A . The
fluctuation in the energy flux DQ is caused by the beating of
spontaneously emitted field DA and the field A . There is a
fixed phase difference between DA and J such that
DṄ52DQ . Quantum operator equations underlie this classi-
cal description.
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Fig. 7. Suppose that at the input of the amplifier there is
a monochromatic signal field bsig in and a noise field of
vacuum fluctuations b̂ in(t). These fields propagate
through the amplifier and change in phase and ampli-
tude. In addition, the noise field emitted by spontaneous
currents and subsequently amplified b̂em(t) also appears
at the output. The z-dependent signal and noise fields at
the output of the amplifier are

bsig1b̂out~ t !5AGbsig in e
ik0L

1@AGb̂ in~ t !e
ik0L1b̂em~ t !# , (7.33)

where G5exp(g0L) is the amplification. The second
term on the right side of Eq. (7.33) appears formally to
be an ‘‘amplified field of vacuum fluctuations.’’ How-
ever, the flux of uncertainty-related field fluctuations, as
we discussed in Sec. VI.D, remains constant. We find
that this is the case when both contributions to the noise
field, given by the bracketed terms on the right side of
this equation, are combined.
The internally emitted and amplified noise field

b̂em(t) is calculated in the same way as the noise field
emitted from an opaque waveguide [Eq. (7.5)]. The field
at z5L is given by the Fourier transform of

b̂emv52
4p

c

1
2ik0

E
0

L
dz8e ~ ik01g0/2!~L2z8!

3E dx8f0~x8! ĵv~x8,z8!. (7.34)

The normally and antinormally ordered energy fluxes of
this field are found using the same steps used previously
in going from Eq. (7.5) to Eq. (7.9) and result in

k0
2p\

^b̂em
† ~ t !b̂em~ t !&5Dn~G21 !nsp , (7.35a)

k0
2p\

^b̂em~ t !b̂em
† ~ t !&5Dn~G21 !~nsp21 !, (7.35b)

where nsp was defined in Eq. (4.51).
The energy flux of the amplified vacuum fluctuations

is that of the vacuum fluctuations [Eq. (7.10)] multiplied
by the amplification G . Only the antinormally ordered
energy flux of this noise field is nonzero. It can be writ-
ten as the sum of two terms:

k0
2p\

G^b̂ in~ t !b̂ in
† ~ t !&5Dn~G21 !1Dn . (7.36)

The second term on the right side of this equation is the
energy flux of the uncertainty-related field fluctuations.
It is equal to that of vacuum fluctuations at the amplifier
input and remains constant along the length of the am-
plifier. We show in Appendix E that this constant flux of
field fluctuations induces spontaneous emission that is
amplified and results in the first term in Eq. (7.36).
The energy fluxes of the total noise field

b̂out(t)5AGb̂ in(t)e
ik0L1b̂em(t) are found by combining

Eqs. (7.36) and (7.35):

k0
2p\

^b̂out
† ~ t !b̂out~ t !&5Dn~G21 !nsp , (7.37a)

k0
2p\

^b̂out~ t !b̂out
† ~ t !&5Dn@~G21 !nsp11# . (7.37b)

The term Dnnsp(G21) is the average photon flux of
amplified spontaneous emission. This order-independent
term comes from the amplification of both emission by
spontaneous currents and emission induced by the
uncertainty-related field fluctuations. The remaining
term is the energy flux of the uncertainty-related field
fluctuations. The average energy fluxes of the signal and
the noise field are plotted in Fig. 11 for the ideal case of
nsp51 and for nsp52. The maximum gain and sponta-
neous emission per unit length occur with complete
population inversion, nsp51. When the amount of popu-
lation inversion is reduced, gain drops more rapidly than
spontaneous emission. Consequently, a longer amplifier
is required and more noise is generated to achieve the
same amplification G . The best amplifier noise figure is
achieved with nsp51.
When G is large compared to unity, the difference

between the normally and antinormally ordered energy

FIG. 11. Increase in the energy flux of the signal and noise
fields with optical amplification. ^b̂out

† b̂out& is proportional to
the energy flux of amplified spontaneous emission.
^b̂outb̂out

† 2b̂ out
† b̂out& is proportional to the energy flux of the

uncertainty-related field fluctuations, which remains un-
changed with amplification. ^b̂outb̂out

† & is just the sum of these
two contributions. At high amplification, the classical limit is
approached when the energy flux of the uncertainty-related
field fluctuations become negligible compared to that of ampli-
fied spontaneous emission. The cases of full population inver-
sion, nsp51, and partial population inversion, nsp52, are
shown. At a fixed amplification, the minimum amplified
spontaneous-emission noise occurs for nsp51. The amplifier
noise figure is the increase in noise-to-signal ratio,
(^b̂out

† b̂out&1^b̂outb̂out
† &)/ubsigu2, with amplification. The curve

for ^b̂out
† b̂out& approaches that for ^b̂outb̂out

† & at high amplifica-
tion. For nsp51, this results in a noise figure of 2, i.e., in a
minimum 3 dB noise figure.
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flux is negligible, and the noise field can be treated as
classical waves. In this case, the normal and antinormal
ordered correlation functions of Eq. (7.37) can be ap-
proximated as equal. Then the higher-order moments of
the energy flux are readily calculated using Wick’s theo-
rem. It can be shown that the instantaneous energy flux
is exponentially distributed. A calculation of this type is
made in Sec. VIII.B, where it is shown that the instan-
taneous photon number in a nonlasing mode near
threshold is exponentially distributed [see Eq. (8.19)].
This distribution is also encountered in the description
of polarized thermal or chaotic light (Loudon, 1983;
Goodman, 1985).
An exponential distribution dP(I)5exp(2I/Ī)dI/Ī for

the intensity I(t) has large fluctuations: I(t) can drop to
zero and increase to many times its average value with
nonnegligible probability. Why is it that these fluctua-
tions are not a problem when intense broadband sources
such as light-emitting diodes are used in optical commu-
nications? The answer is that the fluctuations in a source
of spectral width Dn only remain correlated for times
.Dn21. [This can be shown by calculating the correla-
tion function of b̂out(t) at two times.] Thus the light in-
tensity can drop to zero, but only for times of order
Dn21. If the bit time T is much greater than Dn21, the
distribution of intensity integrated over the bit time will
be a convolution of many independent exponential dis-
tributions. Such a convolution results in a well-behaved
Gaussian-like distribution with negligible probability of
having very small or very large values of the integrated
intensity (Goodman, 1985).
Let us calculate the noise in the photon flux that oc-

curs when an amplified signal is present. The signal and
noise fields are given by Eq. (7.33). The photon flux
Q̂N(t) is given by

Q̂N~ t !5
k0
2p\

@bsig* 1b̂out
† ~ t !#@bsig1b̂out~ t !#

5Qsig1DQ̂~ t !1
k0
2p\

b̂out
† ~ t !b̂out~ t ! , (7.38)

where Qsig5(k0/2p\)ubsigu2 and

DQ̂~ t !5
k0
2p\

@bsig* b̂out~ t !1bsigb̂out
† ~ t !# . (7.39)

The amplifier output is composed of a signal field and
a fluctuating noise field due to amplified spontaneous
emission and the uncertainty-related field fluctuations.
The noise power due to the beating of the signal field
with the noise field of amplified spontaneous emission is
called ‘‘signal-spontaneous beat noise.’’ The noise power
due to the beating of the amplified spontaneous-
emission noise field with itself is called ‘‘spontaneous-
spontaneous beat noise.’’ In addition, there is shot noise,
which is the beating of the signal field with the
uncertainty-related field fluctuations.
To achieve low noise, the optical field must be passed

through a narrow-band optical filter after amplification
to suppress spontaneous-spontaneous beat noise. For

simplicity, we assume that this has been done and ne-
glect the term associated with b̂out

† (t)b̂out(t) . The fil-
tered energy flux at the output is Q̂N(t)
5Qsig1DQ̂(t), where DQ̂(t) is a Hermitian combina-
tion of b̂out(t) and b̂out

† (t). Therefore, as discussed in
Sec. VII.B, the fluctuations of DQ̂(t) are Gaussian dis-
tributed.
Let Dne equal the electronic amplifier bandwidth.

Only the components of the noise field that are within
Dne of the signal, either above or below, will have beats
that are amplified. Therefore, in applying Eq. (7.37) to
calculate ^b̂out

† b̂out& , we shall use a frequency range of
2Dne . The mean-square fluctuation of photon flux is
given by

^DQ̂2&5Qsig

k0
2p\

@^b̂out
† b̂out&1^b̂outb̂out

† &#

5Qsig2Dne@~G21 !2nsp11# . (7.40)

The first term is the signal-spontaneous beat noise and
the second term is shot noise.
The amplifier noise figure is the increase in the noise

to signal ratio with amplification, where this ratio is de-
fined as ^DQ̂2&/Qsig

2 (Desurvire, 1994). This ratio is given
by Eq. (7.40) as @^b̂out

† b̂out&1^b̂outb̂out
† &#/ubsigu2. At high

amplification, the noise figure is given by 2nsp , which is
32 (or 3 dB) for the case of minimum noise, with
nsp51. This is illustrated by the plots of energy flux in
Fig. 11.
A thorough discussion of the practical aspects of am-

plifier noise is given by Olsson (1989; see also Tonguz
and Kazovsky, 1991; Park and Granlund, 1994). He in-
cludes corrections for transmission losses, coupling
losses in entering and leaving the amplifier, and
spontaneous-spontaneous beat noise of filtered light.
The effect of loss within the amplifier may also be im-
portant. It increases the noise and the effective value of
nsp (Henry, 1986a). Other nonidealities also enhance
noise (Yamamoto, 1980; Mukai et al., 1982; Simon,
1983).

F. Noise in Raman amplification

Traveling-wave Raman amplifiers are likely to be-
come an important source of amplification in optical
communications. The Raman amplification spectrum is
broader than that of the Er-doped optical-fiber ampli-
fier. Raman amplification occurs on the low-energy
(Stokes) side of the pump frequency, where it is sepa-
rated from the pump by the energy of the optical
phonons taking part in the Raman scattering. Thus the
Raman amplification band can be placed at any spectral
position if a pump at the right wavelength is available.
Raman amplification in optical fibers has been exten-

sively studied (Mochizuki et al., 1986; Olsson and He-
garty, 1986; Aoki, 1988; Desurvire, 1994). However, un-
til recently, the high pump power required was an
obstacle to the use of this type of amplifier in communi-
cation systems. This has now been overcome by the use
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of multistripe semiconductor lasers to pump fibers with
absorbing rare-earth doped single-mode cores (Grubb,
1996). The multimode pump energy is coupled into the
optical-fiber cladding and is subsequently absorbed in
the core and efficiently converted into stimulated emis-
sion in the fundamental transverse mode of the optical
fiber. In this way, watts of single-mode pump power can
be delivered to the fiber. This power can then be effi-
ciently shifted to longer wavelengths by multiple stages
of stimulated Raman scattering (Grubb, 1996; White
and Grubb, in press).
The noise field in a Raman amplifier is due to ampli-

fied spontaneous Raman scattering. The optical-
frequency spontaneous currents that are a source of this
noise field have a different physical origin than we have
encountered until now. They are due to fluctuations of
atoms at optical-phonon frequencies mixed with the
pump field. This mixing occurs as a result of the nonlin-
ear interaction of the optical field with the atomic vibra-
tions in the glass. The atomic motion is primarily due to
zero-point fluctuations of the lowest vibrational levels
and can be thought of as uncertainty-related momentum
fluctuations of the atoms confined in the glass.
Let us assume that each optical-phonon mode q is

executing simple harmonic motion described conven-
tionally by quantized creation and annihilation opera-
tors b̂q

† and b̂q that have commutation relations
@ b̂q ,b̂r

†#5dq ,r . The energies of the quantized vibrations
are given by a Hamiltonian ĤL5(q\Vq(b̂q

† b̂q11/2),
where Vq is the angular frequency of mode q . The
modes are in thermal equilibrium with nonzero operator
averages given by

^b̂q
† b̂q&5n̄q , ^b̂qb̂q

†&5n̄q11, (7.41)

where n̄q5@exp(\Vq /kT)21#21. In the interaction repre-
sentation, these operators have a time dependence

b̂q~ t !5b̂qe
2iVqt, b̂q

†~ t !5b̂q
†eiVqt, (7.42)

which can be established from the operator equations of
motion (see Sec. IV.C).
The interaction leading to Raman scattering can be

written phenomenologically as a sum of products of the
vibrational mode amplitudes (b̂q1H.c.), the signal field
at the Stokes frequency @ÂSt(t)1H.c.# , and the pump
field @Apexp(2ivpt)1c.c.# , which will be regarded as
classical and monochromatic. In calculating the sponta-
neous and induced current in a small volume V , we shall
regard the optical fields as external in origin. Only reso-
nant terms with products of the fields that can drive the
lattice at an optical-phonon frequency need be kept. The
interaction reduces to

Ĥ int52(
q
Dqb̂q

†Ape
2ivptÂSt

† ~ t !1H.c.

