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Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic
quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the
sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty
principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables
of a system but allows one-time measurements of a single observable with any precision. The
dynamical evolution of a system immediately following a measurement limits the class of observables
that may be measured repeatedly with arbitrary precision, with the influence of the measurement
apparatus on the system being confined strictly to the conjugate observables. Observables having this
feature, and the corresponding measurements performed on them, have been named quantum
nondemolition or back-action evasion observables. In a previous review (Caves et al., 1980, Rev. Mod.
Phys. 52, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a
harmonic oscillator was presented. The present review summarizes the experimental progress on
quantum nondemolition measurements and the classical models developed to describe and guide the
development of practical implementations of quantum nondemolition measurements. The
relationship between the classical and quantum theoretical models is also reviewed. The concept of
quantum nondemolition and back-action evasion measurements originated in the context of
measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be
useful in other experimental contexts as well, as is discussed in the last part of this review.
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Our interpretation of the experimental material rests es-
sentially on the classical concepts

Niels Bohr, 1927

I. INTRODUCTION

The first discussions of repeated measurements on a
quantum system date back to nearly the beginning of
quantum theory (Landau and Peierls, 1931). Two con-
secutive measurements of the position of a free particle
were considered and it was shown that the accuracy with
which an initial measurement was performed affected
the position uncertainty of a subsequent measurement.
This started a debate on the measurability of physical
quantities in quantum field theory (Bohr and Rosenfeld,
1933, 1950) and on the validity of the energy-time uncer-
tainty relationship (Aharonov and Bohm, 1961, 1964;
Fock, 1962, 1965; Aharonov and Petersen, 1971;
Vorontsov, 1981). Elsasser (1937) introduced a concept
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of nonperturbing measurements in connection with the
understanding of the role of the uncertainty principle in
the foundations of statistical quantum mechanics. The
idea of a noninvasive measurement on a quantum sys-
tem also appeared in the monograph on quantum me-
chanics by Bohm (1951), but probably due to a lack of
experimental accessibility these ideas were not pursued
further. Interest in a quantum theory of repeated mea-
surements on a system returned with the development
of MASERS that made quantum phenomena apparent
on a macroscopic scale (Louisell et al., 1961). Soon
thereafter the quantum-mechanical lower bound to the
noise figure of a general linear amplifier was predicted
(Heffner, 1962; Haus and Mullen, 1962). By making a
very general argument, their conclusion was that any
system that provides gain must add noise to a received
signal. This led to investigations of the quantum-noise
limits of generalized quantum receivers and eventually
resulted in the development of a theory of optimal
quantum-mechanical measurements (Helstrom, 1976).
This elegant mathematical theory assumed that precise
measurements of one observable or another in a system
could be performed, but it did not address the practical
issue of how to realize such measurements. Experimen-
tal practice had not yet demanded that this issue be con-
fronted.
Experiments designed to test the predictions of gen-

eral relativity, and in particular the search for gravita-
tional radiation, call for incredibly precise measure-
ments of the minute displacements of macroscopic
objects such as multiton gravitational wave antennae
(Braginsky, 1970; Misner, Thorne, and Wheeler, 1973;
Amaldi and Pizzella, 1979; Douglass and Braginsky,
1979; Thorne, 1980). This application pushed a number
of experimentalists and practical-minded theorists to try
to understand the quantum-mechanically imposed limi-
tations of the sensitivity of measurements made on a
harmonic oscillator serving as a model of a gravitational
wave antenna. Braginsky and his collaborators first dis-
cussed this problem and identified the quantum limit for
the sensitivity of gravitational wave antennae (Bragin-
sky, 1967; Braginsky and Nazarenko, 1969). An indepen-
dent semiclassical analysis (Giffard, 1976) showed that
the precision of a measurement of the force acting on a
gravitational wave antenna is limited by the unavoidable
quantum noise of the amplifier used in the measure-
ment. Braginsky et al. (1975) showed that this so-called
‘‘standard quantum limit’’ arises because conventional
measurement techniques demand information about two
conjugate observables of the gravitational wave antenna,
the amplitude and the phase of one of the antenna’s
normal modes of vibration. Braginsky also recognized
that the quantity of fundamental interest, in this case the
weak force acting on a gravitational wave antenna,
sometimes may be measured more accurately by moni-
toring harmonic-oscillator observables other than posi-
tion. This was the introduction of the idea of a quantum
nondemolition (QND) measurement. The QND idea
was extended and several new schemes for monitoring a
harmonic oscillator were suggested by Caves et al.

(1980). They also refined the insight that optimal QND
measurements require the observable of interest to be
decoupled from its conjugate observable during the sys-
tem’s free evolution. This is because during a measure-
ment of an observable the conjugate observable is un-
avoidably disturbed; if the uncertainty in the conjugate
observable feeds back to contaminate the observable of
interest a sequence of precise measurements is impos-
sible. These special observables are called quantum non-
demolition observables. A familiar counterexample of a
QND observable is the position of a harmonic oscillator,
x . If one precisely measures x then the conjugate ob-
servable, the oscillator momentum p , becomes uncertain
according to the Heisenberg relation, DxDp>\/2, and
during the subsequent evolution of the oscillator the
momentum uncertainty forces the future values of the
position to become correspondingly uncertain.
One QND measurement proposed by Braginsky and

Vorontsov was to monitor the number of phonons in a
harmonic oscillator (Braginsky and Voronstsov, 1974).
The harmonic-oscillator observable conjugate to the
number of phonons, which is equivalent to the oscillator
energy, is the phase of the oscillator. Even if the phase
were completely unknown at the expense of a precise
measurement of energy, the small energy uncertainty
would be maintained since energy is a constant in the
free evolution of the oscillator. Unfortunately it is im-
practical to directly measure the energy of a mechanical
oscillator at acoustic frequencies since it would require
an interaction Hamiltonian quadratic in the displace-
ment of the harmonic oscillator, and there do not appear
to be sufficiently strong nonlinear effects to achieve such
coupling. Subsequently, proposals for the measurement
of QND observables that are linear in the displacement
of the harmonic oscillator were made (Thorne, Drever,
et al., 1978; Thorne, Caves, et al., 1979). In particular,
the continuous back-action evasion (BAE) measure-
ment of one component of a harmonic oscillator’s com-
plex amplitude was proposed and this appeared to be
more practically realizable than earlier proposals. Clas-
sical analyses of apparatuses capable of measuring an
oscillator’s complex amplitude showed that such
schemes avoid the fluctuating back-action force of the
measuring apparatus on the measured component of the
mechanical oscillator’s complex amplitude. Moreover, it
was demonstrated that the idea proposed by Thorne,
et al. (1979) was a special case in the family of the al-
ready known electromechanical parametric transducers
(Johnson and Bocko, 1981; Bocko and Johnson, 1982).
Demonstration of the operating principles of a paramet-
ric transducer capable of BAE measurements has been
accomplished by several groups, and the continuous re-
finement of BAE transducers has brought them close to
implementation on second- and third-generation gravi-
tational wave antennae (Cinquegrana et al., 1994; Boni-
fazi et al., 1996).
Aside from the application to gravitational wave an-

tennae, the back-action evasion measurement idea has
also been investigated during the last decade for its util-
ity in other areas, particularly in quantum optics, in su-
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perconducting microwave mixers, and for dedicated ex-
periments to examine repeated quantum measurements
on macroscopic objects. Back-action evasion measure-
ments of an optical field have been reported (Levenson
et al., 1986; Bachor et al., 1988; La Porta et al., 1989;
Grangier et al., 1991; Friberg et al., 1992; for a review of
the experimental results see Roch et al., 1992). The ideas
underlying the generation of squeezed states of optical
and microwave electromagnetic fields, a topic of consid-
erable recent activity, are related to the concepts of
quantum nondemolition measurements (Grishchuk and
Sazhin, 1975; Walls, 1983; Giacobino and Fabre, 1992;
Drummond et al., 1993). A QND measurement of a har-
monic oscillator’s complex amplitude leaves the har-
monic oscillator in a squeezed state, that is to say, a
quantum state in which the fluctuations of the two
quadrature phases of the oscillator complex amplitude
are unequal. The squeezed-state experiments prepare a
traveling mode of an electromagnetic field in a state in
which the fluctuations of one phase of the field are re-
duced at the expense of increased fluctuations in the
quadrature phase; then the squeezed electromagnetic
field propagates to a detector which destroys the field in
a single measurement. In the squeezed-state experi-
ments, the state preparation and the state measurement
functions are separate, whereas in a QND measurement
both functions are performed by the same apparatus.
The most significant distinction from the point of view of
quantum measurement theory is that, in performing a
QND measurement, one continuously monitors the
same quantum system, which makes central the question
of the effect of the measurement apparatus on the sys-
tem being measured.
Also, in the mechanical QND measurements, the in-

tended application has been the detection of impulsive
forces with a broadband spectrum. In this context it is
convenient to express the advantage of a back-action
evasion measurement scheme in terms of an integrated
noise measure, the noise temperature, independent of
the shape of the signal spectrum. By contrast, in the
optical case various characterizations of the degree of
improvement of a QND measurement have been pro-
posed (Holland et al., 1990; Grangier et al.; 1992; for a
review see Poizat, Roch, and Grangier, 1994), which de-
pend on the correlation functions and the corresponding
spectral densities of more general classes of the input
signals. Moreover, we point out that the continuous
QND measurement of the complex amplitude of a har-
monic oscillator and the QND measurement of the en-
ergy of an oscillator or waveguide require distinctly dif-
ferent techniques; the latter will not be described here
(for overviews on this subject see, for instance, Bragin-
sky, 1989; Brune et al., 1990, 1992; Haroche, 1992; Bra-
ginsky and Khalili, 1996). Another related subject not
covered here is the discussion of high-precision mea-
surements of the position of single atoms, an important
topic in atomic optics, for which detailed overviews have
already appeared (Wallis, 1995; Thomas and Wang,
1995).

Making repeated quantum measurements on a single
quantum system is outside of the familiar applications of
quantum mechanics in fields such as condensed matter,
quantum optics, atomic, nuclear, and elementary-
particle physics. In those contexts, measurements are
considered to be performed on an ensemble of identi-
cally prepared microscopic objects, and one does not in-
quire about the state of the measured system after the
measurement process is complete. Neither the formal-
ism nor the interpretation of ordinary quantum mechan-
ics seem suitable for describing repeated or continuous
measurements on single, isolated quantum systems, so
dedicated experiments to investigate the effect of a mea-
surement on a single macroscopic quantum system will
yield interesting insights into the quantum nature of iso-
lated macroscopic objects consisting of large numbers of
microscopic components—and in particular into the in-
teraction of such systems with measuring apparatuses
and the classical world. Recently, attempts to include
the measurement process in a unified dynamics suc-
ceeded in describing the behavior of a single quantum
particle under continuous observation in terms of a sto-
chastic Schrödinger equation (for a review see Belavkin,
Hirota, and Hudson, 1995), although we are still far
from having understood the consequences of this dy-
namics in several aspects, including the possibility to de-
scribe intrinsically complex objects as macroscopic
quantum systems. Perhaps the most intriguing possibility
for a departure from our conventional understanding of
such systems has been outlined by Leggett (1986) when
he suggested ‘‘we would then have to take seriously the
possibility that the physics of complex macroscopic ob-
jects cannot be deduced in all respects from that of their
constituents—a conclusion that would clearly run totally
counter to the ‘reductionist’ wisdom of the science of the
last two hundred years, but might in the end have a
liberating effect that outruns our present imagination.’’
Unfortunately, QND measurements on macroscopic
mechanical systems have yet to be performed; however,
experimentalists are well on their way to exploring this
fascinating regime.
This review article emphasizes the experimental

progress toward performing quantum measurements on
macroscopic harmonic oscillators, in the spirit of giving
both an introduction to the subject and a summary of
the progress made so far. In Sec. II we provide a sum-
mary of the quantum-mechanical description of mea-
surements, both conventional and QND, on a harmonic
oscillator acted upon by a weak force. We begin Sec. III
with a discussion of the framework for classical models
of systems acted upon by weak signals plus noise. The
systems of interest can be described by classical random
variables, and the key measured quantities, such as au-
tocorrelation functions of these variables or their power
spectra, can be directly predicted by time averages of
the variables, which are equivalent to ensemble averages
according to the ergodic hypothesis. The classical ap-
proach is extended to a semiclassical treatment by intro-
ducing noise sources, which account for the quantum
fluctuations; however, we still use our essentially classi-
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cal descriptive tools. The outcome of this section is the
development of classical models of systems capable of
performing quantum nondemolition measurements and
the prediction of their sensitivity in the presence of clas-
sical sources of noise. This forms the basis for under-
standing and guiding the experimental work on quantum
nondemolition measurements described in Sec. IV. The
description of these instrumental efforts carried out so
far is complemented, in Sec. V, by a discussion of the
applications of QND measurement techniques to high-
precision experiments. Sec. VI contains the conclusions
and critical comments on the status of this area of re-
search.

II. THE STANDARD QUANTUM LIMIT AND QUANTUM
NONDEMOLITION MEASUREMENT STRATEGIES

A. Statistical mechanics of a quantum harmonic oscillator

We begin this section with a cautionary statement on
the difficulty of isolating the classical limit of quantum
mechanics, which is necessary for the consistent physical
interpretation of quantum theory. The classical limit is
usually considered to be obtainable simply by taking the
limit as Planck’s constant approaches zero or by allow-
ing some parameter of the system under study to be-
come very large, for example the mass of a free particle.
In either instance the quantum effects become negligibly
small. It would be more consistent to establish whether a
system is in the quantum or the classical regime by in-
cluding in the quantum-mechanical description of the
system under study the system’s interaction with the en-
vironment. Thereby one would assert that the classical
regime is obtained when the effect of the fluctuations
associated with the degrees of freedom of the system’s
environment dominates the noise arising from the mea-
surement process, i.e., due to the interaction of the sys-
tem with the ‘‘noiseless’’ measuring apparatus. Models
able to describe the time evolution of an observable of a
generic quantum system immersed in a generic statistical
reservoir have not yet been developed, although the
goal seems within the scope of existing theoretical phys-
ics and is known as the study of open quantum systems
(Davies, 1976; Gorini et al., 1976; Lindblad, 1976). De-
spite this, progress has been achieved by reaching a gen-
eral understanding of the absence of superposition states
in a measurement apparatus (Zurek, 1981, 1982) and in
macroscopic systems (Ghirardi, Rimini, and Weber,
1986; Diosi, 1989). Less ambitious but more concrete
approaches have focused attention on systems and envi-
ronments for which the dynamics can be explicitly
solved. For instance, a quantum-mechanical harmonic
oscillator immersed in a heat bath is a simple example of
an open quantum system due to the linear nature of the
oscillator and the simple statistics obeyed by a thermal
bath. There has been considerable interest in this prob-
lem and many different formalisms have been created to
deal with it. Until now, three main approaches to quan-
tization have been proposed, namely the canonical ap-
proach, which dates back to the original attempts to in-

troduce a consistent quantum theory, the path-integral
approach due to Feynman (Feynman, 1948; Feynman
and Hibbs, 1965), and the stochastic approach (Nelson,
1980, 1985; Guerra, 1981).
In the canonical formalism, two avenues have been

pursued to take into account the effect of a reservoir
(Louisell, 1973). One can model the reservoir as an infi-
nite number of quantized harmonic oscillators with lin-
ear coupling to the system’s harmonic oscillator and
with specific properties that enforce the statistics of the
thermal bath. Alternatively, one can introduce a noise
source, which represents the effect of the oscillators in
the thermal bath by introducing an effective force noise
and a damping factor that arise from the coupling to the
bath similar to the familiar Langevin approach to statis-
tical mechanics. In the path-integral formalism, the har-
monic oscillator is considered as a subsystem in a larger
system with an infinite number of degrees of freedom.
The path integral of the subsystem averages over all
other degrees of freedom to give the path of the single
harmonic oscillator in which the usual weight is multi-
plied by a factor, called the influence functional, that
expresses the averaged influence of the reservoir (Feyn-
man and Vernon, 1963; Caldeira and Leggett, 1983a,
1983b; Exner, 1985). Finally, in the finite-temperature
version of stochastic quantization, the quantum uncer-
tainties and the statistical-mechanics uncertainties are
expressed in the same language, namely the theory of
stochastic processes (Ruggiero and Zannetti, 1985). The
existence of an equivalent to Newton’s law for the sys-
tem dynamics—a stochastic Newton’s law—assures a
formalism in which the effect of dissipative forces can be
naturally included, unlike the case of canonical
(Hamiltonian-based) or path-integral (Lagrangian-
based) formalisms.
In all three formalisms the effect of the thermal res-

ervoir on the quantum harmonic oscillator is describable
by a Fokker-Planck equation for the time evolution of
the oscillator observables. The dependence of the sys-
tem observables upon the reservoir degrees of freedom
is embodied in a relaxation time; furthermore, all three
formalisms predict that the relaxation time of system
observables in the quantum limit is the same as it is in
the classical regime. The relaxation time is critical be-
cause it determines the rate at which energy is ex-
changed between the reservoir and the system. To de-
termine if a system is in the quantum or the classical
regime, the amount of energy exchanged between the
system and the thermal bath should be compared to the
energy introduced by the measuring apparatus during
the process of measurement. The energy DE exchanged
in a time Dt between the system, with a relaxation time
t, and the reservoir at temperature T is

DE5kBT
Dt

t
, (2.1)

where kB is Boltzmann’s constant. The exchange of en-
ergy between the oscillator and the reservoir results in a
random walk of the oscillator with zero average dis-
placement and a root-mean-square displacement value
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Dxrms>S 2kBTmv2

Dt

t D 1/2, (2.2)

where m is the mass and v is the resonant angular fre-
quency of the oscillator. In a simple model one can view
the measurement as the exchange of one quantum of
energy between the measuring apparatus and the mea-
sured system during their interaction. Thus the condi-
tion for the noise from the thermal bath to be small
compared to the noise associated with the measurement,
expressed as a quantum of the energy of the measured
system, is

kBT
Dt

t
!\v . (2.3)

This inequality, introduced by Braginsky and Vorontsov
(1974), was later derived in a more formal manner in a
functional approach to quantum Brownian motion (Es-
cobar et al., 1994) by using the decoherence time scale
(Unruh and Zurek, 1989; Zurek, Habib, and Paz, 1993;
Zurek and Paz, 1995), a measure of how long a system
maintains its quantum features when coupled to a ther-
mal bath at temperature T, and by imposing a decoher-
ence time much larger than the measurement time. As
was pointed out for the first time by Braginsky (1967),
realistic values of the temperature, relaxation times, and
the nearly quantum-limited amplifiers used for gravita-
tional wave antennas will allow us to experimentally
reach the quantum regime, in other words to satisfy con-
dition (2.3). A gravitational wave antenna can be accu-
rately represented as a macroscopic harmonic oscillator
that is continuously monitored for the influence of a
weak force exerted by a passing gravitational wave, so in
the quantum regime this system can be treated as a
single quantized harmonic oscillator, isolated from its
environment save for a measurement apparatus that
subjects the system to a sequence of measurements. Be-
cause of the statistical nature of the usual interpretation
of quantum mechanics, it is not possible to predict, in a
deterministic way, the state evolution of a single isolated
system subjected to continuous measurement. There-
fore, it is especially interesting to pursue this class of
measurements that constitutes a natural environment
for analyzing a single degree of freedom under repeated
monitoring in the quantum regime.

B. Quantum theory of repeated measurements
on a single object

1. The standard quantum limit

In the usual approach to quantum mechanics, the free
evolution of a quantum system is treated separately
from the process of measurement. During its free evolu-
tion the quantum state of the system evolves unitarily.
During a quantum measurement, the unitary evolution
no longer applies and the state of the quantum system is
projected onto one of the basis states defined by the
measurement apparatus, the outcome of the state pro-
jection process being described only in a probabilistic

sense. Strictly speaking then, quantum mechanics as it is
usually applied does not apply to a single system under-
going a continuous measurement. The usual way out of
this quandary is to identify the statistical information,
which in the Copenhagen interpretation of quantum me-
chanics applies to a set of identical measurements on an
ensemble of identically prepared systems, with the vari-
ance of a number of repeated measurements on a single
quantum system. This is clearly not a realistic descrip-
tion of a sequence of measurements on a single system
for the fundamental reason that it overlooks the effect
of early measurements in the sequence on those that
occur later in the sequence, that is, it overlooks the back
action of the measurement apparatus. This problem, af-
ter considerable progress through the introduction of a
semigroup master equation for the density matrix de-
scribing a system subjected to continuous measurements
(Barchielli, Lanz, and Prosperi, 1982; Barchielli, 1983;
Ludwig, 1985; Barchielli, 1986), also applied to the spe-
cific case of a gravitational wave antenna (Barchielli,
1985), has been solved recently with the introduction of
a stochastic Schrödinger equation (Gisin, 1984a, 1984b;
Pearle, 1986; Diosi, 1988a, 1988b; Belavkin, 1989; Be-
lavkin and Staszewski, 1989) describing the stochastic
dynamics of a pure state in the presence of a measure-
ment. This was later recognized as a particular case of
the quantum-state diffusion equation for open systems
and was connected to various formalisms previously de-
veloped (Gisin and Percival, 1992a, 1992b; Percival,
1994; Breuer and Petruccione, 1995; Presilla, Onofrio,
and Tambini, 1996), giving rise to a nucleus of a new
theory still under development, the so-called measure-
ment quantum mechanics. Since we think that this will
continue to be a subject of great theoretical debate in
the forthcoming years, our attention in this review is
focused on identifying the regime in which, experimen-
tally, one will be able to explore the physics of repeated
or continuous measurements on single macroscopic
quantum systems, as has been done recently for single
microscopic systems in quantum optics (Carmichael,
1993). One hopes that the experiments will lead the way
to confirm the predictions of measurement quantum me-
chanics on macroscopic single systems or alternatively to
a firmer theoretical foundation.
In order to proceed, we will overlook the fundamental

issue regarding the applicability of quantum mechanics
to a continuous measurement on an isolated quantum
system and we will adopt the approach described above
to theoretically investigate the question: ‘‘What is the
limit imposed by quantum mechanics on the precision of
a measurement on a quantum oscillator?’’ Identifying
the statistical predictions of conventional quantum
theory with the variances for a sequence of measure-
ments of an observable of a single quantum system, we
ask the question. What is the smallest disturbance acting
on a harmonic oscillator that may be detected in the
presence of quantum noise?
This question was first posed in the context of linear

amplifiers by Heffner (1962), and by Haus and Mullen
(1962), in which the measurement of a radiation field,
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formally equivalent to the determination of the state of
a harmonic oscillator, was discussed. The conclusion in
both analyses was that the measurement process un-
avoidably adds noise to the measured quantity. In the
radio-engineering language of Haus and Mullen, the am-
plifier noise figure, defined as the signal-to-noise ratio at
the output of the amplifier, has a minimum value of 2, in
other words, the amplifier must add at least half a quan-
tum of energy per unit measurement time to an incom-
ing signal.
In the 1970’s, the worldwide effort to detect gravita-

tional waves from astrophysical sources motivated the
investigation of the quantum limits of gravitational wave
detection (Misner, Thorne, and Wheeler 1973; Amaldi
and Pizzella, 1979; Douglass and Braginsky, 1979;
Thorne, 1980). A gravitational wave detector under the
influence of a passing gravitational wave can be modeled
as a quantum oscillator acted upon by a weak force, so
determination of the weakest detectable gravitational
wave was examined in the context of optimal measure-
ment strategies for a quantum oscillator. The early work
by Braginsky et al. on this topic was later reexamined,
summarized and extended by Unruh (1978, 1979), Hol-
lenhorst (1979), Dodonov, Man’ko, and Rudenko
(1980), and Caves et al. (1980). One of the outcomes of
this work was the identification of the so-called ‘‘stan-
dard quantum limit’’ for the detection of a weak force
acting on a harmonic oscillator. It was found that if the
quantum oscillator were prepared in a quantum-
mechanical minimum-uncertainty state, that is, a coher-
ent state, then the best sensitivity one could attain for a
measurement of the oscillator position would be

Dx5A\/~2mv!, (2.4)

where m is the mass and v is the angular resonant fre-
quency of the mechanical oscillator. This limit is analo-
gous to that found by Heffner, Haus, and Mullen for a
linear amplifier, the common feature being that a linear
measurement of the amplitude and phase of a quantum
oscillator, or mode of a radiation field, is carried out.
Other measurement strategies for determining the en-
ergy, momentum, or complex amplitude of the oscillator
were examined and it was found that the standard quan-
tum limit could be exceeded in principle by a variety of
measurement techniques but, with the exception of one
proposal to measure the oscillator complex amplitude,
there were no practical measurement schemes proposed.
The issue of the quantum limit and alternative oscillator
measurement schemes was fully explored in the review
by Caves et al. (1980). In the following we include a
short summary of the theoretical basis for quantum non-
demolition measurements to complement the more ex-
perimentally oriented discussions in Sec. III of this re-
view.

