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Current technology is beginning to allow us to manipulate rather than just observe individual quantum
phenomena. This opens up the possibility of exploiting quantum effects to perform computations
beyond the scope of any classical computer. Recently Peter Shor discovered an efficient algorithm for
factoring whole numbers, which uses characteristically quantum effects. The algorithm illustrates the
potential power of quantum computation, as there is no known efficient classical method for solving
this problem. The authors give an exposition of Shor’s algorithm together with an introduction to
quantum computation and complexity theory. They discuss experiments that may contribute to its
practical implementation. [S0034-6861(96)00303-0]
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I. INTRODUCTION

The concepts of information and computation can be
properly formulated only in the context of a physical
theory—information is stored, transmitted, and pro-
cessed always by physical means. When quantum effects
become important, for example, at the level of single
atoms and photons, the existing, purely abstract, classi-
cal theory of computation becomes fundamentally inad-
equate. Entirely new modes of computation and infor-
mation processing become possible. Phenomena such as
quantum interference and quantum entanglement can
be exploited for computations. Quantum computers can
accept input states that represent a coherent superposi-
tion of many different possible inputs and subsequently
evolve them into a corresponding superposition of out-
puts. Computation, i.e., a sequence of unitary transfor-
mations, simultaneously affects each element of the su-

perposition, generating a massive parallel data
processing, albeit within one piece of quantum hard-
ware. Consequently quantum computers can efficiently
solve some problems that are believed to be intractable
on any classical computer. One problem of this type is
factorization. In the following we describe Shor’s quan-
tum algorithm for factorizing numbers and use it to il-
lustrate both the potential power of quantum computa-
tion and the difficulties involved in the experimental
realizations.
In Sec. II we introduce the Turing-machine model for

classical computation and describe its quantum generali-
zation. The notion of efficient computation, which un-
derlies the possible benefits of quantum computation, is
explained in Sec. III. In Sec. IV we describe an alterna-
tive model of computation—quantum networks built out
of quantum logic gates. This is particularly significant
since elementary quantum logic gates are within the
scope of currently proposed experimental realizations.
Section V introduces the quantum discrete Fourier
transform and its implementation as a quantum net-
work. This transform is a fundamental ingredient in
Shor’s algorithm. Further mathematical preliminaries
are described in Sec. VI. The algorithm itself is set out in
Sec. VII. The remaining sections discuss issues related to
experimental implementations of quantum computation.
We describe the destabilizing effects of environmental
interaction, which is a major experimental (and theoreti-
cal) obstacle. Finally we outline various proposed ex-
perimental realizations of quantum logic gates, including
cavity quantum electrodynamics, quantum dot arrays,
and the selective excitation of trapped ions.
At the present time it is not clear whether it will be

practical to build physical devices that can perform co-
herent quantum computations. This notwithstanding,
the theoretical study of quantum physics from the point
of view of computational complexity may at least be ex-
pected to shed new light on the foundations of quantum
theory. The theory of computational complexity will
also need to be modified to account for the new quan-
tum modes of computation, and indeed the study of the
optimal use of general physical resources in the process
of computation may eventually become a branch of
physics itself. On the experimental side the current chal-
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lenge is not to build a full quantum computer right away,
but rather to move from the experiments in which we
merely observe quantum interference and entanglement
to experiments in which we can control these quantum
phenomena.

II. COMPUTATION—BASIC IDEAS

Computation may be defined as the systematic cre-
ation of symbols (the ‘‘output’’) which, under a given
method of interpretation, have abstract properties that
were specified in other symbols (the ‘‘input’’). ‘‘Sym-
bols’’ here are physical objects, and computation is a
physical process performed by a physical device called a
computer. Indeed, given a rule for interpreting physical
states as symbols, any physical process may be thought
of as a kind of computation. Quantum computers are
machines that rely on characteristically quantum phe-
nomena, such as quantum interference and quantum en-
tanglement, in order to perform computation. The clas-
sical theory of computation usually does not refer to
physics. Pioneers such as Turing, Church, Post, and
Gödel managed to capture the correct classical theory
by intuition alone. As a result it is often falsely assumed
that the foundations of computation theory are self-
evident and purely abstract. The fundamental connec-
tion between the laws of physics and what is computable
was emphasized by Feynman (1982) and Deutsch (1985)
[see also Landauer (1987, 1991) and Lloyd (1993a,
1994)].
The classical theory of computation is essentially the

theory of the universal Turing machine—the most popu-
lar mathematical model of classical computation. Its sig-
nificance relies on the fact that, given a large but finite
amount of time, the universal Turing machine is capable
of any computation that can be done by any modern
classical digital computer, no matter how powerful. In
this section we provide a brief description of Turing ma-
chines and show how the concept of Turing machines
may be modified to incorporate nonclassical computa-
tion. This leads to a model of quantum computation first
described by Deutsch (1985) and developed by Bern-
stein and Vazirani (1993)—the so-called quantum Tur-
ing machine [see also Benioff (1980, 1986 and references
therein), who described a classical Turing machine made
of quantum components].
A Turing machineM (Welsh, 1988; Penrose,1989; Pa-

padimitriou, 1994) can be visualized as a device com-
posed of a processing unit in the form of a write/read
head and a memory with unlimited storage capacity in
the form of an infinite tape (as shown in Fig. 1).
The tape is divided into discrete cells. Each cell can

have a symbol from a finite alphabet S written on it. The
tape is scanned, one cell at a time, by the read/write
head. The head can be in one of a finite set of states
Q , where Q5$q0 ,q1 , . . . ,qh%. The machine action is
made up entirely of discrete steps, and each step is de-
termined by two initial conditions: the current state of
the head and the symbol that occupies the tape cell cur-
rently being scanned. Given a pair of initial conditions,

the machine receives a three-part instruction for its next
step. The first part of the instruction specifies the next
state of the head. The second part designates the symbol
the head is to write into the scanned cell. The third part
determines whether the head is to move one cell to the
left or to the right along the tape or to stay in its present
position. The list of all possible instructions correspond-
ing to all initial conditions ofM is finite (because both
the set of symbols, i.e., the alphabet S and the set of
internal states of the machine Q are finite) and provides
a complete description of the action of M. Such a de-
scription can be written as a finite set of quintuples of
the form

~q ,s ,q8,s8,d !. (1)

The first two characters describe the initial condition
and the remaining three characters describe the instruc-
tion. Reading from the left: q is the current state of the
head, s is the symbol currently under the read/write
head, q8 is the state that the head is to enter next, s8 is
the symbol to be written in place of s , and d is the
direction in which the head is to move (or stay fixed)
relative to the tape. It is customary to single out one of
the head states as a ‘‘halting state’’ qh . It has the prop-
erty that all instructions of the form (qh ,s ,q8,s8,d) have
s85s , q85qh , and d5 ‘‘no movement.’’ Thus, once the
head enters state qh , no further change occurs—the
computation halts.
In this language a computation on the machine con-

sists of presenting it with an input, which is a finite string
of symbols from the alphabet S written in the tape cells
(all remaining cells containing some chosen standard
symbol of S), then allowing the machine to start in the
initial state q0 with the head scanning the leftmost sym-
bol of the input and to proceed with its basic operations
[Eq. (1)] until it stops in its final (halting) state qh . (In
some cases the computation might not terminate.) The
output of the computation is defined as the contents of
some chosen part of the tape when (and if) the machine
reaches its halting state.
In the process of computation the machine goes

through a sequence of configurations; each configuration
provides a global description of the machine and is de-

FIG. 1. A schematic picture of a Turing machine.
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termined by the string written on the entire tape, the
state of the head, and the position of the head. For ex-
ample, the initial configuration is given by the input
string, q0 and the head scanning the leftmost symbol
from the input. There are infinitely many possible con-
figurations of the machine, but in all successful compu-
tations the machine goes through a finite sequence of
configurations. The transition between configurations is
completely determined by the rules in Eq. (1). Note that
the operation of the machine is ‘‘local’’ in the sense that
the transition between configurations depends only on
the currently scanned tape symbol (and the head state)
rather than on the whole global configuration.
A computation is said to be reversible if the transition

between configurations is reversible, i.e., the (n11)th
configuration uniquely determines the nth one. (Note,
however, that the time reverse of a Turing machine is
not a Turing machine, since, for example, the time re-
verse of ‘‘head writing and then moving’’ is ‘‘head mov-
ing and then writing,’’ which is not a valid Turing ma-
chine action.) Thus the physical action corresponding to
a reversible computation is thermodynamically revers-
ible and hence involves zero energy dissipation (Land-
auer, 1961; Bennett, 1973, 1982). A fundamental result
of Bennett (1973, 1982, 1989) [see also Lecerf (1963)]
states that, given any Turing machineM, there is a re-
versible Turing machine M’ which performs the same
computation [and furthermoreM’ is an efficient compu-
tation (see next section) if M is efficient]. Hence de-
manding that all computation be reversible imposes no
restriction at all on computing power. This is an impor-
tant observation since the model of quantum computa-
tion introduced below is automatically reversible. Ben-
nett’s result also shows that the performance of any
computation does not require any necessary intrinsic en-
ergy dissipation.

Remark. The concept of halting state needs to be re-
considered in the context of reversible computation,
since these computations cannot halt, i.e., cannot have
two successive configurations equal. We may either run
the computation for some predetermined number of
steps (being given, for example, by a prescribed function
of the input size) or alternatively we may designate one
of the tape squares as an ‘‘end of computation’’ flag.
When the machine has completed the computation and
written the answer on some prescribed part of the tape,
the flag is set to some prescribed letter of S , and the
machine simply continues operating in a reversible but
trivial way which does not alter the part of the tape
containing the answer. A periodic observation of the flag
will enable us to determine when the answer is ready for
reading out.