52
V

c
ĵRÂSt

† ~ t !1H.c., (7.43)

where the coefficients Dq give the strength of the inter-
action. The second equality defines an effective current-

density operator occurring in Raman scattering ĵR . Us-
ing this operator and Eq. (7.42), we obtain the time-
dependent spontaneous current-density operator,

ĵ R~ t !5
c

V(
q
Dqb̂q

†Ape
2i~vp2Vq!t. (7.44)

The frequency components ĵRv are found by Fourier-
transforming this equation [see Eq. (4.29)]. The correla-
tion functions of ĵRv are readily found using Eq. (7.41)
and replacing (q by V*(dN/dVq)dVq :

^ ĵRv ĵRv8
† &5

2pc2

V

dN

dVq
uApu2uDqu2d~v2v8!n̄q ,

(7.45a)

^ ĵRv8
† ĵRv&5

2pc2

V

dN

dVq
uApu2uDqu2d~v2v8!~ n̄q11 !,

(7.45b)

where the q-dependent terms are evaluated at
Vq5vp2v . As we found in Sec. IV.D, the correlation
functions are associated with rates of induced absorption
and emission of photons of the signal field. Accompany-
ing these processes are absorption and emission of
phonons. The uncertainty-related vibrational fluctua-
tions make phonon emission rates always greater than
phonon absorption rates. This is reflected in the factors
n̄q and n̄q11 in Eq. (7.45).
The Raman gain gv is related to the imaginary part of

the susceptibility, Eq. (4.37), which, in turn, is given by
Eq. (4.30), an equation derived from the Kubo formula,
as proportional to the difference in the two correlation
functions. Using these equations, we find

gvkv5
4p2

\

dN

dVq
uDqu2uApu2. (7.46)

The gain is positive and proportional to the squared
pump field uApu2. Raman gain does not have a threshold,
but net gain requires sufficient pump power to overcome
attenuation loss in the optical fiber.
A similar calculation could be done at the anti-Stokes

frequency. In this case, the spontaneous current opera-
tor is proportional to b̂q instead of b̂q

† . Formally, this
change results in attenuation instead of gain at the anti-
Stokes frequency. Physically, induced emission in the
anti-Stokes case is accompanied by phonon absorption
weighted by n̄q , whereas induced absorption is accom-
panied by phonon emission and is weighted by n̄q11.
Therefore the net induced change in the anti-Stokes
field is one of attenuation.
The fluctuation-dissipation theorem, relating the

spontaneous current correlation functions to gain, is
found by combining Eqs. (7.45) and (7.46). In doing this,
we shall also replace V21 by d(x2x8).
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S 4p

c D 2^ ĵRv~x! ĵRv8
†

~x8!&58p\kv~x!gv~x!n̄q~x!

3d~x2x8!d~v2v8!,

(7.47a)

S 4p

c D 2^ ĵRv8
†

~x8! ĵRv~x!&58p\kv~x!gv~x!~ n̄q~x!11 !

3d~x2x8!d~v2v8!.

(7.47b)

If we assign nsp5n̄q11, these equations agree identi-
cally with the fluctuation-dissipation theorem of a con-
ventional amplifier. With this change our prior discus-
sions of the traveling-wave amplifier in Sec. VII.E also
apply to the Raman amplifier. This includes our calcula-
tions of the average energy flux, signal-spontaneous beat
noise, the noise figure, the rate of spontaneous emission
into the transverse mode [Eq. (E6)] (spontaneous Ra-
man scattering into the mode, in this case), and the tran-
sition to classical fields at high amplification.
A typical Raman shift in fused silica is about 55 meV.

At T=300 K, n̄q>0.12. Thus nsp is close to unity. The
Raman amplifier should have a noise figure close to that
of an ideal amplifier, provided that the gain is suffi-
ciently high and that optical-fiber losses are negligible.

G. Fluctuation-dissipation relation for scattering loss

The fluctuation-dissipation theorem relates the corre-
lation function of the spontaneous current densities to
the loss coefficient [Eq. (4.38)]. This relation was de-
rived under the assumption that the loss is due to optical
absorption. Much of the loss encountered in optical fi-
bers and waveguides results from scattering, not absorp-
tion. In Appendix C, we show that this form of loss leads
to effective spontaneous currents with correlation func-
tions related to optical attenuation by the same
fluctuation-dissipation theorem relation. The vacuum

fluctuations ‘‘emitted’’ by these currents are actually
fields from external sources that are scattered into the
bound modes while passing through the waveguide, as
shown in Fig. 12.
The optical field obeys the wave equation

¹2Âv~x!1
v2

c2
@ev~x!1Dev~x!#Âv~x!52

4p

c
ĵv~x!,

(7.48)

where Dev(x) is associated with inhomogeneous scat-
tered light and ĵv(x) is the spontaneous current density
at the absorbing walls in Fig. 12. Imitating open sur-
roundings the absorption ensures that the scattered light
does not reflect off the boundary.
In Appendix C, this equation is solved approximately

by perturbation theory, and we arrive at an effective
equation for the guided modes Âv modes(x) given by

¹2Âv modes~x!1@kv
2~x!12kv~x!Dkv~x!

1ikv~x!av~x!eff#Âv modes~x!52
4p

c
ĵv eff~x!. (7.49)

The average attenuation coefficient of the guided field
due to scattering loss is av eff(x). The change in the real
part of the squared propagation constant caused by mul-
tiple scattering slightly altering the velocity of propaga-
tion is 2kv(x)Dkv(x). The operator ĵv eff(x) is the effec-
tive spontaneous current source resulting from vacuum
fluctuations scattered into the propagating modes. The
nonzero correlation function of ĵv eff is

S 4p

c D 2^ ĵv eff~x! ĵv eff
† ~x8!&58p\kv~x!av eff~x!d~x2x8!.

(7.50)

This is exactly the expected relation between the loss
and spontaneous current density predicted by the
fluctuation-dissipation theorem [Eq. (4.38)] with n̄v50.
The fluctuation-dissipation theorem appears to hold

regardless of the type of loss. This can be explained us-
ing a different formulation of the fluctuation-dissipation
theorem given by Kubo (1966) and by Martin (1968). A
derivation of this form of the fluctuation-dissipation
theorem is given in Appendix B. When applied to noise
fields, this version of the theorem shows that the corre-
lation of the fields at two points is related to the imagi-
nary part of the Green’s function governing the re-
sponse of the field at one point to a source at the other
point. The decay of the Green’s function depends on the
field attenuation and is the same for any type of attenu-
ation, regardless of its cause.
If the noise-field correlation functions are calculated

from those of a source, then to have source-independent
correlation functions, the source must have the same
correlation functions regardless of its nature. The use of
the fluctuation-dissipation theorem without reference to
sources has been applied to quantum electrodynamic
problems by Agarwal (1974a, 1974b, 1974c). We have
not followed this approach because it does not illumi-
nate the physical nature of the sources of quantum noise

FIG. 12. Loss and noise in a waveguide with scattering. The
guided light is scattered out of the waveguide, resulting in op-
tical attenuation. Vacuum fluctuations are scattered into the
waveguide and act as a source of noise. The vacuum fluctua-
tions can be thought of as emitted from spontaneous currents
in the absorbing boundary.
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and because noise sources are useful in dealing with the
nonequilibrium situations encountered in photonics ap-
plications.
The fact that different types of loss result in the same

noise field is a common artifice used in the analysis of
quantum optics experiments. For example, coupling and
absorption losses are represented by fictitious beam
splitters that alter beam propagation and introduce
vacuum fluctuations (Caves and Crouch, 1987; Slusher
and Yurke, 1990; Jeffers et al., 1993).

VIII. QUANTUM NOISE OF LASERS

We now turn to quantum noise in lasers. For simplic-
ity, we assume that only a single laser mode is near
threshold. For the laser below threshold and in steady-
state operation above threshold, we can take the gain to
be constant in time. This allows us to use the simple
methods employed thus far and to obtain the following
results. A general formula for the rate of spontaneous
emission into a cavity mode is derived. We calculate the
distribution of photon-number fluctuations for modes
below threshold. As laser threshold is approached, the
sources of vacuum fluctuations and spontaneous emis-
sion combine to produce a field that can be treated as
classical, just as they did for optical amplifiers. The noise
and mode intensity of open-cavity lasers, e.g., gain-
guided lasers and Fabry-Perot lasers with low reflecting
facets, are enhanced by the Petermann factor (Peter-
mann, 1979; Wang et al., 1987). This is not caused by
enhancement of spontaneous emission, as once thought,
but is due to single pass amplification.
A laser above threshold is more difficult to analyze.

The round-trip amplification is very sensitive to the gain
in the laser cavity. This gain is dependent on carrier
number and, for this reason, the description of fluctua-
tions of a laser about the steady state requires a simul-
taneous solution for the field and carrier density. The
situation is further complicated by the fact that the tran-
sient field can have a different spatial distribution than
the steady-state field, so that a set of coupled differential
equations with noise sources must be solved. We shall
only consider one such effect, sub-Poissonian laser-
intensity noise. This can be understood from energy con-
servation, without explicitly solving these coupled differ-
ential equations.

A. Langevin rate equation for the steady-state lasing
mode

To describe a laser mode, we use the field equation in
the slowly varying envelope approximation [Eq. (6.9)].
To emphasize the different origins of gain and loss, we
shall replace a(x) by 2g(x)1aI(x)1aE(x), where
g(x) is the gain, aI(x) is the internal loss, and aE(x) is
the loss at the absorbing walls in Fig. 13. The latter loss
is the source of external vacuum fluctuations. The field
goes to zero on the surface of the enclosing box, a prop-
erty that is used to establish mode orthogonality. The
absorbing walls are necessary to avoid reflections and to

ensure a continuous energy spectrum in the box, which
mimics an infinite space. This equation provides a com-
plete description of the laser in the steady state, where
g(x) can be considered independent of time.
Let us expand Â(x,t) into modes by first considering

the homogeneous version of this equation for mode
Fn(x)exp@2i(ṽn2vS)t# satisfying

¹2Fn~x!1S k22ik(g~x!2aI~x!2aE~x!)