2. Quantum nondemolition strategies: general definition

The sensitivity limit for measurements of the ampli-
tude and phase of the displacement of a harmonic oscil-
lator is determined by the properties of quantum-

mechanical coherent states that are the minimum-
uncertainty states with equal variances of the position
and momentum. Nonrelativistic quantum mechanics al-
lows measurement of any observable to arbitrary preci-
sion; however, the uncertainty principle imposes a limit
on the precision of the simultaneous measurement of
two conjugate observables. If one monitors a harmonic
oscillator to measure a weak classical force acting upon
it, a single high-precision measurement is insufficient,
rather it is necessary to make a sequence of precise mea-
surements. The deviation of the measured position of
the harmonic oscillator from the predicted position, in-
ferred from earlier measurements, signals the presence
or the absence of a force. The basic principle of a quan-
tum nondemolition measurement is to perform a se-
quence of measurements of an observable of a single
quantum system in such a way that the act of measure-
ment does not diminish the predictability of the results
of subsequent measurements of the same observable. To
realize a quantum nondemolition measurement the in-
stants of time at which the measurements are performed
and the interaction Hamiltonian governing the interac-
tion of the system with the measuring apparatus should
all be carefully chosen for a given dynamical system. For
instance, an initial high-precision measurement of the
position of a free particle implies a large dispersion in
the possible values of succeeding measurements of the
momentum, according to the uncertainty principle. Fol-
lowing the first position measurement, a second mea-
surement of position may have a large dispersion, de-
pending upon the instant at which the measurement is
made. This is because the future position of the oscilla-
tor depends upon the initial momentum, thus an initially
large dispersion in the momentum leads to a large dis-
persion of the position at later times. Thus for a free
particle, the position cannot be monitored in a QND
way even in principle, unless the momentum dispersion
were reduced by an ancillary method, an issue that re-
sulted in a debate on the possibility of preparing the
initial state to beat the standard quantum limit (Yuen,
1983; Caves, 1985; Ozawa, 1988, 1989). On the other
hand, if a measurement of momentum could be made, a
sequence of measurements would give the same result
since the momentum is conserved for a free particle.
Thus, the momentum of a free particle can be monitored
in a QND fashion and detailed schemes have been pro-
posed making use of this concept (Braginsky and Kha-
lili, 1990).
To specify the general conditions sufficient to perform

a QND measurement, let us consider an arbitrary
quantum-mechanical system described by the free-
system Hamiltonian Ĥ0 (see Bohm, 1951, for further de-
tails). The goal is to measure a system observable Â
with a measuring apparatus that will be described by a
Hamiltonian ĤM . A measurement is an interaction be-
tween the measured system and a measuring apparatus
in which information from the system is transferred
from the system to the apparatus, producing some
change in the dynamical variables of the apparatus. This
interaction process is described by an interaction Hamil-
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tonian, ĤI , which depends upon the observables both of
the measured system and of the apparatus, acting only
during the measurement time. The total Hamiltonian for
the system plus apparatus, in the absence of external
forces, is therefore

Ĥ5Ĥ01ĤI1ĤM . (2.5)

A QND measurement of an observable Â of a system is
defined as a sequence of measurements of Â performed
in such a way that the outcomes of each measurement
are predictable from the result of the initial state-
preparing measurement. The loss of predictability of the
later measurements in a sequence can be attributed to
either the influence of the measuring apparatus or to the
influence of the conjugate observables on the free evo-
lution. It turns out that once an observable has been
identified that is unaffected by the conjugate observ-
ables, an interaction Hamiltonian suitable for QND
measurements is, at least in principle, easily found.
Therefore we will first concentrate on identifying the
requirements an observable must satisfy to be protected
from the influence of conjugate observables during the
system’s free evolution. This analysis is simplest in the
Heisenberg picture.
Let the first measurement be performed at time t0 .

The normalized eigenstates of Â(t0) are denoted by
uA ,a&, where a labels the states in any degenerate sub-
spaces of Â(t0). According to the projection postulate,
after the first measurement the system state will collapse
into an eigenstate of Â(t0) with the corresponding ei-
genvalue for the expectation value of the observable:

uc~ t0!&5(
a

cauA0 ,a&. (2.6)

In the Heisenberg picture, the state of the system does
not change during its free evolution, uc(t)&5uc(t0)&, so
if we demand that a second measurement will give a
predictable result, the states uA0 ,a& must also be eigen-
states of Â(t1), but not necessarily with the same eigen-
value. This means that the result of the second and all
successive measurements is a deterministic function of
the first measurement

Â~ t1!uA0 ,a&5f1~A0!uA0 ,a&, (2.7)

where f1 is an arbitrary real-valued function. This im-
plies the operator equation for a measurement at the
general time tk ,

Â~ tk!5fk@Â~ t0!# . (2.8)

Very often the equivalent condition is used,

@Â~ t i!,Â~ tk!#50, (2.9)

which can be derived from Eq. (2.8) through a Taylor
expansion of the function f in terms of the derivatives of
the observable.
If the condition in Eq. (2.9) holds only at discrete in-

stants of time, then the observable is called a strobo-
scopic QND observable, otherwise if Eq. (2.9) is satis-
fied at all times it is called a continuous QND

observable. A particular case of a continuous QND ob-
servable is a quantity that is conserved in the absence of
external forces during the time evolution of the system,
provided that the interaction Hamiltonian is suitably
chosen, as we will see later. This condition can be stated
in terms of the free Hamiltonian operator as

dÂ

dt
5

]Â

]t
2

i

\
@Â ,Ĥ0#50. (2.10)

For instance, the free Hamiltonian itself is a continuous
QND observable provided that it is time independent.
In the following sections we will also encounter ex-
amples of continuous QND observables that are non-
conserved quantities. Furthermore, not all observables
satisfying Eq. (2.10) will reflect the influence of a force
acting on the system. For a QND observable to yield
information about a force acting on a system, one should
be able to make repeated measurements of the observ-
able at arbitrarily closely spaced instants of time in such
a way that the result of a measurement is determined by
the result of the most recent previous measurement and
the force F(t) acting on the oscillator; furthermore, the
force dependence should be such that one can unequivo-
cally infer F(t). This leads to the introduction of the
concept of a QNDF observable (QND in the presence of
an external force), which corresponds to the following
condition, in addition to Eq. (2.10), for the evolution in
the Heisenberg picture of the observable Â :

Â~ t !5f @Â~ t0!;F~ t8!;t ,t0# , (2.11)

with the provision that the dependence of the observ-
able upon the force acting between the time interval
[t0 ,t] (t0,t8,t) is an invertible functional.
We have identified the conditions that must exist in a

free quantum system so that a sequence of measure-
ments is possible in which the first measurement of an
observable will allow one to predict the outcome of suc-
cessive measurements of that observable. We now
specify the condition that must be fulfilled by the inter-
action Hamiltonian to allow a sequence of predictable
measurements. It is natural to assume that the measure-
ment of an observable is possible only if the interaction
Hamiltonian depends upon that observable. Moreover,
if the interaction Hamiltonian is chosen so that it com-
mutes with the observable to be measured then the ob-
servable will not change its value during the measure-
ment. Note that during the interaction with the
measurement apparatus, the Hamiltonian that enters
into Eq. (2.10) is the one that describes the system, the
measuring apparatus, and the interaction term. A QND
observable of the free system remains a QND observ-
able of the system even when coupled to the apparatus if
the following condition is satisfied:

@ÂI~ t !,ĤI~ t8!#50, (2.12)

where ÂI(t) and ĤI(t8) are the interaction-picture
forms of the observable and the interaction Hamil-
tonian, namely

ÂI~ t ![Û0
†~ t ,t0!Â~ t !Û0~ t ,t0!, (2.13)
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ĤI~ t ![Û0
†~ t ,t0!ÛM

† ~ t ,t0!Ĥ~ t !ÛM~ t ,t0!Û0~ t ,t0!,

where Û0(t ,t0) and ÛM(t ,t0) are the time evolution op-
erators for the free system and measuring apparatus
Hamiltonians respectively. If the observable Â(t) is con-
served in the absence of the interaction with the mea-
suring apparatus, then it remains conserved if

@Â~ t !,ĤI#50. (2.14)

A simple method to satisfy this condition is to choose an
interaction Hamiltonian that is linearly dependent on
the observable one wishes to measure,

ĤI5KÂQ̂ , (2.15)

where Q̂ represents some observable of the measuring
apparatus and K is a coupling constant which may be
time dependent.

3. Quantum nondemolition measurement strategies
for a harmonic oscillator

The harmonic oscillator is a useful model for a large
number of physical systems, such as a mode of a me-
chanically resonant system, an electrically resonant cir-
cuit or a mode of a microwave or optical cavity. In this
section we review the quantum-mechanical description
of the harmonic oscillator and examine the nature of the
various oscillator observables. According to the discus-
sion in the previous section, in our description of a mea-
surement on a harmonic oscillator we will neglect the
thermodynamic coupling to the external environment,
and treat the problem in the formalism of quantum me-
chanics for pure states. The oscillator is defined by its
canonical coordinate, with the associated operator x̂ , by
the conjugate momentum with operator p̂—both Her-
mitian operators—and by the mass m and the angular
frequency of free oscillation v. The Hamiltonian of the
free mechanical harmonic oscillator is

Ĥ05
p̂2

2m
1
mv2x̂2

2
. (2.16)

We introduce the operator representing the number of
quanta,

N̂5
Ĥ0

\v
2
1
2

5 â†â , (2.17)

where the creation and annihilation operators have been
introduced, respectively

â†5Smv

2\ D 1/2S x̂2i
p̂

mv D and

â5Smv

2\ D 1/2S x̂1i
p̂

mv D . (2.18)

The dominant frequency dependence of the complex
quantity x̂1ip̂/(mv) can be factored out, and the oscil-
lator complex amplitude X̂11iX̂2 can be defined as

x̂1i
p̂

mv
5~X̂11iX̂2!e

2ivt. (2.19)

The real and the imaginary parts of the complex ampli-
tude operator can be written in terms of x̂ and p̂/mv as

X̂1~ x̂ ,p̂ ,t ![ x̂ cosvt2
p̂

mv
sinvt ,

X̂2~ x̂ ,p̂ ,t ![ x̂ sinvt1
p̂

mv
cosvt . (2.20)

The two components of the complex amplitude are con-
served in the absence of interactions with the external
world:

dX̂j

dt
5

]X̂j

]t
2

i

\
@X̂j ,Ĥ0#50 (2.21)

so either component of the complex amplitude operator
commutes with itself for all future times, which is the
condition to be a continuous QND observable. The cor-
responding situation for position and momentum is
more complicated. For the position and momentum we
can calculate the different-time commutator

@ x̂~ t !, x̂~ t1t!#5
i\

mv
sinvt ,

@ p̂~ t !,p̂~ t1t!#5i\mv sinvt , (2.22)

which implies a vanishing commutator at times spaced
by t=np/v, with n an integer. This means that x̂ and p̂
are stroboscopic QND observables, that is, it is possible
to perform a sequence of precise measurements of x̂ or
p̂ at well-defined time intervals. The interaction Hamil-
tonian that would enable a stroboscopic measurement of
the position consists of a sequence of pulses

ĤI} (
n50

`

dS t2 np

v D x̂Q̂ ; (2.23)

or to measure the momentum we would have,

ĤI}
1
mv (

n50

`

dS t2 np

v D p̂Q̂ , (2.24)

where Q̂ is an observable of the measurement appara-
tus. A more realistic version of a stroboscopic measure-
ment has a nonzero interaction between the harmonic
oscillator and the apparatus for a time interval Dt that is
short compared to the harmonic oscillator period. If the
precision of the initial position measurement is
Dx![\/(2mv)]1/2, the oscillator momentum will be
perturbed by an amount Dp>\/(2Dx). This momentum
dispersion will evolve into a position dispersion that will
reach a maximum value at t+p/2v and subsequently de-
crease, until at time t+p/v the position dispersion will
return to its original value that resulted from the initial
measurement. Apparently one should therefore choose
to perform repeated position measurements at the in-
stants of time when the position dispersion has the mini-
mum value; any observed deviation from the expected
position would then signal that a force had acted on the
mechanical oscillator since the preceding measurement.
The accuracy obtainable in a series of stroboscopic mea-
surements each of finite duration Dt is Dx

762 M. F. Bocko and R. Onofrio: Measurement of a weak classical force . . .

Rev. Mod. Phys., Vol. 68, No. 3, July 1996



>[\/(2mv)]1/2(vDt)1/2, where the improvement factor
for a stroboscopic measurement over an amplitude and
phase measurement is (vDt)1/2. The major practical limi-
tation of a stroboscopic measurement is that unrealisti-
cally large electromechanical coupling strength is re-
quired to obtain a signal sufficiently large to be
detectable in the face of the purely additive noise from
practical measurement apparatuses. In light of this prac-
tical limitation, attention has focused on nonstrobo-
scopic measurements in which the mechanical oscillator
is monitored quasicontinuously, thereby allowing longer
signal-averaging times. Measurement-time durations in
such measurements typically extend over many periods
of the mechanical oscillator, allowing the noise added by
the measurement apparatus to be reduced by averaging.
The number of quanta N̂ and the components of the

complex amplitudes X̂1 and X̂2 are examples of continu-
ous QND observables. Regarding the measurement of
N̂ , using current technology efficient quantum counters
are available for photons at submillimeter wave frequen-
cies and above, but they are all demolition devices be-
cause the measurement process destroys the detected
photons leaving the system in a different quantum state
than the initial state before the measurement. Quantum
nondemolition schemes to measure the number of pho-
tons in a microwave cavity without changing their num-
ber were proposed by Braginsky, Vorontsov, and Khalili
(1977) and by Unruh (1978). A scheme to measure the
number of phonons in a mechanical resonator was also
proposed by Braginsky and Vorontsov (1974) in which a
microwave cavity coupled to a resonant bar converts bar
phonons into cavity photons, which provide a measure
of the phonon number in the bar. This proposal was
superseded by another proposed scheme in which an
electromechanical transducer provided a quadratic cou-
pling in x̂ , described by the Unruh-Braginsky interaction
Hamiltonian

ĤI5Kx̂2Q̂5
1
2
KF 2\

mv S N̂1
1
2 D1~X̂1

22X̂2
2!cos2vt

1~X̂1X̂21X̂2X̂1!sin2vtG , (2.25)

provided an average is performed to filter out the com-
ponents oscillating at 2v. QND measurements of the
number of quanta are plagued by two major drawbacks.
From a practical point of view, it is difficult to design a
transducer in which the dominant coupling is
quadratic—it is difficult to reduce the linear coupling so
that it is negligible compared to the quadratic terms.
Moreover, a QND measurement of the number of
quanta should allow the detection of an arbitrarily weak
classical force, but the measurement cannot determine
the precise time dependence of the force; in other
words, it is not a QNDF measurement, according to the
definitions in the previous section.
Subsequently, a style of QND measurement unaf-

fected by these drawbacks was proposed (Thorne,
Drever, et al., 1978; Thorne, Caves, et al., 1979). It con-
sisted of measuring one component of the harmonic os-

cillator’s complex amplitude. The complex-amplitude
components are QND observables since they are con-
stants of the motion in the absence of an external force;
they are also QNDF observables and it is possible to
show that, apart from an arbitrary phase factor, they are
the only such QNDF observables that are a linear com-
bination of the position and momentum operators (Bra-
ginsky et al., 1980; Caves et al., 1980). The simplest in-
teraction Hamiltonian for a QND measurement of one
component of the complex amplitude is therefore

ĤI5E0X̂1Q̂5E0S x̂ cosvt2
p̂

mv
sinvt D Q̂ , (2.26)

from which it is apparent that transducers of position
and momentum are needed, and that the coupling
strengths between the mechanical oscillator and the two
transducers must be modulated in a specific time-
dependent fashion. Note that if Q is the charge of an
electrical oscillator, the coupling constant E0 must have
units of the electric field. In practice this coupling could
be modulated by an external generator that is excited in
an arbitrarily energetic, coherent state, and therefore
may be treated as a classical field (Unruh, 1979). In
Caves et al. (1980), the feasibility of momentum trans-
ducers is discussed and it is shown that it would be dif-
ficult to develop a momentum transducer capable of
reaching the quantum limit. Another interaction Hamil-
tonian was proposed by the same authors, by which a
continuous single-transducer QND measurement could
be performed

Ĥ5E0cosvt x̂Q̂

5E0cosvt~X̂1cosvt1X̂2sinvt !Q̂

5
E0

2
~X̂11X̂1cos2vt1X̂2sin2vt !Q̂ , (2.27)

where detection is followed by a low-pass filtering op-
eration to select the information about the X̂1 phase and
to reject the conjugate phase information. The low-pass
filter should have a cutoff frequency vco!v so that the
sinusoidally oscillating terms in the Hamiltonian will av-
erage to near zero over the time scales of interest. The
measurement mediated by this interaction Hamiltonian
is similar in concept to the phase-sensitive detection per-
formed by a lock-in amplifier (Hollenhorst, 1979). In
contrast to a lock-in amplifier however, the key feature
of a QND measurement of one component of an oscil-
lator’s complex amplitude is that the phase-sensitive de-
tection is performed before the amplification stage,
which would unavoidably add noise to the measure-
ment.
A convenient realization of the complex-amplitude

QND measurement Hamiltonian would be to employ an
electrically resonant circuit as the measurement appara-
tus and to modulate the coupling between this readout
circuit and the system, i.e., the mechanical oscillator, at
the sum and difference of the two subsystem natural
resonant frequencies:
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ĤI5E0cosvet cosvt x̂Q̂

5
E0

2
@cos~ve1v!t1cos~ve2v!t# x̂Q̂ . (2.28)

Moreover, the modulation does not need to be sinu-
soidal. For example, another single-transducer interac-
tion Hamiltonian that has been proposed consists of
stroboscopically monitoring the complex amplitude
(Thorne et al., 1978; Braginsky, Vorontsov, and Khalili,
1978). Each continuous QND observable can be moni-
tored in a stroboscopic way, maintaining the QND
feature—specifically, in the case under consideration,
the interaction Hamiltonian would be

ĤI5E0(
n50

`

dS t2 np

v D X̂1Q̂

5E0(
n50

`

~21 !ndS t2 np

v D x̂Q̂ , (2.29)

which differs from the interaction Hamiltonian for a
stroboscopic QND measurement of x only by the pres-
ence of the alternating sign.