Computations do not have to be deterministic. In-
deed, we can allow a Turing machine ‘‘to toss an unbi-
ased coin,’’ and to choose its steps randomly. Such a
probabilistic computation can be viewed as a directed,
treelike graph, where each node corresponds to a con-
figuration of the machine and each edge represents one
step of the computation (see Fig. 2). The computation

starts from the root node representing the initial con-
figuration and it subsequently branches into other nodes
representing configurations reachable with nonzero
probability from the initial configuration. The action of
the machine is completely specified by a finite descrip-
tion of the form

d :Q3S3Q3S3$Left, Right, No movement%°@0,1# ,
(2)

where d(q ,s ,q8,s8,d) gives the probability that, if the
machine is in state q reading symbol s , it will enter state
q8 , write s8, and move in direction d . This description
must conform to the laws of probability, as applied to
the computation tree. Associating each edge in the
graph, with the probability that the computation follows
that edge, yields the following requirements: (1) We
must require that the sum of the probabilities on edges
leaving any single node is always equal to 1. (2) The
probability of a particular path being followed from the
root to a given node is the product of the probabilities
along the path’s edges. (3) The probability of a particu-
lar configuration’s being reached after n steps is equal to
the sum of the probabilities along all paths which in n
steps connect the initial configuration with that particu-
lar configuration. Such randomized algorithms can solve
some problems (with probability arbitrarily close to 1)
much faster than any known deterministic algorithms.
[For examples, see Welsh (1988), pages 150–155].
The classical model described above suggests a natu-

ral quantum generalization. The various head states, and
tape symbols correspond to orthogonal quantum states
and the head position corresponds to a quantum observ-
able with integer spectrum. The quantum computation
can be represented by a graph similar to that of a proba-
bilistic computation. Following the rules of quantum dy-
namics, we associate with each edge in the graph the
probability amplitude that the computation follows that
edge. As before, the probability amplitude of a particu-
lar path’s being followed is the product of the probabil-

FIG. 2. Branching tree of possible configurations in a proba-
bilistic computation.
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ity amplitudes along the path’s edges. The probability
amplitude of a particular configuration is the sum of the
amplitudes along all possible paths leading from the root
to that configuration. Probability amplitudes are com-
plex numbers (of modulus not greater than unity); the
corresponding probability is obtained by taking a modu-
lus squared of the probability amplitude. This way of
calculating probabilities gives quantum computation the
novel nonclassical feature of quantum interference. For
example, if a particular final configuration can be
reached via two different paths with amplitudes a and
2a , then the probability of reaching that configuration
is ua2au250, despite the fact that the probability for the
computation to follow either of the two paths separately
is uau2 in both cases. Furthermore, a single quantum
computer can follow many distinct computational paths
in superposition and produce a final output depending
on the interference of all of them. This is in contrast to a
classical probabilistic Turing machine, which follows
only some single (randomly chosen) path. This feature
has been called ‘‘computation by quantum parallelism’’
(Deutsch, 1985; Jozsa, 1991, 1992) and underlies all
known quantum algorithms (Deutsch and Jozsa, 1992;
Bernstein and Vazirani, 1993; Berthiaume and Brassard,
1994; Shor, 1994; Simon, 1994).
The action of any such quantum machine is com-

pletely specified by a finite description of the form

d :Q3S3Q3S3$Left, Right, No movement%°C,
(3)

where d(q ,s ,q8,s8,d) gives the probability amplitude
that, if the machine is in state q reading symbol s , it will
enter state q8, write s8, and move in direction d . The
amplitudes in Eq. (3) [like the probabilities in Eq. (2)]
cannot be specified arbitrarily. They are constrained by
the condition that the induced transition on general glo-
bal configurations be unitary. This condition is analyzed
by Bernstein and Vazirani (1993). This is the most stud-
ied model of quantum computation and is called the
quantum Turing machine (QTM) (Deutsch, 1985; Bern-
stein and Vazirani, 1993). It is a direct quantum gener-
alization of Turing’s classical definition.
The QTM model is based on the idea that each com-

putational step is the result of a fixed unitary operation,
induced by Eq. (3), acting on the current global configu-
ration of the whole machine. This unitary operation is
required to be ‘‘local’’ in the sense that it allows transi-
tions only between suitably neighboring configurations,
e.g., with head positions shifted by at most one and the
entire tape contents identical except for the currently
scanned cell. One may entertain other possible models,
e.g., using a Hamiltonian that is local in a similar sense
and evolving it for a fixed time to generate each compu-
tational step. Indeed it has been suggested that a local
Hamiltonian is physically more realistic than a local uni-
tary evolution (Feynman, 1985; Margolus, 1986, 1991).
The relationship between the computing powers of these
two models is not known.
A QTM cannot perform any computation beyond

those that can be done on classical Turing machines.

Given an input, one may simply program a classical
computer to compute iterations of the rules given by Eq.
(3), calculating the full (finite) list of configuration am-
plitudes at each step. The final probability distribution is
then simulated classically by ‘‘tossing coins.’’ However
this classical simulation of a QTM is inefficient (i.e., in-
volves an exponential slowdown), since the number of
amplitudes generally grows exponentially with the num-
ber of computational steps. Thus quantum computers
cannot exceed classical computers in what may be com-
puted, but may possibly exceed them in the efficiency of
computation. The concept of efficient (or ‘‘polynomial-
time’’) computation is fundamental in all that follows
and is explained in the next section.
In the classical theory of computation many other

models of the notion of ‘‘mechanical computation’’ have
been studied, e.g., network (or circuit) models, cellular
automata, etc. However, these models can all be proved
equivalent in the following sense: any computation per-
formable within any of the models may be simulated on
a Turing machine. Furthermore this simulation pre-
serves efficiency of computation (see next section). It is
generally asserted that any conceivable, ‘‘reasonable’’
model of computation has this property. This is the so-
called (classical) Church-Turing thesis (in its modern
form incorporating efficient computability rather than
just computability). No counterexample to this thesis
has ever been found. In the quantum context one may
similarly consider other models of quantum computa-
tion, e.g., quantum cellular automata, quantum net-
works, etc. Quantum networks have been considered by
Deutsch (1989) and Yao (1993), and a form of quantum
cellular automaton by Margolus (1991). Yao (1993) has
shown that the quantum network model is computation-
ally equivalent to the QTM model. The quantum net-
work model is especially useful in that it relates far more
directly to proposed experimental realizations of quan-
tum computation than does the QTM model. In Sec. IV
below we shall give an account of the essential ingredi-
ents of the quantum network model of computation. It
remains an open question whether further possible mod-
els of quantum computation are also equivalent in the
sense of a ‘‘quantum Church-Turing thesis.’’

III. SLOW AND FAST ALGORITHMS—EFFICIENT
COMPUTATION

In order to solve a particular problem, a computer
follows a precise set of instructions that can be mechani-
cally applied to yield the solution to any given instance
of the problem. A specification of this set of instructions
is called an algorithm. Examples of algorithms are the
procedures taught in elementary schools for adding and
multiplying whole numbers; when these procedures are
mechanically applied, they always yield the correct re-
sult for any pair of whole numbers. Some algorithms are
fast (e.g., multiplication); others are very slow (e.g., fac-
torization, playing chess). Consider, for example, the fol-
lowing factoring problem:

736 A. Ekert and R. Jozsa: Quantum computation and Shor’s factoring algorithm

Rev. Mod. Phys., Vol. 68, No. 3, July 1996



h3h529083. (4)

Using only paper and pencil it would probably take
about an hour to find the two whole numbers different
from 1 which should be written in the two boxes (the
solution is unique). Solving the reverse problem

12732295h , (5)

again using paper and pencil, takes less than a minute.
This is because we know fast algorithms for multiplica-
tion, but we do not know fast algorithms for factoring.
There is a rigorous way of defining what makes an

algorithm fast (tractable, usable) or slow (intractable,
unusable) (Welsh, 1988; Papadimitriou, 1994). We em-
phasize that the algorithm here is viewed as a prescrip-
tion for solving a whole class of problems, e.g., multiply-
ing any two given numbers, rather than just a single
instance, e.g., multiplying two particular numbers. The
crucial question then is, how does the length of the com-
putation increase with increasing size of the input? An
algorithm is said to be fast or efficient if the time taken
to execute it increases no faster than a polynomial func-
tion of the size of the input. We generally take the input
size to be the total number of bits needed to specify the
input (for example, a number N requires log2N bits of
binary storage in a computer), and we measure the ex-
ecution time as the number of computational steps. Thus
an efficient algorithm on a general input N runs in
poly(logN) time, i.e.,

# steps for input N <p~ logN ! for all N , (6)

where p is a fixed polynomial. Clearly, in assessing effi-
ciency, we may think of any computation already known
to be efficient as a single computational step, since sums,
products, and composites of polynomials are still poly-
nomials.

Example. Consider the most naive factoring method:
try dividing N by each number from 1 to AN (as any
composite N must have a factor in this range). This re-
quires at least AN steps (at least one step for each tried
factor). However AN521/2logN is exponential in logN, so
this is not an efficient algorithm.

We now turn to randomized algorithms. Consider an
algorithm A that runs successfully only with probability
12e , and we know when it is successful. (For example,
A may produce a candidate factor m of the input N ,
followed by a trial division to check whether m really is
a factor or not.) Here e.0 is independent of the input
N . By repeating A k times, we get an algorithm Ak ,
which will be successful with probability 12ek (i.e., hav-
ing at least one success). This can be made arbitrarily
close to 1 by choosing a fixed k sufficiently large. Fur-
thermore, if A is efficient, then Ak will also be efficient,
since k is independent of N . Thus the success probabil-
ity of any efficient randomized algorithm of this type
may be amplified arbitrarily close to 1 while retaining
efficiency. Indeed we may even let the success probabil-
ity 12e decrease with N as 1/ poly(logN) and k increase
as poly(logN) and still retain efficiency while amplifying

the success probability as close to 1 as desired. Shor’s
quantum factoring algorithm will be of this type, based
on an efficient algorithm that provides a factor of the
input N with probability that decreases as
1/ poly(logN).
A more fundamental class of randomized

algorithms—known in the literature as BPP (bounded
error, probabilistic, polynomial time algorithms) [see
Papadimitriou (1994)]—concerns decision problems for
which the output is just ‘‘yes’’ or ‘‘no.’’ For example,
given N and m,N , is there a factor of N less than m?
A BPP algorithm A is an efficient algorithm providing
an answer which, for any input, is correct with a prob-
ability greater than some constant d.1/2. However, in
this case we do not know if the answer is correct or not.
As above we may repeat A some fixed number k times
and then take a majority vote of all the k answers. For
sufficiently large k the majority answer will be correct
with probability as close to 1 as desired [in fact the prob-
ability even converges to 1 exponentially fast in k (Pa-
padimitriou, 1994)]. In computational complexity theory
it is customary to view problems in BPP as being ‘‘trac-
table’’ or ‘‘solvable in practice’’ and problems not in
BPP as ‘‘intractable’’ or ‘‘unsolvable in practice on a
computer.’’

Example. There exist several randomized algorithms
that test for primality. For example, the Rabin random-
ized algorithm tests whether a given number N is prime
or composite (Rabin, 1980). If the test shows N to be
composite, then it is composite; if the test shows N to be
prime, then it is prime with the probability 120.25,
which does not depend on the size of the number. The
algorithm is efficient, so we can repeat the computation
several times to reach any required degree of confi-
dence. However, the algorithm does not display an ac-
tual factor of a composite number.

There is no known efficient classical algorithm for fac-
toring, even if we allow it to be probabilistic in the
above senses. Currently the best classical factoring algo-
rithms are the Multiple Polynomial Quadratic Sieve (Sil-
verman, 1987), for numbers less than 120 decimal digits
long, and the Number Field Sieve (Lenstra et al., 1990),
particularly good for numbers more than 110 decimal
digits long. Still, even the fastest algorithms run in time
of order exp@(logN)1/3(loglogN)2/3# and would need a
couple of billion years to factorize a 200-digit number. It
is not known whether a fast classical algorithm for fac-
torization exists or not—none has yet been found.