1
dk2

dv
~x!~ṽn2vS! DFn~x!50, (8.1a)

ṽn[vn1i
DGn

2
, (8.1b)

where vn is the mode frequency, vS is a typical optical
frequency, and DGn is the gain or loss of the nth mode.
At threshold, DGn50, and below threshold, DGn,0.
We obtain an orthogonality condition by multiplying the
equation for Fn [Eq. (6.1)] by Fm(x) and subtracting a
similar equation for Fm(x) multiplied by Fn . The mode
fields go to zero at the boundary of the enclosing box of
volume V , see Fig. 13. We obtain (ṽn2ṽm)(dk

2/
dvFnFm)V50, where we are abbreviating the integral
over V , the total space of the box in Fig. 13, as
*VdxF(x)[(F)V . It follows that the mode orthogonal-
ity relation is

S dk2dv
FnFmD

V

5dnmS dk2dv
Fn

2 D
V

. (8.2)

Let us assume that Fn(x) are a complete set of modes
and expand Â(x,t) as

Â~x,t !5(
n
Ân[(

n
Dnb̂n~ t !Fn~x!, (8.3)

where Dn are constants to be determined. Substituting
this expansion into the wave equation [Eq. (6.9)], we
find

FIG. 13. Laser geometry. The laser cavity has a volume V
between the facets and is embedded in a larger volume V ,
where the field goes to zero at the boundary. The absorber
with coefficient aE prevents reflections from the walls enclos-
ing V . It is also a source of external vacuum fluctuations. The
coefficients g and aI are the gain and attenuation internal to
the laser. These sources result in spontaneous emission and the
emission of vacuum fluctuations, respectively.
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(
n
i
dk2

dv
DnFdb̂ndt

2S vn1i
DGn

2
2vSD b̂nGFn~x!

52
4p

c
Ĵ~x,t !. (8.4)

Multiplying this equation by F0(x), integrating, and us-
ing the mode-orthogonality relation to select this mode,
we find the rate equation for the mode amplitude

db̂0
dt

5F2i~v02vS!1
DG0

2 G b̂01F̂0~ t !, (8.5)

where

F̂0~ t !5
4pi

cD0

~ Ĵ~x,t !F0!V

S dk2dv
F0

2D
V

(8.6)

is the Langevin force for the mode F0. The contribution
to the integral in the denominator from the volume out-
side the cavity is nearly negligible because of the oscil-
latory nature of the field propagating outside the cavity,
whereas the field inside the cavity contains standing
waves for which F0

2 does not average to zero.
We can determine D0 by requiring that the photon

number within the laser cavity be equal to b̂0
†b̂0. Using

Eq. (8.3) to express Â0 in terms of b̂0,

P̂05

S dk2dv
Â0

†Â0D
V

4p\
5b̂0

†b̂0 , (8.7)

whence

D0
25

4p\

S dk2dv
uF0u2D

V

. (8.8)

The subscript V indicates an integral over the volume
within the facets of the laser in Fig. 13.
The correlation functions for F̂0(t) are found using

the fluctuation-dissipation theorem [Eqs. (4.42) and
(4.57)]. Using dk2/dv52k/vg , where vg is the group
velocity, these reduce to

^F̂0~ t1!F̂0
†~ t2!&5K~gvgnsp1aIvg1aEvg2gvg!

3d~ t12t2!, (8.9a)

^F0
†~ t2!F0~ t1!&5Kgvgnspd~ t12t2!, (8.9b)

where the bar represents the average of a quantity over
the lasing mode

f̄[

S dk2dv
fuF0u2D

V

S dk2dv
uF0u2D

V

, (8.10)

and K , the Petermann enhancement factor (Petermann,
1979; Wang et al., 1987), is

K[

S dk2dv
uF0u2D

V

2

US dk2dv
F0

2D
V
U2 . (8.11)

The Petermann enhancement factor is greater than 1 for
open cavities. For closed cavities with uniform gain and
loss, F0(x) can be taken as real and then K51.
At laser threshold, the net amplification associated

with a single round trip is very close to unity. In an open
cavity, end losses are made up by single-pass amplifica-
tion. This is illustrated in Fig. 14(a). We mentioned at
the start of Sec. VI.C that in describing lasers we would
only be concerned with a relatively narrow spectrum of
frequencies, which is small compared to the spectral
width of the material gain and loss. Within this band of
frequencies, the gain can be regarded as constant and
enhancing noise. Any contribution to the laser noise
field, such as spontaneous emission within the cavity or

FIG. 14. The z dependence of the steady-state values and the
fluctuations of the photon flux in a Fabry-Perot cavity that is
open at one end: (a) The steady-state values, ^Q1& and
^Q2&. The growth of flux with propagation is due to single-
pass amplification that is needed to overcome facet losses. (b)
Fluctuations ^DQ1& and ^DQ2&, which illustrates the extreme
case of nearly complete suppression of intensity fluctuations.
The fluctuations DQ1 and DQ2 are nearly equal, and the net
flux emitted at the right facet is negligible. This limit is ap-
proached for the low-frequency fluctuations of a semiconduc-
tor laser with low internal loss and low current noise, which is
operating far above threshold. Such a laser exhibits sub-
Poissonian light intensity fluctuations. It has very different spa-
tial distributions of the steady-state photon flux and fluctua-
tions in photon flux.
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vacuum fluctuations entering the cavity at the facet, will
be enhanced by single-pass amplification. This is the en-
hancement associated with the Petermann factor. We
discuss the K factor further in Sec. VIII.E.
We can show that, as threshold is approached, the last

three terms in Eq. (8.9a) cancel.

gvg2aIvg2aEvg50. (8.12)

The rate aEvg is proportional to the rate at which the
flux is absorbed by the distant walls. The rate
gvg2aIvg is proportional to the net rate of stimulated
emission leaving the cavity. In addition to this flux, there
is the contribution of spontaneous emission leaving the
cavity. When the laser power significantly exceeds the
rate of spontaneous emission into the mode, Eq. (8.12)
is satisfied.
Therefore the sum of the last three terms in the anti-

normally ordered correlation function goes to zero as
the laser power increases and spontaneous emission be-
comes a negligible contribution to the photon flux leav-
ing the cavity. Thus the Langevin force correlation func-
tions (8.9) become order independent as laser power
increases. The steady-state laser field, which has its
source in the Langevin forces, becomes classical as the
photon number becomes large. Just as in the case of
optical amplifiers, the noncommuting contributions to
noise associated with spontaneous emission and vacuum
fluctuations cancel as the photon number increases. This
holds regardless of whether the source of vacuum fluc-
tuations is internal loss or comes from the absorbing
boundary in Fig. 13. A similar result was obtained for a
closed laser cavity in Sec. IV.H.

B. Photon-number distribution for a nonlasing mode

The operator for the number of photons in a mode 0
is given by P̂05b̂0

†(t)b̂0(t) [Eq. (8.7)]. We shall now

work out the moments of P̂0. Our results apply only to
nonlasing modes and to the average photon number for
a mode above threshold. For the lasing mode, the reac-
tion of the carriers to fluctuations in P̂0 must be in-
cluded. This suppresses the low-frequency photon-
number fluctuations and greatly alters the photon-
number distribution (see the review of Liu, 1991; see
also Hempstead and Lax, 1967; Risken and Vollmer,
1967; Henry et al., 1984).
The field amplitude b0(t) can be found by solving the

Langevin rate equation [Eq. (8.5)]. In doing this, we
shall drop (v02vS). This term merely changes the
phase of F̂0(t) and does not affect the correlation func-
tions. The solution of Eq. (8.5) is

b̂0~ t !5E
2`

t
duF̂0~u !eDG0~ t2u !/2, (8.13)

where DG0 is less than zero for a mode below threshold
and also for the steady-state lasing mode. The correla-
tion functions ^b̂0(t)b̂0

†(t)& and ^b̂0
†(t)b̂0(t)& can be cal-

culated using this equation and the Langevin force cor-
relation functions [Eq. (8.9)]. In the approximation that
Eq. (8.12) is satisfied for modes near threshold, the
Langevin force correlation functions are order indepen-
dent and

^P̂0&5^b̂0
†~ t !b̂0~ t !&5^b̂0~ t !b̂0

†~ t !&52K
gvgnsp

DG
.

(8.14)

[A more careful calculation, taking into account that the
steady-state operating point of the laser occurs with gain
slightly below loss, would result in a small difference
between ^b̂0(t)b̂0

†(t)& and ^b̂0
†(t)b̂0(t)& .]

The higher-order moments can immediately be calcu-
lated from Wick’s theorem. For example,

^P̂2&5^b̂0~ t !
†b̂0~ t !b̂0~ t !

†b̂0~ t !&,

5E
2`

t
du1E

2`

t
du2E

2`

t
du3E

2`

t
du4e

DG~ t2u1!/21DG~ t2u2!/21DG~ t2u3!/21DG~ t2u4!/2^F̂0
†~u1!F̂0~u2!F̂0

†~u3!F̂0~u4!&.

(8.15)

Applying Wick’s theorem, we expand the correlation
function of the F̂0’s as the sum of all possible combina-
tions of averages of pairs of F̂0’s. This results in a corre-
sponding expansion of the b̂0’s:

^b̂0
†b̂0b̂0

†b̂0&5^b̂0
†b̂0&^b̂0

†b̂0&1^b̂0
†b̂0&^b̂0b̂0

†&. (8.16)

Using the order independence of the correlation func-
tions, we find

^P0
2&52^b0

1b0&
252^P0&

2. (8.17)

Applying the same arguments to higher moments, we
find

^P̂0
n&5n!^P̂0&

n. (8.18)

These are just the moments of an exponential probabil-
ity distribution P(P0) for photon number P0 within the
cavity:

dP~P0!5
1

^P̂0&
expS 2

P0

^P̂0&
D dP0 . (8.19)

The exponential distribution for nonlasing modes is
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well known. It was observed and interpreted in early
studies of gas lasers (Freed and Haus, 1966). The expo-
nential distribution has an extensive tail compared to
the Gaussian distribution normally encountered in noise
theory. Consequently, weak nonlasing modes on rare oc-
casions grow to intensities much greater than their aver-
age values, e.g., the probability of P0520^P̂0& is about
1029. This can result in occasional redistributing of en-
ergy between the lasing and nonlasing modes, known as
mode-partition noise. This noise can cause errors in high
bit rate transmission along dispersive optical fibers. The
lasing and nonlasing modes differ in optical frequency
and consequently have different delays in transmission,
resulting in digital transmission errors. (See the review
article of Liu, 1991; see also Henry et al., 1984; Link
et al., 1985.) This has necessitated the use of distributed
feedback lasers in which the nonlasing modes are highly
suppressed.
The exponential distribution is easily understood on

classical grounds. In Sec. VII.B, we showed that a field
emitted from a spontaneous current source will have
Gaussian distributions of its real and imaginary compo-
nents. The superposition of fields from several sources
will also be Gaussian distributed. Under these circum-
stances, the modulus squared of the field has an expo-
nential distribution (Henry et al., 1984). In a classical de-
scription, this squared modulus is proportional to the
photon number.

C. Bose statistics of photons interacting with electrons

Photons in a closed lossless cavity interacting with
electrons come into equilibrium with the carriers of a
semiconductor, as discussed after Eq. (4.47). The pho-
tons should have a thermal distribution of a Bose gas
(Landau and Lifshitz, 1958b). We shall show that this is
a consequence of our theory.
For a closed lossless cavity with uniform gain g ,

K→1, DG→gvg , and gvgnsp52gvgn̄v . With these
changes, the average photon number [Eq. (8.14)] re-
duces to

^P0&5^b0
†~ t !b0~ t !&5n̄v . (8.20)

By repeating the steps leading to Eq. (8.14) with
aIvg50, we find the antinormally ordered correlation
function to be

^b0~ t !b0
†~ t !&5n̄v11, (8.21)

where n̄v is given by Eq. (4.47).
The higher moments of photon numbers can be calcu-

lated as in the last section, using Wick’s theorem and the
two correlation functions [Eqs. (8.20) and (8.21)]. We
find

^P0
2&52n̄v

21n̄v , (8.22)

^P0
3&56n̄v

316n̄v
21n̄v . (8.23)

These are exactly the moments expected for a Bose gas.
For such a gas, the probability of a mode’s containing
n photons is (Landau and Lifshitz, 1958b)

P~n !5~12e2~\v2eV!/kT!e2n~\v2eV!/kT. (8.24)

It is readily shown for such a distribution that

^P0&5n̄v , (8.25a)

^P0~P021 !&52!n̄v
2, (8.25b)

^P0~P021 !~P022 !&53!n̄v
3, etc. (8.25c)

From this, ^P0
2& and ^P0

3& [Eqs. (8.22) and (8.23)] can be
calculated.
Of course, the Bose distribution for thermal photons

is well known, but here we have established it for pho-
tons interacting with electrons of a semiconductor hav-
ing two bands with separated quasi-Fermi levels. Our
result that averages of photon creation and annihilation
operators can be found using Wick’s theorem was shown
by Louisell (1974) for noninteracting bosons in thermal
equilibrium.