4. Quantum nondemolition strategies for coupled
harmonic oscillators

The signal-to-noise ratio of a mechanically resonant
gravitational wave antenna may conveniently be in-
creased by coupling to the antenna a second, less mas-
sive mechanical resonator tuned to the resonant fre-
quency of the antenna (Lavrent’ev, 1969; Paik, 1976).
The vibrational energy imparted to the antenna by a
signal force is transferred to the less massive secondary
resonator, which serves as a mechanical amplifier to
boost the mechanical signal to a level closer to the opti-
mum level for common-readout electronics, achieving a
sort of mechanical impedance matching. Thus it is natu-
ral to extend the theory developed so far to the case of a
double harmonic oscillator (Bocko et al., 1984; Onofrio,
1987; Onofrio and Rioli, 1993; Cinquegrana et al., 1994).
Let us consider two coupled harmonic oscillators hav-

ing classical displacement coordinates x and y , momenta
px and py , masses mx and my , and angular frequencies
vx and vy . The two oscillators may represent the first
longitudinal mode of a massive gravitational wave an-
tenna and the resonant mode of a transducer attached to
the end face of the antenna. For a cylindrical antenna
the equivalent simple harmonic oscillator has an equiva-
lent mass exactly equal to one half of the antenna’s
physical mass. The Lagrangian of the coupled system is
written as

L5 1
2mxẋ

21 1
2myẏ

22 1
2mxvx

2x22 1
2myvy

2~y2x !2. (2.30)

When the uncoupled frequencies vx and vy are exactly
tuned to one another the coupled mode frequencies are

v6
2 5v2~11a6!, where a65

m

2
6Am~11m/4!,

(2.31)

in which m5my/mx , and the normal coordinates are ob-
tained from the physical coordinates using the transfor-
mations

J65Amx /~21a1!x1Amya6 /m~21a6!y . (2.32)

We thus define the quantum operators for the complex
amplitudes of the two modes of the coupled system as
follows

X̂165Ĵ6cosv6t2
P̂J6

v6
sinv6t ,

X̂265Ĵ6sinv6t1
P̂J6

v6
cosv6t . (2.33)

These observables obey the commutation rules,

@X̂11 ,X̂21#5i
\

v1
, @X̂12 ,X̂22#5i

\

v2
(2.34)

with all other combinations being zero. The Hamil-
tonian operator is written in terms of the components of
the complex amplitudes of the normal coordinates as

Ĥ5
v1
2

2
@X̂11

2 1X̂21
2 #1

v2
2

2
@X̂12

2 1X̂22
2 # . (2.35)

Practical methods of detection for such coupled systems
would use a measuring apparatus described by an inter-
action Hamiltonian proportional to the difference of the
physical coordinates of the two oscillators,

ĤI5E0~ ŷ2 x̂ !Q̂ . (2.36)

For example, the measuring apparatus could include a
parallel-plate capacitor with one capacitor electrode
mounted on the primary resonator and the other
mounted on the secondary resonator. The interaction
Hamiltonian would then have the form of Eq. (2.36)
with Q representing the charge on the capacitor plates
and E0 the electric field in the capacitor. We can find the
different-time commutator for the observed quantity by
expressing the physical coordinates in terms of the two
components of the normal mode complex amplitudes,
obtaining

@ ŷ~ t !2 x̂~ t !, ŷ~ t1t!2 x̂~ t1t!#

5
i\

myv

1

A41m
S v1

2

v2 sinv1t1
v2
2

v2 sinv2t D ,
(2.37)

where t represents the time interval.
To check this result, we let the mass ratio m go to

zero, after which the commutator in Eq. (2.37) assumes
the simple form

@ ŷ~ t !2 x̂~ t !, ŷ~ t1t!2 x̂~ t1t!# ——→
m→0 i\

myv
sinvt ,

(2.38)

which coincides with the commutator for the single os-
cillator, Eq. (2.22). In the limit of the mass ratio m being
very small, Eq. (2.37) can also be rewritten as
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@ ŷ~ t !2 x̂~ t !, ŷ~ t1t!2 x̂~ t1t!#

>
i\

2myv
S v1

2 1v2
2

v2 sinv̄t cosvBt D (2.39)

where we defined the average frequency to be
v̄5(v++v−)/2, and the beat frequency as vB=(v+−v−)/2.
The right-hand side of Eq. (2.39) is a sinusoidal function
of the time t, with period T̄52p/v̄>T , modulated by a
beating period TB>2T/Am . Shown in Fig. 1 is the value
of the commutator given by Eq. (2.39) versus time for
three different values of the mass ratio. As the mass
ratio is decreased, the beating period between the nor-
mal modes becomes longer, and in the limit of the mass
ratio going to zero, the commutator becomes identical to
the commutator of the single harmonic oscillator. Simi-
larly, in the case of two coupled harmonic oscillators
detuned in frequency from one another, the energy
transfer is reduced as the oscillator frequencies move
farther apart, and in the limiting case of no energy trans-
fer between the oscillators the commutator approaches
that of the single harmonic oscillator—see Fig. 2. The
periodicity of the commutator in Eq. (2.39) suggests a
simple QND stroboscopic scheme in which measure-

ments are performed for relatively long time intervals
separated in time by one half the normal-mode beating
period. The interaction Hamiltonian in this case would
be of the form

ĤI5
E0

2 (
n50

` FuS t2 nTB

2
1

DT

2 D
1uS 2t1

nTB

2
1

DT

2 D G~ ŷ2 x̂ !Q̂ , (2.40)

where DT is of the order of the period of a single har-
monic oscillator. It is interesting to observe that this in-
teraction Hamiltonian may be derived from a different
point of view as the limit of a continuous measurement
scheme. Indeed, observing the periodicities in the com-
mutator, a continuous interaction Hamiltonian of the
kind

ĤI5E0cosvet cosv̄t cosvBt~ ŷ2 x̂ !Q̂ (2.41)

can be used provided one employs a band-pass filter to
select only the frequency components centered on ve .
This Hamiltonian can be written as

ĤI5E0cosvet@cosv1t1cosv2t#~ ŷ2 x̂ !Q̂ (2.42)

which shows that it is possible to perform a simultaneous
approximate QND measurement on one of the complex
amplitudes of each of the two normal modes. By anal-
ogy to the single oscillator case, it is possible to intro-
duce additional frequency components in the interaction
Hamiltonian,

FIG. 1. The normalized different-time commutator for the ob-
servable that measures the difference of the displacements for
two coupled harmonic oscillators is plotted as a function of
time. The three cases correspond to different mass ratios. The
uppermost plot, labeled m=0, corresponds to the mass of the
second harmonic oscillator going to zero, which yields a result
identical to that for the single harmonic oscillator. In the other
two cases the mass ratios are m=0.1 and m=0.005. It is assumed
that the uncoupled natural frequencies v of the two oscillators
are the same. Results are expressed in units of i\/myv and the
time is in units where the uncoupled harmonic oscillator pe-
riod is 2p.

FIG. 2. Three plots of the same type as Fig. 1 for the case
m=0.005, for three different degrees of detuning of the
harmonic-oscillator natural frequencies. In the plot labeled (a),
the frequency detuning is such that 90% of the energy is trans-
ferred between the oscillators; case (b) corresponds to 50%
energy transfer, and case (c) to 10% energy transfer. Units are
the same as those in Fig. 1.
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ĤI>E0cosvetF (
n50

`

cos~2n11 !v1t

1 (
n50

`

cos~2n11 !v2tG ~ ŷ2 x̂ !Q̂ (2.43)

that corresponds, in the limit of large n , to a strobo-
scopic measurement:

ĤI>
E0

2 F (
n50

`

~21 !ndS t2 np

v1
D

1 (
n50

`

~21 !ndS t2 np

v2
D G ~ ŷ2 x̂ !Q̂ . (2.44)

The two trains of impulsive measurements will coincide
at times spaced by TB/2, i.e., TB/25np/v15mp/v2 ,
where n5m+2.
A small mass ratio implies a long coupled-oscillator

normal-mode beating period, and consequently a small
measurement duty cycle. One way to circumvent this
inconvenience is to use a multimode configuration (Ri-
chard, 1982, 1984)—in particular the case of three
coupled harmonic oscillators has been discussed in detail
(Onofrio and Rioli, 1993). It turns out that the periodic-
ity of a stroboscopic measurement on a multimode sys-
tem has a higher frequency, i.e., the duty cycle is
greater—however, the time dependence of the commu-
tator becomes rather complex, with double beat fre-
quencies present in the measurement coupling.
An analysis including classical sources of dissipation

for the case of two coupled oscillators continuously
monitored with a quantum nondemolition strategy has
been discussed by Cinquegrana et al., 1994. They also
give estimates, as we will describe in Sec. V, of the sen-
sitivity for actual gravitational wave antennas.

5. Quantum nondemolition measurements
in nonlinear systems

Although it originated and developed in the particular
context of the harmonic oscillator, the concept of quan-
tum nondemolition measurement is in principle appli-
cable to any dynamical system. Such a generalization has
been proposed in the framework of the path-integral ap-
proach to quantum measurement theory (Mensky, On-
ofrio, and Presilla, 1993). In this approach the outcome
of the measurements is considered known, the so-called
a posteriori dynamics, and the goal of the method is to
complete the knowledge of the state of the system dur-
ing the measurement process. This is achieved by
weighting the paths according to their average distance
from the measurement outcome (Mensky, 1979, 1993;
for similar attempts see Caves, 1986, 1987). It can be
shown that a Gaussian weight satisfies all the properties
of the Feynman propagator without the measurement
process. Moreover, the link of this approach with other
frameworks used to include the measurement process in
quantum mechanics, such as the density-matrix master

equation or the stochastic Schrödinger equation, have
been made (Mensky, 1994, Presilla, Onofrio, and Tam-
bini, 1995).
The Feynman kernel modified by the presence of the

measurement result a(t) of the observable A is written
as

K @a#~x9,t ,x8,0!5E d@x#expH i

\ E
0

t

L~x~ t !, ẋ~ t !,t !dtJ
3expH 2K~ t !E

0

t

~x~ t !2a~ t !!2dtJ ,
(2.45)

where [a] is the result of the continuous measurement
([a]5a(t),0<t<t) performed during the time t, and
K(t) expresses the coupling of the observed system to
the meter, in general a time-dependent coupling. The
resulting path integral may be considered as describing a
free system with an effective Lagrangian being a func-
tional of the measurement result and having a non-
Hermitian term due to the measurement process:

Leff~x~ t !, ẋ~ t !,t !5L~x~ t !, ẋ~ t !,t !1iK~ t !@x~ t !2a~ t !#2.
(2.46)

The wave function evolves according to the effective
Schrödinger equation:

i\
]c@a#~x ,t !

]t
5Heffc@a#~x ,t !, (2.47)

where Heff is the effective Hamiltonian corresponding to
the Lagrangian (2.46) (Mensky, Onofrio, and Presilla,
1991). This method allows one to evaluate the evolution
of any system subjected to continuous measurements
through numerical integration of the effective Schrö-
dinger equation (2.47), thus completing the knowledge
of the state during the continuous measurement with the
already known outcome a(t). This is called an a poste-
riori evaluation of the measurement process. Alterna-
tively, one can evaluate the dynamical evolution a priori
by choosing a measurement result at the initial time with
probability uc(x ,0)u2, evolving the wave function at the
instant of time Dt through the effective Schrödinger
equation (2.47), and iterating the process by choosing
the measurement result at the time Dt with probability
uc(x ,Dt)u2. Thus the effective Schrödinger equation, to-
gether with the probability of having a particular result
of a measurement chosen with the time-dependent prob-
ability distribution, allows one to evaluate the a priori
dynamics. Of course, one can choose to extract the mea-
surement result with a time-independent probability dis-
tribution using white noise. A stochastic effective Schrö-
dinger equation is therefore obtained as

duc@j#~ t !&5F2
i

\
Ĥ2

1
2
K~ t !@Â2a @j#~ t !#

2G uc@j#~ t !&dt

1AK~ t !@Â2a @j#~ t !#uc@j#~ t !&dw~ t !, (2.48)

where dw(t) is a Wiener process expressed in terms
of a white noise j(t) as dw(t)5j(t)dt , and
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a [j](t)5^c [j](t)uÂ(t)uc [j](t)& . This stochastic equation
allows the description of individual trials of a quantum
measurement (Gisin, 1984a, 1984b; Pearle, 1986; Diosi,
1988a, 1988b; Gisin and Percival, 1992a, 1992b; Be-
lavkin, 1989; Belavkin and Staszewski, 1989; Belavkin,
Hirota, and Hudson, 1995), the evolution of the mea-
sured system being a so-called quantum trajectory (Grif-
fits, 1984; Zoller et al., 1987; Carmichael et al., 1989;
Gagen and Milburn, 1993; Gagen, Wiseman, and Mil-
burn, 1993).
The same formalism allows one to deal with strobo-

scopic QND measurements in a generic dynamical sys-
tem (Mensky, Onofrio, and Presilla, 1993). This is ob-
tained by simply modulating the measurement coupling
K(t) in such a way that it is always null, apart from
small equally spaced time intervals. It has been shown
that for particular values of the time spacing the uncer-
tainty induced by the back-action of the measurement is
minimized. These optimal periodicities are understood
in terms of the spectral properties of the potential asso-
ciated with the system. If the measurement result is
known and assumed equal for each measurement the
state will collapse to the measured eigenstate with a
speed proportional to the measurement coupling K(t).
Therefore, the asymptotic dynamics will be dictated by
the expansion of this eigenstate in terms of the energy
eigenstates. Some of these eigenstates maximally con-
tribute to the reformation of the asymptotic state and
their eigenvalues will give the periods Tnm
52p\/(En2Em). When the measurement-time spacing
contains an integer number of periods for the eigen-
states that contribute to the asymptotic state, we effec-
tively will have a stationary situation at the instants of
measurement. In the already understood case of the har-
monic oscillator, the energy eigenstates are equally
spaced and, for each initial state, the optimal
measurement-time spacing is a multiple of the period of
the harmonic oscillator as shown by the different-time
commutators [Eq. (2.22)] in the Heisenberg picture.
This does not occur for a generic system and the concept
of QND strategy in this case is only applicable once the
measurement result is known, an a posteriori situation.
Particular physical interest in generalizing QND mea-

surements to nonlinear systems comes from the need to
understand the role of quantum measurements in
bistable potentials exhibiting tunneling and in the
classical-to-quantum correspondence in chaotic systems.
In the first case, the interest is originated by the at-

tempt to look for a comparison between quantum me-
chanics and realistic models through tests of the tempo-
ral Bell inequalities (Leggett and Garg, 1985). In this
proposal, some correlation functions of different-time
magnetic flux measurements in a rf SQUID (supercon-
ducting quantum interference device) were shown to
satisfy a Bell inequality if realism were correct, but were
shown to violate it in quantum mechanics. However,
since repeated measurements on a single quantum ob-
ject are performed, the measurement process must be
included in the quantum predictions for the evolution of
the system. When this is done (Calarco and Onofrio,

1995), the result is that impulsive quantum nondemoli-
tion measurements are performed if they are spaced by
a tunneling period, and in all the other cases the back-
action noise is large and can affect the distinguishability
of the two signs of the magnetic flux of the rf SQUID
(Onofrio and Calarco, 1995).
In the second case, the well-known discrepancy be-

tween the long-term behavior of classical systems and
their corresponding quantum counterparts can be solved
by including a measurement process that allows for the
decoherence of the wave function. On the other hand,
the measurement process has to be chosen in such a way
as to not affect the observed quantity, so again a quan-
tum nondemolition measurement has been suggested
(Adachi, Toda, and Ikeda, 1989; Toda, Adachi, and
Ikeda, 1989). Moreover, Weigert (1991) suggested the
use of a QND basis to allow the distinction between
chaos that is intrinsically due to the quantum nature of
the system, which is quenched for this kind of observ-
able, and chaos arising from the corresponding classical
dynamics. In general, the role of the measurement pro-
cess in quantum chaotic systems is still far from being
understood (Casati and Chirikov, 1994, 1995).
As we will describe later, nonlinear oscillators have

also been the subject of experiments performed to evade
the amplifier noise in stabilized oscillators and frequency
references (Greywall et al., 1994). A quantum nondemo-
lition method to track a resonator’s phase gave a 10 dB
reduction of the phase dispersion arising from the feed-
back amplifier in a driven oscillator with a cubic nonlin-
earity.

III. MODELS OF MEASUREMENT
IN THE CLASSICAL REGIME

A quantum-mechanical description of a measurement
on a mechanical harmonic oscillator was presented in
Sec. II, and assorted strategies for monitoring a weak
force acting on the mechanical oscillator were evaluated
using the machinery of quantum mechanics. Here, in
Sec. III, we bridge the gap from the idealized quantum-
mechanical model of a measurement to the classical
world of actual measurements using macroscopic labo-
ratory apparatus. But before assembling the analytical
apparatus to describe measurements in the classical re-
gime, we begin this section by pointing out some of the
assumptions and idealizations implicit in classical mod-
els of measurement.
The classical description of a mechanical oscillator

and a measurement apparatus are idealizations since
such macroscopic systems are composed of many atoms,
and only chosen collective motions of the atoms are the
subject of our classical description. For example, a mac-
roscopic mechanical oscillator, which may be a mass of
metal consisting of 1025 atoms, is described by the dis-
placement of an equivalent ideal mechanical harmonic
oscillator, and we ignore the remaining (331025−1) nor-
mal modes of the solid body. Luckily, the collective
mode of vibration of the real mechanical oscillator
which we will monitor to sense the effect of a mechani-
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cal force is very well described by an equivalent simple
harmonic oscillator. The remaining modes of vibration
of the real mechanical resonator are of no interest aside
from their role as the thermal reservoir, which provides
acoustic damping and the associated thermal noise to
the mode of interest. The second macroscopic system
that serves the role of the measurement apparatus is
typically an electronic circuit made up of on the order of
Avogadro’s number of atoms and conduction electrons.
Again, only specific collective motions of the conduction
electrons will be of interest, and we will show below that
these degrees of freedom can be well represented as an
electrical simple harmonic oscillator.
The proof that the complex macroscopic objects un-

der consideration may be represented by such simple
idealizations is in the experimental results. In the follow-
ing section we use our simple models to build the de-
scriptive tools for analyzing the sensitivity of a harmonic
oscillator to weak forces.

A. Detection of a weak force in the presence of noise:
general formalism

The prototypical force-detection system consists of a
mechanical oscillator, which responds directly to the
force, followed by an electromechanical transducer that
converts the motion of the mechanical oscillator into an
electrical signal that may be detected and amplified by a
classical amplifier up to a conveniently measurable level.
The experimenter examines the output from the classi-
cal amplifier to search for the effect of a weak force that
may be acting on the mechanical oscillator. The question
addressed in this section is, how does one most effec-
tively examine the available data to discern the presence
of a weak signal force? There is a well-developed theory
of optimal filtering that gives the prescription to carry
out this task (Papoulis, 1977). In this section we briefly
review the theory of optimal filtering and present some
specific results relevant to weak-force detection with a
mechanical oscillator.
The central goal of this section is to define a figure of

merit by which one may characterize the sensitivity of a
force detector. We will see that to define this figure of
merit requires both some knowledge of the noise in the
detector and of the nature of the signal that is to be
detected. The class of signals that has been of greatest
interest in this field is that of impulsive forces, which are
characteristic of the interaction of a fleeting gravita-
tional radiation event with a gravitational wave detector.
Correspondingly, the figure of merit that has been
widely adopted is called the burst equivalent-noise tem-
perature, or simply the burst temperature, of the an-
tenna. Below, we will precisely define the burst tempera-
ture for a mechanical harmonic oscillator, but first we
must establish the framework for the analysis. This
framework uses random variables to represent the dy-
namical observables in the mechanical oscillator/
measurement apparatus system. We shall closely follow
the notation and presentation of Papoulis (1977).

We assume that the unfiltered output data stream
from a force-detection system is a Gaussian-distributed
random variable x(t), which consists of a part that is the
signal f(t), and another part which is purely noise, n(t):

x~ t !5f~ t !1n~ t !. (3.1)

We seek the filter function, h(t), which when convolved
with the unfiltered data maximizes the output signal-to-
noise ratio. Convolution of a given filter function with
the output signal may be accomplished in a straightfor-
ward way on a computer that has stored the data from
the detector. The convolution is represented by an aster-
isk (*):

y~ t !5x~ t !* h~ t !5yf~ t !1yn~ t !. (3.2)

The output of the filter is y(t), which is composed of the
filtered signal yf(t) and the filtered noise yn(t). We seek
the specific filter h(t) that will maximize the signal-to-
noise ratio at a given time t0 :

S

N
5

uyf~ t0!u

AE$uyn~ t0!u2%
, (3.3)

where E$y% is the ensemble average of the random vari-
able y and u•••u denotes the magnitude of the complex
variable. Note that the numerator in the expression for
the signal-to-noise ratio is a deterministic signal, so en-
semble averaging is not needed. If we represent the Fou-
rier transforms of f(t) and h(t) by F(v) and H(v),
then the filtered output signal, yf(t0), may be repre-
sented as the following:

yf~ t0!5
1
2p E

2`

1`

F~v!H~v!ejvt0dv . (3.4)

The spectral density Syn of the filtered noise yn(t), is
given by the spectral density of the noise n(t), repre-
sented by Sn(v), and the Fourier transform of the filter
function, H(v):

Syn5
1
2p E

2`

1`

Sn~v!uH~v!u2dv . (3.5)

To find the expression for the signal-to-noise ratio in
terms of the frequency-domain quantities requires some
manipulation. First, we write

F~v!H~v!5
F~v!

ASn~v!
H~v!ASn~v!, (3.6)

and use the relationship

E$uyn~ t !u2%5E
2`

1`

Sn~v!uH~v!u2dv , (3.7)

which holds if the noise n(t) is stationary. Schwartz’s
inequality for integrals

U E
a

b
z~x !w~x !dxU2<E

a

b
uz~x !u2dxE

a

b
uw~x !u2dx (3.8)

may be used to find
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U E
2`

1`

F~v!H~v!ejvt0dvU2

<E
2`

1` uF~v!u2

Sn~v!
dvE

2`

1`

Sn~v!uH~v!u2dv . (3.9)

Therefore, the signal-to-noise ratio is given by

S SN D 25 yf
2~ t0!

E$uyn~ t0!u2%2
<

1
2p E

2`

1` uF~v!u2

Sn~v!
dv , (3.10)

which becomes an equality only when

ASn~v!H~v!5K
F* ~v!

ASn~v!
e2jvt0. (3.11)

Therefore, the filter that maximizes the signal-to-noise
ratio, the optimum filter, is given in the frequency do-
main by

H~v!5K
F* ~v!

Sn~v!
e2jvt0. (3.12)

In summary, one needs only to know the spectrum of
the noise in the detector, Sn(v), and the form of the
force that is to be detected to compute the maximum
signal-to-noise ratio using Eq. (3.10). In order to achieve
the signal-to-noise ratio computed from Eq. (3.10), the
output of the detector must be filtered by the ‘‘matched’’
filter given by Eq. (3.12). In practice, the frequency-
domain representation of the optimum filter is inverse
Fourier transformed to find the time-domain represen-
tation of the filter that can be implemented on a digital
computer.
The burst temperature of a force detector is defined

by using Eq. (3.10) to find the amplitude of the impulse
p0 that yields a signal-to-noise ratio of unity. This value
of p0 is the amplitude of the noise-equivalent impulse.
The burst noise temperature Tn is defined by the
amount of energy that the noise-equivalent impulse
would deposit in the harmonic oscillator:

Tn5
p0
2

2mkB
. (3.13)

It is illuminating to express the burst noise temperature
as an equivalent number of quanta that the noise-
equivalent impulse would deposit in the harmonic oscil-
lator. This quantity is called the burst noise number N
and is written as

N5
kBTn

\v
5

p0
2

2m\v
. (3.14)

Within the framework of optimal filter theory, an analy-
sis of a measurement strategy for a harmonic oscillator
consists of the following steps. First, one must develop a
dynamical model of the force-detection system, includ-
ing both the mechanical oscillator and the electrical
readout circuit, then the sources of noise in the har-
monic oscillator and the electrical readout are identified
and specified by their spectral densities. The response of
the output observable, usually an output voltage from

the amplifier following the readout, is calculated for the
assumed signal and for the assumed noise. The output
noise spectrum and the output-signal spectral density
are then input to Eq. (3.10) to calculate the signal am-
plitude that yields a signal-to-noise ratio of unity. This
minimum detectable signal defines the burst noise tem-
perature [Eq. (3.13)] and the burst noise number [Eq.
(3.14)] for the entire mechanical oscillator/transducer/
amplifier force-detection system. In the following sec-
tion, a specific model of a readout will be given to allow
the explicit computation of the burst noise temperature.