Remark. There is much interest in an efficient factor-
ing algorithm, because the problem of factoring under-
pins the security of many classical public-key cryptosys-
tems. For example, RSA—the most popular public-key
cryptosystem, named after the three inventors: Ron
Rivest, Adi Shamir, and Leonard Adleman (1979)—
relies for its security on the presumed intractability of
factoring large numbers.

Feynman (1982) observed that it appears impossible
to simulate a general quantum evolution on a classical
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probabilistic computer in an efficient way. This is a pro-
found feature distinguishing classical from quantum
physics. It provides an entirely novel avenue for con-
trasting classical and quantum theories. For example, in
a QTM the number of tape cells (two-state quantum
systems) visited generally increases linearly with the
number of computational steps n , so that the dimension
of the affected Hilbert space increases exponentially
with n . Thus the ‘‘obvious’’ classical simulation—just
computing and storing all the amplitudes using the tran-
sition rules of the QTM—involves an exponential slow-
down. Note that a similar situation occurs for a classical
probabilistic Turing machine: the number of possible
configurations reached in the branching tree of Fig. 2
generally also increases exponentially with n . Thus com-
puting the whole probability distribution at each step
again involves an exponential slowdown, but here we
may actually simulate the probability distribution by
‘‘tossing coins’’ and keeping only the single probabilistic
outcome at each step, i.e., traversing a single path
through the tree of branching possibilities, respecting
the correct probability distribution in the choice at each
step. By contrast, in the QTM case, because of the phe-
nomenon of quantum interference of different paths, we
cannot traverse a single path through the tree of branch-
ing amplitudes to simulate the final probability distribu-
tion. Apparently, according to quantum physics, Nature
is able to efficiently keep track of exponentially many
branching amplitudes in a way that we cannot simulate
classically! This is precisely the phenomenon of ‘‘com-
putation by quantum parallelism’’ mentioned previ-
ously. Thus we may suspect that the computing power of
a quantum device can exceed that of any classical de-
vice, not in what may be computed, but in efficiency of
computation. This provides a fundamental impetus for
the study of quantum computation and its possible ex-
perimental realization.

IV. BUILDING UNITARY TRANSFORMATIONS—
QUANTUM NETWORKS

Instead of working from the basic definition of a
QTM, it will be sufficient here to adopt a (somewhat less
rigorous) higher-level description of a quantum com-
puter. We envisage a familiar programmable computer C
in which each memory cell is a qubit (Schumacher 1995),
i.e., a two-state quantum system capable of supporting
coherent superpositions. There is a chosen basis (‘‘com-
putational’’ basis) u0&,u1& for each cell, corresponding to
the classical bit values 0 and 1. The programming lan-
guage for C includes a finite set of instructions for apply-
ing some chosen set of unitary transformations to any
prescribed cell. It is fundamental to the notion of ‘‘me-
chanical computation’’ that programming and computa-
tion occur by ‘‘finite means.’’ We cannot just assume
that any unitary transformation U may be efficiently
implemented—U must be constructed (i.e., pro-
grammed) using some finite basic set of transformations.
Since there is a continuum of possible unitary transfor-
mations, we shall be able to program them only approxi-

mately in general, but to any desired degree of approxi-
mation, using sufficiently long programs.
The set of basic unitary transformations is chosen us-

ing the following result.

Theorem. Consider

V05S cosa sina

2sina cosa D , V15S cosa isina

isina cosa D ,
V25S eia 0

0 1 D , V35S 1 0

0 eiaD (7)

and their respective inverses V4 ,V5 ,V6 ,V7 .
For a an irrational multiple of p , these eight transfor-

mations generate under composition a group dense in all
two-dimensional unitary transformations. For almost all
such a any given unitary transformation U may be ap-
proximated ‘‘efficiently’’ in the following sense: Given
any e.0, U may be approximated to within e by a con-
catenation of Vi’s of length < poly(1/e).
The latter property may be intuitively understood as

follows. Consider, for example, real rotations in the
plane, and let Ra be any fixed irrational rotation. If we
accept that the first k powers of Ra are essentially ran-
domly distributed around the circle, then, since the
circle has finite size, by doubling k , we get twice as many
points around the circle. We can thus approximate any
given rotation twice as well. For example, for accuracy
e we should require O(1/e) applications of Ra , a linear
polynomial in 1/e . A similar argument may be expected
to apply to any compact group like U(2).

Remark. The above choice of eight transformations
was originally given by Deutsch (1985). It may be con-
siderably simplified. The construction of a universal
quantum Turing machine by Bernstein and Vazirani
(1993) implies that just one irrational rotation (together
with the simple transformation defined by u0&°u0& and
u1&°2u1&) suffices.

Thus we endow C with eight extra instructions for ap-
plying V0 , . . . ,V7 to any chosen cell. Then, for any
given two-dimensional unitary transformation U , there
exists a program of length poly(1/e) approximating U
with an accuracy e .
For general d-dimensional transformations we have

the following Theorem:

Theorem (Deutsch 1985). Let U be any
d-dimensional unitary matrix. Then U may be written as
a product of 2d22d unitary matrices (i.e., polynomially
many in d), each of which acts only within a two-
dimensional subspace spanned by a pair of computa-
tional basis states.

Proof. We first note that, given an arbitrary vector
with components (a1 , . . . ,ad) in the computational ba-
sis ue1&, . . . ,ued&, we may transform it to (1,0, . . . ,0) us-
ing a sequence of d21 two-dimensional transforma-
tions. First apply

A25
1

Aua1u21ua2u2
S a1* a2*

a2 2a1
D (8)
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in the $ue1&,ue2&% space, which reduces a2 to zero.
Similarly use A3 , . . . ,Ad (in the span of
$ue1& ,ue3&%, . . . ,$ue1&,ued&%) to reduce a3 , . . . ,ad to zero
too. Thus Ad . . . A3A2 maps (a1 , . . . ,ad) to
(1,0, . . . ,0), and A2

21 . . . Ad
21 reverses the action.

Now let uf1& , . . . ,ufd& be eigenvectors of U with ei-
genvalues eif1, . . . ,eifd. Using the above procedure,
transform uf1& to ue1& , then multiply by eif1 in span
$ue1&%, then map ue1& back to uf1&. This involves
(d21)111(d21)52d21 two-dimensional transfor-
mations. Repeat for each eigenvector, thus expressing
U as a product of d(2d21) two-dimensional transfor-
mations.
Using the above results (together with some classical

programs giving some simple permutations of the com-
putational basis states), we see that, for any
n-dimensional unitary transformation U , there exists a
program of length poly(n/e) which approximates U to
within accuracy e .
Thus if we have an algorithm A which runs for k steps

and so involves at most k unitary transformations Ui ,
we may approximate it on C to any desired accuracy e by
approximating each Ui to accuracy e/k . This requires at
most k poly(dk/e) steps, where d is the maximum size
of the Ui’s. Furthermore, if A is an efficient algorithm,
i.e., k5 poly(logn) for input n , and each Ui has size
poly(logn), then, for each fixed accuracy e , we will have
an efficient approximating algorithm.
It is important to note that, in the above construction,

a general unitary transformation of dimension d re-
quires poly(d) steps for its implementation. Consider
now a prospective quantum factoring algorithm with in-
put N . The input, written in log2N two-state systems,
occupies N Hilbert-space dimensions. Hence a general
unitary transformation (implemented as above) on the
input requires poly(N) steps, which is exponential in the
input size log2N. Thus, if the algorithm is to be efficient,
we cannot cavalierly apply unitary transformations to
the input, but must demonstrate that any such transfor-

mations used are rather special—implementable in poly
(logN) steps rather than poly(N) steps.
The sequential construction of unitary transforma-

tions out of basic components may also be viewed in
terms of quantum networks (Deutsch 1989). The efficacy
of this model was highlighted by Shor (1994), and it fits
in particularly well with proposed experimental realiza-
tions of quantum computation (see Sec. IX below).
A quantum computational network is the natural gen-

eralization of a classical (acyclic) Boolean network (see
Dunne, 1988 and Papadimitriou, 1994, Secs. 4.3 and
11.4). Note first that a classical computation may be
viewed in the following way (see Fig. 3). For any input
of size n we set up the input in n bits, followed by a
string of bits in a standard state 0, providing extra work-
ing space. Each step of the computation consists of se-
lecting two bits—bits (ik ,jk) for the kth step—and ap-
plying a specified Boolean gate Bk to these bits, which
are subsequently replaced in the string. Here a Boolean
gate B is a Boolean operation with two input bits and
two output bits. The gates Bk are chosen from some
finite fixed set of gates. It can be shown that various
small finite sets of gates suffice to perform any compu-
tation in this way.
Thus for each input size n we have a specified se-

quence of Boolean gate operations (the ‘‘program’’),
and their concatenated sequential application may be
viewed as a network of gates Gn . The full computation
C corresponds to a family of networks C5$G0 ,G1 , . . . %,
parametrized by the input size.

Remark. The complete description of this model of
computation requires a further technical condition—that
the family of networks $Gn% be uniform in n . This con-
dition is discussed in detail in Papadimitriou (1994) Sec.
11.4. Roughly speaking, given n , it must be possible to
generate the network Gn in a suitably regular and effi-
cient way. If Gn is merely required to exist without fur-
ther restriction, then one could encode complex compu-
tations and even noncomputable functions in the
structure of Gn as n changes, which is clearly unsatisfac-
tory.