D. Average rate of spontaneous emission

Here we derive a formula for the average rate of
spontaneous emission per unit volume and apply it to
calculate the average rate of spontaneous emission into
a laser mode. The spontaneous-emission rate depends
on a pair of operators, and therefore the ordering of the
operators is significant. We shall show that the same re-
sult is obtained regardless of which operator order is
used.
We start with the rate equation for optical transitions

of carriers, which was shown to be order independent in
Appendix A. Let us begin with the normally ordered
rate equation (6.11), with a replaced by 2g ,

]N̂N

]t
52

gk

2p\
Â†Â1

i

\c
~ Ĵ†Â2Â†Ĵ !. (8.26)

We can rewrite the first term in this equation as the
photon density given by Eq. (6.14). We are interested
only in average values, so we take the average of the
resulting equation,

K ]N̂N

]t L 52gvg^P̂N&1
i

\c
^ Ĵ†Â2Â†Ĵ&. (8.27)

The only contribution of the field Â(x,t) to ^ Ĵ†Â& is
the field emitted by the spontaneous current Ĵ(x,t), so
the second term in Eq. (8.27) is independent of optical
power. In his famous paper on spontaneous and stimu-
lated emission, Einstein divided the optical-transition
rate into a stimulated rate proportional to the average
photon density and a rate of spontaneous emission that
is independent of photon density (Einstein, 1917; sum-
marized by Pais, 1982). Following this approach, we in-
terpret the second term in Eq. (8.27) as the spontaneous
rate.
We can repeat the argument leading to Eq. (8.27) be-

ginning with the antinormally ordered carrier rate [Eq.
(A2b)]:
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K ]N̂A

]t L 52gvg^P̂A&1
i

\c
^ÂĴ†2 ĴÂ†&. (8.28)

This equation can be expressed in terms of the average
photon-number density ^P̂N& and an additional term
that is proportional to the average energy density of the
uncertainty-related field fluctuations:

K ]N̂A

]t L 52gvg^P̂N&2gvg^P̂A2P̂N&1
i

\c
^ÂĴ†2 ĴÂ†&.

(8.29)

The average uncertainty-related energy density
^P̂A2P̂N& is independent of optical power [see Sec.
VI.D and Fig. 6(b)], so it contributes to the
spontaneous-emission rate. Therefore we identify the
sum of the last two terms of this equation to be equal to
the average spontaneous-emission rate ^]N̂spont/]t& .
Since ^]N̂N/]t&5^]N̂A/]t&, we have two expressions for
^]N̂spont/]t&, which must be equal:

K ]N̂spont

]t L 5
i

\c
^ Ĵ†Â2Â†Ĵ&, (8.30a)

K ]N̂spont

]t L 52gvg^P̂A2P̂N&1
i

\c
^ÂĴ†2 ĴÂ†&. (8.30b)

We evaluate these expressions for ^]N̂spont/]t& in Ap-
pendix E and show that both equations give the same
result:

K ]N̂spont

]t
~x!L 5

2gknsp
p E dv Im@Gv~x,x!# . (8.31)

Both the gain g and nsp change sign when population
inversion occurs, but the product gnsp5rd is always
positive and equal to the contribution made by down-
ward transitions to the gain g ; see Eqs. (4.48) and (4.51).
The spontaneous-emission rate is unambiguous, but

ambiguity occurs in trying to separate the contributions
to spontaneous emission. Consider a set of carriers oc-
cupying only upper energy levels, so nsp=1. Then the
antinormally ordered average of a pair of spontaneous
current operators is zero and, consequently, so is the
second term in Eq. (8.30b). Then, according to Eq.
(8.30a), spontaneous emission is due to emission by
spontaneous currents while, according to Eq. (8.30b), it
is induced by the uncertainty-related field fluctuations.
What is the physical difference in the formulation of

the carrier rate equation with different operator orders?
Normal ordering of electromagnetic energy flux does
not include the uncertainty-related field fluctuations
while antinormal ordering includes it. As we have just
shown, the spontaneous-emission rate is the same, re-
gardless of operator order.
The confusing physical interpretation comes from try-

ing to interpret spontaneous emission as only due to one
of two sources: uncertainty-related field fluctuations or
spontaneous currents. Both sources are present when-
ever spontaneous emission occurs. Both sources depend
on noncommuting operator pairs. Only their combina-
tion results in order-independent and reasonable physi-

cal results. All that we can say is that spontaneous emis-
sion has two sources: emission from spontaneous
currents and emission induced by the uncertainty-
related field fluctuations. The dependence of the
spontaneous-emission rate on operator order was dis-
cussed by Milonni (1994), who reached a similar conclu-
sion.
Dalibard et al. (1982, 1984), working in atomic phys-

ics, have been able to determine how much each source
of quantum-mechanical fluctuations contributes to spon-
taneous emission and to radiative corrections, such as
the Lamb shift. They did this by constructing unique
Hermitian operators for the changes associated with
each source that are composed of Hermitian combina-
tions of the field operators and of the atomic variables.
They refer to the two sources as ‘‘radiative reaction,’’
the interaction of an electron with its own electromag-
netic field, and vacuum fluctuations. Energy loss of an
atom by radiative reaction appears to be similar or iden-
tical to what we describe as spontaneous emission by
spontaneous currents. They calculate the average rate of
energy loss to the electromagnetic field and find equal
contributions from both sources when the electron is in
an excited state. When the electron is in the ground
state, the rate of energy loss to the field induced by
vacuum fluctuations is negative (absorption of energy by
the atom) and the two contributions cancel, assuring sta-
bility of this state. Instability of the ground state and
other inconsistencies occur if one of the two sources of
quantum fluctuations is neglected.
We also find this cancellation, as discussed after Eq.

(E4). The cancellation is necessary to explain two puz-
zling aspects of the interaction of light and matter: an
accelerating electron in the ground state of an atom does
not lose energy to radiation; and the optical frequency
field of vacuum fluctuations will not excite an electron
out of its ground state. We can make the interpretation
that both of these effects take place together so that
energy transfer is cancelled. The energy of the field and
of the atom remain constant, but these changes cause
the vacuum field to become uncorrelated during propa-
gation in an absorbing medium, as discussed in Appen-
dix B.
The average rate of spontaneous emission into a laser

cavity mode near threshold can be found by expanding
the Green’s function as a sum over modes. This is done
in Appendix F. Each mode near threshold makes a reso-
nant contribution to the Green’s function and to the rate
of spontaneous emission given by Eq. (8.31). Evaluation
of this equation in Appendix E shows that the rate of
spontaneous emission into mode 0 is

K dN̂spont

dt L 52ReF S gvgnspdk2dv
F0

2D
V

S dk2dv
F0

2D
V

G , (8.32)

where (•••)V is an integral over the space enclosing the
laser (see Fig. 13).
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The integral over F0
2 has significant contributions only

within the laser cavity, where there are standing waves.
Thus Eq. (8.32) is essentially an average of gvgnsp over
the laser cavity. Notice that ^dN̂spont/dt& has no Peter-
mann enhancement [defined in Eq. (8.11)]. This conclu-
sion holds for either index-guided or gain-guided laser
cavities. This conclusion was also reached by Deutch
et al. (1991) by different methods.
The contributions to spontaneous emission go to zero

at the nodes of F0. This can be understood with the aid
of Fig. 15 showing the paths of single-pass propagation
in a Fabry-Perot laser cavity. Consider emission by an
atom near the perfectly reflecting mirror or cavity facet.
The spontaneous current radiates in both positive and
negative directions along z . After reflection, the two
emitted fields interfere. This interference results in a
cancellation of spontaneous emission into the mode
from positions of nodes. The modification of spontane-
ous emission by laser cavities has been studied by Yama-
moto et al. (1991).

E. Interpretation of the Petermann factor

In the first semiconductor lasers used in optical com-
munications, the optical field was confined in only one of
the two transverse directions. Such lasers are called
‘‘gain-guided’’ because the diffraction losses of the opti-
cal field are made up for by gain. The spectra of these
lasers are composed of many longitudinal modes. Gain-
guided lasers were later supplanted by ‘‘index-guided’’
lasers, in which the transverse optical mode is com-
pletely confined. Surprisingly, index-guided lasers have
only one or two intense longitudinal modes in their op-
tical spectra.
This spectral change was explained by Petermann

(1979) and Streifer et al. (1982). In a classical calcula-
tion, Petermann showed that emissions from point
sources into the fundamental transverse mode are en-
hanced by K , given by Eq. (8.11), when the waveguide is
gain guided. He interpreted this as an enhancement of
spontaneous emission. Streifer et al. showed that the
number of prominent modes in the spectrum is very sen-
sitive to the value of K . This is because mode intensity is
determined by very small differences in loss and gain
(g02g0); see Eq. (8.37). When K increases, the differ-
ence of g02g0 to achieve a given laser power increases.
Then the relative differences in this parameter for dif-
ferent modes diminish and so does the mode selectivity.
Later, Petermann’s group established that the same en-
hancement in photon number by K occurs in index-
guided Fabry-Perot lasers with low-reflecting facets
(Wang et al., 1987). It was also found that other noise
phenomena, such as laser linewidth, are enhanced by
K (Ujihara, 1984; Arnaud, 1986; Henry, 1986a; Hammel
and Woerdman, 1989; Goldberg et al., 1991; van Exeter
et al., 1991; Prasad, 1992).
The explanations of these phenomena have been of a

mathematical nature. The K factor has been linked to
wave-front curvature in gain-guided lasers (Petermann,
1979; Agrawal, 1984) and to the non-Hermitian nature

of the electromagnetic wave interacting with the ampli-
fying medium (Arnaud, 1983; Hammel and Woerdman,
1989; Siegman, 1989a, 1989b).
A more physical explanation for index-guided Fabry-

Perot lasers was given by Goldberg et al. (1991), who
attributed the K factor to single-pass amplification (see
also Henry, 1991, Sec. 2.5.2). We believe that this is the
correct explanation and that it applies to both index-
guided and gain-guided lasers. Goldberg et al. (1991)
also suggest this is the case. In gain-guided lasers, there
is lateral loss, which is made up by single-pass lateral
amplification. The Petermann factor can be large in
gain-guided lasers. One may find it hard to understand
how there could be much single-pass amplification as
light laterally crosses a distance of typically only '5 mm.
However, the light in a gain-guided laser is actually trav-
eling at nearly glancing incidence and thus goes a long
distance along the axis of the waveguide while crossing it
laterally.
Although the K factor is referred to as an excess

spontaneous-emission factor, we concluded in Sec.
VIII.D that spontaneous emission is not enhanced by
the K factor. The enhancement is actually single-pass
amplification of the noise field following spontaneous
emission. This amplification is broadband and in some
ways mimics enhanced spontaneous emission.
In the remainder of this section, we demonstrate that

this is the case by calculating the average photon num-
ber in an index-guided Fabry-Perot cavity and show
that, when there is low facet reflectivity, the photon
number is enhanced by K . Our calculation shows explic-

FIG. 15. Single-pass amplification of spontaneous emission in
a Fabry-Perot cavity. The propagation paths of spontaneous
emission at z8 contributing to the field at z are shown. These
single-pass paths do not include feedback due to round-trip
propagation. In an open cavity, where the front facet reflectiv-
ity r is small compared to unity, the single-pass propagation is
accompanied by amplification and leads to enhancement of the
noise field described by the Petermann factor K . The existence
of multiple paths of spontaneous emission explains the weight-
ing of the rate of spontaneous emission into the mode by the
square of the mode field. For example, waves emitted from
nodal points in the forward and backward directions interfere
destructively and cancel.
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itly that this enhancement comes from single-pass ampli-
fication.
Consider an index-guided Fabry-Perot laser, shown in

Fig. 15, that is open at one end. We shall take the mode
propagation constant k0, the modal gain g0, the group
velocity vg , and nsp all to be uniform along the length of
the cavity. We shall also neglect internal losses. The
threshold condition is

15reg0/L[e ~g02g0!L, (8.33)

where g0 is the gain at threshold. The field at threshold
is given by

F0~x!5f0~x !@eik01 g0/2 z1e2~ ik01 g0/2 !z# . (8.34)

The Petermann factor is

K5

S uF0u2
d2k

dv D
V

2

US F0
2 d

2k

dv D
V
U2

5
@*0

L~eg0z1e2g0z1osc. terms!dz#2

u*0
L~21osc. terms!dzu2

. (8.35)

The oscillating terms contribute very little to the inte-
grals. Neglecting them,

K5S eg0L2e2g0L

2g0L
D 2. (8.36)

Note that for a closed cavity g0→0 and K→1.
The average photon number ^P0& [Eq. (8.14)], with

DG5(g02g0)vg , is

^P0&5K
g0nsp

g02g0
. (8.37)

To understand the physical origin of K , we can calculate
^P0& more directly, beginning with Eq. (6.14) defining
the photon-number density. Writing this in terms of the
frequency components of the fields, we find

^P̂&5
1

8p2\E0
`

dvE
0

`

dv8S dk2dv
^Âv

†Âv8& D
V

e2i~v2v8!t.