B. Classical model of a back-action
evasion measurement

Many innovative designs for electromechanical trans-
ducers having the potential to reach the quantum-noise-
dominated regime of operation have been developed.
First developed by Paik (1976), a superconducting
modulated-inductance transducer with a superconduct-
ing quantum interference device (SQUID) amplifier is
now widely being exploited in gravitational wave detec-
tors, and it is conceivable that in a few years this scheme
will approach quantum-limited operation. Another
promising scheme, from the point of view of reaching
the quantum regime, is the optical cavity transducer be-
ing developed by Richard (1986). A summary of the
principles of all the various transducer schemes is be-
yond the intent of this review, however. In the following
discussion we limit our attention to parametric electro-
mechanical transducers, the reason being that, so far,
parametric transducers are the only scheme that has
been demonstrated to be capable of performing a quan-
tum nondemolition measurement when the quantum-
noise regime is reached. Variations of parametric trans-
ducers have been developed by groups in Moscow,
Perth, Rome, Frascati, Louisiana State University, and
the University of Rochester, and the experimental de-
tails of the various realizations of the parametric trans-
ducer will be presented in Sec. IV.
In this section we develop a model of a generic para-

metric transducer composed of a mechanical oscillator
and an electrical oscillator coupled together via a time-
dependent electromechanical coupling. In practice the
coupling is achieved by rigidly attaching one plate of a
parallel-plate capacitor to the moving mechanical oscil-
lator and anchoring the other plate in such a way that
the motion of the mechanical oscillator modulates the
gap between the capacitor plates. This simple model
contains the essence of any parametric transducer. Also,
since sensitivity to the phase of the mechanical oscillator
is a central feature of a quantum nondemolition mea-
surement, the equations of motion must be cast into a
form that lends itself to such an analysis, i.e., the equa-
tions will be written in terms of the complex amplitudes
of the mechanical and electrical degrees of freedom. We
will first find the noise-free equations of motion for the
parametrically coupled electromechanical system and
the equations will be solved to find the response of the
system to an assumed signal. Later in this section we
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present a more realistic model of the system that in-
cludes the major sources of noise. Following that, we
shall use the optimal filter theory presented previously
to predict the sensitivity of the parametric system to
weak forces. We begin this detailed discussion by exam-
ining a highly simplified parametrically coupled me-
chanical and electrical oscillator system.
Refer to Fig. 3 for a schematized version of a para-

metric transducer. A mechanical oscillator of mass m ,
with a resonant frequency v1 and a relaxation time of t1
is acted upon by an external signal force F(t). A surface
of the mechanical resonator forms part of a capacitor C
in an electrical resonator consisting of the capacitor, an
inductor L and a resistor R . A time-dependent voltage
Vp(t) drives the electrical resonator inducing a charge q
on the capacitor plates.
In Hamilton’s form, the equations of motion for the

mechanical oscillator are

ẋ5v ,

v̇2
1
t1

ẋ52v1
2x1

FT~ t !

m
, (3.15)

where x is the displacement of the mechanical oscillator
from its nominal position and v is the velocity of the
mechanical oscillator. FT is the sum of all the forces
which act on the mechanical oscillator including the sig-
nal force F(t) and the back-acting force FBA(t) of the
electrical resonator acting on the mechanical resonator:

FT~ t !5F~ t !1FBA~ t !. (3.16)

The equations of motion for the electrical resonator,
including the coupling to the mechanical resonator, are
the following:

q̇5I , (3.17)

İ1
1
t2

q̇52v2
2q1

Vp~ t !

L S 12
x

D D ,
where q and I are, respectively, the charge on the ca-
pacitor plates and current in the inductor, t2 is the relax-
ation time, and v2 is the frequency of the electrical reso-
nator; Vp(t) is the excitation ‘‘pump’’ voltage and D is
the capacitor spacing. In this simplified model the pump
voltage source excites the electrical resonator through
the ‘‘pump feedthrough’’ term Vp(t)/L in Eq. (3.17). In
a more realistic readout-circuit configuration one can
employ a bridge circuit to cancel the pump feedthrough,
leaving one with the [Vp(t)/L](x/D) term that repre-
sents the ‘‘forward’’ coupling from the mechanical to the
electrical resonator. Therefore, for convenience in the
following analysis, we will drop the pump feedthrough
term.
The back-action force of the transducer on the me-

chanical oscillator is given, to first order, by

FBA~ t !52q
Vp~ t !

D
. (3.18)

This force, representing the ‘‘reverse’’ coupling, will
drive the mechanical resonator in proportion to the ex-
citation of the electrical resonator. Thus we have the
complete equations for the mechanical and electrical
resonators including the coupling between them. To fa-
cilitate the analysis of the phase-sensitive back-action
evasion measurement, we now express the equations in
terms of the complex amplitudes of the mechanical and
electrical subsystems.
The complex amplitudes of the mechanical and elec-

trical resonators are defined respectively as follows:

X21jX15
1

v18*
~v1jv18* x !e2jv1t,

Q21jQ15
1

v28*
~I1jv28* q !e2jv2t, (3.19)

where the complex angular frequencies v18* and v28* are
defined to be

vk8[vkF S 12
1

~2vktk!2D1
j

2vktk
G k51,2. (3.20)

By forming linear combinations of Eqs. (3.15) and using
the preceding definitions, one can cast the equations of
motion for the mechanical oscillator into their complex-
amplitude form:

S ddt 1
1
2t1

D ~X21jX1!

5
Vp~ t !

2D
1

mv1
@2Q1~e

j~v22v1!t1e2j~v21v1!t!

1jQ2~e
j~v22v1!t2e2j~v21v1!t!#1

F~ t !

mv1
e2jv1t.

(3.21)

In like fashion, Eqs. (3.17) for the electrical oscillator
may be put into the same form:

FIG. 3. A highly schematic representation of a parametric
transducer coupled to a mechanical harmonic oscillator. The
mechanical oscillator, which has a mass m , an angular resonant
frequency v1 , a relaxation time t1 , and displacement x , is
acted upon by an external signal force F(t). The surface of the
mechanical resonator serves as one plate of a capacitor C , con-
tained in an electrical LCR resonator consisting of the capaci-
tor, an inductor L , and a resistor R . A time-dependent voltage
Vp(t) drives the electrical resonator inducing a charge q on
the capacitor plates thereby coupling the mechanical and elec-
trical oscillators. The time-dependent gap of the capacitor is
D2x , where D is the nominal capacitor gap.
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S ddt 1
1
2t2

D ~Q21jQ1!

5
Vp~ t !

2D
1

Lv2
@2X1~e

j~v12v2!t1e2j~v11v2!t!

1jX2~e
j~v12v2!t2e2j~v11v2!t!# . (3.22)

The specific form of the time-dependent pump voltage
Vp(t) must now be specified. As discussed earlier, the
back-action evasion coupling requires establishing an
electric field in the coupling capacitor with frequency
components at both the sum and difference of the elec-
trical and mechanical frequencies. To make possible a
general analysis, we introduce the parameter f and write
the pump in the following general form:

Vp~ t !5
V0

2
$~12f !cos@~v21v1!t#

1~11f !cos@~v22v1!t#%, (3.23)

which, depending on the value of the parameter f , may
represent any linear combination of the two pump fre-
quency components, the two components being equal in
amplitude for f=0. By inserting the general form of the
pump into Eqs. (3.21) and (3.22), a set of four equations
for the complex amplitudes of the mechanical and elec-
trical oscillators may be found:

S ddt 1
1
2t1

DX15
V0

D

1
4mv1

$Q1sin~2v1t !1fQ2

3@12cos~2v1t !#%2
F~ t !

mv1
sin~v1t !,

(3.24a)

S ddt 1
1
2t1

DX25
V0

D

1
4mv1

$Q1@11cos~2v1t !#

1fQ2sin~2v1t !%1
F~ t !

mv1
cos~v1t !,

(3.24b)

S ddt 1
1
2t2

DQ15f
V0

D

1
4Lv2

$X1sin~2v1t !

1X2@12cos~2v1t !#%, (3.24c)

S ddt 1
1
2t2

DQ252
V0

D

1
4Lv2

$X1@11cos~2v1t !#

1X2sin~2v1t !%. (3.24d)

In Eqs. (3.24c) and (3.24d) for simplicity we have
omitted the terms in which the voltage Vp(t) is directly
driving the electrical resonator. For now, we can assume
that these terms are filtered out, and in practice the elec-
trical resonator will be a bridge-type circuit that will can-
cel these ‘‘direct feedthrough’’ terms.
We may understand the essential features of a back-

action evasion measurement by simplifying Eq. (3.24)
for the case of f=0 and examining the nature of the

dominant interaction between the two oscillators. Keep-
ing in mind that the complex amplitudes X1,2 and Q1,2
have resonant frequencies of zero, we can neglect the
terms at the frequency 2v1 since their effect will tend to
average to zero for time intervals more than a few peri-
ods of the mechanical resonator—we shall show later
that this time scale is typical of the signal averaging
times that will be employed in practice. The simplified
equations are the following:

S ddt 1
1
2t1

DX152
F~ t !

mv1
sin~v1t !, (3.25a)

S ddt 1
1
2t1

DX25
V0

D

1
4mv1

Q11
F~ t !

mv1
cos~v1t !,

(3.25b)

S ddt 1
1
2t2

DQ150, (3.25c)

S ddt 1
1
2t2

DQ252
V0

D

1
4Lv2

X1 . (3.25d)

The key features of a back-action evasion measurement
are immediately apparent from Eqs. (3.25). First of all,
note that both complex amplitudes of the mechanical
resonator are excited by the external force. For the spe-
cific choice of the pump voltage, we observe that the X1
component of the mechanical system is unaffected by
the back action of the electrical resonator; it is excited
solely by the signal force and the Langevin force. We
also note that the X1 component of the mechanical reso-
nator drives the Q2 component of the electrical system,
so a measurement of Q2 will provide information about
the X1 phase of the mechanical resonator. We also see
from Eq. (3.25b) that the X2 phase of the mechanical
resonator is driven by the back action of the electrical
circuit, but that neither phase of the electrical circuit is
driven by X2 . To summarize, the key features of the
back-action evasion coupling are that one component of
the mechanical oscillator’s complex amplitude, X1 in this
case, can be measured without the electrical oscillator
acting back and disturbing its evolution.
We now turn our attention to another related para-

metric transducer property, dynamic damping and fre-
quency pulling. To examine this behavior we drop all of
the external driving terms in Eq. (3.24) as well as the 2v1
and 2v2 frequency terms. However, we make no as-
sumption as to the value of f . Under this set of assump-
tions, the equations may be easily solved for each of the
complex amplitudes. The solutions all have the same
form:

F S ddt 1
1
2t1

D S ddt 1
1
2t2

D 1
fbv1

2

8 GZ50, (3.26)

in which Z may represent X1,2 or Q1,2 and we have de-
fined the dimensionless electromechanical coupling-
strength coefficient b by the following:

b[SV0

D D 2 v2

v1

C

mv1
2 . (3.27)
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If we assume that Z has the form Z5Z0e
st, where s is a

parameter, we can find the characteristic equation asso-
ciated with Eq. (3.27) and compute the roots. We find
the following:

s5
1
2 F2

1
2t1

2
1
2t2

6S 1
2t1

2
1
2t2

D
3S 12

fbv1
2

2 YS 1
2t1

2
1
2t2

D 2D 1/2G . (3.28)

In the back-action evasion case, f=0, the two roots of the
characteristic equation are s=−1/(2t1) and s=−1/(2t2), so
the electrical and mechanical variables will exhibit de-
caying solutions with the characteristic decay times of
the uncoupled mechanical and electrical resonators. In
the case f=1, the contents under the radical in Eq. (3.28)
will always be less than or equal to unity, so s can never
be positive real; therefore no exponentially growing so-
lutions may exist. However, when b is large enough, s
becomes complex and the resonant frequencies begin to
shift. The threshold value of b at which frequency shifts
begin to occur is b>(1/8v1

2)(1/t1−1/t2)
2. Below this

threshold, the coupling between the mechanical and
electrical oscillators only serves to change their charac-
teristic decay times, and above the threshold the reso-
nant frequencies are shifted as well.

For the case f=−1 it can be shown that s becomes
positive real for b>(2/v1

2)(1/t1t2), and exponentially
growing solutions will exist. This corresponds to the
threshold for parametric oscillation of the mechanical
resonator. Below this value of b, the transducer acts as a
mechanical parametric amplifier and the electrical reso-
nator serves to read out the state of the mechanical sys-
tem, but this scheme offers no sensitivity advantage over
the parametric upconvertor mode, f=+1, and the BAE
mode, f=0.
Now that the main features of a back-action evasion

measurement of a mechanical resonator have been dis-
cussed, we turn our attention to estimating the force
sensitivity of a system consisting of a mechanical resona-
tor coupled to a readout electrical resonator. To facili-
tate this discussion we will use a more realistic model for
the transducer, including the main sources of noise in
the system. We also introduce the balanced-bridge
transducer configuration which, as we will show, has sig-
nificant practical advantages over the idealized system
discussed above.
We refer to Fig. 4, which shows a practical transducer

scheme and variations on the basic transducer configu-
ration. In the upper part of the figure we show a sche-
matic representation of the transducer realized as a
resonant bridge circuit consisting of two inductors L1

FIG. 4. A practical parametric transducer scheme and variations thereof. At the top is shown the schematic of a practical
bridge-circuit parametric transducer. The bridge circuit consists of two capacitors C1(t) and C2(t) coupled to a mechanical
harmonic oscillator in a push-pull configuration, and two inductors L1 and L2 . The bridge circuit is excited symmetrically by a
‘‘pump’’ source and the bridge output is coupled through a capacitor C , in a resonant ‘‘readout’’ arm of the bridge to a voltage
amplifier, such as a FET (field-effect transistor)—represented by its noise-equivalent circuit. The signal vout is subsequently
filtered and examined for the evidence of a signal acting on the mechanical oscillator. In the lower part of the figure are shown
substitutions that have been implemented or studied. For example the bridge circuit may be constructed with four capacitors as
shown, or the voltage amplifier may be replaced by a current amplifier, such as a SQUID, a noise-equivalent circuit of which is
shown.
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and L2 , and two capacitors C1 and C2 . The capacitors
are coupled to the mechanical resonator in a push-pull
configuration. In Sec. IV of this review a number of
practical realizations of the transducer scheme will be
described. The bridge also has some unavoidable loss
represented by R1 and R2 , and there is mutual inductive
coupling M12 between L1 and L2 . The bridge is induc-
tively coupled through a transformer to a pump repre-
sented by a voltage generator Vp(t) with internal resis-
tance Rg . Below we will also show how to include the
phase and amplitude fluctuations of the pump voltage
Vp(t). The mutual inductances between the transformer
primary Lp and the bridge inductors are M1p and M2p.
The readout arm of the bridge consists of a capacitor C
and inductor L—also with an unavoidable small resis-
tance R in series with L—and associated with the resis-
tor R is a Johnson-voltage noise source vJ . The current
through the readout-arm inductor L is sensed by a volt-
age amplifier connected across a chosen segment of L to
properly impedance-match the amplifier input. The volt-
age amplifier has an assumed input impedance R in (in
practice a resistor of a few kilo-ohms is used to stabilize
the amplifier circuit) and the amplifier has an assumed
input noise, represented by a current source in , and a
purely additive noise represented as a voltage noise en .
This is a conventional representation of a field-effect
transistor amplifier. One should also allow that the two
sources of noise in the amplifier may exhibit some de-
gree of mutual correlation. It is straightforward to in-
clude these effects through the introduction of a com-
plex correlation impedance; however, to maintain
simplicity we will not explicitly do so in the following
analysis.
Variations on this transducer configuration are shown

in the lower part of Fig. 4. For example, the bridge cir-
cuit may be constructed of all capacitors with a parallel
transformer used to couple the pump signal into the
bridge. The other major variation may be in the ampli-
fier. We have shown an alternative current amplifier,
which would be placed in series with the readout-arm
inductor L . In this case the input noise is represented by
a voltage source en8 and the additive noise is shown as a
current source in8 . This current-amplifier model is a con-
venient representation of a SQUID amplifier.
The fluctuations of the pump do not appear as an ex-

plicit noise source in Fig. 4, but the fluctuations of the
pump combined with any bridge imbalance effectively
create a new noise source that appears in series with the
Johnson noise source coming from the loss in the read-
out arm of the bridge. The magnitude of this effective
pump-noise source is proportional to the product of the
fractional imbalance factor of the bridge circuit and the
spectral density of the pump source. Thus it is important
that the bridge circuit be well balanced to minimize the
effect of the pump noise and, in fact, it turns out that
balancing and phase noise are major factors limiting the
sensitivity of parametric transducers. Alternative pump
feed through reduction schemes that serve to effectively

balance the transducer by external cancellation of the
pump have also been employed in systems that we de-
scribe in Sec. IV.
We generalize our expression for the pump voltage

Vp(t) to include the fluctuations of both the amplitude
and the phase of the pump components:

Vp~ t !5
V0

2 H ~12f !~11a1!cos@~v21v1!t1f1#
1~11f !~11a2!cos@~v22v1!t1f2#

J .
(3.29)

We use the dimensionless random variables a1 and a2 to
represent the small random component of the pump am-
plitudes and we use f1 and f2 to represent the phase
fluctuations. It is assumed that these random variables
represent mutually uncorrelated Gaussian random pro-
cesses. Returning to Eq. (3.22), we substitute the expres-
sion (3.29) for the noisy pump to find the following
equations of motion for the electrical variables:

S ddt 1
1
2t2

DQ15
V0

4D
1

Lv2
H fX22

X1

2
@f~f22f1!

1~f21f1!#1
X2

2
@f~a21a1!

1~a22a1!#J ,
S ddt 1

1
2t2

DQ25
V0

4D
1

Lv2
H 2X12

X1

2
@f~a22a1!

1~a21a1!#1
X2

2
@f~f21f1!

1~f22f1!#J . (3.30)

The imbalance of the bridge readout circuit may be rep-
resented by a static, or slowly time-dependent displace-
ment x0 of the mechanical oscillator. To find an expres-
sion for the spectral density of the pump-noise
contribution, the bridge circuit imbalance is expressed in
terms of the complex amplitudes, chosen as
X15x0cosv1t , X25x0sinv1t , substituted into Eqs.
(3.30), and the squared modulus of the Fourier trans-
forms of those equations is computed. Confining atten-
tion to the equation for Q2 , one finds the following ex-
pression for the pump-noise term that appears on the
right-hand side of that equation of motion:

Spump~v!5S V0

4D D 2S 1
Lv2

D 2 x028
3F ~11f !2Sa2~v1v1!1~12f !2Sa1~v1v1!

1~11f !2Sf2
~v1v1!1~12f !2Sf1

~v1v1!
G ,
(3.31)

in which Sf(v) and Sa(v) represent respectively the
double-sided spectral densities of the phase and ampli-
tude fluctuations associated with the pump at a fre-
quency offset of v from the pump carrier frequency.
Upon examination of Eq. (3.31), we note that in order to
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drive the Q2 variable on resonance, i.e., at v=0, the
pump phase and amplitude fluctuations at a frequency
that is offset from the carrier by v1 come into play. This
has a simple interpretation in the frequency domain. An
examination of the spectrum of the pump source would
show sharp peaks at v26v1 , depending on the chosen
value of f , and the phase and amplitude fluctuations
would appear as low-amplitude wings centered about
these sharp peaks. The pump phase and amplitude fluc-
tuations offset from the carriers by 6v1 will drive the
bridge circuit on resonance, i.e. at the frequency v2 .
Our attention is now turned to computing the re-

sponse of the coupled electromechanical system includ-
ing all the noise sources. The electrical variables are the
experimentally accessible quantities, so the set of equa-
tions will be solved for one of these quantities. Referring
back to Eqs. (3.25), it is noted that, for f=0 and the
choice of pump phases made in Eq. (3.29), only the Q2
phase of the electrical mode will contain information
about the state of the mechanical oscillator. Q2 is also a
directly measurable quantity and in practice may be
measured by monitoring the time-dependent voltage on
the center capacitor plate of the three-plate capacitor in
the bridge circuit and extracting the Q2 information by
demodulating using a reference frequency of v2 . Thus
Q2 will be considered to be the output observable and
the system equations will be solved to compute the spec-
tral density of Q2 .
The solution of Eqs. (3.25) is carried out in the fre-

quency domain so that the noise sources can be explic-
itly specified in terms of their spectral densities. Solving
the equations for Q2 by substitution, we arrive at

Q2~v!5
V0

8D
j

mv1Lv2

1
J~v!

@F~v1v1!2F~v2v1!

1fL~v1v1!2fL~v2v1!#1
1

2Lv2

G1~v!

J~v!

3@n~v1v2!2n~v2v2!# , (3.32)

in which J(v)[G1(v)G2(v)1(v 1
2b/8) and G1,2(v)

[jv11/(2t1,2). As before, F is the signal force acting
on the mechanical resonator, and fL is introduced to
represent the Langevin force that acts on the mechanical
resonator and is responsible for its Brownian motion.
Finally, n is used to represent the sum of all the voltages
driving the electrical resonator. At this point it is appro-
priate to elucidate the choice of representation for the
noisy amplifier. Referring back to Fig. 4, for the current-
amplifier model the input noise of the amplifier is rep-
resented by a voltage-noise generator en , which adds to
the Johnson noise and effective pump-noise voltage
sources. In this case n may be written as the sum of three
terms—v5nJ1npump noise+en . Given the voltage-
amplifier representation for the actual amplifier in use, it
would be straightforward to transform the voltage-
amplifier representation to the Thévenin equivalent
current-amplifier representation. If, as shown in Fig. 4,
the noisy voltage amplifier has an input noise current of
in8 and an additive voltage noise of en8 , it can be trans-

formed into an equivalent current amplifier with an ef-
fective input noise of en5vLin8 and an effective additive
noise of in5en8 /(vL), where v is the frequency; note
that the model transformation is frequency dependent
but in general the operating frequency is confined to a
narrow band and may be regarded as constant. These
expressions are based on the assumption that the volt-
age amplifier is connected across all the turns of the
inductor L , while one could connect the amplifier input
across only part of the inductor turns, which would
modify the apparent magnitudes of the two noise gen-
erators to allow one to reach the optimum noise imped-
ance. Of course the noise temperature of the amplifier,
which is proportional to the product of the current and
voltage noise terms, is maintained. This is a practical
technique for impedance matching an amplifier to a
source to obtain optimum system signal-to-noise perfor-
mance.
Returning to the expression for Q2 , Eq. (3.32), we

note that the purely additive contribution of the ampli-
fier current-noise source at the output of the amplifier
may be added. The expression for Q2 is multiplied by
the complex conjugate Q2* to obtain the following ex-
pression for the spectral density of Q2 :

SQ2
~v!5

V0
2

64D2

1

m2v1
2L2v2

2

2SfL~v1!

uJ~v!u2

1
1

4L2v2
2 UG1~v!

J~v!
U22Sn~v2!1

2Sin~v2!

v2
2 ,

(3.33)

where the double-sided spectral densities of the Lange-
vin force, the voltage noise, and the current noise are
represented respectively by SfL, Sen8, and Sin8. To simplify

the analytic result, it was assumed that there were no
correlations among the various noise sources. However,
transistors operated at radio frequencies often display a
significant degree of mutual correlation between the am-
plifier’s input and additive noise sources. This introduces
an analytical complication and is more easily accounted
for in numerical calculations, so for the remainder of the
present analysis the amplifier noise correlations will be
ignored. The double-sided spectral density of the Lange-
vin force is given by SfL[4kBTm/t1, and the voltage
noise is composed of the contribution of the amplifier
plus the Johnson noise associated with the losses in the
electrical circuit, with spectral density SnJ

54kBTL/t2.
It is convenient to introduce two dimensionless quan-

tities, a and g :

a[
T

TE

v2

v1

1
v1t1

,

in which TE[ASin8~v2!Snn
~v2!/kB , (3.34)

and
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g[v2C
v2

v1
ASnn

~v2!/Sin~v2!

for the current-amplifier model,

g[
1

4v2C

v2

v1
ASin~v2!/Sen8~v2!

for the voltage-amplifier model. (3.35)

The noise spectral density may be expressed in terms of
the normalized frequency y[v/v1 and the above-
defined dimensionless parameters as follows:

SQ2
~y !5

Sin8~v2!

v2
2 H 11

abg

8
1

uJ~y !u2
1g2UG1~y !