To transfer the above model to the quantum context,
we simply replace the string of bits by a string of qubits,
and the Boolean gates B are replaced by quantum gates,
i.e., unitary transformations U operating on two qubits
chosen from some finite subset of four-dimensional uni-
tary transformations. This leads directly to the concept
of a family of quantum networks Qn . More generally,
we may also consider quantum gates that operate on any
finite number of qubits. Vedral et al. (1995) describe ex-
plicit constructions of quantum networks, effecting basic
arithmetic operations such as modular addition, multi-
plication, and exponentiation.
The computational complexity of a family of networks

$Qn% (or $Gn%) may now be defined in terms of the size
of Qn , i.e., the number of gates involved in Qn . A com-
putation C will be efficient if it has a (uniform) family of
polynomial-size networks, i.e., a family $Qn%, such that
the size of Qn grows only polynomially with n . In the

FIG. 3. Computational network: (a) Starting configuration; (b)
kth computational step.
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next section we shall decribe a simple example of a fam-
ily of polynomial-size quantum networks for the discrete
Fourier transform on n qubits—a unitary transformation
central to Shor’s algorithm.
The issue of which finite sets of quantum gates suffice

to build any unitary transformation has been much stud-
ied. Deutsch (1989) described a single three-qubit gate
(now referred to as the Deutsch gate) which suffices to
construct an arbitrary unitary transformation with arbi-
trary precision. Subsequently Barenco, Bennett, et al.
(1995) and DiVincenzo (1995a) showed that the Deut-
sch gate can be implemented using families of two-qubit
gates. It was then shown (Barenco 1995; Sleator et al.
1995) that a single two-qubit gate suffices to implement
the Deutsch gate. Finally, it has been shown (Deutsch
et al. 1995; Lloyd 1995a) that almost any two-qubit gate
by itself is universal, i.e., suffices to build any unitary
transformation with arbitrary precision.
The reduction to two-qubit gates is especially signifi-

cant for experimental considerations. Such gates corre-
spond to the interaction of just two physical systems. A
particularly relevant example of a two-qubit gate is the
quantum controlled NOT gate. The classical controlled
NOT gate is a reversible logic gate operating on two
bits, e1 and e2 , of which e1 is called the control bit and
e2 the target bit. The value of e2 is negated if e151;
otherwise e2 is left unchanged (in both cases the control
bit e1 remains unchanged). The quantum controlled
NOT gate C12 is the unitary operation on two qubits,
which, in a chosen orthonormal basis $u0&,u1&%, repro-
duces the controlled NOT operation:

ue1&ue2&→
C12

ue1&ue1% e2&, (9)

where % denotes addition modulo 2. It may be shown
(c.f. Barenco, Bennett, et al., 1995) that the quantum
controlled NOT gate, together with simple one-qubit
gates, is sufficient for any arbitrary quantum computa-
tion.
It must be emphasized that, in all of the above con-

structions, the implementation of a general n-qubit gate
typically requires a network whose size is exponential in
n , in contrast to special transformations like the discrete
Fourier transform on n qubits, which has polynomial-
size networks.

V. THE DISCRETE FOURIER TRANSFORM

The discrete Fourier transform moduloq , denoted
DFT q , is a unitary transformation in q dimensions. It is
defined relative to a chosen basis u0&, . . . ,uq21& by

DFTq :ua&°
1

Aq(
c50

q21

exp~2piac/q !uc&. (10)

Note that u0& is transformed into an equal superposition
of all cmodq . More generally, DFT q effects the discrete
Fourier transform of the input amplitudes. If

DFTq :(
a
f~a !ua&°(

c
f̃~c !uc&, (11)

then the coefficients f̃(c) are the discrete Fourier trans-
form of f(a)’s, i.e.,

f̃~c !5
1

Aq(a exp~2piac/q !f~a !. (12)

Looking ahead a little, let us mention that we shall
need to apply DFT q for q'N2, where N is the number
we want to factorize. Hence we shall need an efficient
method for performing DFT q , using poly(logq) steps
rather than the poly(q) steps given by the general con-
struction in Sec. IV. Furthermore, it will be sufficient to
take q52L, with L an integer. In this particular case the
efficient quantum algorithm can be constructed as a
quantum analog of the fast-Fourier-transform algorithm
[e.g., as described in Knuth (1981)]. This efficient classi-
cal algorithm needs to be reexpressed in terms of unitary
operations (Coppersmith, 1994; Deutsch, 1994). To do
this we introduce a quantum register composed of L
qubits. We follow the convention in the literature of us-
ing the same ket notation to denote qubit states and
states of a register. The context will make clear which is
meant. Each qubit has two basis states, which are la-
beled as u0& and u1&; these states define the computa-
tional basis in the 2L-dimensional state space of the reg-
ister.

uiL21, iL22, . . . i0&5uiL21& ^ uiL22& ^ ••• ^ ui0&. (13)

The register can store any number from 0 to 2L21.
Numbers such as a and c are represented by kets ua& and
uc&, which can be expressed in binary form as

ua&5uaL21, aL22 , . . . a0& , a5 (
i50

L21

ai2
i, (14)

uc&5ucL21 ,cL22 , . . . c0&, c5 (
i50

L21

ci2
i. (15)

Let us also define the L-bit integer b which is the rever-
sal of c ,

ub&[ubL21 ,bL22 , . . . ,b0&5uc0 ,c1 . . . . ,cL21&. (16)

To construct DFT2L we shall need only two basic uni-
tary operations. In terms of matrices in the computa-
tional basis they are Aj operating on the qubit in posi-
tion j ,

Aj5
1

A2
S 1 1

1 21 D , (17)

and Bj ,k operating on the qubits in positions j and k ,

Bjk5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiu jk
D , (18)

where u jk5p/2k2j. The matrix Aj is represented in the
uaj& basis and matrix Bjk in the uaj ,ak& basis (ai50,1).
Transformation Bjk is an elementary two-qubit opera-
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tion, which affects only states with a 1 in both positions
j and k , regardless of the state of the remaining qubits.
Following the strategy of the classical fast Fourier

transform, to perform DFT2L on ua&, we shall repeat a
certain sequence of operations L times. We shall index
each pass by j , which will go from j5L21 down to
j50. For the first pass we set j5L21 and apply Aj to
the leading-order bit aL21 . Then we reduce j by one,
j5L22, and, in the second pass, we apply (reading from
left to right)

Bj ,L21Aj . (19)

For each successive pass we reduce j by one and apply
(reading from left to right)

Bj ,j11Bj ,j12 . . . Bj ,L21Aj . (20)

We continue down to j50, finally completing the pro-
cedure with operation A0 . The end result of the L
passes is the transformation

ua&°
1

Aq(
c50

q21

exp~2piac/q !ub&. (21)

This is equivalent to DFT2L, if ub& is read in the bit
reversed order, giving uc&. Alternatively, ub& may be ef-
ficiently transformed to uc& by a sequence of state swap-
pings.
Example. DFT16 is performed as the sequence of the

following 10 elementary operations (read from left to
right):

~A3!~B23A2!~B13B12A1!~B03B02B01A0!. (22)

Figure 4 provides a graphical illustration of this se-
quence of transformations, and Fig. 5 shows the corre-
sponding quantum network.

In general, for an input of size L we have to perform
L operations Aj , and L(L21)/2 operations Bjk , in to-
tal L(L11)/2 elementary operations. The execution
time of DFT2L grows as a quadratic function of the in-
put size L ; so the algorithm is an efficient one.

Remark. Coppersmith (1994) also describes the ap-
proximate discrete Fourier transform (ADFT). In
ADFT one neglects those operations Bjk for which the
phase shift u jk[p/2k2j,p/2M for some M , such that
0<M<L21. The matrix elements of DFT and ADFT
differ by multiplicative factors of the form exp(ie) with
ueu<2pL/2M. The execution time of ADFT grows as
L(M11).
Remark. Shor (1994), in the original version of his

paper, showed that DFT q can be performed efficiently
when q is smooth, i.e., when all of the prime power fac-
tors of q are ‘‘suitably small’’—bounded by
A(logq)d—where A ,d are constants independent of q .
Later, Coppersmith (1994) and Deutsch (1994) indepen-
dently devised the efficient Fourier transform for
q52L described above. More recently Cleve (1994) has
shown that the Fourier transform can also be efficiently
performed when the prime factors of q are bounded by
A(logq)d (although prime power factors need not be
bounded in this way). A special case of this is when q is
a power of 2.

VI. THE NUMBER-THEORETIC BASIS OF THE
FACTORING METHOD IN SHOR’S ALGORITHM

In order to factor a number N , we shall use quantum
computation to solve an equivalent problem. Given N ,
choose randomly a fixed number y coprime to N [that is,
the greatest common division of the pair (y ,N), denoted
by gcd(y ,N) is equal to one]. The major task in the
algorithm will be to find the period r of the following
function:

FN~a !5yamodN . (23)

In this section we explain the connection between the
periodicity of FN(a) and the factorization of N . Rel-
evant results from number theory are collected in Ap-
pendix A.

FIG. 4. Schematic illustration of the quantum discrete Fourier
transform DFT16 performed on a four-qubit register.

FIG. 5. Quantum network for the quantum discrete Fourier
transform DFT16 performed on a four-qubit register. In this
picture gate Bk performs the conditional phase shift by
2p/2k.
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Consider the quadratic equation (cf. Riesel, 1985)

x2[1 modN , (24)

which always has solutions x[61 modN , the so-called
trivial solutions. If N is an odd prime p , then these are
the only solutions (since multiplication modulop has in-
verses and x221[(x21)(x11)[0 modp implies
x21[0, or x11[0 modp by division). However, if N
is composite, then there are also pairs of nontrivial so-
lutions of the form x[6a modN .
Example. The equation

x2[1 mod341, (25)

apart from the two trivial solutions, x[61 mod341, also
has two nontrivial solutions, x[632 mod341. This arises
because 341 is composite, 341511331.

To see this in a general case, let N5n1n2 with
gcd(n1 ,n2)51 [where gcd(n1 ,n2) denotes the greatest
common divisor or the highest common factor of n1 and
n2], and consider the four sets of equations:

(a)H x1[1 modn1
x1[1 modn2

(b)H x2[21 modn1
x2[21 modn2

(c)H x3[1 modn1
x3[21 modn2

(d)H x4[21 modn1
x4[1 modn2 .

(26)

In each case xi
2[1 modn1 and modn2; so each xi satis-

fies Eq. (24). By the Chinese remainder theorem (see
Appendix A.1) each set has a unique solution modulo
N . From (a) and (b) we clearly get x151 and x2521,
the trivial solutions of Eq. (24), and from (c) and (d) we
get x35a and x452a modN , giving a pair of nontrivial
solutions. Thus (a11)(a21)[0 modN , and a61 are
nonzero. Hence N divides (a11)(a21), but N does
not divide a61 (as a61<N11). Hence (if a Þ6 1) the
greatest common divisor of N and a61 is a nontrivial
factor of N. The greatest common divisor of two given
numbers can be found efficiently using Euclid’s algo-
rithm (see Appendix A.2).

Example. Taking numbers from the preceding ex-
ample we can easily check, using Euclid’s algorithm, that
the two factors of 341 can be obtained as
gcd(31,341)531 and gcd(33,341)511.

In summary, given a nontrivial solution x of Eq. (24)
we can efficiently find a nontrivial factor of N . We find
such an x as follows. Given N , choose a random y,N .
If y and N are coprime then let r be the order of y
modN (see Appendix A.3). This is precisely the period
of FN(a) in Eq. (23). Thus

yr[1 modN . (27)

If r is also even, then setting

x5yr/2, (28)

we have x2[1 modN , so x is a candidate for our non-
trivial solution of Eq. (24). This provides the connection
between the periodicity of FN(a) and the calculation of
a nontrivial factor of N . The above process may fail if

the chosen y value has an odd order r , or if r is even but
yr/2 turns out to be a trivial solution of Eq. (24). How-
ever, according to the following theorem, these situa-
tions can arise only with suitably small probability if y is
chosen at random.

Theorem. Let N be odd with prime factorization

N5p1
a1p2

a2 . . . pk
ak . (29)

Suppose y is chosen at random, satisfying gcd
(y ,N)51. Let r be the order of y modN . Then

Prob ~r is even and yr/2[” 61 modN !>12
1

2k21 .