(8.38)

Using Eq. (6.7) relating Âv(x) to ĵv(x8) by Gv(x,x8)
and the correlation function (4.38), we find

^P̂&5E
0

`dv

p E dxE dx8
dk2~x!

dv

3uGv~x,x8!u2k~x8!g~x8!nsp~x8!. (8.39)

Writing the Green’s function in the form

Gv~x,x8!5g~z ,z8!f0~x !f0~x8! (8.40)

and using perturbation theory to replace
*dxf0(x)

2kg5k0g0 and *dxf0(x)
2dk2/dv5dk0

2/dv
52k0 /vg0 gives

^P̂&5
2k0

2g0nsp
vg0p

E
0

`

dvE
0

L
dzE

0

L
dz8ug~z ,z8!u2. (8.41)

For a traveling-wave amplifier, the z-dependent Green’s
function g(z ,z8) is given by Eq. (7.4). For the cavity, the
Green’s function g(z ,z8) must take into account the
various paths of single-pass propagation in going from
z8 to z (shown in Fig. 15) as well as a factor
@12r exp(2ik0L1g0L)#

21 that sums up the contributions
from multiple round trips. This method of writing the
Green’s function as a sum of round-trip propagation in
the waveguide has been used by Ackerman and Flynn
(1990). For z.z8, this procedure results in

g~z ,z8!5
eik̃~z2z8!1eik̃~z81z !1re2ik̃L2ik̃~z1z8!1re2ik̃L2ik̃~z2z8!

2ik0~12r exp~g0L12ik0L !!
, (8.42)

where k̃5k02ig0/2 is a complex propagation constant.
The denominator can be approximated at frequencies

v near the lasing mode v0 by using Eq. (8.33) to express
r in terms of the threshold gain g0:

@12r exp~g0L12ik0L !#

'2
2iL

vg0
S v2v01i

~g02g0!vg
2 D . (8.43)

The four terms in the numerator in Eq. (8.42) all have
different phase factors. In calculating ug(z ,z8)u2 in Eq.
(8.41), we neglect the products of these terms, which are

oscillating with changes in z and z8, and also set
re2ik̃L51 and g05g0, which are the threshold values of
these quantities. With these changes, ^P̂& of Eq. (8.41)
becomes

^P̂&5
g0nspvg0
8pL2 E

0

`

dvE
0

L
dzE

0

L
dz8

3
eg0~z2z8!1eg0~z1z8!1e2g0~z1z8!1e2g0~z2z8!

~v2v0!
21S g02g0

2 D 2vg02 .

(8.44)

The four terms in the integrals over z represent
single-pass amplification of spontaneous emission asso-
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ciated with the four paths from z8 to z in Fig. 15. The
integrand numerator can be factored into
@exp(g0z)1exp(2g0z)#@exp(g0z8)1exp(2g0z8)#. Then
the integrals are all independent of each other. Doing
the integration again results in exactly the photon num-
ber enhanced by the Petermann factor found earlier and
given by Eqs. (8.36) and (8.37). We conclude that the
enhancement of ^P0& by K is due to single-pass amplifi-
cation of spontaneous emission.

F. Dirac’s formula for spontaneous
and stimulated emission

Every textbook covering the quantum theory of radia-
tion includes a discussion of the theory of Dirac (1927)
for the rates of optical absorption, spontaneous emis-
sion, and stimulated emission. A good discussion is
given by Fermi (1932). In this theory, the optical modes
are usually chosen as those of a large box containing all
of free space. We shall show that our approach, in which
we formulate the carrier transition rate in terms of a
quantum rate equation with spontaneous current-
density sources, reduces to the theory of Dirac for loss-
less modes.
The average carrier recombination rate is given by

Eq. (6.11) integrated over all space and averaged,

K dN̂dt L 52
~gk^Â†Â&!V

2p\
1

i

\c
~^ Ĵ†Â&2^Â†Ĵ&!V . (8.45)

We can expand Â(x,t) as a set of orthogonal functions
Fn(x) as in Eq. (8.3). For lossless modes, we can choose
the spatial functions of the modes Fn(x) as real func-
tions. With this expansion, the first term of Eq. (8.45)
reduces to

gk^Â†Â&
2p\

5(
n

(
m

S gvg dk2dv
FnFmD

V

^b̂n
† b̂m&

S dk2dv
Fn

2 D
V

1/2S dk2dv
Fm

2 D
V

1/2 .

(8.46)

In cases of modes in thermal equilibrium or discrete
modes having different frequencies, the mode ampli-
tudes are uncorrelated,

^b̂n
† b̂m&5Pndnm , (8.47)

where Pn is the number of photons of the nth mode.
The second term of Eq. (8.45) was evaluated in Eq.
(8.32). Substituting these equations into Eq. (8.45), we
find that the average recombination rate reduces to

K dN̂dt L 52(
n

~gvgPn1gvgnsp!, (8.48)

where the bar represents an average over the mode
weighted by dk2/dvFn

2 [Eq. (8.10)].
In Sec. IV.D [Eq. (4.26)], we showed that gain g is the

difference of contributions of downward and upward
stimulated transitions g5rd2ru . In deriving the
fluctuation-dissipation theorem, it was established in Eq.

(4.46) that the ratio of the upward and downward rates
is given by (nsp21)/nsp . From this it follows that

rd5gnsp , ru5g~nsp21 !. (8.49)

Expressing g and gnsp in terms of rd and ru , we obtain
the recombination rate

K dN̂dt L 52(
n

@rdvg~Pn11 !2ruvgPn# , (8.50)

a result consistent with the Dirac theory.
Our derivation began with the normally ordered form

of the recombination rate [Eq. (8.45)]. Had we started
with the antinormally ordered form, the only change
would be that Pn→Pn11 and nsp→nsp21 in Eq. (8.48).
Of course, this would not alter the recombination rate.

G. Sub-Poissonian intensity fluctuations

The laser field can be regarded as nearly monochro-
matic and classical. As we discussed in Sec. VII.C, when
such a noise free classical signal field beats with the field
of vacuum fluctuations, we obtain shot-noise fluctuations
in the photon flux. This in fact is expected to occur for
very high-frequency fluctuations in the laser output
(Yamamoto et al., 1986). However, this picture of laser
intensity noise as a beating with vacuum fluctuations as-
sumes that the laser does not react to the vacuum fluc-
tuations outside of the laser cavity. Yamamoto et al.
(1986) showed that, at low frequencies, the laser does
react and this response leads to a suppression of noise
below the shot-noise limit.
This phenomenon is known as sub-Poissonian inten-

sity fluctuations. Sub-Poissonian phenomena were re-
cently reviewed by Davidovich (1996) in this journal.
Employing energy conservation, we show that, at low
frequencies, fluctuations in the photon flux out of the
laser follow fluctuations in electrical current. Then we
argue that the latter fluctuations are much less than ex-
pected for shot noise.
We shall now demonstrate that at low frequencies the

fluctuations in the photon flux Q(t) out of the laser cav-
ity follow fluctuations in the electrical current to the di-
ode C(t). To describe the fluctuations in the laser out-
put, we need two equations: an equation for photon-
number density and an equation for carrier-number
density. The rate equation for the carrier-number den-
sity [Eq. (6.11)] and the energy conservation equation
[Eq. (6.12)] hold both below and above laser threshold.
The latter can be thought of as a rate equation for the
photon-number density. The carrier-number density
rate equation [Eq. (6.11)] only includes the rate of
change due to spontaneous and stimulated emission into
the lasing mode. We add other phenomenological rates
of change to this description: a density of injected-
carrier current C and the sum of radiative recombination
into other modes and nonradiative recombination N̂/t ,
where t is the lifetime for these processes. We also re-
place the rate of stimulated emission 2gkÂ†Â/(4p\)
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with gvgP̂(x,t), where P̂ is the photon density, Eq.
(6.14). With these changes, the rate equation for the car-
riers is

]N̂
]t

5C2
N̂
t

2gvgP̂2F̂g , (8.51)

and the equation for conservation of energy is

]P̂
]t

52¹•Ŝ1gvgP̂2avgP̂1F̂g2F̂a , (8.52)

where the Langevin forces due to spontaneous current
densities Ĵg and Ĵa , associated with gain and loss, are

F̂g~x,t !5
i

\c
@Â†~x,t !Ĵg~x,t !2 Ĵg

†~x,t !Â~x,t !# ,

(8.53a)

2F̂a~x,t !5
i

\c
@Â†~x,t !Ĵa~x,t !2 Ĵa

†~x,t !Â~x,t !# .

(8.53b)

The signs of these Langevin forces have been chosen to
emphasize that the Langevin forces are fluctuations in
the rates of stimulated emission and loss.
We make the assumption that Â entering into the

Langevin forces is a steady-state field, which can be
treated as a classical field for a laser above threshold.
The nonzero correlation functions of the Langevin
forces are given by Eq. (5.13).

^F̂g~x,t !F̂g~x8,t8!&5gvg~2nsp21 !P0~x,t !

3d~x2x8!d~ t2t8!, (8.54a)

^F̂a~x,t !F̂a~x8,t8!&5avgP0~x,t !d~x2x8!d~ t2t8!,
(8.54b)

where P0(x,t) is the steady-state photon density.
We can regard the rate equations for ]P̂/]t and

]N̂/]t as a set of classical equations since the laser field
can be treated as classical, and the nonzero Langevin
force correlation functions [Eq. (8.54)] are not order de-
pendent.
Let us add the equations for ]N/]t and ]P/]t . The

rates and Langevin forces associated with spontaneous
and stimulated emission cancel out, leaving

]N
]t

1
]P
]t

1¹•S1avgP1Fa~ t !1
N
t

5C. (8.55)

If we integrate this equation over the volume V of the
laser cavity and replace the integral over ¹•S by Q , the
photon flux leaving the cavity, then

Q5C2avgP2Fa~ t !2
N

t
2
dN

dt
2
dP

dt
, (8.56)

where C is the current to the laser (in electrons/second).
The average rate of recombination N/t equals the

threshold current C th . Far above laser threshold,
C th!Q . The fluctuations in N/t are shot-noise fluctua-
tions in the rate of recombination. We expect these fluc-
tuations to be small compared to the shot noise in Q .