J~y !
U2J .
(3.36)

To find the optimum filter and the maximum signal-to-
noise ratio, the response of Q2 to the signal, which is
assumed to be an impulse arriving at the time t=0,
Fs(t)5p0d(t) must be computed. This calculation fol-
lows the lines of the preceding noise calculation so the
details will not be repeated. Combining the signal and
noise responses with the noise in the expression for the
maximum signal-to-noise ratio, Eq. (3.10), yields the ex-
pression

S SN D
max

2

5
p0
2

2m
v2

v1

1
kBTE

H bg

8pE2`

1`S uJ~y !u21
abg

8

1g2uG1~y !u2D 21

dyJ , (3.37)

which can be integrated to determine the maximum
signal-to-noise ratio for an impulsive signal of amplitude
p0 . The noise-equivalent impulsive signal is the one that
gives a signal-to-noise ratio of unity, and the mechanical
oscillator impulse noise number N [Eq. (3.14)] is given
by

N5
kBTE

\v2

1
r

5NE

1
r
. (3.38)

In Eq. (3.38) it is convenient to represent the total elec-
tronic noise by an electronic noise number NE , and the
factor r is used to represent the expression in curly
brackets in Eq. (3.37). It remains to evaluate the factor r
as a function of a, b, g, and f . Carrying out the integra-
tion yields the following result:

1
r

5F S f21 8ag

b D H 11
b

4g2 F S f21 8ag

b D 1/22f G J G1/2.
(3.39)

In Fig. 5 appear contour plots of constant values of 1/r
in the bg plane for fixed values of a in the two cases of
most practical interest: f=1, the conventional upconver-
tor, and f=0, the back-action evasion mode. For the f=1
case, the value of 1/r cannot be less than unity; this is
referred to as the amplifier limit for a conventional mea-
surement. In the back-action evasion operating mode 1/r
may be considerably less than unity, and the smaller the
value of a, the larger r may be. Thus the back-action

evasion technique yields the greatest reduction in the
system noise for small values of a, i.e., when the Brown-
ian noise is small compared to the electronic noise in the
mechanical oscillator/electrical oscillator system.
In the preceding analysis a simplified set of dynamical

equations—Eqs. (3.25)—was solved to find the signal

FIG. 5. Contour plots of the BAE noise-reduction factor 1/r ,
for different values of the parameters a, b, and g (defined in
the text): (a) the parametric upconvertor, labeled by f=1; (b)
and the BAE measurement scheme, f=0. The parameter b is a
measure of the strength of the electromechanical coupling of
the readout circuit to the mechanical oscillator and g is a mea-
sure of the impedance ratio of the readout circuit and the am-
plifier. The quantity a characterizes the ratio of the thermal
Brownian motion to the total electrical noise—a=0 in the case
of the physical temperature going to zero. One observes in Fig.
5(a) that the parametric upconvertor is incapable of exceeding
the sensitivity limit enforced by the noisy amplifier, i.e., 1/r>1;
however, as shown in Fig. 5(b) in the BAE case (f=0), the
amplifier limit may be exceeded by significant factors (Bocko
and Johnson, 1982).

775M. F. Bocko and R. Onofrio: Measurement of a weak classical force . . .

Rev. Mod. Phys., Vol. 68, No. 3, July 1996



and noise content of the parametric transducer output.
The complete equations governing the behavior of the
system—Eqs. (3.24)—contain ‘‘sideband’’ terms that os-
cillate at a frequency 2v1 and which drive the mechani-
cal and electrical resonators at frequencies off reso-
nance. The consequences of the 2v1 sidebands is
examined in the following discussion.
The details of the tedious calculations to determine

the influence of the additional sideband components at
2v1 will not be reproduced here, but the result may be
summarized rather simply. The 2v1 terms introduce a
small fluctuating back action of the electrical readout
system on the mechanical resonator and the effect of
this may be represented as additional Brownian noise in
the mechanical resonator by modifying the parameter a
as follows:

a→a1
3bg

64
. (3.40)

The physical interpretation of this is straightforward
and we refer to Fig. 6 to facilitate the interpretation
(Bocko et al., 1986). In Fig. 6 we show the frequency
spectrum of the electromechanical system operating in
the back-action evasion mode. The function of the trans-
ducer is to convert energy between the mechanical and
electrical resonators, so an excitation of the mechanical
oscillator at the frequency v1 is upconverted to an elec-
trical signal at the frequencies v2 and v2−2v1 by pump 1;
pump 2 upconverts the mechanical signal to the electri-
cal frequencies v2 and v2+2v1 . The upconverted signal
at v262v1 can be easily filtered out if desired, so it pre-
sents no practical problem. The problem arises from the
downconversion of energy in the electrical resonator to
produce a force acting on the mechanical resonator. The
electrical resonance is typically broad enough so that
there will be a non-negligible response of the electrical
resonator to electrical noise at the frequencies v262v1 .

These noise sidebands are downconverted to a mechani-
cal force at the frequency v1 , which coincides with the
mechanical resonance. This downconverted electrical
noise can conveniently be represented as additional
Brownian motion. The following intuitive description of
the excess back-action noise represented in Eq. (3.40) is
helpful. The excess noise is proportional to the electro-
mechanical coupling strength b, so that if the electrome-
chanical coupling is reduced to zero, the excess noise
vanishes as well. The excess noise is also jointly propor-
tional to the factor g which is large when the back-acting
input noise of the amplifier is large compared to the
additive noise. The numerical factor 3/64 emerges from
the analysis after making the assumption that v1t2@1.

C. Back-action evasion and parametric processes

In the preceding section a detailed signal-to-noise
analysis of a parametric transducer operated in the
back-action evasion measurement mode was presented.
In this section the more general qualitative features of
the back-action evasion measurement are examined, and
the relationship to previously well-understood paramet-
ric processes is explored.
The back-action evasion measurement scheme is the

linear superposition of two parametric interactions al-
ready familiar in the theory of parametric amplifiers
(Louisell et al., 1961; Decroly et al., 1973). In a general
parametrically coupled system, two subsystems are in-
teracting through a time-varying parameter containing
degrees of freedom of both the subsystems. The modu-
lation of this coupling parameter gives rise to so-called
parametric coupling of modes of the two subsystems.
The transfer of energy from one subsystem to the other
is controlled by the choice of the frequency, amplitude,
and phase of the modulation. A common mechanical
example of a parametrically coupled system is a play-
ground swing. The operator sitting on the swing modu-
lates the effective length of the swing by lowering and
raising their center of gravity. The most satisfying oper-
ating mode of a swing is to parametrically pump the
system at twice its resonant frequency with the pump
phase chosen so that the swing’s effective length is in-
creased at the lowest point of the swing’s motion and
raised at the instants of the swing’s maximum angular
displacement. Pumping the swing in this manner trans-
fers energy from the user to the swing leading to the
familiar enjoyable sustained oscillations.
The principles of parametric coupling are applied to

electromechanical force-detection systems composed of
a mechanical resonator and an electrical resonator by
parametrically coupling the two subsystems via a capaci-
tor to which is applied a time-dependent electric field.
The characteristic frequencies in the parametric system
are the mechanical and the electrical oscillation frequen-
cies and the pump frequency of the electric field in the
capacitor. Thus a three-frequency parametric transducer
can be operated in two different regimes, the modula-
tion occurring either at the sum of the electrical and
mechanical frequencies (phase-conjugating upconver-

FIG. 6. A frequency-spectrum representation of a back-action
evasion measurement. A narrow-band mechanical signal, near
v1 , from the mechanical oscillator is simultaneously upcon-
verted by pump 1 and pump 2 to the peak of the electrical-
oscillator resonance at v2 . Simultaneously, noise in the electri-
cal oscillator, in the vicinity of v2 , arising from the amplifier
input is downconverted by the pumps to produce a back-acting
force on the mechanical oscillator. The electrical noise near v2
is downconverted to a phase-sensitive force by the simulta-
neous action of the two pumps. However, electrical noise near
v262v1 is downconverted by the individual pumps and thus
produces a phase-insensitive back-action force.
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tor) or at the difference of the electrical and mechanical
frequencies (phase-preserving upconvertor). The main
differences between these two parametric interactions
can be illustrated in a quantum description, in which the
process can be described as the destruction or creation
of phonons and photons at the various subsystem fre-
quencies. In the phase-preserving upconvertor, a photon
of the pump and a phonon of the harmonic oscillator
mutually annihilate to create a photon at the electrical
mode frequency. In the phase-conjugating upconvertor
case, a phonon at the mechanical frequency and a pho-
ton at the pump frequency combine to create a photon
at the electrical frequency and an additional phonon in
the mechanical oscillator. This case is also a mechanical
parametric amplifier with the electrical mode serving as
a readout, containing information about the state of the
mechanical mode.
In the above description, the terms phase-preserving

and phase-conjugating were used to describe the two
single-pump parametric processes. The significance of
these designations can be understood by the following
simple mathematical demonstration. Assuming that
there is a signal represented by cos[vst1f(t)], where
f(t) is a time-dependent phase factor, and a pump,
cos(vpt), one can multiply these two terms together to
find

cos~vpt !cos@vst1f~ t !#5 1
2 $cos@~vp1vs!t1f~ t !#

1cos@~vp2vs!t2f~ t !#%.

(3.41)

Equation (3.41) shows that the upconverted signal at the
sum of the pump and signal frequencies follows the
time-dependent phase of the signal, but the upconverted
signal at the difference of the two frequencies is a phase-
reversed version of the signal. Therefore the designa-
tions phase-preserving and phase-conjugating are at-
tached to the two processes.
The back-action evasion measurement is the coherent

superposition of the phase-preserving and phase-
conjugating three-frequency parametric interactions;
therefore BAE is a four-frequency parametric process.
One may gain insight into the essential feature of a BAE
measurement by considering the reverse transfer charac-
teristics of the BAE parametric converter, i.e., the con-
version of photons at the electrical readout frequency to
phonons at the mechanical frequency. Let us assume the
electrical fluctuations in the readout circuit exhibit a
Lorentzian spectrum centered at the frequency v2 with a
bandwidth determined by the quality factor of the elec-
trical resonator. The electrical noise that lies in a band
extending from v2−v1 to v2+v1 is simultaneously down-
converted by the two pumps to produce a force acting
on the mechanical resonator. The parametric process as-
sociated with the pump at v2−v1 preserves the phase of
the electrical fluctuations upon downconversion to a me-
chanical force and the fluctuating force from the other
pump at v2+v1 is phase reversed. The coherent super-
position of the two processes leads to a cancellation of
the fluctuating back-action force on one phase of the

mechanical oscillator and the enhancement of the back-
acting force noise on the other phase of the mechanical
oscillator. Electrical noise lying outside the electrical
frequency band extending from v2−v1 to v2+v1 does not
cancel mutually upon downconversion and so leads to a
fluctuating force on both of the mechanical oscillator
phases. The magnitude of the overall back-action noise
reduction depends upon the relative magnitude of the
electrical noise near v262v1 compared to the electrical
noise at v2 . Therefore, a large quality factor for the elec-
trical mode is a key feature in a back-action evasion
measurement system and most of the back-action force
noise will be canceled in one phase of the mechanical
system if v1t2 is much greater than unity. In the follow-
ing section on multipump and stroboscopic measure-
ments, we describe a scheme to recover a high degree of
back-action noise cancellation even when this condition
is not met.
In conclusion, in the above discussion it was shown

that the BAE technique is a close relative of conven-
tional, well-known parametric processes and it’s tempt-
ing to conjecture that the back-action evasion measure-
ment technique could have been discovered eventually
without any reference to quantum nondemolition mea-
surements. Moreover, the description of the BAE mea-
surement technique in the familiar language of paramet-
ric interactions may enable us to find broader
applications, in other types of parametric detectors, be-
yond its use in the detection of small mechanical dis-
placements.

D. Multipump and quasistroboscopic schemes

In the previous section we indicated that when the
width of the Lorentzian peak of the electrical resonator
response is comparable to or larger than the mechanical
frequency, the two-pump back-action evasion measure-
ment offers limited back-action noise reduction. One
pair of pumps at v26v1 can cancel the back-action noise
arising from a band of frequencies of width 2v1 centered
on the electrical resonance at v2 , but downconverted
electrical noise outside of this band does not mutually
cancel. However, by adding additional pumps at specific
frequencies we could arrange for the cancellation of
back-action noise originating from a broader band of
frequencies in the electrical system noise spectrum. For
example, if another pair of pump components were in-
troduced at the frequencies v263v1 , it would result in
the back-action cancellation of all the downconverted
electrical noise in a band of width 6v1 centered on the
electrical resonance. If there remained significant elec-
trical noise outside of this band, i.e., if the electrical Q
were that low, one could add additional pairs of pumps
at v26(2n+1)v1 until the majority of the back-action
noise was canceled. In the limit of a very large number
of pump frequencies this technique becomes the strobo-
scopic measurement technique discussed by Braginsky,
Vorontsov, and Thorne (1980).
Stroboscopic QND measurements of the position of a

harmonic oscillator have been discussed in detail (Bra-
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ginsky and Nazarenko, 1969; Braginsky, Vorontsov, and
Khalili, 1978; Thorne et al., 1978). In this scheme, as de-
scribed in Sec. II, ‘‘quick’’ measurements of the position
of the mechanical oscillator are performed at equally
spaced time intervals twice per mechanical oscillation
cycle. In this context quick means that the instrument
that measures the mechanical oscillator position inter-
acts with it for a time interval that is short compared to
the period of oscillation. During the time interval be-
tween two consecutive measurements, the Schrödinger
wave function of the mechanical oscillator spreads out
and then contracts to its initial dispersion. The key fea-
ture of a stroboscopic measurement is that repeated
quick measurements are performed at the time instants
when the position dispersion is minimum. An observed
deviation from the expected position at those time in-
stants would signal that a force had acted on the me-
chanical oscillator since the previous measurement.
A more quantitative noise performance estimate for

the multipump measurement scheme may be carried out
by calculating the ratio of the variances for the two
quadrature phases of the electrical output observable,
under the assumption that the mechanical oscillator is
sensitive to the downconverted electrical noise only near
resonance, i.e., in a band of frequencies centered around
v1 within a bandwidth Dv1=v1/2Q1 , and that Dv1!Dv2
(Onofrio and Bordoni, 1991). In the quiet mechanical
phase the electrical noise contribution to the back-action
force will be due only to the electrical noise in a band of
frequencies (Dv1) centered around v262nv1 , where n is
the number of pump pairs. All the pumps at the fre-
quencies between v26(2n−1)v1 yield the phase-
sensitive cancellation of the remaining back-acting
noise. The quiet mechanical phase will only feel the fluc-
tuating back action from electronic noise lying outside
the frequency band spanned by the pumps; this residual
back-action noise may be quite small when the fre-
quency range spanned by the pumps is broad compared
to the width of the electrical resonance. The calculation
of the effective back-action noise squeezing factor is
presented in the following simplified model of a gener-
alized multipump BAE measurement apparatus.
To analyze a generalized BAE measurement, we re-

turn to the model developed in Sec. III.B and assume a
more general form of the parametric pump source. Re-
call that in the earlier analysis we assumed a pump that
contained one or both of the frequency components at
the sum or difference of the electrical and mechanical
resonator frequencies, E(t)5E0cos[(v26v1)t]. For the
generalized BAE measurement, we assume a general
form of the pump:

E~ t !5 (
n51

N E0

2N
$cos@v2t1~2n21 !v1t#

1cos@v2t2~2n21 !v1t#%, (3.42)

where 2N is the total number of pump frequency com-
ponents. If N=1 then we recover the simple BAE case
discussed above,

E~ t !5
E0

2
@cos~v21v1!t1cos~v22v1!t# . (3.43)

Under the simplifying assumption that v2 is an integer
multiple of v1 , in the limit of an infinite number of
pump components, N→`, the electric field becomes a
series of impulses at regularly spaced intervals:

E~ t !5 (
n50

`

E0~21 !ndS t2 np

v1
D . (3.44)

For the pump field in Eq. (3.44) the interaction Hamil-
tonian of the coupled mechanical oscillator electrical os-
cillator system becomes

ĤI5E0(
n50

`

dS t2 np

v1
D X̂1Q̂ , (3.45)

which shows that at certain instants of time, i.e., when
t5np/v1 , the interaction between the two oscillators is
proportional to the mechanical oscillator complex am-
plitude component X1 and zero at other times. This
means that when t5np/v1 X1 will be measured.
The multipump field of Eq. (3.42) has a Fourier spec-

trum with an infinite number of frequency components,
which in the time domain is a series of pulses of infini-
tesimal duration. In practice, the pulses will have a finite
duration t, in which case the amplitudes of the pump’s
Fourier components are given by the formula

E2n115E0t
v1

p

sin@~2n11 !v1t/2#

~2n11 !v1t/2
, (3.46)

where n denotes the nth harmonic of the mechanical
resonant frequency. If t→0, with E0t held constant, the
pump consists of an infinite number of equal-height
components at the frequencies v1 ,3v1 ,5v1 , . . . ,
(2n+1)v1 .
It is more realistic to consider a quasistroboscopic

measurement, i.e., one having finite values for both the
electric field and the measurement duration t, with the
practical constraint that the frequency components of
the pump within the electrical circuit bandwidth have
the same amplitude. Thus to complete our analysis we
write the equations of motion in terms of the complex
amplitudes, using the definitions above and the expres-
sions for E(t) for 2N pumps:

F ddt 1
1
2t1

GX15
E0

4Nmv1
Q1sin~2Nv1t !2

F~ t !

mv1
sin~v1t !, (3.47)

F ddt 1
1
2t1

GX25
2E0

4Nmv1
Q1F cos~2Nv1t !1112 (

n51

N21

cos~nv1t !G1
F~ t !

mv1
cos~v1t !, (3.48)
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F ddt 1
1
2t2

GQ152
nn
Lv2

sin~v2t !, (3.49)

F ddt 1
1
2t2

GQ25
2E0

4NLv2
HX1F cos~2Nv1t !1112 (

n51

N21

cos~nv1t !G1X2sin~2Nv1t !J 1
nn
Lv2

cos~v2t !. (3.50)

The terms that oscillate at v2 were dropped because
they average to zero over the time scales of interest. The
above set of equations will serve as the basis of our fur-
ther analysis. Equations (3.47)–(3.50) may be solved to
determine the response of the mechanical resonator to
the fluctuating back-action force from the electrical
resonator. The externally applied force is assumed to be
zero and it is assumed that the electrical resonator is
excited by phase-insensitive random noise. The spectral
densities of X1 and X2 are calculated from the Fourier
transformed equations, and for the case of 2N pumps,
the ratio of the spectral densities of X1 and X2 is
(Marchese, Bocko, and Onofrio, 1992):

SX2

SX1

5314 (
n51

N21 1116N2~v1t2!
2

1116n2~v1t2!
2 132N2~v1t2!

2.

(3.51)

Equation (3.51) applies in the case when the Langevin
force responsible for the Brownian motion of the me-
chanical resonator is negligible compared to the back-
action force. In this case, the reduction of the burst noise
number N , for a mechanical oscillator monitored by the
multipump technique, is directly related to the back-
action evasion noise reduction factor r :

N5NE

1
r
, where r>S SX2

SX1
D 1/2. (3.52)

This relationship between r , the BAE reduction factor,
and the squeezing factor is only approximate because
our earlier calculation of r , Eq. (3.39), also accounted
for the Brownian motion of the mechanical oscillator
and the match between the amplifier noise impedance
and the readout-circuit impedance.
The multipump BAE scheme also has an analog in

quantum optics, where both four-wave mixing (Schu-
maker, 1985, 1986; Schumaker et al., 1987) and pulsed
light (Slusher et al., 1987; Yurke et al., 1987) have been
used to successfully demonstrate squeezing.

E. Other models of back-action evasion measurements

An alternative noise and sensitivity analysis for a sys-
tem of two parametrically coupled harmonic oscillators
has been described by Fuligni (1982). The equations of
motion for the two coupled oscillators are solved in the
time domain using Mathieu function theory, and from
that one can calculate the minimum detectable energy in
a measurement time Dt . When the sampling time is op-
timized to give the maximum value of r , one obtains for
the parametric upconvertor pumping f=1:

r5S 11
a

b

v2

v1

1
Q1

D 21/2

, (3.53)

and when the BAE pump is used, r becomes

r5F18 S v2

v1
D 2 1

Q2
2 18

a

b

v2

v1

1
Q2

G21/2

. (3.54)

In Fuligni’s calculations, the matching between the elec-
trical oscillator impedance and the amplifier noise im-
pedance was not considered, and the solutions are
meaningful only in the small-coupling limit, in which
b!1, though they display the correct trend and provide
simple expressions for estimating the sensitivity of a
parametric electromechanical system. Even with these
provisos we see that, in the limit of negligible Brownian
noise (a→0), r approaches the limiting value of unity for
the single-mode pumping and may exceed this for the
BAE mode pumping. In the limit a→0, Eq, (3.54) re-
duces to r=v1t2/2&, which agrees qualitatively with the
earlier results.
Cinquegrana et al. (1993) presented an independent

analysis of a BAE measurement scheme that they later
generalized to a two-mode mechanical system (Cinque-
grana et al., 1994). The model applies specifically to a
capacitive bridge readout, and separate equations are
written for the noise and signal terms. The assumptions
made in the calculations are that an ideal filter is used to
completely reject the terms near twice the electrical fre-
quency, a reasonable assumption in practice, and that
there is no correlation among the noise sources. They
defined an equivalent temperature that is a measure of
the energy distribution of the harmonic oscillator, and
showed that it is equal to the oscillator’s thermodynamic
temperature provided that perfect bridge-circuit balance
is achieved, giving complete cancellation of the ampli-
tude and phase fluctuations of the pump at the readout-
circuit output. They also parametrize the sensitivity to
impulsive forces in terms of the burst noise temperature,
defined in Eq. (3.14), and the mechanical oscillator noise
number, expressed in Eq. (3.38), in terms of a noise-
reduction merit factor r that, for the optimal arrival time
of the signal, is found to be

r5
1
64p

b
v1
2I

C
, (3.55)

where I is a function of the noise impedance of the am-
plifier, the mechanical and electrical quality factors, the
pump amplitude and phase noise, and the remaining
electrical parameters of the readout circuit. The authors
compared the predictions of their model to the perfor-
mance of their parametric transducer, which will be de-
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scribed in Sec. IV, obtaining agreement over the experi-
mentally accessible range of parameters. Furthermore,
they compared their BAE transducer to a commonly
used constant-voltage biased capacitive transducer and
showed that the BAE pumping scheme is not subject to
the electromechanical loading of the mechanical oscilla-
tor, which complicates the use of the dc capacitive
scheme. They also demonstrated that the noise in the
BAE transducer-output quadrature containing the sig-
nal was solely due to the Brownian motion of the me-
chanical oscillator.
The models discussed in this section, although very

different in detail, all confirm that the two-pump para-
metric process corresponding to a continuous quantum
nondemolition measurement of one phase of a harmonic
oscillator’s complex amplitude also allows one to evade
the classical amplifier noise limit. We identified the key
parameter that determines the back-action evasion ca-
pability of any parametric transducer: the product of the
mechanical angular frequency and the relaxation time of
the electrically resonant transducer idler mode, v1t2 .
This parameter determines the ability of the transducer
to filter out electrical noise that would otherwise be con-
verted to a mechanical back-action noise force on the
‘‘quite’’ mechanical oscillator phase. Only under the
condition v1t2@1, and provided that the pump fluctua-
tions and the mechanical oscillator Brownian noise do
not dominate, will the back-action evasion scheme yield
a sensitivity gain with respect to conventional paramet-
ric transduction schemes. Although it is intuitively obvi-
ous that practical back-action evasion schemes will re-
quire small mechanical and electrical dissipation, low
pump amplitude and phase noise, and large electrome-
chanical coupling factors, the models described in this
section give quantitative predictions for the parameters
required to achieve back-action evasion and will guide
the experiments to the quantum regime.