(30)

The proof is provided in Appendix B.
In the above theorem we have excluded all even val-

ues of N . This is unimportant for the factorization prob-
lem, as all factors of 2 are easy to recognize and remove.

Remark. The proof (see Appendix B) may be easily
extended to show that

Prob ~r even and yr/2[” 61 modN !>
1
2

(31)

holds for all N which are not of the form pa or 2pa. In
these cases the above probability is zero. Pure prime
powers N5pa are known to be efficiently recognizable
by a classical probabilistic algorithm.
Note that if 1<y<N is selected at random, then the

probability of gcd(y ,N)51 is greater than 1/logN (see
Appendix A.3). Thus, assuming that we are able to com-
pute the order r of y , we obtain a nontrivial factor of
N with probability greater than 1/(2logN) from the
above process applied to a random y .

Example. Let us illustrate the above factoring method
for N515. First we select y , such that gcd(y ,N)51, i.e.,
y could be any number from the set $2,4,7,8,11,13,14%.
Let us pick up y511 and let us compute the order of
11 modulo 15. Values of 11amod15 for a51,2,3, . . . go
as 11,1,11,1,11, . . . , giving r52. Then we compute
x5yr/2, which gives x511, and we find the largest com-
mon factor gcd(x61,N), i.e., gcd(10,15) and gcd(12,15),
which gives 5 and 3, the two factors of 15.
Respective orders modulo 15 of elements

$2,4,7,8,11,13,14% are $4,2,4,4,2,4,2%. In this particular ex-
ample any choice of y except y514 leads to the correct
result. For y514 we obtain r52, yr/2[21 mod15, and
the methods fails.
Note that 15 is the smallest odd number that is not a

prime power, so it follows from the above discussion
that 15 is the smallest integer that can be factorized by
the preceding method.

Shor describes a quantum algorithm which provides
the order r [when it exists, i.e., when gcd(y ,N)51] of a
randomly chosen y . The algorithm runs in polynomial
time, i.e., requires poly(logN) steps. It is a probabilistic
algorithm, providing the value of r with any prescribed
probability of success 12e , e.0.

742 A. Ekert and R. Jozsa: Quantum computation and Shor’s factoring algorithm

Rev. Mod. Phys., Vol. 68, No. 3, July 1996



VII. SHOR’S QUANTUM ALGORITHM FOR EFFICIENT
FACTORIZATION

Given N , choose q52L between N2 and 2N2 (which
is clearly always possible). The reason for choosing
q>N2 will become apparent at the end. The choice of
q as a power of 2 is to ensure that DFT q can be per-
formed efficiently.
Next choose a random y,N and begin with an L-bit

register in the state u0& (i.e., all L qubits in states u0&).
Apply DFT q to the register, giving

1

Aq(
a50

q21

ua&. (32)

Next compute yamodN , storing the result in a second,
auxiliary register, giving

1

Aq(
a50

q21

ua&uyamodN&. (33)

This can be done efficiently, e.g., by repeatedly squaring
moduloN to get y2

i
’s and multiplying selected ones cor-

responding to the binary expansion of a .
Next perform a measurement in the computational

basis to determine the bit values in the second register.
Suppose that the result is z where z5ylmod N for some
least l . If r is the order of y mod N, then yl[yjr1lmod N
for all j . Thus the measurement will select a values (in
the first register) of a5l ,l1r ,l12r , . . . ,l1Ar , where
A is the greatest integer less than (q2l)/r . Here l<r is
fixed and has been chosen probabilistically by the choice
of z in the measurement. Note that l<r,N , and
q'O(N2), so A'q/r .
The post-measurement state of the first register is

then

uf l&5
1

AA11
(
j50

A

ujr1l&. (34)

Thus we have a uniform superposition of labeled basis
states, where the labels have been chosen with a period
of r . From this state we wish to extract the information
of the periodicity r with a probability that does not de-
crease too rapidly with the size of N . More precisely, we
wish to extract the value of r with a constant probability
if the above computation is repeated at most
poly(logN) times. Note that, upon repetition (with y
fixed), the value of l (and hence the final state uf l&) will
vary, but r remains the same.
The extraction of r will be achieved by applying

DFTq. To see the principle of how this works, consider
first the simplified situation in which r divides q exactly,
so A5q/r21. The final state corresponding to Eq. (34)
is then

uf l&5Ar

q (
j50

q/r 21

ujr1l&5 (
a50

q21

f~a !ua&, (35)

where f(a)5A(r/q) if a2l is a multiple of r and
f(a)50 otherwise. This state is exactly periodic in am-
plitude as we cycle through the labels, in contrast to Eq.

(34), where the periodicity is slightly spoilt in recycling
from the last to the first label. Write M5q/r . Perform-
ing DFT q on uf l& gives

DFTquf l&5(
c
f̃~c !uc&, (36)

where the amplitude f̃(c) is the discrete Fourier trans-
form of f(a):

f̃~c !5
Ar
q (

j50

q/r21

expS 2pi~ jr1l !c

q D
5

Ar
q F (

j50

q/r21

expS 2pi
jrc

q D GexpS 2pi
lc

q D . (37)

The term in the square bracket on the rhs is zero unless
c is a multiple of q/r . In the latter case it equals q/r .
Hence

f̃~c !5H exp~2pilc/q !/Ar if c is a multiple ofM .

0 otherwise,
(38)

i.e., the Fourier transform of a state with period r is a
state with period M5q/r . Writing c5jq/r , we get

DFTquf l&5
1

Ar (
j50

r21

exp~2pilj/r !Uj qr L . (39)

A measurement of the state’s label c will yield a mul-
tiple lq/r with l50, . . . ,r21 chosen equiprobably.
Note that the initial shift l appears neither in the prob-
abilities nor in the seen labels lq/r . Thus the Fourier
transform ‘‘inverts’’ the periodicity of the input
(r→q/r) and has a translational invariance property
that washes out the shift l (see Fig. 6).
Now after our measurement of the label we see a

value of c satisfying c/q5l/r . Here c and q are known.
If gcd(l ,r)51, we can determine r by canceling c/q
down to an irreducible fraction. Since l is chosen at
random, the probability that gcd(l ,r)51 is greater than
1/logr for largish r (see Appendix A.3). Thus, if we re-
peat the computation O(logr),O(logN) times, we can
amplify the success probability as close to 1 as we wish.
This gives an efficient determination of r .

Remark. If l could be made constant in repeated
preparations of uf l&, then we would not need DFT q at
all: just measure the label on three copies of uf l&, ob-
taining ci5j ir1l for i51,2,3, so that c12c25(j12j2)r
and c12c35(j12j3)r . Since the j’s are all equiprobable,
we get by repetition, as above, a high probability of
gcd(j12j2 ,j12j3)51, so r is obtained as
gcd(c12c2 ,c12c3). Unfortunately in our application l
varies randomly [corresponding to the outcome of the
measurement on the last slot of Eq. (33)], and the trans-
lational invariance property of DFT q is its main role
here.

Remark. It is interesting to note that the second reg-
ister is used only to prepare a periodic state in the first
register. After the function yamodN in Eq. (33) has
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been computed, one can effectively forget about the ex-
istence of the second register. Indeed it is not even nec-
essary to perform a measurement on it! If a measure-
ment is performed as described above, the actual value
of the outcome z is not used in the algorithm at all.
Let us now return to our actual starting state Eq. (34)

with its slightly imperfect periodicity. For simplicity we
shall replace A11 by q/r , neglecting a small roundoff
error—this makes no essential difference in the follow-
ing formulae, which then become more readable. Per-
forming DFT q on Eq. (34) gives

DFTquf l&5 (
c50

q21

f̃~c !uc&, (40)

where

f̃~c !5
Ar
q (

j50

q/r21

exp@2pi~ jr1l !c/q# . (41)

Then the probability of seeing label c is

Prob~c !5
r

q2 U (
j50

q/r21

exp@2pij~rc modq !/q#U2. (42)

In the previous example constructive interference [Eq.
(38)] occurred precisely for c satisfying rc modq50. In
Eq. (42) we look for constructive interference by consid-
ering c such that rc modq is suitably small. Then the
added terms will all be bunched on one side of the unit
circle, uzu51. In fact, if c satisfies

2r/2<rc modq<r/2, (43)

then the terms in Prob(c) will all be spread around at
most a semicircle.
There are precisely r values of c modq satisfying Eq.

(43) just as there are r nonzero terms in Eq. (38). To see
this consider the multiples of q : 0,q ,2q , . . . ,rq and the
multiples cr of r : 0,r ,2r , . . . ,qr , marked on the same
line. The multiples of r are spaced r apart, so, for each
of the r multiples of q , there will be exactly one associ-

ated multiple of r within distance 6r/2. This gives the
r solutions of Eq. (43).
Next we wish to estimate the size of Prob(c) for

c satisfying Eq. (43). Write uc52p(rc modq)/q so
that Prob(c) involves a geometric series with ratio
expiuc . By viewing these terms as vectors on an
Argand diagram, we see that the total distance from
the origin decreases as uc increases. Hence Prob(c)
>Prob(the c with largest allowed uc). Now by Eq. (43),
uc<pr/q , and summing the geometric series with
uc5pr/q gives

Prob~c !>
r

q2
1

sin2
pr

2q

'
4

p2

1
r
, (44)

where we have used sin(pr/2q)'pr/2q , as r/q is small.
Thus, since there are r such c’s, the probability of seeing
a c value satisfying Eq. (43) is greater than 4/p2.
Finally we wish to extract the information of the value

of r , given a value of c satisfying Eq. (43) (see Fig. 7).
To do this we note that Eq. (43) is equivalent to

urc2c8qu<r/2 (45)

for some 0<c8<r21. The r different values of c8 are
associated with the r possible values of c , so by Eq. (44)
each value of c8 has

Prob~c8!>
4

p2

1
r
. (46)

Equation (45) may be written

U cq 2
c8
r U< 1

2q
. (47)

Here c and q are known, and r<N , q>N2. Thus be-
cause q>N2, there is exactly one fraction c8/r with de-
nominator at most N in the range given by Eq. (47).
This fraction may be found efficiently using the contin-
ued fraction expansion of c/q (see Appendix A.4) as
one of its convergents. Hence, if gcd(c8,r)51, we get
the value of r . There are f(r) such coprime values of
c8, so from Eq. (46) we get

Prob~c8 is coprime to r !>
4

p2

f~r !

r
. (48)

FIG. 6. Function f(a) and the modulus of its Fourier trans-
form f̃(c).

FIG. 7. Function f(a) and the modulus of its Fourier trans-
form f̃(c); in this example q5512 (9 qubits), l58, and r510.
The peaks occur for values of c having rcmodq small as in Eq.
43, i.e. for c near the multiples of q/r .
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For large r we have f(r)/r.1/logr.1/logN (see Appen-
dix A.3), so with probability better than 4/(p2logN) we
obtain r and hence a factor of N . By repeating this effi-
cient probabilistic algorithm O(logN) times we get an
efficient factoring algorithm with an arbitrarily high suc-
cess probability.