We shall neglect them and replace N/t by its average
value C th , the threshold current.
The relaxation oscillations in a laser rapidly damp out

transient behavior, keeping P and N at their steady-
state values. At low frequencies, dN/dt and dP/dt can
be neglected. In practice, this holds for frequencies well
below the relaxation-oscillation frequency and damping
rate. In a laser with high internal efficiency, the internal
loss avgP1Fa can also be neglected in comparison to
Q . This leaves

Q~ t !'C~ t !2C th . (8.57)

Thus at frequencies small compared with the relaxation-
oscillation damping rate and for operation far above
threshold, where the other recombination processes are
negligible, the photon flux out of the laser follows fluc-
tuations in the laser current.
We expect that the noise in electrical current will be

much less than the shot noise in Q(t). One might think
that, when current travels through a resistive wire, the
scattering processes associated with resistance would
cause ordered electrons entering the wire to emerge
completely uncorrelated with shot-noise fluctuations.
This is not the case because the Coulomb force between
carriers and fixed charge is so strong that electrical neu-
trality must be maintained, at least for frequencies small
compared to the frequencies of plasma oscillations,
which are 1012 per second for semiconductors and 1016

per second for metals. Any scattering process that alters
electrical neutrality immediately sets up an electrical po-
tential that reestablishes it. The only effect of the scat-
tering is to cause voltage fluctuations across the resistor.
These fluctuations are the Johnson noise (Johnson,
1928) explained by the Nyquist theorem (Nyquist, 1928).
Yamamoto et al. (1986) have shown that these voltage
fluctuations are negligible for lasers having reasonable
values of series resistance in the external circuit. Thus
the current to the laser has sub-Poissonian fluctuations.
Since current fluctuations are negligible compared to

shot noise, so are fluctuations in the net photon flux out
of the cavity. For a laser such as shown in Fig. 14, where
all the photons emerge from one facet, this sub-
Poissonian intensity noise can be observed, provided
that nearly all the light leaving the cavity is detected
(Yamamoto et al., 1991). Any division or attenuation of
the emerging light or internal losses in the cavity will
reduce this effect. As we have seen in Sec. VII.C, these
attenuating effects act to restore the shot-noise limit. In
summary, the sub-Poissonian output is a direct conse-
quence of two effects: the output intensity following the
current at frequencies well below those of relaxation os-
cillations and the negligible noise associated with cur-
rent fluctuations as a consequence of the quasineutrality
of carriers and fixed charge. An explanation of sub-
Poissonian intensity noise, similar to that given here,
was made by Nilsson (1994).
Traditionally, the Langevin rate equation for the

laser-mode amplitude [Eq. (8.5)] together with the rate
equation for the carrier number [Eq. (8.51)] (integrated
over the cavity) have been used to describe transients of
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Fabry-Perot semiconductor lasers. These equations were
successfully applied to give simple analytical treatments
of relaxation oscillations, relative intensity noise, line
broadening, line narrowing with feedback, and other
phenomena. However, in some cases, these equations do
not correctly describe the spatial distribution of field
fluctuations within the cavity. The description of sub-
Poissonian intensity noise is an example where this
treatment fails.
Observations of sub-Poissonian noise are made with

Fabry-Perot lasers that have a high reflecting back facet
and a low reflecting output facet. This arrangement al-
lows nearly all of the emitted energy flux to be detected.
The low reflecting facet also makes the output flux large
compared to internal losses. The spatial distribution of
steady-state energy flux for such a laser is plotted in Fig.
14(a), and the spatial distribution of the low-frequency
fluctuations in energy flux are plotted in Fig. 14(b). We
see that the fluctuation in energy flux has a very differ-
ent spatial distribution from the steady-state energy flux.
This example demonstrates that the rate equation for
the mode amplitude [Eq. (8.5)] cannot be used to de-
scribe low-frequency fluctuations about the steady state
because it assumes a spatial dependence Â(x,t)
;F0(x). This holds for the steady-state field but not for
the fluctuations of the field about the steady-state solu-
tion, which has a different spatial distribution.

IX. CONCLUSION

There now exist world-wide optical communications
networks. The practical point of view of light-wave en-
gineers who deal with generation, amplification, and de-
tection is that light is a fluctuating classical wave. The
tools of their description are the classical wave equation
and rate equations for carriers to which Langevin noise
sources are added. Most noise phenomena of practical
interest are adequately described by this procedure.
However, the actual physical nature of this noise is often
hidden in this description. What is missing is a quantum-
mechanical basis for these descriptions that retains the
advantages of the classical treatments: the ease of treat-
ing open structures having exponentially growing and
decaying waves. In this paper, we provide a theoretical
basis for a variety of physical phenomena related to the
real problems of photonics that has a form as close as
possible to the classical description and allows a clear
physical picture of the quantum effects left out of the
classical descriptions.

A. Summary

We summarize our results with emphasis on the prin-
ciples governing quantum noise. Tables I and II should
help the reader to locate where items are discussed in
the paper.

1. Two noise sources: Field uncertainty and spontaneous
currents

There are two sources of noise: uncertainty-related
field fluctuations and optical-frequency spontaneous cur-
rents. In the semiconductor and rare-earth doped glass
systems, spontaneous currents are related to momentum
fluctuations due to electron localization. In Raman am-
plifiers, spontaneous currents result from the mixing of
lattice fluctuations and the optical field of the pump.
Neither of these sources has a classical counterpart.
These fluctuations are independent of one another and
would exist in the absence of electrical charge.

2. Attenuation and emission of vacuum fluctuations

In reality, light and carriers are coupled. This coupling
makes it difficult to separate cleanly the contributions of
the two noise sources. For example, while vacuum fluc-
tuations are a consequence of field uncertainty, they also
show up as emission from spontaneous currents in a cold
opaque absorber. In propagation within a cold absorb-
ing medium, the vacuum fluctuations become uncorre-
lated with distance. This can be interpreted as simulta-
neous attenuation and uncorrelated generation without
violation of energy conservation. The field of vacuum
fluctuations satisfies the operator wave equation and is
generated and absorbed like other radiation.

3. Detection of pure field uncertainty noise
and pure spontaneous current noise

However, for some specific cases, we can associate the
noise with one of the sources. Vacuum fluctuations can-
not be detected directly, but they show up in the pres-
ence of a signal field. Shot noise in an opaque photode-
tector is due to the field of vacuum fluctuations beating
with the signal field. Because of energy conservation,
field fluctuations are detected in an efficient opaque de-
tector without additional noise. In the opposite case of a
nearly transparent photodetector, which is insensitive to
field fluctuations, the shot noise is due to spontaneous
currents within the detector beating with the signal field,
which causes fluctuations in the rate of optical absorp-
tion.

4. Fluctuation-dissipation theorem for systems
in quasithermal equilibrium

To gain physical clarity, we use a model of carriers in
a semiconductor. We find that the correlation functions
for a pair of spontaneous current operators are related
to the coefficient of optical loss (or gain), in agreement
with the fluctuation-dissipation theorem. This derivation
is an extension of the fluctuation-dissipation theorem to
quasithermal equilibrium, where the electron and hole
Fermi levels are separated, and population inversion is
possible. The fluctuation-dissipation theorem is shown
to hold for scattering loss in a waveguide, where effec-
tive spontaneous currents result from the scattering of
vacuum fluctuations into the waveguide.
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5. Field operators satisfy a scalar wave equation
with spontaneous current-noise sources

The tools for describing quantum-noise phenomena
are the wave equation for the field operator and the
equation for the rate of optical transitions. The genera-
tion and propagation of noise and signal fields is ap-
proximately described by the scalar wave equation for
the field operator. This description is especially conve-
nient for dealing with open cavities with exponentially
growing and decaying fields. Spontaneous currents enter
this equation in the same way as Langevin forces enter
the classical wave equation, but here they are well-
defined operators. Most discussions of noise fields in-
volve the solution of this equation. This is done to de-
scribe emission of radiation and vacuum fluctuations
from an opaque source, propagation in amplifiers and
attenuators, the formation of a quantum Langevin rate
equation for the laser mode, and propagation in a wave-
guide with scattering loss. This equation can be solved in
the same way as a classical wave equation with a source,
by the Green’s-function method. This solution linearly
relates the field operators to the spontaneous current
operator sources and allows the calculation of field op-
erator averages in terms of spontaneous current opera-
tor correlation functions.

6. Probability distributions of observables
from higher-order correlation functions

The semiconductor model provides a means for calcu-
lating higher-order correlation functions of spontaneous
current operators. They are related to pair correlation
functions in a manner reminiscent of Wick’s theorem.
By calculating a few of the higher-order correlation
functions, we are able to draw conclusions about the
probability distributions of measured quantities. The
real and imaginary parts of the field and of spontaneous
currents are Gaussian distributed. Shot noise of an
opaque detector is Poisson distributed. The photon-
number fluctuations of nonlasing modes near threshold
are exponentially distributed, which leads to mode-
partition noise. The number of photons in a closed loss-
less cavity, interacting with carriers in quasithermal
equilibrium, is Bose-Einstein distributed.

7. Noise and spontaneous emission in optical transitions

The semiconductor model also provides a general
equation for the rate of optical transitions. This equation
contains spontaneous currents. Both spontaneous cur-
rents and uncertainty-related field fluctuations contrib-
ute to spontaneous emission. When only the ground
state is occupied, these contributions cancel, ensuring
stability of this state in the absence of radiation. In the
case of a nearly lossless cavity mode, the rate equation
reduces to the well-known formulas of Dirac for the
rates of absorption and spontaneous and stimulated
emission. A general formula for the average rate of
spontaneous emission into a cavity mode is derived that
is valid for open cavities with gain or loss. This rate is
not enhanced for open cavities by the Petermann factor

as once thought. Rather, the enhancement of noise and
mode intensities in open cavities is the result of single-
pass amplification following spontaneous emission. The
Dirac formula and the rate of spontaneous emission are
average rates. In addition, there are fluctuations in the
rates of optical transitions caused by the beating of
spontaneous currents with external optical fields. These
fluctuations have the correlation function expected for
recombination-generation noise of electrons and pho-
tons.

8. Conservation of stored energy

Just as in classical electromagnetic theory, the fields
and currents obey an equation of energy conservation.
From this equation, we identify operators for the photon
flux density and photon-number density. Energy conser-
vation is useful in showing that the low-frequency fluc-
tuations of photon flux of a semiconductor laser follow
the fluctuations in electrical current to the laser diode.
These fluctuations are sub-Poissonian as a consequence
of low electrical current noise. It also follows from en-
ergy conservation that the flux of vacuum fluctuations in
a cold absorber is conserved. Another conclusion is that
an ideal opaque photodetector measures the time-
dependent photon flux, without contributing additional
noise.

9. Classical limit at high amplification

The uncertainty-related field fluctuations are neither
amplified nor attenuated. They become negligible when
the amplified noise field becomes large compared to that
of vacuum fluctuations, in a spectral range, as occurs in
lasers and amplifiers. This means that the field becomes
classical. At the same time, the quantum Langevin
forces contributing to the steady-state field of a laser
also become classical as threshold is approached and the
photon number increases; analogously, the noise field of
an amplifier becomes classical when the amplification
becomes large. In both of these cases, the contributions
of spontaneous current emission and vacuum fluctua-
tions combine to give noise sources that can be treated
as classical.