IV. EXPERIMENTAL RESULTS

The quantum-noise regime of a mechanical oscillator
has not been reached yet in laboratory experiments.
However, the dynamics of the interaction between the
measuring apparatus and the mechanical oscillator are
the same for quantum noise dominated quantum non-
demolition measurements and corresponding measure-
ments dominated by classical sources of noise. The most
practical quantum nondemolition strategy is the back-
action evasion measurement, and in a variety of experi-
ments summarized in this section all of the essential fea-
tures of the back-action evasion measurement have been
experimentally demonstrated in the classical limit. The
key practical difficulties blocking the way to the quan-
tum regime have been identified, and promising avenues
for the exploration of the quantum behavior of macro-
scopic mechanical oscillators have been charted
(Cinquegrana et al., 1995).
The demonstration of a back-action evasion measure-

ment consists of two factors. First, the reverse-transfer
characteristics of the transducer must be demonstrated;

specifically, it must be shown that the fluctuating back-
action force of the transducer on the mechanical resona-
tor is squeezed, i.e., that the back-action force is a func-
tion of the phase of the mechanical oscillator and at its
minimum it is reduced from the level of back action in a
conventional non-BAE measurement. Second, it must
be demonstrated that the forward-transfer characteristic
is phase sensitive, specifically that the transducer output
contains only information about the ‘‘quiet’’ phase of
the mechanical oscillator. The essence of a BAE mea-
surement is that the transducer ‘‘reads out’’ information
about the phase of the mechanical oscillator that is iso-
lated from the fluctuating back-action force of the trans-
ducer.
In Sec. III we showed that the BAE measurement was

one member of a larger class of parametric electrome-
chanical converters. There has been substantial experi-
mental work on conventional and BAE parametric
transducers, and in this section we review the experi-
ments. We will describe the essential features of the
various designs for mechanical resonators and electrical
readout circuits and we will summarize the salient fea-
tures of parametric conversion and BAE measurements
that have been demonstrated. We organize our presen-
tation by the various research groups that have pro-
duced experimental results.

A. Moscow State University

The theoretical contributions of the Moscow State
University group to the field of quantum measurements
on macroscopic mechanical systems were complemented
by considerable experimental efforts. In this review we
will not attempt to summarize the entire body of work
from this group—for a review see Braginsky (1988) or
Braginsky and Khalili (1991). Rather, we will focus our
attention on the Moscow State University work concern-
ing the capacitive parametric transducer.
Shown in Fig. 7 is a diagram of the capacitive para-

metric transducer developed by Braginsky and his col-
laborators (Braginsky, Mitrofanov, and Panov, 1985).
The mechanical resonator was a niobium disk 3 cm in
diameter clamped at the perimeter and possessing a low-
est drumhead mode at a frequency of v1/2p=40 kHz.
The surface of the disk formed one wall of a niobium
reentrant microwave cavity with the capacitive cavity el-
ement having a gap of 3.4310−4 m. The drumhead vibra-
tion of the disk modulated the capacitance of the micro-
wave cavity resonator being pumped by a microwave
source stabilized by a high-quality factor tunable sap-
phire resonator. The microwave cavity had an electrical
quality factor of Q2=43104 which, given the cavity reso-
nant frequency of v2/2p=3 GHz leads to an electrical
relaxation time t2=Q2/v2=2.1 msec. The product v1t2 is
only 0.5 for this device, and to enable a back-action eva-
sion measurement this parameter should be much
greater than unity. To enable a BAE measurement, the
electrical relaxation time of the microwave cavity would
have to be increased substantially. However, operating
their transducer in the single-pump, non-BAE mode
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they reported the impressive effective displacement
noise of the mechanical diaphragm at 8 kHz of
Dx=6310−19 m/AHz.
A novel design for a mechanical harmonic oscillator

that could be coupled to a parametric transducer was the
‘‘horned’’ bar developed by Braginsky’s group—see Fig.
8,—which provided a means of coupling the vibration of
a cylindrical gravitational wave antenna to a transducer.
In this design a pair of tapered horns translated the mo-
tion of the ends of a cylinder to the center of the cylin-
der. There was a small gap between the horn ends form-
ing a capacitor that was part of an electrically resonant
circuit tuned to 5–10 MHz in early designs (Braginsky,
1974), or in a later design, using a single crystal sapphire
horned bar, the horn ends modulated the capacitive el-
ement of a reentrant microwave cavity (Panov and Kha-
lili, 1980).
Later, this group shifted attention to measurement

schemes based on the exploitation of whispering-gallery
modes in high-quality sapphire optical cavities (Bragin-
sky, Il’chenko, and Bagdassarov, 1987) both for opto-
mechanical transducers and to make a QND measure-

ment of the number of photons in an optical cavity
(Braginsky and Vyatchanin, 1988; Braginsky, Goro-
detsky, and Il’chenko, 1989; Braginsky and Khalili,
1990). This interesting proposal has been studied further
at Stanford University (Schiller and Byer, 1991) and at
the Ecole Normale Supérieure in Paris (Collot et al.,
1993); this last group confirmed and studied the scheme
in detail showing the splitting of the high-quality whis-
pering gallery modes into the doublets already observed
by Ilchenko and Gorodetsky (1992), which are attribut-
able to internal light backscattering (Weiss et al., 1995),
therefore limiting the performance of the optical cavity
transducer as a high-sensitivity electromechanical trans-
ducer.

B. University of Rochester

The earliest attempts by the Rochester group at
implementing the back-action evasion measurement
strategy were conducted with a very-low-mass mechani-
cal resonator fabricated from sapphire (Bocko and
Johnson, 1984). The mechanical oscillator was the first
bending mode of a nearly-free plate of sapphire of di-
mensions 2.5 cm31.5 cm30.1 cm, which had a frequency
of 16.1 kHz and an effective mass of 4310−4 kg (see Fig.
9). A face of the resonator was coupled capacitively to a
superconducting radio-frequency bridge circuit with a
resonant readout of frequency 4.15 MHz. The highest
electrical quality factor achieved with the superconduct-
ing readout circuit was approximately 4300, so the prod-
uct v1t2 was 16, large enough to allow significant back-
action evasion in a two-pump experiment. However, the
strength of the electromechanical coupling between the
mechanical resonator and the electrical readout circuit
was insufficient to make the back-action force measur-
able, but a complete study of the transducer forward-
transfer characteristics, i.e., the mechanical to electrical
conversion, was conducted and the phase-sensitive na-
ture of the BAE measurement strategy was demon-
strated for the first time.
The pump voltage used to excite the readout circuit

can be represented in the standard form [Eq. (3.23)]. To
demonstrate the various parametric processes achieved
by modifying the pump, the mechanical resonator was
excited by a sinusoidal force and monitored by a weakly
coupled strain-gauge transducer, the output of which
was fed into a two-phase lock-in detector. The outputs
of the two channels of the lock-in detector were propor-
tional to the X1 and X2 amplitudes of the mechanical
oscillator, and the signal amplitudes were plotted to pro-
duce the topmost plot in Fig. 10, which shows the exci-
tation of the mechanical oscillator in the X1X2 plane for
a series of five measurements, each one for a different
phase of excitation of the mechanical oscillator. The am-
plitude and phase of the electrical signal at the output of
the transducer were also monitored as a function of the
mechanical oscillator excitation phase. The other three
plots shown in the lower part of Fig. 10 display the out-
put of the transducer in the Q1Q2 plane. It was ob-
served that when f=+1, the upconverted electrical signal

FIG. 7. The reentrant cavity parametric transducer built by the
Moscow University group. The motion of a diaphragm-shaped
proof mass modulates the capacitive stub of a reentrant micro-
wave cavity. The cavity is excited by a weakly coupled loop,
and the signal in the cavity is monitored by a second weakly
coupled probe. Motion of the proof mass creates sidebands on
the cavity excitation that are monitored to infer the proof-mass
displacement.

FIG. 8. A method to couple the end-face motion of a cylindri-
cal gravitational wave antenna to a centrally located capacitor
was developed by the Moscow State University group. The
capacitor formed by the horns attached to the ends of the bar
could serve as a component in a rf circuit or a reentrant mi-
crowave cavity.
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is a phase preserved version of the mechanical
excitation—note, in the plot of Fig. 10 labeled f=+1, that
the output-signal phase tracks the mechanical drive
phase, i.e., it is a phase-preserving parametric process. In
the plot of the transducer output data labelled f=−1, the
sense of rotation of the points is reversed, demonstrating
the phase-conjugating parametric process. In the re-
maining data plot, taken with equal pump components,
f=0, the BAE case, information about only one me-
chanical oscillator phase is present at the transducer out-
put.
Continued work on a parametric transducer coupled

to a more massive mechanical oscillator—0.15 kg effec-
tive mass—suitable for a gravitational wave antenna
transducer was reported (Bocko, Johnson, and Iafolla,
1989; Bocko and Johnson, 1989). The main improve-
ments were to decrease the residual imbalance of the
transducer bridge circuit to 20 parts per million and to
increase the electromechanical coupling coefficient to
approximately b=2310−4. This value of the coupling co-
efficient was sufficient to see clearly the parametric load-
ing effect of the electrical transducer circuit on the me-
chanical resonator. For the phase-preserving parametric
upconvertor the effect of the transducer is to damp the
mechanical oscillator. Pumping the transducer at the
sum of the electrical and mechanical frequencies has the
opposite effect and gives rise to a parametric instability.
The demonstration of these effects is shown in Fig. 11.
An absolute sensitivity calibration of the transducer was
also performed. The equivalent displacement noise spec-

tral density (in m/AHz) was limited by the combination
of pump phase noise and residual bridge imbalance (see
Fig. 12) but the equivalent-displacement noise of the
transducer approached 10−15 m/AHz.
A complete demonstration of the forward- and

reverse-coupling characteristics of a BAE measurement
was subsequently performed by the Rochester group
(Marchese, Bocko, and Onofrio, 1992) using a room-
temperature version of a parametric transducer. Noise
was introduced in the experiment to simulate a noisy
amplifier, making possible a clear demonstration of the
back-action evasion capability of the transducer. The
mechanical oscillator used in the experiments was a tor-
sional resonator with a frequency of 1870 Hz at room
temperature, its effective mass was 0.2 Kg, and the mea-
sured mechanical quality factor at room temperature in
vacuum was 103. The electrical readout circuit consisted
of a lumped-element LC bridge circuit with the two elec-
trically resonant modes of the circuit having frequencies
near 50 kHz. The measured electrical quality factor for
the readout circuit was 13.

FIG. 9. A scheme to couple a parametric bridge-circuit trans-
ducer to the fundamental bending mode of a rectangular sap-
phire plate was developed by researchers at the University of
Rochester. When assembled the electrodes labeled a , b , and c ,
formed two capacitors operating in a push-pull configuration,
i.e., bending of the plate increased one capacitance while the
other capacitance was decreased. The forcing capacitor on the
other side of the sapphire plate was used to provide calibration
forces.

FIG. 10. Experimentally obtained phase-plane plots showing
the phase sensitivity of the parametric upconversion in the
BAE configuration. The plotted data at the top of the figure
shows the excitation of the mechanical oscillator in the X1X2
phase plane. The mechanical oscillator was monitored by send-
ing the signal from a weakly coupled auxiliary transducer to a
two-phase lock-in detector, and the phase of the mechanical
excitation force was changed to obtain the five data points
labeled A–E . During each of the five measurements the out-
put of the parametric transducer, the electrical mode, was simi-
larly monitored with a two-phase lock-in detector. The experi-
ments were repeated for three types of parametric conversion
corresponding to f=0,61. There is a unique mapping of the
mechanical-mode phase-space points onto the electrical mode
for each parametric process. In the case f=+1, the rotational
order of the points is preserved; it is a phase-preserving para-
metric conversion process, whereas for f=−1, the phase is con-
jugated, and for f=0, the superposition of the phase-preserving
and phase-conjugating processes, the conversion is phase sen-
sitive. The mechanical excitations labeled E and C yielded no
output signal in the transducer, i.e., the transducer was not
sensitive to the X2 phase of the mechanical oscillator (Bocko
and Johnson, 1984).
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The complete BAE measurement demonstration con-
sisted of two stages; the first was to show that one
quadrature phase of the mechanical oscillator was iso-
lated from the fluctuating back action of the transducer
and the second stage was to show that the transducer
responds only to the quiet mechanical phase. To per-
form the first part of the demonstration, the mechanical
oscillator noise was measured as a function of its phase.
The construction shown in Fig. 13(a) is an aid for pre-
dicting the noise for any mechanical oscillator phase f,
which is defined relative to the mechanical-oscillator
complex-amplitude components X1 and X2 . The projec-
tions of the major and minor axes of the ‘‘noise ellipse’’
on the phase direction f are added in quadrature be-
cause the noise in the X1 and X2 components is uncor-
related. The measured phase dependence of the noise in
the mechanical oscillator is displayed in Fig. 13(b). An
arbitrary vertical scale has been added to the back-
action noise versus mechanical oscillator phase plot to
aid comparisons of relative magnitudes.
In the other part of the demonstration, the response

of the electrical readout circuit to the mechanical oscil-
lator was measured. Expressing a sinusoidal force acting
on the mechanical oscillator as F(t)5F0cos(v1t+u)
where u is the phase of the force measured relative to
the readout pump field it was seen that, for certain u
values, the output of the readout circuit was zero, i.e.,
the readout contained no information concerning the
force acting on the mechanical resonator. In Fig. 13(b)
the measured relative conversion gain is shown simulta-

neously with the measured mechanical noise. The con-
version gain is scaled to fit on the same plot as the back-
action noise.
The key feature of a BAE measurement is displayed

in Fig. 13(b). That is, since one has the freedom to set
u=f, the phase of the mechanical resonator to which the
readout circuit responds is the back-action-immune
phase, i.e., the mechanical oscillator phase benefiting
from the reduced back-action force noise. Furthermore,
the readout contains no information about the noisy
phase of the mechanical resonator. In the specific ex-
ample above, taking u=90°, the X2 phase of the me-
chanical resonator is excited by the force. This is also the
phase of the mechanical resonator, which suffers the
maximum back-action noise. However, the output of the
transducer is proportional to cosu, zero for u=90°, so
there is no information about the noisy X2 phase (nor
the force) at the output of the transducer. On the other
hand, if u=0°, then the force excites the quiet X1 phase
of the mechanical resonator that is measured by the
readout. We also note the small 15° phase shift between
the conversion-gain maximum and noise minimum,
which we believe is due to a slight detuning of the fre-
quency of the mechanical oscillator drive from the oscil-
lator’s resonant frequency in the conversion-gain mea-
surements. This would yield a small phase shift of the
mechanical oscillator response from the phase of the ap-
plied driving force.
Multipump BAE techniques were also demonstrated

with this transducer. The transducer bridge circuit was
driven with two pumps, four pumps, or quasistrobo-
scopically with multiple pumps. The phase sensitivity of
the noise for two- and four-pump schemes was mea-
sured, and it was shown that the back-action noise
squeezing increased with the addition of more pumps.

FIG. 11. The inverse of the measured mechanical relaxation
time (1/t) of a mechanical oscillator coupled to a parametric
transducer is plotted as a function of the pump voltage. For the
phase-preserving parametric upconvertor, f=+1, an increase of
the electromechanical coupling strength, measured by the
pump voltage, decreases the mechanical relaxation time, i.e.,
the parametric interaction produces dynamical damping of the
mechanical oscillator. The phase-conjugating parametric up-
converter produces dynamical antidamping of the mechanical
oscillator, with the mechanical oscillator breaking into oscilla-
tion above some threshold coupling strength (Bocko, Johnson,
and Iafolla, 1989).

FIG. 12. The equivalent mechanical-oscillator displacement
noise versus the pump electric-field amplitude for different val-
ues of parametric transducer bridge-circuit imbalance. As the
bridge circuit approaches balance, the equivalent displacement
noise due to the combination of pump phase fluctuations and
imbalance is decreased (Bocko, Johnson, and Iafolla, 1989).
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The ratio of the maximum to minimum rms mechanical
noise is the experimentally determined squeezing factor.
For the two-pump case, the measured squeezing factor
was 3.8; for the four pump case the measured squeezing
factor was 5.1, in reasonable agreement with theory
(Marchese, Bocko, and Onofrio, 1992). The demonstra-
tion of a multipump quasistroboscopic BAE measure-
ment was also demonstrated by this group using the
same transducer.
The most recent experimental work in the Rochester

group has been the refinement of the parametric trans-
ducer for use on a resonant gravitational wave antenna.
This transducer consisted of a torsional mechanical os-
cillator coupled capacitively to a microstrip bridge cir-
cuit, shown in Fig. 14. The bridge circuit was fabricated
from niobium sheet stock 1 mm thick and was designed
to have the two electrically resonant bridge modes near
230 MHz (Fisher et al., 1995). A number of favorable
factors influenced the decision to operate the transducer
readout at 230 MHz. The first was the availability of
low-noise amplifiers at that frequency, the second, the
compact circuit design possible at the chosen frequency
lent itself to achieving high electrical quality factors, and
finally, there are very-low-noise frequency sources avail-
able to use as the pump.
In tests of the 230 MHz transducer in the non-BAE

operation mode, it was found that unloaded electrical
quality factors of 200 000 were attainable, and the read-
out bridge-circuit balance could be controlled to 6 parts
in 107. A low-noise GaAs FET (field-effect transistor)
amplifier with a noise number approximately 5400 times
the quantum limit was used to measure the output of the
bridge circuit. Large electromechanical coupling
strength was achieved by tuning the bridge-circuit pump
mode to the idler mode frequency and a dimensionless
coupling constant b of about 1% was achieved. The

transducer was tested in the non-BAE operation mode
to demonstrate its potential as a transducer for a gravi-
tational wave detector, and although the measured noise
was limited by the environmental vibration noise, the
transducer would allow the detection of displacements
on the order of 5310−19 m on a 2000 kg gravitational
wave antenna. In terms of displacement sensitivity, the
quantum limit is still more than a factor of 105 below the
present transducer sensitivity.

FIG. 13. Back action noise in a mechanical oscillator and phase-sensitive electromechanical conversion: (a) schematic represen-
tation of back-action noise measurements in a parametric transducer system; (b) measurements in which the noise of the me-
chanical oscillator and the electromechanical conversion gain of the parametric transducer are plotted as functions of the phase of
the mechanical oscillator. If the noise in the mechanical oscillator is squeezed, as shown in (a), the measured rms mechanical-
oscillator noise displays a sinusoidal dependence on the mechanical-oscillator phase. The electromechanical conversion gain is also
a function of the mechanical-oscillator phase, and there are certain phases of excitation of the mechanical oscillator for which no
signal appears at the transducer output. The essence of a BAE measurement is that the conversion gain is maximum for the phases
of the mechanical oscillator that display the minimum back-action noise (Marchese, Bocko, and Onofrio, 1992).

FIG. 14. A stripline bridge circuit operated at 230 MHz. The
three rectangular plates form capacitors with the surface of a
torsional (teeter-totter) resonator so that oscillation of the me-
chanical resonator modulates the two outer capacitors in a
push-pull fashion, while the central capacitor maintains a fixed
value. The inductive elements of the bridge are formed by
stripline covered by a dielectric clamp and surrounded by a
ground plane. The pump and resistive-balance controlling sig-
nals are introduced via edge-coupled striplines (Fisher et al.,
1995).
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C. CNR-Frascati

The group at the CNR in Frascati, Italy, began their
investigations of parametric transducers using low-
electrical-frequency prototypes (Fuligni and Iafolla,
1983; Bordoni et al., 1986). The mechanical resonator
used by them employed torsion springs to achieve a low
resonant frequency, 59 Hz, and served as the central
plate in a three-plate capacitor. The low mechanical fre-
quency was motivated by applications as a gravimeter or
a force sensor to search for the mechanical interaction of
neutrinos with matter (Bordoni et al., 1990). They also
found it essential to use a balanced-bridge configuration
for the readout circuit to reduce the output noise con-
tributed by the combination of pump fluctuations and
bridge-circuit imbalance. Provided that the two capaci-
tor plates coupled to the transducer mass have the same
area and that the gaps are the same, the pump noise
could be canceled at the output of the readout circuit.
This was demonstrated by their measurements of the
transducer output noise as a function of the imbalance
of the transducer bridge circuit.
The reverse-coupling behavior of the BAE scheme

was also demonstrated by injecting a high-level voltage-
noise source into the bridge circuit along with the two-
frequency pump represented by Eq. (3.23) with f=0.
This technique simulated the back-action noise of an
amplifier. The bridge circuit was driven by the two-
frequency pump plus noise with a variable bandwidth to
simulate the noise-filtering capability of the resonant
bridge readout circuit. The lower pump was at a fre-
quency of 20 KHz and the upper pump component was
at a frequency of 20.118 KHz. The mechanical oscillator
was monitored by a weakly interacting auxiliary trans-
ducer with its output sent to a lock-in detector with a
reference at the mechanical frequency. The output of
the lock-in detector yielded a direct measurement of
both the in-phase and quadrature components of the
mechanical oscillator. When a single-frequency pump
was used, injection of noise at the central electrical fre-
quency caused a back-action force on the oscillator with
no preferred direction in the X1X2 phase space. When
the two-frequency BAE pump was employed, the back-
action noise was squeezed by a factor of approximately
4, i.e., the noise in the quiet phase was one fourth of its
value for the single pump case. The imperfect cancella-
tion of the noise in the ‘‘quiet’’ mechanical oscillator
phase was due to the noise present at ve62vm , which
acts back on both of the mechanical phases. Despite this
drawback, the squeezing of the noise was demonstrated
by plotting a histogram of the signal at the output of the
lock-in by changing the phase of the local oscillator. The
noise distribution was shown to be a symmetric two-
dimensional Gaussian in the case of a conventional
parametric scheme, confirming the absence of contami-
nation from non-Gaussian noise sources, while in the
BAE mode of operation the two-dimensional Gaussian
was found to be asymmetric (Bordoni et al., 1986; Bocko
et al., 1986). This can also be viewed as the mechanical,
classical counterpart of the later introduced quantum to-

mography of optical states (Vogel and Risken, 1989) ex-
perimentally demonstrated by Smithey et al. (1993).
To overcome the limited back-action reduction capa-

bility of a low-Q electrical readout circuit, a multipump
configuration was first employed by Bordoni and Onof-
rio (1990). The pump excitation of the transducer circuit
was the sum of a set of phase-locked synthesizers; some
of the sources served as sinusoidally varying pumps and
others served as simulated noise sources by introducing
a random narrow-band frequency sweep centered
around a fixed frequency. Using this configuration, the
effect of multiple pumps on the back-action noise was
demonstrated, providing the first experimental demon-
stration that the multifrequency pumping technique re-
laxes the requirement on the electrical quality factor of
the readout circuit.