VIII. STABILITY OF QUANTUM COMPUTATION—
DECOHERENCE

So far we have considered an unrealistic scenario, in
which the computation was performed in complete iso-
lation from the surrounding environment. The errors in
the described algorithm were either of purely ‘‘math-
ematical’’ origin [e.g., a random choice of y in order to
obtain gcd(y ,N)51] or resulted from the probabilistic
outcomes in the final bit-by-bit measurement. The prob-
ability of this type of error in a single run of computa-
tion grows only as a polynomial function of the input
size, and therefore the errors do not affect the efficiency
of the algorithm (see discussion of the randomized algo-
rithms in Sec. III). However, when we analyze physically
realizable computations, we have to consider errors due
to the computer-environment coupling, and from the
computational complexity point of view we need to as-
sess how these errors scale with the input size logN. If
the probability of success in a single run, 1−e, falls expo-
nentially with logN, i.e., if 1−e=A exp(2alogN), where
A and a are positive constants, then the randomized
algorithm can no longer technically be regarded as effi-
cient, regardless of how weak the coupling to the envi-
ronment may be. Unfortunately, as elaborated below,
the computer-environment interaction leads to just such
an unwelcome exponential increase of the error rate
with input size. The degrading effect of the computer-
environment interaction on the computer is generally
known as decoherence (Zurek, 1991).
Note that a similar situation pertains to classical com-

putation as well. Each bit in a classical computer is sub-
ject to some nonzero (tiny) probability of error (caused,
for example, by a random cosmic-ray hit). Treating all
bits as independent, this error also grows exponentially
with input size. However, for classical computation there
exist very efficient error-correcting schemes, which ef-
fectively allow the reduction of the constant a with in-
creasing input size, so that alogN remains small.
Broadly speaking, these methods utilize redundancy,
and all rely on measuring the computational state during
the course of the computation, resetting all redundant
copies to a majority answer. Unfortunately they cannot
then be directly adopted for the stabilization of quantum
computation, since measurement of intermediate com-
putational states will destroy the coherences that un-
derly the power of quantum computation. The formula-
tion of alternative intrinsically quantum error-correction
and stabilization schemes for quantum computation is
the subject of much current study, and some theoretical
proposals have been made by Berthiaume et al. (1994),
Chuang and Laflamme (1995), Chuang and Yamamoto
(1995), and Shor (1995). For quantum computation of

any reasonable length ever to be physically feasible, it
will be necessary to incorporate some efficiently realiz-
able stabilization scheme to combat the effects of deco-
herence.
To study the typical effects of decoherence, let us con-

sider a quantum register composed of L qubits with the
selected basis states labeled as u0& and u1&. Any quan-
tum state of the register can be described by a density
operator of the form

r~ t !5 (
i ,j50

2L21

r ij~ t !ui&^ju, (49)

where ui& is defined as in Sec. V, as a tensor product of
the qubit basis states,

ui&5uiL21& ^ uiL22& ^ •••^ ui0&. (50)

The rhs is the binary decomposition of the number
i5( l50

L212 li l .
Quantum computation derives its power from quan-

tum interference and entanglement. The degree of the
interference and entanglement in an L-qubit register is
quantified by the coherences, i.e., the off-diagonal ele-
ments r ij (i Þ j) of the density operator in the computa-
tional basis. When a quantum computer is in contact
with a thermal reservoir, the resulting dissipation de-
stroys the coherences and changes the populations (the
diagonal elements). In time the density matrix will ap-
proach the diagonal form,

r thermal5 (
i50

2L21 exp~2Ei /kT !

Z
ui&^iu, (51)

where we have assumed that states ui& are energy eigen-
states with corresponding energies Ei ; Z is the partition
function, Z5( i50

2L21exp(2Ei /kT), k is the Boltzmann
constant, and T is the temperature of the reservoir. The
time scale in which thermal equilibrium is reached de-
pends on the type of system-environment coupling. The
rates of change for the diagonal and the off-diagonal
elements of the density matrix are usually different. The
decoherence, i.e., the decay of the off-diagonal ele-
ments, has the most significant effect on quantum inter-
ference in quantum computation, and therefore some
simple models of decoherence that ignore changes in the
populations are quite adequate. Within such a simplified
model of the computer-environment interaction, it is as-
sumed that the register in the computer and the environ-
ment undergo the following unitary evolution:

ui&uR&→ui&uRi~ t !&, (52)

where ui& is the state from the computational basis and
uR& is the initial state of the environment. States
uRi(t)& are normalized but not necessarily orthogonal to
each other. Now, consider the following initial state of
the computer and the reservoir,

(53)
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The unitary evolution of the composed system results in
an entangled computer-reservoir state, which can be
written as

uC~ t !&5(
i
c i~ t !ui& ^ uRi~ t !& , (54)

where, in general, ^RiuRj& Þ 0 for i Þ j . The elements of
the density matrix evolve as

r ij~0 !5ci~0 !cj* ~0 !→r ij~ t !5ci~ t !cj* ~ t !^Ri~ t !uRj~ t !&.
(55)

According to a popular model of decoherence (Zurek,
1991), the environment effectively acts as a measuring
apparatus; in time the reservoir states $uRi%& become
more and more orthogonal to each other whilst the co-
efficients $ci% remain unchanged. Consequently the off-
diagonal elements r ij disappear due to the
^Ri(t)uRj(t)& factors.
If this model is applied to a single qubit coupled to the

thermal electromagnetic radiation at a low temperature
T , the relevant coherences develop a characteristic de-
cay proportional to exp(2t/td), where td is the typical
decoherence time. Its value depends on the physical rep-
resentation of the qubits and their interaction with the
environment and can vary from 104 s for nuclear spins in
a paramagnetic atom to 10212 s for electron-hole excita-
tions in the bulk of a semiconductor. [DiVincenzo
(1995b) provides numerical estimates of td for several
selected physical realizations of qubits.] If we increase
the number of qubits to L , then some coherences in the
2L32L density matrix decay roughly as the product of
the L single-qubit coherences, i.e., as exp(2tL/td); the
characteristic decoherence time of L qubits becomes ef-
fectively td /L [for a detailed description of decoherence
in quantum computers see Unruh (1994) and Palma
et al. (1995)]. This gives rise to a probability of error e ,
which increases exponentially with the register size
L5logN and implies that decoherence cannot be effi-
ciently dealt with by simply increasing the number of
runs. As noted above, we shall need some other form of
‘‘quantum error correction’’ to stabilize the computa-
tion.
Decoherence puts an upper bound on the length of

any feasible quantum computation. If the elementary
computational step takes time t and td is a decoherence
time of a single qubit, then the requirement that a co-
herent computation of K steps be completed within the
decoherence time of the computer can be written as

tK,td /L . (56)

In the case of Shor’s algorithm for factorization of an
L-bit number, we may take K5L2, and Eq. (56) pro-
vides an upper bound,

L,S tdt D 1/3. (57)

Thus the ratio td /t , which depends on the technology
employed, determines the limits of the algorithm, and it
is unrealistic to assume that this ratio can be made infi-
nite.

IX. BUILDING QUANTUM LOGIC GATES

Quantum logic gates are the basic units of quantum
control. In order to implement them it is sufficient, from
the experimental point of view, to induce a conditional
dynamics of physical bits, i.e., to perform a unitary trans-
formation on one physical subsystem conditioned upon
the quantum state of another subsystem,

U5u0&^0u ^U01u1&^1u ^U11•••1uk&^ku ^Uk ,
(58)

where the projectors refer to quantum states of the con-
trol subsystem and the unitary operations Ui are per-
formed on the target subsystem. The simplest nontrivial
operation of this sort is probably a conditional phase
shift, such as Bjk , which we used to implement the dis-
crete Fourier transform [see Eq. (18)]. Here we shall
illustrate the conditional dynamics with another simple
operation, described in Sec. IV, called the quantum con-
trolled NOT. The quantum controlled NOT gate is not a
universal gate, but a universal quantum gate can be con-
structed by a combination of the controlled NOT and
simple unitary operations on a single qubit (for more
details about the relevance of the controlled NOT gate
and its possible implementations, see Barenco, Deutsch,
et al., 1995).
We next identify some possible physical processes that

can lead to a controllable conditional dynamics. In the
following we outline three possible experimental realiza-
tions of the quantum controlled NOT gate. The first
method is based on cavity quantum electrodynamics
(cavity QED; Brune et al., 1994; Davidovich et al., 1994;
Turchette et al., 1995), the second on the selective driv-
ing of optical resonances of two qubits undergoing a
dipole-dipole interaction (Obermayer et al., 1988; Teich
et al., 1988; Lloyd, 1993b; Barenco, Deutsch, et al.,
1995), and the third on selective excitation of phononic
and electronic states of trapped ions (Cirac and Zoller,
1995; Monroe et al., 1995). Some other interesting ex-
perimental work in quantum computation is described
by Chuang and Yamamoto (1995).

A. Cavity QED

In the cavity-QED and atomic-interferometry method
the target qubit is an atom with two selected circular
Rydberg states ue2&, where e250,1; the control qubit
ue1& is the quantized electromagnetic field in a high-Q
cavity C . The field in the cavity contains at most one
photon, so it can be viewed as a two-state system with
the vacuum state u0& and the one-photon state u1& as the
basis. The cavity C is sandwiched between two auxiliary
microwave cavities R1 and R2 , in which classical micro-
wave fields produce p/2 rotations of the atomic Bloch
vector,

ue1& fieldue2& atom→ue1& field
1

A2

3(ue2&1~21 !e2eiau12e2&) atom .

(59)
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Here the phase factor a is different for the two cavities
R1 and R2 . In the central cavity C a dispersive interac-
tion with the quantized field introduces phase shifts,
which depend on the state of the atom ue2& and on the
number of photons in the cavity ue1&. The interaction
does not involve any exchange of excitation, so the num-
ber of photons in the cavity remains unchanged:

ue1& fieldue2& atom

→exp@ i~21 !12e2~e11e2!u#ue1& fieldue2& atom , (60)

where u , the phase shift per photon, can be tuned to be
p (u depends on the atom-cavity crossing time and the
atom-field detuning).
The overall process can be viewed as a sequence of

half-flopping in R1 , phase shifts in C , and half-flopping
in R2 . Depending on the phase shifts the second half-
flopping can either put the atom back into its initial state
or flop completely into the orthogonal state. The whole
interferometer can be adjusted so that, when the atom is
sent through the cavities R1 , C , and R2 , the two qubits,
i.e., the field and the atom, undergo the transformation

ue1& fieldue2& atom→ue1& fieldue1% e2& atom . (61)

The initial and final states of the field in C can be
mapped from and to the atomic states, respectively, by a
resonant atom-field interaction (Raimond et al., 1989;
Parkins et al., 1993; Davidovich et al., 1994). This pro-
cess allows the two qubits to be of the same type, i.e.,
two Rydberg atoms rather than a field and an atom. The
practical realization can be carried out by a modification
of the atomic interferometry experiments described in
Davidovich et al. (1994), and the ratio td /t'104 can be
achieved with the current technology.
The cavity-QED effects can also be used to imple-

ment a different type of conditional dynamics. Turchette
et al. (1995) have proposed the use of polarized photons
as two qubits and have shown that the polarization of
one photon can be conditionally rotated when the two
photons travel through a high-finesse Fabry-Perot opti-
cal cavity and interact with a beam of birefringent at-
oms. The experiment has been performed, and the ex-
perimental data show that a rotation of the order of
12° per photon is possible. However, as the authors
point out, some further experimental measurements are
required to verify that the conditional dynamics is of a
genuinely quantum rather than a classical nature.