B. What is not included in this review

The purpose of this paper has been to derive the basic
equations governing noise phenomena from first prin-
ciples and to illustrate them with some examples. As we
mentioned in the Introduction, there is an extensive lit-
erature covering the practical aspects of noise in optical
communications. One such aspect is transmission noise,
which includes the noise of amplification and detection.
Another is the noise of the laser source. This includes
laser linewidth and phase noise, intensity noise, mode-
partition noise, and line narrowing with external feed-
back. These problems are treated reasonably well from a
practical point of view, using phenomenological ap-
proaches such as adding Langevin forces to classical rate
equations. However, there are also some noise phenom-
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ena that are not yet unambiguously explained. These
include low-frequency behavior of noise known as 1/f
noise, chaos and other noisy behavior that are brought
about by reflections back into a laser, as well as the
physical phenomena leading to rarely occurring errors in
digital optical communications. A detailed account of
these phenomena would require a separate review ar-
ticle.
We have not covered, moreover, other quantum-noise

phenomena not directly related to optical communica-
tions, such as parametric amplification and the genera-
tion of optical squeezed states.
Theories of laser noise, whether phenomenological or

quantum, are based on the assumption that the carriers
in each band are in thermal equilibrium and are unaf-
fected by the recombination process. This is the basis of
the fluctuation-dissipation theorem and hence of most of
the discussion in this paper. We do not know whether
this assumption is correct at high rates of stimulated
emission. Some observations of laser noise under these
conditions, such as the linewidth floor, a halting of line
narrowing with increased laser power, may require go-
ing beyond the existing theory.
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APPENDIX A: OPERATOR ORDER INDEPENDENCE
OF THE ENERGY CONSERVATION EQUATION

The equation for energy conservation (6.12) is com-
posed of normally ordered terms. This equation was de-
rived by subtracting the wave equation for Â† multiplied
by Â from the equation for Â multiplied by Â†. The
equation is normally ordered if Â† is kept to the left of
Â and antinormally ordered if Â† is kept to the right of
Â . Thus we have two energy conservation equations,

¹•ŜN1
]P̂N
]t

1
]N̂N

]t
50, (A1a)

¹•ŜA1
]P̂A
]t

1
]N̂A

]t
50, (A1b)

where
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~Â†Â !, (A3a)

]P̂A
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4p\

dk2
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]

]t
~ÂÂ†!, (A3b)

and where subscripts N and A indicate normal and an-
tinormal ordering.
The resolution of the ambiguity of having two energy

conservation equations is that the terms in each equa-
tion are order independent, so the two equations are
identical. Consider the carrier-recombination rate. The
difference of the two orders can be expressed as a com-
mutator of the field and current density:

]~N̂A2N̂N!

]t
5

i

\c
~@Â , Ĵ tot

† #1@Â†, Ĵ tot# !. (A4)

In the Schrödinger representation, the operators ÂS

and ĵ S
† act on different wave functions and commute.

Going from the Schrödinger to the Heisenberg repre-
sentation does not alter the equal-time commutation re-
lations, so

]N̂A

]t
5

]N̂N

]t
. (A5)

We have verified this equality by showing that the lower
moments of these two operators are equal.
We can also demonstrate that the time derivative of
P̂ is order independent. The difference between
]P̂A/]t and ]P̂N/]t is

]~P̂A2P̂N!

]t
5

1
4p\

dk2

dv

]

]t
@Â~x ,t !,Â†~x ,t !# . (A6)

This commutator is found by a canonical quantization
procedure. Accordingly, the commutation rules of field
operators at equal times may not be zero but are time-
independent c numbers (for example, see Babiker and
Loudon, 1983; Glauber and Lewenstein, 1991) so that

]P̂A
]t

5
]P̂N
]t

. (A7)

This equality can also be verified by showing that the
lower moments of these two operators are equal.
We conclude that both ]N̂/]t and ]P̂/]t are order in-

dependent. The difference of the two energy conserva-
tion equations (A1) shows that

¹•ŜA2¹•ŜN50, (A8)

so all terms in the energy equation are order indepen-
dent.

APPENDIX B: CORRELATION FUNCTION
OF THE NOISE FIELD

For a system in equilibrium, the noise-field correlation
function is independent of the noise source. It is related
to Im@Gv(x1 ,x2)# , where Gv(x1 ,x2) is the Green’s func-
tion determining the field at one point due to a source at
another point. This was established generally for a sys-
tem in thermal equilibrium by Kubo (1966) and Martin
(1968). It can be thought of as an alternative formula-
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tion of the fluctuation-dissipation theorem. Here we de-
rive this result as a property of the solution of the scalar
wave equation with spontaneous current-density
sources. Our result is valid for quasiequilibrium, in
which the quasi-Fermi levels of the carriers have a con-
stant separation.
Consider a closed system occupying a volume V with

the field going to zero at the enclosing surface. The sur-
face can have walls coated with absorbers to prevent
reflections, as in Figs. 12 and 13. The frequency compo-
nents of the fields at two points are given by the
Green’s-function solution of the scalar wave equation
(6.7). The solution relating the field to the current den-
sity is

Âv~x1!52
4p

c E
V
Gv~x1 ,x! ĵv~x!dx (B1)

and

Âv8
†

~x2!52
4p

c E
V
Gv8~x2 ,x8!* ĵv8

†
~x8!dx8. (B2)

The correlation function of these two fields is found by
taking the product of these two equations, averaging,
and using the fluctuation-dissipation theorem [Eq.
(4.38)] to evaluate the correlation function of the two
spontaneous current-density operators. This results in

^Âv~x1!Âv8
†

~x2!&58p\d~v2v8!

3E
V
Gv~x1 ,x!Gv8~x2 ,x!* kv~x!av~x!

3@ n̄v~x!11#dx. (B3)

If we assume the system to be in quasiequilibrium,
then n̄v(x) is independent of x and can be removed
from the integral. The remaining integral can be evalu-
ated using Eq. (D1). A similar result holds for the other
order of the field operators with n̄v11 replaced by
n̄v . The two correlation functions are

^Âv~x1!Âv8
†

~x2!&528p\ Im@Gv~x1 ,x2!#

3d~v2v8!~ n̄v11 !, (B4a)

^Âv8
†

~x2!Âv~x1!&528p\ Im@Gv~x1 ,x2!#

3d~v2v8!n̄v . (B4b)

Let us use this result to investigate the correlation of
vacuum fluctuations propagating in a single transverse
mode of a waveguide with optical attenuation by a cold
medium. The normally ordered correlation function is
zero, so we shall only consider the antinormally ordered
one. Expressing the z dependence of the field and the
Green’s function with Eqs. (7.1) and (7.4), we find that
Eq. (B4) reduces to

^b̂v~z1!b̂v8
†

~z2!&528p\ Im@g~z1 ,z2!#d~v2v8!,
(B5)

where

g~z1 ,z2!5
1

2ik0
e ~ ik02a0/2!uz22z1u. (B6)

After evaluation of the imaginary part of the one-
dimensional Green’s function, we have

^b̂v~z1!b̂v8
†

~z2!&5
4p\

k0
d~v2v8!cos@k0~z22z1!#

3e2a0uz22z1u/2. (B7)

The corresponding equal-time correlation functions of
the z-dependent fields associated with a narrow band of
frequencies Dn can be found by multiplying Eq. (B7) by
exp@2i(v2v8)t#/2p and integrating v and v8 over this
frequency range, which results in

^b̂~z1 ,t !b̂
†~z2 ,t !&5

4p\Dn

k0
cos@k0~z22z1!#

3e2a0uz22z1u/2. (B8)

This result is consistent with the vacuum fluctuations
being absorbed and emitted in an opaque medium, with
no correlation between the absorbed and emitted fields.
The field of vacuum fluctuations is composed of posi-
tively and negatively propagating fields. Consider the
positively propagating fields. According to Eq. (7.10), at
z15z2 the correlation function is 2p\Dn/k0. For
z1.z2, the propagation will result in an additional phase
change and field attenuation exp@ik0(z12z2)
2a0uz22z1u/2]. Accompanying attenuation is a process
of emission of an uncorrelated field, with conservation
of energy. This field does not contribute to the correla-
tion function. Repeating this argument for z1,z2 gives
an identical result, so the correlation function is

^b̂~z1 ,t !b̂
†~z2 ,t !&5

2p\Dn

k0
eik0~z12z2!e2a0uz22z1u/2.

(B9)

The correlation function for negative propagating
vacuum fluctuations is the same, except k0→2k0. The
sum of the two contributions results in Eq. (B8).
A positively propagating signal is described by

bsig~z ,t !5bsig0e
~ ik02a0/2!z2ivSt. (B10)

It adds

bsig~z1 ,t !bsig~z2 ,t !*5ubsig0u2eik0~z12z2!e2a0~z11z2!/2

(B11)

to the correlation function. The absolute values of the
correlation functions, given by Eqs. (B9) and (B11), are
plotted in Fig. 8.

APPENDIX C: EFFECTIVE WAVE EQUATION
FOR A WAVEGUIDE WITH SCATTERING LOSS

Here we discuss the field propagating in a transparent
waveguide containing inhomogeneities, shown in Fig. 12.
We arrive at an effective wave equation for the propa-
gating modes in which the effect of the inhomogeneities
in the dielectric function is described by an attenuation
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coefficient. The attenuation is due to scattering loss. In
addition, there is an effective spontaneous current den-
sity acting as a source of noise fields. The noise fields
actually originate from vacuum fluctuations scattered
into the propagating modes. We show that the correla-
tion function of these currents is related to the attenua-
tion coefficient by the fluctuation-dissipation theorem.
The fluctuations in the dielectric function Dev(x) are

characterized by a correlation function. Any nonzero av-
erages of Dev(x) can be included in ev(x), so we take
^Dev(x)&50. We assume that the dielectric function of
the inhomogeneities Dev(x) is spatially correlated only
over a small volume V and that the dimensions of V are
small compared to the dimensions of the waveguide.
With these assumptions, we can approximate the corre-
lation function by a delta function:

^Dev~x!Dev~x8!&5^~de!2V&d~x2x8!. (C1)

The total optical field Âv(x) satisfies a wave equation

S ¹21
v2

c2
@ev~x!1Dev~x!# D Âv~x!52

4p

c
ĵv~x!, (C2)

where ĵv(x) is the spontaneous current density within
the absorbing walls in Fig. 12. This absorption prevents
the scattered light from reflecting off the boundary,
thereby imitating open surroundings.
We shall approximately solve this equation as a per-

turbation series, where Dev(x) and ĵv(x) are regarded
as small perturbations. We shall write the total field as
the sum of three terms,

Âv~x!5Â0v~x!1Â1v~x!1Â2v~x!, (C3)

which are zero, first, and second order in these small
quantities, respectively.
The field Â0v(x) is that of the propagating modes in a

waveguide without scattering. It satisfies the wave equa-
tion in zero order:

S ¹21
v2

c2
ev~x! D Â0v~x!50. (C4)

Let us next solve the wave equation (C2) keeping
terms of first order. The zero-order terms are eliminated
by use of Eq. (C4), leaving

F¹21
v2

c2
ev~x!GÂ1v~x!52

v2

c2
Dev~x!Â0v~x!

2
4p

c
ĵv~x!. (C5)

We regard Â0v as known and have put it on the right-
hand side.
The inhomogeneous solution A1v(x) can be found us-

ing the Green’s function of the wave equation without
scattering Gv(x,x8), which satisfies

¹2Gv~x,x8!1
v2

c2
ev~x!Gv~x,x8!5d~x2x8!. (C6)

The solution is

Â1v~x!52E dx8Gv~x,x8!S v2

c2
Dev~x8!Â0v~x8!

1
4p

c
ĵv~x8! D . (C7)

These first-order contributions to the field are from ra-
diation scattered out of the waveguide and vacuum fluc-
tuations emitted by spontaneous currents in the sur-
rounding walls.
Next, we keep all terms to second order in the wave

equation (C2). The zero-order and first-order terms are
eliminated by use of Eqs. (C4) and (C5):

F¹21
v2

c2
ev~x!GÂ2v~x!

52
v2

c2
Dev~x!Â1v~x!

5
v4

c4 E dx8Gv~x,x8!Dev~x!Dev~x8!Â0v~x8!

1
4pv2

c3
Dev~x!E dx8Gv~x,x8! ĵv~x8!. (C8)

The last term in Eq. (C8) is the source of noise due to
the scattering of vacuum fluctuations into the modes. It
can be regarded as due to an effective spontaneous cur-
rent density:

4p

c
ĵv eff~x!52

4pv2

c3
Dev~x!E dx8Gv~x,x8! ĵv~x8!.