D. University of Rome ‘‘La Sapienza’’

The Rome gravitational wave group started to de-
velop QND/BAE schemes in 1986. Their efforts concen-
trated on developing a transducer to be used with one of
the gravitational wave antennae operating in Italy
(Rapagnani, 1982). The mechanical resonator in their
system was a center-clamped disk of 17.0 cm diameter
and 0.65 cm thickness, having an equivalent mass of 0.38
kg and a resonant frequency of 930 Hz (Barro et al.,
1988). The decay time of the mechanical mode was mea-
sured at 4.2 K to be 320 s, corresponding to a mechanical
quality factor of 927 000. The disk is the central plate in
a three-plate capacitor in which the two capacitances of
the assembled transducer each had a capacitance value
C=1780 pF and loss angle tan(d)<10−4 at 1 KHz (see
Fig. 15). The remainder of the electrical readout circuit
consisted of two other fixed-value capacitors and an in-
ductor to form the central arm of a bridge circuit, the
same configuration as in the Frascati experiments. The
central inductor was a superconducting Nb coil shielded
in a Pb container, and the measured inductance at T=4.2
K was L=1.7 mH. The measured electrical frequency of
the resonant bridge was 126 kHz and the electrical qual-
ity factor was 6300.
A bridge-circuit balancing mechanism used a piezo-

electric actuator that gave a displacement of 33 microns
for a dc voltage of 800 V. The actuator was arranged to
push on one of the outer capacitor plates in the trans-
ducer and the minimum value of the static imbalance
obtained at room temperature was (8.2060.08)310−7,
which corresponded to a variation of capacitance
DC=5.6310−3 pF, and a minimum imbalance of
(5.860.4)310−6 was achieved at 4.2 K.
Based upon noise measurements of the transducer

output, an effective burst-noise temperature of Teff=8 K
was determined, which was slightly lower than the noise
temperature of the amplifier used to monitor the bridge
output, Tn=14 K, implying that the product (v1/v2)(1/r)
was equal to 1.75, giving a value of r=2.9310−3. This
limit was attributed to the relatively high value of the
static imbalance and the limited electrical quality factor
of the transducer bridge circuit. With all other param-

785M. F. Bocko and R. Onofrio: Measurement of a weak classical force . . .

Rev. Mod. Phys., Vol. 68, No. 3, July 1996



eters held constant, if the imbalance were improved to
10−7, a value of r=1 would have been achieved, giving
Teff=71 mK. The conclusion of the early Rome experi-
ments was therefore that the sensitivity was most
strongly limited by the amplitude and phase noise of the
pump source and the minimum achievable bridge imbal-
ance.
In more recent experimental developments in Rome a

refined version of the transduction system has been de-
veloped with improvements in the suspension systems,
the shielding of the superconducting coil and the balanc-
ing system (Cinquegrana et al., 1993). A mechanical
quality factor of 2.8 million and an electrical quality fac-
tor of 6000 were achieved, but a vastly improved bridge
residual imbalance of 8310−7 was the main new feature.
Their measured noise temperature was limited to about
Teff=0.5 K, but the pump noise continued to be the lim-
iting factor in the sensitivity of their transducer. Finally,
the Rome group succeeded in observing the Brownian
motion of their transducer at 4.5 K (Majorana et al.,
1993). The noise of electrical origin was the same in ei-
ther transducer output phase, being limited by the phase
noise of the pump source and the bridge imbalance. The
Brownian noise appeared as a narrow spectral peak in

the signal-containing output phase and its magnitude
was in agreement with the predicted value within the
uncertainty of their calibration, as shown in Fig. 16. The
Fourier spectra of the two phases of the output signal
shows that the measurement was phase sensitive, with
bandwidth and amplitude in agreement with the theo-
retical predictions of the model developed by Cinque-
grana et al. (1993) for the signal due to the Brownian
motion (see Fig. 17). It is notable that this was the first
BAE transducer to reach the Brownian-motion limit
and to demonstrate the phase-sensitive forward-transfer
characteristics of a BAE measurement using the Brown-
ian motion as the signal.

E. Louisiana State University

The first demonstration of the reverse-coupling char-
acteristics of a BAE measurement was made by the
group at Louisiana State University (Spetz et al., 1984).
They used a transducer coupled to a low-mass mechani-
cal oscillator via the two-frequency BAE pumping
scheme to demonstrate phase-sensitive squeezing of the
back-action noise. The mechanical oscillator was a nio-
bium diaphragm with an effective mass of 2310−5 kg and
a frequency of 4.1 kHz. The transducer was a double
reentrant microwave cavity, similar in geometry to the
single reentrant cavity used by Braginsky (shown in Fig-
ure 7) with separate cavity resonances of 602 and 618
MHz and Q’s of 300 000 and 500 000 respectively
(Oelfke and Hamilton, 1978, 1983). Amplified thermal
noise and the two-frequency pump were injected into
one of the cavities and the diaphragm motion was ob-
served with the other cavity weakly pumped by a single
frequency. Although this readout cavity performed an
amplitude and phase measurement of the mechanical os-

FIG. 15. Exploded view of the differential capacitive trans-
ducer used by the Rome group (Barro et al., 1988; Cinque-
grana et al., 1993). A scaled version of this transducer, with a
resonant frequency at 1.8 KHz, has been implemented on the
cryogenic antenna at CNR, Frascati—see Sec. V.B for details.

FIG. 16. Frequency spectrum of the output of the transducer
shown in Fig. 15, showing the 4.5 K Brownian-noise peak and
the shape of the electrical resonance near 130 KHz (Cinque-
grana et al., 1993).
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cillator, the field strength in the readout cavity was very
weak and did not perturb the motion of the mechanical
resonator.
The maximum squeezing factor measured for the 4.1

kHz diaphragm mode was 4.060.5. Higher-frequency
modes of the transducer displayed higher squeezing fac-
tors: modes at 8.5 and 13.9 kHz showed squeezing fac-
tors of 6.360.7 and 1563, respectively. The results were
in general agreement with the theoretical prediction that
the squeezing factor should increase as the ratio of the
mechanical to electrical frequencies, but the observed
squeezing was approximately a factor of 2 below the
ideal value they predicted. This discrepancy was attrib-
uted to the large amount of noise injected into the mi-
crowave cavity to simulate the back action of a noisy
amplifier. It was necessary to inject a high noise level to
make the back-action force on the mechanical oscillator
larger than the influence of environmental vibrations,
and the injected noise created an additional phase-
insensitive back-action force, thus reducing the squeez-
ing factor.
More recently, the same group developed a paramet-

ric transducer composed of a niobium resonant dia-
phragm at 929 Hz and coupled through a superconduct-

ing bridge circuit to a two-stage metal-semiconductor
FET cryogenic amplifier (Aguiar et al., 1991). The
bridge circuit consisted of a three-plate capacitor with
lumped-element superconducting inductors and trans-
formers. A very high degree of bridge mode tuning and
balance control was achieved and the novel feature of
being able to tune the bridge idler and pump resonances
to a highly stable 5 MHz quartz oscillator serving as the
pump source allowed the researchers to achieve a high
electromechanical coupling factor, b=0.054, and a low
noise level of 4310−16 m/AHz. No attempt was made to
operate the transducer in the BAE pumping configura-
tion.

F. University of Western Australia, Perth

The gravitational radiation detector group at the Uni-
versity of Western Australia developed a 9.6 GHz
double reentrant cavity transducer that could be oper-
ated in a continuous back-action evasion mode (Blair,
1982). This transducer was similar in geometry to the
600 MHz reentrant cavity used by the LSU group, but
much smaller—0.8 cm diameter—to achieve the high
frequency. The advantage of the high frequency of the
UWA transducer was that it allowed them to achieve
very high values of the electromechanical coupling coef-
ficient b, approaching unity for their two-mode 1.5 ton
niobium antenna.
Other notable features of the UWA transducer were

the following. Although the single-cavity transducer is
an intrinsically unbalanced system, in contrast to the
lower frequency bridge-circuit transducers, a high-
precision carrier-suppression circuit external to the an-
tenna was employed, which gave a carrier suppression of
70 dB. This was equivalent to balancing the bridge to
approximately 3 parts in 104. The combination of this
degree of carrier suppression with the ultralow-noise
pump sources developed at UWA, with phase and
amplitude noise spectral densities of −160 dBc/Hz and
−180 dBc/Hz (dBc=decibels referenced to the carrier)
respectively, yielded a measured transducer noise-
equivalent displacement spectrum of 3310−17 m/AHz
and will allow operation of the UWA gravitational wave
antenna at a burst strain sensitivity below 10−19 (Tobar
and Blair, 1993, 1995). Another innovative technical
feature of the UWA parametric transducer system is
the microstrip patch antenna that is used to electrically
couple the transducer to the external electronics
(Ivanov, Turner, and Blair, 1993; Ivanov, Turner, Tobar,
and Blair, 1993). The noncontacting electrical connec-
tion makes it possible to operate the antenna without
any directly attached cables or wires that can transmit
vibrations and damp the antenna’s mechanical quality
factor. The high mechanical quality factor of the UWA
niobium antenna, 250 million at 4.2 K, is another no-
table feature. In principle the UWA parametric trans-
ducer will be capable of operation in a BAE mode.

FIG. 17. Spectra of the two quadrature phases, labeled X and
Y, of the parametric transducer output for a Brownian limited
back-action-evasion measurement. The amplitude and band-
width of the peak present in the Y-phase plot are compatible
with the Brownian noise of the transducer at a thermodynamic
temperature of (4.5+0.3) K (Majorana et al., 1993).
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G. IBM-Almaden

A related experiment that demonstrated squeezing of
the thermal Brownian noise in a mechanical oscillator
was conducted at the IBM Almaden Research Center
(Rugar and Grutter, 1991). Their mechanical oscillator
was a micromachined silicon cantilever, 500 mm long, 10
mm wide, and a few microns thick, with an effective
mass of 2.2310−11 kg. The spring constant of the canti-
lever was modulated at twice the cantilever’s natural fre-
quency of 33.57 kHz by forming a capacitor from a
nearby electrode and the surface of the cantilever. A
sinusoidal electric field, at 67.14 kHz, was then estab-
lished in the capacitor, effectively modulating the restor-
ing spring constant of the mechanical oscillator. In this
way they succeeded in building a degenerate mechanical
parametric amplifier capable of stable mechanical gain
up to 100. The gain of a degenerate parametric amplifier
is phase sensitive, defined by the phase of the pump, and
in quadrature to the high-gain phase there is a low-gain
phase with a theoretical gain of 1/2. They took advan-
tage of this feature of degenerate parametric amplifiers
to squeeze the mechanical Brownian noise of the canti-
lever, see Fig. 18. In one of the mechanical oscillator
phases the rms thermal vibration of the cantilever was
reduced by a factor of 2, while the noise in the other
phase was increased by the maximum gain factor.
The small mass of their micromachined oscillator,

combined with their sensitive optical-interferometer
readout, placed their experiment relatively close to the
quantum limit, falling short by a factor of about 1000.
However, the Brownian motion of their room-
temperature resonator was another factor of 1000 above
the transducer noise level.

The IBM degenerate parametric amplifier may be
used to improve the sensitivity for the detection of a
weak force acting on a mechanical oscillator similar to a
BAE measurement. However, the mechanical degener-
ate parametric amplifier differs from the BAE trans-
ducer in that the degenerate parametric amplifier is not
intended to function as the transducer, but rather as an
auxiliary means to squeeze the fluctuations that are in-
trinsic to the mechanical oscillator. In contrast, in the
BAE scheme, the back-acting force noise of the trans-
ducer on the mechanical oscillator is squeezed while at
the same time the transducer also provides a readout of
the state of the mechanical oscillator.
The IBM researchers suggested two ways in which the

mechanical degenerate parametric amplifier could im-
prove the performance of a system for detecting weak
forces. One possibility is to use the parametric amplifi-
cation as a form of impedance matching (Yurke, 1991).
In a situation in which the mechanical signals may be
lost in the noise of a sensor used to monitor the me-
chanical oscillator, the parametric amplifier could be
used to boost the mechanical signal to a level at which it
would be detectable. An alternative scheme would be to
use the noise deamplification capability of the paramet-
ric amplifier to prepare a mechanical oscillator in a
reduced-fluctuation initial state before interaction with a
weak force.

H. AT&T Bell Laboratories-Murray Hill

Another related experiment using micromechanical
resonators, performed at AT&T Bell Laboratories,
Murray Hill, showed how the amplifier limit can be
evaded by using nonlinear oscillators (Greywall et al.,
1994). A micromechanical resonator having significant
nonlinearities was driven into oscillation, and the ampli-
tude and phase of one of its modes were measured. The
authors used a micromachined rectangular silicon beam
of size 3600 mm3127 mm326 mm anchored at its ends,
with a thin film of gold evaporated onto one surface of
the beam to form a conductor with a resistance of 17 V.
The end-anchored beam displayed a significant cubic
nonlinearity due to the change of the beam length as a
function of the beam’s transverse displacement. The
beam was cooled down to 100 mK and the lowest reso-
nant mode at 15.994 KHz was measured to have a qual-
ity factor of 375 000. The beam was placed in a uniform
magnetic field in the plane containing the beam, perpen-
dicular to its long dimension, and the beam was me-
chanically excited by passing an alternating current
through the gold film. The amplitude of the beam mo-
tion was measured by monitoring the voltage induced
across the conducting film. The presence of the cubic
nonlinearity in the restoring force led to a distortion of
the resonance curve dependent on the drive level and it
was possible to find operating points where the slope of
the displacement versus frequency curve was infinite. At
these points, the phase versus frequency curve tangent
was also vertical and therefore the frequency was inde-
pendent of the phase of the drive. Thus the influence of

FIG. 18. The measured noise of a microfabricated cantilever-
beam mechanical parametric amplifier built by the IBM, Al-
maden group: (a), (b) when the parametric amplifier pump was
turned off the cantilever displayed phase-insensitive noise with
an rms value near 0.5 Å; (c), (d) when the pump was turned on
the noise was deamplified in the X2 phase to one-half of its
‘‘pump-off’’ value. The noise of the X1 phase increased by a
factor equal to the parametric gain, which could be as high as
100 in their experiment (Rugar and Grutter, 1991).
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the phase fluctuations of the driving voltage, which are
determined by the feedback amplifier that maintains the
resonator in oscillation, could be reduced.
By working at these critical bias points Greywall et al.

were able to suppress the phase diffusion of the driven
oscillator by 10 Db, making it possible to reach the re-
gime in which the long-term frequency stability of the
oscillator is determined by the noise associated with the
intrinsic loss of the resonator alone. This is of great in-
terest for metrological devices such as continuous-wave
frequency sources and precision clocks (Braginsky,
Caves, Thorne, 1977; Braginsky, 1988). This experiment
is the first example of a continuous back-action evasion
measurement of the phase of a resonator (Caves, 1989).
The last two experiments reported in this section

demonstrate the possible benefits of phase-sensitive
techniques for mechanical measurements in the realm of
microminiaturized mechanical structures where the in-
fluence of the measurement apparatus is most strongly
felt.
To close this section we refer the reader to Table I,

which summarizes the key physical parameters and the
experimentally obtained sensitivities for the different
parametric transducers discussed in this section. The last
column of the table is indicative of how far we have to
go in order to reach the quantum limit. To form this
column we have taken the reported displacement
equivalent-noise spectral densities and divided each by
the spectral density of the quantum noise (\/mvmech

2)1/2

for a mechanical resonator of the mass and frequency
used in the respective experiments.

V. APPLICATIONS TO HIGH-PRECISION EXPERIMENTS

In addition to the fundamental interest in reaching
and surpassing the standard quantum limit, there have
been a number of efforts in the last decade to apply the
general concepts of back-action evasion measurements
to high-precision experiments, in particular to meso-
scopic mechanics, gravitational wave detection, single-
electron and single-ion spectroscopy, and superconduct-
ing tunnel junction mixers. These efforts are reviewed
below to complement the previous section, which was
oriented more to a description of the laboratory activi-
ties aimed at testing the predictions of the measurement
models described in Sec. III. Due to the rapid develop-
ments in many areas, we expect (and hope) that the
present section will soon become outdated, although it
may maintain its value as an introduction to this expand-
ing subject area.

A. Quantum mechanics at a mesoscopic scale

The possibility of performing experiments to monitor
macroscopic objects at the quantum level of sensitivity
has been discussed since the beginning of quantum
theory, especially in the context of the debate over the
loss of realism when quantum theory is applied to the
macroscopic world (Schrödinger, 1935; Przibram, 1967;
Wheeler and Zurek, 1983) and the dynamics of the de-
coherence induced by the environment (Zurek, 1990).
Only in recent times, due to the development of micro-
fabrication technologies and advances in low-noise elec-

TABLE I. Summary of the performance for various parametric transducers. The second column gives the operating frequency of
the parametric transducer, the next column gives the mass of the mechanical oscillator that was monitored by the transducer,
followed by the mechanical oscillator’s resonant frequency and the back-action evasion figure of merit, v1t2 , which is a measure
of the ability of the transducer, if operated in the BAE mode, to isolate the mechanical oscillator from back-action noise. The next
column reports the measured displacement equivalent noise of the transducer and the last column, the transducer displacement
equivalent-noise spectral density divided by the quantum-noise spectral density (\/mvmech

2 )1/2 indicates how far from the quantum
limit each transducer performed.

Reference f (readout) Mass (kg)

Mechanical
resonant
frequency v1t2

Displacement
equivalent
noise

(Displacement equivalent
noise)/(Quantum noise)

Braginsky et al., 1985a 3 Ghz 0.05 40 kHz 0.53 6310−19 m/AHz 3.33103

Bocko and Johnson, 1984 4.2 MHz 4310−4 16.1 kHz 16 8310−16 m/AHz 1.63105

Bocko et al., 1989b 4.1 MHz 0.15 2.3 kHz 2.2 1310−15 m/AHz 5.53105

Fisher et al., 1995 230 Mhz 0.08 980 Hz 0.85 1.7310−15 m/AHz 2.93105

Barro et al., 1988b 126 kHz 0.38 930 Hz 47 4310−15 m/AHz 1.43106

Majorana et al., 1993c 130 kHz 0.31 928 Hz 43 1.7310−15 mAHz 5.43105

Spetz et al., 1984d 618 MHz 2310−5 4.1 kHz 4.0 not measured
Aguiar et al., 1991 5 MHz 0.26 929 Hz 0.41 4310−16 m/AHz 1.23105

Tobar and Blair, 1995 10 GHz 0.45 700 Hz 0.007 3310−17 m/AHz 8.63103

Rugar and Grutter, 1991e optical 2.2310−11 33.6 kHz 1310−14 m/AHz 9.93102

aDisplacement-equivalent noise measured at 8 kHz.
bDisplacement-equivalent noise inferred from the quoted noise temperature.
cBrownian-motion peak used as calibration to infer displacement equivalent noise.
dDemonstration of back-action force noise reduction, noise level and sensitivity not measured.
eNonparametric optical readout, Brownian noise of cantilever-beam oscillator is about 106 times the quantum-noise spectral
density.
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tronics and cryogenics, have these experiments become
feasible. Some of the most difficult to overcome con-
straints imposed on the design of gravitational wave de-
tectors are relaxed for experiments dedicated to the
study of repeated quantum measurements on a macro-
scopic mechanical oscillator (Bocko and Johnson, 1986;
Onofrio 1990). Specifically, in such dedicated experi-
ments, a much smaller mass than that required in a
gravitational wave antenna transducer may be used, thus
increasing the amplitude of the quantum zero-point dis-
placements. Additionally, it is easier to reach and main-
tain very low temperatures for a small mass than for a
multiton gravitational wave antenna. A small resonant
mass also implies naturally large mechanical frequen-
cies, which makes it easier to isolate the experiment
from environmental vibrations.
The drawback is that capacitive transducer schemes

are difficult to implement on small-mass oscillators be-
cause of the small available surface area and corre-
sponding small capacitance. A small capacitance makes
it difficult to obtain substantial electromechanical cou-
pling strength, and impedance-matching available ampli-
fiers to low-capacitance/high-impedance sources adds
complications. To overcome these problems an alterna-
tive transduction scheme was proposed, the tunneling
transducer (Niksch and Binnig, 1988), and its application
to gravitational wave-detection was discussed (Bordoni
et al., 1990). The tunneling transducer is the ultimate,
quantum version of a variable-resistance transducer.
Electron tunneling current between a tip and a surface
held a few angstroms distant is very sensitive to modu-
lations of the distance; the distance scale over which the
current modulation is appreciable depends upon the
quantum features of the system. A tunneling transducer
may be modeled as a resistor in which the resistance is
exponentially dependent upon the separation of the
probe tip from the surface of the object being moni-
tored. If the separation of the tip from the object is
d2x(t), in which d is the nominal gap and x(t) is the
small time-dependent part of the gap, the probe resis-
tance can be expressed as R5R0e

2kx, where R0 is typi-
cally 104–108 V for a nominal separation d of several
angstroms, and k is typically 1010 m−1. It has been shown
(Bocko, Stephenson, and Koch, 1988) that this class of
transducers displays reduced back action of the amplifier
when the stray capacitance of the tunneling probe is
small enough. This allows the effect of the amplifier to
be ignored, and from a practical point of view it implies
that amplifiers considerably above the quantum limit
could be used in quantum-noise experiments. A detailed
comparison of the sensitivity of a tunneling transducer
to a capacitive transducer, with particular attention to
the dependence upon the test mass, has been carried out
(Stephenson, Bocko, and Koch, 1989; Bocko, 1990). As
shown in Fig. 19, when the mass of the resonator is
small, the noise number for a tunneling transducer is far
below that for a capacitive transducer.
The question then arises: ‘‘how is the standard quan-

tum limit enforced in the tunneling transducer?’’ The
answer is that the tunneling electrons contribute two in-

dependent noise sources, analogous to the voltage- and
current-noise sources in an amplifier, which together en-
force the standard quantum limit. First, the statistical
nature of the tunneling process is responsible for fluc-
tuations of the tunneling current, the so-called shot
noise. Shot noise is indistinguishable from the current
fluctuations that would result from fluctuations in the
gap of the tunneling probe; therefore the shot noise im-
plies an uncertainty in the inferred position of the test
mass. Furthermore, the momentum imparted to the test
mass by each electron as it is transferred between the
test mass and the tunneling probe is a fluctuating quan-
tity, thereby giving rise to uncertainty in the momentum
of the test mass. Even if the electrons were being trans-
ferred from the test mass to the tunneling probe at per-
fectly regular intervals of time, i.e., no shot noise, the
momentum of each electron is uncertain, leading to an
uncertainty of the net momentum transferred to the test
mass. The tunneling probe resembles a Michelson inter-
ferometer, where both the shot-noise fluctuations of the
photon flux and the fluctuations in the momentum im-
parted by each photon to the mirror enforce the uncer-
tainty relations for the momentum and position of the
mirror. The standard quantum limit for this class of
transducers was explored by Mitrofanov and Yanikov
(1989). More detailed calculations have been done in a
second-quantization approach (Yurke and Kochansky,
1990) and in a first-quantization approach (Presilla, On-

FIG. 19. The equivalent noise number vs the mass of a me-
chanical oscillator monitored by a conventional, non-BAE, ca-
pacitive transducer and by the electron-tunneling transducer.
The capacitive transducer cannot surpass the limit imposed by
the amplifier, assumed to be a conventional room-temperature
field-effect transistor, whereas using the same amplifier, the
near absence of back action by the tunneling transducer allows
it to exceed the amplifier limit by very large factors for small
proof masses. The assumed parameters are a mechanical reso-
nant frequency of 1 kHz, an amplifier noise number NA of
1.53106, and the tunneling current Itun is 100 nA. The values of
the temperature T and the mechanical quality factor Q1 were
chosen to yield a value of 104 for the parameter
(kBT/\v1)(1/Q1) (Stephenson, Bocko, and Koch, 1989).
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ofrio, and Bocko, 1992). In the latter paper practical
configurations that allow one to reach the quantum limit
were also presented.
The first fundamental obstacle to observing quantum

noise with the tunneling transducer is the thermal noise
of the mechanical resonator, so we compare the
Brownian-noise spectral density of the test mass to the
effective noise spectral density due to the quantum mea-
surement process. Dominance by the quantum noise will
be assured, provided that the following condition is sat-
isfied:

1026A

I0

m

10210 kg
u

10 mK
f0

105 Hz
107

Q
,1. (5.1)

We assume that k=1010 m−1; the mass, frequency and Q
used in Eq. (5.1) are appropriate to micromachined sili-
con resonators at low temperatures. A mechanical qual-
ity factor of 600 000 was obtained at room temperature
in a micromachined silicon torsional resonator of mass
7310−6 kg (Buser and De Rooij, 1990) and a more mas-
sive resonator of mass 10−3 kg had a similar Q at room
temperature and a Q approaching 108 at 10 mK (Kamin-
sky, 1985; Kleiman et al., 1985). Further progress can be
expected because systematic studies of the acoustic
losses of silicon resonators at cryogenic temperatures in-
dicate that the intrinsic quality factors of silicon are over
one billion (Lam, 1979; Braginsky, Mitrofanov, and
Panov, 1981; Wajid, 1984). It therefore seems possible to
achieve a quality factor of 107 with a 10−10 kg mechanical
resonator at a temperature T=10 mK. Microresonators
with characteristics close to those required to test quan-
tum mechanics on a mesoscopic scale are routinely used
in atomic force microscopy (Akamine, Barrett, and
Quate, 1990) and low-temperature scanning tunneling
microscopes have been demonstrated (Smith and Bin-
nig, 1986; Lang, Dovek, and Quate, 1989).
Modeling of the electron-barrier interaction in a tun-

neling transducer has shown that even when only a por-
tion of the tunneling electron energy is imparted to the
test mass, the standard quantum limit for the test mass
may be approached, even for a small electron mean-free
path (Onofrio and Presilla, 1992). More recently it was
proposed that a resonant tunneling barrier be employed
in a tunnel-probe transducer (Onofrio and Presilla,
1993). A resonant tunneling barrier could be fabricated
by depositing a thin-film quantum well on the surface of
the test mass. For a given probe-sample bias voltage, the
resonant tunneling barrier has a greater tunneling cur-
rent compared to the nonresonant barrier, thereby in-
creasing the electromechanical coupling of the tunneling
transducer to the test mass. To reach the transducer
noise limit it is necessary for the transducer momentum-
transfer noise to dominate the test-mass Brownian
noise; the increased tunneling current in the resonant-
barrier configuration allows one to achieve this condi-
tion at a higher temperature than the nonresonant case.
By using resonant-tunnel barriers, experiments to reach
the quantum limit could be performed at 4.2 K provided
the other parameter values in Eq. (5.1) are maintained.