B. Dipole-dipole interactions

A second proposal for the practical implementation of
the quantum controlled NOT gate relies on a dipole-
dipole interaction between two qubits. For the purpose
of this model the qubits could be either magnetic di-
poles, e.g., nuclear spins in external magnetic fields, or
electric dipoles, e.g., single-electron quantum dots in
static electric fields. Here we describe the model in
terms of interacting quantum dots, but the basic ideas
have a wider applicability.

Two single-electron quantum dots separated by a dis-
tance R are embedded in a semiconductor. The ground
state and the first excited state of each dot are labeled as
u0& and u1&, respectively. The first quantum dot, with the
resonant frequency v1 , will act as the control qubit, and
the second one, with the resonant frequency v2 , as the
target qubit. In the presence of an external static electric
field, which can be turned on and off adiabatically in
order to avoid transitions between the levels, the charge
distribution of the ground state of each dot is shifted in
the direction of the field, whilst the charge distribution
of the first excited state is shifted in the opposite direc-
tion (the quantum-confined Stark effect). In the simple
model in which the state of the qubit is encoded by a
single electron per quantum dot, we can choose coordi-
nates in which the dipole moments in state u0& and u1& are
6di, where i=1,2 refers to the control and to the target
dot respectively.
The electric field of the electron in the first quantum

dot may shift the energy levels of the second one (and
vice versa), but to a good approximation it does not
cause transitions. This is because the total Hamiltonian

Ĥ5Ĥ11Ĥ21V̂12 (62)

is dominated by a dipole-dipole interaction term V12
which is diagonal in the four-dimensional state space
spanned by eigenstates {ue1&, ue2&} of the free Hamiltonian
Ĥ11Ĥ2, where e1 and e2, as before, range over 0 and 1.
Specifically,

~Ĥ11Ĥ2!ue1&ue2&5\~e1v1k1e2v2!ue1&ue2& (63)

and

V̂12ue1&ue2&5~21 !e11e2\v̄ue1&ue2&, (64)

where

v̄52
d1d2

4pe0R
3 . (65)

As shown in Fig. 8, it follows that due to the dipole-

FIG. 8. Quantum dots as a controlled NOT gate: (a) Energy
levels of two quantum dots without and with the coupling in-
duced by the presence of a static electric field E0 . (b) Reso-
nance spectrum of the two quantum dots. The dotted line
shows the wavelength for which the two dots act as a con-
trolled NOT gate, with the first dot being the control qubit and
the second the target qubit.
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dipole interaction the resonant frequency for transitions
between the states u0& and u1& of one dot depends on the
neighbor’s state. The resonant frequency for the first dot
becomes v16v̄ depending on whether the second dot is
in state u0& or u1&. Similarly the second dot’s resonant
frequency becomes v26v̄ , depending on the state of
the first dot. Thus a pulse at frequency v21v̄ of suffi-
cient strength to rotate the state by p (a p pulse) causes
the transition u0&↔u1& in the second dot only if the first
dot is in u1& state.
A possible physical realization of the model requires

the typical lifetime of the excited state u1& to be much
greater than the time scale of the optical interaction (the
length of the p pulse). For the p pulse to be monochro-
matic and selective enough, we must also require the
length of the pulse to be greater than the inverse of the
pulse carrier frequency and the inverse of the dipole-
dipole interaction coupling constant.
Coupled quantum dots can, at least in principle, be

conveniently integrated into a quantum network; how-
ever, the degree of control required is insurmountable.
Let us mention some obvious experimental problems as-
sociated with a quantum circuit composed of single-
electron quantum dots:
(i) Pulses that are not properly tuned may not be se-

lective enough and may affect different transitions and
different quantum dots. The minimal clock-cycle time
t is of the order of the typical pulse length tp . The
pulses must be approximately monochromatic (in order
to be selective), which requires tp@1/v and tp@1/v̄ ,
where v is the carrier frequency of the pulse. Clearly
higher carrier frequencies allow shorter pulses and con-
sequently a shorter clock cycle.
(ii) The decoherence time td depends on the interac-

tion with the environment. Electrons in quantum dots
are coupled to the quantized electromagnetic vacuum,
which leads to spontaneous emission. The typical life-
time of the excited state is of the order of

4pe0
3\c3

4D2v3 , (66)

where D is the dipole moment between states u0& and
u1&, v is the carrier frequency, tuned to the transition
frequency between the two states. (D is the off-diagonal
dipole moment generally different from the diagonal di-
pole moment d .) The interaction between the neighbor-
ing quantum dots will also have some off-diagonal
terms, which were not included in V12 , and which in-
duce the propagation of excitons in the array. This pro-
cess reduces the lifetime of the excited states of the
quantum dots and shortens the decoherence time.
For quantum dots of nanometer size, separated by

'1028 m, and with a resonant wavelength of the order
of '1026 m ('1014 Hz), realistic estimates could be
td'1028 s and v̄'1012 Hz. Tunable vibronic solid-state
lasers are available at these wavelengths (Hecht, 1992);
for example, the titanium-sapphire lasers with mode
locking can produce adequate short pulses
tp'10213210210 s with nanosecond intervals. Assuming
that the clock cycle t is of the order 1029 s, we should be

able to carry out about 10 coherent steps. This is prob-
ably not enough to demonstrate the principle of ‘‘quan-
tum parallelism.’’ (N.B. one coherent step of the whole
device implies many elementary transitions performed
in parallel on many quantum dots.)

C. Selective excitation of trapped ions

Cirac and Zoller (1995) have proposed an interesting
scheme for implementing quantum computation using
ions (as qubits) moving in an ion trap and interacting
with laser light. The computational basis states are rep-
resented by a selected pair of internal electronic states
of an ion. To prepare a quantum register the ions are
confined in a linear trap by an anisotropic harmonic-
oscillator potential, which restricts their motion to one
direction, and laser cooled (using sideband cooling tech-
niques) so that they undergo very small oscillations
around their equilibrium positions. Their collective
quantized motion, which is due to electrostatic repul-
sion, can be analyzed in terms of phonon modes. The
typical separation between the ions is of the order of a
few optical wavelengths, so that each ion can be inde-
pendently manipulated by a laser light, which can switch
the ion-phonon interaction on and off (see Fig. 9). The
conditional dynamics is then implemented as a sequence
of laser-ion interactions whose effect depends on the
presence or the absence of phonons.
To illustrate how this works, we describe a conditional

phase shift performed on any two ions in the trap. Let
ue1& and ue2& represent the computational basis of the
first and the second ion, respectively (e i=0,1). These
base states are two selected electronic states of each ion.
Any ion in state u1&, when probed with laser light of an
appropriate frequency, can emit a phonon and undergo
a transition from state u1& to state u0&. The process can
also be reversed,

u1&u0 phonons& ↔
laser light

u0&u 1 phonon& , (67)

but only if the phonon is already present in the trap. If
we probe the first ion with the laser p pulse tuned to the
frequency corresponding to the energy difference be-
tween the states u1&u 0 phonons& and u0&u 1 phonon&,
then the four possible base states of the two selected
ions in the absence of phonons undergo the following
transitions:

u0&u0&u 0 phonons&→u0&u0&u 0 phonons&, (68)

FIG. 9. Laser-cooled ions in a linear trap, well separated (by a
few optical wavelengths), so that each ion can be individually
addressed by a probing laser beam.
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u0&u1&u 0 phonons&→u0&u1&u 0 phonons&, (69)

u1&u0&u 0 phonons&→2iu0&u0&u 1 phonon&, (70)

u1&u1&u 0 phonons&→2iu0&u1&u 1 phonon&. (71)

After this operation we tune the laser to the
u0&u 1 phonon&↔uaux&u 0 phonons& transition and shine
a 2p pulse on the second qubit. The state uaux& is an
auxillary electronic state; by sending the 2p pulse we
leave this state unexcited, but the transition from the
u0&u 1 phonon& state back to the same state via the
uaux&u 0 phonons& changes the sign in front of the
u0&u 1 phonon& term resulting in the following,

u0&u0&u 0 phonons&→u0&u0&u 0 phonons&, (72)

u0&u1&u 0 phonons&→u0&u1&u 0 phonons&, (73)

2iu0&u0&u 1 phonon&→iu0&u0&u 1 phonon& , (74)

2iu1&u1&u 1 phonon&→2iu0&u1&u 1 phonon& . (75)

After this operation we return to the first qubit and re-
peat the first operation,

u0&u0&u 0 phonons&→u0&u0&u 0 phonons&, (76)

u0&u1&u 0 phonons&→u0&u1&u 0 phonons&, (77)

iu0&u0&u 1 phonon&→u1&u0&u 0 phonons&, (78)

2iu1&u1&u 1 phonon&→2u1&u1&u 0 phonons&. (79)

Altogether we have changed the sign in front of the
u1&u1& state, leaving all other base states unaffected.
Experiments with ion traps show that the decoherence

time in such systems can be much longer than the time
required to perform elementary computational steps.
The preliminary experimental data indicate a decoher-
ence time td'1022 s and the switching time t'1024 s,
with possibilities for further improvement (Monroe et
al., 1995).

X. CONCLUDING REMARKS

It is not clear at present which technology, if any, will
support quantum computation in the future. Neverthe-
less, the study of quantum computation is important
both from the theoretical and the experimental perspec-
tive. Theoretically it offers a formal study of the intri-
cate relationship between information, complexity, and
the laws of physics. At the experimental level quantum
computation can be viewed as a distinctive new way of
harnessing nature. From the familiar harnessing of ma-
terials, forces, and energies, we have recently started to
harness information in computers. The history of com-
puter technology has involved a sequence of changes
from one type of physical realization to another—from
gears to relays to valves to transistors to integrated cir-
cuits and so on. The step to the molecular scale—the
quantum level—will be next. Quantum theory is already
important in the design of microelectronic components.
Soon it will be necessary to harness quantum theory,
rather than simply take it into account, giving data-

processing devices a new functionality. It is important to
know the limits on our experimental abilities to control
nature at the quantum level, and the investigation of this
fundamental issue justifies all experimental efforts in the
direction of quantum computation.
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APPENDIX A: NUMBER THEORY

We collect here some relevant results from number
theory. Proofs and further explanations may be found in
most standard texts on the subject, e.g., Hardy and
Wright (1965), Schroeder (1990).