(C9)

The scattering of light out of the waveguide modes
results in loss described by the imaginary part of the
propagation constant. Multiple scattering also alters the
velocity of the modes, causing a small change in the real
part of the propagation constant. To obtain the average
changes in the propagation constant, we approximate
Dev(x)Dev(x8) by its average value [Eq. (C1)]. Averag-
ing over a small volume was also used in deriving the
Kubo formula for the susceptibility in Sec. IV.D. This
averaging allows us to evaluate the first integral in Eq.
(C8):

E dx8Gv~x,x8!^Dev~x!Dev~x8!&Â0v~x8!

5Gv~x,x!^~de!2V&Â0v~x!. (C10)

The coefficient of Â0v(x) represents a correction to the
propagation constant of the guided modes.
The field Â2v(x) is the second-order correction to the

propagating modes. There is no first-order correction.
We shall write the corrected field of the modes as
Âv modes(x)5Â0v(x)1Â2v(x). An equation for this
field can be found by adding Eq. (C4) for Â0v(x) and
Eq. (C8) for Â2v(x) (with the averaged correlation
function):

848 C. H. Henry and R. F. Kazarinov: Quantum noise in photonics

Rev. Mod. Phys., Vol. 68, No. 3, July 1996



¹2Âv modes~x!1S v2

c2
ev~x!2

v4

c4
^~de!2V&Gv~x,x! D

3Âv modes~x!52
4p

c
ĵv eff~x!. (C11)

We have replaced the term ^(de)2V&Â0v by
^(de)2V&Âv modes . The error in doing this is of fourth
order and negligible.
The correlation function of the effective spontaneous

current density ĵv eff(x) can be calculated using the
fluctuation-dissipation theorem [Eq. (4.38)] with n̄v50
and Eq. (C1):

S 4p

c D 2^jv eff~x!jv8 eff
†

~x8!&

58p
\v4

c4
^~de!2V&d~x2x8!

3d~v2v8!

3E uGv~x,x9!u2k~x9!a~x9!dx9. (C12)

We show in Appendix D [Eq. (D4)] that the integral
in this equation is equal to 2Im@Gv(x,x)# . Using this
result, we find that the correlation function for ĵv eff(x)
[Eq. (C12)] reduces to

S 4p

c D 2^ ĵv eff~x! ĵv eff
† ~x8!&

52
8p\v4^~de!2V&

c4
Im@Gv~x,x!#d~x2x8!

3d~v2v8!. (C13)

The bracketed term in the wave equation (C11) is an
effective squared propagation constant that takes scat-
tering into account,

v2

c2
ev~x!2

v4

c4
^~de!2V&$Re@Gv~x,x!#1i Im@Gv~x,x!#%

[kv
2~x!12kv~x!Dk~x!1ikv~x!av eff~x!, (C14)

where av eff(x) is the effective attenuation coefficient
due to scattering loss. Using the imaginary part of this
equation to relate av eff(x) to Im@Gv(x,x)# , we find that
the correlation function for ĵv eff(x) reduces to

S 4p

c D 2^ ĵv eff~x! ĵv eff
† ~x8!&58p\kv~x!av eff~x!d~x2x8!.

(C15)

This is exactly the expected relation between the loss
and spontaneous current density predicted by the
fluctuation-dissipation theorem [Eq. (4.38)] with n̄v50.

APPENDIX D: GREEN’S FUNCTION INTEGRAL

Here we establish a useful integral of the product of
two Green’s functions and the imaginary part of the
squared propagation constant. The result, derived be-
low, is

E
V
kv~x!av~x!Gv~x1 ,x!Gv~x2 ,x!* dx

52Im@Gv~x1 ,x2!# . (D1)

The integral is over a volume V that is enclosed by a
surface where the Green’s function goes to zero.
The steps leading to this integral are similar to those

made in deriving the energy conservation equation
(6.10). The Green’s function Gv(x,x1) satisfies

@¹21kv
2 ~x!1ikv~x!av~x!#Gv~x,x1!5d~x2x1!. (D2)

A similar equation is satisfied by Gv(x,x2)* :

@¹21kv
2 ~x!2ikv~x!av~x!#Gv~x,x2!*5d~x2x2!.

(D3)

Let us multiply Eq. (D2) by Gv(x,x2)* , multiply Eq.
(D3) by Gv(x,x1), and take the difference. If we inte-
grate this difference over V , the terms with
¹2Gv(x,x1) and ¹2Gv(x,x2)* can be written as the in-
tegral of a divergence, which, when converted to a sur-
face integral, is zero. The resulting equation is (D1). In
writing this equation, we have interchanged the two ar-
guments of the Green’s function. This does not alter the
integral because the Green’s function is symmetrical in
its arguments.
An important special case of Eq. (D1) is x15x2. The

integral is

E
V
kv~x!av~x!uGv~x1 ,x!u2dx52Im@Gv~x1 ,x1!# . (D4)

This result resembles the ‘‘optical theorem’’ in the quan-
tum theory of scattering which relates the imaginary
part of the amplitude for forward scattering to the total
scattering cross section (Landau and Lifshitz, 1958a).

APPENDIX E: FORMULA FOR THE AVERAGE RATE
OF SPONTANEOUS EMISSION

We shall evaluate the formulas for the average rates
of spontaneous emission derived in Sec. VIII.D and ar-
rive at a general formula. We then evaluate this formula
to determine the average rate of spontaneous emission
into a waveguide mode and into the mode of a laser near
threshold.

The expressions for ^N̂̇spont&, in Eqs. (8.30a) and
(8.30b), can be immediately evaluated by writing the
field and spontaneous current in terms of their fre-
quency components,

Â~x,t !5E dv

A2p
Âv~x!e2i~v2vS!t, (E1a)

Ĵ~x,t !5E dv

A2p
Ĵv~x!e2i~v2vS!t. (E1b)

The range integration is centered about vS and is small
compared to the optical frequency. We can relate
Âv(x) to Ĵv(x8) with a Green’s function [Eq. (B1)].
Substituting these expansions into Eq. (8.30a) for the
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normally ordered spontaneous-emission rate and using
the fluctuation-dissipation theorem [Eq. (4.38)], we find

K ]N̂spont~x!

]t L 5
i

\c
^ Ĵ†Â2Â†Ĵ&

5
2gknsp

p E dv Im@Gv~x,x!# , (E2)

where Im@Gv(x,x)# is the imaginary part of the Green’s
function and gknsp is evaluated at x.
The antinormally ordered spontaneous-emission rate,

given by Eq. (8.30b), is

K ]N̂spont

]t L 52gvg^P̂A2P̂N&1
i

\c
^ÂĴ†2 ĴÂ†&. (E3)

The first term in Eq. (E3) can be evaluated using the
fluctuation-dissipation theorem and Eq. (D4) with
a→2g to evaluate the spatial integral over the Green’s
function,

2gvg^P̂A2P̂N&

52
gk

2p\
^A~x,t !A†~x,t !2A†~x,t !A~x,t !&

5
2gk
p E dvE

V
k~x1!g~x1!uGv~x,x1!u2dx1

5
2gk
p E dv Im@Gv~x,x!# . (E4)

The second term in Eq. (E3) is the same as Eq. (E2),
except that nsp is replaced by nsp21. Therefore the term
associated with the 21 of nsp21 cancels the contribu-
tion of Eq. (E4), leaving a rate that is identical to Eq.
(E2). That is, the contribution to the rate of spontaneous
emission made by the uncertainty-related field fluctua-
tions is canceled by part of the contribution made by the
spontaneous currents. The remaining contribution is
proportional to nsp and goes to zero for a cold system.
This cancellation ensures that there are no spontaneous
transitions when the system is in its ground state. Fur-
ther interpretation of this cancellation is given in the
discussion after Eq. (8.31).
The sum of the two terms in Eq. (E3) is the same as

Eq. (E2). This establishes that the two expressions for
the average spontaneous-emission rate, arrived at start-
ing with the rate of carrier recombination written in nor-
mal and antinormal order, are identical. ^]N̂spont/]t& is
order independent.
Let us evaluate the spontaneous-emission rate in an

amplifying waveguide. The Green’s function is given by

Gv~x1 ,x2!5(
n

1
2ikn

e ~ ikn1gn/2!uz22z1uFn~x1!Fn~x2!,

(E5)

where the sum is over the transverse modes. Substituting
this Green’s function into Eq. (E2), keeping only the
contribution of a single transverse mode 0, and replacing

the integral over frequency by the interval 2pDn , we
find that the spontaneous emission per unit volume into
mode 0 is

K ]N̂spont~x!

]t L 54gknspDn Im@Gv~x,x!#

52
2gk
k0

nspDnF0~x !2. (E6)

Integrating over the transverse coordinate x , and using
Eq. (7.3) to eliminate k0, we find the spontaneous emis-
sion in both the positive and negative directions into
mode 0 is 2g0nspDn .
The photon flux of amplified spontaneous emission

can be found by multiplying the rate of spontaneous
emission in one direction by the amplification and inte-
grating over the length of the amplifier:

^QN&5g0nspDnE
0

L
dzeg0~L2z !5nspDn~G21 !. (E7)

This agrees with the result established earlier in Eq.
(7.37a).
The Green’s function of a laser can be expanded in

terms of modes. This is done in Appendix F. The
Green’s function Gv(x,x) has a narrow resonance for
each mode near threshold. The average rate of sponta-
neous emission into one of these modes can be found by
integrating over frequency the contribution of the mode
to the Green’s function. For mode 0, this integral is

E dvGv~x,x!5
F0~x!2

S dkv
2

dv
F0

2D
V

3E dv
~v2v0!1iDG0/2

~v2v0!
21~DG0/2!2

.

(E8)

The first term in the integrand is odd in v2v0 and
integrates to zero. The modes have DG0,0 both for
nonlasing modes and for the steady-state operating
point of the lasing mode. For this sign of DG0, the inte-
gral of the second term is 2ip . Substituting the imagi-
nary part of this equation into Eq. (E2) and replacing
2k by vgdkv

2 /dv , we have

K ]N̂spont~x!

]t L 52g~x!vg~x!nsp~x!

3ReFdk2~x!/dvF0~x!2

~dk/dvF0
2!V

G . (E9)

APPENDIX F: EXPANSION OF THE GREEN’S FUNCTION
IN LASER MODES

We are interested in optical frequencies near vS . The
Green’s function satisfies Eq. (6.6) with the propagation
constant approximated by an expansion about vS in Eq.
(6.8):
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¹2Gv~x,x8!1Fk2~x!1
dkv

2 ~x!

dv
~v2vS!

2ik~x!g~x!GGv~x,x8!5d~x2x8!, (F1)

where g(x) is positive for net gain and negative in re-
gions of loss. The Green’s function can be expressed as a
sum of orthogonal modes satisfying the same equation,
but with the right side set to zero,

Gv~x,x8!5(
n
gnFn~x!. (F2)

The modes occupy a volume V and go to zero at the
surface enclosing this volume; see Fig. 13. These modes
have discrete frequencies ṽn[vn1iDGn/2 and satisfy
an orthogonality relation [Eq. (8.2)]. Substituting this
expansion into Eq. (F1) and using Eq. (8.1a) reduces the
equation satisfied by the Green’s function to

(
n

dkv
2 ~x!

dv S v2vn2i
DGn

2 D gnFn~x!5d~x2x8!.

(F3)

We can solve for the expansion coefficient gm by multi-
plying this equation by Fm(x), integrating over V , and
applying the mode-orthogonality relation. The resulting
expression for the Green’s function is

Gv~x,x8!5(
n

Fn~x!Fn~x8!

S dkv
2

dv
Fn

2 D
V

~v2vn2iDGn/2!

, (F4)

where (•••)V indicates an integral over V .
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