In Fig. 20(a) the schematic of a double resonant bar-
rier is shown. The optimal displacement sensitivity ver-
sus the energy of the tunneling electrons is shown in Fig.
20(b) for the resonant barrier, the nonresonant barrier
for zero temperature and for a finite temperature. It is
evident that, in the case of the resonant tunneling con-
figuration, the sensitivity on the tunneling resonance ex-
ceeds the nonresonant tunneling transducer by almost
two orders of magnitude. Experiments conducted with
fixed resonant barriers have shown that the shot noise is
reduced in comparison to the expected theoretical value:
this has been explained as being due to incoherent tun-
neling with the so-called sequential model (Li, Tsui,
et al., 1990; Li, Zaslasky, et al., 1990; van der Roer et al.;
1991, Liu et al., 1995). It is an open question how to
evade the standard quantum limit in this class of trans-
ducers. The most practical way could be to use strobo-
scopic techniques by exploiting the ease of charging and
discharging the small dynamical capacitance of the tun-
neling gap, measured in the range of 10−17 F (van Ben-
tum et al., 1988).
The Rome group has developed an independent strat-

egy for reaching and surpassing the standard quantum
limit using improved versions of their parametric bridge-
circuit transducer (Cinquegrana et al., 1995). Since they
consider a relatively large mass for the mechanical reso-
nator, a capacitive transducer is a practical alternative to
a tunneling-based scheme, thus without the gain of the
tunneling transducer it will be crucial to employ a nearly
quantum-limited amplifier following the transducer. The
primary requirement to perform a QND measurement is
that the amplifier noise, NA , be sufficiently close to the
quantum limit that the value of the BAE noise-
reduction factor r achievable by the transducer can al-
low the system to surpass the quantum limit, i.e.,
NA/r<1. At frequencies below 1 MHz the lowest-noise
amplifier available is a SQUID. Intrinsic SQUID noise
very close to the quantum limit has been demonstrated
(Awschalom, 1988) and the noise of practical SQUID
amplifiers that are optimized for gravitational wave an-
tennae are at present about a factor of 100 above the
quantum limit. SQUIDs have the further advantage that
they have extremely low power dissipation and so would
provide nearly no heat load to the experiment’s refrig-
eration system. At frequencies above several MHz there
is no reason in principle why a SQUID could not be
operated, though such wide-bandwidth SQUIDs do not
exist at present. However, very-low-noise transistor am-
plifiers have been demonstrated at frequencies of sev-
eral MHz up to 10 or 20 GHz. Below 1 GHz, the best
transistor amplifiers operate with noise numbers of sev-
eral hundred times the quantum limit, but from 1–10
GHz it is possible to obtain amplifiers with noise num-
bers of 10 to 20, which make the prospect of a QND
measurement plausible.
The analysis of the Rome group shows that the trans-

ducer developed so far and described in Sec. IV, if
cooled down to 1.5 K and equipped with a low-noise
SQUID amplifier, can reach a burst noise temperature
of 4.4 microkelvin, corresponding to a minimum number
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of one hundred detectable phonons with a signal-to-
noise ratio of unity. If the same transducer is cooled
down to a temperature of 8 mK, they estimate an effec-
tive noise temperature of about 20 nK, corresponding to

about one-half a phonon. The model used to evaluate
such figures is based upon classical equations of motion
(Cinquegrana et al., 1993), and therefore the results ob-
tained in the quantum limit should be taken only as a
guide.

B. The first back-action-evading
gravitational wave antenna

A joint effort of the groups at the University of Rome
and at the CNR in Frascati resulted in the first imple-
mentation of a back-action evasion scheme on a cryo-
genic gravitational wave bar antenna coupled to a reso-
nant transducer (Bonifazi et al., 1996). The antenna used
was the 270 Kg aluminum alloy 5056 cryogenic bar lo-
cated at the CNR in Frascati-Altair—operating since
1978 (Giovanardi, 1981) and recently upgraded for long-
term runs (Bassan et al., 1990; Bonifazi and Visco, 1993).
A resonant transducer similar to the one described in
Sec. IV.D was designed to have its frequency at the first
longitudinal mode of the bar. The measured frequencies
of the two normal modes of the coupled system were
equal to n−=1783.845 Hz and n+=1826.079 Hz at 4.2 K,
and the mass ratio was m=5.7310−4. Both the normal
modes showed mechanical quality factors of 33106. A
push-pull capacitive coupling scheme to the transducer
was part of a capacitive bridge circuit in which two other
variable capacitors were present, one for coarse-range
(0–120 pF) and one for fine-range (0–20 pF) balancing of
the bridge circuit at 4.2 K. Two superconducting nio-
bium transformers were used to decouple the capaci-
tance bridge from the pumps and the output amplifier.
The transduced signal was amplified and processed
through a conventional FET amplifier and a lock-in am-
plifier.
In a previous analysis, Cinquegrana et al. (1994) con-

sidered a back-action-evading measurement for a two-
mechanical-mode system with normal-mode angular fre-
quencies at v+ and v− . Their conclusion was that, by
supplying a parametric pump excitation of the form

V~ t !5V0~cosv2t cosv1t1cosv2t cosv2t !, (5.2)

one may perform a back-action evasion measurement
simultaneously on each of the two antenna normal
modes. Measurements were carried out both with the
usual single-mode BAE pumping and in the double-
mode configuration, described by Eq. (5.2), using four
pumps at the sum and the difference of the electrical
and the two normal mode frequencies. The minimum
bridge imbalance was obtained at an electrical frequency
of 210 kHz, but it was quite large—2310−4; consequently
the sensitivity of the antenna for reasonable values of
the pump voltage used in the tests (V0 was in the 10 V
range) was dominated by the pump amplitude and phase
noise. Even with this limitation they were able to test
the forward transducer coupling and the noise behavior
in both the BAE configurations. In the pumping mode
of Eq. (5.2), a continuous run of about two hours re-
sulted in the power spectra for the lock-in integrated
data shown in Fig. 21. On the x spectrum two mechani-

FIG. 20. The resonant electron-tunneling transducer: (a) reso-
nant tunneling barrier and its corresponding potential-energy
diagram. A second tunneling barrier, indicated by the textured
region, is fabricated on the surface of the test mass. The bar-
rier heights for the vacuum-metal and barrier-metal interfaces
are assumed to be V0 and V1, respectively. (b) The maximum
achievable displacement sensitivity (in units of the standard
quantum limit) vs the energy of the tunneling electrons for
resonant (solid line) and nonresonant (dashed-dotted line)
barriers for a temperature u of zero and for a finite tempera-
ture, where Q is the mechanical quality factor of the mi-
croresonator. At finite temperatures the tunneling current is
greatly enhanced at the resonant energy of the tunneling bar-
rier, and the optimally achievable noise is reduced. Of course,
at zero temperature both the resonant and the nonresonant
tunneling transducers are quantum limited. The dashed line is
relative to the case of sequential tunneling with a damping
factor of the wave function—proportional to the inelastic pho-
non scattering along the barrier—of 0.95 (instead of 1 for the
coherent tunneling of the solid line), which slightly diminishes
the gain in the resonant configuration. Calculations have been
made for microresonators with masses of the order of 10−10 kg
and other parameters close to those in Eq. (5.1) (Onofrio and
Presilla, 1993).
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cal peaks shifted by 11 mHz appear due to a small dif-
ference in the frequency setting of the pumps, while the
spectrum of the y component is depressed with respect
to the former, around zero frequency, by two orders of
magnitude. The best balance of the transducer bridge
circuit operated separate from the antenna was mea-
sured to be 2310−6; the difference from the best
achieved balance of the transducer working with the an-
tenna was attributed to residual resistive imbalance. If
this imbalance were achieved for the transducer working
on the antenna and by employing commercially avail-
able low-noise synthesizers as pump sources and low-
noise FET amplifiers to read out the bridge signal, the
burst noise temperature of Altair could be improved to
100 mK. The tests on Altair are encouraging for the
implementation of back-action evasion transduction
schemes on resonant gravitational wave antennae and
give experimental support to the sensitivity analysis dis-
cussed in Cinquegrana et al. (1994). With readily avail-
able commercial technologies it should be possible to
operate the Rome 2 K antenna Explorer (Astone et al.,
1993) at a burst noise temperature below 100 mK, and
that the 100 mK antenna Nautilus (Astone et al., 1991)
should be able to surpass 10 mK in noise temperature.
The predicted performance levels will require bridge-
circuit imbalance of the order of one part in 107 and
pump phase noise of −165 dBc/AHz—these are, how-
ever, within reach.

C. Single-electron and single-ion spectroscopy

Quantum nondemolition concepts also have been ap-
plied to spectroscopy of trapped electrons and ions, both
in theoretical proposals and in experiments, with the aim
of performing quantum measurements on microscopic
single particles and improving the sensitivity in the cases
where the results are limited by the measurement appa-
ratus. In the first approximation, the axial motion of an
electron or an ion in a Penning trap is harmonic, the
nonlinearities arising from the magnetic fields used to

confine the transverse motion of the particle or by the
relativistic corrections to the particle mass (for a review,
see Brown and Gabrielse, 1986).
Back-action evasion techniques were suggested as a

means to control the bistability of the cyclotron motion
of an electron in a Penning trap, specifically by using a
phase-sensitive detection scheme proposed by Bagini,
Lerner, and Tombesi (1992), and by Lerner and Tomb-
esi (1993). Taking the nonlinearities into account, the
steady-state solution of a trapped particle’s cyclotron
motion branches into two regions, which can be experi-
mentally accessed by changing the relative phase of the
coupling to the macroscopic measurement device and
the cyclotron resonance. The hysteresis curve of the
bistable cyclotron motion thereby may be modified by
varying the quantum properties of the measuring appa-
ratus. In a further analysis, Marzoli and Tombesi (1993)
proposed quantum nondemolition measurements of the
cyclotron energy through the relativistic coupling to the
axial motion of the electron in the Penning trap.
Concrete ways to perform phase-sensitive measure-

ments on trapped ions have been studied (DiFilippo
et al., 1992). Amplitude squeezing can be obtained, as in
the Almaden experiment described in the previous sec-
tion, by driving the motion of the ion at twice its axial
frequency. Due to the presence of controllable anhar-
monicities however, it is also possible to exploit the
amplitude-dependent dephasing without driving oscilla-
tions. The expected reduction of the thermal uncertainty
in the relativistic frequency shift in single-ion spectros-
copy is about a factor of 5. An experiment has been
performed by using a single Ne+ ion in a Penning trap
(Natarajan, DiFilippo, and Pritchard, 1995). The ther-
mal motion of the ion in the axial mode was squeezed by
modulating the ion-trapping potential at twice the axial
frequency. Before squeezing, the rms thermal motion of
the ion was about 100 mm at 4.2 K and after squeezing
the quiet phase was reduced to about 15 mm rms motion.
The squeezed axial excitation was read out in the follow-
ing way. First, the squeezed noise was transferred to the
ion cyclotron motion by applying an electromagnetic
pulse that coupled the two modes, then the cyclotron
mode was provided a further excitation which could be
varied in phase angle with respect to the phase of the
squeezed noise. The cyclotron motion energy was then
read out by measuring the frequency of the axial mode.
Repeating this experiment a large number of times for
each phase value allowed the experimenters to deter-
mine the variance in axial frequency as a function of the
phase of the parametric squeezing excitation pulse. They
observed a noise reduction of about 6 dB in the quiet
phase of the oscillator, as shown in Fig. 22. Although the
experiment was performed in the classical limit, it was
pointed out that it may be possible to squeeze quantum
noise by applying their technique to laser-cooled ions
thereby possibly reducing the noise of spectroscopic
measurement.
A spectroscopic application in which the pure quan-

tum noise should instead be reduced below the standard
quantum limit in ensembles of two-level or spin-1/2 sys-

FIG. 21. Power spectra of the two quadrature phases of the
Altair BAE gravitational wave antenna (Bonifazi et al., 1996).
The two mechanical modes are labeled n− and n+ .
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tems has been discussed by Wineland et al. (1992). The
preparation of correlated squeezed states of N two-level
atoms could allow an increase of the signal-to-noise ra-
tio in state population measurements by a factor ap-
proximately equal to N1/2.

D. Superconducting tunnel junctions

QND measurements have been applied to nearly
quantum-limited superconducting tunnel junctions in
the attempt to circumvent the quantum noise in purely
electrical systems. Josephson junctions have very low
dissipation and also present a strong quadratic depen-
dence of their effective inductance upon the current.
Thus they can be exploited, as suggested by Braginsky
and Viatchanin (1983), to measure energy through the
Unruh-Braginsky interaction Hamiltonian [Eq. (2.25)].
This proposal was not pursued further: instead, the
back-action evasion scheme proposed by Caves et al.
(1980) was used in rf SQUIDs (Bordoni et al., 1985) and
in superconducting tunnel junction mixers (Bocko et al.,
1991).
In the first experiment the SQUID was coupled to two

resonant circuits, an input and an output one, tuned to 2
MHz and 23.4 MHz respectively (with quality factors of
2000 and 200). Parametric upconversion was obtained
by providing a pump to the Josephson junction via a
third coil through which a superposition of the sum and
the difference of the other two frequencies was sent.
The phase sensitivity of the scheme was experimentally
shown, but noise measurements to show the expected
reduction of the back action were not possible due to
the overwhelming pump noise relative to the intrinsi-
cally low SQUID noise.
In other experiments, a superconducting tunnel junc-

tion mixer was simultaneously pumped at the sum and

difference of a signal input frequency and the lower out-
put frequency, called the RF and the IF in keeping with
mixer convention, to attempt to achieve phase-sensitive
response and reduced noise in one of the mixer phases
(Bocko, Wengler, and Zhang, 1989; Wengler and Bocko,
1989).
Experiments on a 65.5 GHz microwave cavity coupled

to a superconducting tunnel junction mixer pumped by
two coherent local oscillators at frequencies of 64 and 67
GHz demonstrated the expected phase-sensitive re-
sponse of the mixer to the cavity mode (Bocko et al.,
1991). A reduction of the mixer noise was not demon-
strated however, due to excess shot noise from the leak-
age current of the tunnel junctions available for these
experiments. However, simulations suggested that for
ideal tunnel junctions, with very low subgap current, a
modest improvement over the mixer’s quantum-limited
noise temperature should be possible (Zhang et al.,
1989).
Finally, analogous to the mechanical parametric am-

plifier, amplification and deamplification of thermal
noise has been observed with a Josephson parametric
amplifier (Yurke et al., 1988, 1989). By varying the rela-
tive phase between the amplifier’s local oscillator and
the input signal, the phase dependence of the amplifier
gain was measured, observing parametric deamplifica-
tion of the signal. The excess noise of the amplifier was
measured to be 0.28 K referred to the input, smaller
than the vacuum fluctuation level equal to 0.47 K. Thus
deamplification of the quiet phase to a sub-quantum-
limit noise temperature was achieved.

VI. CONCLUSIONS

In this review, we have summarized the results ob-
tained from experiments in the last two decades to un-
derstand whether the gedanken experiments on the un-
certainty principle discussed by Heisenberg at the
beginning of quantum theory will be practical with cur-
rently available or near-future technology. Models to
guide the design of concrete experimental configurations
for monitoring macroscopic harmonic oscillators have
been discussed in the classical limit. It is noteworthy that
quantum nondemolition strategies also have an imprint
in the classical limit, an illustration of the correspon-
dence principle, by allowing one to evade the amplifier
noise limit in measurements well above quantum-limited
sensitivity. This result also has been shown to appear
without any reference to quantum theory but rather as
an extension of well-known parametric processes. Fur-
thermore, we have reviewed the first generation of elec-
tromechanical QND experiments.
Measurements of displacements of macroscopic me-

chanical oscillators are still far from reaching the quan-
tum regime, in contrast to the recent progress in nonlin-
ear optics where production and manipulation of
nonclassical photon states is becoming a routine activity
in many laboratories. It is a formidable experimental
challenge to reach the quantum limit in the low-
frequency mechanical experiments, due to the effect of

FIG. 22. Variance plot of the axial frequency noise versus the
relative phase of a pulse used to squeeze one quadrature com-
ponent of the axial motion of a trapped Ne ion. The maximum
noise reduction is 6 dB, obtained for a phase difference of 90°
(Natarajan, DiFilippo, and Pritchard, 1995).
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the environment, and other sources of noise such as the
fluctuations present in the pump oscillators used to
modulate the interaction of the mechanical oscillator
with the electrical readout system. However, continuing
experimental efforts in these areas will reward research-
ers with the opportunity to reach a number of other
ambitious experimental goals. One such goal is the pro-
duction of nonclassical states of single macroscopic de-
grees of freedom. The creation of nonclassical states in
macroscopic systems will demand a reconciliation of the
predictions of quantum mechanics for individual trials of
an experiment with the results predicted by semiclassical
theories. Another experiment of this sort will address
the interplay between quantum and classical fluctuations
in open quantum systems by studying the decay of non-
classical states through decoherence induced by the en-
vironment (Zurek, 1990; Zurek, Habib, and Paz, 1993).
Both of these issues have been studied in the context of
rf SQUIDs (Leggett and Garg, 1985; Tesche, 1990) and
cavity QED (Brune et al., 1990, 1992; Haroche, 1992). In
the context of measurements on mechanical oscillators,
the same issues appear simultaneously in a relatively
simply modeled system. This apparent simplicity of the
model itself gives rise to some fundamental questions. A
macroscopic object is composed of an enormous number
of microscopic degrees of freedom, each one well de-
scribed by quantum-mechanical laws, but is the quantum
behavior of macroscopic degrees of freedom completely
deducible from the dynamics of the microscopic con-
stituents? If not, what is the kinematic origin for the
degree of macroscopic quantum complexity one must in-
troduce? Some of these issues will also be studied in a
near future through Bose-Einstein condensates of
atomic clouds recently obtained in various laboratories
(Anderson et al., 1995; Bradley et al., 1995; Davis et al.,
1995), and quantum measurements on macroscopic de-
grees of freedom could complement these investigations.
In addition to the fundamental issues, work on back-

action evasion measurements is yielding improvements
in the sensitivity of measurement apparatuses for several
high-precision physics experiments. Gravitational wave
antennae are the most mature among the applications of
these principles—indeed, the effort to improve their
sensitivity provided the motivation for QND measure-
ments. Gravitational wave astronomy requires measure-
ments of perturbations of the space-time metric of the
order of 10−21, requiring a similar sensitivity for mea-
surements of the relative displacement of the macro-
scopic objects comprising a gravitational wave antenna.
The De Broglie wavelength associated with a macro-
scopic gravitational wave antenna is the same magni-
tude, so unless antennae masses are scaled up by a factor
of 102 or more, which is highly unlikely, every sensitive
gravitational wave bar detector will face the standard
quantum limit as it approaches the interesting range of
sensitivity. Back-action evasion measurement tech-
niques offer a viable road to overcome this limit. The
impact of back-action evasion measurements in high-
precision spectroscopic measurements and other
quantum-limited devices such as SQUID’s is still in its

infancy: however, besides stimulating theoretical pro-
posals we have described a few experiments that are
moving in these directions.
Finally, we briefly mention the importance of the

quantum nondemolition concepts in quantum estimation
theory (Helstrom, 1976). From this point of view quan-
tum nondemolition measurements provide a way to
achieve optimal information transfer, i.e., one in which
the detection probability is maximized for a fixed false-
alarm probability (Hollenhorst, 1979; Braginsky and
Khalili, 1983; for entropic considerations see also Vour-
das, 1990). The connection of this aspect of QND mea-
surements with quantum communication theory (Beken-
stein and Schiffer, 1990; Caves and Drummond, 1994)
and quantum-mechanical computers (Feynman, 1986)
remains an open question.
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versità di Roma ‘‘La Sapienza’’ Preprint No. 1032, March
1994.
Cinquegrana, C., E. Majorana, P. Rapagnani, and F. Ricci,
1993, Phys. Rev. D 48, 448.
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