1. The Chinese remainder theorem

Consider a system of simultaneous congruences

x[a1modm1

A

x[akmodmk . (A1)

The Chinese remainder theorem (Schroeder, 1990,
Chapter 16) asserts that, if the moduli m1 , . . . ,mk are
coprime,

gcd~mi ,mj!51 for all iÞj , (A2)

then Eq. (A1) has a unique solution for x in the range
1<x<m1m2•••mk . Furthermore, the solution is given
explicitly as follows. Set M5m1m2 •••mk and
Mi5M/mi , so that gcd(mi ,Mi)51 by Eq. (A2). Hence
Mi has an inverse Ni[Mi

21 modmi (see end of Sec. A.2
below),

NiMi[1 modmi ,

and the unique solution of Eq. (A1) is given by

x[~a1N1M11a2N2M21 . . . akNkMk!modM .
(A3)

2. Euclid’s algorithm

Given n1 and n2 , Euclid’s algorithm is an efficient
method for computing the greatest common divisor
gcd(n1 ,n2). Suppose that n1>n2 . Divide n2 into n1 ,
giving remainder r1:

n15k0n21r1 , r1,n2 .

Do the same with n2 and r1 ,

n25k1r11r2 , r2,r1 ,

and then repeat with the two r’s,

r15k2r21r3 , r3,r2 ,

r25k3r31r4 , r4,r3 ,

A
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until the remainder is zero (which must happen eventu-
ally, as the r’s are strictly decreasing),

rl215klrl1rl11 , rl11,rl ,

rl5kl11rl1110.

The greatest common divisor gcd(n1 ,n2) is then given
(clearly!) by the last nonzero remainder,

gcd~n1 ,n2!5rl11 ,

By back-substituting up through the system of equa-
tions, starting with

rl115rl212klrl ,

we obtain an expression for gcd(n1 ,n2) as a linear com-
bination of n1 and n2 ,

gcd~n1 ,n2!5an11bn2 ,

where a and b are integers depending on the ki’s.
Hence, if n1 and n2 are coprime, we have

an11bn251

so

an1[1 modn2 ,

i.e., a[n1
21modn2 . Thus coprime numbers always have

multiplicative inverses modulo each other.

3. Euler’s Phi function, orders modulo N, and the prime
number theorem

Euler’s Phi function denoted f(N) (Hardy and
Wright, 1965, Sec. 5.5; Schroeder, 1990, p. 9 and Chap.
8) is defined as

f~N !5 the number of integers

less than N which are coprime to N .

Thus, for example, if p is prime, then f(p)5p21 and
f(mn)5f(m)f(n), if gcd(m ,n)51. Euler’s Phi func-
tion is a basic ingredient in many beautiful results of
number theory. Euler’s theorem (Schroeder, 1990, Sec.
8.3) asserts that

af~N ![1 modN if gcd~a ,N !51. (A4)

Thus if gcd(a ,N)51, there exists a power of a that is
congruent to 1 modN , so there is a least such power and
we make the following definition:

Definition. Suppose that gcd(a ,N)51. Then the order
r of a modN is the least power of a congruent to
1 modN .
Note that, if gcd(a ,N) Þ 1, then no power of a can be

congruent to 1 modN , since am2lN is clearly divisible
by gcd(a ,N) for any m and l .
Let p(N) denote the number of primes less than or

equal to N . The prime number theorem asserts that

lim
N→`

p~N !

N/logN
51. (A5)

This theorem is difficult to prove (Hardy and Wright,
1965, Chap. 22), and various more refined estimates for

the distribution of primes are also known (see
Schroeder, 1990, Chap. 4, for an informal discussion.)
We use Eq. (A5) loosely in the form

p~N !5N/logN , for all sufficiently large N . (A6)

The precise statement is: For any e.0 there is an N0
such that

N

logN
2e<f~N !<

N

logN
1e for all N.N0 . (A7)

This may be used to make our arguments based on Eq.
(A6) rigorous. Now clearly f(N)>p(N), so

f~N !>N/logN . (A8)

Thus the probability f(N)/N that a number chosen ran-
domly from 1, . . . ,N is coprime to N is greater than
1/logN. We make much use of this result, even though
the estimate, Eq. (A8), is rather weak—there are usually
very many more numbers coprime to N than just the
primes. Indeed it is shown by Hardy and Wright (1965,
Sec. 18.4) that

lim inf
f~N !

N/loglogN
5e2g, (A9)

where g is Euler’s constant, so that, in the loose sense of
Eq. (A6), f(N).e2gN/loglogN, which is much better
than Eq. (A8).

4. Continued fractions

A (finite, simple) continued fraction (Hardy and
Wright, 1965, Chap. 10) is an expression of the form

a01
1

a11
1

a21
1

a31
1

•••1
1
aN

(A10)

where a0 , . . . ,aN are positive integers. We abbreviate
(A10) as @a0 , . . . ,aN# and define the nth convergent to
this expression as @a0 , . . . ,an# for n in the range
0<n<N .
If we write the nth convergent as pn /qn , then there is

a recurrence relation

p05a0, p15a1a011, pn5anpn211pn22 ,

q051, q15a1 , qn5anqn211qn22 . (A11)

Furthermore, the convergents pn /qn computed by this
iteration are always in their lowest terms, i.e.,
gcd(pn ,qn)51 (Hardy and Wright, 1965, theorem 157).
Any (positive) rational number can be represented by

a continued fraction computed efficiently as follows. Let
bx c denote the greatest integer less than or equal to
x . Then a05 bx c and x5a01j0 for some 0<j0,1. If
j0Þ0, then a15 b1/j0c and 1/j05a11j1 for some
0<j1,1. If j1 Þ 0, then a25 b1/j1c , etc. This process al-

750 A. Ekert and R. Jozsa: Quantum computation and Shor’s factoring algorithm

Rev. Mod. Phys., Vol. 68, No. 3, July 1996



ways terminates for rational x and we get
x5@a0 , . . . ,aN# (Hardy and Wright, 1965, theorem
161).
From Eq. (A10) it is easy to see that

@a0 , . . . ,aN21 ,aN#5@a0 , . . . ,aN21 ,aN21,1# . If we im-
pose aN.1, then the representation of x as a continued
fraction is unique.
Our main interest in continued fractions lies in the

following result (Hardy and Wright, 1965, theorem 184,
Sec. 10.15):

Theorem. Suppose that p/q is any rational number
satisfying

U pq 2xU, 1
2q2

.

Then p/q is a convergent of the continued fraction of
x .
Continued fractions may also be used to represent ir-

rational numbers, in which case they have infinite length
@a0 ,a1 , . . . # . They are associated with a rich theory and
a wide variety of applications (Schroeder, 1990, Chap.
5), e.g., they can efficiently provide excellent rational
approximations to irrationals. The above theorem is also
true for irrational x .

APPENDIX B: PROOF OF EQUATION (30)

Theorem. Let N be odd with prime factorization

N5p1
a1p2

a2 . . . pk
ak . (B1)

Suppose y is chosen at random, satisfying
gcd(y ,N)51. Let r be the order of y modN . Then

Prob ~r is even and yr/2[” 61 modN !>12
1

2k21 .

(B2)

Proof. We have yr[1 modN , and r is the least such
value. Thus we never have yr/2[1 modN . We shall
prove that

Prob ~r is odd or yr/2[21 modN !<
1

2k21 . (B3)

Now gcd(y ,pi
a i)[1, so let ri be the order of y modpi

a i ,

yri[1 modpi
a i, i51, . . . ,k . (B4)

Note that

r5 lcm~r1 , . . . ,rk!. (B5)

This follows because yr[1 modN implies that
yr[1 modpi

a i , hence r is a multiple of each ri , and r is
the least such value, i.e., the least common multiple, giv-
ing Eq. (B5).
Next we have

yr/2[21 mod N iff yr/2[21 mod pi
a i for each i

(B6)

The forward implication is clear, since pi
a i divides N .

The reverse implication is given by the Chinese remain-

der theorem, for, if we put j5yr/2, then the system of
congruences j[21 modpi

a i has a unique solution
moduloN , and j[21 modN is a solution (by the for-
ward implication); hence it is the unique solution, giving
Eq. (B6).
Now write

ri5si2
t i, si odd i51, . . . ,k , (B7)

where

s5 lcm~s1 , . . . ,sk!, (B8)

t5max~ t1 , . . . ,tk!. (B9)

Then by Eq. (B2) r5s2 t. We can thus claim that

yr/2[21 modpi
a i implies t i5t . (B10)

To see this, assume that yr/2[21 modpi
a i , but that

t i,t . Then by Eqs. (B7) and (B8) ri divides r/2, but this
is impossible, since by Eq. (B4) yri[1 modpi

a i , and
yr/2[21 modpi

a i by assumption. [Note that relation
(B10) fails for the excluded case pi

a i52, where 1 is con-
gruent to 21.]
Next note that r is odd if and only if each ri is odd [by

Eq. (B5)], so that in this case all the t i’s are equal (to
zero). Thus, combining Eqs. (B6) and (B10), we get

Prob~r is odd or yr/2[21 modN !

< Prob~all t i’s are equal!.

(B11)

To estimate the latter probability we use

Prob~ t i5j !<
1
2

for all i and j . (B12)

To see this we use the fact that the multiplicative group
modulo pi

a i is cyclic. The elements of this group are the
integers coprime to pi

a i , and so the size of the group is
f(pi

a i). Let g be a generator, so

gf~p
i
a i![1 modpi

a i . (B13)

Write f(pi
a i)5s2t with s odd. By Euler’s theorem any

order modulopi
a i divides s2t, so t i<t for all i . Now for

any b odd let s̃2 t̃ be the order of gbmodpi
a i , so t̃<t .

Then

~gb!s̃2 t̃
5gbs̃2 t̃

51 (B14)

and bs̃ is odd, so t̃5t . Similarly, if b is even, then gb

has order s̃2 t̃ with t̃<t21.
Hence [except for the trivial case of pi

a i52,f(2)51]
we see that any prescribed value of t̃ can occur for at
most half of the numbers coprime to pi

a i . This proves
Eq. (B12).
Finally we have
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Prob ~all t i8s equal!5(
j

)
i51

k

Prob ~ t i5j ! (B15)

5(
j

Prob ~ t15j ! . . . Prob ~ tk5j !

(B16)

<(
j

Prob ~ t15j !
1

2k21 5
1

2k21 .

(B17)

By Eq. (B11), this proves the theorem.
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